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Abstract 
 

Quantitatively analyzing human gait biomechanics will improve our ability to diagnose 
and treat disability and to measure the effectiveness of assistive devices. Gait analysis is one 
technology used to analyze walking, but technical as well as economic, social, and policy issues 
hinder its clinical adoption. This thesis is divided into two parts that address some of these 
issues.  

Part I focuses on the role public policies have in advancing gait analysis. Through an 
analysis of gait analysis technologies, case studies of MRI and CT Angiography, and a high-level 
analysis of data standards used in gait analysis, it concludes that policies cannot directly create 
the institutional structures and the data standards required to advance gait analysis as a clinical 
diagnostic tool. Only through indirect means, such as research funding, can policies support the 
development of organizations to take ownership of gait analysis technologies. Part I also 
concludes that policies should not fund development of gait technologies but instead should fund 
research units working on data standards and accurate human body models. 

Part II focuses on a technical issue in gait analysis, namely, how to address uncertainties 
in joint moment calculations that occur from using different body segment inertial parameter 
estimation models. This is identified as a technical issue needing attention from our broader 
policy analysis in Part I. Using sensitivity studies of forward dynamics computer simulations 
coupled with an analysis of the dynamical equations of motion, Part II shows that joint moment 
variations resulting from different segment inertial parameters are significant at some parts of the 
gait cycle, particularly heel strike and leg swing. It provides recommendations about which 
segment inertial parameters one should estimate more accurately depending on which joints and 
phases of the gait cycle one is interested in analyzing. 
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1 Introduction 
 
Upright movement permeates American aphorisms, connoting independence, autonomy, 
perseverance, strength, achievement—‘standing on your own two feet,’ ‘walking tall,’ ‘standing 
up for yourself,’ ‘taking things in stride,’ ‘climbing the ladder of success,’ ‘one small step for a 
man, one giant leap for mankind.’ 
  

--Lisa Iezzoni, When Walking Fails 
 

1.1  Problem 

Quantitatively analyzing human gait biomechanics will improve our ability to diagnose 
and treat disability and to measure the effectiveness of assistive devices. Of the many types of 
human movement, this thesis focuses on walking, which is a fundamental movement associated 
with social independence and many health benefits. Gait analysis is one technology used to study 
walking, but technical as well as economic, social, and policy issues hinder its clinical adoption.  

This thesis is divided into two parts, both of which focus on clinical gait analysis. The 
first part focuses on the role public policies have in advancing gait analysis. The second part 
focuses on a technical issue in gait analysis, namely, how to address uncertainties in joint 
moment calculations that occur from using different body segment inertial parameter estimation 
models. This is identified as a technical issue that needs attention based on our broader policy 
analysis. The specific health technology and technical problems are explained in greater detail 
below. 
 

1.1.1  Health Technology Policy  

Health technology policy faces a tension between a desire for stricter cost-effectiveness 
scrutiny and the fear that overly strict standards will prevent promising technologies from being 
used, after which their effectiveness are often discovered. The latter fear is cited to justify 
implementing public policies, such as Medicare reimbursement, to support the development or 
use of an untested medical technology.  

This tension means that costly technologies with unclear benefits are sometimes 
supported, while at other times promising technologies are stalled. Gait analysis fits in the latter 
category, though public policies to directly support its development and use may not be required 
because its technologies have non-medical applications as well. Technologies that have medical 
and non-medical applications may not require federal support if regulatory barriers to entry into 
medical markets are low.  

At the same time, just because a technology is transferable from commercial to medical 
applications and has low regulatory barriers does not mean that its clinical promise can be fully 
realized without policies that create appropriate institutional structures and technology standards. 
Part I analyzes these issues to determine what role public policies have in advancing gait 
analysis. 
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1.1.2  Gait Analysis Technical Issue 

An important output calculated from gait analysis is joint moments (or torques). Joint 
moments are important to know for two reasons. First, they can be correlated to poor 
biomechanics that may lead to degenerative processes. Second, they can be used to compute 
other variables, such as joint powers and individual muscle and tendon forces (Challis & Kerwin, 
1996). But difficulty arises because joint moments are not directly measured variables and must 
be calculated from experimental data based on additional assumptions, one of these being body 
segment inertial parameters (BSIPs). BSIPs consist of body segment masses, center-of-mass 
locations, and inertias. This technical issue limits the use of gait analysis in clinical decision-
making. An analysis of uncertainties in joint moment calculations due to differing BSIP values is 
therefore important for understanding how joint moment calculations may vary for the same 
subject, which relates to gait analysis’s variability and accuracy.  

Although we can take more accurate measurements of the entire body to try to achieve 
better BSIP estimates, this is an inefficient method. The research in Part II aims to provide 
guidelines regarding which specific body parts to measure more accurately depending on which 
cycle of the gait cycle one is interested in examining. 

 

1.2  Research Overview 

This section presents an overview of the research questions, hypotheses, methodology, 
conclusions, and limitations of this thesis. 

1.2.1  Research Questions 

To address the problems discussed in Section 1.1, this thesis is divided into two parts 
focusing on the following research questions: 
  

·  Part I: What public policies are appropriate for advancing clinical gait analysis? 
·  Part II: How can we better interpret joint moment results from gait analysis in light of 

large uncertainties in body segment inertial parameter estimates? 

1.2.2 Hypotheses 

In Part I, we hypothesized that the technologies required for gait analysis can be developed 
through commercial (non-medical) markets and that policies should focus on fostering the 
professional institutions and data standards required for clinical gait analysis to be a practical 
diagnostic tool. 

 
In Part II, we hypothesized the following about joint moment results: 

·  Joint moment estimates will be significantly different during periods of high force 
impact, i.e., during heel strike, but similar at other periods of the gait cycle 

·  Joint moment variations will be different for different joints. 
·  Joint variations will be significant at some phases of the gait cycle and less so at others 
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1.2.3  Methodology  

 The methodology used in Part I involves an analysis of gait analysis technologies, case 
studies of MRI and CT Angiography to draw lessons for advancing clinical gait analysis, and a 
high-level analysis of data standards used in gait analysis for improving data sharing. 

The methodology used in Part II of this thesis involves sensitivity studies of forward 
dynamics computer simulations as well as analyses of the dynamical equations of motion. 3D 
forward dynamic simulations are physical simulations that track experimental gait data in order 
to capture data from instrumented “virtual humans.” It is an increasingly popular method for 
studying human locomotion.  
  

1.2.4 Conclusions 

Part I concludes that policies cannot directly create the professional institutional 
structures and the data standards required to advance gait analysis as a clinical diagnostic tool. 
Only through indirect means, such as research funding, can policies support the development of 
organizations to take ownership of gait analysis technologies and data standards. Part I also 
concludes that policies should not fund development of gait technologies, but instead should 
fund research units working on data standards and accurate human body models. 

Part II of this thesis concludes that joint moment variations resulting from different 
segment inertial parameters are significant at some parts of the gait cycle, particularly heel strike 
and leg swing. It provides recommendations about which segment inertial parameters one should 
estimate more accurately depending on which joints and which phases of the gait cycle one is 
interested in analyzing. 
  

1.2.5 Contributions 

This thesis presents several contributions. First, it provides recommendations on how 
public policies can advance gait analysis as a clinical tool. Though much literature exists 
regarding public policies for other diagnostics, such as medical imaging, there is a dearth of 
literature regarding gait analysis. Second, this thesis analyzes how body segment inertial 
parameter (BSIP) values affect joint torque estimates in gait analysis and provides 
recommendations on which BSIPs to measure more accurately depending on the joints and gait 
phases of interest. 

1.2.6 Limitations and Future Work 

 Part I could analyze other related diagnostic modalities, both inside and outside the 
imaging field, as well as expand the standards analysis beyond data sharing to encompass 
clinical protocols. Also, Part I could analyze wearable sensor technologies, which hold promise 
as a technology for mobile gait analysis and for which regulations are still emerging. 

The major limitations of Part II are that it analyzes one subject at one walking speed and 
analyzes only one body model.  
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1.3  Motivation 

Physical disability is a significant national health problem that will only worsen as the 
population ages, a trend highlighted in Figure 1. In 2000, close to one fifth of community 
dwelling persons age five and older in the U.S. reported disabilities, while 41.9% of adults age 
64 and older reported disabilities.  
 

 
Figure 1: Percentage of adults with mobility difficulties by age (Iezzoni, 2003) 

 
Further, the U.S. census bureau projects that the number of elderly will rise from 34.7 

million in 2000 to 69.4 million in 2030. Of these elderly, 39.5 million reported sensory and 
physical disabilities in 2001. People with significant physical disabilities also live longer today 
due to advances in medicine, further compounding the costs of disability (Iezzoni & O'Day, 
2006). Treating and diagnosing physical disability through improved medical technologies is 
therefore important. Table 1 highlights some disability statistics from 2001. 
 

Table 1: Adults Reporting Mobility Difficulty in 20 01 (Iezzoni, 2003) 

Difficulty* Estimated Number (millions) Percentage 
None 168.32 90 
Minor 7.93 4 
Moderate 5.23 3 
Major 5.82 3 
TOTAL REPORTING 
DIFFICULTY 

18.98 10 

*None = persons who report no difficulty with walking and climbing stairs and standing and use no mobility aid; 
minor = persons who report some difficulty with walking or climbing stairs or standing or who use a cane or 
crutches; moderate = persons who report a lot of difficulty with walking or climbing stairs or standing or who use a 
walker; major = persons who report being unable to perform walking or climbing stairs or standing or who use a 
manual or power wheelchair or scooter 
 

Of the many types of physical disabilities, walking disability is one of the most crippling 
and is therefore the focus of this research. Walking disability can come about through a variety 
of causes, some of which are summarized in Table 2. A key issue in addressing walking 
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disability is how to best quantify and measure locomotion disability. This issue remains 
unresolved, as no definitive theories of walking have been accepted. Further, technologies such 
as powered orthoses and functional electrical stimulators are being introduced to address 
locomotion disability, yet these technologies are expensive and of unclear efficacy. The ability to 
assess, diagnose, and measure the effectiveness of new therapies to address walking disability is 
critical, both from a science perspective and from a health policy perspective.  

 

Table 2: Common Causes of Mobility Difficulties (Iezzoni, 2003) 

 Mobility Difficulty (%) 
Causes Minor Moderate Major 
Arthritis and musculoskeletal problems 25 26 24 
Intervertebral disk and other back problems and sciatica 14 16 8 
Accidental falls 6 7 6 
Ischemic heart disease and other heart conditions 5 5 6 
Motor vehicle traffic accidents 4 5 4 
Chronic bronchitis, emphysema, asthma, and other lung 
conditions 

4 4 4 

Cerebrovascular disease, including stroke 1 2 5 
Overexertion and strenuous movements 2 3 1 
Unspecified accidents 2 2 1 
Machinery, firearm, and other specified accidents 1 2 2 
Osteoporosis and bone or cartilage disorders 1 1 2 
Diabetes 1 1 1 
Multiple sclerosis < 1 < 1 2 

 

1.4  Definitions 

This section defines the major terms used in this document.  
 
1. Physical Disability: an impairment that prevents one from performing functions of daily living 
that healthy people can perform.  
 

This definition is based on the World Health Organization’s (WHO) International 
Classification of Functioning, Disability, and Health (ICF), which defines disability as an 
“umbrella term for impairments, activity limitations or participation restrictions,” 
categorizing “a person’s functioning and disability…as a dynamic interaction between 
health conditions (disease, disorders, injuries, traumas, etc.) and contextual factors.” 
(Iezzoni & O'Day, 2006).  

 
2. Gait Analysis:  a diagnostic method that records human body kinematics and dynamics during 
some sort of gait movement, where gait implies that the body is supported on the legs. 
Kinematics refers to the motion of objects without consideration of the forces that cause that 
motion, while dynamics is concerned with forces as well as properties of the moving bodies, 
such as their masses and inertias. The focus is on whole-body movements, such as limbs, torso, 
and head, rather than smaller bodies such as cells or even fingers. Additionally, muscle EMG 
signals may be recorded as well.   
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This definition follows that of Rose (1983), who suggested that the term “gait 
assessment” be applied to the whole process of examining a patient’s gait and suggesting 
treatment, while the term “gait analysis” be used for the technical side of gait assessment, 
which includes making objective measurements such as walking speed, joint angles, 
forces, and EMG muscle recordings (Whittle, 1996). This thesis focuses on gait analysis 
and its application to gait assessment as a clinical diagnostic. 

 
3. Movement Analysis: measurement and analysis of the body as a whole. Thus, gait analysis is a 
subset of motion analysis.  
 
4. Forward Dynamic Simulations: computer models that simulate movement of physical objects 
by numerically integrating dynamic equations of motion in time, subject to gravity, inertial and 
velocity-dependent forces, and muscle forces. In forward dynamic simulations, forces produce 
motions, whereas traditional analysis of gait data involves inverse dynamic analysis, where 
experimentally measured ground forces and torques are cascaded through rigid body linkages 
representing the body segments in order to estimate joint torques (Piazza, 2006).  
 
5. Body Segment Inertial Parameters (BSIPs): the mass, center of mass location, and moments 
of inertia of human body segments.  
 
6. Gait Cycle: the time required for a leg to undergo both a stance and a swing phase. This is 
typically the time axis presented in gait analysis result plots.   
 

1.5  Overview of the Following Chapters 

Part I encompasses chapters 2 through 5. Chapter 2 presents background on gait analysis 
and health policies related to gait analysis. Chapter 3 presents our technology analysis to answer 
key question one. Chapter 4 presents the case studies of MRI and CT Angiography, while 
Chapter 5 analyzes data standards in gait analysis and presents policy conclusions.  

Part II encompasses chapters 6 through 8. Chapter 6 reviews the biomechanics of human 
walking, while Chapter 7 presents our research methodology in detail. Finally, Chapter 8 
presents results and conclusions. 
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PART I: Public Policies for Advancing Gait Analysis  
 

As explained in Section 1.1.1, Part I addresses how public policies can advance gait 
analysis. Specifically, this part aims to answer the following three key questions: 
 
·  Is the technology required for clinical gait analysis different from that required for 

commercial applications of motion capture and analysis? If so, how, and what role do 
regulatory requirements play in effecting technology transfer into the medical field for gait 
analysis? 

 
·  How does gait analysis compare to imaging—a widely-used (and therefore, in our view, 

successful) clinical diagnostic—in terms of its political, economical, and social structure, and 
what lessons can be learned from examining the medical imaging field’s development? 

 
·  What is the state of data standards in gait analysis, and how might policies address the 

deficiencies? 
 
These three questions cover a range of technology, social science, and standards issues central to 
the advancement of gait analysis as an accepted clinical diagnostic. After answering these 
questions, we provide recommendations on whether and how public policies can advance clinical 
gait analysis. The hypothesis, scope, and methodology of Part I are summarized below in the 
next sections 
 

Hypothesis 

 A key issue in health policy is whether appropriate medical technologies will be 
developed by industry alone. In other words, do appropriate incentives exist without additional 
federal encouragement, or must government create incentives for development of appropriate 
technologies through such means as university research? This question is significant for gait 
analysis because many of its technologies have applications in other markets such as 
entertainment, engineering, and sports, and therefore the market may already pursue appropriate 
technological advancements without public funding. 

For gait analysis, we hypothesize that the desired technologies can be developed through 
commercial markets without significant publicly funded development of these technologies and 
that policies should instead focus on fostering the professional institutions and data standards 
required for clinical gait analysis to become a practical diagnostic tool. 
 

Scope 

 This research focuses only on public policies for the U.S. healthcare environment. By 
public policies, we mean policies enacted at the federal level, such as Medicare reimbursement 
decisions, statutes, and research funding initiatives. In other countries—especially those with 
national healthcare systems— medical regulations and reimbursement policies are different, 
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which means our analysis and recommendations may not be applicable. Further, we focus only 
on lab-based gait analysis as a diagnostic tool. Some research has focused on using wearable 
sensors for mobile gait analysis (e.g., (Bonato, 2005)), but these technologies are still developing 
and policies regarding mobile health devices are still emerging, even for standard measurements 
such as blood pressure (Olson, 2008). We believe that general acceptance of gait analysis as a 
lab-based tool must emerge prior to its use in mobile or home-based diagnostic devices, and 
therefore focus only on the former. Finally, although this study focuses on gait analysis, our 
conclusions will likely be generalizable to advancing clinical movement analysis as a whole.  
 

Methodology 
The methodologies used to answer the three questions are as follows. The first question is 

answered through an analysis of the technologies used in gait analysis and related applications. 
The second question is answered through case studies of medical imaging—which, like gait 
analysis, is a multidimensional diagnostic that relies heavily on operator interpretation of 
results— to glean insights into relevant policy issues for gait analysis. Specifically, we analyze 
the cases of MRI and CT Angiography, for reasons to be detailed in Chapter 4. The third 
question is answered by performing a high-level analysis of standards used to store and 
communicate gait analysis data and comparing them to DICOM, the standard used for medical 
images. 
 
 
Conclusions 

Part I concludes that policies cannot directly create the professional institutional 
structures and the data standards required to advance gait analysis as a clinical diagnostic tool. 
Only through indirect means, such as research funding, can policies support the development of 
organizations to take ownership of gait analysis and its data standards. Part I also concludes that 
policies should not fund development of gait technologies, but rather should fund research units 
working on data standards and accurate human body models. 
 

Overview of Proceeding Chapters in Part I 

Chapter 2 presents background on gait analysis and health policies related to gait 
analysis. Chapter 3 presents our technology analysis to answer key question one. Chapter 4 
presents the case studies of MRI and CT Angiography, while Chapter 5 analyzes data standards 
in gait analysis and concludes with overall policy recommendations. 
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2 Gait Analysis and Related Policies 
 

This chapter is divided into two sections. Section 1 presents an overview of the 
regulatory, reimbursement, and policy issues relevant to clinical diagnostic technologies. Section 
2 then presents a brief history of modern gait analysis and explains its medical potential. 
 

2.1 Health Technology Policy 

 This section provides an overview of why government intervention is often required to 
promote and develop medical technologies, the U.S. regulatory environment for diagnostics, how 
reimbursement decisions for diagnostics are made, and the evidence-based medicine approach. 
 

2.1.1 Rationale for Government Intervention 

 It may first be helpful to define why public policies are needed regarding medical 
technologies. One reason is because the medical industry differs from most other industries in 
two ways: (1) providers rather than purchasers or beneficiaries generally determine the services 
provided, and (2) health providers are generally reimbursed for services by third parties rather 
than beneficiaries. The health care market therefore does not fulfill the criteria of efficient 
markets, which means we may require government intervention to protect the public welfare and 
to promote effective use of healthcare and related technologies (Hillman, 1986). 
 

2.1.2 Regulation of Diagnostic Technologies 

Any device advertised for use in medical applications must be approved by the U.S. Food 
and Drug Administration (FDA), which regulates medical devices according to the Food, Drug 
and Cosmetic Act (FD&C). Specifically, gait analysis systems to be used for diagnostic purposes 
are considered medical devices according to section 201(h) of the FD&C, which defines a 
medical device as any device “intended for the use in the diagnosis of disease or other 
conditions, or in the cure, mitigation, treatment, or prevention of disease, in man or other 
animals” (21 U.S.C. § 321 (2004)).  

Medical devices are classified into three classes that determine regulatory scrutiny. 
Section 513 (21 U.S.C. § 360c (2004)) of the FD&C Act divides them as follows: 

 
·  Class I devices: these devices do not require pre-market approval or clearance and are 

considered the safest. They therefore have the least controls, i.e., the FDA’s “general 
controls.” Ground force plates are considered Class I devices (21CFR890.1575 (2007)). 

 
·  Class II devices: These devices require “special controls,” such as performance standards, 

post-market surveillance, and dissemination of guidelines. Many diagnostic tests are 
considered class II devices. These devices are cleared using the 510K process, which is 
discussed below. 
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·  Class III devices: These devices require pre-market approval because general and special 

controls are not satisfactory to ensure their safety or effectiveness. They include devices used 
to support human life, such as pacemakers. 

 
Further, section 510(k) of the FD&C Act requires device manufacturers to notify the 

FDA at least 90 days in advance of their intent to market a medical device (21 U.S.C. § 360 
(2004)). This allows the FDA to determine whether the device is equivalent to a device it has 
already classified. 510(k) is known as the “pre-market notification,” and is meant to ensure that 
the device to be marketed is “at least as safe and effective” as a “legally marketed device” (U.S. 
Food and Drug Administration, 2006). Devices cleared through the 510(k) process are not 
considered approved by the FDA but are considered “cleared” devices and can be marketed in 
the U.S.  

 

2.1.3 Reimbursement 

After the FDA approves a medical technology, insurers such as Medicare decide on 
coverage. Private insurers make their own coverage decisions but often follow the lead of 
Medicare.  

Medicare is a social insurance program for people age 65 and over administered by the 
Centers for Medicare and Medicaid Services (CMS). It is grounded in the Social Security Act. 
Section 1862(a)(1)(A) of the Social Security Act states that Medicare explicitly covers only 
diagnostics that are “reasonable and necessary for the prevention of illness” (42 U.S.C. § 1395y 
(2008)). However, no statutory definition of this phrase is provided, leading to vigorous debates 
about specific technologies (Redberg, 2007). 

Private insurers decide what to insure in two stages: (1) what services are covered by 
particular plans, and (2) case-by-case decisions about the “medical necessity” of covered 
services. Coverage generally follows the precedents set by Medicare, making Medicare coverage 
the key step in gaining private insurance coverage. 

There are no established protocols for deciding coverage, both at the Medicare and at the 
private insurance level. Although Medicare espouses evidence-based approaches (discussed in 
the next section) for making coverage decisions, it does not always follow them. Berensen and 
Abelson write that “inadequate study is especially serious for medical devices and imaging 
equipment,” and that once a procedure gains FDA approval, “Medicare rarely demands evidence 
that it benefits patients before agreeing to pay for it” (Berenson & Abelson, 2008). Iezzoni & 
Day emphasize that coverage standards are subjective, and the lack of data supporting 
effectiveness of many procedures allows insurers and Medicare to deny coverage easily (Iezzoni 
& O'Day, 2005). And unlike pharmaceuticals, which undergo periodic review by the FDA after 
approval, few systematic criteria are applied to ensure patient benefit in the case of medical 
devices after formal requirements for FDA approval and insurance coverage are met (Redberg, 
2007) 
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2.1.4 Evidence-based medicine 

Rising costs in medicine have prompted policymakers, insurers, and some physicians to 
advocate evidence-based medicine. The most common definition from Sackett states that EBM is 
"the conscientious, explicit and judicious use of current best evidence in making decisions about 
the care of the individual patient. It means integrating individual clinical expertise with the best 
available external clinical evidence from systematic research." (Sackett, 1996).  

The movement towards evidence-based medicine became widely accepted in the 1990s. 
Areas of EBM include coverage policies, performance measures, disease management, quality 
improvement, regulations, and public policies. All these areas share four common features: (1) 
analysis of evidence and development of guidelines and policies is done by small groups of 
experts, (2) they all use explicit, rigorous review processes, (3) the product is generic, meaning 
the guidelines are intended to apply to a class or group of patients defined by some clinical 
criteria, rather than to an individual patient, and (4) their effects on care are indirect, i.e., they are 
intended to enable, guide, motivate, or sometimes force physicians and other providers to deliver 
certain types of care to people, but they do not directly determine the care provided to a 
particular patient (Eddy, 2005). 
 Associated with the movement toward evidence-based medicine is the movement to 
evaluate cost-effectiveness of medical procedures by bodies such as Medicare. Cost-
effectiveness analysis aims to evaluate health outcomes and costs of different procedures relative 
to one another so that decision makers can select the “best” alternative. However, it neglects 
many factors that may be equally or more important in making funding and reimbursement 
policy decisions, such as justice, equity, and costs and benefits outside the health care system 
(Gazelle et al., 2005).  
 Evidence-based medicine involves analysis of many levels of effectiveness, from 
technical accuracy to impact on societal health outcomes. An example of the many levels of 
evidence for medical imaging diagnostics and specific metrics by which each may be measured 
is presented in Table 3. 
 

Table 3: Levels of Evidence in Evaluations of Diagnostic Technologies, with examples taken from the medical 
imaging field (Pearson et al., 2008) 

Level of evidence Example of Measures 
1. Technical Pixels per millimeter 

Section thickness 
2. Diagnostic accuracy Sensitivity 

Specificity 
Area under the receiver operating characteristic curve 

3. Impact of diagnostic thinking Percentage of cases in which the clinician believes that the test alters the 
diagnosis 

4. Impact on therapeutic actions Percentage of cases in which the choice of therapies is changed after 
information from the test is provided 

5. Impact on patient outcomes Differences in mortality, morbidity, or quality of life between patients 
managed with the test and those managed without it 

6. Impact on societal outcomes Cost-effectiveness of the improvement in patient outcomes, such as cost per 
life year saved, calculated from a societal perspective 
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2.2 Gait Analysis Overview  

This section summarizes the potential of gait analysis as a diagnostic tool for 
musculoskeletal disorders, the modern history of gait analysis, and the process and economics of 
gait analysis.  
 

2.2.1 Diagnostic Potential 

Technologies for gait analysis measure the dynamics (forces) and kinematics (motion) of 
movement, providing a quantitative basis by which to analyze and diagnose movement disorders. 
Advantages of gait analysis over unaided clinical observation include identifying problems at 
multiple levels, identifying dynamic movement patterns not evident otherwise, and comparing 
range of motion curves of normal ranges to tested subjects (Finch, 2001).  

Gait analysis has potential as a diagnostic tool for assessing the severity of pathology, 
predicting better treatments, and assessing the effects of interventions. It has been used and 
studied most extensively on altering treatment procedures in cerebral palsy (CP) patients. 
Accordingly, many (but not all) insurers cover its application to CP. Gait analysis supplemented 
with EMG recordings is particularly useful for determining which muscles are activated during 
poor gait, which can inform surgical procedures. Research also suggests that gait analysis holds 
potential for diagnosing multiple joint diseases such as osteoarthritis, anterior cruciate ligament 
(ACL) rupture in the knee, hemiplegia, and muscular dystrophy (Whittle, 2002).  
  

2.2.2 History of Modern Gait Analysis 

The history of modern gait analysis systems can be traced to the late 1970s and early 
1980s. During the late 1970s, gait analysis was introduced into clinical settings largely due to the 
efforts of four orthopedic surgeons: Jaquelin Perry, David Sutherland, and Jim Gage in the U.S., 
and Gordon Rose, in the UK (Whittle, 1996).  

Sutherland provides a published personal account of the historical development of and 
applications of gait analysis technologies, which we briefly summarize below. More detailed 
information about each technology is presented in Chapter 3. 

 
2.2.2.1 Motion Capture 

Much work in the 1950s focused on recording joint angles using electrogoniometers 
because such systems could collect information quickly and analog graphs of motion could be 
displayed without extensive data processing. These were important features since powerful 
computers were unavailable. The introduction of the Vanguard Motion Analyzer in the 1960s 
brought forth film-based techniques using passive marker systems. This system used high-speed 
cameras to track markers in space, but manual calculations were needed to convert image data 
into coordinate data. Research work during the 1960s and 1970s focused on automating this 
process of acquiring marker coordinates from images. During the late 1970s, a technical director 
at Oxford Medical Systems—a company focusing mainly on cardiology products—thought that 
a commercial market for an automatic 3D gait analysis system existed. Oxford Medical Systems 
therefore licensed technologies from the Universities of Strathclyde and Dundee and spent two 
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years developing a system called VICON, whose name was derived from “video-converter.” The 
first VICON system was shipped in 1980. 

