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Abstract

Quantitatively analyzing human gait biomechanick iwiprove our ability to diagnose
and treat disability and to measure the effectigertd assistive devices. Gait analysis is one
technology used to analyze walking, but technisalall as economic, social, and policy issues
hinder its clinical adoption. This thesis is diwdiato two parts that address some of these
issues.

Part | focuses on the role public policies havadaancing gait analysis. Through an
analysis of gait analysis technologies, case ssunfidR| and CT Angiography, and a high-level
analysis of data standards used in gait analysisnicludes that policies cannot directly create
the institutional structures and the data standagigired to advance gait analysis as a clinical
diagnostic tool. Only through indirect means, sashiesearch funding, can policies support the
development of organizations to take ownershipaitf gnalysis technologies. Part | also
concludes that policies should not fund developno¢igiit technologies but instead should fund
research units working on data standards and aecwanan body models.

Part Il focuses on a technical issue in gait amglymmely, how to address uncertainties
in joint moment calculations that occur from usdifferent body segment inertial parameter
estimation models. This is identified as a techrngsue needing attention from our broader
policy analysis in Part I. Using sensitivity stugli@f forward dynamics computer simulations
coupled with an analysis of the dynamical equatmin®otion, Part Il shows that joint moment
variations resulting from different segment indniarameters are significant at some parts of the
gait cycle, particularly heel strike and leg swittgorovides recommendations about which
segment inertial parameters one should estimate amgurately depending on which joints and
phases of the gait cycle one is interested in aimady
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1 Introduction

Upright movement permeates American aphorisms,atorqindependence, autonomy,
perseverance, strength, achievement—‘standing angwn two feet,” ‘walking tall,” ‘standing
up for yourself,” ‘taking things in stride,’” ‘climibg the ladder of success,’ ‘one small step for a
man, one giant leap for mankind.’

--Lisa lezzoniWhen Walking Fails

1.1 Problem

Quantitatively analyzing human gait biomechanick iwiprove our ability to diagnose
and treat disability and to measure the effectigsrtd assistive devices. Of the many types of
human movement, this thesis focuses on walkingghvis a fundamental movement associated
with social independence and many health ben&#st. analysis is one technology used to study
walking, but technical as well as economic, so@at policy issues hinder its clinical adoption.

This thesis is divided into two parts, both of whifocus on clinical gait analysis. The
first part focuses on the role public policies havadvancing gait analysis. The second part
focuses on a technical issue in gait analysis, harhew to address uncertainties in joint
moment calculations that occur from using differlently segment inertial parameter estimation
models. This is identified as a technical issu¢ tleds attention based on our broader policy
analysis. The specific health technology and texdirproblems are explained in greater detail
below.

1.1.1 Health Technology Policy

Health technology policy faces a tension betwedasare for stricter cost-effectiveness
scrutiny and the fear that overly strict standavdsprevent promising technologies from being
used, after which their effectiveness are oftenalisred. The latter fear is cited to justify
implementing public policies, such as Medicare f®insement, to support the development or
use of an untested medical technology.

This tension means that costly technologies wittlear benefits are sometimes
supported, while at other times promising technele@re stalled. Gait analysis fits in the latter
category, though public policies to directly sugptsr development and use may not be required
because its technologies have non-medical appmitais well. Technologies that have medical
and non-medical applications may not require fddarpport if regulatory barriers to entry into
medical markets are low.

At the same time, just because a technology isfeaable from commercial to medical
applications and has low regulatory barriers dagsmean that its clinical promise can be fully
realized without policies that create appropriastitutional structures and technology standards.
Part | analyzes these issues to determine whaptdikc policies have in advancing gait
analysis.
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1.1.2 Gait Analysis Technical Issue

An important output calculated from gait analysigoint moments (or torques). Joint
moments are important to know for two reasonstRingy can be correlated to poor
biomechanics that may lead to degenerative proseSgeond, they can be used to compute
other variables, such as joint powers and individuascle and tendon forces (Challis & Kerwin,
1996). But difficulty arises because joint momearts not directly measured variables and must
be calculated from experimental data based oniadditassumptions, one of these being body
segment inertial parameters (BSIPs). BSIPs cooslsbdy segment masses, center-of-mass
locations, and inertias. This technical issue bnite use of gait analysis in clinical decision-
making. An analysis of uncertainties in joint mornealculations due to differing BSIP values is
therefore important for understanding how joint nemitncalculations may vary for the same
subject, which relates to gait analysis’s vari&piéind accuracy.

Although we can take more accurate measuremeitite @ntire body to try to achieve
better BSIP estimates, this is an inefficient mdthihe research in Part Il aims to provide
guidelines regarding which specific body parts asure more accurately depending on which
cycle of the gait cycle one is interested in exangn

1.2 Research Overview

This section presents an overview of the reseaweltgpns, hypotheses, methodology,
conclusions, and limitations of this thesis.

1.2.1 Research Questions

To address the problems discussed in SectionHislthtesis is divided into two parts
focusing on the following research questions:

Part I: What public policies are appropriate fovaatcing clinical gait analysis?
Part II: How can we better interpret joint momesdults from gait analysis in light of
large uncertainties in body segment inertial patemestimates?

1.2.2 Hypotheses

In Part |, we hypothesized that the technologigsired for gait analysis can be developed
through commercial (non-medical) markets and toditigs should focus on fostering the
professional institutions and data standards reduor clinical gait analysis to be a practical
diagnostic tool.

In Part I, we hypothesized the following abounjomoment results:
- Joint moment estimates will be significantly ditfat during periods of high force
impact, i.e., during heel strike, but similar atetperiods of the gait cycle
Joint moment variations will be different for difént joints.
Joint variations will be significant at some phasethe gait cycle and less so at others
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1.2.3 Methodology

The methodology used in Part | involves an analgégait analysis technologies, case
studies of MRI and CT Angiography to draw lessarsafdvancing clinical gait analysis, and a
high-level analysis of data standards used inagtysis for improving data sharing.

The methodology used in Part Il of this thesis Inge sensitivity studies of forward
dynamics computer simulations as well as analy#seadynamical equations of motion. 3D
forward dynamic simulations are physical simuladidimat track experimental gait data in order
to capture data from instrumented “virtual humarisis an increasingly popular method for
studying human locomotion.

1.2.4 Conclusions

Part | concludes that policies cannot directly txehe professional institutional
structures and the data standards required to adgait analysis as a clinical diagnostic tool.
Only through indirect means, such as research figndian policies support the development of
organizations to take ownership of gait analysibnelogies and data standards. Part | also
concludes that policies should not fund developnoéigit technologies, but instead should
fund research units working on data standards ecarate human body models.

Part Il of this thesis concludes that joint momegriations resulting from different
segment inertial parameters are significant at goants of the gait cycle, particularly heel strike
and leg swing. It provides recommendations aboutlwvbegment inertial parameters one should
estimate more accurately depending on which j@ntswhich phases of the gait cycle one is
interested in analyzing.

1.2.5 Contributions

This thesis presents several contributions. Rirptovides recommendations on how
public policies can advance gait analysis as acalinool. Though much literature exists
regarding public policies for other diagnosticsstsas medical imaging, there is a dearth of
literature regarding gait analysis. Second, thesithanalyzes how body segment inertial
parameter (BSIP) values affect joint torque estamat gait analysis and provides
recommendations on which BSIPs to measure moreaetyidepending on the joints and gait
phases of interest.

1.2.6 Limitations and Future Work

Part | could analyze other related diagnostic rbes, both inside and outside the
imaging field, as well as expand the standardsyaizabeyond data sharing to encompass
clinical protocols. Also, Part | could analyze wadale sensor technologies, which hold promise
as a technology for mobile gait analysis and forcWwhegulations are still emerging.

The major limitations of Part Il are that it anadgzone subject at one walking speed and
analyzes only one body model.
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1.3 Motivation

Physical disability is a significant national hégiroblem that will only worsen as the
population ages, a trend highlighted in Figuren12000, close to one fifth of community
dwelling persons age five and older in the U.Sorggal disabilities, while 41.9% of adults age
64 and older reported disabilities.
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Figure 1: Percentage of adults with mobility diffiaulties by age (lezzoni, 2003)

Further, the U.S. census bureau projects thatuh#ar of elderly will rise from 34.7
million in 2000 to 69.4 million in 2030. Of thesklerly, 39.5 million reported sensory and
physical disabilities in 2001. People with sigrafit physical disabilities also live longer today
due to advances in medicine, further compoundiegtists of disability (lezzoni & O'Day,
2006). Treating and diagnosing physical disabtlippugh improved medical technologies is
therefore important. Table 1 highlights some diigtstatistics from 2001.

Table 1: Adults Reporting Mobility Difficulty in 20 01 (lezzoni, 2003)

Difficulty* Estimated Number (millions) Percentage
None 168.32 90

Minor 7.93 4
Moderate 5.23 3

Major 5.82 3
TOTAL REPORTING 18.98 10
DIFFICULTY

*None = persons who report no difficulty with watkiand climbing stairsandstandinganduse no mobility aid;
minor = persons who report some difficulty with Wiag or climbing stairsor standingor who use a cane or

crutches; moderate = persons who report a lotfé€dlity with walking or climbing stairsor standingor who use a
walker; major = persons who report being unablgeidorm walkingor climbing stairsor standingor who use a
manual or power wheelchair or scooter

Of the many types of physical disabilities, walkigigability is one of the most crippling

and is therefore the focus of this research. Wglkiisability can come about through a variety
of causes, some of which are summarized in Tabfek2y issue in addressing walking
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disability is how to best quantify and measure tootion disability. This issue remains
unresolved, as no definitive theories of walkingénheen accepted. Further, technologies such
as powered orthoses and functional electrical $états are being introduced to address
locomotion disability, yet these technologies aeemsive and of unclear efficacy. The ability to
assess, diagnose, and measure the effectivenesgvdherapies to address walking disability is
critical, both from a science perspective and feohrealth policy perspective.

Table 2: Common Causes of Mobility Difficulties (Iezoni, 2003)

Mobility Difficulty (%)
Causes Minor Moderate Major
Arthritis and musculoskeletal problems 25 26 24
Intervertebral disk and other back problems anaktisei 14 16 8
Accidental falls 6 7 6
Ischemic heart disease and other heart conditions 5 5 6
Motor vehicle traffic accidents 4 5 4
Chronic bronchitis, emphysema, asthma, and otmey lu 4 4 4
conditions
Cerebrovascular disease, including stroke 1 2 5
Overexertion and strenuous movements 2 3 1
Unspecified accidents 2 2 1
Machinery, firearm, and other specified accidents 1 2 2
Osteoporosis and bone or cartilage disorders 1 1 2
Diabetes 1 1 1
Multiple sclerosis <1 <1 2

1.4 Definitions

This section defines the major terms used in th@ichent.

1. Physical Disability:an impairment that prevents one from performingfioms of daily living
that healthy people can perform.

This definition is based on the World Health Orgation’s (WHO)International
Classification of Functioning, Disability, and H&a(ICF), which defines disability as an
“‘umbrella term for impairments, activity limitatisror participation restrictions,”
categorizing “a person’s functioning and disabilitgs a dynamic interaction between
health conditions (disease, disorders, injuriesjrras, etc.) and contextual factors.”
(lezzoni & O'Day, 2006).

2. Gait Analysis: a diagnostic method that records human body kitiesnand dynamics during
some sort of gait movement, where gait implies thatbody is supported on the legs.
Kinematics refers to the motion of objects withoahsideration of the forces that cause that
motion, while dynamics is concerned with forcesvall as properties of the moving bodies,
such as their masses and inertias. The focuswhote-body movements, such as limbs, torso,
and head, rather than smaller bodies such asaredgen fingers. Additionally, muscle EMG
signals may be recorded as well.
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This definition follows that of Rose (1983), whaygeested that the term “gait
assessment” be applied to the whole process ofiakagma patient’s gait and suggesting
treatment, while the term “gait analysis” be usardtie technical side of gait assessment,
which includes making objective measurements saahadking speed, joint angles,
forces, and EMG muscle recordings (Whittle, 1998)is thesis focuses on gait analysis
and its application to gait assessment as a clidiagnostic.

3. Movement Analysisneasurement and analysis of the body as a whbles, gait analysis is a
subset of motion analysis.

4. Forward Dynamic Simulationscomputer models that simulate movement of physibgcts
by numerically integrating dynamic equations of imotin time, subject to gravity, inertial and
velocity-dependent forces, and muscle forces. iwdod dynamic simulations, forces produce
motions, whereas traditional analysis of gait diavalves inverse dynamic analysis, where
experimentally measured ground forces and torqueesascaded through rigid body linkages
representing the body segments in order to estijoatetorques (Piazza, 2006).

5. Body Segment Inertial Parameters (BSIPf)e mass, center of mass location, and moments
of inertia of human body segments.

6. Gait Cycle:the time required for a leg to undergo both a staamal a swing phase. This is
typically the time axis presented in gait analyssult plots.

1.5 Overview of the Following Chapters

Part | encompasses chapters 2 through 5. Chapteis2nts background on gait analysis
and health policies related to gait analysis. Céraptpresents our technology analysis to answer
key question one. Chapter 4 presents the caseestalMRI and CT Angiography, while
Chapter 5 analyzes data standards in gait anawgsipresents policy conclusions.

Part Il encompasses chapters 6 through 8. Chapeid@ys the biomechanics of human
walking, while Chapter 7 presents our research augtlogy in detail. Finally, Chapter 8
presents results and conclusions.
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PART I: Public Policies for Advancing Gait Analysis

As explained in Section 1.1.1, Part | addresseshavic policies can advance gait
analysis. Specifically, this part aims to answer ftilowing three key questions:

Is the technology required for clinical gait anaydifferent from that required for
commercial applications of motion capture and agia®If so, how, and what role do
regulatory requirements play in effecting techngltgnsfer into the medical field for gait
analysis?

How does gait analysis compare to imaging—a widslgd (and therefore, in our view,
successful) clinical diagnostic—in terms of itsipohl, economical, and social structure, and
what lessons can be learned from examining thecakmihaging field’s development?

What is the state of data standards in gait arslgsid how might policies address the
deficiencies?

These three questions cover a range of technosagyal science, and standards issues central to
the advancement of gait analysis as an acceptadatldiagnostic. After answering these
guestions, we provide recommendations on whetheghaw public policies can advance clinical
gait analysis. The hypothesis, scope, and methggabPart | are summarized below in the

next sections

Hypothesis

A key issue in health policy is whether approgriatedical technologies will be
developed by industry alone. In other words, daappate incentives exist without additional
federal encouragement, or must government creaéniives for development of appropriate
technologies through such means as university resea his question is significant for gait
analysis because many of its technologies havecapiphs in other markets such as
entertainment, engineering, and sports, and theréi@ market may already pursue appropriate
technological advancements without public funding.

For gait analysis, we hypothesize that the deseelnologies can be developed through
commercial markets without significant publicly fied development of these technologies and
that policies should instead focus on fosteringpiftdessional institutions and data standards
required for clinical gait analysis to become acpical diagnostic tool.

Scope

This research focuses only on public policies fier ¥).S. healthcare environment. By
public policies, we mean policies enacted at tidera level, such as Medicare reimbursement
decisions, statutes, and research funding inigatiin other countries—especially those with
national healthcare systems— medical regulatiodsr@imbursement policies are different,
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which means our analysis and recommendations migyenapplicable. Further, we focus only
on lab-based gait analysis as a diagnostic tooheS@search has focused on using wearable
sensors for mobile gait analysis (e.g., (Bonat@52)) but these technologies are still developing
and policies regarding mobile health devices alleesterging, even for standard measurements
such as blood pressure (Olson, 2008). We belieateggmeral acceptance of gait analysis as a
lab-based tool must emerge prior to its use in fealyi home-based diagnostic devices, and
therefore focus only on the former. Finally, altgbuhis study focuses on gait analysis, our
conclusions will likely be generalizable to advangetlinical movement analysis as a whole.

Methodology

The methodologies used to answer the three quesdi@nas follows. The first question is
answered through an analysis of the technologied unsgait analysis and related applications.
The second question is answered through case stofdieedical imaging—which, like gait
analysis, is a multidimensional diagnostic thaeseheavily on operator interpretation of
results— to glean insights into relevant policyuiss for gait analysis. Specifically, we analyze
the cases of MRI and CT Angiography, for reasorsetdetailed in Chapter 4. The third
guestion is answered by performing a high-levelyaisof standards used to store and
communicate gait analysis data and comparing tlkeDi€OM, the standard used for medical
images.

Conclusions

Part | concludes that policies cannot directly te¢he professional institutional
structures and the data standards required to adgait analysis as a clinical diagnostic tool.
Only through indirect means, such as research figndian policies support the development of
organizations to take ownership of gait analysi isdata standards. Part | also concludes that
policies should not fund development of gait tedbgies, but rather should fund research units
working on data standards and accurate human bodgls

Overview of Proceeding Chapters in Part |

Chapter 2 presents background on gait analysihealth policies related to gait
analysis. Chapter 3 presents our technology amsalgsanswer key question one. Chapter 4
presents the case studies of MRI and CT Angiograwhile Chapter 5 analyzes data standards
in gait analysis and concludes with overall poliegommendations.
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2  Gait Analysis and Related Policies

This chapter is divided into two sections. Secfigoresents an overview of the
regulatory, reimbursement, and policy issues ra@let@clinical diagnostic technologies. Section
2 then presents a brief history of modern gaitysisland explains its medical potential.

2.1 Health Technology Policy

This section provides an overview of why governmetervention is often required to
promote and develop medical technologies, the teégulatory environment for diagnostics, how
reimbursement decisions for diagnostics are maukftee evidence-based medicine approach.

2.1.1 Rationale for Government Intervention

It may first be helpful to define why public pakes are needed regarding medical
technologies. One reason is because the mediastiyddiffers from most other industries in
two ways: (1) providers rather than purchasersoeficiaries generally determine the services
provided, and (2) health providers are generailplbersed for services by third parties rather
than beneficiaries. The health care market theeedoes not fulfill the criteria of efficient
markets, which means we may require governmentvieidion to protect the public welfare and
to promote effective use of healthcare and relselnologies (Hillman, 1986).

2.1.2 Regulation of Diagnostic Technologies

Any device advertised for use in medical appligaionust be approved by the U.S. Food
and Drug Administration (FDA), which regulates neadidevices according to the Food, Drug
and Cosmetic Act (FD&C). Specifically, gait analysiystems to be used for diagnostic purposes
are considered medical devices according to se20dith) of the FD&C, which defines a
medical device as any device “intended for theingbe diagnosis of disease or other
conditions, or in the cure, mitigation, treatmenmtprevention of disease, in man or other
animals” (21 U.S.C. § 321 (2004)).

Medical devices are classified into three claskasdetermine regulatory scrutiny.

Section 513 (21 U.S.C. § 360c (2004)) of the FD&& divides them as follows:

Class | deviceghese devices do not require pre-market appravelearance and are
considered the safest. They therefore have thedeagols, i.e., the FDA’s “general
controls.” Ground force plates are considered Alaevices (21CFR890.1575 (2007)).

Class Il devicesThese devices require “special controls,” sucheaxformance standards,
post-market surveillance, and dissemination of gjinés. Many diagnostic tests are
considered class Il devices. These devices areedersing the 510K process, which is
discussed below.
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Class Il devicesThese devices require pre-market approval beggerseral and special
controls are not satisfactory to ensure their gafeeffectiveness. They include devices used
to support human life, such as pacemakers.

Further, section 510(k) of the FD&C Act requireside manufacturers to notify the
FDA at least 90 days in advance of their intemhtvket a medical device (21 U.S.C. 8§ 360
(2004)). This allows the FDA to determine whether tlevice is equivalent to a device it has
already classified. 510(k) is known as the “preteainotification,” and is meant to ensure that
the device to be marketed is “at least as safeetindtive” as a “legally marketed device” (U.S.
Food and Drug Administration, 2006). Devices cldateough the 510(k) process are not
considered approved by the FDA but are considerkzhfed” devices and can be marketed in
the U.S.

2.1.3 Reimbursement

After the FDA approves a medical technology, inssigeich as Medicare decide on
coverage. Private insurers make their own covedagesions but often follow the lead of
Medicare.

Medicare is a social insurance program for peogéGb and over administered by the
Centers for Medicare and Medicaid Services (CM3% ¢grounded in the Social Security Act.
Section 1862(a)(1)(A) of the Social Security Acttes that Medicare explicitly covers only
diagnostics that are “reasonable and necessatlid@revention of illness” (42 U.S.C. § 1395y
(2008)). However, no statutory definition of thisrase is provided, leading to vigorous debates
about specific technologies (Redberg, 2007).

Private insurers decide what to insure in two sae) what services are covered by
particular plans, and (2) case-by-case decisioostahe “medical necessity” of covered
services. Coverage generally follows the precedsgttby Medicare, making Medicare coverage
the key step in gaining private insurance coverage.

There are no established protocols for decidingg e, both at the Medicare and at the
private insurance level. Although Medicare espoesedence-based approaches (discussed in
the next section) for making coverage decisiongoés not always follow them. Berensen and
Abelson write that “inadequate study is especisdlsious for medical devices and imaging
equipment,” and that once a procedure gains FDAcapph “Medicare rarely demands evidence
that it benefits patients before agreeing to paytfdBerenson & Abelson, 2008). lezzoni &

Day emphasize that coverage standards are sulgjeatid the lack of data supporting
effectiveness of many procedures allows insuredshedicare to deny coverage easily (Ilezzoni
& O'Day, 2005)And unlike pharmaceuticals, which undergo periadigew by the FDA after
approval, few systematic criteria are applied teuea patient benefit in the case of medical
devices after formal requirements for FDA appravad insurance coverage are met (Redberg,
2007)
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2.1.4 Evidence-based medicine

Rising costs in medicine have prompted policymgkesirers, and some physicians to
advocate evidence-based medicine. The most comefomtin from Sackett states that EBM is
"the conscientious, explicit and judicious usewfrent best evidence in making decisions about
the care of the individual patient. It means inéigig individual clinical expertise with the best
available external clinical evidence from systematsearch.” (Sackett, 1996).

The movement towards evidence-based medicine bewghedy accepted in the 1990s.
Areas of EBM include coverage policies, performamesasures, disease management, quality
improvement, regulations, and public policies. thiése areas share four common features: (1)
analysis of evidence and development of guidelar&spolicies is done by small groups of
experts, (2) they all use explicit, rigorous reviprecesses, (3) the product is generic, meaning
the guidelines are intended to apply to a claggaup of patients defined by some clinical
criteria, rather than to an individual patient, gatheir effects on care are indirect, i.e., they
intended to enable, guide, motivate, or sometiraesefphysicians and other providers to deliver
certain types of care to people, but they do natotly determine the care provided to a
particular patient (Eddy, 2005).

Associated with the movement toward evidence-basedicine is the movement to
evaluate cost-effectiveness of medical proceduydsobdies such as Medicare. Cost-
effectiveness analysis aims to evaluate healthoouts and costs of different procedures relative
to one another so that decision makers can séle¢best” alternative. However, it neglects
many factors that may be equally or more importambaking funding and reimbursement
policy decisions, such as justice, equity, andsastl benefits outside the health care system
(Gazelleet al, 2005).

Evidence-based medicine involves analysis of nlewsls of effectiveness, from
technical accuracy to impact on societal healte@ues. An example of the many levels of
evidence for medical imaging diagnostics and smemétrics by which each may be measured
is presented in Table 3.

Table 3: Levels of Evidence in Evaluations of Diagrstic Technologies, with examples taken from the rdeal
imaging field (Pearsonet al, 2008)

Level of evidence Example of Measures

1. Technical Pixels per millimeter
Section thickness

2. Diagnostic accuracy Sensitivity
Specificity
Area under the receiver operating characteristicecu

3. Impact of diagnostic thinking Percentage of sasavhich the clinician believes that the testatthe
diagnosis

4. Impact on therapeutic actions Percentage okdasghich the choice of therapies is changed after
information from the test is provided

5. Impact on patient outcomes Differences in miytainorbidity, or quality of life between patients
managed with the test and those managed without it

6. Impact on societal outcomes Cost-effectivenésiseimprovement in patient outcomes, such aspest
life year saved, calculated from a societal perspec
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2.2 Gait Analysis Overview

This section summarizes the potential of gait asialgs a diagnostic tool for
musculoskeletal disorders, the modern history dfayaalysis, and the process and economics of
gait analysis.

2.2.1 Diagnostic Potential

Technologies for gait analysis measure the dynaffocses) and kinematics (motion) of
movement, providing a quantitative basis by whizlanalyze and diagnose movement disorders.
Advantages of gait analysis over unaided clini¢seayvation include identifying problems at
multiple levels, identifying dynamic movement pattenot evident otherwise, and comparing
range of motion curves of normal ranges to testégests (Finch, 2001).

Gait analysis has potential as a diagnostic taoh$sessing the severity of pathology,
predicting better treatments, and assessing teetsfbf interventions. It has been used and
studied most extensively on altering treatment @doces in cerebral palsy (CP) patients.
Accordingly, many (but not all) insurers coveraggplication to CP. Gait analysis supplemented
with EMG recordings is particularly useful for detening which muscles are activated during
poor gait, which can inform surgical proceduresséaech also suggests that gait analysis holds
potential for diagnosing multiple joint diseasestsas osteoarthritis, anterior cruciate ligament
(ACL) rupture in the knee, hemiplegia, and muscdigtrophy (Whittle, 2002).

