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1. ANOMALOUS CONSTRICTION OF LOW-PRESSURE MICROWAVE DISCHARGES

IN HYDROGEN

Four empirical laws that govern the behavior of the constricted discharge with vari-

ations in absorbed power and magnetic field have been found. Each of the figures in

this report illustrates one of these laws.

a. Variations with Absorbed Power

In a previous report (1) we presented two figures that show the variations of the elec-

tron density (n ) and discharge diameter (d) with the total power absorbed in the micro-

wave cavity (Pabs). The power absorbed in the discharge alone (P ) can be separated

from the total absorbed power by making use of the fact that the presence of the discharge

in the cavity never shifts the empty-cavity resonance more than 0.8 per cent (2).

Figure II-1 shows the results of an experiment performed at a fixed magnetic field and

gas pressure. In this figure fr is the resonant frequency of the cavity plus discharge;

fe is the resonant frequency of the empty cavity; and Ro is the empty-cavity

standing-wave ratio. It is seen that d varies in the same way with P and Pabs'

namely

d
/ constant (1)

g

independent of Pg. The value of the constant increases slightly with decreasing mag-

netic field (3).

It was also observed that for a fixed magnetic field

dn = constant (2)

independent of P . This is shown in Fig. II-2, and, again, it is seen that the constant

increases with decreasing magnetic field. Thus, combining Eqs. 1 and 2, we have
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d~n

p1/2 = constant 
(3)

g

independent of Pg.

b. Variations with Magnetic Field

Figures II-3 and II-4 show the results of a typical experiment when the magnetic

field is varied and P is held fixed. Figure II-3 shows that
g

d 2 n_ = constant (4)

independent of the magnetic field, and hence Eq. 3 holds for variations in both the mag-

netic field and P . This equation then states that the total number of electrons in the
g

discharge is a function only of the absorbed power. Figure II-4 shows that

2r(do-d) = constant 
(5)d(w-w b)

independent of the magnetic field.

The cause of the constriction is still unknown.

C. S. Ward
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2. RADIOFREQUENCY CONSTRICTED DISCHARGE

With the use of a 7-mec transmitter, constriction of the positive column of a mercury

discharge has been observed. Figure 11-5 is a schematic diagram of the experimental

arrangement used. The parallel metal plates above and below the discharge column

provide an electric field which, because of the presence of the plasma, is greatly dimin-

ished in the region of the plasma. In the present arrangement the ratio of the electric

field outside the plasma to the field inside the plasma is very large because of the large

ratio of (w /0).
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Fig. 1I-5. Schematic diagram of constricted mercury discharge.

When the rf voltage is increased in magnitude, the discharge diameter varies from

approximately 1 cm to approximately 2-3 mm. The thickness of the discharge varies

both with the applied ac voltage and the dc current passing through the column. As

would be expected, higher currents result in larger thicknesses. Currents of 60 ma

have been constricted by the action of rf fields.

Several other arrangements of the electric-field patterns were tried. In one arrange-

ment the parallel plate system is replaced by a coaxial electric-field pattern. A brass

tube completely encloses the discharge. The rf voltage is now applied between the anode

of the positive column and the brass tube. The use of this geometry results in very

marked symmetry of the constriction. This constriction is not now understood. A par-

tial explanation is being attempted by applying theories on rf confinement (1), whereby a

single particle experiences a time-average force that is proportional to the negative

gradient of E2

R. B. Hall
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3. MEASUREMENT OF ELECTRON TEMPERATURE BY CYCLOTRON RADIATION

We have already indicated the possibility of measuring electron temperatures by

observations of cyclotron-resonance emission from a plasma (1). In the previous dis-

cussion the plasma was supposed to be situated in free space, the radiation being picked

up by a microwave horn. This scheme has the following disadvantages. (a) The exact

volume of plasma subtended by the horn is unknown and must be determined empirically

by comparing it with a plasma of known temperature and similar geometry. (b) Free

space is almost never available to the experimenter, and reflections from surrounding
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equipment can alter the opacity of the plasma.

These disadvantages can be overcome if the plasma is situated in a waveguide. The

disadvantage here is that the absorption coefficient is not known. However, when the

plasma is tenuous and perturbs the waveguide modes slightly, the usual coefficient for

a dielectric-filled waveguide can be used. For this situation we have, for the power P

radiated from a transparent slab of thickness L into a frequency interval Af,

a(0)L
P = kTAf

[1-(\/2a)2 1/2

where we have used the 0-dependent absorption coefficient a(6) in place of the isotropic

one;

2

a() 1 1cos 0

c (w-b) + 2

where &p, ob, and w are the plasma, cyclotron, and receiver radian frequencies,

respectively, and 0 is the angle between the wave normal and the magnetic field

for plane waves in an infinite plasma. Here, for 0 we take the angle that the mag-

netic field makes with the plane waves into which the unperturbed dominant wave-

guide mode can be decomposed. That is, 0 =cos-1(X/2a) for the magnetic field directed

transverse to both the waveguide and the electric vector of the waveguide mode.

Since our plasma was not in the

form of a slab, but of a cylinder,

we substitute L = TD2/4b, where

D is the cylinder diameter, and
A CYCLOTRON RESONANCE

BLACK BODY b is the waveguide height. Here
- THEORY

we assume the plasma to be uni-

form across, and along, the cyl-

inder.

2
Ppv

Fig. 11-6. Electror
of electr

Results of such measurements on

a helium glow discharge at 37 4 Hg

Ao are shown in Fig. 11-6. Evaluations

of data by the cyclotron-resonance

Wb method were made by integrating the

009 0 0 1012 total power under the resonance line,
ncM in order to make the measurement

temperature as a function independent of magnetic-field inhomo-

.on density. geneity and other unknown broadening



(II. PLASMA DYNAMICS)

mechanisms. The measurements by the black-body method (2) were made by comparison

with a standard noise source at the higher electron densities, and with a magnetic field

of approximately 0. 9 mw/e. We have shown (1) that the plasma radiates essentially as

a black body just below cyclotron resonance for ( P/W) > 0. 2.