Although the VICON system was effective for extracting 2D coordinate data, its software 
could not calculate 3D coordinates. Michael Whittle, who had worked with NASA to make 3D 
measurements of astronaut body forms in a Skylab experiment, became the director of the 
Oxford University Motion Laboratory after its former director left to found Oxford Metrics, a 
spin-off of Oxford Medical Systems focusing on the VICON system. To fulfill his research 
needs, Whittle likely wrote the 3D motion capture software. After Oxford Metrics, Motion 
Analysis Corporation was the next major motion-capture company to emerge. After Motion 
Analysis came Bioengineering Technology Systems (BTS), which was founded in Milan, Italy, 
in 1986. BTS developed the ELITE motion capture system (Sutherland, 2002). 

The advent of MEMS (microelectromechanical systems) sensors in the late 1990s 
reduced the price, size, and power consumption of traditional sensors while improving their 
accuracy. This led to increased attention on using wearable sensors for motion capture 
applications. Several companies have emerged marketing such motion capture suits. 
Additionally, Organic Motion presented the first commercial markerless motion capture system 
in 2007, although the accuracy is still inadequate for biomechanical applications (Bonato, 2009). 
 
2.2.2.2 Kinesiological EMG 

EMG (electromyography) systems measure the electrical activity of muscles to provide 
information about muscle excitations. These can involve surface (non-invasive) EMG, or fine-
wire (invasive) EMG. Most of the developments in EMG technology and application occurred 
prior to the 1980s. (Sutherland, 2001).  

 
2.2.2.3 Ground Force Measurement 

In the mid-1960s, Sutherland requested the development of a force plate for the Shriners 
Hospital San Francisco Gait Laboratory because no commercial force places existed. The lab 
hired engineers to produce a clinically useful force plate, which appeared in 1975. Similarly, 
other gait labs contracted to have custom force plates built as well. Several years later, the Kistler 
Corporation, a respected Swiss company, produced a commercial model. This was followed by 
those of other companies, such as Advanced Mechanical Technology, Inc. (AMTI) and Bertec, 
ushering in the market a variety of reliable, commercially available force plates (Sutherland, 
2005).  
 

2.2.3 Gait Analysis Process 

Gait analysis consists of three main steps: taking a patient’s history, performing a 
physical examination, and performing “special investigations,” such as X-rays or oxygen 
consumption analysis. A gait analysis team generally consists of a physician, a physical therapist, 
and a biomedical engineer, though different centers may have different team sizes and team 
members with different skills (Simon, 2004; Whittle, 1996). Only the physical therapist and 
engineer are required to conduct the study, with the physician performing the initial clinical 
examination and assisting in interpreting results (Bonato, 2009).  
 Referrals to gait labs are often made by patients’ physicians, though physical therapists 
might do so in some cases as well. These physicians are generally orthopedic surgeons. The 
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patient stays at the gait lab for 2-3 hours, and her stay there consists of the physician taking a 
patient history, then performing various gait analysis tests (Whittle, 1996).  

Specifically, taking the history and performing the clinical exam of a patient requires 20-
30 minutes, placing markers on the subject and calibrating devices for motion detection and 
muscle activity monitoring takes 30-60 minutes, and testing itself lasts 5-30min depending on the 
number of conditions examined. Post-processing the data then takes additional time. While gait 
analysis results can be processed and returned quickly by computers, they must still be read and 
interpreted by humans. Gait reports can number in the hundreds of pages, and in contrast to 
medical images, they are not presented as appealing 3D images. Instead, reports are a jumble of 
plots and figures that require much technical expertise to understand. Simon and many others 
propose that computer assisted gait data analysis and report generation can address this issue, 
though such methods still have not been developed (Simon, 2004).  

As a point of comparison, the Motion Analysis Laboratory at Spaulding Rehabilitation 
Hospital in Boston takes about 2 hours to perform a gait study and can test up to three child 
subjects a day (Bonato, 2009).  
 

2.2.4 Coverage 

Controversy over gait analysis’s clinical relevance is reflected in most U.S. private 
insurance policies, such as those of Blue Cross & Blue Shield and Aetna, which regard it as 
“research” and therefore not reimbursable (Aetna, 2008; Blue Cross & Blue Shield of 
Mississippi, 2008). This suggests that more efficacy studies are needed before gait analysis will 
be covered as a normal diagnostic procedure. 
 However, gait analysis is sometimes covered for cerebral palsy applications. Children 
with cerebral palsy are treated with a variety of medications, physical therapy sessions, bracing, 
assistive devices, and orthopedic or neurosurgical procedures to prevent deformity and improve 
mobility. While in the past many orthopedic procedures were performed at separate times, today 
physicians attempt to perform multiple procedures in one surgical session. Gait analysis provides 
greater confidence over clinical examination that proper surgical procedures will be chosen, has 
been shown in various research studies (Simon, 2004). 
 

2.2.5 Economics 

3D gait analysis typically ranges from $600 to $1000, although it can cost up to $2,000. 
The average reimbursement is $500 or less. (Roan, 2007; Simon, 2004; Stanford School of 
Medicine Human Performance Lab, 2008). Despite these costs to patients, Simon (2004) writes 
that in the U.S. it is rare for a gait lab to have revenue balance expenses. He cites the main reason 
being the time and expense of performing gait studies. Specifically, establishing a gait lab 
requires purchasing equipment that averages around $300,000, excluding facility renovations and 
rental cost of the lab space. Maintenance contracts for hardware and software add another 
$30,000 to $50,000 a year. Full-time lab personnel consist of a bioengineer, a physical therapist, 
and a secretary receptionist, for whom salary and benefits add up to about $250,000 annually. To 
balance expenses, a gait lab would have to perform at least 15 studies a week for 50 weeks at 
$500 per study, or $375,000 in revenue. Since, as mentioned earlier, each test takes about three 
to four hours, few labs are capable of testing 600 subjects per year (Simon, 2004). 
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2.2.6 Criticisms of Gait Analysis 

 This section highlights the main criticisms directed at gait analysis regarding why gait 
analysis is not widely used by clinicians or eligible for reimbursement. These are the issues we 
will focus on when performing analyses. 

Little literature exists that attempts to analyze the non-technical issues hindering clinical 
gait-analysis. Simon (2004) analyzed some institutional issues that have hampered gait analysis’s 
advancement in the clinic. However, he proposes largely technological or organizational fixes to 
the problems, without delving into whether or how public policies can address these. For 
example, to speed up gait analysis testing time, he proposes replacing skilled the professionals 
who currently perform the tests (i.e., biomedical engineers and physical therapists) with 
technicians such as those used in radiology. He also suggests that markerless motion analysis 
systems can reduce patient preparation time. Regarding the complex reports, he suggests using 
machine learning algorithms to analyze the data and provide recommendations—a situation that 
still appears far in the future, as such techniques are rare even in medical imaging. Finally, he 
also suggests creating integrated databases and networks to link gait labs with referring 
clinicians.   

In 1995, the National Center for Medical Rehabilitation Research (NCMRR) within the 
National Institutes of Health (NIH) sponsored a workshop to develop and prioritize a set of 
recommendations regarding the role of gait analysis in enhancing the function of people with 
locomotor disabilities. The workshop resulted in 37 prioritized recommendations. However, little 
was done in the proceeding decade. From 2004-2008, the research committee of the Gait & 
Clinical Movement Analysis Society (GCMAS), a professional organization interested in human 
movement, convened to revise the recommendations in light of new developments. The members 
reevaluated and prioritized the eight main objectives to be achieved. Based on Simon (2004) and 
the NIH/GCMAS recommendations, this research synthesizes the main criticisms of gait 
analysis. 

The first major criticism involves proving the diagnostic effectiveness of gait. 
Specifically, interpretation of data varies from clinician to clinician and from institution to 
institution (Simon, 2004). This is exacerbated by many physicians’ and therapists’ lack of 
understanding about gait analysis’ capabilities, benefits, and limitations. Lack of efficacy data 
showing that functional outcomes are improved due to gait analysis contributes to this. Also, the 
act of processing raw data and transforming it into data valuable to the gait analyst may lead to 
errors, since few studies analyze these artifacts. Finally, because of these issues, the cost-
effectiveness of gait analysis as a clinical tool cannot be established (Gait & Clinical Movement 
Analysis Society, 2008).  

The next criticism focuses on gait analysis economics. Gait labs are economically 
inefficient, largely due to their personnel costs and the time it takes to perform a gait study 
(Simon, 2004). This is exacerbated by the fact that gait labs may lack the business structures 
needed to promote and sustain the field (Gait & Clinical Movement Analysis Society, 2008). 

Related to cost and effectiveness, another criticism is that gait analysis provides 
insufficient advantages over simpler methods to justify the costs. Physicians must be convinced 
that it offers significant advantages over questionnaires, observation of gait with the naked eye, 
and 2D video recordings. Historically, most orthopedic surgeons and rehabilitation specialists 
relied on static examinations and observational gait analysis, with questionnaires being added in 
recent years. Cultural and institutional barriers therefore exist in converting these professionals 
to accept clinical gait analysis (Gait & Clinical Movement Analysis Society, 2008).   
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Others also criticize gait analysis as not being representative of real-world conditions, 
since it is limited to testing in controlled lab environments, such as walking through an empty 
room or moving on a treadmill. Such critics are often researchers working on mobile gait 
analysis systems (Bonato, 2005) 

Also, gait analysis data are difficult to share. This is due to differences in methods used 
by different labs, and little work has focused on developing procedures for sharing (Gait & 
Clinical Movement Analysis Society, 2008). Related to this problem is the lack of standards for 
testing inter-laboratory reliability, which means there are no processes to certify that a gait lab 
meets some accepted standard for accuracy (Sutherland, 2002). 

Finally, there is a lack of cohesion within the field. This makes it hard to advance its 
standing “within business markets and political arenas.” (Gait & Clinical Movement Analysis 
Society, 2008). 

These criticisms are summarized in Table 4, along with the method we use to analyze the 
issues regarding each of them.  
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Table 4: Main criticisms of gait analysis 

Criticism Specific issues Method used to gain insight into 
issues 

Clinical 
effectiveness 

·  Interpretation of data varies from 
lab to lab and clinician to 
clinician 

·  Physicians and therapists don’t 
understand the capabilities, 
benefits, and limitations of gait 
analysis 

·  Lack of efficacy data showing 
that functional outcomes are 
improved directly due to gait 
analysis 

·  Processing and transforming raw 
data to data valuable to gait 
analyst may lead to errors 

Case study of MRI/CTA 

Cost-effectiveness ·  Gait labs are economically 
inefficient 

·  Gait labs lack business structures 
needed to promote and sustain the 
field 

Case study of MRI/CTA 

Provides few 
advantages over 
simpler methods 

·  Gait analysis must offer 
significant advantages over 
questionnaires or observational 
gait analysis, which historical 
bias causes physicians to stick to 

Case study of MRI/CTA 

Complex results 
are hard to 
interpret 

·  Gait reports consist of “too many 
pages of text, graphs, and figures 
in a format not easily understood 
or useful to the average 
clinician.” 

Case study of MRI/CTA 

Lab conditions are 
not representative 
of real-world 
conditions 

·  Gait tests may not accurately 
represent how clinical 
interventions affect patients’ lives 

Not addressed in this research 

Heterogeneous 
data standards 

·  Gait/motion analysis data are 
difficult to share  

·  Different labs use different 
protocols, systems, and data 
processing methods 

Analysis of Protocols and Standards 
in gait analysis and DICOM 

Lack of cohesion 
within the field 

·  Lack of professional cohesion 
within the field. 

Case study of MRI/CTA 

 
The next chapter analyzes the technologies used in gait analysis to determine whether and 

how commercial markets address the technology advancements needed for clinical gait analysis. 
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3 Gait Analysis Technology Transferability 
 

As mentioned in Chapter 2, one reason that advancement of gait analysis into clinical 
applications is stalled might be because appropriate technologies are not being developed by 
private industry without policies to drive their development for clinical applications. Therefore, 
one question we aim to answer is whether and how the technology required for clinical gait 
analysis differs from that desired in related commercial applications. This would determine 
whether public policies are required to develop such technologies specifically for clinical gait 
use. 

To answer this question, this chapter analyzes the technologies used in clinical gait 
analysis and that used in other similar applications. Many of the companies that produce gait 
analysis systems also produce motion capture systems for other commercial markets (sports, 
entertainment, etc.), and much of the technology is similar. This chapter then analyzes how 
directly transferable the commercial technology is to the medical field and whether high 
regulatory barriers exist. 
 

3.1 Gait Analysis Technologies 

 As mentioned in Chapter 2, gait analysis involves acquiring quantitative measurements of 
human body kinematics and dynamics during gait movement. Two separate measurement 
devices are used for this: a motion capture device for measuring kinematics, and a force 
measurement device for measuring dynamics. EMG sensors are also sometimes used to record 
muscle activity. 
 The most widely used gait analysis system combines an optical (camera-based) marker 
system with force plates (Figure 2), which is interfaced to a computer for data processing. 
However, a variety of other setups are used as well. 
 

 
Figure 2: Typical gait analysis setup (Medscape.com)  
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3.1.1 Motion Capture Technologies 

 A variety of motion capture technologies exist for use in recording movement kinematics. 
These include magnetic systems, mechanical systems, optical systems, and sensor-based 
systems. 
 
3.1.1.1 Magnetic Systems 

These systems locate position and orientation of sensors in space using a magnetic field, 
offering good accuracy and update rates. Each sensor contains three orthogonal sets of coils, 
which allows the sensor to be located when the transmitter produces an electromagnetic field of 
three frequencies inside the test space. A downside of magnetic motion capture systems is their 
sensitivity to magnetic objects inside the tracking space. One example of such systems is 
Ascension Technology’s MotionStar, shown in Figure 3. Magnetic systems range in cost from 
about $5,000 to $150,000 (Ruiz, 2002).  
 

 
Figure 3: Ascension Technology’s MotionStar magnetic motion capture system  

(Ascension Technology, 2009) 

 
3.1.1.2 Mechanical Systems 

Mechanical motion capture systems are comprised of electrogoniometers, which are 
hinges strapped at joints that record joint angles. A potentiometer or some other transducer 
transforms joint rotations into electrical signals. Although the hardware used in mechanical 
systems are cheaper than in other systems, mechanical systems are often heavy and restrictive. 
Potentiometers also degrade in performance with age. Mechanical systems generally cost 
between $5,000 and $10,000. An example of such a system is Meta Motion’s Gypsy 
exoskeleton-based system, shown in Figure 4. 
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Figure 4: Meta Motion’s Gypsy mechanical motion capture system 

 
3.1.1.3 Image-based systems 

Optical systems include those that track passive or active (e.g., LED-lit) markers in video 
frames, as well as markerless systems.  

 
Marker-based systems 

Marker-based systems were developed to automate motion capture. Such systems track 
passive reflective markers or active light-emitting diodes (LEDs) on the body and determine the 
3D marker locations using triangulation methods from multiple cameras (generally 4 to 32) 
around the subject. They are favored in the computer animation and film industries because of 
their high accuracy and fast update rates (Vlasic et al., 2007); however, they are also expensive, 
typically costing between $100,000 and $250,000 (Ruiz, 2002). Additionally, they can run into 
problems if the markers are occluded from view.  

The location of markers in world coordinates is generally determined by finding the 
centroid of each marker in each camera frame. From these 2D locations, the positions of the 
cameras are then factored in to triangulate each marker’s location in 3D space. Major 
manufacturers of such systems include Vicon and Motion Analysis Corporation. 
 

Markerless systems 

 Markerless systems have been the holy grail of optical motion capture technology since 
marker-based systems were introduced. This is due to the time-intensive nature of marker-based 
systems as well as their accuracy problems in locating joints due to skin marker movement. The 
first commercial system by Organic Motion was introduced at SIGGRAPH in 2007, which 
featured real-time rapid calibration and extraction (Figure 5). Although technical specifications 
and reviews have not been provided of the technology, a clear restriction available from publicity 
videos is that a specialized curtained stage must be used to ensure clear contrast between subject 
and background. Organic Motion’s system costs $80,000. The Motion Analysis Lab at Spaulding 
Rehabilitation Hospital has been working with Organic Motion on gait analysis applications of 
the system, but it is still not accurate enough for biomechanical applications (Bonato, 2009). 
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Figure 5: Markerless motion capture system (Organic Motion) 

 
3.1.1.4 Inertial Motion Capture Systems 

 Such systems were sparked by the rise of MEMS sensors and involve placing 
accelerometers or gyroscopes on body suits to measure joint angle rotation. Although such 
systems are very portable and relatively cheap—on the order of $25,000 to $80,000—they do not 
measure positions and distances directly and measurements drift significantly over several 
minutes because the noisy measurements must be integrated twice to provide position data 
(Vlasic et al., 2007). These systems perform especially poor for fast, high acceleration 
movements. An example of such a system is Xsen’s Moven suit, shown in Figure 6.  
 

 
Figure 6: Xsen’s Moven sensor-based motion capture suit 

 
3.1.1.5 Hybrid Sensor Systems 

 Such systems use two motion capture systems in tandem to address shortcomings of 
using each system alone. An example is Hy-BIRD by Ascension Technology, which combines 
optical and inertial technologies to handle conditions when the image is blocked from view. 
 

3.1.2 Force Measurement Technologies 

 The two main types of force measurement technologies used are force plates and pressure 
mapping systems. 
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3.1.2.1 Force Plates 

The most commonly used device to measure forces is a force plate (Figure 7). Force 
plates comprise a large number of force sensors to improve the spatial resolution of forces. A 
difficulty traditionally encountered in using force plates is requiring proper foot placement. 
Often, this requires having only one foot touch the plate, which is difficult for patients with 
cross-walking pattern disabilities (Edginton et al., 2007).  
 

 
Figure 7: Force Plate for Gait Analysis (Noraxon U.S.A. Inc., 2009) 

 
3.1.2.2 Pressure Mapping Systems 

A less common system is shoe-based pressure mapping. Such systems involve thin, 
flexible force sensors that have relatively high spatial resolution for force measurements. An 
example is Tekscan’s F-scan system (www.tekscan.com).  
 

 
Figure 8: image from Tekscan’s pressure mapping system  

(Motion Analysis Laboratory, Children’s Hospital, San Diego, CA) 
 

3.1.3 Instrumented Treadmills 

 Instrumented treadmills integrate force plates inside a treadmill and are specially 
designed for gait analysis. The main advantage of such systems is to eliminate the need for 
proper foot placement on ground force plates (Edginton et al., 2007). This can speed up gait 
analysis sessions. 
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3.1.4 EMG Measurement Systems 

EMG systems measure the electrical activity of muscles to provide information about 
muscle excitations. Such systems may be invasive, where sensors are pricked into specific 
muscles to provide data with less cross-talk from adjacent muscles, or noninvasive, where 
surface electrodes are placed on top of skin. Noninvasive sensors are generally used for gait 
analysis applications. Figure 9 shows these two types of EMG systems. 
 

 
Figure 9: Invasive (left) and noninvasive (right) EMG systems  

(drbezner.com, www.health.utah.edu) 
 

3.1.5 Software 

 Additionally, to calculate joint moments, a human body model is required. This model 
involves physical properties of the limbs (masses, inertias, center-of-mass locations), as 
described in Part I.  Motion analysis companies often sell software consisting of customizable 
human body models with their systems, though other software besides the manufacturer’s, such 
as the free open-source software OpenSim, can be used as well. An example is Vicon’s 
BodyBuilder softwar. Such software typically includes many other functionalities as well, such 
as 3D visualization capabilities.  
 

3.2 Major Commercial Markets 

 Besides clinical and research markets, other markets exist for the technologies used in 
gait analysis. These markets are often catered to by the exact companies marketing clinical gait 
analysis systems (e.g., Vicon and Motion Analysis Corporation). This section analyzes to what 
extent gait analysis technologies are used in these markets. 
 

Motion capture for entertainment 
Movement analysis is widely used in the entertainment industry to create life-like 
animation in movies and video games. The large size of this market means that 
advancements desired by entertainment companies will drive the technology. Only 
kinematics data is required for entertainment purposes. 

 
Sports performance analysis 
Movement analysis is widely used in professional sports to optimize movement. 
Recently, it has seeped into amateur athletics as well, such as high school runners (Roan, 
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2007). Video analysis is commonly used for most applications. Dynamic (force) data as 
well as kinematics (motion) data are often used for sports applications, although 
kinematics data alone is widely used as well. Muscle EMG data is rarely collected. The 
sports analysis market is relatively small, catering mainly to professional athletes and 
teams, but may grow in the future if the price of such services goes down. 
 
Ergonomics/Industrial Design 
The ergonomics and industrial design markets use motion capture and force measurement 
technologies (especially pressure mapping systems) to analyze ergonomics of product 
designs. This market size is potentially large, catering to product design firms and 
manufacturers of consumer goods.  

 

3.3 Technology Transferability Between Markets 

 This section analyzes how transferable technologies developed for commercial 
applications are to gait analysis in the medical market.  
 

3.3.1 Market Overlaps 

 The entertainment market (motion capture for video games and films) is the largest 
market for these technologies, so any gait analysis technology applicable to this market will 
likely be advanced through industry alone. Motion capture systems, but not force plates or EMG, 
are used in the entertainment market. 
 Force plates are used in engineering as a whole, which likely drives their advancements. 
Similarly, pressure mapping systems technologies are used in the ergonomics/industrial design 
field as well as in general engineering applications, such as single sensor elements in consumer 
electronics, consumer peripherals, and automotive applications (Ashruf, 2002). These are all 
large markets that drive advancements.  
 EMG systems are driven by other applications in the biomedical market, and these 
systems have matured through decades of use. Instrumented treadmills may have market 
applications to sports analysis, but this is unclear.  
 Biomechanical software is driven by applications in sports analysis, ergonomics, and 
engineering design generally.  
 These market overlaps are summarized in Table 5. 
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Table 5: Gait Analysis Technologies Used In Commercial Markets 

Technology Commercial Markets 
Motion Capture Entertainment (video games, 

film, animation) 
Force Measurement: Force 
plates 

General engineering/science 
Sports analysis 

Force Measurement: Pressure 
Mapping Systems 

Ergonomics/Industrial Design 
General engineering/science 

EMG None, but used for other 
biomedical applications 

Instrumented treadmills Limited use in sports analysis 
Biomechanics software Sports analysis 

Ergonomics 
General engineering/science 

 

3.3.2 Performance requirements 

 After determining which gait analysis technologies are used by other industries, we now 
analyze the general performance requirements of these other industries to see whether the 
advancements they drive will be appropriate for gait analysis applications as well. This will 
highlight whether public policies are needed to support development of such technologies for 
medical applications. 

As explained in Chapter 2, the main objectives of gait analyses are to record kinematics 
and to calculate joint moments. Additionally, a system should be easy to set-up and quick to use. 
These characteristics improve throughput (and therefore revenue) of gait labs. Future 
applications might also aim to predict muscle/tendon forces and muscle activations. 
 
3.3.2.1 Motion Capture 

 Motion capture systems contribute to recording kinematics and to calculating joint 
moments. Regarding kinematics, the technical requirements for gait analysis are to (1) track 
body kinematics accurately and (2) to record the subject quickly. Regarding joint moments, the 
technical requirements for gait analysis are to be able to locate joint center-of-rotations 
accurately. 
 For motion capture in the entertainment market, driving applications include facial 
motion capture (high accuracy), movement, and digital puppetry (real-time applications). The 
selling points of Organic Motion’s markerless system to the entertainment industry, which has 
drawn much attention in the animation industry, shows that accurate tracking, quick set-up, and 
fast calibration are desired characteristics (Organic Motion website, 2009). Thus, it appears that 
advancements in industry are in line with advancements needed by the gait analysis community, 
and public policies are not required to develop the technologies specifically for clinical gait 
analysis. 
 
3.3.2.1 Force Measurement 

 Force measurement relates to the calculating of joint moments. Specifically, to daisy 
chain ground forces through the joints via inverse kinematics to determine moments, we need to 
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know how forces are applied to the foot. High spatial resolution and accuracy are therefore 
desirable performance characteristics. As these are general performance characteristics, 
engineering and ergonomics/ID applications must have similar requirements, so again, 
commercial advancements are in line with the needs of the gait analysis community. Further, 
Sutherland (2005) writes that such systems are reliable and accurate already, suggesting that only 
incremental improvements are required.  
 
3.3.2.2 EMG 

 As with force plates, the EMG systems market appears to be a mature market (Section 
2.2.2.2), and the developments needed to make it better are the same as that required for all other 
biomedical applications, so public policies are not needed to develop this technology specifically 
for gait analysis. However, a detailed S-curve analysis could strengthen this conclusion.  
 
3.3.2.3 Instrumented Treadmills 

 Instrumented treadmills have no commercial markets outside of the limited sports 
analysis market, but it seems reasonable to believe that improvements are not hard to come by, 
since instrumented treadmills combine a treadmill with a force plate. Its advancement is 
therefore tied to advancements in force plate technology.  
 
3.3.2.4 Biomechanics Software 

 As discussed in Part I, the human body model is an integral part of accurate joint moment 
calculation. Also, visualization capabilities have improved rapidly with increasing computing 
power since the 1980s. Biomechanical software developed for the engineering, ergonomics, and 
sports analysis markets are interested in the same things as the gait analysis market, namely, 
accurately predicting forces and torques in the body. However, better methods to create accurate 
models used in these software do not seem to be pursued by commercial manufacturers. Rather, 
their focus seems to be on providing flexibility and ease-of-use to users for inputting parameters 
and creating models. 
  

3.3.3 Regulatory Hurdles 

Regulation of gait analysis devices is light because they are noninvasive and pose no risk 
of bodily harm. For example, both force measurement platforms and goniometers are classified 
as Class I devices (U.S. Food and Drug Administration, 2009), which do not require FDA pre-
market approval or clearance, as explained in Chapter 2.  
 This shows that regulatory barriers are very low for manufacturers in motion capture or 
force measurement systems to transfer their commercial technology to the medical market. EMG 
systems are already marketed to biomedical markets, so the commercial to medical application 
barrier will already be achieved by other medical applications. 
  

3.4 Conclusions 

This analysis shows that the technical and performance requirements for gait analysis 
technologies are the same in commercial applications as for the clinical gait analysis market. 
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However, the advancement of human body models used in biomechanics software depends on 
improvements in our ability to acquire data for these models, which is not pursued by any gait 
analysis technology companies. This might involve advancements in other fields, such as 
medical imaging of body parts, which suggests a place where policies on research funding 
initiatives could advance gait analysis. 

This analysis suggests that advancements driven by commercial markets are in line with 
advancements desired in clinical gait analysis, and public policies should therefore not be used to 
reimburse gait analysis solely to create a market for further technology development, nor to 
support development of such technologies. Public policies should, however, focus on improving 
the accuracy of biomechanical models used in gait analysis by funding research in this area. One 
technique that might address this issue is explored in Part II of this thesis. 
 The next chapter analyses case studies of MRI and CT Angiography to draw lessons 
about social, economic, and political issues relevant to clinical gait analysis. This addresses the 
part of our hypothesis about whether and how public policies can promote the appropriate social 
structures for advancing gait analysis.
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4 MRI and CT Angiography Case Studies 
  

This chapter aims to understand what political, economic, and social issues may be 
hindering the advancement of clinical gait analysis. It does so by analyzing two case studies from 
the medical imaging field: the development of MRI and the widespread reimbursement of CT 
Angiography. Medical imaging is a widely used, clinically accepted diagnostic. It is similar to 
gait analysis in its multidimensional nature, as well as its dependence on a reader’s ability to 
interpret the data for effectiveness in affecting treatment outcomes positively. Comparing these 
imaging case studies to the status of gait analysis, we then draw lessons for how public policies 
can advance clinical gait analysis. 
 

4.1 Methodology 

This chapter analyzes case studies of two medical imaging modalities to draw lessons for 
gait analysis. We now justify our method and the cases selected, and define our areas of focus for 
the case studies. 

 

4.1.1 Justification for Case Study Method 

The case study method is a general research strategy that takes into account contextual 
factors and may use a variety of evidence, such as documents, artifacts, interviews, and 
observations. We believe that contextual variables regarding the clinical acceptance of MRI and 
CTA are important for understanding why clinical gait analysis has stalled and how public 
policies might help it fulfill its diagnostic potential. The case study method is therefore chosen 
because it is the preferred method for analyzing “how” and “why” questions about contemporary 
events when behavioral events cannot be controlled (Yin, 2003). 