2.2.2 History of Modern Gait Analysis

The history of modern gait analysis systems camawoed to the late 1970s and early
1980s. During the late 1970s, gait analysis wasdhiced into clinical settings largely due to the
efforts of four orthopedic surgeons: Jaquelin PRdbgvid Sutherland, and Jim Gage in the U.S.,
and Gordon Rose, in the UK (Whittle, 1996).

Sutherland provides a published personal accouthieofistorical development of and
applications of gait analysis technologies, whighlwiefly summarize below. More detailed
information about each technology is presentedhapter 3.

2.2.2.1 Motion Capture

Much work in the 1950s focused on recording jomglas using electrogoniometers
because such systems could collect informationktjueind analog graphs of motion could be
displayed without extensive data processing. The&ge important features since powerful
computers were unavailable. The introduction of\taeguard Motion Analyzer in the 1960s
brought forth film-based techniques using passiaeker systems. This system used high-speed
cameras to track markers in space, but manuallesitmos were needed to convert image data
into coordinate data. Research work during the 4@6@ 1970s focused on automating this
process of acquiring marker coordinates from imaDesing the late 1970s, a technical director
at Oxford Medical Systems—a company focusing maim\cardiology products—thought that
a commercial market for an automatic 3D gait anslggstem existed. Oxford Medical Systems
therefore licensed technologies from the Univegsitf Strathclyde and Dundee and spent two
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years developing a system called VICON, whose naasederived from “video-converter.” The
first VICON system was shipped in 1980.

Although the VICON system was effective for extmagt2D coordinate data, its software
could not calculate 3D coordinates. Michael Whjtiao had worked with NASA to make 3D
measurements of astronaut body forms in a Skylakréxent, became the director of the
Oxford University Motion Laboratory after its formdirector left to found Oxford Metrics, a
spin-off of Oxford Medical Systems focusing on tHHEON system. To fulfill his research
needs, Whittle likely wrote the 3D motion captuoftware. After Oxford Metrics, Motion
Analysis Corporation was the next major motion-oagicompany to emerge. After Motion
Analysis came Bioengineering Technology SystemsS)BWwhich was founded in Milan, Italy,
in 1986. BTS developed the ELITE motion capturaesys(Sutherland, 2002).

The advent of MEMS (microelectromechanical systesessors in the late 1990s
reduced the price, size, and power consumptioraditional sensors while improving their
accuracy. This led to increased attention on usiegrable sensors for motion capture
applications. Several companies have emerged nragk&ich motion capture suits.
Additionally, Organic Motion presented the firshomercial markerless motion capture system
in 2007, although the accuracy is still inadegdatdiomechanical applications (Bonato, 2009).

2.2.2.2 Kinesiological EMG

EMG (electromyography) systems measure the elattittivity of muscles to provide
information about muscle excitations. These capliessurface (non-invasive) EMG, or fine-
wire (invasive) EMG. Most of the developments in GNechnology and application occurred
prior to the 1980s. (Sutherland, 2001).

2.2.2.3 Ground Force Measurement

In the mid-1960s, Sutherland requested the devedapwof a force plate for the Shriners
Hospital San Francisco Gait Laboratory becauseonmeercial force places existed. The lab
hired engineers to produce a clinically useful éoptate, which appeared in 1975. Similarly,
other gait labs contracted to have custom forceegplbuilt as well. Several years later, the Kistler
Corporation, a respected Swiss company, producedanercial model. This was followed by
those of other companies, such as Advanced Mediaréchnology, Inc. (AMTI) and Bertec,
ushering in the market a variety of reliable, conoialy available force plates (Sutherland,
2005).

2.2.3 Gait Analysis Process

Gait analysis consists of three main steps: takipgtient’s history, performing a
physical examination, and performing “special irtigegions,” such as X-rays or oxygen
consumption analysis. A gait analysis team genecalhsists of a physician, a physical therapist,
and a biomedical engineer, though different centeag have different team sizes and team
members with different skills (Simon, 2004; Whiitl©96). Only the physical therapist and
engineer are required to conduct the study, wighpthysician performing the initial clinical
examination and assisting in interpreting resisn@to, 2009).

Referrals to gait labs are often made by patigsttgsicians, though physical therapists
might do so in some cases as well. These physiai@generally orthopedic surgeons. The
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patient stays at the gait lab for 2-3 hours, andstay there consists of the physician taking a
patient history, then performing various gait asaytests (Whittle, 1996).

Specifically, taking the history and performing timical exam of a patient requires 20-
30 minutes, placing markers on the subject antreding devices for motion detection and
muscle activity monitoring takes 30-60 minutes, tagling itself lasts 5-30min depending on the
number of conditions examined. Post-processingléta then takes additional time. While gait
analysis results can be processed and returneklyjbic computers, they must still be read and
interpreted by humans. Gait reports can numberarhtindreds of pages, and in contrast to
medical images, they are not presented as app&dlingages. Instead, reports are a jumble of
plots and figures that require much technical etigeto understand. Simon and many others
propose that computer assisted gait data analydisegort generation can address this issue,
though such methods still have not been develoBadan, 2004).

As a point of comparison, the Motion Analysis Laltory at Spaulding Rehabilitation
Hospital in Boston takes about 2 hours to perfogaiastudy and can test up to three child
subjects a day (Bonato, 2009).

2.2.4 Coverage

Controversy over gait analysis’s clinical relevarxeeflected in most U.S. private
insurance policies, such as those of Blue Crosdu& Bhield and Aetna, which regard it as
“research” and therefore not reimbursable (Aet@832 Blue Cross & Blue Shield of
Mississippi, 2008). This suggests that more efficstadies are needed before gait analysis will
be covered as a normal diagnostic procedure.

However, gait analysis is sometimes covered foglmal palsy applications. Children
with cerebral palsy are treated with a variety efdications, physical therapy sessions, bracing,
assistive devices, and orthopedic or neurosurgicaledures to prevent deformity and improve
mobility. While in the past many orthopedic procestuwere performed at separate times, today
physicians attempt to perform multiple proceduresne surgical session. Gait analysis provides
greater confidence over clinical examination thappr surgical procedures will be chosen, has
been shown in various research studies (Simon,)2004

2.2.5 Economics

3D gait analysis typically ranges from $600 to $1,08lthough it can cost up to $2,000.
The average reimbursement is $500 or less. (R@Y,; Bimon, 2004; Stanford School of
Medicine Human Performance Lab, 2008). Despitectlvests to patients, Simon (2004) writes
that in the U.S. it is rare for a gait lab to haseenue balance expenses. He cites the main reason
being the time and expense of performing gait ssidspecifically, establishing a gait lab
requires purchasing equipment that averages ar$80@d,000, excluding facility renovations and
rental cost of the lab space. Maintenance contfactsardware and software add another
$30,000 to $50,000 a year. Full-time lab persorpakist of a bioengineer, a physical therapist,
and a secretary receptionist, for whom salary amfits add up to about $250,000 annually. To
balance expenses, a gait lab would have to perébigast 15 studies a week for 50 weeks at
$500 per study, or $375,000 in revenue. Since,a#ioned earlier, each test takes about three
to four hours, few labs are capable of testing €fjects per year (Simon, 2004).
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2.2.6 Criticisms of Gait Analysis

This section highlights the main criticisms direttg gait analysis regarding why gait
analysis is not widely used by clinicians or ellgibor reimbursement. These are the issues we
will focus on when performing analyses.

Little literature exists that attempts to analylze hon-technical issues hindering clinical
gait-analysis. Simon (2004) analyzed some instihai issues that have hampered gait analysis’s
advancement in the clinic. However, he proposegelgrtechnological or organizational fixes to
the problems, without delving into whether or howblic policies can address these. For
example, to speed up gait analysis testing tim@rbposes replacing skilled the professionals
who currently perform the tests (i.e., biomedigadiaeers and physical therapists) with
technicians such as those used in radiology. Hesalggests that markerless motion analysis
systems can reduce patient preparation time. Regpitte complex reports, he suggests using
machine learning algorithms to analyze the datapaodide recommendations—a situation that
still appears far in the future, as such technigwegare even in medical imaging. Finally, he
also suggests creating integrated databases andristto link gait labs with referring
clinicians.

In 1995, the National Center for Medical Rehahiita Research (NCMRR) within the
National Institutes of Health (NIH) sponsored a ksbrop to develop and prioritize a set of
recommendations regarding the role of gait analysehhancing the function of people with
locomotor disabilities. The workshop resulted ing@ioritized recommendations. However, little
was done in the proceeding decade. From 2004-2088gsearch committee of the Gait &
Clinical Movement Analysis Society (GCMAS), a pred@nal organization interested in human
movement, convened to revise the recommendatiolghinof new developments. The members
reevaluated and prioritized the eight main obje&gito be achieved. Based on Simon (2004) and
the NIH/GCMAS recommendations, this research syitles the main criticisms of gait
analysis.

The first major criticism involves proving the dragstic effectiveness of gait.
Specifically, interpretation of data varies fronmadian to clinician and from institution to
institution (Simon, 2004). This is exacerbated @ngphysicians’ and therapists’ lack of
understanding about gait analysis’ capabilitiesiefies, and limitations. Lack of efficacy data
showing that functional outcomes are improved dugsit analysis contributes to this. Also, the
act of processing raw data and transforming it ddta valuable to the gait analyst may lead to
errors, since few studies analyze these artif&atslly, because of these issues, the cost-
effectiveness of gait analysis as a clinical t@irot be established (Gait & Clinical Movement
Analysis Society, 2008).

The next criticism focuses on gait analysis ecomsnait labs are economically
inefficient, largely due to their personnel cogtd ¢he time it takes to perform a gait study
(Simon, 2004). This is exacerbated by the factdgl#tlabs may lack the business structures
needed to promote and sustain the field (Gait &iCél Movement Analysis Society, 2008).

Related to cost and effectiveness, another critigssthat gait analysis provides
insufficient advantages over simpler methods ttfjuthe costs. Physicians must be convinced
that it offers significant advantages over quest#res, observation of gait with the naked eye,
and 2D video recordings. Historically, most orthdigesurgeons and rehabilitation specialists
relied on static examinations and observational aalysis, with questionnaires being added in
recent years. Cultural and institutional barriéseréfore exist in converting these professionals
to accept clinical gait analysis (Gait & Clinicalovement Analysis Society, 2008).

Part | 29



Others also criticize gait analysis as not beimpgasentative of real-world conditions,
since it is limited to testing in controlled labvamnments, such as walking through an empty
room or moving on a treadmill. Such critics areenftesearchers working on mobile gait
analysis systems (Bonato, 2005)

Also, gait analysis data are difficult to shareisTik due to differences in methods used
by different labs, and little work has focused @veloping procedures for sharing (Gait &
Clinical Movement Analysis Society, 2008). Relatedhis problem is the lack of standards for
testing inter-laboratory reliability, which meaingte are no processes to certify that a gait lab
meets some accepted standard for accuracy (Suttief802).

Finally, there is a lack of cohesion within thddieThis makes it hard to advance its
standing “within business markets and politicahase” (Gait & Clinical Movement Analysis
Society, 2008).

These criticisms are summarized in Table 4, alonly the method we use to analyze the
issues regarding each of them.
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Table 4: Main criticisms of gait analysis

Criticism Specific issues Method used to gain indg into
issues
Clinical - Interpretation of data varies from Case study of MRI/CTA
effectiveness lab to lab and clinician to
clinician

Physicians and therapists don't
understand the capabilities,
benefits, and limitations of gait
analysis

Lack of efficacy data showing
that functional outcomes are
improved directly due to gait
analysis

Processing and transforming ray
data to data valuable to gait
analyst may lead to errors

<

Cost-effectiveness - Gait labs are economically Case study of MRI/CTA
inefficient
Gait labs lack business structures
needed to promote and sustain the

field
Provides few - Gait analysis must offer Case study of MRI/CTA
advantages over significant advantages over
simpler methods questionnaires or observational

gait analysis, which historical
bias causes physicians to stick tp

Complex results - Gait reports consist of “too many Case study of MRI/CTA
are hard to pages of text, graphs, and figures
interpret in a format not easily understood
or useful to the average
clinician.”
Lab conditions are| - Gait tests may not accurately | Not addressed in this research
not representative represent how clinical
of real-world interventions affect patients’ lives
conditions
Heterogeneous - Gait/motion analysis data are | Analysis of Protocols and Standards
data standards difficult to share in gait analysis and DICOM

Different labs use different
protocols, systems, and data
processing methods

Lack of cohesion - Lack of professional cohesion | Case study of MRI/CTA
within the field within the field.

The next chapter analyzes the technologies usgditranalysis to determine whether and
how commercial markets address the technology a#vaents needed for clinical gait analysis.
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3  Gait Analysis Technology Transferability

As mentioned in Chapter 2, one reason that advaseof gait analysis into clinical
applications is stalled might be because appraptethnologies are not being developed by
private industry without policies to drive thein@dopment for clinical applications. Therefore,
one question we aim to answer is whether and hevtetthnology required for clinical gait
analysis differs from that desired in related comuia applications. This would determine
whether public policies are required to develophsiechnologies specifically for clinical gait
use.

To answer this question, this chapter analyzeseittenologies used in clinical gait
analysis and that used in other similar applicatidfany of the companies that produce gait
analysis systems also produce motion capture sgdi@nother commercial markets (sports,
entertainment, etc.), and much of the technologynislar. This chapter then analyzes how
directly transferable the commercial technologipithe medical field and whether high
regulatory barriers exist.

3.1 Gait Analysis Technologies

As mentioned in Chapter 2, gait analysis involaeguiring quantitative measurements of
human body kinematics and dynamics during gait meerg. Two separate measurement
devices are used for this: a motion capture deeiceneasuring kinematics, and a force
measurement device for measuring dynamics. EMCGosglase also sometimes used to record
muscle activity.

The most widely used gait analysis system combamesptical (camera-based) marker
system with force plates (Figure 2), which is ifdeed to a computer for data processing.
However, a variety of other setups are used as well

) o e

\ cameras

Passive
reflective
markers

Figure 2: Typical gait analysis setup (Medscape.com
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3.1.1 Motion Capture Technologies

A variety of motion capture technologies existtige in recording movement kinematics.
These include magnetic systems, mechanical systgtisal systems, and sensor-based
systems.

3.1.1.1 Magnetic Systems

These systems locate position and orientationmga@s in space using a magnetic field,
offering good accuracy and update rates. Each senstains three orthogonal sets of coils,
which allows the sensor to be located when thestratiter produces an electromagnetic field of
three frequencies inside the test space. A dowrdideagnetic motion capture systems is their
sensitivity to magnetic objects inside the trackspgce. One example of such systems is
Ascension Technology’s MotionStar, shown in FigBrélagnetic systems range in cost from
about $5,000 to $150,000 (Ruiz, 2002).

s

WOTION
FRACKING

Figure 3: Ascension Technology’s MotionStar magnetimotion capture system

(Ascension Technology, 2009)

3.1.1.2 Mechanical Systems

Mechanical motion capture systems are comprise&deatrogoniometers, which are
hinges strapped at joints that record joint angdegotentiometer or some other transducer
transforms joint rotations into electrical signadthough the hardware used in mechanical
systems are cheaper than in other systems, meeahaggtems are often heavy and restrictive.
Potentiometers also degrade in performance with Mgehanical systems generally cost
between $5,000 and $10,000. An example of suclstersyis Meta Motion’s Gypsy
exoskeleton-based system, shown in Figure 4.
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Figure 4: Meta Motion’s Gypsy mechanical motion capture systa

3.1.1.3 Image-based systems

Optical systems include those that track passiactve (e.g., LED-lit) markers in video
frames, as well as markerless systems.

Marker-based systems

Marker-based systems were developed to automaiemapture. Such systems track
passive reflective markers or active light-emittdigdes (LEDs) on the body and determine the
3D marker locations using triangulation methodsnfraultiple cameras (generally 4 to 32)
around the subject. They are favored in the computenation and film industries because of
their high accuracy and fast update rates (Vlasal, 2007); however, they are also expensive,
typically costing between $100,000 and $250,000R2002). Additionally, they can run into
problems if the markers are occluded from view.

The location of markers in world coordinates isegaily determined by finding the
centroid of each marker in each camera frame. Ehase 2D locations, the positions of the
cameras are then factored in to triangulate eackeria location in 3D space. Major
manufacturers of such systems include Vicon anddvicknalysis Corporation.

Markerless systems

Markerless systems have been the holy grail otapiotion capture technology since
marker-based systems were introduced. This isatleettime-intensive nature of marker-based
systems as well as their accuracy problems inilog@bints due to skin marker movement. The
first commercial system by Organic Motion was iditoed at SIGGRAPH in 2007, which
featured real-time rapid calibration and extrac(iigure 5). Although technical specifications
and reviews have not been provided of the techiyolaglear restriction available from publicity
videos is that a specialized curtained stage mausiskd to ensure clear contrast between subject
and background. Organic Motion’s system costs $8D,The Motion Analysis Lab at Spaulding
Rehabilitation Hospital has been working with Orgaviotion on gait analysis applications of
the system, but it is still not accurate enoughbiomechanical applications (Bonato, 2009).
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Figure 5: Markerless motion capture system (Organidviotion)

3.1.1.4 Inertial Motion Capture Systems

Such systems were sparked by the rise of MEMSoserad involve placing
accelerometers or gyroscopes on body suits to megsat angle rotation. Although such
systems are very portable and relatively cheap—herotder of $25,000 to $80,000—they do not
measure positions and distances directly and mesasnts drift significantly over several
minutes because the noisy measurements must lgeat#d twice to provide position data
(Vlasic et al., 2007). These systems perform esfig@oor for fast, high acceleration
movements. An example of such a system is XsengaMauit, shown in Figure 6.

=
) | et

¢ n

Figure 6: Xsen's Moven sensor-based motion captumiit

3.1.1.5 Hybrid Sensor Systems

Such systems use two motion capture systems detartio address shortcomings of
using each system alone. An example is Hy-BIRD bgehsion Technology, which combines
optical and inertial technologies to handle coodii when the image is blocked from view.

3.1.2 Force Measurement Technologies

The two main types of force measurement technetogsed are force plates and pressure
mapping systems.
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3.1.2.1 Force Plates

The most commonly used device to measure force@$asce plate (Figure 7). Force
plates comprise a large number of force sensdarmafoove the spatial resolution of forces. A
difficulty traditionally encountered in using forpates is requiring proper foot placement.
Often, this requires having only one foot touchplae, which is difficult for patients with
cross-walking pattern disabilities (Edgintenal, 2007).

Figure 7: Force Plate for Gait Analysis (Noraxon US.A. Inc., 2009)

3.1.2.2 Pressure Mapping Systems

A less common system is shoe-based pressure magunh systems involve thin,
flexible force sensors that have relatively higatsp resolution for force measurements. An
example is Tekscan’s F-scan system(.tekscan.com

Figure 8: image from Tekscan'’s pressure mapping syam
(Motion Analysis Laboratory, Children’s Hospital, San Diego, CA)

3.1.3 Instrumented Treadmills

Instrumented treadmills integrate force platesdiasi treadmill and are specially
designed for gait analysis. The main advantagedi systems is to eliminate the need for
proper foot placement on ground force plates (Bdgiret al., 2007). This can speed up gait
analysis sessions.
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3.1.4 EMG Measurement Systems

EMG systems measure the electrical activity of nassto provide information about
muscle excitations. Such systems may be invasilieravsensors are pricked into specific
muscles to provide data with less cross-talk frafja@nt muscles, or noninvasive, where
surface electrodes are placed on top of skin. N@siwe sensors are generally used for gait
analysis applications. Figure 9 shows these twesygd EMG systems.

= i
= L
-

Figure 9: Invasive (left) and noninvasive (right) MG systems
(drbezner.com, www.health.utah.edu)

3.1.5 Software

Additionally, to calculate joint moments, a humad model is required. This model
involves physical properties of the limbs (masge=stias, center-of-mass locations), as
described in Part I. Motion analysis companiesroftell software consisting of customizable
human body models with their systems, though atbéiwvare besides the manufacturer’s, such
as the free open-source software OpenSim, candaeasswell. An example is Vicon’s
BodyBuilder softwar. Such software typically inceglmany other functionalities as well, such
as 3D visualization capabilities.

3.2 Major Commercial Markets

Besides clinical and research markets, other maekast for the technologies used in
gait analysis. These markets are often catereg tbebexact companies marketing clinical gait
analysis systems (e.g., Vicon and Motion AnalysispOration). This section analyzes to what
extent gait analysis technologies are used in titeskets.

Motion capture for entertainment

Movement analysis is widely used in the entertamnmedustry to create life-like
animation in movies and video games. The largedizkis market means that
advancements desired by entertainment companiedwié the technology. Only
kinematics data is required for entertainment psego

Sports performance analysis

Movement analysis is widely used in professionaltpto optimize movement.
Recently, it has seeped into amateur athleticsedis such as high school runners (Roan,
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2007). Video analysis is commonly used for mostiapfions. Dynamic (force) data as
well as kinematics (motion) data are often usedfarts applications, although
kinematics data alone is widely used as well. Ma&MG data is rarely collected. The
sports analysis market is relatively small, catgrmainly to professional athletes and
teams, but may grow in the future if the price wéls services goes down.

Ergonomics/Industrial Design

The ergonomics and industrial design markets use@moapture and force measurement
technologies (especially pressure mapping systaremalyze ergonomics of product
designs. This market size is potentially largeexag to product design firms and
manufacturers of consumer goods.

3.3 Technology Transferability Between Markets

This section analyzes how transferable technosodgyeloped for commercial
applications are to gait analysis in the medicalketa

3.3.1 Market Overlaps

The entertainment market (motion capture for vigames and films) is the largest
market for these technologies, so any gait anatgsisnology applicable to this market will
likely be advanced through industry alone. Motiapttire systems, but not force plates or EMG,
are used in the entertainment market.

Force plates are used in engineering as a whaliehviikely drives their advancements.
Similarly, pressure mapping systems technologiesiaed in the ergonomics/industrial design
field as well as in general engineering applicatj®uch as single sensor elements in consumer
electronics, consumer peripherals, and automoppdiaations (Ashruf, 2002). These are all
large markets that drive advancements.

EMG systems are driven by other applications enlttomedical market, and these
systems have matured through decades of use.rrestted treadmills may have market
applications to sports analysis, but this is unclea

Biomechanical software is driven by applicatiamsports analysis, ergonomics, and
engineering design generally.

These market overlaps are summarized in Table 5.
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Table 5: Gait Analysis Technologies Used In Commeiad Markets

Technology Commercial Markets

Motion Capture Entertainment (video games,
film, animation)

Force Measurement: Force | General engineering/science

plates Sports analysis

Force Measurement: Pressure Ergonomics/Industrial Design

Mapping Systems General engineering/science

EMG None, but used for other
biomedical applications

Instrumented treadmills Limited use in sports asialy

Biomechanics software Sports analysis
Ergonomics

General engineering/science

3.3.2 Performance requirements

After determining which gait analysis technologaees used by other industries, we now
analyze the general performance requirements eétbther industries to see whether the
advancements they drive will be appropriate fot gaalysis applications as well. This will
highlight whether public policies are needed topsrpdevelopment of such technologies for
medical applications.

As explained in Chapter 2, the main objectivesaif gnalyses are t@cord kinematics
and tocalculate joint momentgidditionally, a system should be easy to settup @uick to use.
These characteristics improve throughput (and tbeseevenue) of gait labs. Future
applications might also aim to predict muscle/tenttoces and muscle activations.

3.3.2.1 Motion Capture

Motion capture systems contribute to recordingeiiatics and to calculating joint
moments. Regarding kinematics, the technical requéints for gait analysis are to (1) track
body kinematics accurately and (2) to record thmesai quickly. Regarding joint moments, the
technical requirements for gait analysis are talfle to locate joint center-of-rotations
accurately.

For motion capture in the entertainment markevjry applications include facial
motion capture (high accuracy), movement, andaligippetry (real-time applications). The
selling points of Organic Motion’s markerless syst® the entertainment industry, which has
drawn much attention in the animation industry vehthat accurate tracking, quick set-up, and
fast calibration are desired characteristics (Ogitotion website, 2009). Thus, it appears that
advancements in industry are in line with advancegmeeeded by the gait analysis community,
and public policies are not required to developtdonologies specifically for clinical gait
analysis.

3.3.2.1 Force Measurement

Force measurement relates to the calculatingiof jpoments. Specifically, to daisy
chain ground forces through the joints via invdasematics to determine moments, we need to
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know how forces are applied to the foot. High splagsolution and accuracy are therefore
desirable performance characteristics. As thesgemeral performance characteristics,
engineering and ergonomics/ID applications musehamilar requirements, so again,
commercial advancements are in line with the neédise gait analysis community. Further,
Sutherland (2005) writes that such systems aralieliand accurate already, suggesting that only
incremental improvements are required.

3.3.2.2 EMG

As with force plates, the EMG systems market afgpeabe a mature market (Section
2.2.2.2), and the developments needed to makétdrlare the same as that required for all other
biomedical applications, so public policies are me¢ded to develop this technology specifically
for gait analysis. However, a detailed S-curve ysialcould strengthen this conclusion.

3.3.2.3 Instrumented Treadmills

Instrumented treadmills have no commercial mar&atside of the limited sports
analysis market, but it seems reasonable to belf@tamprovements are not hard to come by,
since instrumented treadmills combine a treadmith\a force plate. Its advancement is
therefore tied to advancements in force plate teldyy.

3.3.2.4 Biomechanics Software

As discussed in Part I, the human body model imtagral part of accurate joint moment
calculation. Also, visualization capabilities hargroved rapidly with increasing computing
power since the 1980s. Biomechanical software dgesl for the engineering, ergonomics, and
sports analysis markets are interested in the flaimgs as the gait analysis market, namely,
accurately predicting forces and torques in theybblbwever, better methods to create accurate
models used in these software do not seem to lsei@dilby commercial manufacturers. Rather,
their focus seems to be on providing flexibilitydagase-of-use to users for inputting parameters
and creating models.