The theoretical line in Fig. II-6 is obtained by assuming that the electron tempera-

ture T in this discharge varies as T = TaDs/Da , where Ta is the observed value of T

well within the ambipolar diffusion region (see horizontal arrow in the figure), and D
s

and D are the transitional and ambipolar diffusion coefficients. From results of Allisa
and Rose (3) for a ratio of 32 for electron to ion mobility, we have constructed the

theoretical curve shown in Fig. 11-6, in which the value of T used is indicated. The ver-
a

tical arrow on the abscissa indicates the theoretical limit of validity of the cyclotron-

resonance method; that is, (W /vb)= 1.

J. L. Hirshfield
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4. RADIATION LOSS FROM A WARM PLASMA

As was shown in the last report (1), a cold plasma in a magnetic field with an elec-

tron density sufficiently high that the plasma frequency W is greater than the cyclotron

frequency wb will radiate as a black body at frequencies up to a cutoff frequency in the

neighborhood of w . At frequencies higher than this cutoff frequency the plasma is
p

transparent, and the Bremsstrahlung escapes freely. By comparing the magnitude of

the black-body radiation with the total Bremsstrahlung (2) it can be seen that the former

is often a minor source of radiation loss.

P = 5. 76 X 10 - 26 T N3/2 watts/cm 2
bb

PBrems = 5.4 X 10 - 31 T 1 /2 N 2 Z 2 watts/cm3

-3
where T is the electron temperature in kev, N is the electron density in cm , and Z

14-3
is the atomic number. Thus for a 50-kev deuterium plasma with N = 1014 cm and

with a characteristic dimension L = 10 cm, this comparison gives PBrems/Pbb = 530.

Any means by which the cutoff frequency is raised can increase the radiation loss mate-

rially because (from the Rayleigh-Jeans law) the power radiated varies as the cube of
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the cutoff frequency. Therefore, in the example just given, if the cutoff frequency is

raised from wo to 8w , then the total radiated power is approximately doubled. It has
p p

been suggested (3) that such a means is the emission at frequencies that are harmonics

of the cyclotron frequency. These harmonics arise when an energetic electron has its

instantaneous radiation pattern thrown asymmetrically forward in the direction of motion

along its orbit.

We shall estimate the effect of these harmonics by comparing the peak intensity of

a given harmonic with the corresponding intensity given by the Rayleigh-Jeans law within

the same frequency interval. The harmonic intensities will be computed as though the

plasma were transparent, and our experience with the fundamental will be used. As

long as the value of the harmonic intensity comes out higher than that of the black body,

we know that the calculation is incorrect, and hence the energy actually appears at other

frequencies and tends to fill in the area under the Rayleigh-Jeans curve between har-

monics. We shall assume, on the basis of this argument, that the cutoff frequency moves

up to approximately that frequency at which the harmonic intensity first falls below that

of the black body. This is roughly the scheme used by Trubnikov (4), and by Beard (5),in

recent communications on this subject. Comparisons with their results are made below.
th

The energy In radiated in the n -harmonic line (6) is proportional to the total

energy radiated, Itot:

2n-Z
n 3 I1)

to t  (2n+1)! c

where vi is the component of electron velocity transverse to the magnetic field. This

formula is invalid for electron energies higher than approximately 20 kev. We assume,

by analogy with the fundamental line in a transparent plasma, that the contribution to an

over-all line by those electrons having velocities between v and v + dv is a collision-

broadened Lorentzian.

2n+l 2n-2
n(w) 3 (n+1) n 2 n - 2  v d dN

(2)
tot r (2n+1)! c (- ) + v

where dN, the fraction of all electrons within dv, is assumed to be Maxwellian

m \3/2 _mv2
dN = rkT/ e /ZkT 4rrv 2 dv (3)

and thus (v i /c)2 = (v/c)2. Here wo is the center frequency of this contribution.

=n (1v2/C22 1/24)(1-v2/c2)i/ 2
o = nob no b 3 - (4)

0 b 1 2/ 2 1/ 2  cb c2
1- 3v/ /
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with b = eB/m, and v the collision frequency. The factor in the numerator of Eq. 4

represents the relativistic mass increase; that in the denominator, the Doppler correc-

tion for the guiding center motion. We assume that the radiation is observed at right

angles to B, so that first-order Doppler effects are absent.

In order to sum over all dv, we require the integral

0c xn-1/2 e-x d

n 2nJ 0  (x-u) 2  a

where

2
my

x 2kT

u2 kT m nwb

a 2 kT

We can evaluate J exactly by making the substitution
n

(x-u + a m=0 u +a

where T(1 / 2 ) are the Tchebychef polynomials, given by (z2_1)1/2 m T (12(z) = (2)1/2

m -1
sinh [m cosh z]. The result is

Sm= 2 (1/Z)nm=0 u 2 + a?) m K(uZ+a)l/ 2 rm+n+-

Unfortunately, the slow convergence of the T ( 1/2) makes this representation inconvenient

to use. Rather, we capitalize upon the fact that a << 1, and consider the numerator of

the integrand of J as remaining stationary over the range of contribution of the denom-
n

inator, and thereby approximate

J un-/2 e-u dx n-1/2 e-u (a<<u) (5)
0 (x-u) 2 + a

This approximation was checked by a numerical integration for u = n - 1/2 = 10, and

a = 10 - 2 : the approximate value was less than 5 per cent higher than the numerical

evaluation.

Thus we see that the resulting line has its peak moved to a frequency lower than

nwb by the amount
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AkT n(n-1/2) wb; (6)

has its amplitude multiplied by the factor

~ 2 n-1 n+l )(n )n-1/2 e-(n-1/2) mc2)
n n kT ob

over what it would be for co = nwb; and has a long tail extending toward lower frequen-

cies, which shows the influence of the electrons in the Maxwellian tail. In regard to the

frequency dependence given by Eq. 5: Beard finds that the emission varies with fre-

quency as

2 2 2 n-1 2 2 2

exp2 2kT 2W 3w

as contrasted with our variation.

The shift in the harmonic peak to lower frequencies given by Eq. 6 places a rough

upper limit on the cutoff frequency because higher harmonics are shifted in proportion

to n(n-1/2); above this limit the net intensity decreases with frequency. Thus for a

10-kev plasma ACw [n(n-1/2)wb]/75, and the peak in the total intensity comes at approx-

imately 38 Cob. This limit decreases with T; for a 50-kev plasma (7), the peak comes

at approximately 8 wb.
The amplitude modification factor S can be compared with the results of Beard,

who finds the higher harmonics to be increasingly "suffocated" with increasing harmonic

number. Table II-1 gives several values of S for a plasma with the characteristics:
15 -3 n

N = 10 cm , T = 10 kev, B = 10 kilogauss.