4.1.2 Justification of Cases 

MRI and CTA are used as case studies because, like gait analysis, both these modalities 
are multidimensional diagnostics, as opposed to binary diagnostics such as pregnancy test strips. 
For binary diagnostics, analytical tools such as Receiver Operating Characteristic curves—which 
plot sensitivity vs. specificity— have been established to analyze effectiveness, while 
multidimensional diagnostics are more complex and the interpretation of results depends largely 
on readers. Also, diagnostic results can present signs of pathologies different from those initially 
suspected (Gazelle et al., 2005). But unlike gait analysis, MRI and CTA has been accepted and 
insured within the clinical community. Besides imaging’s strong selling point of noninvasive 
anatomical examination, we seek to understand the social, economic, and political factors that 
brought this situation about, and what policy lessons might be applied to advancing gait analysis. 

The case of MRI shows the factors that led to acceptance of this imaging modality in a 
wide variety of clinical applications. However, MRI arose before the evidence-based medicine 
movement became standard in the 1990s. The case of CTA provides a contemporary 
complement to the MRI case by showing how a new technology rose to become a widely 
reimbursed diagnostic.  
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4.1.3 Propositions 

 A case study is driven by propositions, which direct attention to issues that should be 
examined. This study’s propositions are driven by the criticisms of gait analysis identified in 
Chapter 2, which are reproduced in Table 6.  
 

Table 6: Main criticisms of gait analysis (trimmed version of Table 4) 

Criticism Specific issues Method used to gain insight into 
issues 

Clinical 
effectiveness 

·  Interpretation of data varies from 
lab to lab and clinician to 
clinician 

·  Physicians and therapists don’t 
understand the capabilities, 
benefits, and limitations of gait 
analysis 

·  Lack of efficacy data showing 
that functional outcomes are 
improved directly due to gait 
analysis 

·  Processing and transforming raw 
data to data valuable to gait 
analyst may lead to errors 

Case study of MRI/CTA 

Cost-effectiveness ·  Gait labs are economically 
inefficient 

·  Gait labs lack business structures 
needed to promote and sustain the 
field 

Case study of MRI/CTA 

Provides few 
advantages over 
simpler methods 

·  Gait analysis must offer 
significant advantages over 
questionnaires or observational 
gait analysis, which historical 
bias causes physicians to stick to 

Case study of MRI/CTA 

Complex results 
are hard to 
interpret 

·  Gait reports consist of “too many 
pages of text, graphs, and figures 
in a format not easily understood 
or useful to the average 
clinician.” 

Case study of MRI/CTA 

Lack of cohesion 
within the field 

·  Lack of professional cohesion 
within the field. 

Case study of MRI/CTA 

 
 
Based on these criticisms, we focus on five propositions in our case studies: 

(1) Clinical effectiveness may be hard or impossible to gauge for multidimensional 
diagnostics and so is not always held up as a barrier for acceptance and coverage of a 
clinical diagnostic technology. 
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(2) Cost-efficient workflows are necessary to promote offering of the diagnostic, and for 
keeping costs to payers manageable. 

(3) New diagnostics must have significant advantages over previous established methods. 
(4) The relevant clinical data to be examined by physicians must be presented appropriately. 
(5) There must be professional cohesion around the technology. 

 

4.2 Case Study 1: MRI  

 MRI, introduced in the 1980s, is one of the most recognizable medical technologies in the 
world and revolutionized noninvasive soft-tissue diagnosis. It provided a good complement to X-
rays and CT, which imaged hard objects such as calcium in bones. However, its use has 
expanded to the extent where it is a default diagnostic tool. This means it may be used in cases 
where it provides no additional useful information, compared to simpler methods such as a 
physical exam. As such, the growing use of MRI has come under closer scrutiny by health 
assessors. 
 

4.2.1 Technology 

MRI works on the principles of nuclear magnetic resonance, wherein atom nuclei absorb 
energy and then relax by emitting energy in response to excitation by different frequencies. The 
different relaxation rates of different atoms can be used to identify molecule compositions. MRI 
focuses on hydrogen nuclei, which can provide knowledge about the placement of hydrogen 
atoms in the body, which in turn provides knowledge about anatomy in the body. The 
architecture of a common MRI machine is shown in Figure 10. Because of its effects on water 
molecules, MRI is particularly suited for visualizing soft tissues in the body.  
 

  
Figure 10: MRI scanner architecture (left) and magnetic coil design (right) (Coyne, 2009)  
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4.2.2  Social, Political, and Economic history 

Joyce (2008) chronicles the rise of MRI from a social science perspective, providing a 
detailed account of the social, political, and economic environment from which the MRI grew to 
what it is today. This case study is taken mostly from her work. 
 MRI technology grew largely from the work of American physician Raymond Damadian, 
American chemist Paul Lautenbur, and British physicist Peter Mansfield in the 1970’s. 
Damadian experimented with using NMR to diagnose cancer, publishing a paper in Science and 
filing a patent issued in 1974 that described a full-body NMR scanner based on his findings. 
Damadian’s article interested many researchers, including Leon Saryan at NMR Specialties in 
New Kensington, Pennsylvania. Chemist Paul Lautenbur, who also worked at NMR Specialties, 
observed Saryan’s research and imagined different uses for the information produced by NMR. 
He was particularly interested in how normal tissue relaxation times differed and thought that 
this information could be used to produce anatomical pictures, which he called “maps” of the 
inner body. Lautenbur’s innovation was to propose using a gradient, which was a coil that 
created a second magnetic field in addition to a large magnet. Lautenbur’s 1973 paper in Nature 
advocated using anatomical pictorial representations of NMR data. During the same time, UK 
physicist Peter Mansfield also proposed using NMR to provide spatial information of inert 
matter such as crystals. Mansfield and a colleague, Peter Grannel, published their ideas in The 
Journal of Physics C. While presenting his ideas at a conference, Mansfield heard about 
Lautenbur’s work. 
 The work of Damadian, Lautenbur, Mansfield, and colleagues sparked a drive in the 
1970s to create a viable medical technology. Two areas of contention existed, however: what to 
name the technology, and whether to produce only pictorial information from NMR data or to 
include numerical data as well. Many scientists, particularly those working in physics and 
chemistry, thought numerical values were as or more important than the graphical information 
produced, so they included these in their publications as well. A related problem was how to 
present the graphical information. Some researchers--influenced by the colorful pop art of the 
time—used bright colors that mimicked Warhol paintings. By the end of the 1970s, research 
teams had settled on naming the technology “NMR imaging.” 
 NMR imaging entered clinical practice in the 1980s, but there was controversy over 
which medical specialty should control the technology. It could have been placed in nuclear 
medicine departments, where experts were trained to read detailed numerical information. But at 
the same time, NMR also produced anatomical pictures, so it could be placed in radiology 
departments as well. Radiologists specialize in anatomical image interpretation. Although many 
people had reservations about placing it into radiologists’ hands (because radiologists were 
biased towards images and so would ignore the biochemical information), NMR eventually 
became part of radiology in many countries.  
 Institutional changes in radiology and medicine contributed to this outcome. Professional 
radiology organizations, such as the Radiological Society of North America (RSNA) and the 
American College of Radiology (ACR), grew rapidly in the 1970s. These organizations took 
advantage of their growing membership and actively lobbied for control over imaging 
interpretation. Further, radiologists in the U.S. were gaining greater independence in the early 
1970s. The ACR, for example, urged radiologists to “gain independent practice status in their 
hospitals,” which allowed them control over their fees and income. After some resistance, the 
American Hospital Association (AHA) accepted this demand and, due partly to ACR’s lobbying 
efforts, gave up trying to pass legislature allowing the AHA to regain control over radiology. 



Part I 47 

During the same period, the appearance in medicine of many other new imaging modalities such 
as CT and ultrasound also increased the range and expertise of radiologists in image 
interpretation. Economics also played a role, as the high cost and large size of NMR machines 
meant that private physicians would not purchase the machines, leaving it up to hospital 
radiology departments to purchase and utilize them. 
 The placement of NMR into radiology departments shaped development of the 
technology in several ways. First, data presentation became entirely image-based, meaning that 
numerical NMR values were ignored. Second, data appearance was changed to grayscale, since 
radiologists were used to such images from x-rays and CAT scanning. Third, the word “nuclear” 
was dropped from the name, and NMR was renamed MRI. This came about because of the anti-
nuclear power plant and nuclear weapon movements of the 1970s and the Three Mile Island 
incident, which biased public opinion against anything associated with nuclear. 
 

4.2.3 Effectiveness and Advantages 

 FDA requires MRI equipment manufacturers to show that their machines visualize body 
parts to a certain degree of accuracy (i.e., resolution). Manufacturers also provide detailed 
information of the algorithms used and other technical information as part of the approval 
process. MRI devices are classified by the FDA as Class II devices. Manufacturers do not have 
to compare their techniques to preexisting ones in clinical studies to prove that they produce 
better results in order to gain FDA approval. After FDA approval, no other government agencies 
require efficacy studies. However, the Agency for Healthcare Research and Quality (AHRQ) 
does fund research to examine health care costs, quality, and outcomes. Other agencies and NIH 
also provide grants for efficacy and outcomes research, but none of these evaluations are 
required as is done with pharmaceuticals. 
 Proponents who argue that MRI is used extensively because it’s the “best technology” 
suggest that its use leads to better diagnostic accuracy and treatment outcomes. But Joyce points 
out that studies comparing MRI to other diagnostic techniques show that while imaging 
improves diagnostic confidence in specific cases, it doesn’t always improve diagnostic quality or 
health outcomes for patients in all its current applications. For example, some studies show that 
MRI does not produce the most effective or cost-effective information in diagnosis of many 
common shoulder and knee muscle problems, suggesting that a combination of patient histories 
and physical exam techniques provide more accurate information in these cases. In some cases, 
MRI appears to at best replicate the information already gained through other means.  

This shows that proving effectiveness is not required for the medical community to 
embrace a diagnostic technology. Related to this issue is that for specific applications, MRI 
doesn’t require significant advantages over other simpler techniques (such as a detailed physical 
exam or questionnaire) to warrant its use. 
 

4.2.4 Economics 

Insurance companies generally pay between $400 and $600 for typical MRI exams 
without contrast agents, and imaging units can do one to three exams per hour (Joyce, 2008).  
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4.2.5 Work Practices 

 The MRI workflow can be divided into two parts: imaging, which is the physical act of 
acquiring images, and image interpretation, which is the reading of images by radiologists.  
 
4.2.5.1 Imaging 

 Joyce points out that imaging is structured like many assembly-line occupations in its 
emphasis on repetition and specialization. Specifically, the process begins with the technologist 
interviewing the patient to discover if there are any safety or health hazards, then by her 
positioning the patient in the machine, acquiring images (which typically lasts 20 minutes), 
releases the patient, and sending the images to a radiologist for review. Faster throughput 
increases volume and hence revenue, which is especially important for private imaging centers 
whose sole activity is patient scanning. 
 The emphasis on throughput permeates other design aspects of the medical imaging room 
as well. For example, computer screens are often positioned away from patients as they exit the 
imaging room to prevent them from stopping to view images and thereby slowing the workflow.  
  
4.2.5.2 Image interpretation 

 The room where radiologists interpret MRI examinations is called the reading room. Here 
the radiologist reads the image to a transcriber, who edits the radiologist’s verbal recording into a 
written report. Patients never interact with radiologists. Joyce also compares the radiologists’ 
workflow to an assembly line. In large hospitals, they may sit side-by-side in a reading room, 
speaking into a microphone. In smaller centers, they usually work alone and may sometimes call 
technologists on site or another physician if unsure about a scan. Radiologists typically specialize 
on some modality, though they will read images from many anatomical parts. In larger sites, 
radiologists may specialize on one imaging technique and one anatomical area.   
 

4.2.6 Analysis 

 We draw several lessons for clinical gait analysis from this case study of MRI.  
First, the history of MRI shows that data presentation is tied to ownership of the 

technology. How information is presented is important, and this in turn relates to interpretation 
expertise. Specifically, radiologists specialized in reading black and white X-rays and so 
manufacturers changed their image output to mimic this, even though MRI images could be any 
color. Related to the movement of MRI machines into radiology departments, the case study 
shows how technology ownership leads to professional cohesion around it, and how these 
professional organizations can then push manufacturers to design machines in a ways that suit 
them better.  
 Second, we found that new diagnostics don’t necessarily need to have significant 
advantages over previous methods in specific applications to be used widely and reimbursed. 
This may stem from the fact that multidimensional diagnostics sometimes pick up signs of 
pathologies besides the one being focused on. Related to this, the case of MRI shows that shows 
that effectiveness is hard to gauge (e.g., radiologist interpretation of images is often subject to 
errors as well), so lack of proof of effectiveness is not necessarily a barrier to clinical acceptance 
and reimbursement. 
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 Third, we found that MRI developed efficient workflows, which has allowed it to handle 
larger volumes of imaging procedures and retain large profits. The completion of a scan in 20-30 
minutes and the assembly-line structure of the MRI exam room and radiologist reading rooms 
contrast sharply with the practice of gait analysis, which takes 2-3 hours per patient and has the 
same 2-3 specialists performing the test and interpreting the results.   
 

4.3 Case Study 2: CT Angiograms 

 CT Angiography (CTA) became practical in the early 2000s due to advances in detector 
technology and computing power. CTA provides a complementary case study to MRI because it 
arose in the evidence-based medicine era, is of unclear effectiveness, and poses radiation 
dangers, yet nevertheless gained wide clinical approval and coverage. Advocates of CTA believe 
that it reduces the need for more invasive and expensive methods such as conventional 
angiograms, which involve threading a catheter through arteries. Critics counter that the benefits 
of CTA are limited and that the costs and safety risks may be significant. 
 

4.3.1 Technology 

 CT works by synthesizing X-ray images from different angles into a 3D image. Its most 
basic form, shown in Figure 11, works as follows. A motorized table moves the patient through 
the imaging system while an x-ray source concurrently rotates within the circular opening, with a 
set of x-ray detectors rotating in sync at the other end of the patient. The x-ray source produces a 
narrow, fan-shaped beam that ranges in width from 1 to 20mm. The figure shows only one row 
of detectors, but current machines have many rows of detectors side-by-side to allow 
simultaneous imaging of many slices, which reduces scanning time. After scanning, the data are 
then processed by computer to produce image slices that represent 3D views of the target regions 
(Brenner & Hall, 2007). Scanning with modern CTA scanners takes about 12 seconds (Berenson 
& Abelson, 2008). 
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Figure 11: CT Technology (Brenner & Hall, 2007) 

4.3.2 History  

Although Computed Tomography (CT) was first introduced in 1972 for brain imaging, 
CTA did not develop until the late 1990s, when scanning and computational technologies had 
advanced enough to make this feasible for general clinical use. 

The first CT scanners required hours of scanning time and days of computation for each 
slice (a “slice” being a 2D image that represents a certain volume thickness). By the 1980s, scans 
were still performed slice by slice but computation had become faster. Helical CT scanners were 
introduced in the early 1990s, consisting of a slip-ring mechanism that allowed the x-ray 
tube/detector array to rotate continuously while the patient was moved inside the scanner. This 
sped up scan times, but helical scanners were still too slow for many CTA applications, meaning 
that with single-detector CT’s, one had to use very thick CT slices in order to scan quickly. Such 
thick slices gave poor resolution. New X-ray tube technology was also introduced during this 
time that could withstand the heat generated during continuous X-ray production. By the late 
1990s, scanners consisting of multiple rows of detectors were introduced that allowed many 
images to be acquired during one helical revolution. This sped up scan time and also allowed the 
scanning of long segments of the body using acceptable volumes of intravenous contrast. CTA 
scanning was now practical, though analyzing and synthesizing the large numbers of images 
generated still required an expensive workstation solely dedicated to 3D image manipulation. By 
the early 2000s, workstation technology had further advanced, and the number of detectors per 
scanner had also increased, finally making CTA a clinical reality (Dolmatch, 2005). 
 By 2005, 64-row scanners came to market, sparking great enthusiasm for CTA. Larger 
numbers of physicians began purchasing CTA machines and performing tests in-house. By 2007, 
Medicare had become concerned about CTA’s rapid adoption despite “lack of clinical evidence 
to demonstrate improved patient outcomes” (Appleby, 2008). Key questions Medicare had about 
the technology included whether CTA was an advance over cardiac catheterization or simply an 
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add-on test, which patients benefited the most from CTA, and whether CTA saved lives. Under 
Medicare rules, Medicare has to reach a national coverage decision about a new technology 
when it receives requests from its own staff or the public that is deemed legitimate. 
Alternatively, new procedures and technologies can be used without such a coverage decision if 
Medicare’s local contractors allow it and agree to pay for it. By 2007, all local contractors in the 
U.S. were paying for CTA. This meant that Medicare could only slow adoption of CTA by 
reaching a national coverage decision to pay for CTA for a limited patient group. Additionally, 
CMS also proposed that patients receiving CTA be enrolled in clinical trials aimed at 
determining the procedure’s effectiveness relative to catheterization (Appleby, 2008).  
 CMS’s limitations led to protest from physicians, specialist groups, and manufacturers. 
The Society of Cardiovascular Computed Tomography, an organization of 4,700 specialist 
physicians, strongly opposed the limitations. It and other specialty societies, such as the 
American College of Cardiology and the American College of Radiology, began a letter-writing 
campaign to block CMS’s decision. Manufacturers of CT scanners such as GE also urged 
Medicare not to enact the limitations (Appleby, 2008). The specialist organizations and other 
prominent medical groups consisting of physicians who performed scans began lobbying CMS 
and members of Congress. Among the many arguments they made were that CMS ignored some 
studies showing the benefits of CTA and that Medicare had agreed to pay for other tests such as 
mammograms without requiring proof that they improved care. They argued that new 
technologies need time to prove themselves. Eventually, about a dozen senators and 79 
representatives supported the opposition of Medicare’s limitations (Berenson & Abelson, 2008).  
 Medicare eventually allowed CTA to remain covered for a wide range of patients under 
rules set regionally by Medicare’s intermediaries and carriers, i.e., the insurance companies that 
process Medicare claims (Appleby, 2008). Industry consultants believe that since Medicare has 
agreed to pay for CTA tests, commercial insurers will start doing so as well (Berenson & 
Abelson, 2008).  Additionally, there is reason to believe that media attention may have 
contributed to enthusiasm for the technology by physicians and patients as well. Such media 
names as Oprah Winfrey and Matt Lauer of the Today Show have promoted the technology, and 
Time Magazine even put CTA on its cover next to the title, “How to stop a heart attack before it 
happens” (Redberg, 2007). 
 

4.3.3 Regulation 

As with MRI machines, under FDA regulations, CTA scanner manufacturers must certify 
only that they are safe and provide accurate images (technical accuracy). (Berenson & Abelson, 
2008) 
 

4.3.4 Economics 

CTA scans are billed at $500 to 1,500 (Berenson & Abelson, 2008). 
 

4.3.5 Controversies Regarding CTA 

There are several major controversies regarding the use of CTA. First is the economic 
incentive for physicians to increase the number of scans performed. Since physicians and 



Part I 52 

hospitals own many CTA scanners, they have an incentive to perform scans in order to recoup 
the costs. For example, industry consultants estimate that about 3,000 CTA tests need to be 
performed to pay off a scanner. Even ignoring the economic incentives, just having a CTA 
scanner nearby likely makes physicians more willing to send patients off for a test since it is 
convenient.  
 Another controversy is that CTA scans may cause more harm than good because the 
radiation from CTA scans increases cancer risk. This risk is made greater if scans are done 
repeatedly, such as on an annual basis in order to track the progression of arterial blockage. 

Also, CTA is often used in combination with other diagnostic tests, such as nuclear stress 
tests, which creates a layering of diagnostic tests, thereby further increasing medical costs with 
unclear benefit. Critics also argue that if a CTA scan finds plaque that a physician intends to 
stent, a conventional angiogram (requiring threading of a catheter) will still be necessary to 
determine how to implant the stent, so CTA does not always eliminate the use of conventional 
angiograms. 

Additionally, some cardiologists believe that by age 50, most patients will have arterial 
plaque visible on CT scans anyway, so findings of this by a CT scanner aren’t particularly useful. 
To be more useful, these cardiologists believe that CTA must tell whether particularly blockages 
are likely to rupture or to significantly reduce blow flow to the heart.  

So far, various studies have presented mixed results about CTA’s effectiveness in 
diagnosing heart disease, and no conclusive evidence exists that CTA leads to life-saving 
treatment (Appleby, 2008). However, the technology may one day prove useful—for example, 
by determining which arterial plaques are stable and which are likely to rupture—and not 
reimbursing them may stifle growth and innovation (Berenson & Abelson, 2008). Holding back 
the technology therefore has costs, and Harvard Business School economist Regina Herzlinger 
remarks that unless a technology is used, ways to improve it are unlikely to be discovered 
(Appleby, 2008). 

 

4.3.6 Analysis 

 The case of CTA is significant because CTA emerged in the era of evidence-based 
medicine, which was supposed to encompass stricter standards for acceptance and 
reimbursement of a technology, and because of it involves radiation safety risks. Several key 
issues are highlighted by this case. 

First, the case shows how the media, lobbying, and interest groups can affect Medicare’s 
coverage decisions. As discussed earlier, the formation of physician interest groups centered 
solely around the technology created strong pressure on Medicare to relax its restrictions on CTA 
use. Further, the media touted CTA as the next big thing, which likely made the public and 
physicians favorable towards the technology. 
 Second, it shows how evidence of effectiveness (and maybe even safety) is not required 
for a diagnostic to be accepted, as long as there is enough physician enthusiasm for a technology. 
 Third, it reiterates the clinical obsession with visualization, as several physicians quoted 
in the sources remarked that they were won over on the technology after viewing their first CTA 
images. 
 Finally, it emphasizes the importance of ownership of a technology, as well as the 
creation of efficient workflows.  
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4.4 Case Study Conclusions 

Comparing MRI and CTA to gait analysis shows that gait analysis lacks the visual 
“wow” factor that physicians get when viewing medical images. Gait analysis results are 
presented in lengthy reports with many tables and plots. Medical images also come with reports 
and annotations, but one can also look at the image itself and see many key issues without 
reading a text. 

How this “wow” factor comes about relates in large part to what the stakeholder group 
that controls the technology is used to seeing. For radiologists, it was black and white images. 
For the orthopedic surgeons and physical therapists that use gait analysis, it may be 3D models 
of the body, or it may be something else. For gait analysis to have an impact clinically, it must 
first impress these experts, and then organizational structures must be set up to make the 
diagnostic process efficient and for groups that support the technology to have a voice in medical 
policymaking. 

Although public policies cannot directly set up appropriate institutional structures, it can 
fund further research that links gait analysis technology engineers to clinicians who might find it 
useful. This latter group might not be limited to physical therapists, physiatrists, and orthopedic 
surgeons. Specifically, such projects should focus on how such experts want to view the 
information, and how the technical data could be best presented to them. With greater 
enthusiasm for the technology and with technological improvements sparked by the commercial 
markets that allow for faster workflows, gait analysis might become a clinically reimbursed tool, 
even if rigorous effectiveness data does not exist.  

Although gait analysis may appear to be an expensive diagnostic, a simple analysis of its 
cost to payers shows that it is comparable to medical imaging, despite its inefficiencies. This 
suggests that future technological and workflow improvements could make it a cheap diagnostic 
procedure compared to imaging. If it alters treatment at a low price point, it may be a very cost-
effective diagnostic. Though imaging procedure costs vary widely depending on body part 
scanned and where the scanning takes place, average values for each modality are available from 
National Imaging Associates (Abelson, 2004). Gait analysis costs for 2D video-based without 
ground force plate and 3D marker-based with ground force plate systems are also compiled 
(Roan, 2007; Stanford School of Medicine Human Performance Lab, 2008). Figure 12 shows 
these costs. Note that these values are from payment data and not from charges listed on bills for 
insurers, which are generally much higher and which are negotiated by insurers to these lower 
payment amounts. Note also that these values do not include insurance reimbursement, which 
generally cover all or most of the costs of MRI, CT, and PET scans. For example, Massachusetts 
insurers generally pay providers between $500 and $1,400 for an MRI scan (Kowalczyk, 2004).  
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Figure 12: Average range of payment costs for several imaging and gait analysis procedures, not including 
insurance reimbursement (colors represent range of costs, with darker regions signifying the low to high 

range) 

 
One can see that 3D gait analysis is about the same price as an MRI or CT scan. 

However, most insurers do not cover gait analysis, making it much more expensive to the patient 
than imaging procedures. Even the cost of a simple 2D video gait analysis procedure can cost 
more than what a patient pays out-of-pocket for an imaging procedure. This cost data suggests 
that gait analysis may dramatically reduce in price as the technologies and workflows improve, 
making it a relatively cheap diagnostic and therefore more favorable in Medicare’s view. 

The next chapter analyzes data standards used in gait analysis and compares them to 
DICOM, the standard used in medical imaging to learn whether public policies can improve data 
sharing. This addresses our hypothesis about whether and how public policies can promote the 
appropriate data standards for advancing gait analysis.
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5 Data Standards and Part I Conclusions 
 
 Data standards are vital for the effective interchange of medical information. For 
example, effective implementation of DICOM standards and protocols in medical imaging 
helped the field advance rapidly. In gait analysis, sharing of data is often difficult because of 
differences in data acquisition methods. The Gait and Clinical Movement Analysis Research 
committee points out that “not enough work has been done to develop procedures for 
sharing…[which] can limit understanding, interpretation, and presentation of results” (Gait & 
Clinical Movement Analysis Society, 2008). This chapter presents a high-level examination of 
data standards used in gait analysis with respect to DICOM and focuses on how public policies 
can address this issue.  
 

5.1 Scope 

 This research focuses only on data standards for gait analysis, which addresses the 
criticism that it is hard for gait labs to share data. It does not focus on protocols used to capture 
gait data or on other operator workflows. 
 

5.2 Methodology 

 We perform a high-level examination of current gait analysis data standards to determine 
their strengths and weaknesses. Then, we compare these standards to the DICOM standard used 
in medical imaging to draw conclusions on how public policies can improve gait analysis data 
standards setting. 
 

5.3 Background on Technical Standards and Protocols  

 Standards are required for efficient exchange of data between labs, clinics, and 
physicians. The U.S. standards system is unique in the world in two main ways: (1) standards-
setting is voluntary and done by the private sector, and (2) the standards-setting environment is 
diverse, encompassing about 600 organizations and consortia (Mallet, 1998). This contrasts with 
the government-centralized standards setting processes of the EU and places constraints on how 
one can use policies for standards setting. One advantage of the U.S. setup is that standards may 
be set faster and more appropriately for each field. A disadvantage is that appropriate standards 
may not be set in the case of public goods, such as health care. 
 Issues that can arise without proper data standards include individual manufacturers 
investing effort to create unique formats, lack of legacy, and a heavy burden on users to 
understand a large number of formats and how they interact. Standards allow the testing of 
similar products to compare performance, and they give users confidence that products conform 
to a minimum level of performance. Standards benefit manufacturers by providing them greater 
realization of network effects, and they protect buyers from stranding. However, standards may 
also constrain variety and innovation. Under incompatible standards, firms will compete for the 
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market, each hoping that its standard will dominate the market. Under compatibility, firms will 
compete within the market along other dimensions, such as price, product features, and service 
(Shapiro, 2001). However, proprietary standards can give firms competitive advantages that 
hinder cooperative standard setting. 
 