3.3.3 Regulatory Hurdles

Regulation of gait analysis devices is light beestlr®y are noninvasive and pose no risk
of bodily harm. For example, both force measurerp&tforms and goniometers are classified
as Class | devices (U.S. Food and Drug Adminigtrat?009), which do not require FDA pre-
market approval or clearance, as explained in @na&pt

This shows that regulatory barriers are very lomnfanufacturers in motion capture or
force measurement systems to transfer their comat@echnology to the medical market. EMG
systems are already marketed to biomedical marketde commercial to medical application
barrier will already be achieved by other medigadlecations.

3.4 Conclusions

This analysis shows that the technical and perfoo@aequirements for gait analysis
technologies are the same in commercial applicateafor the clinical gait analysis market.
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However, the advancement of human body models indgidmechanics software depends on
improvements in our ability to acquire data forsdaenodels, which is not pursued by any gait
analysis technology companies. This might involgreasmcements in other fields, such as
medical imaging of body parts, which suggests aeplahere policies on research funding
initiatives could advance gait analysis.

This analysis suggests that advancements drivefoynercial markets are in line with
advancements desired in clinical gait analysis,@naic policies should therefore not be used to
reimburse gait analysis solely to create a mauketurther technology development, nor to
support development of such technologies. Publicips should, however, focus on improving
the accuracy of biomechanical models used in gailyais by funding research in this area. One
technigue that might address this issue is explor&art Il of this thesis.

The next chapter analyses case studies of MRCanAngiography to draw lessons
about social, economic, and political issues reilet@ clinical gait analysis. This addresses the
part of our hypothesis about whether and how pyimieies can promote the appropriate social
structures for advancing gait analysis.
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4  MRI and CT Angiography Case Studies

This chapter aims to understand what politicalpeocsic, and social issues may be
hindering the advancement of clinical gait analydidoes so by analyzing two case studies from
the medical imaging field: the development of MRtahe widespread reimbursement of CT
Angiography. Medical imaging is a widely used, dally accepted diagnostic. It is similar to
gait analysis in its multidimensional nature, adl ae its dependence on a reader’s ability to
interpret the data for effectiveness in affectirgatment outcomes positively. Comparing these
imaging case studies to the status of gait analy&shen draw lessons for how public policies
can advance clinical gait analysis.

4.1 Methodology

This chapter analyzes case studies of two meditading modalities to draw lessons for
gait analysis. We now justify our method and theesaselected, and define our areas of focus for
the case studies.

4.1.1 Justification for Case Study Method

The case study method is a general research strid&igtakes into account contextual
factors and may use a variety of evidence, sudoasments, artifacts, interviews, and
observations. We believe that contextual variat#garding the clinical acceptance of MRI and
CTA are important for understanding why clinicaitgmalysis has stalled and how public
policies might help it fulfill its diagnostic poteal. The case study method is therefore chosen
because it is the preferred method for analyziray'hand “why” questions about contemporary
events when behavioral events cannot be contrfied 2003).

4.1.2 Justification of Cases

MRI and CTA are used as case studies becauseaydikanalysis, both these modalities
are multidimensional diagnostics, as opposed tarpidiagnostics such as pregnancy test strips.
For binary diagnostics, analytical tools such aséReer Operating Characteristic curves—which
plot sensitivity vs. specificity— have been estsitdid to analyze effectiveness, while
multidimensional diagnostics are more complex &edinterpretation of results depends largely
on readers. Also, diagnostic results can presgnssf pathologies different from those initially
suspected (Gazelle et al., 2005). But unlike gadysis, MRl and CTA has been accepted and
insured within the clinical community. Besides inmags strong selling point of noninvasive
anatomical examination, we seek to understanddtials economic, and political factors that
brought this situation about, and what policy lessmight be applied to advancing gait analysis.

The case of MRI shows the factors that led to aecee of this imaging modality in a
wide variety of clinical applications. However, MRiose before the evidence-based medicine
movement became standard in the 1990s. The c&3€Aprovides a contemporary
complement to the MRI case by showing how a neWwrtelogy rose to become a widely
reimbursed diagnostic.
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4.1.3 Propositions

A case study is driven by propositions, which cli@tention to issues that should be
examined. This study’s propositions are drivenh®ydriticisms of gait analysis identified in
Chapter 2, which are reproduced in Table 6.

Table 6: Main criticisms of gait analysis (trimmedversion of Table 4)

Criticism Specific issues Method used to gain indig into
issues
Clinical - Interpretation of data varies from Case study of MRI/CTA
effectiveness lab to lab and clinician to
clinician

Physicians and therapists don't
understand the capabilities,
benefits, and limitations of gait
analysis

Lack of efficacy data showing
that functional outcomes are
improved directly due to gait
analysis

Processing and transforming ray
data to data valuable to gait
analyst may lead to errors

<

Cost-effectiveness - Gait labs are economically Case study of MRI/CTA
inefficient
Gait labs lack business structures
needed to promote and sustain the

field
Provides few - Gait analysis must offer Case study of MRI/CTA
advantages over significant advantages over
simpler methods guestionnaires or observational

gait analysis, which historical
bias causes physicians to stick tp

Complex results - Gait reports consist of “too many Case study of MRI/CTA
are hard to pages of text, graphs, and figures
interpret in a format not easily understood

or useful to the average

clinician.”
Lack of cohesion - Lack of professional cohesion | Case study of MRI/CTA
within the field within the field.

Based on these criticisms, we focus on five prdmes in our case studies:
(2) Clinical effectiveness may be hard or impossiblgaage for multidimensional
diagnostics and so is not always held up as advdoi acceptance and coverage of a
clinical diagnostic technology.
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(2) Cost-efficient workflows are necessary to promdfering of the diagnostic, and for
keeping costs to payers manageable.

(3) New diagnostics must have significant advantages previous established methods.

(4) The relevant clinical data to be examined by phgag must be presented appropriately.

(5) There must be professional cohesion around thetéoty.

4.2 Case Study 1: MRI

MRI, introduced in the 1980s, is one of the mesbgnizable medical technologies in the
world and revolutionized noninvasive soft-tissuagtiosis. It provided a good complement to X-
rays and CT, which imaged hard objects such asucalin bones. However, its use has
expanded to the extent where it is a default diaiodool. This means it may be used in cases
where it provides no additional useful informaticompared to simpler methods such as a
physical exam. As such, the growing use of MRId¢@mse under closer scrutiny by health
assessors.

4.2.1 Technology

MRI works on the principles of nuclear magneticoreence, wherein atom nuclei absorb
energy and then relax by emitting energy in respaogxcitation by different frequencies. The
different relaxation rates of different atoms ca&nused to identify molecule compositions. MRI
focuses on hydrogen nuclei, which can provide keoge about the placement of hydrogen
atoms in the body, which in turn provides knowledgeut anatomy in the body. The
architecture of a common MRI machine is shown guFe 10. Because of its effects on water
molecules, MRI is particularly suited for visuatigi soft tissues in the body.

MRI Scanner Gradient Magnets

Figure 10: MRI scanner architecture (left) and magretic coil design (right) (Coyne, 2009)
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4.2.2 Social, Political, and Economic history

Joyce (2008) chronicles the rise of MRI from a abscience perspective, providing a
detailed account of the social, political, and exuit environment from which the MRI grew to
what it is today. This case study is taken mostiynf her work.

MRI technology grew largely from the work of Amegin physician Raymond Damadian,
American chemist Paul Lautenbur, and British phgsieeter Mansfield in the 1970’s.
Damadian experimented with using NMR to diagnosees publishing a paper Bcienceand
filing a patent issued in 1974 that described Bidatly NMR scanner based on his findings.
Damadian’s article interested many researcherkjdimg Leon Saryan at NMR Specialties in
New Kensington, Pennsylvania. Chemist Paul Lautenklno also worked at NMR Specialties,
observed Saryan’s research and imagined differsed for the information produced by NMR.
He was particularly interested in how normal tisselaxation times differed and thought that
this information could be used to produce anatohpizaures, which he called “maps” of the
inner body. Lautenbur’s innovation was to proposiagia gradient, which was a coil that
created a second magnetic field in addition tagelanagnet. Lautenbur’s 1973 papeNiture
advocated using anatomical pictorial representata@NMR data. During the same time, UK
physicist Peter Mansfield also proposed using Nl Rrovide spatial information of inert
matter such as crystals. Mansfield and a collea@ater Grannel, published their ideaJ ire
Journal of Physics OWhile presenting his ideas at a conference, Meldsieard about
Lautenbur’s work.

The work of Damadian, Lautenbur, Mansfield, anlieegues sparked a drive in the
1970s to create a viable medical technology. Tveasof contention existed, however: what to
name the technology, and whether to produce oclppal information from NMR data or to
include numerical data as well. Many scientiststipalarly those working in physics and
chemistry, thought numerical values were as or nmpsrtant than the graphical information
produced, so they included these in their pubbecetias well. A related problem was how to
present the graphical information. Some researeldiaenced by the colorful pop art of the
time—used bright colors that mimicked Warhol paig§. By the end of the 1970s, research
teams had settled on naming the technology “NMRyin@”

NMR imaging entered clinical practice in the 1988t there was controversy over
which medical specialty should control the techggldt could have been placed in nuclear
medicine departments, where experts were traineebi detailed numerical information. But at
the same time, NMR also produced anatomical pisile® it could be placed in radiology
departments as well. Radiologists specialize inanial image interpretation. Although many
people had reservations about placing it into Hadists’ hands (because radiologists were
biased towards images and so would ignore the bradal information), NMR eventually
became part of radiology in many countries.

Institutional changes in radiology and medicinatdbuted to this outcome. Professional
radiology organizations, such as the Radiologicali&y of North America (RSNA) and the
American College of Radiology (ACR), grew rapidiythe 1970s. These organizations took
advantage of their growing membership and actiladpied for control over imaging
interpretation. Further, radiologists in the U.®revgaining greater independence in the early
1970s. The ACR, for example, urged radiologistgton independent practice status in their
hospitals,” which allowed them control over theie$ and income. After some resistance, the
American Hospital Association (AHA) accepted thésyand and, due partly to ACR’s lobbying
efforts, gave up trying to pass legislature allojihe AHA to regain control over radiology.

Part | 46



During the same period, the appearance in medafingany other new imaging modalities such
as CT and ultrasound also increased the rangexpatise of radiologists in image
interpretation. Economics also played a role, ashigh cost and large size of NMR machines
meant that private physicians would not purchaserthchines, leaving it up to hospital
radiology departments to purchase and utilize them.

The placement of NMR into radiology departmenigpgd development of the
technology in several ways. First, data presentdiecame entirely image-based, meaning that
numerical NMR values were ignored. Second, datea@mce was changed to grayscale, since
radiologists were used to such images from x-rags@AT scanning. Third, the word “nuclear”
was dropped from the name, and NMR was renamed Whid. came about because of the anti-
nuclear power plant and nuclear weapon movemerttseeaf970s and the Three Mile Island
incident, which biased public opinion against amghassociated with nuclear.

4.2.3 Effectiveness and Advantages

FDA requires MRI equipment manufacturers to shoat their machines visualize body
parts to a certain degree of accuracy (i.e., réisolu Manufacturers also provide detailed
information of the algorithms used and other techininformation as part of the approval
process. MRI devices are classified by the FDA las<ll devices. Manufacturers do not have
to compare their techniques to preexisting onedimical studies to prove that they produce
better results in order to gain FDA approval. AREYA approval, no other government agencies
require efficacy studies. However, the Agency feakhcare Research and Quality (AHRQ)
does fund research to examine health care costtygq@nd outcomes. Other agencies and NIH
also provide grants for efficacy and outcomes mesedut none of these evaluations are
required as is done with pharmaceuticals.

Proponents who argue that MRI is used extensivetause it's the “best technology”
suggest that its use leads to better diagnostieracg and treatment outcomes. But Joyce points
out that studies comparing MRI to other diagnotahniques show that while imaging
improves diagnostic confidence in specific cagedpésn’t always improve diagnostic quality or
health outcomes for patients in all its currentl@ggions. For example, some studies show that
MRI does not produce the most effective or costetive information in diagnosis of many
common shoulder and knee muscle problems, suggdsmh a combination of patient histories
and physical exam techniques provide more accurgiemation in these cases. In some cases,
MRI appears to at best replicate the informatioaaay gained through other means.

This shows that proving effectiveness is not reggifior the medical community to
embrace a diagnostic technology. Related to thigeiss that for specific applications, MRI
doesn’t require significant advantages over othmapker techniques (such as a detailed physical
exam or questionnaire) to warrant its use.

4.2.4 Economics

Insurance companies generally pay between $40660@ for typical MRI exams
without contrast agents, and imaging units canraoto three exams per hour (Joyce, 2008).

Part | 47



4.2.5 Work Practices

The MRI workflow can be divided into two parts: igiag, which is the physical act of
acquiring images, and image interpretation, whictihe reading of images by radiologists.

4.2.5.1 Imaging

Joyce points out that imaging is structured likengnassembly-line occupations in its
emphasis on repetition and specialization. Speijicthe process begins with the technologist
interviewing the patient to discover if there any aafety or health hazards, then by her
positioning the patient in the machine, acquirimgges (which typically lasts 20 minutes),
releases the patient, and sending the imagesami@agist for review. Faster throughput
increases volume and hence revenue, which is edlyaonportant for private imaging centers
whose sole activity is patient scanning.

The emphasis on throughput permeates other dasfgcts of the medical imaging room
as well. For example, computer screens are oftsitipoed away from patients as they exit the
imaging room to prevent them from stopping to vievages and thereby slowing the workflow.

4.2.5.2 Image interpretation

The room where radiologists interpret MRI exanimra is called the reading room. Here
the radiologist reads the image to a transcribbg edits the radiologist’s verbal recording into a
written report. Patients never interact with radgits. Joyce also compares the radiologists’
workflow to an assembly line. In large hospitaley may sit side-by-side in a reading room,
speaking into a microphone. In smaller centerg; tlszially work alone and may sometimes call
technologists on site or another physician if uasbout a scan. Radiologists typically specialize
on some modality, though they will read images firmamy anatomical parts. In larger sites,
radiologists may specialize on one imaging techmigiod one anatomical area.

4.2.6 Analysis

We draw several lessons for clinical gait analfigim this case study of MRI.

First, the history of MRI shows that data preseatsais tied to ownership of the
technology. How information is presented is impottand this in turn relates to interpretation
expertise. Specifically, radiologists specializadaading black and white X-rays and so
manufacturers changed their image output to mimsg; even though MRI images could be any
color. Related to the movement of MRI machines mafdiology departments, the case study
shows how technology ownership leads to professmotaesion around it, and how these
professional organizations can then push manufacuo design machines in a ways that suit
them better.

Second, we found that new diagnostics don’t nec#gseed to have significant
advantages over previous methods in specific agpdics to be used widely and reimbursed.
This may stem from the fact that multidimensionagdostics sometimes pick up signs of
pathologies besides the one being focused on.deidatthis, the case of MRI shows that shows
that effectiveness is hard to gauge (e.g., radisiagterpretation of images is often subject to
errors as well), so lack of proof of effectivenesaot necessarily a barrier to clinical acceptance
and reimbursement.
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Third, we found that MRI developed efficient wddiis, which has allowed it to handle
larger volumes of imaging procedures and retaigelqarofits. The completion of a scan in 20-30
minutes and the assembly-line structure of the BMIM room and radiologist reading rooms
contrast sharply with the practice of gait analysisich takes 2-3 hours per patient and has the
same 2-3 specialists performing the test and ird&ng the results.

4.3 Case Study 2: CT Angiograms

CT Angiography (CTA) became practical in the e20D90s due to advances in detector
technology and computing power. CTA provides a dementary case study to MRI because it
arose in the evidence-based medicine era, is déaneffectiveness, and poses radiation
dangers, yet nevertheless gained wide clinicala@rand coverage. Advocates of CTA believe
that it reduces the need for more invasive andmsige methods such as conventional
angiograms, which involve threading a catheteruyhoarteries. Critics counter that the benefits
of CTA are limited and that the costs and safetlysrimay be significant.

4.3.1 Technology

CT works by synthesizing X-ray images from diff@rangles into a 3D image. Its most
basic form, shown in Figure 11, works as followsmAtorized table moves the patient through
the imaging system while an x-ray source conculyeotates within the circular opening, with a
set of x-ray detectors rotating in sync at the oémel of the patient. The x-ray source produces a
narrow, fan-shaped beam that ranges in width fram20mm. The figure shows only one row
of detectors, but current machines have many rdwigtectors side-by-side to allow
simultaneous imaging of many slices, which redsoasning time. After scanning, the data are
then processed by computer to produce image she¢sepresent 3D views of the target regions
(Brenner & Hall, 2007). Scanning with modern CTAascers takes about 12 seconds (Berenson
& Abelson, 2008).
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Figure 11: CT Technology (Brenner & Hall, 2007)

4.3.2 History

Although Computed Tomography (CT) was first introdd in 1972 for brain imaging,
CTA did not develop until the late 1990s, when swag and computational technologies had
advanced enough to make this feasible for genératal use.

The first CT scanners required hours of scannimg tnd days of computation for each
slice (a “slice” being a 2D image that representsrgain volume thickness). By the 1980s, scans
were still performed slice by slice but computatiad become faster. Helical CT scanners were
introduced in the early 1990s, consisting of a-8lg mechanism that allowed the x-ray
tube/detector array to rotate continuously whike platient was moved inside the scanner. This
sped up scan times, but helical scanners wereaiiblow for many CTA applications, meaning
that with single-detector CT’s, one had to use ¥bigk CT slices in order to scan quickly. Such
thick slices gave poor resolution. New X-ray tueehinology was also introduced during this
time that could withstand the heat generated duwaorginuous X-ray production. By the late
1990s, scanners consisting of multiple rows of cets were introduced that allowed many
images to be acquired during one helical revolutidns sped up scan time and also allowed the
scanning of long segments of the body using acb&ptelumes of intravenous contrast. CTA
scanning was now practical, though analyzing amth®gizing the large numbers of images
generated still required an expensive workstataelyg dedicated to 3D image manipulation. By
the early 2000s, workstation technology had furitbranced, and the number of detectors per
scanner had also increased, finally making CTAraazl reality (Dolmatch, 2005).

By 2005, 64-row scanners came to market, sparkiegtgnthusiasm for CTA. Larger
numbers of physicians began purchasing CTA maclandperforming tests in-house. By 2007,
Medicare had become concerned about CTA'’s rapigtamodespite “lack of clinical evidence
to demonstrate improved patient outcomes” (Appl@®Q)8). Key questions Medicare had about
the technology included whether CTA was an advawee cardiac catheterization or simply an
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add-on test, which patients benefited the most f@M, and whether CTA saved lives. Under
Medicare rules, Medicare has to reach a nationsrege decision about a new technology
when it receives requests from its own staff orghblic that is deemed legitimate.
Alternatively, new procedures and technologiestmansed without such a coverage decision if
Medicare’s local contractors allow it and agregag for it. By 2007, all local contractors in the
U.S. were paying for CTA. This meant that Medicaoald only slow adoption of CTA by
reaching a national coverage decision to pay foh @F a limited patient group. Additionally,
CMS also proposed that patients receiving CTA belld in clinical trials aimed at
determining the procedure’s effectiveness reldtiveatheterization (Appleby, 2008).

CMS’s limitations led to protest from physiciaspgcialist groups, and manufacturers.
The Society of Cardiovascular Computed Tomographygrganization of 4,700 specialist
physicians, strongly opposed the limitations. Wil ather specialty societies, such as the
American College of Cardiology and the Americanl€ge of Radiology, began a letter-writing
campaign to block CMS’s decision. Manufacturer€dfscanners such as GE also urged
Medicare not to enact the limitations (Appleby, 800rhe specialist organizations and other
prominent medical groups consisting of physiciah® werformed scans began lobbying CMS
and members of Congress. Among the many argunteeysitade were that CMS ignored some
studies showing the benefits of CTA and that Madided agreed to pay for other tests such as
mammograms without requiring proof that they imgdware. They argued that new
technologies need time to prove themselves. Evintadout a dozen senators and 79
representatives supported the opposition of Medisdimitations (Berenson & Abelson, 2008).

Medicare eventually allowed CTA to remain covel@da wide range of patients under
rules set regionally by Medicare’s intermediaried aarriers, i.e., the insurance companies that
process Medicare claims (Appleby, 2008). Industmysultants believe that since Medicare has
agreed to pay for CTA tests, commercial insuretsstart doing so as well (Berenson &
Abelson, 2008). Additionally, there is reason étidve that media attention may have
contributed to enthusiasm for the technology bysphigins and patients as well. Such media
names as Oprah Winfrey and Matt Lauer of Thday Shovhave promoted the technology, and
Time Magazineven put CTA on its cover next to the title, “Htavstop a heart attack before it
happens” (Redberg, 2007).

4.3.3 Regulation

As with MRI machines, under FDA regulations, CTAscer manufacturers must certify
only that they are safe and provide accurate imégehlnical accuracy). (Berenson & Abelson,
2008)

4.3.4 Economics
CTA scans are billed at $500 to 1,500 (Berensonb&lgon, 2008).

4.3.5 Controversies Regarding CTA

There are several major controversies regardingskeof CTA. First is the economic
incentive for physicians to increase the numbescahs performed. Since physicians and
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hospitals own many CTA scanners, they have an tiveeto perform scans in order to recoup
the costs. For example, industry consultants egtithat about 3,000 CTA tests need to be
performed to pay off a scanner. Even ignoring tt@emic incentives, just having a CTA
scanner nearby likely makes physicians more wiltomgend patients off for a test since it is
convenient.

Another controversy is that CTA scans may causeerharm than good because the
radiation from CTA scans increases cancer risks Tisk is made greater if scans are done
repeatedly, such as on an annual basis in ordexdk the progression of arterial blockage.

Also, CTA is often used in combination with othéaghostic tests, such as nuclear stress
tests, which creates a layering of diagnostic t¢iseseby further increasing medical costs with
unclear benefit. Critics also argue that if a CTArsfinds plaque that a physician intends to
stent, a conventional angiogram (requiring thregdiha catheter) will still be necessary to
determine how to implant the stent, so CTA doesaheays eliminate the use of conventional
angiograms.

Additionally, some cardiologists believe that by &, most patients will have arterial
plague visible on CT scans anyway, so finding$sf by a CT scanner aren’t particularly useful.
To be more useful, these cardiologists believe @¥a& must tell whether particularly blockages
are likely to rupture or to significantly reducel flow to the heart.

So far, various studies have presented mixed seahliut CTA'’s effectiveness in
diagnosing heart disease, and no conclusive evedexists that CTA leads to life-saving
treatment (Appleby, 2008). However, the technolowy one day prove useful—for example,
by determining which arterial plaques are stabbkwahich are likely to rupture—and not
reimbursing them may stifle growth and innovati8erenson & Abelson, 2008). Holding back
the technology therefore has costs, and HarvarihBsis School economist Regina Herzlinger
remarks that unless a technology is used, wayspoave it are unlikely to be discovered
(Appleby, 2008).

4.3.6 Analysis

The case of CTA is significant because CTA emeigete era of evidence-based
medicine, which was supposed to encompass statgadards for acceptance and
reimbursement of a technology, and because o¥diwes radiation safety risks. Several key
issues are highlighted by this case.

First, the case shows how the media, lobbying,iatedest groups can affect Medicare’s
coverage decisions. As discussed earlier, the fitomaf physician interest groups centered
solely around the technology created strong pressniMedicare to relax its restrictions on CTA
use. Further, the media touted CTA as the nexthirgy, which likely made the public and
physicians favorable towards the technology.

Second, it shows how evidence of effectivenesd (aaybe even safety) is not required
for a diagnostic to be accepted, as long as tsezaough physician enthusiasm for a technology.

Third, it reiterates the clinical obsession witbualization, as several physicians quoted
in the sources remarked that they were won oveéhemtechnology after viewing their first CTA
images.

Finally, it emphasizes the importance of ownergifip technology, as well as the
creation of efficient workflows.
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4.4 Case Study Conclusions

Comparing MRI and CTA to gait analysis shows ttedt gnalysis lacks the visual
“wow” factor that physicians get when viewing meadionages. Gait analysis results are
presented in lengthy reports with many tables dotspMedical images also come with reports
and annotations, but one can also look at the irntagk and see many key issues without
reading a text.

How this “wow” factor comes about relates in lapget to what the stakeholder group
that controls the technology is used to seeingr&aiologists, it was black and white images.
For the orthopedic surgeons and physical theraghiatsuse gait analysis, it may be 3D models
of the body, or it may be something else. For gadlysis to have an impact clinically, it must
first impress these experts, and then organizdtsinactures must be set up to make the
diagnostic process efficient and for groups thapsut the technology to have a voice in medical
policymaking.

Although public policies cannot directly set up egiate institutional structures, it can
fund further research that links gait analysis tetbgy engineers to clinicians who might find it
useful. This latter group might not be limited toypical therapists, physiatrists, and orthopedic
surgeons. Specifically, such projects should fmrubow such experts want to view the
information, and how the technical data could b& peesented to them. With greater
enthusiasm for the technology and with technoldgoarovements sparked by the commercial
markets that allow for faster workflows, gait arsagéymight become a clinically reimbursed tool,
even if rigorous effectiveness data does not exist.