Table II- 1.

n S n S n Sn n n

-32 6. 90 X 10- 3  5 1.25 8 1.87 X 10 3

3 2. 68 X 10- 2  6 12.5 9 1.40X 10 4

4 0. 158 7 149 10 1. 19 x 10 5

Here we have used an electron-ion collision frequency v deduced from Spitzer's (1) con-

ductivity: v = 5.91 X 10 N T 3/ 2 sec (N in cm , T in kev). The increase in line
2n-2

intensity arises because the (v/c)2n-2 factor in Eq. 1 throws strong weight to the high-

velocity electrons in the Maxwellian tail at high n.
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We now compare the peaks of the lines with the Rayleigh-Jeans limit B(w) =

(kTw dw)/(43 c 2) for a plasma of dimension L. Here Itot = w wbkT/6rc3 , and

o2LI (w) max L n-2
Rn B(w) a c (2

b mc)

where

f = 24 /n- (4
n - l

n

2n-2
n (n+1) n-1/2 -(n-1/2)

(2n+1)!

A few values of f are given in Table 11-2.n

Table 11-2.

n f n f n f
n n n

2 2.325 8 7. 170 X 104 14 4.769 X 1012

3 3.943 9 1. 046 X 106 15 1.381 X 1014

4 13. 78 10 1. 769 X 10 16 4. 333 X 1015

5 76.28 11 3.429 X 108 17 1.465 X 1017

6 5.874 X 102 12 7.448 X 10 18 5. 309 X 1018

7 5. 142 X 10 3  13 1. 797 X 1011 19 2. 054 X 1020

Now let us compare our results with Trubnikov's example of the solar corona:
7 -3 7

B = 10 gauss, N = 10 cm , L = 7 X 10 cm, T = 100 ev. He finds that four

harmonics are absorbed; our calculation gives 13 = 418, 4 = U. Z9, and 5 =
-4

3.24 X 10

Beard cites the following example in his results: For w = 10wb, T = 50 kev,
14 -3 -4

N = 1014 cm , and B = 5000 gauss, he finds R 1 0 =104 L (L in cm). We find (7)

that R 1 0 = 670 L. Since the highest frequency at which a peak would occur (were the

plasma transparent at that frequency) is, from Eq. 6, at approximately 8 W b, the total

cyclotron radiation can only be found by summing contributions from the tails of a

number of harmonics higher than the eighth, and comparing this sum with the Rayleigh-

Jeans intensity.

The aid of Elizabeth J. Campbell, of the Joint Computing Group, M. I. T., is

acknowledged in the computation of Table 1I-2.

J. L. Hirshfield
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5. CESIUM PLASMA

It has been suggested (1) that a steady-state plasma of high degree of ionization can

be obtained by directing a well-defined beam of cesium atoms at a hot tungsten surface

and then confining the ions thus produced by a magnetic field. This method appears to

have the advantage over other methods (2, 3) (in which the vessel is completely filled

with cesium vapor) that the concentration of neutral atoms can be maintained at low

levels, with a subsequent increase in the percentage of ionization.

Here we report preliminary measurements that were made with the tube shown sche-

matically in Fig. 11-7. A beam of cesium atoms, issuing from an oven maintained at

250'C, impinges on the hot tungsten plate A (1.4 cm2 in area), whose temperature can be

raised to 24000K. An axial dc magnetic field of approximately 1200 gauss reduces the

diffusion loss of the thermal ions to the radial walls of the glass container. The ions

are collected by electrode B, which is held negative with respect to A. Electrode B can

also be heated, and thus provide electrons for space-charge neutralization of the ion

beam. A cold trap kept at -70 0 C greatly diminishes the vapor pressure of cesium in the

right-hand section of the tube. The tube was pumped continuously. With the cesium oven

inoperative, the pressure, as measured by an ionization gauge several feet away from
-8

the experimental tube, was 5 X 10-8 mm Hg. With the cesium beam turned on, the

pressure was 10-5 mm Hg.

Figure II-8 shows a plot of the positive ion current collected by the cold electrode

B as a function of the heating current of electrode A for a 500-volt potential between A

and B. The temperature of electrode A was estimated from the measured electric

power input and from the known variation of the resistivity of clean tungsten with tem-

perature. The second abscissa of Fig. II-8 gives this temperature. No ion emission was
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Fig. 11-7. Schematic diagram of the cesium tube.

found below approximately 1500°K because here the cesium-coated tungsten has a lower

work function than the ionization potential of cesium. As the temperature increases,

the surface begins to clean up with a subsequent rapid increase of ion emission. Even

at the highest temperatures attained with the present tube, the ion emission does not

show the signs of saturation that are expected to occur when all available ions that are

produced at A are collected at B. Figure 11-9 shows a plot of the ion current as a

function of voltage applied between A and B for an electrode A temperature of 17000K,

and for a magnetic field of 1200 gauss. The shape of this curve is characteristic of all

other measurements that were made at different temperatures of electrode A. For

sufficiently high voltages the ion current is essentially constant; below 100 volts the

current begins to fall off with decreasing voltage.

No absolute measurements of the charge concentration have been made thus far. A

determination of the ion concentration from the current-voltage characteristic requires

a knowledge of the drift velocity of the ion as a function of the applied field. The drift

velocity is not known. However, the magnitude of the density can be taken to lie within

two well-defined limits. The maximum ion current attained in this tube was 3.5 mamp

for a tube voltage of 100 volts. The drift velocity of the ion cannot exceed that associated
10 -3

with a voltage drop of 100 volts; hence we set a lower limit of 2 X 10 cm for the



TEMPERATURE (OK) OF ELECTRODE A

1600 1720 1970

1000 -

I00 -

40 50 60

HEATING CURRENT

70 80
(AMP) OF ELECTRODE

Fig. 11-8. Ion current as a function of the electrode heating current and
temperature. (Magnetic field, approximately 1200 gauss.)