5.4 Gait Analysis Data Standards 

 Gait analysis data includes motion capture data, force data, and sometimes EMG data. 
Any data standard must store these data types, as well as patient information and settings used in 
capturing the data.   
 Two main types of data formats can be considered in gait analysis. The first is raw data 
captured from devices, which is then processed in some way. The second is the skeletal model 
file used to calculate joint moments and angles. This skeletal file contains a predefined skeleton 
(rigid-body linkage) software model with specified joint constraints and ranges of motion that is 
then scaled to the subject and used to determine joint angles from collected motion-capture 
position data.  
 Optical data generally has to processed before data is available, while magnetic and 
mechanical systems can be analyzed in real-time (Gleicher, 1999). Organic Motion advertises 
that its markerless system is capable of real-time response as well, though, as mentioned earlier, 
such systems still have not achieved the accuracy required for gait analysis applications. 
 

5.4.1 Motion Capture Standards  

 We focus our analysis on motion-capture data formats, since force and EMG 
measurements are straightforward to analyze and only involve a few measured variables, 
whereas motion capture data is more complex.  

The two main types of motion capture data are translational data and rotational data.  
Native data captured by different types of system will differ, however, which may require 
different data processing routines to create another data type—typically joint angles. For 
example, translational data is captured natively by optical systems, rotational data is captured 
natively by mechanical systems, and both translational and rotational data are captured natively 
by magnetic systems. The most commonly used formats for motion capture data are C3D, 
ASF/AMC, and BVH (Kitagawa & Windsor, 2008).  
   
5.4.1.1 Major formats 

 The major formats used for motion capture applications are discussed below.  
 
A.  Optical Marker Raw Data Formats 
  
A.1  C3D 

C3D was originally created to store both raw camera information during tests as well as 
the marker motion derived from it. Oxford Metrics, now known as Vicon Corporation, chose to 
use C3D as its file format for marker data (Gleicher, 1999). C3D is designed as a flexible format 
that can be used to store a variety of data in a single file for gait analysis. This is appropriate 
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because it was designed for gait analysis applications. C3D stores two types of measurement 
data: positional information (i.e., 3D coordinates) and digital analog information (data from force 
plates, EMG, etc.), both synchronized by frame. C3D also accepts parameter data, which is other 
information about the data. These include measurement units and database information such as 
patient name and diagnosis. To share this data, however, users must agree to use the same names 
for labeling data, which C3D does not specify (Motion Lab Systems, 2008). 
 
A.2 Adaptive Optics AOA format 

The AOA format is a tracker format that describes a set of markers and their position at 
each sample time. It was developed by Adaptive Optics, a motion capture hardware company 
(Gleicher, 1999).  
 
A.3 Motion Analysis TRC format 

 Motion Analysis Corporation developed TRC to store raw data from its full body optical 
motion capture systems, as well as for use as the output format in its real-time face tracker 
software. Marker position is stored as global coordinates (Gleicher, 1999).   
 
 
B. Skeleton model/motion data 

 The main skeletal model/motion data formats are ASF/AMC, BVH, and HTR. OpenSim, 
a research consortium funded by NIH and based at Stanford University, has created its own 
XML-based format as well. 
 
B.1 ASF/AMC 

 Acclaim—a defunct video game company whose name is now owned by another 
company—created its own data formats for optical motion capture. The Acclaim format is 
unique because it separates the skeletal file from the motion file, the rationale being that the 
same skeleton is often used for many different motions. ASF (Acclaim Skeletal File) contains 
information about the skeletal model, such as units, documentation, basis pose, bone definitions, 
and joint degrees of freedom and ranges of motion. AMC (Acclaim Motion Capture) contains the 
motion data for the skeleton. One advantage of the ASF/AMC format is that files contain both 
global rotational data as well as local rotational data of all skeletal limb segments. Vicon adopted 
the format after Acclaim placed it in the public domain (Kitagawa & Windsor, 2008). 
 
B.2 BVH 

BVH (BioVision Hiearchical) format was developed by BioVision, a now defunct motion 
capture service company. It is one of the most popular motion data formats in the animation 
community. BVH format is a binary file containing skeleton and motion capture data. 
Advantages of BVH include flexibility and ease of editing. However, it lacks a full definition of 
the skeleton’s basis pose. Further, there are interoperability problems because BVH format is 
often implemented differently in different motion analysis applications, meaning that BVH 
format used in one application may not be interpreted in another (Gleicher, 1999).  
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B.3 HTR 

HTR (Hiearchical Translation Rotation) was developed as a native format for the 
skeleton of Motion Analysis software prior to the introduction of Acclaim’s ASF/AMC format. It 
was created as an alternative to BVH to address BVH’s shortcomings. HTR allows much 
flexibility in data types and ordering and contains a full basis pose specification (Gleicher, 1999).  
 
B.4 OpenSim 

OpenSim is an XML (eXtended Markup Language)-based format for storing skeletal 
information. XML is a specification similar to HTML used in writing web sites, but with much 
more markup capability and therefore greater flexibility. Each OpenSim model file defines the 
constraints, joints, and rigid segments of a generic skeleton in a hierarchical manner that is then 
scaled to the subject being measured. OpenSim was developed by Simbios, which is the National 
NIH Center for Biomedical Computing focusing on Physics-based Simulation of Biological 
Structures, housed at Stanford University. OpenSim, encompassing analysis software and 
standards for data sharing of gait models, is meant to provide a free, open-source platform for 
researchers to exchange musculoskeletal simulations (models, libraries, and scripts) 
(simtk.org/home/opensim). More information about OpenSim can be found in Chapter 7. 
 
B.5 Other Raw Data Formats 

 Raw data formats exist for other motion capture modalities. For example, BRD format 
was created for Ascension Technologies’s Flock of Birds magnetic motion capture system and 
can store data from any magnetic system. In this format, each magnetic sensor’s position and 
orientation at each sample is stored in world coordinates. Sensors report information 
independently of one another, so no hierarchical information is stored (Gleicher, 1999). 
 

5.4.2 Recommended Formats: C3D and OpenSim 

 Although all the formats evaluated here store gait data to some degree, only C3D and 
OpenSim were developed specifically for gait analysis applications rather than for entertainment 
applications. Both formats are also open standards, which is important for the medical 
community, as evidenced by the successful adoption and use in medical imaging of the open 
DICOM standard. This means that extensive documentation is publicly available. 
 

5.5 DICOM 

 We now briefly examine the formation and overall structure of the DICOM standard used 
in medical imaging to see what lessons can be drawn for gait analysis data standards. DICOM 
can be considered a successful standard because it has been adopted as the standard in radiology. 
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5.5.1 Brief Overview of DICOM Standard  

 DICOM (Digital Imaging and COmmunications in Medicine) is a standard that specifies 
how medical imaging and related data are to be stored, transmitted, and printed. Its use has 
allowed sharing of medical imaging data captured using many different modalities.  
 DICOM is maintained by the DICOM Committee, an “independent, international 
standards development organization administered by NEMA’s (National Electrical 
Manufacturers Association) Medical Imaging and Technology Alliance” (DICOM PS 3.1). The 
Committee is divided into many working groups that perform the majority of work regarding 
upgrades and corrections to the standard. The DICOM Committee has no enforcement authority 
and manufacturers can choose to comply with however many (or none) of the standards in the 16 
DICOM volumes as they please. In that sense DICOM can be considered more a guideline than a 
mandatory standard (Pianykh, 2008). However, all major manufacturers have incorporated the 
standard because radiologists demand it (DICOM PS 3.1). 
 Note that DICOM does not provide procedural standards about how imaging should be 
performed by technologists and what settings they should use when running imaging equipment; 
rather, it specifies only the data workflow used by the devices. 
 

5.5.2 Brief History 

 In the 1970s, most radiological data was stored in analog media such as magnetic tapes. 
The rise of digital computers—and the fact that imaging machines at the time used proprietary 
standards that hindered sharing of data—led the American College of Radiology (ACR) and the 
National Electrical Manufacturers Association (NEMA) in 1983 to form a joint committee for 
developing a standard to make digital medical imaging independent of device manufacturers. 
The committee began by studying other standards and was particularly impressed by one used by 
the American Association of Physicists in Medicine (AAPM) for storing images on magnetic 
tape. AAPM stored information as sequences of data elements, where each element was 
identified by a unique name, known as a tag. The committee adopted this idea of representing 
data as a sequence of tagged data elements. 
 ACR-NEMA 1.0, the first version of the standard, was presented in 1985 and distributed 
at the Radiological Society of North America (RSNA) annual meeting. The committee presented 
ACR-NEMA 1.0 to meeting attendees as a guideline and NEMA assumed no responsibility for 
its enforcement or interpretation. 
 As ACR-NEMA 1.0 contained many weaknesses and errors, ACR and NEMA realized 
that the standard needed more work. To do this, ACR-NEMA created working groups—
autonomous subcommittees that worked on specific parts of the standard. In 1988, the committee 
released ACR-NEMA 2.0, which medical imaging device manufacturers began to adopt. 
However, ACR-NEMA 2.0 had a major weakness: it provided limited means for communicating 
imaging data over computer networks. The committee soon realized that fixing this omission 
required a major revision. 
 DICOM 3.0 was presented at RSNA in 1992 in prototype form. By the 1993 meeting, a 
functional form of DICOM 3.0 was available. To this day, the standard is still called DICOM 
3.0, and all revisions are made to this standard (Pianykh, 2008). 
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5.5.4 How It Works (a very high level view) 

 DICOM defines how devices interface, store, and transfer data within a Picture Archiving 
and Communication Systems (PACS). PACS are computers or networks dedicated to image 
storage, retrieval, distribution, and presentation. PACS interface with a Radiology Information 
System (RIS), which is a database used by radiology departments to handle radiological data. In 
turn, the RIS connects to a Hospital Information System (HIS), which is the general system 
(encompassing both paper- and computer-based methods) that manages administrative, financial, 
and clinical aspects of a hospital. Health Level 7 (HL7), is commonly the standard used in 
handling HIS data aspects. This workflow is shown in Figure 13. 
  

 
Figure 13: Typical workflow for radiological data in a hospital (Pianykh, 2008) 

 
5.5.4.1 DICOM Information Hierarchy  

 DICOM can be viewed as a model of real world imaging processes: it attempts to reflect 
how physicians take and think about images. To do this, it uses the Patient-Study-Series-Image 
hierarchy (Figure 14). 
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Figure 14: DICOM four level information hierarchy u sed to uniquely identify data (Pianykh, 2008) 

 
 This hierarchy makes sense if we imagine a patient coming to a hospital. At the top level, 
we want to associate all images with the patient. This patient may then have several studies 
performed on him (MR, CT, PET, etc.), which brings us to the next lower level. Each study may 
have multiple images, and these images often go together in a distinct series, such as separate CT 
slices that must be fused together in a specific configuration to assemble a 3D image. This brings 
us down to the Series level. At the lowest level, we have data for the individual 2D images. At 
each level, DICOM assigns universal identifiers. The four hierarchy attributes in this way 
uniquely identify imaging data.  

These attributes used to identify data—such as patient ID, date of birth, etc.—are defined 
by a dictionary specified in the DICOM standards, as shown in Figure 15. This prevents 
confusion over naming of data elements. 
 

 
Figure 15: From Patient to Patient Object in DICOM 
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5.5.5 Lessons for Gait Analysis 

 Even after examining DICOM from such a high-level, we can see that data standards 
setting in gait analysis has several major shortcomings. 
 First, DICOM is updated by DICOM Committee working groups, and the DICOM 
Committee and NEMA take ownership of the standard. While standards setting by committee 
tends to be slow and bureaucratic, such steps are necessary to ensure that key stakeholders are 
represented and in agreement with the standard. As many gait analysis technologies are 
established, it does not seem crucial to have standards that change rapidly. In fact, the continued 
use of many standards long after their initial conception (and after the companies that created 
them had become defunct) suggests relative maturity of gait analysis standards, and current 
optical motion capture standards are likely applicable to new technologies such as markerless 
motion capture. Although C3D is an open standard, it is managed by a single company. This is 
unsustainable, as the standard will not adapt to technology changes, particularly if the company 
goes out of business. It also means there is insufficient manpower to continually update the 
standard. 
 Related to the need for an organization to own the standard is the need to update C3D or 
replace it if a better standard exists. This would involve studying other standard formats, both in 
motion capture and in other medical fields. Efforts to create gait analysis standards have been 
largely ad hoc, based on the needs of one company/research lab or another. In contrast, the 
DICOM committee used a more structured process and examined other standards of the time to 
pick best features. This showed much foresight, as DICOM became poised to take advantage of 
networking technologies when the internet emerged. 
 Second, C3D or some other gait analysis data standard should specify data labels, as 
DICOM does with its dictionary. One of C3D’s “features” is its flexibility, but this poses 
problems for researchers who want to share data because different researchers will label different 
data differently. 
   

5.6 Policy Recommendations 

 As standards setting is performed by non-governmental bodies in the U.S., public policies 
cannot directly set standards. However, policies can spur the development of organizations in 
charge of standards. One example of this is NIH’s SIMBIOS center, which produces OpenSim 
and defines its data standards for skeletal models. The objective of this collaboration is to create 
software applications and an online community for researchers to share biomechanical models. 
However, OpenSim doesn’t deal with the raw data capture aspects, just the sharing of models 
and results.  

As gait analysis remains largely in researchers’ hands, setting data standards through the 
research community would poise such a standard to be accepted if and when gait analysis enters 
routine clinical use. As such, the government can fund one a research institution to work on 
standards setting as part of their gait analysis-related research activities. Such a method could 
also lead to a more structured method of defining the standard if analysis of other standards used 
was a stipulation of funding.   
 The next section summarizes our overall conclusions and policy recommendations 
 



Part I 63 

5.7  Part I Concluding Policy Recommendations  

 Based on our analysis of gait analysis technologies, our hypothesis that the technologies 
required for gait analysis can be developed through commercial (non-medical) markets was 
correct. However, our hypothesis that policies should focus on fostering the professional 
institutions and data standards required for clinical gait analysis to be a practical diagnostic tool 
was incorrect, as policies cannot directly spur such developments. Only through indirect means, 
such as funding research into specific topics, can we support the development of organizations 
around gait analysis and data standards for it. This chapter summarizes the policy 
recommendations presented in the previous chapters. 

5.7.1 Policy Recommendations 

The main policy recommendations are summarized below. 
 

Recommendation 1: Don’t fund technologies 
Public policies should not be used to reimburse gait analysis solely to create a market for 

further technology development or to support development of such technologies, as 
advancements and desired performance characteristics of gait analysis-related technologies for 
non-gait analysis applications are in line with those needed for advancing gait analysis. 

 
Recommendation 2: Improve human body models 

On a technical level, public policies should focus on improving the accuracy of 
biomechanical models used in gait analysis by funding research in this area and in developing 
technologies that can address this need. These could include cheaper imaging modalities or 
improved methods to acquire body measurements quickly and cheaply. 
 
Recommendation 3: Research Information Presentation 

Gait analysis lacks the “wow” factor of medical MRI or CT images. Public policies 
should fund further research to link gait analysis technology engineers to clinicians who might 
find it useful, which might not be limited to physical therapists, physiatrists, and orthopedic 
surgeons. Specifically, such projects should focus on how such experts want to view the 
information, and how the technical data could be best presented to them. Such research could be 
similar to that done in aeronautics regarding human information processing or in computer 
science regarding user interface development. 

 
Recommendation 4: Fund a Data Standards Research Center 

As standards setting is done by non-governmental bodies in the U.S., public policies 
cannot directly set standards. However, they can spur the development of organizations in charge 
of standards. One example of this is NIH’s SIMBIOS center, which produces OpenSim and 
defines its data standards for skeletal models. The objective of this collaboration is to create a 
community and software applications for researchers to share biomechanical models. As gait 
analysis remains largely in researchers’ hands, setting data standards through the research 
community would poise such a standard to be accepted if and when gait analysis enters routine 
clinical use. As such, the government can fund one a research institution to work on standards 
setting as part of their gait analysis-related research activities. Such a method could also lead to a 
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more structured method of defining the standard if analysis of other standards was a stipulation 
for receiving funding.  
 

5.8 Future Work 
Future work could explore mobile gait analysis technologies, which can create a 

paradigm shift for where and how movement is measured. It could also explore how a database 
and data standards for movement data could be designed and funded. Detailed workflow analysis 
of the gait analysis process could also be performed to better understand how to improve its 
efficiency. 
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PART II: Body Segment Inertial Parameter Effects on  
Joint Moment Results 

 
 Part II addresses a technical issue in walking gait analysis—specifically, how we can 
make consistent joint moment calculations given uncertainties in body segment parameters.  As 
explained in Part I, accurate subject-specific body models are required for consistent gait 
analysis results, and the lack of cheap, efficient methods for acquiring these are a major technical 
issue. The hypotheses and methodology of this Part II are recapitulated from Chapter 1 below. 
 

Problem 
One of the important data outputs from gait analysis is joint moments (or torques). Joint 

moments are important to know for two reasons. First, they can be correlated to poor 
biomechanics that lead to degenerative processes. Second, they can be used to compute other 
variables, such as joint powers and individual muscle and tendon forces (Challis & Kerwin, 
1996). But difficulty arises because joint moments are not directly measured variables and must 
be calculated from experimental data based on additional assumptions, one of these being body 
segment inertial parameters (BSIPs). BSIPs consist of body segment masses, center-of-mass 
locations, and inertias. This technical issue limits the use of gait analysis in clinical decision-
making. A detailed analysis of uncertainties in joint moment calculations due to differing BSIP 
values is therefore important for understanding how joint moment calculations may vary for the 
same subject, which can advance gait analysis’s repeatability. 
 

Hypotheses 
Based on our literature review, we hypothesize three main findings: 
 
·  Joint moment estimates will be significantly different during periods of high force 

impact, i.e., during heel strike, but not so different at other periods of the gait cycle 
·  Joint moment variations will be different for different joints. 
·  Joint variations will be significant at some phases of the gait cycle and less so at others 

 

Methodology 
The methodology used involves sensitivity studies of forward dynamics computer 

simulations as well as analyses of the dynamical equations of motion. 3D forward dynamic 
simulations are physical simulations that track experimental gait data in order to capture data 
from instrumented “virtual humans.” It is an increasingly popular method for studying human 
locomotion.  
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Conclusions 
Part II concludes that joint moment variations resulting from different segment inertial 

parameters are significant at some parts of the gait cycle, particularly heel strike and leg swing. It 
provides recommendations on which segment inertial parameters one should estimate more 
accurately depending on which joints and which phases of the gait cycle one is interested in 
analyzing. 
 

Overview of Proceeding Chapters 

Chapter 6 reviews the biomechanics of human walking, while Chapter 7 presents our 
research methodology in detail. Finally, Chapter 8 presents our results and conclusions.
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6 Biomechanics of human locomotion  
 
 This chapter summarizes important aspects of walking biomechanics and gait analysis. It 
also reviews relevant literature. Although this thesis focuses on walking because it is 
fundamental to physical mobility, running and other forms of gait will be alluded to at times.  

Y. C. Fung, a founder of the biomechanics field, defines biomechanics as an 
interdisciplinary field that applies the principles of mechanics to study and address biological 
issues (Fung, 1993). The mechanical issues we are interested in regarding human locomotion 
include energetics, classical dynamics, and stability and control of mechanical systems. 

 

6.1  Biomechanics of Walking 

Human walking is marked by two distinct phases: single support and double support. 
Single support occurs when only one leg supports the body, and it is followed by a double 
support phase when both feet are in contact with the ground. At the end of the double support 
phase, body weight is transferred to the front leg and the rear leg swings forward, initiating 
another single support phase. The cycle then repeats. Walking differs from running because 
running lacks a double support phase (McMahon, 1984). As walking speed increases, the period 
of double support for each walking cycle decreases until it reaches zero for running. 

Before describing the gait cycle in more detail, we first define the terms “joint flexion” 
and “joint extension” which are used widely in the field. Flexion is a movement that decreases 
the angle between joints, while extension increases the angle between joints. These are shown for 
the knee and hip in Figure 16. 
 

 
Figure 16: Example of knee flexion and extension (left) and hip flexion and extension (right) 
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Figure 17 presents a schematic of the walking process normalized by gait cycle. 
(Remember that a gait cycle is the time required for a leg to undergo both a stance phase and a 
swing phase.) 

 
 

 
Figure 17: Phases in human walking (Inman et al., 1981) 

 
The cyclic characteristic of walking leads to three readily observable body deviations 

from progression of the center of mass in a straight line forward: with each step the body (1) 
speeds up and slows down slightly, (2) oscillates vertically several centimeters (Figure 19), and 
(3) weaves slightly from side to side (Figure 20) (Inman et al., 1981). Because most movement 
occurs in the sagittal plane (Figure 18), however, many studies approximate walking as a 2D 
motion. We use this fact later to justify our analysis of the 2D dynamical equations of motion 
rather than the 3D equations. 
 



Part II 69 

 
Figure 18: Body Planes (training.seer.cancer.gov) 

 

 
Figure 19: Vertical sinusoidal oscillation of center of mass during walking from Fig 1.12 of (Inman et al., 

1981) 

 

 
Figure 20: Side-to-side motion of center of mass during walking from Fig. 1.13 of (Inman et al., 1981) 
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6.2 Gait Analysis Concepts 

 This section presents concepts important to our analysis of gait analysis errors— 
specifically, rigid body dynamics, analysis methods used, sources of uncertainty, and reasons for 
using various body segment inertial parameter models. 
 

6.2.1  Rigid Body Dynamics in Gait Analysis 

 Gait analysis approximates the body as a rigid body linkage. With this approximation, 
classical mechanics principles for rigid-body linkages can be used to analyze movement. Two 
main types of dynamic analyses are performed on gait data depending on the outputs desired: 
inverse dynamics and forward dynamics. 
 
6.2.1.1  Inverse Dynamics  

Inverse dynamics is used to estimate joint torques required to perform measured motions. 
This analysis feature is included in all commercial clinical gait system software (e.g., Vicon, 
Motion Analysis). In inverse dynamics, we input kinematic and ground force measurements from 
a gait analysis session and estimate internal joint forces and moments by summing the forces and 
torques on each segment. It is hard to determine muscle or tendon forces from inverse dynamics, 
however, because these forces are time and velocity-dependent. 
 
6.2.1.2  Forward Dynamics Simulations 

 In recent years, increasing computational power and improved algorithms have 
popularized the use of forward dynamic simulations for gait analysis. The challenges of 
modeling locomotion using this method are many, but potential benefits are also great. Forward 
dynamic simulations allow cause and effect to be better determined, as opposed to empirical 
measurements in humans, which are limited because of ethical and physiological reasons. Winter 
states that these simulations allow researchers to ask “What would happen if…” questions 
(Winter, 2005).  
 Models can be built from scratch, but most researchers use commercial packages. 
MATLAB provides a SimMechanics toolbox that can be used to model various mechanical 
elements represented by Simulink Blocks. Commercial software specifically designed for 
biomechanics modeling include SIMM by Musculographics and AnyBody by AnyBody 
Technology. Recently, an open-source version of SIMM was released called OpenSim (Delp et 
al., 2007). Compared to SIMM, OpenSim has fewer model editing tools but contains features not 
present in SIMM. One of these is Computed Muscle Control, a control algorithm that allows the 
simulation model to track gait data. 
 

6.2.2 Uncertainties in Gait Analysis Results 

As mentioned in the intro to Part II, the desired outputs from gait analysis, such as joint 
torques and/or muscle-tendon forces, are not measured directly. Instead, they are calculated from 
experimental data based on certain assumptions (Simon, 2004). Assumptions made include body 
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segment parameters and locations of joint centers of rotation. Other sources of error include skin 
motion artifacts, force plate measurement noise, and motion marker noise (Riemer et al., 2008).  

Some of these issues have been addressed. The sensitivity of gait analysis results to 
inaccuracies in joint center locations has been documented, and researchers such as Reinbolt and 
colleagues have explored using optimization routines to estimate these locations from force and 
kinematic data (Reinbolt et al., 2007). Optical systems are sufficiently advanced that measuring 
marker positions is no longer a significant source of error in clinical gait analysis, (Baker, 2006), 
though skin movement means that marker locations on the body shift during movement, 
affecting the locating of joint axes. Skin motion artifacts might be addressed by the introduction 
of markerless motion capture systems, which integrate many visual features from a body rather 
than a small number of individual markers. Organic Motion recently introduced the first 
commercial markerless motion capture system, though such a system is still not accurate enough 
for biomechanical applications. Force plate measurement errors can be reduced by signal 
processing (Rao et al., 2006).  But the effect of body segment inertial parameters (BSIP’s) on 
joint torque estimates is unclear.  

 

6.2.3 Body Segment Inertial Parameters in Gait Anal ysis 

Several methods have been proposed in the literature to improve the accuracy of BSIP 
estimates, but these methods are generally too time-intensive or costly to be practical (e.g., 
measuring the whole body with MRI and CT scans, or making hundreds of anatomical 
measurements). For this reason, researchers still rely on BSIP estimation methods generated 
from studies performed decades ago. Further, these BSIP estimation methods were originally 
created for purposes other than 3D gait analysis, such as crash dummy tests. Different BSIP 
estimates may significantly affect joint torque results. 
 One study’s BSIP model may be better than another’s for many reasons, such as the type 
of motion to be studied, how the body was divided in the study, the size and type of its subject 
pool, or its measurement method. Often, combinations of models are used because different 
studies may provide different parameters. Neptune et al.’s forward dynamics model, for example, 
used a gait model that had BSIPs estimated via two different models, that of Clauser et al. and 
that of Chandler et al (Neptune et al., 2001). 
 Another problem with many of the predictive BSIP models proposed in the literature is 
that they refer to ambiguously defined segment planes, making it difficult to determine exactly 
how to use them in 3D gait models (Dumas et al., 2007). An analysis of how variations in BSIP 
estimates affect gait analysis calculations of joint torques would therefore be helpful in 
determining which joints and which phases of the gait cycle we can be more confident of our 
joint moment calculations, and whether certain events during gait are associated with larger 
torque variations due to different BSIP models. 
 

6.3  Literature Review 

 This section summarizes methods and results from past studies on the effects of body 
segment inertial parameters (BSIPs) on joint moment results. Studies classify the effects of 
BSIPs on joint moments in one of two groups: significant and not significant. For walking, 
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however, effects may be significant for some phases of the gait cycle and insignificant at others, 
which is one of this study’s hypotheses. 
 
Significant Effects  

 Studies by Rao et al. (2006), Riemer et al. (2008), and Kingma et al. (1996) concluded 
that variations in body segment inertial parameters (BSIPs) had significant effects on joint torque 
results during inverse dynamics analysis. 

Rao et al. compared results based on six different body segment parameter estimation 
models using a bottom-up 3D inverse dynamics approach (Rao et al., 2006). They found that 
both joint moment peaks (maximum magnitudes) and joint moment root mean squared values 
per gait cycle were significantly affected by using different models. However, they did not 
analyze the physics of gait to understand these effects or provide recommendations on how to 
address these uncertainties. The range of joint moment results estimated using different BSIP 
models observed by Rao et al. is reproduced in Figure 21.  

 

 
Figure 21: Mean (black line) and range of joint moments (grey) observed by Rao et al. using six different 

BSIP models to analyze walking gait analysis data. 

  
 Riemer et al. analyzed uncertainties in inverse dynamic solutions for one gait cycle due to 
body segment parameters, segment angles and skin motion artifacts, location of joint center of 
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rotation, force plate measurements, and motion marker noise through an analytical-experimental 
technique. Using an equation to compute the upper bound on possible error, they analyzed a 
sagittal-plane model and calculated uncertainty values with respect to a nominal value calculated 
from De Leva’s equations (Riemer et al., 2008). They determined uncertainty values from 
literature searches, device manuals, and experimental tests on 10 subjects. They concluded that 
torque uncertainties were significant, ranging from 6% to 232% of maximum torque depending 
on the joint, and that the major contributors to lower body torque inaccuracies were segment 
angles, distance from COP to ankle center of rotation, and foot mass. 