Although gait analysis may appear to be an expergimgnostic, a simple analysis of its
cost to payers shows that it is comparable to na¢ditaging, despite its inefficiencies. This
suggests that future technological and workflowrnowements could make it a cheap diagnostic
procedure compared to imaging. If it alters treatha a low price point, it may be a very cost-
effective diagnostic. Though imaging procedure €osry widely depending on body part
scanned and where the scanning takes place, aweahgs for each modality are available from
National Imaging Associates (Abelson, 2004). Gaélgsis costs for 2D video-based without
ground force plate and 3D marker-based with grdonck plate systems are also compiled
(Roan, 2007; Stanford School of Medicine Human éterhnce Lab, 2008). Figure 12 shows
these costs. Note that these values are from paysagan and not from charges listed on bills for
insurers, which are generally much higher and whiehnegotiated by insurers to these lower
payment amounts. Note also that these values dmciatle insurance reimbursement, which
generally cover all or most of the costs of MRI,,@hd PET scans. For example, Massachusetts
insurers generally pay providers between $500 40 for an MRI scan (Kowalczyk, 2004).
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Figure 12: Average range of payment costs for sevarimaging and gait analysis procedures, not includg
insurance reimbursement (colors represent range afosts, with darker regions signifying the low to rgh
range)

One can see that 3D gait analysis is about the paiceas an MRI or CT scan.

However, most insurers do not cover gait analysaking it much more expensive to the patient
than imaging procedures. Even the cost of a sir2pleideo gait analysis procedure can cost
more than what a patient pays out-of-pocket foin@aging procedure. This cost data suggests
that gait analysis may dramatically reduce in pase¢he technologies and workflows improve,
making it a relatively cheap diagnostic and thexeefoore favorable in Medicare’s view.

The next chapter analyzes data standards used iangdysis and compares them to
DICOM, the standard used in medical imaging todaeahnether public policies can improve data
sharing. This addresses our hypothesis about whatitehow public policies can promote the
appropriate data standards for advancing gait aizaly

Part | 54



5 Data Standards and Part | Conclusions

Data standards are vital for the effective intarake of medical information. For
example, effective implementation of DICOM standaathd protocols in medical imaging
helped the field advance rapidly. In gait analysigring of data is often difficult because of
differences in data acquisition methods. The Qadt@linical Movement Analysis Research
committee points out that “not enough work has libmme to develop procedures for
sharing...[which] can limit understanding, interpteta, and presentation of results” (Gait &
Clinical Movement Analysis Society, 2008). This ptex presents a high-level examination of
data standards used in gait analysis with respdat@OM and focuses on how public policies
can address this issue.

5.1 Scope

This research focuses only on data standardsafoagalysis, which addresses the
criticism that it is hard for gait labs to shareaddt does not focus on protocols used to capture
gait data or on other operator workflows.

5.2 Methodology

We perform a high-level examination of current gaialysis data standards to determine
their strengths and weaknesses. Then, we compase #tandards to the DICOM standard used
in medical imaging to draw conclusions on how pubplblicies can improve gait analysis data
standards setting.

5.3 Background on Technical Standards and Protocols

Standards are required for efficient exchangeatd thetween labs, clinics, and
physicians. The U.S. standards system is unigtigeimvorld in two main ways: (1) standards-
setting is voluntary and done by the private seeod (2) the standards-setting environment is
diverse, encompassing about 600 organizations @msbctia (Mallet, 1998). This contrasts with
the government-centralized standards setting psesesf the EU and places constraints on how
one can use policies for standards setting. Onarddge of the U.S. setup is that standards may
be set faster and more appropriately for each.figldisadvantage is that appropriate standards
may not be set in the case of public goods, suttealh care.

Issues that can arise without proper data stasdactlide individual manufacturers
investing effort to create unique formats, lackegfacy, and a heavy burden on users to
understand a large number of formats and how thieyact. Standards allow the testing of
similar products to compare performance, and tlay gsers confidence that products conform
to a minimum level of performance. Standards bénadinufacturers by providing them greater
realization of network effects, and they protectdrs from stranding. However, standards may
also constrain variety and innovation. Under incatiige standards, firms will compete for the
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market, each hoping that its standard will domith&emarket. Under compatibility, firms will
compete within the market along other dimensionshss price, product features, and service
(Shapiro, 2001). However, proprietary standardsgiea firms competitive advantages that
hinder cooperative standard setting.

5.4 Gait Analysis Data Standards

Gait analysis data includes motion capture datagfdata, and sometimes EMG data.
Any data standard must store these data typesglaaswpatient information and settings used in
capturing the data.

Two main types of data formats can be consideregiinanalysis. The first is raw data
captured from devices, which is then processednmesway. The second is the skeletal model
file used to calculate joint moments and angless $keletal file contains a predefined skeleton
(rigid-body linkage) software model with specifigaht constraints and ranges of motion that is
then scaled to the subject and used to determiniegogles from collected motion-capture
position data.

Optical data generally has to processed befoeeidatvailable, while magnetic and
mechanical systems can be analyzed in real-timei¢@®r, 1999). Organic Motion advertises
that its markerless system is capable of real-tesponse as well, though, as mentioned earlier,
such systems still have not achieved the accuesmyined for gait analysis applications.

5.4.1 Motion Capture Standards

We focus our analysis on motion-capture data faspsnce force and EMG
measurements are straightforward to analyze andioviblve a few measured variables,
whereas motion capture data is more complex.

The two main types of motion capture data are lasiogal data and rotational data.
Native data captured by different types of systathdiffer, however, which may require
different data processing routines to create amatag type—typically joint angles. For
example, translational data is captured nativelpjycal systems, rotational data is captured
natively by mechanical systems, and both transiatiand rotational data are captured natively
by magnetic systems. The most commonly used forfoatsotion capture data are C3D,
ASF/AMC, and BVH (Kitagawa & Windsor, 2008).

5.4.1.1 Major formats
The major formats used for motion capture applicetiare discussed below.

A. Optical Marker Raw Data Formats

Al C3D

C3D was originally created to store both raw canmgi@mation during tests as well as
the marker motion derived from it. Oxford Metric®w known as Vicon Corporation, chose to
use C3D as its file format for marker data (Glercli®99). C3D is designed as a flexible format
that can be used to store a variety of data inglesifile for gait analysis. This is appropriate
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because it was designed for gait analysis appicatiC3D stores two types of measurement
data: positional information (i.e., 3D coordinatasyl digital analog information (data from force
plates, EMG, etc.), both synchronized by frame. @B accepts parameter data, which is other
information about the data. These include measuneorets and database information such as
patient name and diagnosis. To share this datagVvenywusers must agree to use the same names
for labeling data, which C3D does not specify (MatLab Systems, 2008).

A.2  Adaptive Optics AOA format

The AOA format is a tracker format that describegof markers and their position at
each sample time. It was developed by AdaptivedSpa motion capture hardware company
(Gleicher, 1999).

A.3  Motion Analysis TRC format

Motion Analysis Corporation developed TRC to stae data from its full body optical
motion capture systems, as well as for use asutpubformat in its real-time face tracker
software. Marker position is stored as global cowmtes (Gleicher, 1999).

B. Skeleton model/motion data

The main skeletal model/motion data formats are/ASF, BVH, and HTR. OpenSim,
a research consortium funded by NIH and basedsatf@t University, has created its own
XML-based format as well.

B.1 ASF/AMC

Acclaim—a defunct video game company whose namewsowned by another
company—created its own data formats for opticaliomocapture. The Acclaim format is
unique because it separates the skeletal file thmmmotion file, the rationale being that the
same skeleton is often used for many different omsti ASF (Acclaim Skeletal File) contains
information about the skeletal model, such as ydidsumentation, basis pose, bone definitions,
and joint degrees of freedom and ranges of moAMC (Acclaim Motion Capture) contains the
motion data for the skeleton. One advantage oA®BIE/AMC format is that files contain both
global rotational data as well as local rotaticshetia of all skeletal limb segments. Vicon adopted
the format after Acclaim placed it in the publioain (Kitagawa & Windsor, 2008).

B.2 BVH

BVH (BioVision Hiearchical) format was developed BipVision, a now defunct motion
capture service company. It is one of the most [awpuotion data formats in the animation
community. BVH format is a binary file containingeteton and motion capture data.
Advantages of BVH include flexibility and ease diteng. However, it lacks a full definition of
the skeleton’s basis pose. Further, there areopézability problems because BVH format is
often implemented differently in different motionadysis applications, meaning that BVH
format used in one application may not be integatet another (Gleicher, 1999).
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B.3 HTR

HTR (Hiearchical Translation Rotation) was devebbps a native format for the
skeleton of Motion Analysis software prior to tméroduction of Acclaim’s ASF/AMC format. It
was created as an alternative to BVH to address’B¥hbrtcomings. HTR allows much
flexibility in data types and ordering and contaanfill basis pose specification (Gleicher, 1999).

B.4 OpenSim

OpenSim is an XML (eXtended Markup Language)-bdsedat for storing skeletal
information. XML is a specification similar to HTMused in writing web sites, but with much
more markup capability and therefore greater fléikyo Each OpenSim model file defines the
constraints, joints, and rigid segments of a gerskeleton in a hierarchical manner that is then
scaled to the subject being measured. OpenSim axagaped by Simbios, which is the National
NIH Center for Biomedical Computing focusing on Biecg-based Simulation of Biological
Structures, housed at Stanford University. Open®mpmpassing analysis software and
standards for data sharing of gait models, is miaptovide a free, open-source platform for
researchers to exchange musculoskeletal simulafimadels, libraries, and scripts)
(simtk.org/home/opensim). More information aboue@®im can be found in Chapter 7.

B.5 Other Raw Data Formats

Raw data formats exist for other motion capture afibds. For example, BRD format
was created for Ascension Technologies’s Flockiadd8magnetic motion capture system and
can store data from any magnetic system. In thiimdith, each magnetic sensor’s position and
orientation at each sample is stored in world coates. Sensors report information
independently of one another, so no hierarchidarmation is stored (Gleicher, 1999).

5.4.2 Recommended Formats: C3D and OpenSim

Although all the formats evaluated here store dai& to some degree, only C3D and
OpenSim were developed specifically for gait analgpplications rather than for entertainment
applications. Both formats are also open standardigh is important for the medical
community, as evidenced by the successful adoptohuse in medical imaging of the open
DICOM standard. This means that extensive docurtients publicly available.

5.5 DICOM

We now briefly examine the formation and overailisture of the DICOM standard used
in medical imaging to see what lessons can be dfangait analysis data standards. DICOM
can be considered a successful standard becéhwse ieen adopted as the standard in radiology.
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5.5.1 Brief Overview of DICOM Standard

DICOM (Digital Imaging and COmmunications in Medie) is a standard that specifies
how medical imaging and related data are to bedtdransmitted, and printed. Its use has
allowed sharing of medical imaging data capturedgumany different modalities.

DICOM is maintained by the DICOM Committee, and@pendent, international
standards development organization administerddEiMA’s (National Electrical
Manufacturers Association) Medical Imaging and Tetbgy Alliance” (DICOM PS 3.1). The
Committee is divided into many working groups thatform the majority of work regarding
upgrades and corrections to the standard. The DI@oNMmittee has no enforcement authority
and manufacturers can choose to comply with howenary (or none) of the standards in the 16
DICOM volumes as they please. In that sense DIC@Mhe considered more a guideline than a
mandatory standard (Pianykh, 2008). However, ajpbmaanufacturers have incorporated the
standard because radiologists demand it (DICOM .Bf 3

Note that DICOM does not provide procedural statglabout how imaging should be
performed by technologists and what settings tieylsl use when running imaging equipment;
rather, it specifies only the data workflow usedls devices.

5.5.2 Brief History

In the 1970s, most radiological data was storezhalog media such as magnetic tapes.
The rise of digital computers—and the fact thatgmg machines at the time used proprietary
standards that hindered sharing of data—Ied therisare College of Radiology (ACR) and the
National Electrical Manufacturers Association (NEMA 1983 to form a joint committee for
developing a standard to make digital medical imggndependent of device manufacturers.
The committee began by studying other standardsvasdoarticularly impressed by one used by
the American Association of Physicists in Medic{d&PM) for storing images on magnetic
tape. AAPM stored information as sequences of diet@ents, where each element was
identified by a unigue name, known as a tag. Tmenoittee adopted this idea of representing
data as a sequence of tagged data elements.

ACR-NEMA 1.0, the first version of the standardsipresented in 1985 and distributed
at the Radiological Society of North America (RSN#nual meeting. The committee presented
ACR-NEMA 1.0 to meeting attendees as a guidelimeMEMA assumed no responsibility for
its enforcement or interpretation.

As ACR-NEMA 1.0 contained many weaknesses and€rACR and NEMA realized
that the standard needed more work. To do this, ANEIMA created working groups—
autonomous subcommittees that worked on specifis p&the standard. In 1988, the committee
released ACR-NEMA 2.0, which medical imaging dewitcanufacturers began to adopt.
However, ACR-NEMA 2.0 had a major weakness: it pted limited means for communicating
imaging data over computer networks. The commgtem realized that fixing this omission
required a major revision.

DICOM 3.0 was presented at RSNA in 1992 in prgietjorm. By the 1993 meeting, a
functional form of DICOM 3.0 was available. To tluiay, the standard is still called DICOM
3.0, and all revisions are made to this standaeh{fRh, 2008).

Part | 59



5.5.4 How It Works (a very high level view)

DICOM defines how devices interface, store, anddfer data within a Picture Archiving
and Communication Systems (PACS). PACS are conmgpotenetworks dedicated to image
storage, retrieval, distribution, and presentatl&CS interface with a Radiology Information
System (RIS), which is a database used by radiadegartments to handle radiological data. In
turn, the RIS connects to a Hospital Informatiost8&gn (HIS), which is the general system
(encompassing both paper- and computer-based ngtticed manages administrative, financial,
and clinical aspects of a hospital. Health Lev@HIZ7), is commonly the standard used in
handling HIS data aspects. This workflow is showifrigure 13.

Figure 13: Typical workflow for radiological data in a hospital (Pianykh, 2008)

5.5.4.1 DICOM Information Hierarchy

DICOM can be viewed as a model of real world imggdrocesses: it attempts to reflect
how physicians take and think about images. Tdhdy it uses the Patient-Study-Series-Image
hierarchy (Figure 14).
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Figure 14: DICOM four level information hierarchy u sed to uniquely identify data (Pianykh, 2008)

This hierarchy makes sense if we imagine a patiemting to a hospital. At the top level,
we want to associate all images with the patiehis Ppatient may then have several studies
performed on him (MR, CT, PET, etc.), which bringsto the next lower level. Each study may
have multiple images, and these images often gethegin a distinct series, such as separate CT
slices that must be fused together in a specifnfigoration to assemble a 3D image. This brings
us down to the Series level. At the lowest leved,have data for the individual 2D images. At
each level, DICOM assigns universal identifierse Tour hierarchy attributes in this way
uniquely identify imaging data.

These attributes used to identify data—such aemialiD, date of birth, etc.—are defined
by a dictionary specified in the DICOM standardsshown in Figure 15. This prevents
confusion over naming of data elements.

Figure 15: From Patient to Patient Object in DICOM
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5.5.5 Lessons for Gait Analysis

Even after examining DICOM from such a high-lewed can see that data standards
setting in gait analysis has several major shoricgm

First, DICOM is updated by DICOM Committee workiggups, and the DICOM
Committee and NEMA take ownership of the stand@ftile standards setting by committee
tends to be slow and bureaucratic, such stepseaessgary to ensure that key stakeholders are
represented and in agreement with the standarthaky gait analysis technologies are
established, it does not seem crucial to have atdsdhat change rapidly. In fact, the continued
use of many standards long after their initial @pton (and after the companies that created
them had become defunct) suggests relative maifrigyit analysis standards, and current
optical motion capture standards are likely appliedo new technologies such as markerless
motion capture. Although C3D is an open standand,managed by a single company. This is
unsustainable, as the standard will not adaptdani@ogy changes, particularly if the company
goes out of business. It also means there is iegrif manpower to continually update the
standard.

Related to the need for an organization to owrsthadard is the need to update C3D or
replace it if a better standard exists. This wonlalve studying other standard formats, both in
motion capture and in other medical fields. Effadreate gait analysis standards have been
largely ad hoc, based on the needs of one comgamagrch lab or another. In contrast, the
DICOM committee used a more structured processaachined other standards of the time to
pick best features. This showed much foresighDI&OM became poised to take advantage of
networking technologies when the internet emerged.

Second, C3D or some other gait analysis data atdrghould specify data labels, as
DICOM does with its dictionary. One of C3D’s “fea#s” is its flexibility, but this poses
problems for researchers who want to share dawukedifferent researchers will label different
data differently.

5.6 Policy Recommendations

As standards setting is performed by non-governatdadies in the U.S., public policies
cannot directly set standards. However, policiesspaur the development of organizations in
charge of standards. One example of this is NIHEBOS center, which produces OpenSim
and defines its data standards for skeletal modliaks.objective of this collaboration is to create
software applications and an online community &selarchers to share biomechanical models.
However, OpenSim doesn’t deal with the raw datdweapaspects, just the sharing of models
and results.

As gait analysis remains largely in researcheratsasetting data standards through the
research community would poise such a standare ecbepted if and when gait analysis enters
routine clinical use. As such, the government ecardfone a research institution to work on
standards setting as part of their gait analydated research activities. Such a method could
also lead to a more structured method of definmegstandard if analysis of other standards used
was a stipulation of funding.

The next section summarizes our overall conclssand policy recommendations
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5.7 Part | Concluding Policy Recommendations

Based on our analysis of gait analysis technotgiar hypothesis that the technologies
required for gait analysis can be developed thraxgghmercial (hon-medical) markets was
correct. However, our hypothesis that policies #héacus on fostering the professional
institutions and data standards required for dihg@it analysis to be a practical diagnostic tool
was incorrect, as policies cannot directly spuhsievelopments. Only through indirect means,
such as funding research into specific topics,vearsupport the development of organizations
around gait analysis and data standards for is Thapter summarizes the policy
recommendations presented in the previous chapters.

5.7.1 Policy Recommendations

The main policy recommendations are summarizediabelo

Recommendation 1: Don’t fund technologies

Public policies should not be used to reimbursegalysis solely to create a market for
further technology development or to support dgwelent of such technologies, as
advancements and desired performance charactendgtgait analysis-related technologies for
non-gait analysis applications are in line withgbmeeded for advancing gait analysis.

Recommendation 2: Improve human body models

On a technical level, public policies should foomsimproving the accuracy of
biomechanical models used in gait analysis by fugdéesearch in this area and in developing
technologies that can address this need. Thesd cwlide cheaper imaging modalities or
improved methods to acquire body measurements Iguacki cheaply.

Recommendation 3: Research Information Presentation

Gait analysis lacks the “wow” factor of medical M&I CT images. Public policies
should fund further research to link gait analyshnology engineers to clinicians who might
find it useful, which might not be limited to phgal therapists, physiatrists, and orthopedic
surgeons. Specifically, such projects should faousow such experts want to view the
information, and how the technical data could b& peesented to them. Such research could be
similar to that done in aeronautics regarding humé&rmation processing or in computer
science regarding user interface development.

Recommendation 4: Fund a Data Standards Research Gter

As standards setting is done by non-governmentdiksan the U.S., public policies
cannot directly set standards. However, they canthe development of organizations in charge
of standards. One example of this is NIH's SIMBIGter, which produces OpenSim and
defines its data standards for skeletal models.oljective of this collaboration is to create a
community and software applications for researcteshare biomechanical models. As gait
analysis remains largely in researchers’ hand8ngetata standards through the research
community would poise such a standard to be acdepsnd when gait analysis enters routine
clinical use. As such, the government can fundaresearch institution to work on standards
setting as part of their gait analysis-related asg® activities. Such a method could also lead to a
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more structured method of defining the standaemh#lysis of other standards was a stipulation
for receiving funding.

5.8 Future Work

Future work could explore mobile gait analysis teslbgies, which can create a
paradigm shift for where and how movement is messut could also explore how a database
and data standards for movement data could bertsbsmnd funded. Detailed workflow analysis
of the gait analysis process could also be perfdrtadetter understand how to improve its
efficiency.
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PART Il: Body Segment Inertial Parameter Effects on
Joint Moment Results

Part Il addresses a technical issue in walkingayalysis—specifically, how we can
make consistent joint moment calculations givereutainties in body segment parameters. As
explained in Part |, accurate subject-specific baaygels are required for consistent gait
analysis results, and the lack of cheap, effiaeathods for acquiring these are a major technical
issue. The hypotheses and methodology of thisIPam recapitulated from Chapter 1 below.

Problem

One of the important data outputs from gait analisjoint moments (or torques). Joint
moments are important to know for two reasonstRingy can be correlated to poor
biomechanics that lead to degenerative processesn8, they can be used to compute other
variables, such as joint powers and individual reiaad tendon forces (Challis & Kerwin,
1996). But difficulty arises because joint momearts not directly measured variables and must
be calculated from experimental data based oniadditassumptions, one of these being body
segment inertial parameters (BSIPs). BSIPs cooslsbdy segment masses, center-of-mass
locations, and inertias. This technical issue briite use of gait analysis in clinical decision-
making. A detailed analysis of uncertainties imjanoment calculations due to differing BSIP
values is therefore important for understanding fmnt moment calculations may vary for the
same subject, which can advance gait analysis&atapility.

Hypotheses
Based on our literature review, we hypothesizegttmain findings:

Joint moment estimates will be significantly ditfat during periods of high force
impact, i.e., during heel strike, but not so déferat other periods of the gait cycle
Joint moment variations will be different for difént joints.

Joint variations will be significant at some phastthe gait cycle and less so at others

Methodology

The methodology used involves sensitivity studieforward dynamics computer
simulations as well as analyses of the dynamicaatgns of motion. 3D forward dynamic
simulations are physical simulations that trackezipental gait data in order to capture data
from instrumented “virtual humans.” It is an incsgaly popular method for studying human
locomotion.
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Conclusions

Part Il concludes that joint moment variations tesg from different segment inertial
parameters are significant at some parts of thecgele, particularly heel strike and leg swing. It
provides recommendations on which segment ingriedmeters one should estimate more
accurately depending on which joints and which phax the gait cycle one is interested in
analyzing.

Overview of Proceeding Chapters

Chapter 6 reviews the biomechanics of human walkiigle Chapter 7 presents our
research methodology in detail. Finally, Chapterésents our results and conclusions.
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6 Biomechanics of human locomotion

This chapter summarizes important aspects of wglkiomechanics and gait analysis. It
also reviews relevant literature. Although thissisdocuses on walking because it is
fundamental to physical mobility, running and otf@ms of gait will be alluded to at times.

Y. C. Fung, a founder of the biomechanics fieldirds biomechanics as an
interdisciplinary field that applies the principlesmechanics to study and address biological
issues (Fung, 1993). The mechanical issues wanemeested in regarding human locomotion
include energetics, classical dynamics, and stglaifid control of mechanical systems.

6.1 Biomechanics of Walking

Human walking is marked by two distinct phasesglersupport and double support.
Single support occurs when only one leg suppogstudy, and it is followed by a double
support phase when both feet are in contact wetgtbund. At the end of the double support
phase, body weight is transferred to the frontdied the rear leg swings forward, initiating
another single support phase. The cycle then repé&lking differs from running because
running lacks a double support phase (McMahon, 198lwalking speed increases, the period
of double support for each walking cycle decrease# it reaches zero for running.

Before describing the gait cycle in more detail,fikgt define the terms “joint flexion”
and “joint extension” which are used widely in fiedd. Flexionis a movement that decreases
the angle between joints, whigxtensiorincreases the angle between joints. These arenstayw
the knee and hip in Figure 16.

Figure 16: Example of knee flexion and extensiondft) and hip flexion and extension (right)
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Figure 17 presents a schematic of the walking mp®oermalized by gait cycle.

(Remember that a gait cycle is the time requiredafieg to undergo both a stance phase and a
swing phase.)

Figure 17: Phases in human walking (Inmaret al, 1981)

The cyclic characteristic of walking leads to threadily observable body deviations
from progression of the center of mass in a sttdigh forward: with each step the body (1)
speeds up and slows down slightly, (2) oscillatsically several centimeters (Figure 19), and
(3) weaves slightly from side to side (Figure 2@)r(an et al., 1981). Because most movement
occurs in the sagittal plane (Figure 18), howereany studies approximate walking as a 2D

motion. We use this fact later to justify our arssdyof the 2D dynamical equations of motion
rather than the 3D equations.
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Figure 18: Body Planes (training.seer.cancer.gov)

Figure 19: Vertical sinusoidal oscillation of centeof mass during walking from Fig 1.12 of (Inman efal.,
1981)

Figure 20: Side-to-side motion of center of mass ding walking from Fig. 1.13 of (Inman et al., 1981)
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6.2 Gait Analysis Concepts

This section presents concepts important to oalyais of gait analysis errors—
specifically, rigid body dynamics, analysis methadsd, sources of uncertainty, and reasons for
using various body segment inertial parameter nsodel

6.2.1 Rigid Body Dynamics in Gait Analysis

Gait analysis approximates the body as a rigid biothage. With this approximation,
classical mechanics principles for rigid-body ligka can be used to analyze movement. Two
main types of dynamic analyses are performed dndgéa depending on the outputs desired:
inverse dynamics and forward dynamics.

6.2.1.1 Inverse Dynamics

Inverse dynamics is used to estimate joint torgaqsaired to perform measured motions.
This analysis feature is included in all commercialical gait system software (e.g., Vicon,
Motion Analysis). In inverse dynamics, we inputématic and ground force measurements from
a gait analysis session and estimate internal joines and moments by summing the forces and
torques on each segment. It is hard to determirsel@awr tendon forces from inverse dynamics,
however, because these forces are time and veldefigndent.