40 -

200

160

120

80

Fi.1-9 uretvlag hratrsico hecsumtb.(Hae cret

Fig. II-9. Current-voltage characteristic of tile cesium tube. (Heater current,
60 amp; heater temperature, 17000 K; magnetic field, 1200 gauss.)

18

100 200 300 400 500

VOLTAGE ACROSS ELECTRODES (VOLTS)

2350

:

v ...." ""

10' - ' '

'i [J

1000

100

10



(II. PLASMA DYNAMICS)

ion density. With the assumption that the ion has a kinetic energy given by the temper-
11 -3ature of the hot electrode (24000K), we obtain an upper limit of 3 X 10 cm for the

density. An idealized calculation, in which it is assumed that (a) every cesium atom is

ionized, (b) the ion drifts down the tube at a velocity corresponding to that of its thermal

energy, and (c) no ions are lost by diffusion or recombination, leads to a saturation
12 -3value for the ion density of approximately 10 cm . This calculation was made for

an effusion of cesium atoms from a channel, 0. 070 inch in diameter and 0. 4 inch long,

in an oven maintained at 250 0 C. The emitting hole was approximately 1 inch away from

the tungsten target.

The estimated high ion density suggests the presence of a large sheath close to elec-

trode B, where most of the voltage drop takes place. Since the electric fields near

electrode A are expected to be correspondingly small, electrons (produced by therm-

ionic emission) can diffuse almost throughout the entire region of the tube between the

two electrodes. These electrons provide the necessary space-charge neutralization of

the ion beam. In this region we expect the value for the ion density to be closer to that
11 -3

calculated for the upper limit (3 X 1011 cm ), which is associated with ions drifting at

their thermal velocities. For a vapor pressure of 10 - 5 mm Hg for cesium, the degree

of ionization is, then, approximately 50 per cent.

Work continues toward an absolute determination of the charge particle density with

the use of microwave techniques.

G. Bekefi, R. B. Hall
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6. NORMAL WAVE SURFACES IN A PLASMA IN A MAGNETIC FIELD

In Quarterly Progress Report No. 54, pages 5-14, normal wave surfaces were

deduced for the propagation of plane waves through a plasma in the presence of a mag-

netic field. In that report it was assumed that there are (a) no density gradients; (b) no

collisions; and (c) no thermal motions. In this report the restriction on thermal motions

is removed, but the motions of the ions are neglected.

The dispersion equation has been obtained by Sitenko and Stepanov (1) and also by

Bernstein (2). It has recently been re-derived by S. J. Buchsbaum (3). The Boltzmann

equation is linearized by a perturbation technique. Assuming small deviations, f, from
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the equilibrium distribution fo, we obtain, by neglecting products of small quantities,

8f f .r + e +eat +v e (E+vXB) V f+ (E I+vXB1)  f =-vf
t r m m v o c

where

/ m \3/2
fo = n

2
e - m v /2eT

with n o , the equilibrium electron density, and T in electron-volts.

tropic in velocity, we have

Since f is iso-
o

e e
- vXB V f = f xv) - B = 0

m 1 vo m vo 1

Because collisions are neglected (v =0) and there are no dc electric fields,

obtain

af - - -
+v f + -E

at r m 1
e

*Vf +- B
vo m o

VxV f= 0
v

Assume that

E(r, t) = E(k, ) ej(k - r-wt)

f(r, v, t) = f(v, k, w) ej

and B = B.

Substituting Eqs. 2 and 3 in Eq. 1 gives

e v Baf
j(k - v-w) f + E - V f - a = 0o

m vo B

where wB = eB/m, and pb is the azimuthal angle in the velocity space. The z-axis is

directed along the magnetic field B, and the angle 0 is the angle between B and k.

Integrating Eq. 4 gives

e E
f= B P

mwg P 0
Vf P

vo
e C

d+ mB E
mm

where the integrating factor

P = exp -j/wB 0
(k v- w) d

The constant of integration C is determined from the condition of periodicity,

(1)

(2)

(3)

(4)
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f(4+2T) = f(4). Hence

0 voP P

C=

l -exp (k2(v-w)djj

The current J is given by

J=e f fd3 = E

Defining the dielectric tensor K as

(7)

(8)K = 1 + T /jwE

we obtain

2 v. f
K = +  je opK if m bE P 0 -d

(9)

Expression 9 for K has been worked out by Buchsbaum (3). He found that the

solutions for the dielectric tensor K can be expressed in terms of sums of integrals of

Bessel functions. For low temperatures [(k 2 eT) mw << 1 the Bessel functions can be

expanded in a series, and thus relatively simple expressions (1) for the components of

K will be obtained:

2
K = 1

11 1 - 2
n 2  1 + 3P 2

(1-p2 ) 3

2 1+3
K = 1 a 2- En

1 - 2 -

K33 = 1 - a - En 3 +

-ja p
K12 = -K21 -j'n

1 - PZ2

K 1 3 =K13 = 31

3

+

(142)(1-4p2

3 + p 2 6
- 2 ) 3  (1- 2 ) -4 2 )
1-/)3 (182) (1-42

-2En 2

(1-p2) 2

2 3- P2
K23 = -K32 = jEn P 3

(1-p2)
3

2

2]

(10)



(II. PLASMA DYNAMICS)

where

2
2 n e
a o

2'
mE wo

2 2
2 CB e2B 2

S2 2 2'
o m O

eT 2 av

mc

with = sin 0, and = cos 0.

These expressions for the components of K must now be used in

nx(nXE) +K E=0 (1

(which is Eq. 8 of Quarterly Progress Report No. 54, p. 6).