Kingma et al. analyzed two BSIP models and the difference in joint torque estimations 
during four sagittal plane (i.e., 2D) lifting movements (Kingma et al., 1996). They also 
performed sensitivity analyses on individual segment BSIPs to analyze their effects. Their results 
showed that for lifting motions, the BSIPs with the largest effects were the trunk mass and 
center-of-mass location, although these results are cannot be generalized to other motions. They 
also found that joint moments were sensitive to BSIP variations. 
   
Small Effects 

 Other studies concluded that variations in BSIPs have small effects on joint moment 
results. However, many of these studies do not analyze gait, analyze only two BSIP models, or 
did not focus mainly on analyzing BSIP effects. 

Andrews and Mish performed a theoretical analysis (i.e., no experimental data) to 
determine the sensitivity of joint moments to variations in BSIPs (Andrews & Mish, 1996).  
Comparing results from two sensitivity analysis methods, they concluded that for small 
variations in BSIPs ( +5%) and smooth movements, joint moment results were not significantly 
different.   

Pearsall and Costigan evaluated the effect of varying body segment parameters (mass, 
center of mass, and inertia values) on inverse dynamics moments, using the segment parameters 
predicted by Dempster’s equations as the baseline and based on walking data from 15 subjects 
(Pearsall & Costigan, 1999). They compared six BSIP estimation methods based on three 
studies: Dempster, Clauser, and Zatsiorsky. The model they used only included leg and thigh 
segments, with torso modeled as a point mass. Rao et al. point out that the method used by 
Pearsall and Costigan neglects relationships between BSIP components, namely that masses, 
inertias, and com’s between body segments are not independent (Rao et al., 2006). Pearsall et 
al.’s results showed that the effects of BSIP variations were small but statistically significant, 
though they only varied BSIP parameters individually.  

Ganley and Powers compared BSIPs measured using dual energy X-ray Absorptiometry 
(DXA) to those estimated using cadaver-based regression models and analyzed the differences in 
joint moment results from inverse dynamic analysis of walking (Ganley & Powers, 2004). They 
concluded the following: (1) net joint moments were qualitatively similar using both BSIP 
estimates, (2) there were different effects at different joints, and (3) there were different effects at 
the stance and swing phases of the gait cycle. It is important to realize, however, that the main 
purpose of their study was to prove the validity of DXA as a way to measure BSIPs, meaning the 
BSIP estimates they used were similar. 
 Challis and Kerwin presented a sensitivity analysis procedure for analyzing joint moment 
estimate uncertainties due to various parameter variations, one of them being BSIPs (Challis & 
Kerwin, 1996). They then applied this procedure to analyze elbow joint moment estimations for 
a single subject performing elbow flexion while grasping a 17 kg dumbbell. Using Clauser et 
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al.’s density estimates, they varied the density of the arm model by 5 and 10% and examined the 
effects on joint moment estimations, concluding that the joint moment estimations about the 
flexion and supination axes were largely insensitive to BSIP variations. Note that the movement 
analyzed was not gait and so external forces applied to the body were small. 

Silva & Ambrosio investigated the sensitivity of results from inverse dynamic analysis 
due to imprecision in input data, such as measurement noise, and in the biomechanical model, 
such as BSIP uncertainties for the legs (Silva & Ambrosio, 2004). Perturbing the masses of the 
upper and lower legs by 0.01 kg and 1.0 kg, respectively, and applying these models to analyze 
gait data from one subject, they concluded that joint moments were relatively insensitive to mass 
variations in the lower and upper leg. However, they did not analyze effects of perturbations in 
center-of-mass locations or inertias, or alter combinations of BSIPs, which might cause 
significant changes in joint moments. 

Nguyen et al. studied the effects of segment inertial parameter variations on joint moment 
calculations in inverse dynamics using Monte Carlo simulation and concluded that significant 
variability in inertial parameters did not necessarily translate into large joint moment variations 
(Nguyen et al., 2007).   
 

6.4 Summary 

This chapter reviewed the biomechanics of human locomotion and previous research that 
analyzed the effects of body segment inertial parameters on joint torque calculations. The next 
chapter discusses the methodology used in this study.
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7 Methodology for Part II  
 

This chapter explains the methodology used to analyze how joint moments calculated 
from gait analysis change based on the Body Segment Inertial Parameter (BSIP) model used. 
Each BSIP model predicts mass, center-of-mass location, and inertia for the body segments.  

The research methodology involves two parts: (1) using 3D simulations to track 
measured 3D gait data and performing a sensitivity analysis by varying BSIP model sets, and (2) 
analyzing the 2D dynamical equations of motion. The 3D simulation portion involves varying 
BSIP model sets for an anthropometric 3D walking model that is used to track gait data via 
forward dynamics simulations to estimate joint torques. Parameter model sets are defined as 
mass segment relations, center of mass locations, and moment of inertias for the whole body. 
Modifying a certain parameter (such as the mass of the thigh) alone is not realistic, since the 
BSIP models denote certain relationships between segment properties. The 2D dynamical 
equations portion involves deriving the dynamical equations of motion to gain further insight 
into the effects of BSIPs. 2D equations are derived and used instead of 3D equations because 
they provide greater clarity into BSIP effects with less complexity while still accurately 
representing the 3D simulation results.  

7.1 Body Segment Inertial Parameter (BSIP) Estimati on Models 

This section describes the seven BSIP estimation models used and presents the BSIP 
values calculated from them. 
 

7.1.1 Definitions 

We define two key terms used to describe the research method: (1) BSIP model, and (2) 
model set. We use the term BSIP model to denote an estimation method such as regression 
equations or an algorithm used to estimate BSIP’s from body height and mass. These are the 
most commonly used methods to estimate BSIPs, since more advanced methods such as medical 
imaging are costly and/or require much greater effort to perform. We define model set to mean 
the set of mass, center-of-mass, or inertia relations within each model. For example, if a BSIP 
Model can predict mass, center-of-mass, and inertia values, then this model contains three Model 
Sets: a mass model set, a center-of-mass model set, and an inertia model set.  
 

7.1.2 Descriptions of Body Segment Inertial Paramet er (BSIP) Models  

This study analyzes seven BSIP models. This number includes the scaled model in 
OpenSim that is widely used in forward dynamics studies of gait. Although other BSIP models 
are available, these models were chosen because they are applicable to the test subject and are 
widely used or have been analyzed by other researchers (e.g., (Thelen & Anderson, 2006). (Rao 
et al., 2006)). For example, Pearsall and Costigan analyze the BSIP model of Jensen and Fletcher 
(1994), but this BSIP model was created specifically to estimate BSIPs of elderly subjects and so 
is not applicable to the subject analyzed in this study.  
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The seven BSIP models represent estimates derived from a variety of study methods, 
including cadaver and in vivo studies, each of which has advantages and disadvantages. All but 
one of these models are based on U.S. Air Force studies for human factors applications  
 
Model 1: OpenSim Model 

The OpenSim BSIP model has been used in many forward dynamic studies, such as (Arnold et 
al., 2007), (Thelen & Anderson, 2006), and (Anderson & Pandy, 2001). Inertial properties are 
based on the data of (McConville et al., 1980) with modifications. McConville used 
photogrammetry and anthropometric techniques to collect data from 31 living male Caucasian 
subjects and develop regression equations to predict BSIPs. Photogrammetry is a technique that 
determines geometric properties about objects from multiple photographs. The algorithm that 
OpenSim uses to determine BSIPs for the subject is described in Section 7.5.1. This model 
provides BSIP estimates for the foot, shank, thigh, pelvis, and HAT (head, arms, torso) 
segments. 
  
Model 2: Dempster (1955) 

Dempster performed the first detailed study of BSIP’s using cadavers. He used the water volume 
displacement method to measure segment volumes of living people, which were in turn used to 
calculate limb segment densities. He determined center-of-mass locations using a balance plate. 
Finally, he determined segment moments of inertia using the pendulum method, in which the 
investigator suspends an object from a fixed point, sets it in motion by shifting it several degrees 
from equilibrium, and measures the time it takes to swing for one oscillation period (Herzog et 
al., 1999). Although segment inertias for specific subjects are provided in Dempster, no 
estimation models or methods are presented to allow one to scale these inertias to people of 
different sizes. Thus, Dempster’s inertias values were not used in this study. Model 2 lumps the 
HAT and pelvis segments together, as opposed to Model 1. 
 
Model 3: Clauser (1969) 

Clauser used techniques similar to Dempster’s but studied a different subject set. Specifically, all 
but one of the cadavers used in Dempster’s study were unpreserved, while Clauser et al. used 
only preserved specimens. Clauser et al. also say that they used more “elaborate statistical 
analysis” than previous studies. Model 3 provides BSIPs for the same segments as Model 2. 
 
Model 4: Chandler (1975) 

Chandler et al. used similar methods as Clauser, but again with a different cadaver set. Their 
main criterion was physical condition, meaning they excluded specimens with such conditions as 
obesity, major surgery, and other anomalies. Fluoroscopy and X-rays were used to verify bony 
landmarks. Chandler presents regression equations for estimating moments of inertia in the 
principal directions (i.e., longitudinally along each segment, and along orthogonal directions to 
this axis). Model 4 provides BSIPs for the same segments as Models 2 and 3. 
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Model 5: de Leva (1996, based on Zatsiorsky-Seluyanov, 1983) 

de Leva adjusted Zatsiorsky-Seluyanov’s data to be relative to joint centers rather than to body 
landmarks. Zatsiorsky & Seluyanov’s study is notable because it analyzes a large sample of 
living, college age individuals (100 male, 15 female Caucasian subjects). Although no other 
comprehensive studies have been published about the BSIP’s of college age Caucasians, de Leva 
believes that Zatsiorsky et al.’s data is not generally preferred to cadaver data because it uses 
bony landmarks as reference points rather than joint centers. This model separates the pelvis and 
HAT segments, similar to Model 1. 
 
Model 6: Dumas (2007, based on data from McConville, 1980) 

Dumas adjusted McConville’s data to correspond to conventional segment coordinate systems 
centered at joints. This model provides estimates for similar segments as in models 1 and 5. 
 
Model 7: GEBOD (GEnerator of BOdy Data software) 

GEBOD is a software program developed and used by the U.S. Air Force. Its original purpose 
was to produce human and dummy body description for the Articulated Total Body model, a 
software program used to simulate the motion of linked rigid bodies, such as humans in car 
crashes. When the user inputs subject mass and height, GEBOD outputs estimated segment 
masses and inertias. Center-of-mass values from GEBOD are not included in our analysis 
because GEBOD approximates segments as uniform ellipses with center of masses located 
halfway between joints, which is unrealistic. GEBOD incorporates data from McConville et al. 
(1980) and from Grunhofer (1975), who synthesized anthropometric data from German Air 
Force and US Air Force personnel. This model provides estimates for similar segments as 
models 1, 5, and 6. 
 
 

These seven models are summarized in Table 7. The notation used to describe each 
model is MX_set, where X denotes the model number and set denotes whether it is the mass, 
center-of-mass, or inertia parameter set. The models are formulated such that each parameter set 
can be calculated independently of the others, although the relationships between members of 
each set are interdependent. In theory, this means that one should be able to mix and match any 
mass, center-of-mass, and inertia parameter set, since they are applicable to the general 
population of Caucasian males! 



Part II 78 

Table 7: Summary of the different estimation models used in this study 

BSIP 
estimation 
model name 

Model 1 (M1) 
     M1_mass 
     M1_com 
     M1_inertia 

Model 2 (M2) 
     M2_mass 
     M2_com 

Model 3 (M3) 
     M3_mass 
     M3_com 
     M3_inertia 

Model 4 (M4) 
     M4_mass 
     M4_com 
 

Model 5 (M5) 
     M5_mass 
     M5_com 
     M5_inertia 

Model 6 (M6) 
     M6_mass 
     M6_com 
     M6_inertia 

Model 7 (M7) 
     M7_mass 
      
     M7_inertia 

Source Default OpenSim 
BSIP estimates 
generated using its 
scaling algorithm 

Dempster BSIP 
estimates 

Chandler BSIP 
relations 

Clauser BSIP 
estimates 

de Leva BSIP 
estimates 
(adjusted data 
from Zatsiorsky-
Seluyanov study) 

Dumas BSIP 
estimates 
(adjusted data 
from McConville 
study) 

GEBOD 
(Generator of 
Body Data 
software) 

Segments 
defined 

HAT 
Pelvis 
Thigh 
Shank 
Foot 

HAT 
 
Thigh 
Shank 
Foot 

HAT 
 
Thigh 
Shank 
Foot 

HAT 
 
Thigh 
Shank 
Foot 

HAT 
Pelvis 
Thigh 
Shank 
Foot 

HAT 
Pelvis 
Thigh 
Shank 
Foot 

HAT 
Pelvis 
Thigh 
Shank 
Foot 

Method Scaling generic 
OpenSim model 
estimated using 
McConville with 
modifications 

Cadaver study Cadaver study Cadaver study Gamma ray 
scanning of 
living subjects 

Photogrammetry 
of living subjects 

Algorithm 
Predicts BSIPs 
using data from 
McConville and 
Grunhofer 

Study sample N/A 8 Caucasian 
males age 52-83 

6 Caucasian 
males, age 45-65 

13 Caucasian 
males, age 24-78 

100 Caucasian 
males, age 45-65 

31 Caucasian 
males, mean age 
27.45 + 5.64 

U.S. and German 
Air Force 
personnel 

Country & 
year of 
original study  

1980 (McConville), 
USA 

1955 (Dempster), 
USA 

1975 (Chandler 
et al.), USA 

1968 (Clauser et 
al.), USA 

1983 (Zatsiorsky 
et al.), Russia 

1980 
(McConville), 
USA 

1980 
(McConville), 
1967-8 
(Grunhofer), 
USA 

Source (Delp et al., 2007) (Dempster, 1955) (Chandler et al., 
1975) 

(Clauser et al., 
1969) 

(de Leva, 1996); 
(Zatsiorsky & 
Seluyanov, 1983) 
 

(Dumas et al., 
2007); 
(McConville et 
al., 1980) 

(Cheng et al., 
1994) 
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7.1.3 Calculations from Models 

This study calculates BSIPs using methods provided in each BSIP model. The coordinate 
systems used are as follows: The principal world coordinate axis is defined as shown in Figure 
22, and the orientation of the principal world coordinate axis in the standing position aligns with 
the local x,y,z axes of each segment. For example, longitudinally along the foot is taken as the x-
coordinate in the foot local frame. 

Difficulties encountered in using these BSIP models include the following: segments are 
defined differently in each study, center-of-mass locations are defined relative to different 
landmarks, and moments of inertia are defined in different directions. For uniformity, all inertias 
calculated in this study are with respect to segment center-of-mass locations. This is the same 
definition used in OpenSim, meaning that the value input to the software for a segment’s inertia 
is its inertia about its center-of-mass. Details of the BSIP calculations shown in the following 
tables are presented in Appendix B. The resulting values are summarized in the following three 
tables. Note that some models do not calculate total body mass accurately. This is the case for 
Chandler’s regression equations (M4_mass), which calculate total body mass as 78.9 kg, 
whereas the experimental subject’s mass was 72.6 kg. 
 
 

Table 8: Segment mass estimates in kg for each BSIP model (kg) 

BSIP Model 
Segment M1_mass M2_mass M3_mass M4_mass M5_mass M6_mass M7_mass 

HAT 
(w/o 
pelvis) 33.068 N/A N/A N/A 35.65 35.86 35.58 

HAT 
(including 
pelvis) N/A 49.22 49.22 49.54 N/A N/A N/A 
pelvis 11.38 N/A N/A N/A 8.109 10.31 9.728 
Thigh 8.984 7.187 7.478 10.78 10.28 8.930 8.984 
Shank 3.581 3.340 3.122 2.977 3.144 3.485 3.646 
Foot 1.207 1.016 1.089 0.9146 0.9946 0.8712 0.9275 
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Table 9: Segment center-of-mass location estimates for each BSIP model (m) 

BSIP Model 

Segment 
Coordinate 
in opensim  M1_com  M2_com M3_com M4_com M5_com M6_com M7_com  

HAT (w/o pelvis) x -0.03239 N/A N/A N/A 0 0.01414 N/A 

relative to torso segment 
in model y 0.3455 N/A N/A N/A 0.4531 0.4279 N/A 
  z 0 N/A N/A N/A 0 0.0009791 N/A 

HAT (including pelvis) x N/A 0 0 0 N/A N/A N/A 

relative to torso segment 
in model y N/A 0.2970 0.3081 0.3119 N/A N/A N/A 
  z N/A 0 0 0 N/A N/A N/A 
Pelvis x -0.07240 N/A N/A N/A 0 3.100E-05 N/A 

Relative to pelvis 
segment in model y 0 N/A N/A N/A -5.800E-4 -0.04140 N/A 
  z 0 N/A N/A N/A 0 -6.643E-06 N/A 
Thigh x 0 0 0 0 0 -0.01923 N/A 

Relative to femur 
segment y -0.1950 -0.2036 -0.1745 -0.1845 -0.1921 -0.2012 N/A 
  z 0 0 0 0 0 0.01548 N/A 
Shank x 0 0 0 0 0 -0.02040 N/A 

Relative to tibia segment 
in model y -0.1846 -0.1840 -0.1575 -0.1771 -0.1895 -0.1743 N/A 
  z 0 0 0 0 0 0.002975 N/A 
Foot x 0.1027 0.1042 0.1067 0.1043 0.1051 0.09092 N/A 
Relative to calcn segment 
in model y 0.03080 0 0 0 0 -0.03594 N/A 
  z 0 0 0 0 0 0.006188 N/A 
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Table 10: Segment inertia estimates for each BSIP model (kg-m2) 

 BSIP Model 

 Segment   M1_inertia  M2_inertia  M3_inertia  M4_inertia M5_inertia M6_inetia M7_inertia 
torso (not 
including 
head/arms) Ixx 1.660 N/A N/A 1.840 1.989 0.7794 1.942 

  Iyy 0.8507 N/A N/A 0.4546 0.5243 0.6682 0.3639 

  Izz 1.612 N/A N/A 1.299 1.731 0.8382 1.812 
pelvis Ixx 0.1042 N/A N/A N/A 0.1048 0.1218 0.08130 
  Iyy 0.08831 N/A N/A N/A 0.09551 0.1341 0.09200 
  Izz 0.05870 N/A N/A N/A 0.08415 0.1077 0.07330 
Thigh Ixx 0.1702 N/A N/A 0.1309 0.2449 0.1653 0.1562 
  Iyy 0.04462 N/A N/A 0.02732 0.05022 0.04421 0.03650 
  Izz 0.1795 N/A N/A 0.1356 0.2449 0.1769 0.1634 
Shank Ixx 0.04757 N/A N/A 0.04368 0.03692 0.04935 0.05970 
  Iyy 0.004814 N/A N/A 0.003590 0.006024 0.006294 0.006200 
  Izz 0.04823 N/A N/A 0.04309 0.03520 0.04935 0.06060 
Foot Ixx 0.001430 N/A N/A 0.0008306 0.0008663 0.001426 0.0008000 
  Iyy 0.003970 N/A N/A 0.003188 0.003721 0.006756 0.004600 
  Izz 0.004180 N/A N/A 0.003321 0.003382 0.006396 0.004400 
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The calculated values show that there is little consistency between estimates. For 
example, thigh mass varies significantly between M3_mass (Chandler et al.) and M5_mass 
(Zatsiorsky et al.). This difference makes sense, since Chandler analyzed cadavers while 
Zatsiorsky et al. analyzed live subjects using gamma ray scanning. However, even BSIP models 
using the same study method have different BSIP estimates. For example, M1_mass and 
M6_mass are both based on McConville’s photogrammetry study, yet they predict masses for the 
HAT segment that differ by almost 3 kg.  
 

7.2 Human Body Model 

The anthropometric model used in this analysis is a 3D, 23 degree of freedom model 
developed by Thelen, Seth, Anderson, and Delp (Delp et al., 2007). It includes feet, legs, pelvis, 
and a combined upper body HAT (head, arms, torso) segment and has been used in many 
forward dynamics gait studies. The world coordinate system is denoted below in Figure 22. 
 The head, arms, and torso are represented by a single rigid HAT segment that articulates 
with the pelvis via a ball-and-socket joint located at approximately the third lumbar vertebra. 
Each hip joint is modeled as a ball-and-socket joint, each knee joint as a hinge joint, each ankle-
subtalar joint as a universal joint, and each metatarsal joint as a hinge joint. 

 
Figure 22: 3D, 23 degree-of-freedom human body model used in the analysis. (Anderson et al., 2006) 

 

7.2.1 Actuator Set 

The actuator set used in the model includes torque actuators located at the knee, ankle, 
hip, and lumbar joints.  

Additionally, actuators for “residual forces and moments” are also included to stabilize 
the model during walking. These are modeled as a 6 degree-of-freedom joint between the pelvis 
and ground (3 force actuators and 3 moment actuators). The mathematical explanation is 
presented here. For a perfect model of the human body, the dynamical equations can be 
represented in the form: 
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  (1) 
 
where M is the inertia matrix, q is a n-vector of generalized coordinates, V is the 
Coriolis/Centripetal vector, G is the gravity vector, and �  are the external generalized forces, 
which for human gait are ground reaction forces. This equation is derived in for an arbitrary n-
linkage rigid-body system (Lewis et al., 1993).  

However, when one tries to track the gait data using a model, this equation does not hold 
for many reasons, including measurement errors, model inaccuracies, and unmodeled dynamics 
such as friction. Therefore, to maintain dynamic consistency, a residual generalized force term � r 

must be included: 

  (2) 

 
Without this residual term, the model becomes unstable and falls over soon after the simulation 
starts. These residual forces and moments can therefore be a crude metric by which to evaluate 
the accuracy of our model to the real physical system. 
 

7.3 Gait Data 

The gait data used is that of a 1.8 m tall, 72.6 kg (~67.7th percentile) Caucasian male 
walking at self-selected speed on a Bartec split-belt instrumented treadmill. BSIP studies have 
been performed most extensively on Caucasian male populations, which makes this data set 
particularly suitable for analysis.  

The gait data includes ground force and motion capture data for approximately 14 seconds 
of walking and was collected by Chand John of Stanford in the facilities of Prof. Jill Higginson 
at the University of Delaware. (John et al., 2007). It is included with the OpenSim package. A 
six-camera motion analysis system was used to record positions of reflective markers placed on 
the subject according to a modified Cleveland Clinic marker set. 
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Figure 23: Gait Analysis System used (left) (Neuromuscular Biomechanics Lab, 2008) and gait data 
representation in OpenSim (right) 

7.4 Software 

OpenSim is used to create forward dynamic simulations of walking from gait data (Delp 
et al., 2007). It is a free, open-source equivalent of SIMM (Software for Interactive 
Musculoskeletal Modeling) developed by Simbios, the NIH center at Stanford University for 
physics-based simulation of biological structures. SIMM is widely used in biomechanics 
research, particularly for gait studies, and contains features for easily building musculoskeletal 
models by modifying anthropometry, muscle attachment points, joints, and muscle mechanical 
properties. Users can run simulations to track or model certain movements, which allows them to 
estimate muscle activation patterns and muscle/tendon forces. Physical simulations can be driven 
by musculotendon actuators or joint moment actuators. OpenSim uses the SimBody engine to 
perform rigid-body mechanics calculations.  

 
 

7.5 Simulations 

This section discusses the major algorithms used to run the forward dynamics simulations. 

7.5.1 Scaling and Inverse Kinematics (IK) Algorithm s 

OpenSim performs two procedures to match the human body model to the gait data. First, 
it scales the model to make segment anthropometry match that of the subject, as measured by 
motion capture marker locations. Next, it calculates joint angles in the model that best match the 
experimental kinematics of the subject. These two procedures are described in more detail below 
and summarized in Figure 24. Greater details are provided in the OpenSim user’s guide 
(Anderson et al., 2008). 

The scaling algorithm works as follows. It begins with a user-selected generic OpenSim 
model with joints and BSIP parameters predefined, but not to our specific test subject. This 
model was discussed in Section 7.2. The generic model is scaled to match the anthropometry of 
the measured subject using scale factors. Scale factors for each segment are computed by 
comparing distances between markers on the model and experimental marker positions. 
Distances between markers are calculated by averaging marker distances across all frames in a 
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user specified time interval. These scale factors can also then be used to scale the generic 
model’s body segment inertial parameters to that of the test subject. 

To calculate joint angles for each time step, the Inverse Kinematics (IK) algorithm then 
determines joint angles that best reproduce the subject’s experimental kinematics. This is done 
by computing the generalized coordinate values that put the model in a configuration that best 
matches experimental marker and coordinate values at each time step, where the best match is 
expressed as a weighted least squares problem whose solution minimizes both marker and 
coordinate errors.  

The main setup files for the scaling and IK algorithms are presented in Appendix C. 
 

 
Figure 24: Scaling the generic OpenSim model and determining joint angles to match experimental data 

7.5.2 Computed Muscle Control (CMC) Algorithm 

After determining model anthropometry and joint angles at each time step, we performed a 
forward dynamics simulation using the Computed Muscle Control (CMC) algorithm to track 
joint angles. CMC uses PD control and optimization to find optimal joint torques or muscle 
activations that track the measured movement (Thelen & Anderson, 2006). Prior to applying 
CMC, joint angle kinematics were filtered at 6 Hz to remove high frequency noise. 

CMC is designed for muscle modeling, which means it takes into account time effects. But 
since this analysis concerns net joint moments without time-dependent effects, CMC becomes a 
basic Computed Torque Controller (CTC) (Lewis et al., 1993),. CTC is a standard feedback 
linearization method for nonlinear systems used in robotics, and is also known as “Inverse 
dynamics control.” The equation for such a controller is 
 

      (3) 
 

where  N accounts for the Coriolis, friction, and Gravity terms 
 M is the inertia matrix 
 q are generalized coordinates 
 u is an user-selected input 
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We can represent the error between our desired trajectory and the current trajectory as  
 

     (4)   
  

after manipulation of the original dynamical equations for an n-segment linkage, we can 
represent the errors in Brunovsky canonical form: 
 

   (5) 
    

where dt1-= MW  is the disturbance function. 
Since input u accounts for the dynamics of the system, as seen from the CTC control law 

(equation (3)), by choosing u appropriately we can control the error without explicitly calculating 
the system dynamics. Control input u can be chosen in many ways; the most often used method 
is PD feedback. CMC uses a combination of PD control and static optimization, where 
optimization is used when time-dependent actuator behavior is modeled, such as for tendons and 
muscles. The main setup file used for the CMC algorithm is shown in Appendix C. 

7.5.3 Simulation Inputs 

Inputs for each forward dynamics simulation include BSIPs, kinematics data to be tracked, 
ground forces to be applied, and numerical simulations settings such as CMC tracking settings 
and integration steps. BSIPs were the only inputs that differed between simulation runs. 
Integration steps were varied to ensure they did not affect results, and kinematics of the runs 
were compared to ensure they were identical.  

Variables, constants, and outputs for the simulations are summarized below in Figure 25. 
As discussed in this chapter’s introduction, different combinations of model sets were used, the 
rationale being that modifying individual parameters (such as the mass of the thigh) is not 
realistic, as the BSIP models denote certain relationships between segment properties. At the 
same time, the model sets for mass, center-of-mass, or inertia are supposed to be generally 
applicable to the male Caucasian population at large, so combining different model sets is 
reasonable. 
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Figure 25: Summary of constant and varied inputs/outputs to simulations 

 
Note that different studies divide up segments differently. For example, McConville 

separates the pelvis from the torso, while Dempster lumps the pelvis and torso together. 
Therefore, not all possible combinations of parameter sets are possible. For BSIP models that 
define parameters for less segments than are defined in the body model, the extra segments have 
their mass and inertia values set near zero (<1E-5 kg and m^2-kg, respectively). This was done 
because setting these parameters to zero causes errors, while removing the segment joints 
interferes with the tracking algorithm. 
 