6.2.1.2 Forward Dynamics Simulations

In recent years, increasing computational powdrianproved algorithms have
popularized the use of forward dynamic simulatiforggait analysis. The challenges of
modeling locomotion using this method are many,dmiéntial benefits are also great. Forward
dynamic simulations allow cause and effect to leebeetermined, as opposed to empirical
measurements in humans, which are limited becdustnical and physiological reasons. Winter
states that these simulations allow researcheaskdéWhat would happen if...” questions
(Winter, 2005).

Models can be built from scratch, but most redeancuse commercial packages.
MATLAB provides a SimMechanics toolbox that canused to model various mechanical
elements represented by Simulink Blocks. Commesaéivare specifically designed for
biomechanics modeling include SIMM by Musculograghand AnyBody by AnyBody
Technology. Recently, an open-source version ofNMslWas released called OpenSim (Delp et
al., 2007). Compared to SIMM, OpenSim has fewer ehediting tools but contains features not
present in SIMM. One of these is Computed Musclat@d a control algorithm that allows the
simulation model to track gait data.

6.2.2 Uncertainties in Gait Analysis Results

As mentioned in the intro to Part Il, the desiretpots from gait analysis, such as joint
torques and/or muscle-tendon forces, are not medgslirectly. Instead, they are calculated from
experimental data based on certain assumption(5i2004). Assumptions made include body
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segment parameters and locations of joint cenferstation. Other sources of error include skin
motion artifacts, force plate measurement noisé,maotion marker noise (Riemet al, 2008).
Some of these issues have been addressed. Thievegredi gait analysis results to
inaccuracies in joint center locations has beemhented, and researchers such as Reinbolt and
colleagues have explored using optimization rostioeestimate these locations from force and
kinematic data (Reinbo#t al, 2007). Optical systems are sufficiently advanited measuring
marker positions is no longer a significant sowterror in clinical gait analysis, (Baker, 2006),
though skin movement means that marker locationts@tody shift during movement,
affecting the locating of joint axes. Skin motiatifacts might be addressed by the introduction
of markerless motion capture systems, which integraany visual features from a body rather
than a small number of individual markers. Orgavation recently introduced the first
commercial markerless motion capture system, thaugh a system is still not accurate enough
for biomechanical applications. Force plate measard errors can be reduced by signal
processing (Raet al, 2006). But the effect of body segment inerteigmeters (BSIP’s) on
joint torque estimates is unclear.

6.2.3 Body Segment Inertial Parameters in Gait Anal  ysis

Several methods have been proposed in the liter&dumprove the accuracy of BSIP
estimates, but these methods are generally toeititarsive or costly to be practical (e.g.,
measuring the whole body with MRI and CT scansnaking hundreds of anatomical
measurements). For this reason, researchersesfilbbn BSIP estimation methods generated
from studies performed decades ago. Further, tB8#e estimation methods were originally
created for purposes other than 3D gait analys®) as crash dummy tests. Different BSIP
estimates may significantly affect joint torqueules

One study’s BSIP model may be better than anatlier'many reasons, such as the type
of motion to be studied, how the body was dividethe study, the size and type of its subject
pool, or its measurement method. Often, combinatadmmodels are used because different
studies may provide different parameters. Neptura’'s forward dynamics model, for example,
used a gait model that had BSIPs estimated viaifterent models, that of Clauser et al. and
that of Chandler et al (Neptumee al, 2001).

Another problem with many of the predictive BSlBdals proposed in the literature is
that they refer to ambiguously defined segmentgdamaking it difficult to determine exactly
how to use them in 3D gait models (Duneasl, 2007). An analysis of how variations in BSIP
estimates affect gait analysis calculations oftjtanques would therefore be helpful in
determining which joints and which phases of thé gale we can be more confident of our
joint moment calculations, and whether certain &vering gait are associated with larger
torque variations due to different BSIP models.

6.3 Literature Review
This section summarizes methods and results frash giudies on the effects of body

segment inertial parameters (BSIPs) on joint momesilts. Studies classify the effects of
BSIPs on joint moments in one of two groups: sigarit and not significant. For walking,
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however, effects may be significant for some phasdise gait cycle and insignificant at others,
which is one of this study’s hypotheses.

Significant Effects

Studies by Rao et al. (2006), Riemer et al. (20889, Kingma et al. (1996) concluded
that variations in body segment inertial parametB&IPs) had significant effects on joint torque
results during inverse dynamics analysis.

Rao et al. compared results based on six diffdredy segment parameter estimation
models using a bottom-up 3D inverse dynamics agbré@ao et al., 2006). They found that
both joint moment peaks (maximum magnitudes) aid jpoment root mean squared values
per gait cycle were significantly affected by usdifferent models. However, they did not
analyze the physics of gait to understand thesetsfor provide recommendations on how to
address these uncertainties. The range of jointenbmesults estimated using different BSIP
models observed by Rao et al. is reproduced inr&iga.

Figure 21: Mean (black line) and range of joint monents (grey) observed by Rao et al. using six diffent
BSIP models to analyze walking gait analysis data.

Riemer et al. analyzed uncertainties in inversgadyic solutions for one gait cycle due to
body segment parameters, segment angles and skinnaatifacts, location of joint center of
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rotation, force plate measurements, and motion emar&ise through an analytical-experimental
technique. Using an equation to compute the uppend) on possible error, they analyzed a
sagittal-plane model and calculated uncertaintyesith respect to a nominal value calculated
from De Leva’s equations (Riemer et al., 2008).yTthetermined uncertainty values from
literature searches, device manuals, and experahtsts on 10 subjects. They concluded that
torque uncertainties were significant, ranging fré%h to 232% of maximum torque depending
on the joint, and that the major contributors t@éo body torque inaccuracies were segment
angles, distance from COP to ankle center of matnd foot mass.

Kingma et al. analyzed two BSIP models and thestiffice in joint torque estimations
during four sagittal plane (i.e., 2D) lifting movents (Kingmeet al, 1996). They also
performed sensitivity analyses on individual segni&BIPs to analyze their effects. Their results
showed that for lifting motions, the BSIPs with taegest effects were the trunk mass and
center-of-mass location, although these resultsamaot be generalized to other motions. They
also found that joint moments were sensitive toFB@&riations.

Small Effects

Other studies concluded that variations in BSIR& smmall effects on joint moment
results. However, many of these studies do notyaaajait, analyze only two BSIP models, or
did not focus mainly on analyzing BSIP effects.

Andrews and Mish performed a theoretical analyisss, (0 experimental data) to
determine the sensitivity of joint moments to vaaas in BSIPs (Andrews & Mish, 1996).
Comparing results from two sensitivity analysis hegls, they concluded that for small
variations in BSIPs (5%) and smooth movements, joint moment results weteaignificantly
different.

Pearsall and Costigan evaluated the effect of mgrigpdy segment parameters (mass,
center of mass, and inertia values) on inversemjcsamoments, using the segment parameters
predicted by Dempster’s equations as the basetiddased on walking data from 15 subjects
(Pearsall & Costigan, 1999). They compared six B&ifimation methods based on three
studies: Dempster, Clauser, and Zatsiorsky. Theahtbey used only included leg and thigh
segments, with torso modeled as a point mass. Raopint out that the method used by
Pearsall and Costigan neglects relationships betB&P components, namely that masses,
inertias, and com’s between body segments arendependent (Rao et al., 2006). Pearsall et
al.’s results showed that the effects of BSIP vemms were small but statistically significant,
though they only varied BSIP parameters individuall

Ganley and Powers compared BSIPs measured usihgrergy X-ray Absorptiometry
(DXA) to those estimated using cadaver-based regresnodels and analyzed the differences in
joint moment results from inverse dynamic analgdigalking (Ganley & Powers, 2004). They
concluded the following: (1) net joint moments weqtalitatively similar using both BSIP
estimates, (2) there were different effects aeddht joints, and (3) there were different effetts
the stance and swing phases of the gait cycls.itiportant to realize, however, that the main
purpose of their study was to prove the validitypdfA as a way to measure BSIPs, meaning the
BSIP estimates they used were similar.

Challis and Kerwin presented a sensitivity analysibcedure for analyzing joint moment
estimate uncertainties due to various parametéatiars, one of them being BSIPs (Challis &
Kerwin, 1996). They then applied this proceduranalyze elbow joint moment estimations for
a single subject performing elbow flexion while gpang a 17 kg dumbbell. Using Clauser et
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al.’s density estimates, they varied the densitthefarm model by 5 and 10% and examined the
effects on joint moment estimations, concluding the joint moment estimations about the
flexion and supination axes were largely insensitv BSIP variations. Note that the movement
analyzed was not gait and so external forces appdi¢he body were small.

Silva & Ambrosio investigated the sensitivity obudts from inverse dynamic analysis
due to imprecision in input data, such as measurenase, and in the biomechanical model,
such as BSIP uncertainties for the legs (Silva &asio, 2004). Perturbing the masses of the
upper and lower legs by 0.01 kg and 1.0 kg, respygt and applying these models to analyze
gait data from one subject, they concluded that jsioments were relatively insensitive to mass
variations in the lower and upper leg. Howeveryttiiel not analyze effects of perturbations in
center-of-mass locations or inertias, or alter coions of BSIPs, which might cause
significant changes in joint moments.

Nguyen et al. studied the effects of segment ialgptirameter variations on joint moment
calculations in inverse dynamics using Monte Camoulation and concluded that significant
variability in inertial parameters did not neceflgdranslate into large joint moment variations
(Nguyenet al, 2007).

6.4 Summary
This chapter reviewed the biomechanics of humaaonmtion and previous research that

analyzed the effects of body segment inertial patam on joint torque calculations. The next
chapter discusses the methodology used in thiystud
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7  Methodology for Part I

This chapter explains the methodology used to aeahpw joint moments calculated
from gait analysis change based on the Body Segmerital Parameter (BSIP) model used.
Each BSIP model predicts mass, center-of-massitocatnd inertia for the body segments.

The research methodology involves two parts: (i)gi8D simulations to track
measured 3D gait data and performing a sensitnglysis by varying BSIP model sets, and (2)
analyzing the 2D dynamical equations of motion. BBesimulation portion involves varying
BSIP model sets for an anthropometric 3D walkingleldhat is used to track gait data via
forward dynamics simulations to estimate joint tag. Parameter model sets are defined as
mass segment relations, center of mass locatiodsn@ment of inertias for the whole body.
Modifying a certain parameter (such as the maskseothigh) alone is not realistic, since the
BSIP models denote certain relationships betwegmeast properties. The 2D dynamical
equations portion involves deriving the dynamiagha&ions of motion to gain further insight
into the effects of BSIPs. 2D equations are deraved used instead of 3D equations because
they provide greater clarity into BSIP effects wigss complexity while still accurately
representing the 3D simulation results.

7.1 Body Segment Inertial Parameter (BSIP) Estimati  on Models

This section describes the seven BSIP estimatiatetaaised and presents the BSIP
values calculated from them.

7.1.1 Definitions

We define two key terms used to describe the reseaethod: (1) BSIP model, and (2)
model set. We use the teBS$IP modelto denote an estimation method such as regression
equations or an algorithm used to estimate BSim body height and mass. These are the
most commonly used methods to estimate BSIPs, siace advanced methods such as medical
imaging are costly and/or require much greatereftoperform. We definenodel seto mean
the set of mass, center-of-mass, or inertia relatiithin each model. For example, if a BSIP
Model can predict mass, center-of-mass, and ineslizes, then this model contains three Model
Sets: a mass model set, a center-of-mass modangkan inertia model set.

7.1.2 Descriptions of Body Segment Inertial Paramet  er (BSIP) Models

This study analyzes seven BSIP models. This numibkrdes the scaled model in
OpenSim that is widely used in forward dynamicslss of gait. Although other BSIP models
are available, these models were chosen becausarthapplicable to the test subject and are
widely used or have been analyzed by other reseex¢h.g., (Thelen & Anderson, 2006). (Rao
et al., 2006)). For example, Pearsall and Costageatyze the BSIP model of Jensen and Fletcher
(1994), but this BSIP model was created specifidallestimate BSIPs of elderly subjects and so
is not applicable to the subject analyzed in thisls
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The seven BSIP models represent estimates denwadd variety of study methods,
including cadaver and in vivo studies, each of wtias advantages and disadvantages. All but
one of these models are based on U.S. Air Forckestdor human factors applications

Model 1: OpenSim Model

The OpenSim BSIP model has been used in many fdrdyramic studies, such as (Arnad

al., 2007), (Thelen & Anderson, 2006), and (AndersoR&hdy, 2001). Inertial properties are
based on the data of (McConvili¢ al, 1980) with modifications. McConville used
photogrammetry and anthropometric techniques tecodlata from 31 living male Caucasian
subjects and develop regression equations to prB8ik’s. Photogrammetry is a technique that
determines geometric properties about objects frartiple photographs. The algorithm that
OpenSim uses to determine BSIPs for the subjet#ssribed in Section 7.5.1. This model
provides BSIP estimates for the foot, shank, thggvis, and HAT (head, arms, torso)
segments.

Model 2: Dempster (1955)

Dempster performed the first detailed study of BSIBing cadavers. He used the water volume
displacement method to measure segment volumesdraj people, which were in turn used to
calculate limb segment densities. He determinetkecei-mass locations using a balance plate.
Finally, he determined segment moments of inegiagithe pendulum method, in which the
investigator suspends an object from a fixed paits it in motion by shifting it several degrees
from equilibrium, and measures the time it takeswing for one oscillation period (Herzed

al., 1999). Although segment inertias for specificjeats are provided in Dempster, no
estimation models or methods are presented to a@iewto scale these inertias to people of
different sizes. Thus, Dempster’s inertias valuegamot used in this study. Model 2 lumps the
HAT and pelvis segments together, as opposed teeMid

Model 3: Clauser (1969)

Clauser used techniques similar to Dempster’s toalied a different subject set. Specifically, all
but one of the cadavers used in Dempster’s studg wepreserved, while Clauser et al. used
only preserved specimens. Clauser et al. alsosaythiey used more “elaborate statistical
analysis” than previous studies. Model 3 provid&H for the same segments as Model 2.

Model 4: Chandler (1975)

Chandler et al. used similar methods as Clauséldain with a different cadaver set. Their
main criterion was physical condition, meaning teegluded specimens with such conditions as
obesity, major surgery, and other anomalies. Femwpy and X-rays were used to verify bony
landmarks. Chandler presents regression equatoresfimating moments of inertia in the
principal directions (i.e., longitudinally alongaasegment, and along orthogonal directions to
this axis). Model 4 provides BSIPs for the samerssgs as Models 2 and 3.
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Model 5: de Leva (1996, based on Zatsiorsky-Seluyawn, 1983)

de Leva adjusted Zatsiorsky-Seluyanov’s data teelagive to joint centers rather than to body
landmarks. Zatsiorsky & Seluyanov’s study is natdidtcause it analyzes a large sample of
living, college age individuals (100 male, 15 feem@laucasian subjects). Although no other
comprehensive studies have been published abo&SHes of college age Caucasians, de Leva
believes that Zatsiorsky et al.’s data is not galhepreferred to cadaver data because it uses
bony landmarks as reference points rather tham ¢ainters. This model separates the pelvis and
HAT segments, similar to Model 1.

Model 6: Dumas (2007, based on data from McConvilleL980)

Dumas adjusted McConville’s data to corresponditosentional segment coordinate systems
centered at joints. This model provides estimatesimilar segments as in models 1 and 5.

Model 7: GEBOD (GEnerator of BOdy Data software)

GEBOD is a software program developed and usetdytS. Air Force. Its original purpose
was to produce human and dummy body descriptiothBArticulated Total Body model, a
software program used to simulate the motion ddéhrigid bodies, such as humans in car
crashes. When the user inputs subject mass anlath&gBOD outputs estimated segment
masses and inertias. Center-of-mass values fromGQEE&e not included in our analysis
because GEBOD approximates segments as unifonpsedliwith center of masses located
halfway between joints, which is unrealistic. GEB@®@IDorporates data from McConville et al.
(1980) and from Grunhofer (1975), who synthesizathmpometric data from German Air
Force and US Air Force personnel. This model prewidstimates for similar segments as
models 1, 5, and 6.

These seven models are summarized in Table 7. dla¢ion used to describe each
model is MX_set whereX denotes the model number asetdenotes whether it is the mass,
center-of-mass, or inertia parameter $&e models are formulated such that each pararseter
can be calculated independently of the otherspatth the relationships between members of
each set are interdependdnttheory, this means that one should be ableixoamd match any
mass, center-of-mass, and inertia parameter satesihey are applicable to the general
population of Caucasian males!
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Table 7: Summary of the different estimation modelsised in this study

BSIP Model 1 (M1) Model 2 (M2) Model 3 (M3) Model 4 (M4) Model 5 (M5) Model 6 (M6) Model 7 (M7)
estimation M1_mass M2_mass M3_mass M4_mass M5_mass M6_mass M7_mass
model hame M1_com M2_com M3_com M4_com M5_com M6_com
M1_inertia M3_inertia M5 _inertia M6 _inertia M7 _inertia
Source Default OpenSim | Dempster BSIP | Chandler BSIP | Clauser BSIP de Leva BSIP Dumas BSIP GEBOD
BSIP estimates estimates relations estimates estimates estimates (Generator of
generated using its (adjusted data (adjusted data Body Data
scaling algorithm from Zatsiorsky- | from McConville | software)
Seluyanov study)| study)
Segments HAT HAT HAT HAT HAT HAT HAT
defined Pelvis Pelvis Pelvis Pelvis
Thigh Thigh Thigh Thigh Thigh Thigh Thigh
Shank Shank Shank Shank Shank Shank Shank
Foot Foot Foot Foot Foot Foot Foot
Method Scaling generic Cadaver study | Cadaver study | Cadaver study | Gamma ray Photogrammetry | Algorithm
OpenSim model scanning of of living subjects | Predicts BSIPs
estimated using living subjects using data from
McConville with McConville and
modifications Grunhofer
Study sample | N/A 8 Caucasian 6 Caucasian 13 Caucasian 100 Caucasian | 31 Caucasian U.S. and Germar
males age 52-83| males, age 45-65 males, age 24-78 males, age 45-65 males, mean age| Air Force
27.45 +5.64 personnel
Country & 1980 (McConville),| 1955 (Dempster)| 1975 (Chandler | 1968 (Clauser et| 1983 (Zatsiorsky| 1980 1980
year of USA USA etal.), USA al.), USA et al.), Russia (McConville), (McConville),
original study USA 1967-8
(Grunhofer),
USA
Source (Delp et al., 2007) | (Dempster, 1955) (Chandleret al, | (Clauseret al, (de Leva, 1996); | (Dumas et al., (Chenget al,
1975) 1969) (Zatsiorsky & 2007); 1994)
Seluyanov, 1983) (McConville et
al., 1980)
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7.1.3 Calculations from Models

This study calculates BSIPs using methods providezhch BSIP model. The coordinate
systems used are as follows: The principal worlordmate axis is defined as shown in Figure
22, and the orientation of the principal world atinate axis in the standing position aligns with
the local x,y,z axes of each segment. For exangigjtudinally along the foot is taken as the x-
coordinate in the foot local frame.

Difficulties encountered in using these BSIP modiedtude the following: segments are
defined differently in each study, center-of-mas=ations are defined relative to different
landmarks, and moments of inertia are definedfiemint directions. For uniformity, all inertias
calculated in this study are with respect to segroenter-of-mass locations. This is the same
definition used in OpenSim, meaning that the vahpeit to the software for a segment’s inertia
is its inertia about its center-of-mass. Detailshaf BSIP calculations shown in the following
tables are presented in Appendix B. The resultalges are summarized in the following three
tables. Note that some models do not calculatéltody mass accurately. This is the case for
Chandler’s regression equations (M4_mass), whitdulze total body mass as 78.9 kg,
whereas the experimental subject's mass was 72.6 kg

Table 8: Segment mass estimates in kg for each BStrodel (kg)

BSIP Model
Segment | M1 mass| M2 mass| M3 mass M4 mass M5 mass M6 mass Nkhass
HAT
(w/o
pelvis) 33.068 N/A N/A N/A 35.65 35.86 35.58
HAT
(including
pelvis) N/A 49,22 49.22 49.54 N/A N/A N/A
pelvis 11.38 N/A N/A N/A 8.109 10.31 9.728
Thigh 8.984 7.187 7.478 10.78 10.28 8.930 8.984
Shank 3.581 3.340 3.122 2.977 3.144 3.485 3.646
Foot 1.207 1.016 1.089 0.9146 0.9946 0.8717 0.9275
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Table 9: Segment center-of-mass location estimatis each BSIP model (m)

BSIP Model
Coordinate
Segment inopensim | M1 com | M2 com | M3 com | M4 com | M5 com M6_com M7_com
HAT (w/o pelvis) X -0.03239 N/A N/A N/A 0 0.01414 N/A
relative to torso segment
in model y 0.3455 N/A N/A N/A 0.4531 0.4279 N/A
z 0 N/A N/A N/A 0 0.0009791 N/A
HAT (including pelvis) X N/A 0 0 0 N/A N/A N/A
relative to torso segment
in model y N/A 0.2970 0.3081 0.3119 N/A N/A N/A
z N/A 0 0 0 N/A N/A N/A
Pelvis X -0.07240 N/A N/A N/A 0 3.100E-05 N/A
Relative to pelvis
segment in model y 0 N/A N/A N/A -5.800E-4 -0.04140 N/A
z 0 N/A N/A N/A 0 -6.643E-06 N/A
Thigh X 0 0 0 0 0 -0.01923 N/A
Relative to femur
segment y -0.1950 | -0.2036 -0.1745 -0.1845 -0.1921 -0.2012 N/A
z 0 0 0 0 0 0.01548 N/A
Shank X 0 0 0 0 0 -0.02040 N/A
Relative to tibia segment
in model y -0.1846 | -0.1840 -0.1575 -0.1771 -0.1895 -0.1743 N/A
z 0 0 0 0 0 0.002975 N/A
Foot X 0.1027 0.1042 0.1067 0.1043 0.1051 0.09092 N/A
Relative to calcn segment
in model y 0.03080 0 0 0 0 -0.03594 N/A
z 0 0 0 0 0 0.006188 N/A
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Table 10: Segment inertia estimates for each BSIPadel (kg-nt)

BSIP Model
Segment M1 inertia | M2_inertia | M3_inertia | M4_inertia M5 _inertia M6_inetia M7_inertia

torso (not

including

head/arms) IXX 1.660 N/A N/A 1.840 1.989 0.7794 1.942
lyy 0.8507 N/A N/A 0.4546 0.5243 0.6682 0.3639
Izz 1.612 N/A N/A 1.299 1.731 0.8382 1.812

pelvis IXX 0.1042 N/A N/A N/A 0.1048 0.1218 0.08130
lyy | 0.08831 N/A N/A N/A 0.09551 0.1341 0.09200
Izz | 0.05870 N/A N/A N/A 0.08415 0.1077 0.07330

Thigh IXx 0.1702 N/A N/A 0.1309 0.2449 0.1653 0.1562
lyy | 0.04462 N/A N/A 0.02732 0.05022 0.04421 0.03650
12z 0.1795 N/A N/A 0.1356 0.2449 0.1769 0.1634

Shank Ixx | 0.04757 N/A N/A 0.04368 0.03692 0.04935 0.05970
lyy | 0.004814 N/A N/A 0.003590 0.006024 0.006294 0.006200
Izz | 0.04823 N/A N/A 0.04309 0.03520 0.04935 0.06060

Foot Ixx | 0.001430 N/A N/A 0.0008306 0.0008663 0.001426 0.0008000
lyy | 0.003970 N/A N/A 0.003188 0.003721 0.006756 0.004600
Izz | 0.004180 N/A N/A 0.003321 0.003382 0.006396 0.004400
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The calculated values show that there is littlescgiency between estimates. For
example, thigh mass varies significantly between M8ss (Chandler et al.) and M5_mass
(Zatsiorsky et al.). This difference makes senseesChandler analyzed cadavers while
Zatsiorsky et al. analyzed live subjects using gamaly scanning. However, even BSIP models
using the same study method have different BSifhasts. For example, M1_mass and
M6_mass are both based on McConville’s photogramnstidy, yet they predict masses for the
HAT segment that differ by almost 3 kg.

7.2 Human Body Model

The anthropometric model used in this analysis3®a23 degree of freedom model
developed by Thelen, Seth, Anderson, and Delp (Be§l., 2007). It includes feet, legs, pelvis,
and a combined upper body HAT (head, arms, toesginent and has been used in many
forward dynamics gait studies. The world coordirgtstem is denoted below in Figure 22.

The head, arms, and torso are represented bygla sigid HAT segment that articulates
with the pelvis via a ball-and-socket joint locasgdapproximately the third lumbar vertebra.
Each hip joint is modeled as a ball-and-sockettja@ach knee joint as a hinge joint, each ankle-
subtalar joint as a universal joint, and each raesat joint as a hinge joint.

Figure 22: 3D, 23 degree-of-freedom human body mobtesed in the analysis. (Andersomt al, 2006)

7.2.1 Actuator Set

The actuator set used in the model includes toagtigators located at the knee, ankle,
hip, and lumbar joints.