The dispersion equation is obtained by setting the determinant of Eq. 11 equal to

zero. The result is

*4 *2 *
A n B n +C 0 

(1where

1)

2)

A = K 1 1
2 + K 3 3 + 2K13

* 2 2 2B = 2(K 2 2 K 13 -K 2K23) + (K22K33+K 2 2 - K3

22 33 23

11 K 2 2 + (K 1 1K 2 2 +K 1 2

C = Ki

(13)

Substituting expressions 10 in expressions 13, and then using Eq. 12, enables us to

write the dispersion equation for low temperatures:

-Ean + (A+bE)n 4 - (B+cE)n 2 + C = 0 (14)

where

A = (1-2 )(1-a 2 ) - 2a2 2

B = 2(1-a )(1-a - 2 ) - p a2

C = (1-a 2 )[(1-a 2 ) 2-p 2 ]

are the coefficients previously used, and

(15)
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a = 3(1-p) 4 + 2 - 3P2 2 2 + 4

(1- 2)2  1-4

( 2 2 2 2 32(2a2 2 2(1-a -) + 1- 3 P 2 ) -22
b (+ (1-2 )2

(1-p )

+ 4 2(2-a)

(1-P )

S3(1+z2)(1-a) + 4(1-a +213 2 2 2

1 - 432

c = 2(1-a 2 ) [(1+P32 )(1-a 2 )+21 2 ] 2 (1-a 2-3)(1-a 2 +13) [ 3
2 (1-p2 2)+2

(1-13)2 (1-p1

+ 4(1-a2)(1-a
2 +2 2 ) 1 - 4

2

give the additional terms in the dispersion equation that are attributable to thermal

motions. The equation is now bi-cubic, as it ought to be, and yields three double

solutions.

For moderate temperatures E << 1, so that A >> bE, and B >> cE.

be written approximately

2

A=0O

Thus Eq. 14 can

C=o

13

2

Fig. II-10. Plot of 12 against a 2 showing resonances and cutoffs.

2]

(16)

6 7 8 9 10

41 5



/ 0

/ ) K

i
i.

REGION !1 REGION 2

× 0 )

REGION 3 REGION 4

/0

(0 x

REGION 6 REGION 7

(continued on the following page)



REGION 8 REGION I

C>::

REGION 9

c~cD

REGION 12

n 3

n
2

REGION 13

REGION 10

Fig. II-11. Normal wave surfaces in a plasma in a magnetic field.

L lj 0 \

r
n3

n2



(II. PLASMA DYNAMICS)

-an +An - Bn 2 + C = 0 (17)

For normal n, we may neglect the first term and obtain the dispersion equation, whose

solutions are

2 B ± (B-4AC) /2
nl,2 2A (18)

These solutions give rise to the "fast" waves, whose normal wave surfaces were

2 2
into 8 regions by the 3 lines a = 1, 2 = 1, and A = 0, and by the parabola C = 0. Wave

surfaces exist for 7 of these regions.

There is, however, another solution whose index n is normally large, and whose

velocity is of the order of the electron's thermal velocity v . These waves will be

called "plasma waves" and their index is n3 . This solution can be obtained approxi-

mately by neglecting C in Eq. 17. We obtain

Ean4 - An 2 + B = 0 (19)

whose solution is

2 _A ± (A2-4aEB)1/2
2, 3 2Ea (20)

2 2
The first quadrant of the P2 versus a graph is now divided into 13 regions, as shown

in Fig. II-10. There is a line now at P2 = 1/4. For 32 < 1/4, a is positive. For

1/4 < P2 < 1, the coefficient of the term sin 4 0 in a has become negative. For 13 > 1,

both the coefficients of cos 4 0 and sin4 0 in a are negative.

The plasma waves can propagate in some directions for all regions except regions

3, 4, and 5. Only in regions 1 and 2 do plasma waves propagate in all directions.
2 2 2 2

The approximations (Eqs. 18 and 20) are satisfactory when n 3 >> n1 and n 3 > n 2 . This

proves not to be the case in region 3.

The cubic equation (Eq. 14) is then solved directly by transforming it into a quad-

ratic in sin 0, and thus it is rewritten

2 1/2
sin2 0 = -B' ± (B' -4A'C') /2

2A' (21)

where

6 3 2) 6 - 3P2 +4
A' n 2+3(1-3 22)1 - 413 (1-132)2

-En[-6( 2 6 - 3p2  4 2 2 2 (22)B' (i)22 +n (1-n 2 ) a

(1-p 2)(1- 2)] n22(1 2)(1 2)] + (1 2)(12

C' -En [3(1-P2)] + n [ 1(1-1 )(1-a ) n 2[2-(l-a2 )(1-a 13 )P + [(1-a )2{(l-a ) Z_1 1
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Figure II-11 shows the wave surfaces for all regions shown in Fig. II-10 where waves

exist. As a2 increases from region 1 to region 2, the normal wave surface for the

plasma wave becomes larger, and when it reaches region 3 it joins the normal wave

surface for the wave associated with the index of refraction n 2 . In region 3, there is
2

no plasma wave. As a increases, the butterfly-shaped wave surface for n 3 in regions

6 and 7 transforms into the oval-shaped wave surface for n 2 in region 8. The plasma-

wave surface in region 8 is a horizontal lemniscate, which retains its shape in regions

9 and 10. In region 11, the plasma-wave surface is a four-leafed rose, which becomes
-2

a horizontal lemniscate in regions 12 and 13. For all regions, E = 10 - 2

W. P. Allis, R. J. Papa
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7. NONADIABATIC MOTION OF A CHARGED PARTICLE IN A MIRROR

MAGNETIC FIELD

If a charged particle is moving in an axially symmetric magnetic field B (Fig. II-12)

with appropriate direction at the center, then it is well known that it can be confined for

many traversals of a region (1, 2) such as the one between C and D. The result has

application in thermonuclear devices and to the Van Allen radiation belt.

The confinement arises from the adiabatic invariance of the magnetic moment M of

the particle. Since M is not strictly invariant, for finite Larmor radius rb = mvb/qB

(with m, the mass, v, the velocity normal to B, and q, the charge), it should vary on

PERPENDICULAR
II Bend I

I 2r. b
b "

'-- - AXIS OF
SYMMETRY

Bmax

C D

B(z O)= B
o

I

CENTER PLANE

Fig. 11-12. Axially symmetric magnetic field (mirror).
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successive C-D traverses. Calculations of this effect are reported here.