7.5.4 Summary 

The 42 distinct simulations performed are summarized in Table 11. As can be seen from 
Table 7, BSIP models 2, 3, and 4 lump the pelvis segment with the HAT (head, arms, torso) 
segment, while models 1, 5, 6, and 7 separate these segments. This means that while the model 
sets (inertias, masses, center-of-mass location relationships) from Models 1, 5, 6, and 7 can be 
applied to Models 2, 3, and 4, the reverse is not possible. For example, finding the mass of a 
lumped pelvis-HAT segment using Model 1 simply involves adding the masses of the pelvis and 
HAT segments, but calculating the separate masses of the pelvis and of the torso from a lumped 
segment mass cannot be done. This is reflected in the simulation combinations performed. 
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Table 11: Simulations performed 

Model Set Used 

Simulation number Mass 
Center-of-Mass 

location Inertia 
1 M1_mass M1_com M1_inertia 
2 M1_mass M1_com M5_inertia 
3 M1_mass M1_com M6_inertia 
4 M1_mass M1_com M7_inertia 
5 M2_mass M2_com M3_inertia 
6 M2_mass M2_com M5_inertia 
7 M2_mass M2_com M6_inertia 
8 M2_mass M2_com M7_inertia 
9 M3_mass M3_com M3_inertia 
10 M3_mass M3_com M5_inertia 
11 M3_mass M3_com M6_inertia 
12 M3_mass M3_com M7_inertia 
13 M4_mass M4_com M3_inertia 
14 M4_mass M4_com M5_inertia 
15 M4_mass M4_com M6_inertia 
16 M4_mass M4_com M7_inertia 
17 M5_mass M5_com M5_inertia 
18 M5_mass M5_com M6_inertia 
19 M5_mass M5_com M7_inertia 
20 M6_mass M6_com M6_inertia 
21 M6_mass M6_com M5_inertia 
22 M6_mass M6_com M7_inertia 
23 M2_mass M3_com M3_inertia 
24 M4_mass M3_com M3_inertia 
25 M5_mass M3_com M3_inertia 
26 M6_mass M3_com M3_inertia 
27 M7_mass M3_com M3_inertia 
28 M6_mass M5_com M5_inertia 
29 M7_mass M5_com M5_inertia 
30 M5_mass M6_com M6_inertia 
31 M7_mass M6_com M6_inertia 
32 M7_mass M1_com M7_inertia 
33 M5_mass M1_com M7_inertia 
34 M6_mass M1_com M7_inertia 
35 M3_mass M2_com M3_inertia 
36 M3_mass M4_com M3_inertia 
37 M5_mass M6_com M5_inertia 
38 M5_mass M1_com M5_inertia 
39 M6_mass M5_com M6_inertia 
40 M6_mass M1_com M6_inertia 
41 M1_mass M5_com M1_inertia 
42 M1_mass M6_com M1_inertia 



Part II 89 

7.6 Rigid Body Dynamics Analysis 

To gain insight into the effects of BSIP variations on joint moments, we also derived 
equations of motion for a model of the human body consisting of Head-Arms-Torso (HAT), 
pelvis, thigh, shank, and foot segments using the Newton-Euler method. The derivations are 
shown in Appendix D. Only 2D analysis equations were ultimately desired because these forms 
are simpler than the 3D representation and can provide better insight into the physics. Section 
8.2.1 shows that these 2D equations are well representative of the 3D situation.  

The equations were all derived using the world inertial frame rather than local frames for 
two reasons. First, we are most concerned with joint moments, which are calculated in the 
absolute frame rather than joint frames. Second, this simplifies the equations greatly, allowing us 
to gain maximum insight into the physics. 
 

7.6.1 3D Analysis 

The 3D equations of motion are presented below: 
 
Forces 
 
Right Leg   

 
(6) 

 
(7) 

 (8) 

 
where, 

 
Left Leg   

 
(9) 

 
(10) 

 
(11) 

   

Lumbar (back)        

 (12) 
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where,  

    
 

Residual forces  

 (13) 

where, 

    
 

Moments (for right leg) 

 
Ankle  

 
(14) 

 

Knee 

 
(15) 

 

Hip 

 
(16) 

 
where, 
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and moments for the left leg segments have equivalent forms. 
 
Lumbar (back) 

 
(17) 

 
where, 

 
  
Residual Moment 
 

 

           

(18) 

 
where, 

    

7.6.2 Flexion moment (2D analysis) equations 

We then made several simplifying assumptions. First, we assume that the majority of 
flexion moments occur in the sagittal plane, which remains stationary with respect to the 
absolute inertial coordinate frame. In the simulation, this was taken as the XY plane (see Figure 
22). Accordingly, we approximate the ankle, knee, and hip flexion moments as occurring 
exclusively in the Z-direction.  

Second, we ignore cross products of inertia. In general, this assumption makes sense 
because the majority of movement occurs in the sagittal plane and because principal moments of 
inertia tend to lie along directions orthogonal to segment longitudinal directions, as shown by the 
results of Dempster (1955), Clauser et al.(1969), and other studies. 

With these assumptions, the 3D equations simplify into the following scalar equations, 
 
Ankle flexion moment  

 

(19) 
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Knee flexion moment 

 

 

(20) 

 
Hip flexion moment 

 

 

(21) 

 
where the ei’s represent the projection of the respective segment’s distance vector in direction i. 
In other words, they are trigonometric functions of the joint angle, for example, for the foot,  

 

 
 

 
where AFq  is the angle of the foot segment from the vertical, as shown in Figure 51 of Appendix 
D. 
  

Following the approach discussed in (Riemer et al., 2008), we can find an upper bound 
for the joint moment uncertainties by taking the derivative of the moment equations with respect 
to all of the body segment inertial parameters: 
 

 

(22) 

 
where jMD  is the joint moment uncertainty in joint j, jM  is the joint moment equation for joint 

j, and ix ’s are the BSIPs. We then get the equations for joint moment uncertainties presented in 
the next section. 
 
Flexion moment uncertainties 

 The flexion moment uncertainties represent the maximum uncertainties in joint moments 
due to variations or uncertainties in the various body segment inertial parameters. 
 
Ankle flexion moment uncertainty  

 

(23) 
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Knee flexion moment uncertainty 

 

(24) 

 
Hip flexion moment uncertainty 

 

(25) 

 

7.6.3 Moment Sensitivities to individual BSIPs 

We calculate the sensitivity of joint moments to variations in the values of individual 
BSIPs as follows. From the uncertainty equations above ((23) through (25)), we use 3-4 different 
values for each parameter while keeping all other parameters constant. These values included the 
max difference from the mean, the max difference between models, and multiples of the max 
difference from the mean. The max difference from the mean was taken as the baseline value, 
and for each time step, the sensitivity ][/ BSIPddM  was calculated using the formula, 

 

 

(26) 

 
where 2MD  is the uncertainty in joint torque for joint i using BSIP value 2, and 1MD  is the joint 
torque uncertainty in joint torque for joint i using BSIP value 1 for the specific BSIP of interest. 
This metric measures how changes in a certain BSIP value affect the uncertainty of our joint 
torque results. 

7.7 Summary  
 

This chapter summarized the methodology used to study the effects of body segment inertial 
parameter values on joint moments calculated from gait analysis. The next chapter discusses the 
results and conclusions from our study.
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8 Results and Conclusions for Part II 
 

This chapter discusses results from the 3D simulations and the 2D dynamics analysis, 
concluding with recommendations about how to interpret and improve the accuracy of joint 
moments calculated from gait data. Figures and tables displaying results from the 3D OpenSim 
simulations are identified with the label [3D simulations], while results from the 2D dynamics 
analysis are labeled [2D dynamics]. As mentioned in the introduction of Chapter 7, the 3D 
simulation results are presented because they represent the most accurate representation of how 
calculated joint torques from walking results vary due to different body segment property 
models, while the 2D dynamical equation results augment them by providing insight into the 
physics with less complexity than in a 3D dynamical equation analysis. The 2D results are shown 
to be an accurate representation of the 3D results.  

8.1  3D OpenSim Simulation Results 

Because there is no “best” or “ideal” Body Segment Inertial Parameter (BSIP) model or 
combination of model sets, and because each of the BSIP models are derived from studies 
limited in significant ways (e.g., very small sample sizes), this study analyzes the average torque 
estimates of all model sets and their variance through time.  

Figure 26 through Figure 29 show the mean +/- variance of joint moments normalized by 
body weight for the hip, knee, and ankle of the right leg. Variance is defined in the standard 
statistical sense as the expectation of the squared deviation from the mean. Results are only 
shown for the right leg, as left leg results would be similar and symmetric.  
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Figure 26: Mean +/- variance for RIGHT LEG HIP FLEX ION moment normalized by subject’s 
body mass, where positive moments represent hip flexion, as shown in the drawing [3D simulations] 
(figure from Inman and weboflife.nasa.gov) 

 
 

 

Figure 27: Mean +/- variance for RIGHT LEG HIP ADDUCTION moment normalized by subject’s 
body mass [3D simulations] 
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Figure 28: Mean +/- variance for RIGHT LEG KNEE FLE XION moment normalized by subject’s 

body mass, where positive moments represent knee extension [3D simulations] (ovrt.nist.gov) 

 

 
Figure 29: Mean +/- variance for right leg ankle joint flexion moment [3D simulations] 

 
Additionally, Figure 30 through Figure 33 show normalized joint moment variance and 

maximum differences between BSIP models for the right leg.  
 



Part II 98 

 
Figure 30: Variance and max difference in RIGHT LEG HIP FLEXION moment calculations between the 

BSIP models used [3D simulations] 

 

 
Figure 31: Variance and max difference in RIGHT LEG HIP ADDUCTION moment calculations between 

the BSIP models used [3D simulations] 
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Figure 32: Variance and max difference in RIGHT LEG KNEE FLEXION moment calculations between the 
BSIP models used [3D simulations] 

 

 
Figure 33: Variance and max difference in RIGHT LEG ANKLE FLEXION moment calculations between 

the BSIP models used [3D simulations] 
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From the figures, the following results can be observed: 
·  For hip flexion moment, the greatest variations occur at 45-50% of the gait cycle (double 

support/right leg pre-swing), and at 80-90% of the gait cycle (right leg heel strike).  
·  For hip adduction moment, the greatest variations occur at 55-60% of the gait cycle 

(beginning of right leg swing phase) and 75-85% (right leg heel strike).  
·  For knee flexion moment, the greatest variations occur at 45-55% (double support/right leg 

pre-swing) and 80-90% of the gait cycle (right leg heel strike).  
·  Variations in ankle flexion are small throughout the gait cycle. 
·  Joint moment variations are significant compared to average joint moments for some joints at 

some phases of the gait cycle 
 

These results show that the greatest differences between joint moment results from 
different BSIP models occur during the start and end of the swing phase. This agrees with 
Ganley and Powers’ results (2004) but is slightly different from Rao et al.’s results (2006), which 
show that hip joint flexion moment variations are fairly constant throughout the gait cycle 
(Figure 21). Intuitively, the observation that variations peak at certain points in the gait cycle 
makes sense because at the start of the swing phase, joint moments accelerate the leg against 
gravity. The moments required at this phase depends almost entirely on leg segment properties. 
In contrast, joint moments during stance phase act mainly to lift the body rather than accelerate 
the leg. There will be less joint moment uncertainty at this phase because total body weight is an 
accurately measured quantity,. More insight into this relationship is gained by examining the 
dynamical equations in the 2D Dynamics Analysis section. 

The results in Figure 30 through Figure 33 show that joint flexion moment variance 
decreases as we move down the body (i.e., it is greatest for hip flexion, lower for knee flexion, 
and lowest for ankle flexion). Other researchers such as Ganley & Powers (2004) have noted this 
as well, though they did not provide an explanation for this effect. This suggests that we can 
make better joint moment calculations for lower body joints than upper body joints. Examining 
the dynamical equations of motion in the next section provides further insight into this result.  
 Finally, comparing Figures 26 through 29 to Figures 30 through 33 shows that the 
greatest errors do not always occur where joint torques are greatest in magnitude, particularly 
during single stance when only the right leg supports the body. This is important because high 
joint moments suggest high muscle and tendon forces, which are usually what interests clinicians 
prescribing patient treatment. 

Figure 34 shows the average residual forces applied to the model during simulations to 
maintain its stability. The largest residual force magnitudes occur during heel strike and dual 
support stage, from 35-50% (left initial contact to right pre-swing) and 80-100% (right initial 
contact to left-pre-swing). The largest residual moment magnitudes occur just after right leg pre-
swing, from 45-55%, and just after left leg pre-swing, at 5% and 95%. Residual forces measure 
the “model error,” since applying any external force besides ground reaction forces to maintain 
stability is not realistic. However, the contributions of BSIP errors to these forces are unclear, 
and further studies need to be performed to understand this. 
 



Part II 101 

0

10

20

30

40

50

60

70

80

90

100

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00
%

% gait cycle

N

 
Figure 34: Total mean residual force magnitudes applied to body to maintain simulation model consistency 

with measurements [3D simulations] 

 
 In summary, the results from the 3D simulations suggest that we can have greatest 
confidence in our hip and knee joint moment results during single stance phase, whereas we can 
have high confidence in our ankle joint moments throughout the gait cycle.  

 

8.2 2D Dynamics Analysis Results 

We next analyze the 2D dynamical equations of motion to gain insights into our simulation 
observations. As discussed earlier, 2D equations are derived and used instead of 3D equations 
because they are less complex than the 3D equations, thereby providing more clarity into BSIP 
effects, while still proving to be accurate representations of the 3D simulation results. The 2D 
equations only show movement in the sagittal plane as shown in Figure 18, which is reproduced 
here. 
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Figure 18: Body Planes 

 
The 2D dynamical equations presented earlier for hip, knee, and ankle flexion torque and 

their uncertainty analysis equations from Chapter 7 are rewritten below. 
 
Flexion moment (2D analysis) equations 
 
Ankle flexion moment  

 

(19) 

 
Knee flexion moment 

 

 

(20) 

 
Hip flexion moment 

 

 

(21) 

 
Flexion torque uncertainties 
 
Ankle flexion moment uncertainty  

 

(23) 

 
Knee flexion moment uncertainty 

 

(24) 

  



Part II 103 

Hip flexion moment uncertainty 
(25) 

 
 These equations were coded in MATLAB for use in analysis. The script is presented in 
Appendix D. 
 

8.2.1 Comparison with 3D simulation results 

We first verify that the 2D approximations match the 3D simulation results well. Figure 
35 through Figure 37 show that the 2D sagittal plane approximations match the 3D results fairly 
well, with increasing accuracy for joints higher in the body. These 2D results were calculated 
using the mean and maximum variation values from the 3D results as the uncertainty inputs 
(signified by delta) in equations (23) through (25). Here, maximum difference is defined as the 
maximum difference between joint moments calculated using different BSIP models. 
 

 
Figure 35: Comparison of 3D simulation variance and maximum difference between BSIP model results and 

2D analysis for ANKLE FLEXION moment [3D simulations] [2D Dynamics] 
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Figure 36: Comparison of 3D simulation variance and maximum difference between BSIP model results and 

2D analysis for KNEE FLEXION moment [3D simulations] [2D Dynamics] 

 

 
Figure 37: Comparison of 3D simulation variance and maximum difference between BSIP model results and 

2D analysis for HIP FLEXION moment [3D simulations] [2D Dynamics] 

 

8.2.2 Discussion 

An examination of the rigid body dynamics equations (equations (23) through (25)) shows 
several important relationships. First, moment uncertainties for joints located higher in the leg 
are greater than in lower joints because moment uncertainties from the lower joints cascade up to 
higher joints. From the free body diagram of the foot, one can see that the foot segment is acted 
upon by experimentally measured ground reaction forces, which are known, and two estimated 
forces, the ankle reaction force and the weight of the foot (see in Figure 45 in Appendix D). The 
only joint moment acting on the foot is the ankle joint moment. In contrast, the thigh and shank 
segments are acted upon by joint reaction forces, segment weights, and joint moments--all of 
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which are estimated based on body segment inertial parameter (BSIP) assumptions. This can be 
seen in the joint moment uncertainty equations: uncertainty in ankle joint moment depends only 
on foot segment inertial parameters, while uncertainty in knee joint moment depends on BSIPs 
of the lower leg and foot plus uncertainties in ankle joint moment. Similarly, hip flexion moment 
is dependent on BSIP uncertainties of the thigh, shank, and foot, as well as knee moment, which 
is in turn dependent on ankle moment. Moment uncertainties therefore cascade up the leg 
segments because only the foot is acted upon by measured external forces. 

Regarding our observation from the 3D simulations that joint moment variations are 
greater during swing phase than stance phase, we now see mathematically why this occurs. 
Equations (23) through (25) (the joint moment uncertainty equations) show that joint flexion 
moment uncertainties are not functions of ground reaction forces. However, Equations (19) 
through (21) (the joint moment equations) show that joint uncertainty as a percentage of joint 
torque is greater during swing because at stance the joint torques balance out the ground reaction 
forces, while ground reaction forces are zero during swing. This means that during stance, 
ground reaction moments dominate the joint movement values, which leads to greater confidence 
in our joint movement estimates because ground forces are experimental measurements.  

Finally, we observe that flexion moment uncertainties in the hip, knee, and ankle are 
linear with respect to inertia uncertainties, but nonlinear with respect to all other BSIPs. In other 
words, these flexion moments are linear functions of the inertia. This suggests that joint moments 
are less sensitive to inertia values than to other BSIPs, a point we will evaluate further in the next 
section when we isolate the effects of individual BSIPs.  
 
8.2.2.1 Joint moment sensitivities averaged over gait cycle 

 
To evaluate the sensitivity of joint moments to individual BSIPs, we modify one BSIP 

parameter variation at a time while keeping all others constant in equations (23) through (25) and 
calculate the average sensitivity over one gait cycle, as well as the average sensitivity at each 
point in the gait cycle, as described in section 7.6.3. The MATLAB script used for this analysis 
is presented in Appendix E.   

We first examine the sensitivities averaged over one gait cycle. Table 12 through Table 
14 present these results. Note that we can only compare results within each table, and not results 
between tables, since each table represents normalized joint moment sensitivity for some BSIP 
model set (mass, center-of-mass location, inertia). 
 

Table 12: Average sensitivity over one gait cycle of joint moment variations to changes in segment mass (N-
m/kg^2) [2D dynamics] 

 Ankle flexion Knee flexion Hip Flexion 

  
d[� M_A normalized] 
/ d� m 

d[� M_k normalized] 
/ d� m 

d[� M_h normalized] 
/ d� m 

foot 0.000 0.078 0.107 
shank 0.000 0.006 0.020 
thigh 0.000 0.000 0.005 
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Table 13: Average sensitivity over one gait cycle of joint moment variations to changes in segment center-of-
mass locations (N/kg) [2D dynamics] 

  
d[� M_A normalized] 
/ d� com 

d[� M_k normalized] 
/ d� com 

d[� M_h normalized] 
/ d� com 

foot 0.103 0.113 0.187 
shank 0.000 0.162 0.512 
thigh 0.000 0.000 0.410 

 

Table 14: Average sensitivity over one gait cycle of joint moment variations to changes in segment inertias 
(N/kg) [2D dynamics] 

  
d[� M_A normalized] 
/ d� Izz 

d[� M_k normalized] 
/ d� Izz 

d[� M_h normalized] 
/ d� Izz 

foot 0.316 0.318 0.318 
shank 0.000 0.287 0.287 
thigh 0.000 0.000 0.144 

 
From these results, one can see that joint moments are most sensitive to foot mass and 

inertia, and to shank center-of-mass location. Hip flexion moment sensitivity to foot mass is most 
pronounced, as this is more than 200 times its sensitivity to thigh mass.  
 To put these numbers into perspective, we estimate the BSIP uncertainty magnitudes that 
would be encountered for each segment based on our subject-specific BSIP values from Table 8 
through Table 10 of Chapter 7. For our experimentally measured subject (1.8 m, 72.6 kg (160 
lbs), ~67th percentile male), the maximum difference in estimates between relevant BSIP models 
for the foot, shank, and thigh are summarized in Table 15. 
 

Table 15: Maximum differences in BSIP estimations between models  

Segment 
Mass max 
difference (kg) 

COM max 
difference 
(m) 

Inertia max 
difference (kg-
m2) 

Thigh 3.741 0.029 0.109 
Shank 0.669 0.032 0.025 
Foot 0.336 0.016 0.003 

 
For the subject, joint moment uncertainties based on the sensitivity values from Table 12 through 
Table 14 and the maximum BSIP estimate differences from Table 15 are presented in Table 16 
through Table 18 
 

Table 16: Calculated variations in flexion joint moments averaged per gait cycle in experimental subject 
based on maximum difference in segment mass estimates (N-m) [2D Dynamics] 

  Mankle Mknee Mhip 
Foot 0.000 1.902 2.609 
Shank 0.000 0.291 0.972 
Thigh 0.000 0.000 1.358 
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Table 17: Calculated variations in flexion joint moments averaged per gait cycle in experimental subject 
based on maximum difference in segment center-of-mass location estimates (N-m) [2D Dynamics] 

  Mankle Mknee Mhip 
foot 0.118 0.130 0.215 
shank 0.000 0.377 1.191 
thigh 0.000 0.000 0.867 

 

Table 18: Calculated variations in flexion joint moments averaged per gait cycle in experimental subject 
based on maximum difference in segment inertia estimates (N-m) [2D Dynamics] 

  Mankle Mknee Mhip 
foot 0.071 0.071 0.071 
shank 0.000 0.529 0.529 
thigh 0.000 0.000 1.142 

 
From the 2D dynamical equation analysis results presented, we can conclude the following. First, 
regarding segment masses, foot mass is the most important BSIP to accurately estimate. Second, 
regarding segment center-of-mass locations, shank and thigh center-of-mass locations are the 
most important BSIPs to accurately estimate. Finally, regarding segment inertias, shank and 
thigh inertias are the most important BSIPs to accurately estimate 
 
8.2.2.2 Joint moment sensitivities at each phase of gait cycle 
 

Though the above averages give us an idea of the joint moment sensitivities throughout 
the gait cycle, it is also useful to know the sensitivities at each phase in the gait cycle. Important 
results are plotted in Figure 38 through Figure 41 and discussed. 

Figure 38 shows the sensitivity of hip, knee, and ankle flexion moments to foot mass, 
where moments are again normalized by body mass. One can see that variations in foot mass 
values have negligible effects on ankle flexion moment uncertainties compared to knee and hip 
flexion moments. Further, hip flexion moment uncertainty is especially sensitive to foot mass 
variations during 80-90% of the gait cycle (heel strike). This result agrees with that of Riemer et 
al. (2008). Figure 39 further highlights this fact by comparing the effects of foot mass on hip 
flexion moment to those of shank and thigh masses.  
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Figure 38: Sensitivity of normalized hip, knee, and ankle flexion moment variations to foot mass  

[2D Dynamics] 

 

 
Figure 39: Sensitivity of hip flexion normalized moment variations to foot, shank, and thigh mass  

[2D Dynamics] 
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Figure 40 shows the sensitivity of hip flexion moment to variations in foot, shank, and 
thigh center-of-mass location. It highlights that variations in foot and shank center-of-mass 
locations have negligible effects on hip flexion torque uncertainty for most of the gait cycle. 
However, shank-center-of mass location has large effects on hip flexion from 80-90% of the gait 
cycle (heel strike), while thigh center-of-mass location has moderate effects from 40-50% 
(double support) and 80-90% of the gait cycle and small effects otherwise. 
 
 

 
Figure 40: Sensitivity of normalized hip flexion moment to variations in foot, shank, and thigh center-of-mass 

locations  
[2D Dynamics] 

 
Figure 41 shows the sensitivity of normalized hip flexion moment variations to variations 

in segment inertias.  
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Figure 41: Sensitivity of normalized hip flexion moment variations to inertias [2D Dynamics] 

 
Although hip flexion is highly sensitive to both shank inertia and foot inertia, foot inertia 

variations are small enough that the overall effects of foot mass are not significant. This can be 
seen in Table 18 by examining the non-normalized moment sensitivity to the maximum 
difference in inertia estimations between BSIP models for the experimental subject. However, 
thigh and shank inertia values do have significant effects. For the measured subject, the 
sensitivity value from 80-90% of the gait cycle is 1.1 N/(kg2-m). This corresponds to an absolute 
moment uncertainty of 8.7 N-m, which is 120% of the joint moment value at that point in the gait 
cycle! 

Performing our analysis BSIP-component-by-BSIP component with a 2D approximation 
causes some error, but the results are qualitatively similar. For example, for hip flexion the 2D 
component-by-component analysis predicts a maximum torque variation of 18.5 N-m for the 
subject at 48% of the gait cycle, while the 3D simulations predict 11.6 N-m. Similarly, at 87% of 
the gait cycle the 2D analysis predicts a higher value than the 3D simulations (25 N-m vs. 17.8 
N-m). For the knee at these gait cycle phases, the 2D analysis vs. 3D simulation results at 48% 
and 87% of the gait cycle are 4.7 vs. 3.6 N-m and 6.3 vs. 8.7 N-m, respectively.   
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Table 19: Contributions of each BSIP to hip flexion moment uncertainty from 45-55% of gait cycle for our 
subject [2D analysis] 

Max variation in BSIPs for subject 

max Hip sensitivity 
(N-m/kg per BSIP 
dimension) 

Torque 
variation (N-
m/kg) 

Torque variation 
for subject (N-m) 

m_foot (kg) 0.336 0.21 0.07 5.12 
m_shank (kg) 0.669 0.087 0.06 4.22 
m_thigh (kg) 3.741 0.0097 0.04 2.63 
          
com_foot (m) 0.016 0.48 0.0077 0.56 
com_shank (m) 0.032 0.56 0.018 1.30 
com_thigh (m) 0.029 1.2 0.035 2.52 
          

I_foot (kg-m2) 0.003 0.7 0.0021 0.15 
I_shank (kg-m2) 0.025 0.49 0.012 0.89 
I_thigh (kg-m2) 0.109 0.45 0.049 3.56 
          
      Total (N-m):  20.95 

   
Peak mean  

joint moment:  37.03 
 
 The above table shows that uncertainty in foot mass contributes the most to hip flexion 
moment uncertainty, followed by shank mass and thigh inertia. Collectively, these three 
parameters account for more than half of the joint moment uncertainty, or 12.9 N-m. This seems 
significant considering that maximum hip flexion in that gait cycle range is approximately 35 N-
m. At 80 to 90% of the gait cycle, thigh mass contributes most to moment variation, followed 
closely by foot mass and shank mass. Collectively, these account for 18.3 N-m of joint moment 
uncertainty, while peak joint torque in this range is only 11.6 N-m.  
 

8.3 Conclusions and recommendations 

 Results and findings are now compared against our hypotheses. For convenience, we 
reiterate our hypotheses from the Part II introduction. First, we hypothesized that joint moment 
estimates would be significantly different during periods of high force impact, i.e., during heel 
strike, but not so different at other periods of the gait cycle. Second, we hypothesized that joint 
moment variations would be different for different joints. Third, we hypothesized that joint 
variations would be significant at some phases of the gait cycle and less so at others 

Our hypothesis that joint moments would vary the most during periods of high force 
impact was not correct. Although variations were high during heel strike, they were also high 
during the majority of the swing phase. Our hypothesis that moment variations would be 
different for different joints was supported, and greater confidence in joint moment results occurs 
in the lower leg joints such as the ankle.  

Our hypothesis that joint uncertainties would be significant at some phases of the gait 
cycle and less so at others was correct. As a percentage of the maximum joint moments, 
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variations can be considered small, but as a percentage of the joint moment magnitudes at 
specific phases of the gait cycle, variations due to BSIP estimations can be significant. 

The results presented in this chapter show that depending on what phase of the gait cycle 
and what joints one is interested in analyzing, one should expend extra effort to gather better 
estimates of different BSIPs. The most important BSIP to measure accurately is foot mass, which 
significantly affects errors in all lower body joint torques. More accurate measurements of BSIPs 
might be accomplished using advanced imaging techniques on specific parts of the body, or by 
taking more manual measurements of segments and using regression equations that take these 
additional measurements into account. Table 20 summarizes our recommendations regarding 
BSIP estimations in gait analysis. 
 