Additionally, actuators for “residual forces andments” are also included to stabilize
the model during walking. These are modeled aslegBee-of-freedom joint between the pelvis
and ground (3 force actuators and 3 moment act)atbne mathematical explanation is
presented here. For a perfect model of the hume, ltbe dynamical equations can be
represented in the form:
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)

whereM is the inertia matrixg is a n-vector of generalized coordinatéds the
Coriolis/Centripetal vecto is the gravity vector, andare the external generalized forces,
which for human gait are ground reaction forcess Houation is derived in for an arbitrary
linkage rigid-body system (Lewkst al, 1993).

However, when one tries to track the gait datagiaimodel, this equation does not hold
for many reasons, including measurement errorsghindccuracies, and unmodeled dynamics
such as friction. Therefore, to maintain dynamionsistency, a residual generalized force term
must be included

)

Without this residual term, the model becomes unstand falls over soon after the simulation
starts. These residual forces and moments carfohetge a crude metric by which to evaluate
the accuracy of our model to the real physicalesyst

7.3 Gait Data

The gait data used is that of a 1.8 m tall, 72.6467.7" percentile) Caucasian male
walking at self-selected speed on a Bartec splitibstrumented treadmill. BSIP studies have
been performed most extensively on Caucasian nogdelgations, which makes this data set
particularly suitable for analysis.

The gait data includes ground force and motionwaptiata for approximately 14 seconds
of walking and was collected by Chand John of Stahin the facilities of Prof. Jill Higginson
at the University of Delaware. (Jolehal, 2007). It is included with the OpenSim package. A
six-camera motion analysis system was used todqumsitions of reflective markers placed on
the subject according to a modified Cleveland Clmiarker set.
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Figure 23: Gait Analysis System used (left) (Neuroascular Biomechanics Lab, 2008) and gait data
representation in OpenSim (right)

7.4 Software

OpenSim is used to create forward dynamic simutataf walking from gait data (Delp
et al., 2007). It is a free, open-source equivaté8IMM (Software for Interactive
Musculoskeletal Modeling) developed by Simbios, ki center at Stanford University for
physics-based simulation of biological structu@$4M is widely used in biomechanics
research, particularly for gait studies, and corstdéeatures for easily building musculoskeletal
models by modifying anthropometry, muscle attachrmpemts, joints, and muscle mechanical
properties. Users can run simulations to track odehcertain movements, which allows them to
estimate muscle activation patterns and muscledtefmices. Physical simulations can be driven
by musculotendon actuators or joint moment actsat@penSim uses the SimBody engine to
perform rigid-body mechanics calculations.

7.5 Simulations
This section discusses the major algorithms usedrtéhe forward dynamics simulations.

7.5.1 Scaling and Inverse Kinematics (IK) Algorithm s

OpenSim performs two procedures to match the hurodyg model to the gait data. First,
it scales the model to make segment anthropomedtghmthat of the subject, as measured by
motion capture marker locations. Next, it calcudg@nt angles in the model that best match the
experimental kinematics of the subject. These trazgaures are described in more detail below
and summarized in Figure 24. Greater details areighed in the OpenSim user’s guide
(Anderson et al., 2008).

The scaling algorithm works as follows. It beginstva user-selected generic OpenSim
model with joints and BSIP parameters predefined not to our specific test subject. This
model was discussed in Section 7.2. The genericemsdcaled to match the anthropometry of
the measured subject using scale factors. Scaler$dor each segment are computed by
comparing distances between markers on the modeb@grerimental marker positions.
Distances between markers are calculated by aveyagarker distances across all frames in a
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user specified time interval. These scale factarsatso then be used to scale the generic
model’'s body segment inertial parameters to thatetest subject.

To calculate joint angles for each time step, theise Kinematics (IK) algorithm then
determines joint angles that best reproduce thgsth experimental kinematics. This is done
by computing the generalized coordinate valuesghathe model in a configuration that best
matches experimental marker and coordinate valueach time step, where the best match is
expressed as a weighted least squares problem \sbhg®n minimizes both marker and
coordinate errors.

The main setup files for the scaling and IK aldoris are presented in Appendix C.

Figure 24: Scaling the generic OpenSim model and tirmining joint angles to match experimental data

7.5.2 Computed Muscle Control (CMC) Algorithm

After determining model anthropometry and jointlesgat each time step, we performed a
forward dynamics simulation using the Computed Nru§ontrol (CMC) algorithm to track
joint angles. CMC uses PD control and optimizatmfind optimal joint torques or muscle
activations that track the measured movement (finkl&nderson, 2006). Prior to applying
CMC, joint angle kinematics were filtered at 6 ldaé¢move high frequency noise.

CMC is designed for muscle modeling, which meamakieés into account time effects. But
since this analysis concerns net joint momentsawmittime-dependent effects, CMC becomes a
basic Computed Torque Controller (CTC) (Lewis etE93),. CTC is a standard feedback
linearization method for nonlinear systems useabotics, and is also known as “Inverse
dynamics control.” The equation for such a congérois

3)

where N accounts for the Coriolis, friction, and Gravigrms
M is the inertia matrix
g are generalized coordinates
uis an user-selected input
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We can represent the error between our desirezgttoay and the current trajectory as

(4)

after manipulation of the original dynamical eqaas for an n-segment linkage, we can
represent the errors in Brunovsky canonical form:

()

whereW =M 't is the disturbance function.

Since inputu accounts for the dynamics of the system, as seemthe CTC control law
(equation(3)), by choosingi appropriately we can control the error withoutlety calculating
the system dynamics. Control inputan be chosen in many ways; the most often useldoahet
is PD feedback. CMC uses a combination of PD cbatrd static optimization, where
optimization is used when time-dependent actuatbabior is modeled, such as for tendons and
muscles. The main setup file used for the CMC dlgar is shown in Appendix C.

7.5.3 Simulation Inputs

Inputs for each forward dynamics simulation incli&fPs, kinematics data to be tracked,
ground forces to be applied, and numerical simutatisettings such as CMC tracking settings
and integration steps. BSIPs were the only infhasdiffered between simulation runs.
Integration steps were varied to ensure they didaffect results, and kinematics of the runs
were compared to ensure they were identical.

Variables, constants, and outputs for the simulatere summarized below in Figure 25.
As discussed in this chapter’s introduction, déf@rcombinations of model sets were used, the
rationale being that modifying individual paramsté&uch as the mass of the thigh) is not
realistic, as the BSIP models denote certain melahips between segment properties. At the
same time, the model sets for mass, center-of-roagsertia are supposed to be generally
applicable to the male Caucasian population aelag combining different model sets is
reasonable.
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Figure 25: Summary of constant and varied inputs/otputs to simulations

Note that different studies divide up segmentseddftly. For example, McConville
separates the pelvis from the torso, while Demgstaps the pelvis and torso together.
Therefore, not all possible combinations of paramsets are possible. For BSIP models that
define parameters for less segments than are defirtbe body model, the extra segments have
their mass and inertia values set near zero (<k§d&nd m”2-kg, respectively). This was done
because setting these parameters to zero causes &rhile removing the segment joints
interferes with the tracking algorithm.

7.5.4 Summary

The 42 distinct simulations performed are summadrireTable 11. As can be seen from
Table 7, BSIP models 2, 3, and 4 lump the pelwgrent with the HAT (head, arms, torso)
segment, while models 1, 5, 6, and 7 separate seggrents. This means that while the model
sets (inertias, masses, center-of-mass locatiatiorships) from Models 1, 5, 6, and 7 can be
applied to Models 2, 3, and 4, the reverse is nesile. For example, finding the mass of a
lumped pelvis-HAT segment using Model 1 simply ilwas adding the masses of the pelvis and
HAT segments, but calculating the separate maggbs pelvis and of the torso from a lumped
segment mass cannot be done. This is reflectdeiniimulation combinations performed.
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Table 11: Simulations performed

Model Set Used
Center-of-Mass
Simulation number Mass location Inertia
1 M1 mass M1 com M1 inertia
2 M1 mass M1 com M5 inertia
3 M1 mass M1 com M6 _inertia
4 M1 mass M1 com M7 inertia
5 M2 _mass M2 com M3_inertia
6 M2 mass M2 com M5 inertia
7 M2 mass M2 com M6 inertia
8 M2 mass M2 com M7 inertia
9 M3 _mass M3 _com M3_inertia
10 M3 mass M3 com M5 inertia
11 M3 mass M3 com M6 inertia
12 M3 mass M3 com M7 inertia
13 M4 mass M4 com M3_inertia
14 M4 mass M4 com M5 inertia
15 M4 mass M4 com M6 inertia
16 M4 mass M4 com M7 inertia
17 M5 mass M5 com M5 _inertia
18 M5 mass M5 com M6 inertia
19 M5 mass M5 com M7 inertia
20 M6 mass M6 com M6 inertia
21 M6_mass M6 _com M5 _inertia
22 M6 mass M6 com M7 inertia
23 M2 mass M3 com M3 _inertia
24 M4 mass M3 com M3 inertia
25 M5 mass M3 _com M3_inertia
26 M6 mass M3 com M3 inertia
27 M7 mass M3 com M3 _inertia
28 M6 mass M5 com M5 inertia
29 M7 _mass M5 com M5 _inertia
30 M5 mass M6 com M6 inertia
31 M7 mass M6 com M6 inertia
32 M7 mass M1 com M7 inertia
33 M5 mass M1 com M7 _inertia
34 M6 mass M1 com M7 inertia
35 M3 mass M2 com M3 _inertia
36 M3 mass M4 com M3 _inertia
37 M5 mass M6 _com M5 _inertia
38 M5 mass M1 com M5 inertia
39 M6 mass M5 com M6 inertia
40 M6 mass M1 com M6 inertia
41 M1 mass M5 com M1 inertia
42 M1 mass M6 com M1 inertia
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7.6 Rigid Body Dynamics Analysis

To gain insight into the effects of BSIP variati@rsjoint moments, we also derived
equations of motion for a model of the human baalyststing of Head-Arms-Torso (HAT),
pelvis, thigh, shank, and foot segments using t&ethin-Euler method. The derivations are
shown in Appendix D. Only 2D analysis equationsewdtimately desired because these forms
are simpler than the 3D representation and carigedyetter insight into the physics. Section
8.2.1 shows that these 2D equations are well reptasve of the 3D situation.

The equations were all derived using the worldtiakframe rather than local frames for
two reasons. First, we are most concerned witlh joimments, which are calculated in the
absolute frame rather than joint frames. Seconsl simplifies the equations greatly, allowing us
to gain maximum insight into the physics.

7.6.1 3D Analysis

The 3D equations of motion are presented below:

Forces

Right Leg
(6)
()
(8)

where,

Left Leg
)
(10)
(11)

Lumbar (back)
(12)
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where,

Residual forces

where,

Moments (for right leg)

Ankle

Knee

Hip

where,

Part Il

(13)

(14)

(15)

(16)
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and moments for the left leg segments have equivédems.

Lumbar (back)
17)

where,

Residual Moment

(18)

where,

7.6.2 Flexion moment (2D analysis) equations

We then made several simplifying assumptions. FRivetassume that the majority of
flexion moments occur in the sagittal plane, whielnains stationary with respect to the
absolute inertial coordinate frame. In the simolatithis was taken as the XY plane (see Figure
22). Accordingly, we approximate the ankle, knewl hip flexion moments as occurring
exclusively in the Z-direction.

Second, we ignore cross products of inertia. Ireganthis assumption makes sense
because the majority of movement occurs in thetshgiane and because principal moments of
inertia tend to lie along directions orthogonaségment longitudinal directions, as shown by the
results of Dempster (1955), Clauser et al.(196%9), @her studies.

With these assumptions, the 3D equations simptify the following scalar equations,

Ankle flexion moment
(19)
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Knee flexion moment
(20)

Hip flexion moment
(21)

where theg’s represent the projection of the respective segmmeligtance vector in direction
In other words, they are trigonometric functionghad joint angle, for example, for the foot,

wheregq,. is the angle of the foot segment from the vertiaalshown in Figure 51 of Appendix
D.

Following the approach discussed in (Riemer eR8l08), we can find an upper bound
for the joint moment uncertainties by taking theidgive of the moment equations with respect
to all of the body segment inertial parameters:

(22)

where DM is the joint moment uncertainty in joint§] ; is the joint moment equation for joint

j, andx;'s are the BSIPs. We then get the equations fat jpoment uncertainties presented in
the next section.

Flexion moment uncertainties

The flexion moment uncertainties represent theimas uncertainties in joint moments
due to variations or uncertainties in the varioadybsegment inertial parameters.

Ankle flexion moment uncertainty
(23)
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Knee flexion moment uncertainty
(24)

Hip flexion moment uncertainty
(25)

7.6.3 Moment Sensitivities to individual BSIPs

We calculate the sensitivity of joint moments toiagons in the values of individual
BSIPs as follows. From the uncertainty equatiorsal{23) through(25)), we use 3-4 different
values for each parameter while keeping all otlaeameters constant. These values included the
max difference from the mean, the max differendeveen models, and multiples of the max
difference from the mean. The max difference frommean was taken as the baseline value,
and for each time step, the sensitivityl / d[BSIF| was calculated using the formula,

(26)

where DM, is the uncertainty in joint torque for jointising BSIP value 2, anBM, is the joint

torque uncertainty in joint torque for jointising BSIP value 1 for the specific BSIP of intéres
This metric measures how changes in a certain B8l affect the uncertainty of our joint
torque results.

7.7 Summary

This chapter summarized the methodology used ttyghe effects of body segment inertial
parameter values on joint moments calculated framapnalysis. The next chapter discusses the
results and conclusions from our study.

Part Il 93



Part Il

94



8 Results and Conclusions for Part Il

This chapter discusses results from the 3D sinariatand the 2D dynamics analysis,
concluding with recommendations about how to imetrand improve the accuracy of joint
moments calculated from gait data. Figures ancsathisplaying results from the 3D OpenSim
simulations are identified with the laj8D simulations], while results from the 2D dynamics
analysis are labeld@D dynamics] As mentioned in the introduction of Chapter & 8D
simulation results are presented because theyseqréne most accurate representation of how
calculated joint torques from walking results vdoe to different body segment property
models, while the 2D dynamical equation resultwet them by providing insight into the
physics with less complexity than in a 3D dynamegation analysis. The 2D results are shown
to be an accurate representation of the 3D results.

8.1 3D OpenSim Simulation Results

Because there is no “best” or “ideal” Body Segmasttial Parameter (BSIP) model or
combination of model sets, and because each @$e models are derived from studies
limited in significant ways (e.g., very small samgizes), this study analyzes the average torque
estimates of all model sets and their varianceutjindime.

Figure 26 through Figure 29 show the mean +/- magaof joint moments normalized by
body weight for the hip, knee, and ankle of thétrigg. Variance is defined in the standard
statistical sense as the expectation of the squi@dtion from the mean. Results are only
shown for the right leg, as left leg results wolbddsimilar and symmetric.
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Figure 26: Mean +/- variance for RIGHT LEG HIP FLEX ION moment normalized by subject’s
body mass, where positive moments represent hip fien, as shown in the drawing [3D simulations]
(figure from Inman and weboflife.nasa.gov)

Figure 27: Mean +/- variance for RIGHT LEG HIP ADDU CTION moment normalized by subject’s
body mass [3D simulations]
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Figure 28: Mean +/- variance for RIGHT LEG KNEE FLE XION moment normalized by subject’s
body mass, where positive moments represent kneetemsion [3D simulations] (ovrt.nist.gov)

Figure 29: Mean +/- variance for right leg ankle jont flexion moment [3D simulations]

Additionally, Figure 30 through Figure 33 show nalired joint moment variance and
maximum differences between BSIP models for thietdieg.
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Figure 30: Variance and max difference in RIGHT LEGHIP FLEXION moment calculations between the
BSIP models used [3D simulations]

Figure 31: Variance and max difference in RIGHT LEGHIP ADDUCTION moment calculations between
the BSIP models used [3D simulations]
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Figure 32: Variance and max difference in RIGHT LEG KNEE FLEXION moment calculations between the
BSIP models used [3D simulations]

Figure 33: Variance and max difference in RIGHT LEG ANKLE FLEXION moment calculations between
the BSIP models used [3D simulations]
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From the figures, the following results can be obse:

- For hip flexion moment, the greatest variationsun@t 45-50% of the gait cycle (double
support/right leg pre-swing), and at 80-90% ofghé cycle (right leg heel strike).
For hip adduction moment, the greatest variatiatsioat 55-60% of the gait cycle
(beginning of right leg swing phase) and 75-85%h(rieg heel strike).
For knee flexion moment, the greatest variatiorsipat 45-55% (double support/right leg
pre-swing) and 80-90% of the gait cycle (right kexgl strike).
Variations in ankle flexion are small throughout thait cycle.
Joint moment variations are significant compareduerage joint moments for some joints at
some phases of the gait cycle

These results show that the greatest differenasgka joint moment results from
different BSIP models occur during the start and efithe swing phase. This agrees with
Ganley and Powers’ results (2004) but is slightffedent from Rao et al.’s results (2006), which
show that hip joint flexion moment variations aa&lly constant throughout the gait cycle
(Figure 21). Intuitively, the observation that \&ions peak at certain points in the gait cycle
makes sense because at the start of the swing, phia$enoments accelerate the leg against
gravity. The moments required at this phase depalmisst entirely on leg segment properties.
In contrast, joint moments during stance phasenantly to lift the body rather than accelerate
the leg. There will be less joint moment uncertagttthis phase because total body weight is an
accurately measured quantity,. More insight ints thlationship is gained by examining the
dynamical equations in the 2D Dynamics Analysigieac

The results in Figure 30 through Figure 33 show jthiat flexion moment variance
decreases as we move down the body (i.e., it etggefor hip flexion, lower for knee flexion,
and lowest for ankle flexion). Other researcherhsas Ganley & Powers (2004) have noted this
as well, though they did not provide an explanaf@rthis effect. This suggests that we can
make better joint moment calculations for lower pgunts than upper body joints. Examining
the dynamical equations of motion in the next sectirovides further insight into this result.

Finally, comparing Figures 26 through 29 to Figus@ through 33 shows that the
greatest errors do not always occur where joirmjues are greatest in magnitude, particularly
during single stance when only the right leg sufgptire body. This is important because high
joint moments suggest high muscle and tendon fowkeeh are usually what interests clinicians
prescribing patient treatment.

Figure 34 shows the average residual forces apfaidte model during simulations to
maintain its stability. The largest residual fommagnitudes occur during heel strike and dual
support stage, from 35-50% (left initial contactight pre-swing) and 80-100% (right initial
contact to left-pre-swing). The largest residuahmeat magnitudes occur just after right leg pre-
swing, from 45-55%, and just after left leg pre1sgyiat 5% and 95%. Residual forces measure
the “model error,” since applying any external #olmesides ground reaction forces to maintain
stability is not realistic. However, the contrilans of BSIP errors to these forces are unclear,
and further studies need to be performed to uralelghis.
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Figure 34: Total mean residual force magnitudes adped to body to maintain simulation model consistecy
with measurements [3D simulations]

In summary, the results from the 3D simulationggast that we can have greatest
confidence in our hip and knee joint moment resiilisng single stance phase, whereas we can
have high confidence in our ankle joint momentstighout the gait cycle.

8.2 2D Dynamics Analysis Results

We next analyze the 2D dynamical equations of matogain insights into our simulation
observations. As discussed earlier, 2D equatiomslarnved and used instead of 3D equations
because they are less complex than the 3D equati@reby providing more clarity into BSIP
effects, while still proving to be accurate repreagons of the 3D simulation results. The 2D
equations only show movement in the sagittal pesishown in Figure 18, which is reproduced
here.
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Figure 18: Body Planes

The 2D dynamical equations presented earlier forknee, and ankle flexion torque and

their uncertainty analysis equations from Chaptare/rewritten below.
Flexion moment (2D analysis) equations

Ankle flexion moment

Knee flexion moment

Hip flexion moment

Flexion torque uncertainties

Ankle flexion moment uncertainty

Knee flexion moment uncertainty

Part Il
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(24)
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Hip flexion moment uncertainty
(25)

These equations were coded in MATLAB for use ialgsis. The script is presented in
Appendix D.

8.2.1 Comparison with 3D simulation results

We first verify that the 2D approximations matck 8D simulation results well. Figure
35 through Figure 37 show that the 2D sagittal @lapproximations match the 3D results fairly
well, with increasing accuracy for joints highettire body. These 2D results were calculated
using the mean and maximum variation values froen3M results as the uncertainty inputs
(signified by delta) in equatior{g3) through(25). Here, maximum difference is defined as the
maximum difference between joint moments calculaigidg different BSIP models.

Figure 35: Comparison of 3D simulation variance andnaximum difference between BSIP model results and
2D analysis for ANKLE FLEXION moment [3D simulations] [2D Dynamics]
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Figure 36: Comparison of 3D simulation variance ananaximum difference between BSIP model results and
2D analysis for KNEE FLEXION moment [3D simulationg [2D Dynamics]

Figure 37: Comparison of 3D simulation variance andnaximum difference between BSIP model results and
2D analysis for HIP FLEXION moment [3D simulations] [2D Dynamics]

8.2.2 Discussion

An examination of the rigid body dynamics equati@eguationg23) through(25)) shows
several important relationships. First, moment wagaties for joints located higher in the leg
are greater than in lower joints because momergrteiaties from the lower joints cascade up to
higher joints. From the free body diagram of thetf@ne can see that the foot segment is acted
upon by experimentally measured ground reactiocefgrwhich are known, and two estimated
forces, the ankle reaction force and the weighheffoot (see in Figure 45 in Appendix D). The
only joint moment acting on the foot is the anldanf moment. In contrast, the thigh and shank
segments are acted upon by joint reaction foreggnent weights, and joint moments--all of
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which are estimated based on body segment inpeiaimeter (BSIP) assumptions. This can be
seen in the joint moment uncertainty equationsectamty in ankle joint moment depends only
on foot segment inertial parameters, while uncetyan knee joint moment depends on BSIPs
of the lower leg and foot plus uncertainties inlankint moment. Similarly, hip flexion moment
is dependent on BSIP uncertainties of the thigankhand foot, as well as knee moment, which
is in turn dependent on ankle moment. Moment uac#ies therefore cascade up the leg
segments because only the foot is acted upon bgurezhexternal forces.

Regarding our observation from the 3D simulatidrad joint moment variations are
greater during swing phase than stance phase, wee® mathematically why this occurs.
Equationg23) through(25) (the joint moment uncertainty equations) show jbiat flexion
moment uncertainties are not functions of grouradtien forces. However, Equatio(1s)
through(21) (the joint moment equations) show that joint uteiaty as a percentage of joint
torque is greater during swing because at stamcpiit torques balance out the ground reaction
forces, while ground reaction forces are zero dusiing. This means that during stance,
ground reaction moments dominate the joint movemalutes, which leads to greater confidence
in our joint movement estimates because grounc$oace experimental measurements.

Finally, we observe that flexion moment uncert&siin the hip, knee, and ankle are
linear with respect to inertia uncertainties, bomlmear with respect to all other BSIPs. In other
words, these flexion moments are linear functidnhe inertia. This suggests that joint moments
are less sensitive to inertia values than to dB&iPs, a point we will evaluate further in the next
section when we isolate the effects of individu&IBs.

8.2.2.1 Joint moment sensitivities averaged over igaycle

To evaluate the sensitivity of joint moments toiwdual BSIPs, we modify one BSIP
parameter variation at a time while keeping aleathconstant in equatio(zs) through(25) and
calculate the average sensitivity over one gaitegyas well as the average sensitivity at each
point in the gait cycle, as described in sectié3/.The MATLAB script used for this analysis
is presented in Appendix E.

We first examine the sensitivities averaged over gait cycle. Table 12 through Table
14 present these results. Note that we can onlpaoaresults within each table, and not results
between tables, since each table represents naadatint moment sensitivity for some BSIP
model set (mass, center-of-mass location, inertia).

Table 12: Average sensitivity over one gait cyclef int moment variations to changes in segment mag(N-
m/kg”2) [2D dynamics]

Ankle flexion Knee flexion Hip Flexion
d[ M_A normalized] | df M_k normalized] | d[ M_h normalized]
/d m /d m /d m
foot 0.000 0.078 0.107
shank 0.000 0.006 0.020
thigh 0.000 0.000 0.005
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Table 13: Average sensitivity over one gait cyclef int moment variations to changes in segment céer-of-
mass locations (N/kg) [2D dynamics]

d[ M_A normalized] | df M_k normalized] | d[ M_h normalized]
/d com /d com /d com
foot 0.103 0.113 0.187
shank 0.000 0.162 0.512
thigh 0.000 0.000 0.410

Table 14: Average sensitivity over one gait cyclef @int moment variations to changes in segment irréas

for the foot, shank, and thigh are summarized inld45.

(N/kg) [2D dynamics]

d[ M_A normalized] | df M_k normalized] | d[ M_h normalized]
/d lzz /d lzz /d lzz
foot 0.316 0.318 0.318
shank 0.000 0.287 0.287
thigh 0.000 0.000 0.144

From these results, one can see that joint monaeatsost sensitive to foot mass and
inertia, and to shank center-of-mass location. fldigon moment sensitivity to foot mass is most
pronounced, as this is more than 200 times itstsatysto thigh mass.