The Hamiltonian of the charged particle is

/P8 /
H -r r - zH= P 2m (1)

where P and A are the momentum and the vector potential. For a cylindrically sym-

metric system, Ar = Az = a/a0 = 0, and V A = 0. Then @H/a0 = 0, and P0 is a con-

stant, and hence Eq. 1 can be written

H (P p + U(r, z) (2)
2m \, r z +

Equation 2 thus expresses two-dimensional motion in a potential U(r, z). For a large

class of orbits encircling the axis, it can be shown (2, 3) that U has the shape of a

trough closed at the ends. Then the particle is confined in some C-D region, regard-

less of the limited excursions of M. Such orbits are not of interest to us, nor is the

trivial class of all orbits that close on themselves. The other orbits are interesting

to us, for example, orbits in which U has the form of a trough that is pinched in, but

open, at the ends. Then by the ergodic hypothesis, the particle should eventually find the

opening and escape. Garren and others (2) have numerically calculated such orbits, and

tentatively conclude that the particle is permanently confined. However, their calcula-

tions ended with too few reflections taken into account.

The present calculation proceeds by expanding the Hamiltonian in powers of rb/L,

where L is a characteristic length, indicated in Fig. 11-12, and rb is taken at the

center, z = 0. Then in the system of units with m = q = 1,

H = ( 2 P2  - 2 xp 2 p + higher terms (3)

for a mirror field symmetric about z = 0. Here, p = B(z)/B(z=0) is the "mirror ratio,"

and wo is the cyclotron frequency at the center. The higher-order terms are neglected

because the terms that are retained are sufficient to demonstrate the nonadiabatic nature

of M. By analogy with the Wentzel-Kramers-Brillouin method, we set

x /2 cos (c+o)

o (4)

t
= op dt

and obtain

H = P2 + pM[1+K(x, z, k, z, t)] (5)

Generally, K << 1 and expresses the change in magnetic moment M. We find that
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K tdr cos ( + idu d dt (6)ft d F1 1 C d / / dpdt 2 p a0 I dt

From Eq. 6, we can show that the maximum change AM in the magnetic moment is

given by

AM g /rb end -Bo
2 L / B 0(7)

where the quantity g has a value close to unity.

That the variation in magnetic moment is proportional to (rb/L) 2 is verified by the

computation of several orbits on the IBM 704 computer. The results are shown in

Fig. 11-13. In a mirror field with long central section, or in an asymmetric mirror,

we would expect the particle to pass the midpoint each time in random phase. Then the

0 02

W

PAM 2 -- ) IH g
001

200

4/ r\

'10 L)

400

Fig. II-13. Dependence of change of magnetic moment
onon L for Bend = 2B .

end o

magnetic moment and the end points C and D perform a random walk, and a typical

particle will escape from the system after N oscillations, with

4 2B 2  B
rL o end

N 0 1- (8)N= g2 (Bn ) B
b g (B e B \ max /end

• ..x//'

/

Y
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Here, Bend is the point of initial reflection.

Our calculation also showed that in a completely symmetric analytic field, this

first-order perturbation essentially cancels, and hence the next higher term, which is

smaller by the factor (rb/L)2, must be considered. The particle would then be better

confined; this fate seems to have befallen the particles traced by Garren (2).

S. Yoshikawa
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8. ELECTRIC POLARIZATION OF A CHARGED BEAM IN A MAGNETIC FIELD

This report summarizes a preliminary investigation of the behavior of a beam of

charged particles in a magnetic field transverse to the particle motion. The configura-

tion is shown in Fig. 11-14, in which a flat beam, consisting of both ions and electrons,

moving in the z-direction, is injected across a

homogeneous magnetic field B (out of the paper

in Fig. II-14). The beam is uniform and infinite

. in the y-direction. The magnetic field causes

charges of opposite sign to separate, which gives

rise to charged sheaths at both edges of the beam.

The electric field E arising from these sheaths

permits the central part of the beam to continue

its motion along the z-direction.

In the region where the charged sheaths

Fig. 11-14. Beam polarization in build up, the fields vary in both the x- and the
a magnetic field. z-directions. Eventually, the beam is assumed

to reach a steady state in which all variations

with z disappear. We restrict our attention to this region.

The common assumption that the Larmor radius is small compared with the signifi-
cant lengths (- lin the problem is not justified in this case. We cannot, therefore,
resort to first-order orbit theory. Rather, we must obtain the charge density in any
region by counting the number of particles that go through it and weighting that number
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by the time interval that they spend in passing through it.

The equations of motion for a moving charge are:

dv
E(x) - vB = m  x

z q dt

dv
vB m yv B -

x q dt

The conservation of energy principle leads to

v 2 = 2q [(x)- (x - W xo 2 o(X-Xo)

(1)

(2)

where (x) is the potential, x 0 the position at perigee, v 0 the velocity at perigee (see

Fig. II-15), and wb = qB/m. Given the form of the potential, Eq. 3 yields the x com-

ponent of the velocity as a function of the position of the particle. Note that the position

as a function of time can be obtained by inte-

grating the equation

E

-- g
0o

Fig. 11- 15. Typical ion trajectory.

apogee x (X , v ) of the orbit. We can

dt = dx
v X(X, x, V )

(4)

with vx given by Eq. 3. The existence of stable

orbits (such as the one in Fig. II-15) depends on

the existence of periodic solutions to Eq. 4.

Now we assume that such orbits exist, and

pretend that #(x) is known. The roots of Eq. 3,

with vx set equal to zero, give perigee xo and

then define a gyration period

X X

T :2 a dx
v

g x x
o

and an average (guiding center) velocity v . The latter is obtained from Eq. 1 as

S2 xa E(x) dxvg BT v
g gx 0  x

The gyration length f (distance from perigee to perigee), is
g

=v T = 2 xa E(x) dx
g gg B x vx

o

We now proceed to evaluate the particle density at a point x. First, note that a

(5)

(6)

(7)
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particle with perigee parameters x 0 and v will spend a time interval

2dx
dt = (8)v (x, x , v o )

per gyration in an element of position dx. Thus, the probability of finding it there is

dt 2dx (9)
T TV ()

g gx

Next, we define the function F(x o , Vo) by stating that F(x , v ) dx dv is the number

of particles that cross any plane z = constant per unit depth (in y) per unit time, reach

perigee within dx of x , and have perigee velocities within dv of v . Thus, the

number of such particles per unit depth (y) per unit length (z) is - dx dv . Finally,v o o
using Eq. 9, we find that their contribution to the density at x is g

d2n(x) = ( x odx dv (10)fg(X0, Vo ) Vx(X, Xo Vo ) d0odV (10)

The total density at x is just this expression integrated between the appropriate limits.