Table 20: Recommendations for BSIP estimations 

Joint moment of 
interest 

Phase of gait cycle Recommendations 

Hip adduction  Entire gait cycle Low variations—can have good confidence 
in joint moment results 

Ankle flexion  Entire gait cycle Low variations—can have good confidence 
in joint moment results 

Single support  
(0-40%) 

Low variations—can have good confidence 
in joint moment results 

Double support  
(45-55%) 

Moderate variations—can address by 
estimating foot mass more accurately. 

Start of swing phase 
(55-65%) 

Moderate variations, but no clear BSIP to be 
estimated more accurately 

Middle to end of 
swing phase  
(65-75%) 

Low variations—can have good confidence 
in joint moment results 

Knee flexion  

Heel strike  
(80-90%) 

High variations—can address by estimating 
foot mass, shank inertia, and shank 
center-of-mass location more accurately 

Single support  
(0-40%) 

Low variations— can have good confidence 
in joint moment results 

Double support  
(45-55%) 

High variations— can address by estimating 
foot mass, shank mass, and thigh inertia  
more accurately. 

Swing phase  
(55-70%) 

Moderate variations—can address by 
estimating foot mass more accurately. 

Hip flexion 

Heel strike  
(80-90%) 

High variations-- can address by estimating 
thigh mass, foot mass, and shank center-
of-mass location more accurately 
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8.4 Future work 

This study analyzed one subject at one walking speed. Future work would involve 
analyzing more subjects and different walking speeds to determine how well these conclusions 
hold. Future work could also be performed to determine how well the equations presented in this 
study can predict results from faster movements, such as running, which would have greater joint 
moment variations.  

Other work could also focus on comparing model types, such as models that include 
arms, which might help examine effects on residual forces/moments. 
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Appendix A: Subject OpenSim Model Anthropometry 
 

OpenSim model scaled to experimental subject 
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Appendix B: Body Segment Inertial Parameter Calcula tions 
 
Model 2: Dempster (1955) 
 Dempster performed a cadaver study of eight male subjects, dividing the body as shown 
below in Figure 42. His study provides percentage relations to calculate segment masses and 
center-of-mass locations. 
 

 
Figure 42: Plan of dismemberment for cadavers (Dempster, 1955) 

 
Segment mass calculations 
 Dempster provides percentage mass of total body weight for each body segment. Using 
these equations, HAT segment mass was calculated by adding the masses of the head, torso, and 
total arms. Total arm is defined in Dempster as comprising the upper arm, forearm, and hand. 
Torso segment is defined in Dempster as including the pelvis. The results are shown below. 
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Table 21: Segment masses calculated using Dempster 

Segment 
Mass as % of total body 

weight Mass (kg) 
Head 7.9 5.74 

Torso 48.6 35.3 

Total arm 4.9 3.56 
Upper Arm 2.7 1.96 

Forearm & hand 2.2 1.60 

forearm 1.6 1.16 
hand 0.6 0.436 
Thigh 9.7 7.04 
Shank (calf) 4.5 3.27 
Foot 1.4 1.02 
   
HAT  48.1 

 
Segment center-of-mass location calculations 
 Dempster locates the center-of-masses as described in Table XX. These percentage 
values were then transferred to be a percentage of the OpenSim scaled model length. Using the 
OpenSim model lengths shown in Appendix A, an example calculation for the head and trunk 
segment is shown below. 
 
For the OpenSim model, the distance from the hip to the vertex of the head is 

0.777 + 0.0835 + 0.0724 = 0.933 m. 
 
Dempster states that the center of mass is 39.6% of this distance, which is 0.369m. Relative to 
the torso segment, which has its origin located at the same place as the pelvis, this is  
 

0.369 – 0.0724 = 0.297 m. 
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Table 22: Center-of-mass locations according to Dempster translated to OpenSim model locations 

 Dempster’s relations 
Transferring Dempster’s relations to 
OpenSim model coordinates 

 
COM 
location     

 % of total segment length 
COM 
location (m) 

COM (m) as defined in 
OpenSim 

Head and 
trunk minus 
limbs 39.6 

from hip to vertex of 
head 0.369 0.297 

in torso segment  
(y dir) 

Head and 
neck      
Thorax      

Abdomen plus 
pelvis 40.0 from hip    
Entire upper 
extremity 
(arm, forearm, 
hand) 51.2 from shoulder    

Thigh 43.4 from hip to knee 0.204 -0.204 
in femur segment 
(y-dir) 

Leg 43.3 from knee to ankle 0.184 -0.184 
in tibia segment  
(y-dir) 

Foot 43.8 from heel to toe 0.104 0.104 
in calcn segment 
(x-dir) 

 
  
Model 3: Clauser (1969) 
 Clauser divides the body similarly to Dempster and provides percentage relations to 
calculate segment masses and center-of-mass locations. 
 
Segment mass calculations 
Clauser, as in Dempster, provides percentage mass of total body weight for each body segment. 
As before, we calculate HAT segment mass was calculated by adding the masses of the head, 
torso, and total arms. 
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Table 23: Segment masses calculated using Clauser 

Segment 
Mass as % of total body 
weight Mass (kg) 

Head 7.3 5.30 
Torso 50.7 36.8 
Total arm 4.9 3.56 
Upper Arm 2.6 1.89 
Forearm & hand 2.3 1.67 
forearm 1.6 1.16 
hand 0.7 0.508 
Thigh 10.3 7.48 
Shank (calf) 4.3 3.12 
Foot 1.5 1.09 
   
HAT:  49.2 

 
Segment center-of-mass location calculations 
Clauser locates the center-of-masses as described in Table 24. As with Dempster, these 
percentage values were then transferred to be a percentage of the OpenSim scaled model length.  
 

Table 24: Segment com locations calculated using Clauser 

 Clauser’s relations 
 COM location 

Transferring Clauser’s relations to OpenSim model 
coordinates 

 % of total segment length COM location (m) 
COM location (m) as defined in 
OpenSim model 

Head + torso 40.79 
from hip to head 
vertex 0.3805 0.3081 

in torso segment 
(y dir) 

Thigh 37.19 
from trochanterion 
(near pelvis) 0.1745 -0.1745 

in femur segment 
(y-dir) 

Leg  37.05 
from tibiale 
(knee?) 0.1575 -0.1575 

in tibia segment 
(y-dir) 

Foot 44.85 from heel 0.1067 0.1067 
in calcn segment 
(x-dir) 

 
Model 4: Chandler (1975) 
 Chandler performed cadaver studies and divided the body similarly to Dempster and 
Clauser. However, Chandler provides regression equations that can be used to calculate segment 
masses and moments of inertia.  
 
Segment mass calculations 
 Chandler’s regression equations and the resulting calculations for the experimental 
subject’s segment masses are shown in Table 25. Note that Chandler provides different estimates 
for the same segments located on the right and left halves of the body. For our purposes, we take 
the average of these values and use them for both sides of the body, meaning, for example, that 
the right thigh is given the same mass as the left thigh. 
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Table 25: Segment masses calculated using Chandler’s regression equations 

 Calculation (kg) regression eqn (gm) 
Head 4.229 0.032*body weight + 1,906 

Torso 37.92 0.532*body weight - 706 
Right upper arm 1.971 0.016*body weight + 809 
Left upper arm 2.082 0.022*body weight + 485 
Average upper arm 
mass 2.026  
Right forearm 1.234 0.020*body weight - 218 
Left forearm 1.190 0.013*body weight + 246 
Average forearm mass 1.212  
Right hand 0.4782 0.007*body weight - 30 
Left hand 0.4390 0.005*body weight + 76 
Right thigh 10.84 0.126*body weight - 1,688 
Left thigh 10.73 0.127*body weight - 1,511 
Average thigh mass 10.78  
Right shank 2.938 0.038*body weight + 179 
Left shank 3.016 0.044*body weight - 178 
Average shank mass 2.977  
Right foot 0.9238 0.008*body weight + 343 
Left foot 0.9054 0.009*body weight + 252 
Average foot mass 0.9146  
   
HAT 49.54 includes pelvis 

 
 
Segment center-of-mass location calculations 

Chandler provides center-of-mass locations for the six cadavers studied. The average of 
the locations as a percentage of segment length was calculated, and these values were scaled to 
the OpenSim model lengths, as shown in Table 24. As with the segment mass values, in our 
study we use the same BSIP values for the left and right halves of the body, which are the 
average values. 
 HAT center-of-mass location was found by calculating centroids: 
 

n

nn
j mmm

mcmcmc
C

+++
+++

=
...
...

21

2211  Equation 27 

 
where jC  is the center-of-mass location of segment j, which includes segments 1 through n, ic  

is the center-of-mass location of segment i, and im  is the mass of segment i. In this study, 
different segment mass model sets are used, which necessitates recalculating the HAT center-of-
mass location for each combination. These calculations are also summarized in the table. 
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Table 26: Segment center-of-mass locations using Chandler’s relations 

 Segment 
COM 
distance (% 
of length)  COM (m) as defined in osim 

Head 
88.4 

from hip to head 
vertex 0.7603 in torso segment (y dir) 

Torso 
30.4 

from hip to head 
vertex 0.2619 in torso segment (y dir) 

Right 
thigh 38.8 

from hip to knee 
(right) -0.1822 in femur segment (y dir) 

Left thigh 39.8 from hip to knee (left) -0.1869 in femur segment (y dir) 
     

Right 
shank 42.0 

from knee to ankle 
(right) -0.1785 in tibia segment (y dir) 

Left shank 
41.3 

from knee to ankle 
(left) -0.1757 in tibia segment (y dir) 

     
Right foot 43.7 from heel (right) 0.1039 in calcn segment (x dir) 

Left foot 44.0 from heel (left) 0.1047 in calcn segment (x dir) 
     
HAT   0.3119 in torso segment (y dir) 
 

 
Chandler using 
Dempster's mass: 0.3317 in torso segment (y dir) 

 
 

Chandler using 
Clauser's mass: 0.3246 in torso segment (y dir) 

 
 

Chandler using de 
Leva mass: 0.3305 in torso segment (y dir) 

 
 

Chandler using 
Dumas mass: 0.3235 in torso segment (y dir) 

 
 

Chandler using Gebod 
mass: 0.3280 in torso segment (y dir) 

 
Segment inertia calculations 
 Chandler provides regression equations to calculate principal moments of inertia along 
segment longitudinal and orthogonal to the longitudinal directions. These principal moment 
directions are coincident with the principal moment directions in the OpenSim model, but 
labeled differently. The resulting OpenSim inertia values are summarized in Table 27. For our 
study, we use the torso inertia as the HAT inertia.  
 

Table 27: Segment moments of inertia calculated using Chandler’s regression equations 

(g-cm^2)  
Regression equation 
(g-cm^2) 

Value  
(kg-m^2) 

Coordinate 
in 
OpenSim 

Head Ixx = 2.129*BW + 32,030 0.01866 Ixx 

  Iyy = 1.676*BW + 54,818 0.01765 Izz 
  Izz = 3.186*BW - 6,846 0.02245 Iyy 
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Torso Ixx = 296.9*BW - 3,156,034 1.840 Ixx 
 Iyy = 284.493*BW - 7,664,880 1.299 Izz 
 Izz = 102.507*BW - 2,895,524 0.4546 Iyy 
Upper right arm Ixx = 0.535*BW + 98,150 0.01370   
  Iyy = 0.661*BW + 89,662 0.01377   
  Izz = 0.400*BW - 4,018 0.002502   
Upper left arm Ixx = 2.096*BW + 15,569 0.01677  
 Iyy = 1.352*BW + 49,572 0.01477  
 Izz = 0.567*BW - 14,171 0.002699  
Right forearm Ixx = 1.508*BW - 31,431 0.007805   
  Iyy = 1.397*BW - 26,562 0.007486   
  Izz = 0.313*BW - 11,645 0.001108   
Left forearm Ixx = 0.659*BW + 21,806 0.006965  

 Iyy = 0.727*BW + 15,672 0.006845  

 Izz = 0.230*BW - 6,396 0.001030  

Right hand Ixx = 0.129*BW - 850 0.0008515   

  Iyy = 0.134*BW - 2,599 0.0007129   

  Izz = 0.085*BW - 3,401 0.0002770   
Left hand Ixx = 0.083*BW + 1,437 0.0007463  
 Iyy = 0.100*BW - 920 0.0006340  
 Izz = 0.028*BW -6 0.0002027  
Right thigh Ixx = 24.102*BW - 433,522 0.1316 Ixx 
  Iyy = 21.186*BW - 222,796 0.1315 Izz 
  Izz = 9.262*BW -378,738 0.02937 Iyy 
Left thigh Ixx = 20.310*BW - 172,235 0.1302 Ixx 
 Iyy = 23.633*BW - 319,070 0.1397 Izz 
 Izz = 5.404*BW - 139,702 0.02526 Iyy 
Right shank Ixx = 5.424*BW + 37,127 0.04309 Ixx 
  Iyy = 5.341*BW + 44,749 0.04325 Izz 
  Izz = 0.94*BW - 32,220 0.003602 Iyy 
Left shank Ixx = 6.434*BW - 24,410 0.04427 Ixx 
 Iyy = 5.350*BW + 40,974 0.04294 Izz 
 Izz = 0.969*BW - 34,567 0.003578 Iyy 
Right foot Ixx = 0.433*BW + 5,371 0.003681 Iyy 
  Iyy = 0.355*BW + 7,296 0.003307 Izz 
  Izz = 0.153*BW - 2,988 0.0008120 Ixx 
Left foot Ixx = 0.371*BW + 8.974 0.002694 Iyy 
 Iyy = 0.391*BW + 4,959 0.003335 Izz 
 Izz = 0.130*BW - 946 0.0008492 Ixx 
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Model 5: de Leva (1996, based on Zatsiorsky-Seluyanov, 1983) 
 

 
Figure 43: Division of body segments in de Leva 
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Segment mass calculations 
de Leva provides percentage mass of total body weight for each body segment as shown in Table 
XX. In this study, HAT mass is calculated as the sum of the upper torso, middle torso, head, and 
arms. The lower torso segment is taken to be the pelvis segment. 
 

Table 28: Segment masses calculated using de Leva’s relations 

 
Segment mass  
(% of total body mass) Mass (kg) 

Head 6.94 5.038 

Trunk 43.46 31.55 

UPT  
(Upper torso) 15.96 11.59 

MPT 
(Middle torso) 16.33 11.86 

LPT  
(Lower torso, or 
pelvis) 11.17 8.109 
Upper arm 2.71 1.967 
forearm 1.62 1.176 
Hand 0.61 0.4429 
Thigh 14.16 10.28 
Shank 4.33 3.144 
Foot 1.37 0.9946 
   
HAT  35.65 

 
Segment center-of-mass location calculations 
 Center-of-mass locations as a percentage of specific segment lengths are calculated using 
the average segment length values presented in de Leva. These values were then converted to 
OpenSim model lengths. 
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Table 29: Segment center-of-mass locations calculated using de Leva’s relations 

COM location (males) 
% of segment 
length  COM (m) as defined in osim 

Head 83.47 

from hip, with segment 
length being hips to vertex 
of head 0.7063 

in torso 
segment (y dir) 

Trunk 39.89 

from hip, with segment 
length being hips to vertex 
of head 0.2998 

in torso 
segment (y dir) 

UPT 65.39 

from hip, of hip to top of 
head distance (i.e., pelvis 
+ torso) 0.5376 

in torso 
segment (y dir) 

MPT 35.93 

from hip, of hip to top of 
head distance (i.e., pelvis 
+ torso) 0.2628 

in torso 
segment (y dir) 

LPT (pelvis) 7.699 

from hip, of hip to top of 
head distance (i.e., pelvis 
+ torso) -0.0005760 

in pelvis 
segment (y dir) 

Thigh 40.95 from hip joint -0.1921 
in femur 
segment (y dir) 

Shank 44.59 from knee -0.1895 
in tibia segment 
(y dir) 

Foot 44.15 from heel 0.1051 
in calcn 
segment (x dir) 

HAT (UPT, MPT, head, arms)  0.4531 
in torso 
segment (y dir) 

  
de Leva HAT using 
Dumas mass 0.7888 

in torso 
segment (y dir) 

  
de Leva HAT using 
Gebod mass 0.3538 

in torso 
segment (y dir) 

 
Segment inertia calculations 
 de Leva provides radii of gyration for each segment, where radii of gyration values are 
presented as a percentage of the associated segment’s length. The formula to calculate inertia 
from radius of gyration is, 
 

2)(rLm=I  Equation 28 

 
where I is the moment of inertia, m is the segment mass, r is the radius of gyration as a 
percentage of segment length, and L is the segment length Table 30 shows the conversion of de 
Leva’s radius of gyration proportions to OpenSim model proportions, and Table 31 shows the 
final calculated inertia values. 
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Table 30: Conversion of de Leva’s radii of gyration relations to OpenSim model proportions 

 de Leva’s values and relations in Opensim proportions 
  radius of gyration radius of gyration 

Segment 
Longitudinal 
length (mm) 

Sagittal r 
(%) 

Transverse 
r (%) 

Longitudinal 
r (%) 

Sagittal 
r (%)  

Transverse r 
(%)  

Longitudinal 
r (%)  

           

Head 203.3 36.2 37.6 31.2 10.01 

of hip to 
head vertex 
distance 10.40 

of hip to head 
vertex 
distance 8.63 

from hip to 
head vertex 
distance 

Trunk 531.9 37.2 34.7 19.1 26.91 

of hip to 
head vertex 
distance 25.10 

of hip to head 
vertex 
distance 13.82 

from hip to 
head vertex 
distance 

UP Torso 170.7 71.6 45.4 65.9 16.62 

of hip to 
head vertex 
distance 10.54 

of hip to head 
vertex 
distance 15.30 

from hip to 
head vertex 
distance 

MP 
Torso 215.5 48.2 38.3 46.8 14.13 

of hip to 
head vertex 
distance 11.23 

of hip to head 
vertex 
distance 13.72 

from hip to 
head vertex 
distance 

LP Torso 145.7 61.5 55.1 58.7 12.19 

of hip to 
head vertex 
distance 10.92 

of hip to head 
vertex 
distance 11.63 

from hip to 
head vertex 
distance 

Upper 
arm 281.7 28.5 26.9 15.8       
forearm 268.9 27.6 26.5 12.1       
hand 86.2 62.8 51.3 40.1       

thigh 422.2 32.9 32.9 14.9 32.9 
from hip to 
knee 32.9 

from hip to 
knee 14.9 

from hip to 
knee 

shank 434 25.5 24.9 10.3 25.5 
from knee to 
ankle 24.9 

from knee to 
ankle 10.3 

from knee 
to ankle 

foot 258.1 25.7 24.5 12.4 25.7 
from heel to 
toe 24.5 

from heel to 
toe 12.4 

from heel to 
toe 
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Table 31: Segment inertia values based on de Leva 

 Moment of inertia (kg-m^2) 
Segment Sagittal I  Transverse I Longitudinal I 

  
OpenSim 
coord  

OpenSim 
coord  

OpenSim 
coord 

Head 0.04394  0.04740  0.03264  

Trunk 1.989 Ixx 1.731 Izz 0.5243 Iyy 

UP Torso 0.2787  0.1120  0.2361  

MP 
Torso 0.2060  0.1300  0.1942  

LP Torso 0.1048 Ixx 0.08415 Izz 0.09551 Iyy 
Upper 
arm       
forearm       
hand       
thigh 0.2449 Ixx 0.2449 Izz 0.05022 Iyy 

shank 0.03692 Ixx 0.03521 Izz 0.006024 Iyy 
foot 0.003721 Iyy 0.003382 Izz 0.0008660 Ixx 

 
 
Model 5: Dumas (2007, based on data from McConville, 1980) 
 
Segment mass calculations 
Dumas provides percentage mass of total body weight for each body segment as shown in Table 
32. In this study, HAT mass is calculated as the sum of the head and neck, torso, and arms.  
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Table 32: Segment masses calculated using Dumas’s relations 

Segment 
Mass as % of total 
body mass (males) Mass (kg) 

Head & Neck 6.7 4.86 
Torso 33.3 24.2 

Pelvis 14.2 10.3 
Arm 2.4 1.74 
Forearm 1.7 1.23 
Hand 0.6 0.436 
Thigh 12.3 8.93 
Shank 4.8 3.48 
Foot 1.2 0.871 
   
HAT  35.9 

 
Segment center-of-mass location calculations 

Center-of-mass locations as a percentage of specific segment lengths are calculated using 
the average segment length values presented in Dumas. These values were then converted to 
OpenSim model lengths 
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Table 33: Segment com locations calculated using Dumas 

Segment  COM dist (% of segment length) COM (m) as defined i n osim  

Head & neck X -1.73 
from hips to head 
vertex -0.0161 in torso segment (x-dir) 

 Y 87.6 
from hips to head 
vertex 0.745 in torso segment (y-dir) 

 Z 0.0279 
from hips to head 
vertex 0.000260 in torso segment (z-dir) 

Torso X 2.17 
from hips to head 
vertex 0.0202 in torso segment (x-dir) 

 Y 46.8 
from hips to head 
vertex 0.364 in torso segment (y-dir) 

 Z 0.120 
from hips to head 
vertex 0.00112 in torso segment (z-dir) 

pelvis X 0.00332 
from hips to head 
vertex 3.10E-05 

in pelvis segment (x-
dir) 

 Y 3.32 
from hips to head 
vertex -0.0414 

in pelvis segment (y-
dir) 

 Z -0.000712 
from hips to head 
vertex -6.64E-06 

in pelvis segment (z-
dir) 

Thigh X -4.10 from hip -0.0192 
in femur segment (x-
dir) 

 Y -42.9 from hip -0.201 
in femur segment (y-
dir) 

 Z 3.30 from hip 0.0155 
in femur segment (z-
dir) 

Shank X -4.80 from knee -0.0204 in tibia segment (x-dir) 
 Y -41.0 from knee -0.174 in tibia segment (y-dir) 
 Z 0.700 from knee 0.00298 in tibia segment (z-dir) 
Foot X 38.2 ankle joint to toes 0.0909 in calcn segment (x-dir) 
 Y -15.1 ankle joint to toes -0.0359 in calcn segment (y-dir) 
 Z 2.60 ankle joint to toes 0.00619 in calcn segment (z-dir) 
HAT X  0.0141 in torso segment (x-dir) 
 Y  0.428 in torso segment (y-dir) 
 Z  0.000979 in torso segment (z-dir) 
Dumas HAT 
using de Leva 
mass: X  0.0152 in torso segment (x-dir) 
 Y  0.417 in torso segment (y-dir) 
 Z  0.00100 in torso segment (z-dir) 
Dumas HAT 
using Gebod 
mass: X  0.0154 in torso segment (x-dir) 
 Y  0.415 in torso segment (y-dir) 
 Z  0.00101 in torso segment (z-dir) 
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Segment inertia calculations 
 
Dumas provides radii of gyration for each segment, where radii of gyration values are presented 
as a percentage of the associated segment’s length. The conversion of these values to inertia 
values in the OpenSim model was performed the same way as with de Leva.  
 
Table 34 shows Dumas’s radius of gyration proportions, while Table 35 shows the final 
OpenSim model inertia values calculated from Dumas’s relations.
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Table 34: Segment radii of gyration calculated using Dumas 

 Dumas’s relations and values 

Segment 
Length 
(mm) 

distance 
(mm) from  

radii of 
gyration (% 
of segment 
length) 

Head & neck 244 -15.13 
neck to top of 
head rxx 31 

    135.4 
neck to top of 
head ryy 25 

    0.2440 
neck to top of 
head rzz 33 

HAT (torso, head & neck 
arms) 477 17.17 neck to lumbar rxx 27 

use torso values to 
calculate inertia  200.3 neck to lumbar ryy 25 

  0.9540 neck to lumbar rzz 28 

pelvis 94 2.632 
from lumbar to 
hip joint (y dir) rxx 101 

    26.32 
from lumbar to 
hip joint (y dir) ryy 106 

    -0.5640 
from lumbar to 
hip joint (y dir) rzz 95 

Thigh    rxx 29 
    ryy 15 
    rzz 30 
Shank       rxx 28 
        ryy 10 
        rzz 28 
Foot    rxx 17 
    ryy 37 
    rzz 36 
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Table 35: Segment inertias calculated using Dumas 

 Conversion to OpenSim values 

Segment 

radii of gyration 
(% of Osim 
segment length)  

radii of 
gyration 
(m) 

Moment of 
inertia (kg-
m^2)  

Head & neck 9.281 
of hip to head vertex 
length 0.08658 0.03646 Ixx 

  7.485 
of hip to head vertex 
length 0.06982 0.02372 Iyy 

  9.880 
of hip to head vertex 
length 0.09217 0.04132 Izz 

HAT (torso, head & 
neck arms) 15.80 

of hip to head vertex 
length 0.1474 0.7794 Ixx 

use torso values to 
calculate inertia 14.63 

of hip to head vertex 
length 0.1365 0.6682 Iyy 

 16.39 
of hip to head vertex 
length 0.1529 0.8382 Izz 

pelvis 11.65 
of hip to head vertex 
length 0.1087 0.1218 Ixx 

  12.23 
of hip to head vertex 
length 0.1141 0.1341 Iyy 

  10.96 
of hip to head vertex 
length 0.1022 0.1077 Izz 

Thigh 29 of hip to knee length 0.1360 0.1653 Ixx 
 15 of hip to knee length 0.07037 0.04421 Iyy 
 30 of hip to knee length 0.1407 0.1769 Izz 
Shank 28 of knee to ankle length 0.1190 0.04935 Ixx 
  10 of knee to ankle length 0.04250 0.006294 Iyy 
  28 of knee to ankle length 0.119 0.04935 Izz 
Foot 17 of heel to toe length 0.04046 0.001426 Ixx 
 37 of heel to toe length 0.08806 0.006756 Iyy 
 36 of heel to toe length 0.08568 0.006395 Izz 

 



 

 134 



 

 135 

Appendix C: Relevant OpenSim Files 
 
Subject01_Setup_Scale.xml 

��������	
��
��������
����
������������ ��
- � � ����������
��� �� ��������	 �� �

�� ���� � 
Mass of the subject in kg.  Subject-specific model generated by 
     scaling step will have this total mass.  
 � ��� ��

 � � ��

 � 
��
 �� ��

 � ��
�� ���� � 
Height of the subject in mm.  For informational pur poses only (not 
     used by scaling).  
 � ��� ��

 � �  ��� ! � 	����� ��  ��� ! � ��
�� ���� � 
Age of the subject in years.  For informational pur poses only (not 
     used by scaling).  
 � ��� ��

 � � ��� � �� �� ��� � ��
�� ���� � 
Notes for the subject.  
 � ��� ��

 � � 
�!�
 � �������������������������������������������� �� 
�!�
 � ��
�� ���� � 
Specifies the name of the unscaled model (.osim) an d the marker set.  
 � ��� ��

- � � "�
�	��#����#�$�	�
��� ���� �
�� ���� � 
Model file (.osim) for the unscaled model.  
 � ��� ��

 � � �����%&��� � ������ �!�����"#����� �� �����%&��� � ��
�� ���� � 
Set of model markers used to scale the model. Scali ng is done based on 
      distances between model markers compared to t he same 

distances between 
      the corresponding experimental markers.  
 � ��� ��

 � � ��	$�	%
�!%&��� � ������ �!$����!%��&��$������ �� ��	$�	%
�!%&��� � ��
 � �� "�
�	��#����#�$�	 � �
�� ���� � 
Specifies parameters for scaling the model.  
 � ��� ��

- � � #���������	�
��� ���� �
�� ���� � 
Specifies the scaling method and order. Valid optio ns are 
      'measurements', 'manualScale', singly or both  in any 

sequence.  
 � ��� ��

 � � 
����
�%�	��	 � �������������������$���� �� 
����
�%�	��	 � ��
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�� ���� � 
Scale factors to be used for manual scaling.  
 � ��� ��

 � � �������! �&����� ��������	!$����!$����$������ ���� ��
�� ���� � 
Specifies the measurements by which body segments a re to be scaled.  
 � ��� ��

 � � #��
'	���
!��! �&����� ������ �!$����!%����������$������ ���� ��
�� ���� � 
TRC file (.trc) containing the marker positions use d for 
      measurement-based scaling. This is usually a static trial, 

but doesn't 
      need to be.  The marker-pair distances are co mputed for each 

time step 
      in the TRC file and averaged across the time range.  
 � ��� ��

 � � ��	$�	%&��� � ��������	!���������� �� ��	$�	%&��� � ��
�� ���� � 
Time range over which to average marker-pair distan ces in the marker 
      file (.trc) for measurement-based scaling.  
 � ��� ��

 � � !���%	�
�� � 	�� �� !���%	�
�� � ��
�� ���� � 
Flag (true or false) indicating whether or not to p reserve relative 
      mass between segments.  
 � ��� ��

 � � (	�
�	��%��

%��
!	�)'!��
 � ���� �� (	�
�	��%��

%��
!	�)'!��
 � ��
�� ���� � 
Name of SIMM joint file to write when done scaling.  If not specified, 
      a file will not be written. 
  <output_joint_file> subject01_scaledOnly.jnt 

</output_joint_file>  
 � ��� ��
�� ���� � 
Name of SIMM muscle file to write when done scaling . If not specified, 
      a file will not be written. 
  <output_muscle_file> subject01_scaledOnly.msl 

</output_muscle_file>  
 � ��� ��
�� ���� � 
Name of OpenSim model file (.osim) to write when do ne scaling.  
 � ��� ��

 � � �'!('!%�����%&��� � ��������	!�����"'��#����� �� �'!('!%�����%&��� � ��
�� ���� � 
Name of file to write containing the scale factors that were applied 
      to the unscaled model (optional).  
 � ��� ��

 � � �'!('!%
����%&��� � ��������	!�����$��!������"���� �� �'!('!%
����%&��� � ��
 � �� #���������	 � �
�� ���� � 
Specifies parameters for placing markers on the mod el once a model is 
     scaled.  
 � ��� ��
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- � � #�	$�	*����	�
��� ���� �
�� ���� � 
TRC file (.trc) containing the time history of expe rimental marker 
      positions (usually a static trial).  
 � ��� ��

 � � ��	$�	%&��� � ��������	!���������� �� ��	$�	%&��� � ��
�� ���� � 
Task set used to specify weights used in the IK com putation of the 
      static pose.  
 � ��� ��

 � � +,��
$��! �&����� ������ �!$����!���&����� ���� ��
�� ���� � 
Name of file containing the joint angles used to se t the initial 
      configuration of the model for the purpose of  placing the 

markers. 
      These coordinate values can also be included in the 

optimization 
      problem used to place the markers. Before the  model markers 

are 
      placed, a single frame of an inverse kinemati cs (IK) problem 

is 
      solved. The IK problem can be solved simply b y matching 

marker 
      positions, but if the model markers are not i n the correct 

locations, 
      the IK solution will not be very good and nei ther will 

marker 
      placement. Alternatively, coordinate values ( specified in 

this file) 
      can be specified and used to influence the IK  solution. This 

is 
      valuable particularly if you have high confid ence in the 

coordinate 
      values. For example, you know for the static trial the 

subject was 
      standing will all joint angles close to zero.  If the 

coordinate set 
      (see the CoordinateSet property) contains non -zero weights 

for 
      coordinates, the IK solution will try to matc h not only the 

marker 
      positions, but also the coordinates in this f ile. Least-

squared error 
      is used to solve the IK problem.  
 � ��� ��

 � � ���	��
�!�%&��� � �� ��
�� ���� � 
Time range over which the marker positions are aver aged.  
 � ��� ��

 � � !���%	�
�� � 	�� �� !���%	�
�� � ��
�� ���� � 
Name of the new SIMM Joint file (.jnt) after scalin g and marker 
      placement (optional). 
  <output_joint_file> subject01.jnt </output_joint_ file>  
 � ��� ��
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�� ���� � 
Name of the SIMM muscle file (.msl) after scaling a nd marker placement 
      (optional). 
  <output_muscle_file> subject01.msl </output_muscl e_file>  
 � ��� ��
�� ���� � 
Output OpenSim model file (.osim) after scaling and  maker placement.  
 � ��� ��

 � � �'!('!%�����%&��� � ��������	!�����"#����� �� �'!('!%�����%&��� � ��
�� ���� � 
Name of the motion file (.mot) written after marker  relocation 
      (optional).  
 � ��� ��

 � � �'!('!%��!��
%&��� � ��������	!������!���������� �� �'!('!%��!��
%&��� � ��
 � �� #�	$�	*����	 � �
 � �� ��������� � �
�
�
subject01_Setup_IK.xml�
��������	
��
��������
����
������������ ��

- � � +,�����
��� �� ��������	 �� �
�� ���� � 
Name of the .osim file used to construct a model.  
 � ��� ��

 � � �����%&��� � ��������	!�����"#����� �� �����%&��� � ��
�� ���� � 
Specify which optimizer to use (ipopt or cfsqp).  
 � ��� ��

 � � �(!���-�	%����	�! � � ����� �� �(!���-�	%����	�! � � ��
�� ���� � 
Task set used to specify IK weights.  
 � ��� ��

 � � +,��
$��! �&����� ������ �!()!���&����� ���� ��
�� ���� � 
Parameters for solving the IK problem for each tria l. Each trial 
     should get a seperate SimmIKTril block.  
 � ��� ��

- � � +,�	�����!�
��� ���� �
- � � �).��!
 � �
- � � +,�	����
��� �� ����������� �� �

�� ���� � 
TRC file (.trc) containing the time history of expe rimental marker 
        positions.  
 � ��� ��

 � � ��	$�	%&��� � ��������	!*��&	���� �� ��	$�	%&��� � ��
�� ���� � 
Name of file containing the joint angles used to se t the initial 
        configuration of the model for the purpose of 

placing the markers. 
        These coordinate values can also be include d 

in the optimization 
        problem used to place the markers. Before t he 

model markers are 
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        placed, a single frame of an inverse 
kinematics (IK) problem is 

        solved. The IK problem can be solved simply  
by matching marker 

        positions, but if the model markers are not  
in the correct locations, 

        the IK solution will not be very good and 
neither will marker 

        placement. Alternatively, coordinate values  
(specified in this file) 

        can be specified and used to influence the IK 
solution. This is 

        valuable particularly if you have high 
confidence in the coordinate 

        values. For example, you know for the stati c 
trial the subject was 

        standing will all joint angles close to zer o. 
If the coordinate set 

        (see the CoordinateSet property) contains 
non-zero weights for 

        coordinates, the IK solution will try to 
match not only the marker 

        positions, but also the coordinates in this  
file. Least-squared error 

        is used to solve the IK problem.  
 � ��� ��

 � � ���	��
�!�%&��� � ��������	!*��&	���� �� ���	��
�!�%&��� � ��
�� ���� � 
Time range over which the IK problem is solved.  
 � ��� ��

 � � !���%	�
�� � ����	�
� �� !���%	�
�� � ��
�� ���� � 
Name of the motion file (.mot) to which the results  should be written.  
 � ��� ��

 � � �'!('!%��!��
%&��� � ��������	!*��&	!�&���� �� �'!('!%��!��
%&��� � ��
 � �� +,�	��� � �
 � �� �).��!
 � �
 � �� +,�	�����! � �
 � �� +,���� � �
�
�
��������	!$����!++,���� �
��������	
��
��������
����
������������ ��

- � � /#/�����
��� �� ��������	!*��&	!++, �� �
 � � ��&�'�!
 � �� ��

�� ���� � 
Name of the .osim file used to construct a model.  
 � ��� ��

 � � �����%&��� � ��������	!�����"#����� �� �����%&��� � ��
�� ���� � 
Replace the model's actuator set with sets specifie d in 
     <actuator_set_files>? If false, the actuator s et is appended to.  
 � ��� ��

 � � 	�(����%��!'�!�	%
�! � ���� �� 	�(����%��!'�!�	%
�! � ��
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�� ���� � 
List of xml files used to construct an actuator set  for the model.  
 � ��� ��

 � � ��!'�!�	%
�!%&���
 � ������ �!++,!,������������ �� ��!'�!�	%
�!%&���
 � ��
�� ���� � 
Directory used for writing results.  
 � ��� ��

 � � 	�
'�!
%��	��!�	0 � +������++,- �� 	�
'�!
%��	��!�	0 � ��
�� ���� � 
Output precision.  It is 8 by default.  
 � ��� ��

 � � �'!('!%(	���
��
 � �� �� �'!('!%(	���
��
 � ��
�� ���� � 
Initial time for the simulation.  
 � ��� ��

 � � �
�!���%!��� � ��
 �� �
�!���%!��� � ��
�� ���� � 
Final time for the simulation.  
 � ��� ��

 � � &�
��%!��� � 	�� �� &�
��%!��� � ��
�� ���� � 
Maximum number of integrator steps.  
 � ��� ��

 �
� �����'�%
'�)�	%�&%�
!��	�!�	%
!�(
 � ����� �� �����'�%
'�)�	%�&%�
!��	�!�
	%
!�(
 � ��

�� ���� � 
Maximum integration step size.  
 � ��� ��

 � � �����'�%�
!��	�!�	%
!�(%
�-� � ����	 �� �����'�%�
!��	�!�	%
!�(%
�-� � ��
�� ���� � 
Integrator error tolerance. When the error is great er, the integrator 
     step size is decreased.  
 � ��� ��

 � � �
!��	�!�	%�		�	%!���	�
�� � �����	 �� �
!��	�!�	%�		�	%!���	�
�� � ��
�� ���� � 
Integrator fine tolerance. When the error is less, the integrator step 
     size is increased.  
 � ��� ��

 � � �
!��	�!�	%&�
�%!���	�
�� � 	�.��
 �� �
!��	�!�	%&�
�%!���	�
�� � ��
�� ���� � 
Flag (true or false) indicating whether or not to m ake an adjustment 
     in the center of mass of a body to reduced DC offsets in MX and MZ. 

If 
     true, a new model is writen out that has alter ed anthropometry.  
 � ��� ��

 � � ��.'
!%���%!�%	��'��%	�
��'��
 � ���� �� ��.'
!%���%!�%	��'��%	�
��'��
 � ��
�� ���� � 
Name of the body whose center of mass is adjusted. The heaviest 
     segment in the model should normally be chosen . For a gait model, 

the 
     torso segment is usually the best choice.  
 � ��� ��
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 � � ��.'
!��%���%)��0 � ����� �� ��.'
!��%���%)��0 � ��
�� ���� � 
Name of the output model file (.osim) containing ad justments to 
     anthropometry made to reduce average residuals . This file is 

written 
     if the property adjust_com_to_reduce_residuals  is set to true. If a 
     name is not specified, the model is written ou t to a file called 
     adjusted_model.osim.  
 � ��� ��

 � � �'!('!%�����%&��� � ��������	!�����"#!�"�����"����� �� �'!('!%�����%&��� � ��
�� ���� � 
Motion (.mot) or storage (.sto) file containing the  desired kinematic 
     trajectories.  
 � ��� ��

 � � ��
�	��%$�
���!��
%&��� � ��������	!*��&	!�&!	������ �� ��
�	��%$�
���!��
%&��� � ��
�� ���� � 
Low-pass cut-off frequency for filtering the desire d kinematics. A 
     negative value results in no filtering. The de fault value is -1.0, 

so 
     no filtering.  
 � ��� ��

 � � ��1(�

%�'!�&&%&	�2'�
�0 � 
 �� ��1(�

%�'!�&&%&	�2'�
�0 � ��
�� ���� � 
File containing the tracking tasks. Which coordinat es are tracked and 
     with what weights are specified here.  
 � ��� ��

 � � !�
$%
�!%&��� � ������ �!++,!���&����� �� !�
$%
�!%&��� � ��
�� ���� � 
File containing the constraints on the controls.  
 � ��� ��

 � � ��

!	��
!
%&��� � ������ �!++,!/������/�������������� �� ��

!	��
!
%&��� � ��
�� ���� � 
Motion file (.mot) or storage file (.sto) containin g the external 
     loads applied to the model.  
 � ��� ��

 � � ��!�	
��%����
%&��� � ��������	!*��&	!������� �� ��!�	
��%����
%&��� � ��
�� ���� � 
Motion file (.mot) or storage file (.sto) containin g the model 
     kinematics corresponding to the external loads .  
 � ��� ��

 �
� ��!�	
��%����
%�����%$�
���!��
%&��� � ��������	!*��&	!�&���� �� ��!�	
��%����

%�����%$�
���!��
%&��� � ��

�� ���� � 
Name of the body to which the first set of external  loads should be 
     applied (e.g., the name of the right foot).  
 � ��� ��

 � � ��!�	
��%����
%)��0� � �����!� �� ��!�	
��%����
%)��0� � ��
�� ���� � 
Name of the body to which the second set of externa l loads should be 
     applied (e.g., the name of the left foot).  
 � ��� ��

 � � ��!�	
��%����
%)��03 � �����!� �� ��!�	
��%����
%)��03 � ��
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�� ���� � 
Low-pass cut-off frequency for filtering the model kinematics 
     corresponding to the external loads. A negativ e value results in no 
     filtering. The default value is -1.0, so no fi ltering.  
 � ��� ��

 �
� ��1(�

%�'!�&&%&	�2'�
�0%&�	%����%$�
���!��
 � 
 �� ��1(�

%�'!�&&%&	�2'�
�0%&�	%
����%$�
���!��
 � ��

�� ���� � 
Flag (true or false) indicating whether to use the fast CMC 
     optimization target. The fast target requires the desired 
     accelerations to be met. The optimizer fails i f the acclerations 
     constraints cannot be met, so the fast target can be less robust.  

The 
     regular target does not require the accelerati on constraints to be 
     met; it meets them as well as it can, but it i s slower and less 
     accurate.  
 � ��� ��

 � � '
�%&�
!%�(!���-�!��
%!�	��! � ����� �� '
�%&�
!%�(!���-�!��
%!�	��! � ��
�� ���� � 
Perturbation size used by the optimizer to compute numerical 
     derivatives. A value between 1.0e-4 and 1.0e-8  is usually 
     approprieate.  
 � ��� ��

 � � �(!���-�	%��	���!���%�� � �����	 �� �(!���-�	%��	���!���%�� � ��
�� ���� � 
Convergence criterion for the optimizer. The smalle r this value, the 
     deeper the convergence. Decreasing this number  can improve a 

solution, 
     but will also likely increase computation time .  
 � ��� ��

 � � �(!���-�	%��
��	��
��%�	�!�	��
 � 	�.��
 �� �(!���-�	%��
��	��
��%�	�!�	��
 � ��
�� ���� � 
Maximum number of iterations for the optimizer.  
 � ��� ��

 � � �(!���-�	%���%�!�	�!��

 � ���� �� �(!���-�	%���%�!�	�!��

 � ��
�� ���� � 
Print level for the optimizer, 0 - 3. 0=no printing , 3=detailed 
     printing, 2=in between  
 � ��� ��

 � � �(!���-�	%(	�
!%����� � � �� �(!���-�	%(	�
!%����� � ��
�� ���� � 
Specify which optimizer to use (ipopt or cfsqp).  
 � ��� ��

 � � �(!���-�	%����	�! � � ����� �� �(!���-�	%����	�! � � ��
�� ���� � 
Time window over which the desired actuator forces are achieved. 
     Muscles forces cannot change instantaneously, so a finite time 

window 
     must be allowed. The recommended time window f or RRA is about 0.001 
     sec, and for CMC is about 0.010 sec.  
 � ��� ��

 � � ���%!���%1�
��1 � ����	 �� ���%!���%1�
��1 � ��
�� ���� � 
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Flag (true or false) indicating whether or not to u se the curvature 
     filter. Setting this flag to true can reduce o scillations in the 
     computed muscle excitations.  
 � ��� ��

 � � '
�%�'	��!'	�%&��!�	 � ����� �� '
�%�'	��!'	�%&��!�	 � ��
�� ���� � 
Flag (true or false) indicating whether or not to c ompute average 
     residuals. No actions are taken based on this flag other than 

printing 
     the average residuals, which can be useful for  seeing if the 

solution 
     is good.  Average residuals should be be close  to 0.0.  If not, 

there 
     is likely problem in the experimental data, in  the model, or both.  
 � ��� ��

 � � ���('!�%���	���%	�
��'��
 � ���� �� ���('!�%���	���%	�
��'��
 � ��
�� ���� � 
Flag (true or false) indicating whether or not to m ake an adjustment 
     in the center of mass of a body to reduced DC offsets in MX and MZ. 

If 
     true, a new model is writen out that has alter ed anthropometry.  
 � ��� ��
 � �� /#/���� � �
�
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Appendix D: Rigid-Body Dynamics Derivations 
 

 
Figure 44: Schematic of 2D dynamic analysis body model 

 
 
A schematic of the body with external ground and residual forces and moments applied is 
shown above. Equations were then derived using the Newton-Euler method. 
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Foot 

 
Figure 45: Free body diagram of foot 

 
Vectors shown in the free body diagram above are all with respect to the world 
coordinate frame and are defined as follows: 
 

 
 
Summing forces about the foot, we have 
 

 
(29) 

  

Rearranging to solve for FA: 
 

 
(30) 

 

Summing torques about the center-of-mass, we have 
 

 (31) 
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Rearranging to solve for ankle joint moment, 
 

 (32) 
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Lower Leg (Shank) 
 

 
Figure 46: Free body diagram of lower leg 

 
Vectors shown in the free body diagram above are all with respect to the world 
coordinate frame and are defined as follows: 
 

 
 
Summing forces on the segment, we have 
 

 (33) 

 
Solving for knee joint moment and substituting equation XX,  
 

 (34) 

 
Summing torques about the center-of-mass and solving for knee joint moment, 
 

 (35) 
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Upper Leg (Thigh) 
 

 
Figure 47: Free body diagram of upper leg 

 
Vectors shown in the free body diagram above are all with respect to the world 
coordinate frame and are defined as follows: 
 

 
 
Summing forces on the segment, we have 
 

 (36) 

 
Solving for hip joint moment and substituting equations XX and XX, 
 

 (37) 

 
Summing torques about the center-of-mass and solving for hip joint moment, 
 

 (38) 
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Head, Arms, Torso (HAT) segment 
 

 
Figure 48: Free body diagram of HAT segment 

 
Definition of variables: 

 

 
 
Summing forces on the segment and solving for lumbar joint reaction force, 
 

 (39) 

 
Summing moments about center-of-mass and solving for lumbar joint moment, 
 

 (40) 
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Pelvis 
 

 
Figure 49: Free body diagram of pelvis 

 
Vectors shown in the free body diagram above are all with respect to the world 
coordinate frame and are defined as follows: 
 

 
 
Summing forces on segment and solving for residual force, 
 

 (41) 
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Summing torques about center-of-mass and solving for residual moment, 
 

             

(42) 

 
 
 
2D flexion approximations 

For the 2D approximations, we assume all motion occurs in the sagittal plane. The 
sagittal plane is defined as shown in Figure 50. With this assumption, we are interested in 
joint moments in the world z-axis as shown in Figure 44. We also assume the principal 
moment of inertia is aligned with the z-axis and ignore cross products of inertia. 
 

 
Figure 50: Definitions of body planes 

 
OpenSim defines joint angles in local frames. We begin by converting these to angles in 
the world frame with respect to the vertical (y-axis). These world angle definitions are 
shown in Figure 51 and are the angles used in our derivations. 
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Figure 51: Definition of joint angles in world frame with respect to vertical (y-axis) 

 
2D Ankle Flexion Moment 
 
We begin by converting the 3D dynamical equation for the foot to its 2D approximation. 
From earlier, the 3D equation for ankle joint moment is, 
 

 (32) 

 
Here, we will ignore the subscripts R that denote this is for the right leg, and take this 
analysis to be for any leg. The cross and dot products in this equation are evaluated as 
follows, 
 

 

(43) 

 

 

(44) 
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(45) 

 
We now substitute equations (43), (44), and (45) into (42). The ankle flexion moment in 
the sagittal plane (z-direction) is therefore, 
 

(46) 

 
Where, 

 
 

with AFq  being the angle from the vertical as shown in Figure 51. Further, we made the 
following notational simplifications: 
 

 
 
Since the linear acceleration of the foot segment at its center-of-mass (com) is a function 
of the com location and not determined directly from measurements, we write this term in 
terms of the linear acceleration of the ankle, which is known from measurements: 
 

 

(47) 

 
The equation for 2D ankle flexion moment then becomes,  
 

 
(19) 

 
2D Knee Flexion Moment 
 
From earlier, the 3D knee flexion moment equation was determined to be, 
 

 (35) 

 
As with the 2D ankle flexion moment derivation, we first evaluate the cross and dot 
products and simplify. We make similar notational similar notational simplifications and 
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write linear acceleration of the lower leg center-of-mass in terms of linear acceleration of 
the knee. The resulting equation for 2D knee flexion moment then becomes, 

 

 

(20) 

 
2D Hip Flexion Moment 
 We derive the 2D hip flexion moment using the same method as with 2D ankle 
and knee flexion moments. This equation becomes,  
 

 

(21) 
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Appendix E: MATLAB script for 2D Dynamics analysis 
 
%This m-file analyzes uncertainties in joint moment s caused by  
%uncertainties in body segment inertial parameters  
%By JunJay Tan  
  
clear  
  
%Load .mat data file  
load gait_data  
  
%constants  
m = 72.6;   %mass of test subject in kg  
g = -9.81;  
  
%mean parameters  
m_f = 1;  
com_f = 0.011;  
Izz_f = 0.0043;  
m_ll = 3.32;  
com_ll = 0.1778;    %use positive values, since sin /cos already takes 
care of direction  
Izz_ll = 0.0473;  
m_ul = 8.709;  
com_ul = 0.192;  
Izz_ul = 0.18;  
  
%longitudinal length of segments in m  
L_ll = 0.425;  
L_ul = 0.4691;  
  
%initializing vectors  
dM_ankle = []; %ankle joint moment uncertainty  
dM_knee =[];  
dM_hip = [];  
dM_ankle_norm = [];  
dM_knee_norm = [];  
dM_hip_norm = [];  
  
%User defined parameters  
dm_f = 0.202;   %foot mass uncertainty  
dm_ll = 0.343;   %shank mass uncertainty  
dm_ul = 2.07;   %thigh mass uncertainty  
  
dcom_f = 0.011;  
dcom_ll = 0.02;   
dcom_ul = 0.017;  
  
dIzz_f = 0.002;  %foot inertia uncertainty  
dIzz_ll = 0.013;  
dIzz_ul = 0.195;  
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%-------Description of vectors--------------------- --  
%   gait_cycle = % of gait cycle  
%   ax_ankle = linear accel in x-dir of ankle in m/ s^2  
%   ay_ankle = linear accel in y-dir of ankle in m/ s^2  
%   ax_knee = linear accel in x-dir of knee in m/s^ 2 
%   ay_knee = linear accel in y-dir of knee in m/s^ 2 
%   ax_p = linear accel in x-dir of pelvis in m/s^2  
%   ay_p = ...  
%   alpha_f = angular accel of foot in rad/s^2, i.e ., ankle ang accel  
%   alpha_ll = angular accel of lower leg (shank) i n rad/s^2, i.e., 
knee  
%               ang accel  
%   alpha_ul = ang accel of upper leg (thigh)in rad /s^2, i.e., hip 
flexion  
%               ang accel  
%   theta_HF = hip flexion angle wrt vertical, star ting from downward 
pos  
%               (in radians)  
%   theta_KF = knee flexion angle wrt vertical (rad )  
%   theta_AF = ankle flexion angle wrt vertical "       "  
%   F_gndx = ground force on right foot in N, x-com ponent  
%   F_gndy = ground force on right foot in N, y (ve rtical) component  
% Note: all vectors are wrt to world inertial frame     
%-------------------------------------------------- ----  
  
%conversion factors between radians and degrees  
rad2deg=180/pi;  
deg2rad=1/rad2deg;  
  
%Calculate joint moment uncertainties  
  
%Calculate ANKLE MOMENT uncertainty  
dM_ankle = abs([alpha_f])*dIzz_f + abs([-m_f*g*sin( theta_AF) + 
2*alpha_f*m_f*com_f + m_f*(sin(theta_AF).*ay_ankle - (-
cos(theta_AF).*ax_ankle))])*dcom_f...  
            + abs([alpha_f*com_f^2 + com_f*(sin(the ta_AF).*ay_ankle + 
cos(theta_AF).*ax_ankle)])*dm_f;  
  
  
  
%Calculate KNEE MOMENT UNCERTAINTY  
dM_knee = dM_ankle + abs(alpha_ll)*dIzz_ll +...  
          abs([m_ll*(sin(theta_KF).*(ay_knee-g) + 
cos(theta_KF).*ax_knee) + 2*com_ll*m_ll*alpha_ll])* dcom_ll +...  
          abs([com_ll*(sin(theta_KF).*(ay_knee-g) +  
cos(theta_KF).*ax_knee) + com_ll^2*alpha_ll])*dm_ll  + ...  
          abs([L_ll*(sin(theta_KF).*ay_ankle + cos( theta_KF).*ax_ankle 
- g) + com_f*L_ll*alpha_f.*(sin(theta_KF).*sin(thet a_AF) + ...  
          cos(theta_KF).*cos(theta_AF))])*dm_f + .. .  
          abs([m_f*L_ll*alpha_f.*(sin(theta_KF).*si n(theta_AF) + 
cos(theta_KF).*cos(theta_AF))])*dcom_f;  
  
  
%Calculate HIP MOMENT UNCERTAINTY  
dM_hip = dM_knee + abs(alpha_ul)*dIzz_ul +...  
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        abs([m_ul*[sin(theta_HF).*(ay_p-g)+ cos(the ta_HF).*ax_p] + 
2*com_ul*m_ul*alpha_ul])*dcom_ul +...  
        abs([com_ul*[sin(theta_HF).*(ay_p-g) + cos( theta_HF).*ax_p] + 
com_ul^2*alpha_ul])*dm_ul + ...  
        abs([m_ll*L_ul*alpha_ll.*(sin(theta_HF).*si n(theta_KF) + 
cos(theta_HF).*cos(theta_KF))])*dcom_ll + ...  
        abs([L_ul*[sin(theta_HF).*(ay_knee-g) + cos (theta_HF).*ax_knee] 
+ 
com_ll*L_ul*alpha_ll.*(sin(theta_HF).*sin(theta_KF) +cos(theta_HF).*cos(
theta_KF))])*dm_ll +...  
        abs([m_f*L_ul*alpha_f.*[sin(theta_HF).*sin( theta_AF) + 
cos(theta_HF).*cos(theta_AF)]])*dcom_f + ...  
        abs([L_ul*(sin(theta_HF).*(ay_ankle-g) + 
cos(theta_HF).*ax_ankle) + 
com_f*L_ul*alpha_f.*[sin(theta_HF).*sin(theta_AF)+c os(theta_HF).*cos(th
eta_AF)]])*dm_f;  
  
%normalize moments by body weight  
dM_ankle_norm = dM_ankle/m;  
dM_knee_norm = dM_knee/m;  
dM_hip_norm = dM_hip/m;  
  
figure, plot(gait_cycle,abs(dM_ankle_norm)), title( 'normalized ankle 
flex moment'),xlabel('% gait cycle'),ylabel('N-m/kg ')  
figure, plot(gait_cycle,abs(dM_knee_norm)), title(' normalized knee flex 
moment'),xlabel('% gait cycle'),ylabel('N-m/kg')  
figure, plot(gait_cycle,abs(dM_hip_norm)), title('n ormalized hip flex 
moment'),xlabel('% gait cycle'),ylabel('N-m/kg')  
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