To put these numbers into perspective, we estithat8SIP uncertainty magnitudes that
would be encountered for each segment based asubject-specific BSIP values from Table 8
through Table 10 of Chapter 7. For our experimé&ntabasured subject (1.8 m, 72.6 kg (160
Ibs), ~671" percentile male), the maximum difference in estendetween relevant BSIP models

Table 15: Maximum differences in BSIP estimations étween models

COM max Inertia max
Mass max difference difference (kg-
Segment | difference (kg) (m) m?)
Thigh 3.741 0.029 0.109
Shank 0.669 0.032 0.025
Foot 0.336 0.016 0.003

For the subject, joint moment uncertainties basethe sensitivity values from Table 12 through
Table 14 and the maximum BSIP estimate differeffrees Table 15 are presented in Table 16

through Table 18

Table 16: Calculated variations in flexion joint manents averaged per gait cycle in experimental subjée
based on maximum difference in segment mass estireat(N-m) [2D Dynamics]

Part Il

Mankle Mknee I\/Ihip
Foot 0.000 1.902 2.609
Shank 0.000 0.291 0.972
Thigh 0.000 0.000 1.358
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Table 17: Calculated variations in flexion joint manents averaged per gait cycle in experimental subjé
based on maximum difference in segment center-of-raa location estimates (N-m) [2D Dynamics]

Mankle Mknee I\/Ihip
foot 0.118 0.130 0.215
shank 0.000 0.377 1.191
thigh 0.000 0.000 0.867

Table 18: Calculated variations in flexion joint manents averaged per gait cycle in experimental subgé
based on maximum difference in segment inertia estiates (N-m) [2D Dynamics]

Mankie Mknee I\/Ihip
foot 0.071 0.071 0.071
shank 0.000 0.529 0.529
thigh 0.000 0.000 1.142

From the 2D dynamical equation analysis resultsgeed, we can conclude the following. First,
regarding segment massémt mass is the most important BSIP to accurately eséinSecond,
regarding segment center-of-mass locatishank and thigleenter-of-mass locations are the
most important BSIPs to accurately estimate. Ama#igarding segment inertiashyank and
thighinertias are the most important BSIPs to accwrasiimate

8.2.2.2 Joint moment sensitivities at each phase gdit cycle

Though the above averages give us an idea of thienmmment sensitivities throughout
the gait cycle, it is also useful to know the stvisies at each phase in the gait cycle. Important
results are plotted in Figure 38 through Figureadd discussed.

Figure 38 shows the sensitivity of hip, knee, ankl@flexion moments to foot mass,
where moments are again normalized by body mass.c@m see that variations in foot mass
values have negligible effects on ankle flexion reatruncertainties compared to knee and hip
flexion moments. Further, hip flexion moment unagrty is especially sensitive to foot mass
variations during 80-90% of the gait cycle (heeks). This result agrees with that of Riemer et
al. (2008). Figure 39 further highlights this fagt comparing the effects of foot mass on hip
flexion moment to those of shank and thigh masses.
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Figure 38: Sensitivity of normalized hip, knee, andinkle flexion moment variations to foot mass
[2D Dynamics]

Figure 39: Sensitivity of hip flexion normalized manent variations to foot, shank, and thigh mass
[2D Dynamics]
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Figure 40 shows the sensitivity of hip flexion marho variations in foot, shank, and
thigh center-of-mass location. It highlights thatigations in foot and shank center-of-mass
locations have negligible effects on hip flexiongiee uncertainty for most of the gait cycle.
However, shank-center-of mass location has largetsfon hip flexion from 80-90% of the gait
cycle (heel strike), while thigh center-of-massaiben has moderate effects from 40-50%
(double support) and 80-90% of the gait cycle andlkeffects otherwise.

Figure 40: Sensitivity of normalized hip flexion manent to variations in foot, shank, and thigh centerf-mass
locations
[2D Dynamics]

Figure 41 shows the sensitivity of normalized hgxion moment variations to variations
in segment inertias.
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Figure 41: Sensitivity of normalized hip flexion manent variations to inertias [2D Dynamics]

Although hip flexion is highly sensitive to bothastk inertia and foot inertia, foot inertia
variations are small enough that the overall effettfoot mass are not significant. This can be
seen in Table 18 by examining the non-normalizedherd sensitivity to the maximum
difference in inertia estimations between BSIP net the experimental subject. However,
thigh and shank inertia values do have signifiedfgcts. For the measured subject, the
sensitivity value from 80-90% of the gait cyclelid N/(kg-m). This corresponds to an absolute
moment uncertainty of 8.7 N-m, which is 120% of jthiet moment value at that point in the gait
cycle!

Performing our analysis BSIP-component-by-BSIP congmt with a 2D approximation
causes some error, but the results are qualitatsielilar. For example, for hip flexion the 2D
component-by-component analysis predicts a maxitauque variation of 18.5 N-m for the
subject at 48% of the gait cycle, while the 3D dations predict 11.6 N-m. Similarly, at 87% of
the gait cycle the 2D analysis predicts a highéwevéhan the 3D simulations (25 N-m vs. 17.8
N-m). For the knee at these gait cycle phaseEhanalysis vs. 3D simulation results at 48%
and 87% of the gait cycle are 4.7 vs. 3.6 N-m aBdv6. 8.7 N-m, respectively.
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Table 19: Contributions of each BSIP to hip flexiormoment uncertainty from 45-55% of gait cycle for ar
subject [2D analysis]

max Hip sensitivity Torque

(N-m/kg per BSIP variation (N- Torque variation

Max variation in BSIPs for subject dimension) m/kg) for subject (N-m)
m_foot (kg) 0.336 0.21 0.07 5.12
m_shank (kg) 0.669 0.087 0.06 4.22
m_thigh (kg) 3.741 0.0097 0.04 2.63
com_foot (m) 0.016 0.48 0.0077 0.56
com_shank (m) 0.032 0.56 0.018 1.30
com_thigh (m) 0.029 1.2 0.035 2.52
|_foot (kg-m?) 0.003 0.7 0.0021 0.15
|_shank (kg-m2) 0.025 0.49 0.012 0.89
|_thigh (kg-m2) 0.109 0.45 0.049 3.56
Total (N-m): 20.95

Peak mean

joint moment: 37.03

The above table shows that uncertainty in footswastributes the most to hip flexion
moment uncertainty, followed by shank mass anchtiigrtia. Collectively, these three
parameters account for more than half of the jmioment uncertainty, or 12.9 N-m. This seems
significant considering that maximum hip flexiontivat gait cycle range is approximately 35 N-
m. At 80 to 90% of the gait cycle, thigh mass cities most to moment variation, followed
closely by foot mass and shank mass. Collectitese account for 18.3 N-m of joint moment
uncertainty, while peak joint torque in this rang@nly 11.6 N-m.

8.3 Conclusions and recommendations

Results and findings are now compared againshypmtheses. For convenience, we
reiterate our hypotheses from the Part Il intromunctFirst, we hypothesized that joint moment
estimates would be significantly different durirgripds of high force impact, i.e., during heel
strike, but not so different at other periods & tfait cycle. Second, we hypothesized that joint
moment variations would be different for differgoints. Third, we hypothesized that joint
variations would be significant at some phases®efdgait cycle and less so at others

Our hypothesis that joint moments would vary thesnoluring periods of high force
impact was not correct. Although variations werghhiluring heel strike, they were also high
during the majority of the swing phase. Our hypsthi¢hat moment variations would be
different for different joints was supported, andajer confidence in joint moment results occurs
in the lower leg joints such as the ankle.

Our hypothesis that joint uncertainties would lggsicant at some phases of the gait
cycle and less so at others was correct. As a pege of the maximum joint moments,
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variations can be considered small, but as a p&gerof the joint moment magnitudes at
specific phases of the gait cycle, variations @auB$IP estimations can be significant.
The results presented in this chapter show thatripg on what phase of the gait cycle
and what joints one is interested in analyzing, simeuld expend extra effort to gather better
estimates of different BSIPs. The most importantfBi® measure accurately is foot mass, which
significantly affects errors in all lower body joitorques. More accurate measurements of BSIPs
might be accomplished using advanced imaging teci@si on specific parts of the body, or by
taking more manual measurements of segments ang tegression equations that take these
additional measurements into account. Table 20 sanmes our recommendations regarding
BSIP estimations in gait analysis.

Table 20: Recommendations for BSIP estimations

Joint moment of
interest

Phase of gait cycle

Recommendations

Hip adduction

Entire gait cycle

Low variations—daave good confidence
in joint moment results

Ankle flexion Entire gait cycle Low variations—caave good confidence
in joint moment results
Knee flexion Single support Low variations—can have good confidence
(0-40%) in joint moment results
Double support Moderate variations—can address by
(45-55%) estimatingfoot massmore accurately.
Start of swing phase| Moderate variations, but no clear BSIP to pe
(55-65%) estimated more accurately
Middle to end of Low variations—can have good confidence
swing phase in joint moment results
(65-75%)
Heel strike High variations—can address by estimating
(80-90%) foot mass shank inertia, andshank
center-of-masslocation more accurately
Hip flexion Single support Low variations— can have good confidence
(0-40%) in joint moment results
Double support High variations— can address by estimatipg
(45-55%) foot mass shank mass andthigh inertia
more accurately.
Swing phase Moderate variations—can address by
(55-70%) estimatingfoot massmore accurately.
Heel strike High variations-- can address by estimating
(80-90%)) thigh mass foot mass andshank center-
of-masslocation more accurately
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8.4 Future work

This study analyzed one subject at one walkingdpeeture work would involve
analyzing more subjects and different walking spdedietermine how well these conclusions
hold. Future work could also be performed to deteenmow well the equations presented in this
study can predict results from faster movementsh s running, which would have greater joint
moment variations.

Other work could also focus on comparing model $ypeich as models that include
arms, which might help examine effects on resifmaes/moments.
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Appendix A: Subject OpenSim Model Anthropometry

OpenSim model scaled to experimental subject
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Appendix B: Body Segment Inertial Parameter Calcula  tions

Model 2: Dempster (1955)

Dempster performed a cadaver study of eight mabdgests, dividing the body as shown
below in Figure 42. His study provides percentaations to calculate segment masses and
center-of-mass locations.

Figure 42: Plan of dismemberment for cadavers (Dengter, 1955)

Segment mass calculations

Dempster provides percentage mass of total bodyhiveor each body segment. Using
these equations, HAT segment mass was calculataddigyig the masses of the head, torso, and
total arms. Total arm is defined in Dempster asprising the upper arm, forearm, and hand.
Torso segment is defined in Dempster as includiegoelvis. The results are shown below.
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Table 21: Segment masses calculated using Dempster

Mass as % of total body
Segment weight Mass (kg)
Head 7.9 5.74
Torso 48.6 35.3
Total arm 4.9 3.56
Upper Arm 2.7 1.96
Forearm & hand 2.2 1.60
forearm 1.6 1.16
hand 0.6 0.436
Thigh 9.7 7.04
Shank (calf) 4.5 3.27
Foot 1.4 1.02
HAT 48.1

Segment center-of-mass location calculations

Dempster locates the center-of-masses as desanifadble XX. These percentage
values were then transferred to be a percentatteedpenSim scaled model length. Using the
OpenSim model lengths shown in Appendix A, an exXaroglculation for the head and trunk
segment is shown below.

For the OpenSim model, the distance from the hipeovertex of the head is
0.777 +0.0835 + 0.0724 = 0.933 m.

Dempster states that the center of mass is 39.@%sodlistance, which is 0.369m. Relative to
the torso segment, which has its origin locatetti@same place as the pelvis, this is

0.369 — 0.0724 = 0.297 m.
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Table 22: Center-of-mass locations according to Dester translated to OpenSim model locations

Transferring Dempster’s relations to
Dempster’s relations OpenSim model coordinates
COM
location
COM COM (m) as defined in
% of total segment length location (m) OpenSim
Head and
trunk minus from hip to vertex of in torso segment
limbs 39.6 | head 0.369 0.297 | (y dir)
Head and
neck
Thorax
Abdomen plus
pelvis 40.0 | from hip
Entire upper
extremity
(arm, forearm,
hand) 51.2 | from shoulder
in femur segment
Thigh 43.4 | from hip to knee 0.204 | -0.204 | (y-dir)
in tibia segment
Leg 43.3 | from knee to ankle 0.184 | -0.184 | (y-dir)
in calcn segment
Foot 43.8 | from heel to toe 0.104 0.104 | (x-dir)

Model 3: Clauser (1969)
Clauser divides the body similarly to Dempster pruvides percentage relations to
calculate segment masses and center-of-mass loegatio

Segment mass calculations

Clauser, as in Dempster, provides percentage nidastabbody weight for each body segment.
As before, we calculate HAT segment mass was @kdiby adding the masses of the head,
torso, and total arms.
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Table 23: Segment masses calculated using Clauser

Mass as % of total body

Segment weight Mass (kg)

Head 7.3 5.30
Torso 50.7 36.8
Total arm 4.9 3.56
Upper Arm 2.6 1.89
Forearm & hand 2.3 1.67
forearm 1.6 1.16
hand 0.7 0.508
Thigh 10.3 7.48
Shank (calf) 4.3 3.12
Foot 1.5 1.09
HAT: 49.2

Segment center-of-mass location calculations
Clauser locates the center-of-masses as describeabie 24. As with Dempster, these
percentage values were then transferred to becameage of the OpenSim scaled model length.

Table 24: Segment com locations calculated usingatiser

Clauser’s relations Transferring Clauser’s relations to OpenSim model
COM location coordinates
COM location (m) as defined in
% of total segment length COM location (m) | OpenSim model
from hip to head in torso segment
Head + torso 40.79 | vertex 0.3805 0.3081 | (y dir)
from trochanterion in femur segment
Thigh 37.19 | (near pelvis) 0.1745 -0.1745 | (y-dir)
from tibiale in tibia segment
Leg 37.05 | (knee?) 0.1575 -0.1575 | (y-dir)
in calcn segment
Foot 44.85 | from heel 0.1067 0.1067 | (x-dir)

Model 4: Chandler (1975)

Chandler performed cadaver studies and dividethdigly similarly to Dempster and
Clauser. However, Chandler provides regressiontemsathat can be used to calculate segment
masses and moments of inertia.

Segment mass calculations

Chandler’s regression equations and the resulf@utations for the experimental
subject’s segment masses are shown in Table 25.tNat Chandler provides different estimates
for the same segments located on the right anthdd¥es of the body. For our purposes, we take
the average of these values and use them for gk of the body, meaning, for example, that
the right thigh is given the same mass as theHgfh.
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Table 25: Segment masses calculated using Chandkregression equations

Calculation (kg) [regression egn (gm)
Head 4.229 0.032*body weight + 1,906
Torso 37.92 0.532*body weight - 706
Right upper arm 1.971 0.016*body weight + 809
Left upper arm 2.082 0.022*body weight + 485
Average upper arm
mass 2.026
Right forearm 1.234 0.020*body weight - 218
Left forearm 1.190 0.013*body weight + 246
Average forearm mass 1.212
Right hand 0.4782 0.007*body weight - 30
Left hand 0.4390 0.005*body weight + 76
Right thigh 10.84 0.126*body weight - 1,688
Left thigh 10.73 0.127*body weight - 1,511
Average thigh mass 10.78
Right shank 2.938 0.038*body weight + 179
Left shank 3.016 0.044*body weight - 178
Average shank mass 2.977
Right foot 0.9238 0.008*body weight + 343
Left foot 0.9054 0.009*body weight + 252
Average foot mass 0.9146
HAT 49.54 includes pelvis

Segment center-of-mass location calculations

Chandler provides center-of-mass locations forstkeadavers studied. The average of
the locations as a percentage of segment lengtitaleslated, and these values were scaled to
the OpenSim model lengths, as shown in Table 24vifksthe segment mass values, in our
study we use the same BSIP values for the leftrigihd halves of the body, which are the
average values.

HAT center-of-mass location was found by calculgitentroids:

c = GMm M, +...+cm,
J
m +m,+..+m,

Equation 27

where C; is the center-of-mass location of segment j, wimcudes segments 1 throughay,

is the center-of-mass location of segmeahd m is the mass of segmentn this study,

different segment mass model sets are used, wikiokssitates recalculating the HAT center-of-
mass location for each combination. These cal@riatare also summarized in the table.
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Table 26: Segment center-of-mass locations using &fdler’s relations

Segment
COM
distance (%
of length) COM (m) as defined in osim
Head from hip to head
88.4 | vertex 0.7603 in torso segment (y dir)
Torso from hip to head
30.4 | vertex 0.2619 in torso segment (y dir)
Right from hip to knee
thigh 38.8 | (right) -0.1822 in femur segment (y dir)
Left thigh 39.8 | from hip to knee (left) -0.1869 in femur segment (y dir)
Right from knee to ankle
shank 42.0 | (right) -0.1785 in tibia segment (y dir)
Left shank from knee to ankle
41.3 | (left) -0.1757 in tibia segment (y dir)
Right foot 43.7 | from heel (right) 0.1039 in calcn segment (x dir)
Left foot 44.0 | from heel (left) 0.1047 in calcn segment (x dir)
HAT 0.3119 in torso segment (y dir)
Chandler using
Dempster's mass: 0.3317 in torso segment (y dir)
Chandler using
Clauser's mass: 0.3246 in torso segment (y dir)
Chandler using de
Leva mass: 0.3305 in torso segment (y dir)
Chandler using
Dumas mass: 0.3235 in torso segment (y dir)
Chandler using Gebod
mass: 0.3280 in torso segment (y dir)

Segment inertia calculations
Chandler provides regression equations to calcplateipal moments of inertia along
segment longitudinal and orthogonal to the longitabdirections. These principal moment
directions are coincident with the principal momeinéctions in the OpenSim model, but
labeled differently. The resulting OpenSim inextedues are summarized in Table 27. For our
study, we use the torso inertia as the HAT inertia.

Table 27: Segment moments of inertia calculated usyj Chandler’s regression equations

Coordinate
Regression equation Value in
(g-cm”2) (g-cm”2) (kg-m”2) OpenSim
Head IXX = 2.129*BW + 32,030 0.01866 XX
lyy = 1.676*BW + 54,818 0.01765 Izz
Izz = 3.186*BW - 6,846 0.02245 lyy
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Torso IXX = 296.9*BW - 3,156,034 1.840 IXX
lyy = 284.493*BW - 7,664,880 1.299 Izz
Izz = 102.507*BW - 2,895,524 0.4546 lyy
Upper right arm IXX = 0.535*BW + 98,150 0.01370
lyy = 0.661*BW + 89,662 0.01377
Izz = 0.400*BW - 4,018 0.002502
Upper left arm IXX = 2.096*BW + 15,569 0.01677
lyy = 1.352*BW + 49,572 0.01477
Izz = 0.567*BW - 14,171 0.002699
Right forearm IXx = 1.508*BW - 31,431 0.007805
lyy = 1.397*BW - 26,562 0.007486
Izz = 0.313*BW - 11,645 0.001108
Left forearm IXX = 0.659*BW + 21,806 0.006965
lyy = 0.727*BW + 15,672 0.006845
Izz = 0.230*BW - 6,396 0.001030
Right hand IXX = 0.129*BW - 850 0.0008515
lyy = 0.134*BW - 2,599 0.0007129
Izz = 0.085*BW - 3,401 0.0002770
Left hand IXX = 0.083*BW + 1,437 0.0007463
lyy = 0.100*BW - 920 0.0006340
Izz = 0.028*BW -6 0.0002027
Right thigh IXX = 24.102*BW - 433,522 0.1316 IXX
lyy = 21.186*BW - 222,796 0.1315 Izz
Izz = 9.262*BW -378,738 0.02937 lyy
Left thigh IXX = 20.310*BW - 172,235 0.1302 IXX
lyy = 23.633*BW - 319,070 0.1397 Izz
Izz = 5.404*BW - 139,702 0.02526 lyy
Right shank IXx = 5.424*BW + 37,127 0.04309 IXX
lyy = 5.341*BW + 44,749 0.04325 Izz
Izz = 0.94*BW - 32,220 0.003602 lyy
Left shank IXX = 6.434*BW - 24,410 0.04427 IXX
lyy = 5.350*BW + 40,974 0.04294 Izz
Izz = 0.969*BW - 34,567 0.003578 lyy
Right foot IXX = 0.433*BW + 5,371 0.003681 lyy
lyy = 0.355*BW + 7,296 0.003307 Izz
Izz = 0.153*BW - 2,988 0.0008120 | Ixx
Left foot IXX = 0.371*BW + 8.974 0.002694 lyy
lyy = 0.391*BW + 4,959 0.003335 Izz
Izz = 0.130*BW - 946 0.0008492 | Ixx
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Model 5: de Leva (1996, based on Zatsiorsky-Seluyawn, 1983)

Figure 43: Division of body segments in de Leva
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Segment mass calculations

de Leva provides percentage mass of total bodyhw/éog each body segment as shown in Table
XX. In this study, HAT mass is calculated as thensaf the upper torso, middle torso, head, and
arms. The lower torso segment is taken to be thespgegment.

Table 28: Segment masses calculated using de Levegtations

Segment mass

(% of total body mass) Mass (kg)
Head 6.94 5.038
Trunk 43.46 31.55
UPT
(Upper torso) 15.96 11.59
MPT
(Middle torso) 16.33 11.86
LPT
(Lower torso, or
pelvis) 11.17 8.109
Upper arm 2.71 1.967
forearm 1.62 1.176
Hand 0.61 0.4429
Thigh 14.16 10.28
Shank 4.33 3.144
Foot 1.37 0.9946
HAT 35.65

Segment center-of-mass location calculations

Center-of-mass locations as a percentage of gpeeiment lengths are calculated using
the average segment length values presented ievie These values were then converted to
OpenSim model lengths.
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Table 29: Segment center-of-mass locations calcudat using de Leva’s relations

% of segment
COM location (males) | length COM (m) as defined in osim
from hip, with segment
length being hips to vertex in torso
Head 83.47 | of head 0.7063 | segment (y dir)
from hip, with segment
length being hips to vertex in torso
Trunk 39.89 | of head 0.2998 | segment (y dir)
from hip, of hip to top of
head distance (i.e., pelvis in torso
UPT 65.39 | + torso) 0.5376 | segment (y dir)
from hip, of hip to top of
head distance (i.e., pelvis in torso
MPT 35.93 | + torso) 0.2628 | segment (y dir)
from hip, of hip to top of
head distance (i.e., pelvis in pelvis
LPT (pelvis) 7.699 | + torso) -0.0005760 | segment (y dir)
in femur
Thigh 40.95 | from hip joint -0.1921 | segment (y dir)
in tibia segment
Shank 44.59 | from knee -0.1895 | (y dir)
in calcn
Foot 44.15 | from heel 0.1051 | segment (x dir)
in torso
HAT (UPT, MPT, head, arms) 0.4531 | segment (y dir)
de Leva HAT using in torso
Dumas mass 0.7888 | segment (y dir)
de Leva HAT using in torso
Gebod mass 0.3538 | segment (y dir)

Segment inertia calculations

de Leva provides radii of gyration for each segimehere radii of gyration values are
presented as a percentage of the associated ségfeagth. The formula to calculate inertia
from radius of gyration is,

| =m(rL)®>  Equation 28

wherel is the moment of inertiam is the segment massis the radius of gyration as a
percentage of segment length, &nid the segment length Table 30 shows the converdide
Leva’s radius of gyration proportions to OpenSimdelgroportions, and Table 31 shows the
final calculated inertia values.
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Table 30: Conversion of de Leva’s radii of gyratiorrelations to OpenSim model proportions

de Leva’s values and relations in Opensim proportions
radius of gyration radius of gyration
Longitudinal | Sagittal r | Transversg Longitudinal | Sagittal Transverse r Longitudinal
Segment | length (mm) | (%) r (%) r (%) r (%) (%) r (%)
of hip to of hip to head from hip to
head vertex vertex head vertex
Head 203.3 36.2 37.6 31)2 10.pdistance 10.40 distance 8.63 distance
of hip to of hip to head from hip to
head vertex vertex head vertex
Trunk 531.9 37.2 34.7 191 26.9distance 25.10 distance 13.82 distance
of hip to of hip to head from hip to
head vertex vertex head vertex
UP Torso 170.7 71.6 454 65(9 16.pdAistance 10.54 distance 15.30 distance
of hip to of hip to head from hip to
MP head vertex vertex head vertex
Torso 2155 48.7 38.8 468 14.13listance 11.23 distance 13.72 distance
of hip to of hip to head from hip to
head vertex vertex head vertex
LP Torso 145.7 61.% 55.1L 58(7 12.[@istance 10.92 | distance 11.63| distance
Upper
arm 281.7 28.5 26.9 158
forearm 268.9 27.4 26.p 12|1
hand 86.2 62.9 51.8 401
from hip to from hip to from hip to
thigh 422.2 32.9 32.9 14.9 32|%nee 32.9| knee 14.9| knee
from knee to from knee to from knee
shank 434 251 24.9 103 25.%nkle 24.9| ankle 10.3| to ankle
from heel to from heel to from heel to
foot 258.1 25.7 241 12.4 25| Ttoe 24.5| toe 12.4| toe
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Table 31: Segment inertia values based on de Leva

Moment of inertia (kg-m"2)

Segment | Sagittal | Transverse | Longitudinal |
OpenSim OpenSim OpenSim
coord coord coord

Head 0.04394 0.04740 0.03264

Trunk 1.989| Ixx 1.731 lzz 0.5243 lyy

UP Torso 0.2787 0.112p 0.2361

MP

Torso 0.2060 0.130d 0.194p

LP Torso 0.1048 Ixx 0.0841p lzz 0.09551 lyy

Upper

arm

forearm

hand

thigh 0.2449| Ixx 0.2449 lzz 0.05032 lyy

shank 0.03692 Ixx 0.03521 lzz 0.0060R4 lyy

foot 0.003721 lyy 0.003382 lzz 0.0008660 Ixx

Model 5: Dumas (2007, based on data from McConvilleL980)

Segment mass calculations
Dumas provides percentage mass of total body wégtgach body segment as shown in Table
32. In this study, HAT mass is calculated as th efithe head and neck, torso, and arms.
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Table 32: Segment masses calculated using Dumaséations

Mass as % of total

Segment body mass (males) [Mass (kg)

Head & Neck 6.7 4.86
Torso 33.3 24.2
Pelvis 14.2 10.3
Arm 2.4 1.74
Forearm 1.7 1.23
Hand 0.6 0.436
Thigh 12.3 8.93
Shank 4.8 3.48
Foot 1.2 0.871
HAT 35.9

Segment center-of-mass location calculations

Center-of-mass locations as a percentage of speseifment lengths are calculated using
the average segment length values presented in ®drhase values were then converted to
OpenSim model lengths
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Table 33: Segment com locations calculated using Bias

Segment COM dist (% of segment length) COM (m) as definedi n osim
from hips to head
Head & neck X -1.73 | vertex -0.0161 | in torso segment (x-dir)
from hips to head
Y 87.6 | vertex 0.745 | in torso segment (y-dir)
from hips to head
Z 0.0279 | vertex 0.000260 | in torso segment (z-dir)
from hips to head
Torso X 2.17 | vertex 0.0202 | in torso segment (x-dir)
from hips to head
Y 46.8 | vertex 0.364 | in torso segment (y-dir)
from hips to head
Z 0.120 | vertex 0.00112 | in torso segment (z-dir)
from hips to head in pelvis segment (x-
pelvis X 0.00332 | vertex 3.10E-05 | dir)
from hips to head in pelvis segment (y-
Y 3.32 | vertex -0.0414 | dir)
from hips to head in pelvis segment (z-
Z -0.000712 | vertex -6.64E-06 | dir)
in femur segment (x-
Thigh X -4.10 | from hip -0.0192 | dir)
in femur segment (y-
Y -42.9 | from hip -0.201 | dir)
in femur segment (z-
Z 3.30 | from hip 0.0155 | dir)
Shank X -4.80 | from knee -0.0204 | in tibia segment (x-dir)
Y -41.0 | from knee -0.174 | in tibia segment (y-dir)
Z 0.700 [ from knee 0.00298 | in tibia segment (z-dir)
Foot X 38.2 | ankle joint to toes 0.0909 | in calcn segment (x-dir)
Y -15.1 | ankle joint to toes -0.0359 | in calcn segment (y-dir)
Z 2.60 | ankle joint to toes 0.00619 | in calcn segment (z-dir)
HAT X 0.0141 | in torso segment (x-dir)
Y 0.428 | in torso segment (y-dir)
Z 0.000979 | in torso segment (z-dir)
Dumas HAT
using de Leva
mass: X 0.0152 | in torso segment (x-dir)
Y 0.417 | in torso segment (y-dir)
Z 0.00100 | in torso segment (z-dir)
Dumas HAT
using Gebod
mass: X 0.0154 | in torso segment (x-dir)
Y 0.415 | in torso segment (y-dir)
Z 0.00101 | in torso segment (z-dir)
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Segment inertia calculations

Dumas provides radii of gyration for each segmehgre radii of gyration values are presented
as a percentage of the associated segment’s |eFtyglconversion of these values to inertia
values in the OpenSim model was performed the seayeas with de Leva.