It is somewhat easier to visualize this integration if we assume some functional

relation between xo and vo (for example, in a monoenergetic beam). The integral

becomes

n(x) = (Xo x ) dx(11)g o x(x, xo)n xo xb g (11)

where the limits are the roots of Eq. 3 solved for xo (with vx set to zero). These are

the limits of the range of perigees of particles that are able to reach point x.

Since the potential is not known, we have to formulate the density integral for both

ions and electrons, and substitute it in Poisson's equation. The possibility of a general

solution has not been investigated. A simple case is discussed here.

Consider a region in which, say, only positively charged particles exist (for example,

the charge sheath at the edge of the beam). Assume that they are monoenergetic,

1 ' 1
Smvo + q)(x ) = H (12)

and that the potential is quadratic,

1 2
(x) - kx (13)

and hence the space-charge density is constant. Assume, also, that

Vo(Xo) = 0 (14)

Since we shall show that there are, in fact, no particles reaching perigee at x = 0,
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Eq. 14 does not imply the existence of an immobile layer of charges at x = 0.

have
Thus, we

x (x )

n(x) =2 o(x)

Xb
qk(x2x 2 2 2 qk

SWb(x-xo) 2wb qkbx(x-Xo

Note that, if
r(xo)
-(X) is constant,
go

the integration will yield

F(Xo) r
n(x) = 2 x )

where we havg(Xo ) (expb-p)ressed

where we have expressed

qk _ q dE _ q nq _
m m dx mE

o

2
nq
mE

0

Since in Eq. 16 n is a constant, the solution is consistent with the assumption of a quad-
ratic potential. We can also evaluate 2g (xo) by Eq. 7 to obtain

x
2

g(xo) =
x=x

kxdx

2 2 2 2 2o o o b 0 b p o ]
where x = xa is the solution for v (x , x ) = 0 with x held constant.

yields

This integration

g(o) B

b b - )

b p

2

X = 2 10 Wb

so that, if /fg has to be constant, F(x ) must be proportional to x . This implies

that there are no immobile particles at the edge of the beam (x=O), as we have stated.

If we define the coefficient A by

F(xo) = Ax (20)

we can determine the curvature k of the potential by Poisson's equation,
F(Xo) Tr Eok

n =2 (n g(Xo) b - P 9g ~ wb

In uniform crossed electric and magnetic fields the orbits can be visualized as a

(15)S1/2

(16)

(17)

(18)

W
1- _

2
b

(19)

(21)

=X
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circular gyration (frequency, ob) superposed on an E/B drift velocity. In the case of

uniform space charge, the drift velocity is Eg/B, where Eg denotes the field at the

guiding center. The gyration is now elliptical, with the major axis in the drift direction.

The gyration frequency is (b- 1/2, which, incidentally, places a limit on the space

charge, if periodic orbits are to exist. With cubic potential (linearly varying space

charge), the orbits are expressible in terms of elliptic functions.

D. J. Rose, S. Frankenthal



B. PLASMA ELECTRONICS

Prof. L. D. Smullin
Prof. A. Bers
T. J. Fessenden

1. ELECTROMAGNETIC WAVE PROPAGATION IN A PLASMA

Consider a plasma that is permeated by a uniform, time-independent, magnetic

field B in the axial direction z. In the absence of collisions, and within the frame-
oz

work of a first-order perturbation theory, the plasma in a magnetic field is a linear,

lossless, gyroelectric medium characterized by a normalized dielectric tensor,

S -jE 2  0

E jE 2  1 0 (1)

0 0 E

where

2
T O

E = 1 7 P (2)1 2 P O1 -7
c.

2
T

E T p T c (3)
2 c 2 c W

1 -7
c

S 1 - 2 (4)
3 P

where o is the electron plasma radian frequency, we = -(e/m)Boz is the electron cyclo-

tron radian frequency, and w is the radian frequency of the electromagnetic wave.

a. Unbounded Waves

From Maxwell' s equations, the wave equation for the electric field is

V E + E - V(V E)= 0 (5)

where

2=
K= k E (6)

and k = ( 0 )1/2 is the free-space phase constant. For waves in an arbitrary direc-

tion T, we assume an exp(-jp-r) dependence, with

= i A + izpz (7)

where iz is a unit vector in the direction of the magnetic field B oz and i t is a unitZOZ
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vector in a plane transverse to the direction of the magnetic field Boz
oz

from Eq. 7 that

4 2 2
SK3 P z(K +K3 Pz 3+ z 13 Pt

K K
K1 3
13

We then find

2 2K I -K 22 1  2 0
t K I 0

Two cases of importance involve the purely longitudinal and purely transverse waves.

In the first case, for Pt = 0, Eq. 8 gives

2
P 2 K ± K (9)z 1 2

Equation 9 represents a TEM mode that exhibits Faraday rotation.

for Pz = 0, Eq. 8 gives

Pt K 3

and

2 2
K 1 - K 2

K

K 1

In the second case,

(10)

(11)

Equation 10 represents a TM mode, and Eq. 11, a TE mode.

b. Bounded Waves

Consider a cylindrical system of a plasma surrounded by perfectly conducting

metal walls (Fig. 1I-16). We assume an exp(-jpz) dependence (omitted hereafter) for

METAL WALL

PLASM

Fig. 11-16. Cylindrical system of a plasma in a waveguide.

all field quantities, and we express the fields in terms of longitudinal and transverse

components with respect to the magnetic field, Boz

E = E + iz E (1

H= Ht + iHz (1tzz

2)

3)
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For the space-independent dielectric tensor, Maxwell' s equations give the relation

between the longitudinal and transverse fields:

-jp 0 0 -j o Et VtEz

K -K
2 1 -j VtH

00 (14)

0 jo -j 0 z X Et iz X VtE z

K K
0 -jp i X H i z X VtH zj z t z t

and also give a set of coupled wave equations for the longitudinal fields:

VEz + aE = bH (15)

V H + cH = dE (16)
t z z z

where

a = F 2  3 (17)
K 1

b = -jw op K (18)

K
c = 2  2 (19)

K
1 KK

d 3 (20)
Joo K1

and C2  2 + K 1.

i. Uncoupled wave equations

Equations 15 and 16 show that when both b and d vanish the modes of the sys-

tem can be separated into TM and TE modes. The two cases of importance are:

For p = 0: cutoff waves (see Eqs. 10 and 11).