Table 34 shows Dumas’s radius of gyration propogjavhile Table 35 shows the final
OpenSim model inertia values calculated from Dusiasiations.
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Table 34: Segment radii of gyration calculated usig Dumas

Dumas's relations and values
radii of
gyration (%
Length | distance of segment
Segment (mm) (mm) from length)
neck to top of
Head & neck 244 -15.13 | head XX 31
neck to top of
135.4| head ryy 25
neck to top of
0.2440| head rzz 33
HAT (torso, head & neck
arms) 477 17.17 neck to lumbar, XX 7
use torso values to
calculate inertia 200.83 neck to lumbatr ryy 25
0.9540| neck to lumbar rzz 28
from lumbar to
pelvis 94 2.632| hip joint (y dir) | rxx 101
from lumbar to
26.32 | hip joint (y dir) ryy 106
from lumbar to
-0.5640| hip joint (y dir) rzz 95
Thigh XX 29
ryy 15
rzz 30
Shank XX 28
ryy 10
rzz 28
Foot XX 17
ryy 37
rzz 36
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Table 35: Segment inertias calculated using Dumas

Conversion to OpenSim values
radii of gyration radii of Moment of
(% of Osim gyration | inertia (kg-
Segment segment length) (m) m”"2)
of hip to head vertex
Head & neck 9.281 | length 0.08658 0.03646] Ixx
of hip to head vertex
7.485| length 0.06982 0.02372] lyy
of hip to head vertex
9.880 | length 0.09217 0.04132] lzz
HAT (torso, head & of hip to head vertex
neck arms) 15.80 length 0.1474 0.7794 Ixx
use torso values to of hip to head vertex
calculate inertia 14.63 length 0.1365 0.6682 lyy
of hip to head vertex
16.39| length 0.1529 0.8382 lzz
of hip to head vertex
pelvis 11.65| length 0.1087 0.1218] Ixx
of hip to head vertex
12.23| length 0.1141 0.1341( lyy
of hip to head vertex
10.96 | length 0.1022 0.1077| lzz
Thigh 29| of hip to knee length 0.1360 0.1653 Ixx
15 | of hip to knee length 0.07037 0.04421 lyy
30 | of hip to knee length 0.14Q7 0.17p9 lzz
Shank 28 | of knee to ankle length 0.1190 0.04935] Ixx
10 | of knee to ankle length 0.04250 0.006294| lyy
28 | of knee to ankle length 0.119 0.04935| |zz
Foot 17| of heel to toe length 0.04046 0.001426 Ixx
37 | of heel to toe length 0.08806 0.006756 lyy
36 | of heel to toe length 0.08568 0.006395 lzz
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Appendix C: Relevant OpenSim Files

Subject01_Setup_Scale.xml

Mass of the subject in kg. Subject-specific model
scaling step will have this total mass.

Height of the subject in mm. For informational pur
used by scaling).

! !

Age of the subject in years. For informational pur
used by scaling).

Notes for the subject.
!
Specifies the name of the unscaled model (.osim) an

"# #S

Model file (.osim) for the unscaled model.

%& Lo %&

Set of model markers used to scale the model. Scali

generated by

poses only (not

poses only (not

d the marker set.

ng is done based on

distances between model markers compared to t he same

distances between

the corresponding experimental markers.

$ % 1%& $ 1% & $
"# #S

Specifies parameters for scaling the model.

#

Specifies the scaling method and order. Valid optio

'measurements’, ‘'manualScale’, singly or both

sequence.

% $

$ % 1%&

ns are
in any

%
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Scale factors to be used for manual scaling.

! & $ 1$ 3
Specifies the measurements by which body segments a re to be scaled.
# ' 1 & 1$ 1% $
TRC file (.trc) containing the marker positions use d for
measurement-based scaling. This is usually a static trial,
but doesn't
need to be. The marker-pair distances are co mputed for each
time step
in the TRC file and averaged across the time range.
$ %& ! $ %&
Time range over which to average marker-pair distan ces in the marker

file (.trc) for measurement-based scaling.
I % I %

Flag (true or false) indicating whether or not to p reserve relative
mass between segments.

( % % !) ( % % !)!

Name of SIMM joint file to write when done scaling. If not specified,
a file will not be written.
<output_joint_file> subject01_scaledOnly.jnt
</output_joint_file>

Name of SIMM muscle file to write when done scaling . If not specified,
a file will not be written.
<output_muscle_file> subject01_scaledOnly.msl
</output_muscle_file>

Name of OpenSim model file (.osim) to write when do ne scaling.
(1%  %& o # (1%  %&
Name of file to write containing the scale factors that were applied

to the unscaled model (optional).

(1%  %& g (1%  %&
#
Specifies parameters for placing markers on the mod el once a model is
scaled.
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#e*

TRC file (.trc) containing the time history of expe rimental marker
positions (usually a static trial).

$ %& ! $ %&
Task set used to specify weights used in the IK com putation of the
static pose.
+ $ ! & $ ! &
Name of file containing the joint angles used to se t the initial
configuration of the model for the purpose of placing the
markers.
These coordinate values can also be included in the

optimization
problem used to place the markers. Before the

are
placed, a single frame of an inverse kinemati
is
solved. The IK problem can be solved simply b
marker

positions, but if the model markers are not i
locations,
the IK solution will not be very good and nei

marker

placement. Alternatively, coordinate values (
this file)

can be specified and used to influence the IK
is

valuable particularly if you have high confid
coordinate

values. For example, you know for the static
subject was

standing will all joint angles close to zero.
coordinate set

(see the CoordinateSet property) contains non
for

coordinates, the IK solution will try to matc
marker

positions, but also the coordinates in this f
squared error

is used to solve the IK problem.

! %&
Time range over which the marker positions are aver
I % I %

Name of the new SIMM Joint file (.jnt) after scalin
placement (optional).
<output_joint_file> subject01.jnt </output_joint_

model markers
cs (IK) problem
y matching

n the correct
ther will
specified in
solution. This
ence in the
trial the

If the

-zero weights

h not only the

ile. Least-

g and marker

file>
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Name of the SIMM muscle file (.msl) after scaling a nd marker placement

(optional).
<output_muscle_file> subject01.msl </output_muscl e_file>
Output OpenSim model file (.osim) after scaling and maker placement.
(1%  %& [ (1% %&
Name of the motion file (.mot) written after marker relocation
(optional).
101% ! %& [ (1% ! %&

#$*

subject01_Setup_IK.xml

+,
Name of the .osim file used to construct a model.

%& [ %&

Specify which optimizer to use (ipopt or cfsqp).

(-% | (¢ -% |
Task set used to specify IK weights.

+ 8! & 10! &

Parameters for solving the IK problem for each tria |. Each trial
should get a seperate SimmIKTril block.

+,
) !
+1
TRC file (.trc) containing the time history of expe rimental marker
positions.
$ %& * & $ %&
Name of file containing the joint angles used to se t the initial

configuration of the model for the purpose
placing the markers.

These coordinate values can also be include
in the optimization

problem used to place the markers. Before t
model markers are

of

he
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placed, a single frame of an inverse
kinematics (IK) problem is
solved. The IK problem can be solved simply
by matching marker
positions, but if the model markers are not
in the correct locations,
the IK solution will not be very good and
neither will marker
placement. Alternatively, coordinate values
(specified in this file)
can be specified and used to influence the IK
solution. This is
valuable particularly if you have high
confidence in the coordinate
values. For example, you know for the stati c
trial the subject was
standing will all joint angles close to zer o.
If the coordinate set
(see the CoordinateSet property) contains
non-zero weights for
coordinates, the IK solution will try to
match not only the marker
positions, but also the coordinates in this
file. Least-squared error
is used to solve the IK problem.

! %& * & ! %&

Time range over which the IK problem is solved.

I % I %
Name of the motion file (.mot) to which the results should be written.
101% ! %& *&1& (1% ! %&
+1
). !
+, !
+1
I$  1++,
- * & l++,
&"!

Name of the .osim file used to construct a model.

%& I %&
Replace the model's actuator set with sets specifie din
<actuator_set_files>? If false, the actuator s et is appended to.
( %!l %! ( %"l %!
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List of xml files used to construct an actuator set

for the model.

'l % 1%& 44,1, 'l % 1%&

Directory used for writing results.
"% 10 + 44, "% 10
Output precision. It is 8 by default.
"1('1%( "1("1%(
Initial time for the simulation.
I %! I %!
Final time for the simulation.
& %! & %!

Maximum number of integrator steps.

%) % &% ! ! %!( "%') % &% ! !

%! (

Maximum integration step size.

% 1% (% - % 1% (% -

Integrator error tolerance. When the error is great
step size is decreased.

1% %! ' 1% %!

Integrator fine tolerance. When the error is less,
size is increased.

ol %& %! . Pl %& %!

Flag (true or false) indicating whether or not to m
in the center of mass of a body to reduced DC
If
true, a new model is writen out that has alter

J1% %1% % T S1% %% " %

Name of the body whose center of mass is adjusted.
segment in the model should normally be chosen
the
torso segment is usually the best choice.

er, the integrator

the integrator step

ake an adjustment
offsets in MX and MZ.

ed anthropometry.

The heaviest
. For a gait model,
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1% %) 0 1% %) 0

Name of the output model file (.osim) containing ad justments to
anthropometry made to reduce average residuals . This file is
written
if the property adjust_com_to_reduce_residuals is set to true. If a
name is not specified, the model is written ou t to a file called

adjusted_model.osim.
(1%  %& b 1%  %&

Motion (.mot) or storage (.sto) file containing the desired kinematic
trajectories.

%$ ! %& * &1 & %$ ! %&
Low-pass cut-off frequency for filtering the desire d kinematics. A
negative value results in no filtering. The de fault value is -1.0,
SOno filtering.
1( %" &&%& 2' 0 1( %" &&%& 2' 0
File containing the tracking tasks. Which coordinat es are tracked and

with what weights are specified here.
1 $% !%& I++! & 1 $% 1%&
File containing the constraints on the controls.
I 1%& I+ I 1%&

Motion file (.mot) or storage file (.sto) containin g the external
loads applied to the model.

' % %& * & ' % %&
Motion file (.mot) or storage file (.sto) containin g the model
kinematics corresponding to the external loads
' % % %$ ! %& * &1 & I %
% % ! %&

Name of the body to which the first set of external loads should be
applied (e.g., the name of the right foot).

I % %) 0 ! I % %) 0

Name of the body to which the second set of externa | loads should be
applied (e.g., the name of the left foot).

I % %) 03 ! I % %) 03
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Low-pass cut-off frequency for filtering the model kinematics

corresponding to the external loads. A negativ e value results in no
filtering. The default value is -1.0, so no fi Itering.

1( %" &&_&W& 2' 0%& % %$ ! 1( %" &&%& 2' 0%& %
%$ !

Flag (true or false) indicating whether to use the fast CMC
optimization target. The fast target requires the desired
accelerations to be met. The optimizer fails i f the acclerations
constraints cannot be met, so the fast target can be less robust.

The
regular target does not require the accelerati on constraints to be
met; it meets them as well as it can, but it i s slower and less
accurate.
"%& 1% (! -1 %! | "%& 1% (I -1 %! !

Perturbation size used by the optimizer to compute numerical
derivatives. A value between 1.0e-4 and 1.0e-8 is usually
approprieate.

¢ -% ! % -% ! %

Convergence criterion for the optimizer. The smalle r this value, the
deeper the convergence. Decreasing this number can improve a

solution,

but will also likely increase computation time
¢ -% % ! . ¢ -% % !
Maximum number of iterations for the optimizer.
(¢ -% %! ! (r-% %! !

Print level for the optimizer, 0 - 3. 0=no printing , 3=detailed
printing, 2=in between

O - %( 1% O - %( 1%

Specify which optimizer to use (ipopt or cfsqp).

¢ -% ! ¢ -% !
Time window over which the desired actuator forces are achieved.
Muscles forces cannot change instantaneously, so a finite time
window
must be allowed. The recommended time window f or RRA is about 0.001

sec, and for CMC is about 0.010 sec.

%! %1 1 %! %1 1
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Flag (true or false) indicating whether or not to u

filter. Setting this flag to true can reduce o
computed muscle excitations.

"% %& ! "% %& !

Flag (true or false) indicating whether or not to ¢

residuals. No actions are taken based on this

printing

the average residuals, which can be useful for

solution

is good. Average residuals should be be close

there

is likely problem in the experimental data, in

1% % (1 %

Flag (true or false) indicating whether or not to m

If

in the center of mass of a body to reduced DC

true, a new model is writen out that has alter

[#1

%

se the curvature
scillations in the

ompute average
flag other than

seeing if the
to 0.0. If not,

the model, or both.

ake an adjustment

offsets in MX and MZ.

ed anthropometry.
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Appendix D: Rigid-Body Dynamics Derivations

Figure 44: Schematic of 2D dynamic analysis body niel

A schematic of the body with external ground arsideal forces and moments applied is
shown above. Equations were then derived usin§léveon-Euler method.
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Foot

Figure 45: Free body diagram of foot

Vectors shown in the free body diagram above dneitll respect to the world
coordinate frame and are defined as follows:

Summing forces about the foot, we have

(29)
Rearranging to solve fdta:

(30)
Summing torques about the center-of-mass, we have

(31)
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Rearranging to solve for ankle joint moment,

(32)
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Lower Leg (Shank)

Figure 46: Free body diagram of lower leg

Vectors shown in the free body diagram above dngitll respect to the world
coordinate frame and are defined as follows:

Summing forces on the segment, we have

(33)
Solving for knee joint moment and substituting dopraXX,

(34)
Summing torques about the center-of-mass and gpfeinknee joint moment,

(35)
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Upper Leg (Thigh)

Figure 47: Free body diagram of upper leg

Vectors shown in the free body diagram above dngitll respect to the world
coordinate frame and are defined as follows:

Summing forces on the segment, we have

(36)
Solving for hip joint moment and substituting eqoias XX and XX,

(37)
Summing torques about the center-of-mass and gpfeinhip joint moment,

(38)
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Head, Arms, Torso (HAT) segment

Figure 48: Free body diagram of HAT segment

Definition of variables:

Summing forces on the segment and solving for lurjdat reaction force,
(39)
Summing moments about center-of-mass and solvinlyifobar joint moment,

(40)
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Pelvis

Figure 49: Free body diagram of pelvis

Vectors shown in the free body diagram above dneitll respect to the world
coordinate frame and are defined as follows:

Summing forces on segment and solving for resithrak,

(41)
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Summing torques about center-of-mass and solvingefddual moment,

(42)

2D flexion approximations

For the 2D approximations, we assume all motiorucn the sagittal plane. The
sagittal plane is defined as shown in Figure 5GhWHhis assumption, we are interested in
joint moments in the world z-axis as shown in Feggdd. We also assume the principal
moment of inertia is aligned with the z-axis andage cross products of inertia.

Figure 50: Definitions of body planes

OpenSim defines joint angles in local frames. Wgibey converting these to angles in
the world frame with respect to the vertical (ys)xiThese world angle definitions are
shown in Figure 51 and are the angles used in euvations.
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Figure 51: Definition of joint angles in world frame with respect to vertical (y-axis)

2D Ankle Flexion Moment

We begin by converting the 3D dynamical equatiarthie foot to its 2D approximation.
From earlier, the 3D equation for ankle joint momnisn

(32)

Here, we will ignore the subscrigisthat denote this is for the right leg, and takes th
analysis to be for any leg. The cross and dot pisdn this equation are evaluated as
follows,

(43)

(44)
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(49)

We now substitute equations (43), (44), and (4&) {(42). The ankle flexion moment in
the sagittal plane (z-direction) is therefore,

(46)

Where,

with g, being the angle from the vertical as shown in fédel. Further, we made the
following notational simplifications:

Since the linear acceleration of the foot segmeits @enter-of-mass (com) is a function
of the com location and not determined directlyrfrmeasurements, we write this term in
terms of the linear acceleration of the ankle, Whgcknown from measurements:

(47)
The equation for 2D ankle flexion moment then beesm

19)
2D Knee Flexion Moment
From earlier, the 3D knee flexion moment equati@s @etermined to be,

(35)

As with the 2D ankle flexion moment derivation, first evaluate the cross and dot
products and simplify. We make similar notatioriadikr notational simplifications and
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write linear acceleration of the lower leg centérrass in terms of linear acceleration of
the knee. The resulting equation for 2D knee flexivoment then becomes,

(20)
2D Hip Flexion Moment

We derive the 2D hip flexion moment using the sane¢hod as with 2D ankle
and knee flexion moments. This equation becomes,

(21)
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Appendix E: MATLAB script for 2D Dynamics analysis

%This m-file analyzes uncertainties in joint moment
%uncertainties in body segment inertial parameters
%By JunJay Tan

clear

%Load .mat data file
load gait_data

%constants
m = 72.6; %mass of test subject in kg
g =-9.81;

%mean parameters

m_f=1;
com_f=0.011;
Izz_f=0.0043;
m_Il = 3.32;

com_ll=0.1778; %use positive values, since sin
care of direction

Izz_Il = 0.0473;
m_ul = 8.709;
com_ul =0.192;
Izz_ul =0.18;

%longitudinal length of segments in m
L_Il=0.425;
L_ul =0.4691;

%initializing vectors

dM_ankle = []; %ankle joint moment uncertainty
dM_knee =[];

dM_hip = [;

dM_ankle_norm = J;

dM_knee_norm =J;

dM_hip_norm =[];

%User defined parameters

dm_f=0.202; %foot mass uncertainty
dm_Il =0.343; %shank mass uncertainty
dm_ul = 2.07; %thigh mass uncertainty

dcom_f=0.011;
dcom_II =0.02;
dcom_ul =0.017;

dizz_f = 0.002; %foot inertia uncertainty
dizz_Il = 0.013;
dlzz_ul = 0.195;

s caused by

/cos already takes
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%------- Description of vectors---------------------

% gait_cycle = % of gait cycle

% ax_ankle = linear accel in x-dir of ankle in m/
% ay_ankle = linear accel in y-dir of ankle in m/
% ax_knee = linear accel in x-dir of knee in m/s*
% ay_knee = linear accel in y-dir of knee in m/s"
% ax_p = linear accel in x-dir of pelvis in m/s"2
% ay p=..

% alpha_f = angular accel of foot in rad/s"2, i.e
% alpha_ll = angular accel of lower leg (shank) i
knee

% ang accel

% alpha_ul = ang accel of upper leg (thigh)in rad
flexion

% ang accel

% theta HF = hip flexion angle wrt vertical, star
pos

% (in radians)

% theta KF = knee flexion angle wrt vertical (rad
% theta AF = ankle flexion angle wrt vertical "

% F_gndx = ground force on right foot in N, x-com
% F_gndy = ground force on right foot in N, y (ve
% Note: all vectors are wrt to world inertial frame
%

%conversion factors between radians and degrees
rad2deg=180/pi;
deg2rad=1/rad2deg;

%~Calculate joint moment uncertainties

%Calculate ANKLE MOMENT uncertainty
dM_ankle = abs([alpha_f])*dlzz_f + abs([-m_f*g*sin(
2*alpha_f*m_f*com_f + m_f*(sin(theta_AF).*ay_ankle
cos(theta_AF).*ax_ankle))])*dcom_f...

+ abs([alpha_f*com_f*2 + com_f*(sin(the
cos(theta_AF).*ax_ankle)])*dm_f;

%Calculate KNEE MOMENT UNCERTAINTY

dM_knee = dM_ankle + abs(alpha_Ill)*dlzz_II +...
abs([m_lII*(sin(theta_KF).*(ay_knee-g) +

cos(theta_KF).*ax_knee) + 2*com_II*m_II*alpha_ll])*
abs([com_lI*(sin(theta_KF).*(ay_knee-g) +

cos(theta_KF).*ax_knee) + com_II"2*alpha_lI])*dm_lI
abs([L_lI*(sin(theta_KF).*ay_ankle + cos(

- g) + com_f*L_II*alpha_f.*(sin(theta_KF).*sin(thet
cos(theta_KF).*cos(theta_ AF))])*dm_f + ..
abs(Im_f*L_lI*alpha_f.*(sin(theta_KF).*si

cos(theta_KF).*cos(theta_AF))])*dcom_f;

%Calculate HIP MOMENT UNCERTAINTY
dM_hip = dM_knee + abs(alpha_ul)*dizz_ul +...

sn2
sn2

., ankle ang accel

n rad/s”2, i.e.,

/s"2, i.e., hip

ting from downward

)

ponent
rtical) component

theta AF) +
- (_

ta_AF).*ay_ankle +

dcom_lI +...

+ ...
theta_KF).*ax_ankle
a_AF) + ...

n(theta AF) +
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abs([m_ul*[sin(theta_HF).*(ay_p-g)+ cos(the
2*com_ul*m_ul*alpha_ul])*dcom_ul +...
abs([com_ul*[sin(theta_HF).*(ay_p-g) + cos(
com_ul*2*alpha_ull)*dm_ul + ...
abs([m_I*L_ul*alpha_ll.*(sin(theta_HF).*si
cos(theta_HF).*cos(theta_KF))])*dcom_II + ...
abs([L_ul*[sin(theta_HF).*(ay_knee-g) + cos
+
com_II*L_ul*alpha_ll.*(sin(theta_HF).*sin(theta_KF)
theta_ KF))])*dm_lIl +...
abs([m_f*L_ul*alpha_f.*[sin(theta_HF).*sin(
cos(theta_HF).*cos(theta_AF)]])*dcom_f + ...
abs([L_ul*(sin(theta_HF).*(ay_ankle-g) +
cos(theta_HF).*ax_ankle) +
com_f*L_ul*alpha_f.*[sin(theta_HF).*sin(theta_AF)+c
eta_ AF)]])*dm_f;

%normalize moments by body weight
dM_ankle_norm = dM_ankle/m;
dM_knee_norm = dM_knee/m;
dM_hip_norm = dM_hip/m;

figure, plot(gait_cycle,abs(dM_ankle_norm)), title(
flex moment’),xlabel('% gait cycle"),ylabel('N-m/kg
figure, plot(gait_cycle,abs(dM_knee_norm)), title('
moment’),xlabel('% gait cycle'),ylabel('N-m/kg")
figure, plot(gait_cycle,abs(dM_hip_norm)), title('n
moment’),xlabel('% gait cycle'),ylabel('N-m/kg")

ta_HF).*ax_p] +
theta_HF).*ax_p] +
n(theta_KF) +
(theta_HF).*ax_knee]
+cos(theta_HF).*cos(

theta AF) +

os(theta_HF).*cos(th

'normalized ankle
normalized knee flex

ormalized hip flex
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