For K 2 = 0: which implies any one of the three equations
2 2

B = 0 K = K = k(1- )
oz 1 3 p

2 2
B =oo K =k, K = k (1-)

oz 1 3 p

W =0 K =K=k
p 1 3
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The equation for w = 0 is trivial, since it implies an empty waveguide.
P

ii. Coupled wave equations

In general, for finite values of b and d (Eqs. 18 and 20), TM and TE modes cannot

be identified. The solutions for the coupled wave equations involve two additional bound-

ary conditions that can be accommodated by assuming, on the basis of linearity, that

E = e + e 2

H = hlel + he

with

2 2
Vt l, 2 1, z, 2

Equations 14-20 give

p, 2 2 + 1 + K 3

K 1
2p2 - + K 3

(21)

(22)

(23)

+ K2 - K

K1 2

2 2which is simply the solution of Eq. 8 with Pt =

in Eq. 22 are

, 2 - a)
h, 2= b

1/2

K 2

+ 42K3 2

K 1

(24)

The arbitrary constants h1 and h 2

c - P2,

(25)

The transverse fields are found to be

Et = Vt(R 1 el+R2 e 2) 
+ i z  V et(Slel+S2 e 2 )

and

Ht = V(Plel+P2 e2) + iz X (Qel+Q2 e 2)

where

1 1 2
1,2 jp z -P2,1

1K 1 2

1, 2 P K2 ii A 2, 1)

(26)

(27)

(28)

(29)
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1 K 1  r2 2
P K + P2,1, 2 ago K A 2

(30)

Q 1 p 2 (31)
1, 2 j J A Pz2, 1

2 2
and A F -K 2 .

c. Boundary-Value Problems

As an example, we shall consider a circular waveguide partially filled with a plasma,

as shown in Fig. 11-17. Our immediate interest is in modes that have no 0-variation.

Thus, we assume that

a nd H) =
v (E and H) = 0 (32)

The medium surrounding the plasma is assumed to be a linear, homogeneous, isotropic

dielectric.

The electromagnetic fields inside the plasma are solutions of the eigenvalue prob-

lem defined by Eq. 23. The continuity of the tangential fields at r = b then gives the

PERFECT
CONDUCTOR
WALL PLASMA

A*%E

o

20

Fig. 11-17. Circular waveguide partially filled with plasma.

desired determinantal equation. We summarize

used to denote the fields in the plasma.)

i. Uncoupled wave equations

For p = 0, the TM modes are given by

the results. (A superscript p will be

2
E = A J ( r); p2 = K3z mom m 3

and

k p J (p b) H
k2 J (p b ) E Ho, 1k 2 Jo(P b ) -m o o, O

(33)

(34)
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The TE modes are given by

H = AeJ (p r); P2z eo e e

2 2
K -K

1 2

K 1

and

J1(Pab)
J (p b)

o a

H 1 1

H1 , o

where

H (x, y) = [Jm(x) N (Y) - Nm(X) J(y)];mn 2 m n m n x = ,a Y= y b (37)

is the biradial function (2); Jo(x) and Jl(x) are the Bessel functions of the first kind;

No(x) and N 1 (x) are the Neumann functions; and ka = w z E.

For K 2 = 0, the TM modes are given by

E = A Jo(p r);
z mo m

2 2  3
PmF KK1

K1 yPm J (pm b )

2 r2 Jo(pmb)-

H
o, 1

H
0, 0

The TE modes are given by

HP = AJo(Per); p =  2
z eo e e

and

YPe Ji(Peb)
F2 J (p b)I' o e

H 1 , I
H1 ,o

1, o

2 2 2
where y= - + k

ii. Coupled wave equations

The solution of Eq. 23 gives

E = A J(Pl1 r) + AZJ o (P2 r)

where p 2 are related to P by Eq. 24. The boundary conditions at r = b give

D1IT - D2T1 = 0

(35)

(36)

and

(38)

(39)

(40)

(41)

(42)

(43)
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where

jw 1, 1D H, o h, 2 Jo(P , 2b) + S, 2 1, 2 J 1 (P 1, 2 b) (44)
1,2 ' H 1 , o1 1

T 2 o,1 J(p + Q p J ( p  b) (45)
1, 2 y H o 1, b )  

1 , 2 1, 2 J 1( 1, 2b)
0, O

In general, Eqs. 33-45 must be solved numerically for pe' Pm' P1, 2' and P. The study

of simple cases of special interest will continue.

A. Bers
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1. HYDROMAGNETIC WAVEGUIDE

A series of measurements was performed to test the theory of the hydromagnetic

waveguide that was described in Quarterly Progress Report No. 51, pages 23-26. The

waveguide consists of a copper conduit

of rectangular cross section, approxi-

mately 1 foot long. A sandwich trans-

ducer has been attached to one side of

BITTER the conduit (Fig. 11-18). The transducer
0 SOLENOID induces a perturbation in the fluid, with

the result that the mass motion is at right

angles to the magnetic lines of force. This,

in turn, leads to hydromagnetic waves
H that propagate along the axis of the wave-

guide.

The hydromagnetic waves are detected

by a probe that measures the electric field

WAVEGUDE TRANSDUCER at right angles to the mass motion and to

the lines of force.

Preliminary measurements have been
Fig. 11-18. Schematic diagram for the carried out for field strengths up to

alignment of the waveguide
inside the electromagnet. 48, 000 gauss. The transducer is excited

at 12 kc and modulated by 10-msec square

pulses at a repetition rate of 25 cps.

The measurements indicate substantial agreement with the theory previously

discussed.

M. J. Pollock, O. K. Mawardi

2. HYDROMAGNETIC SHOCKS

The shock motion in an electric shock tube, the driving current of which is known,
and in which the shock propagates into a region of constant magnetic field, is best

This work was supported in part by Contract AF19(604)-4551 with Air Force
Cambridge Research Center.
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Fig. 11-19. Wave diagram for hydromagnetic shock tube.

understood by constructing the wave diagram shown in Fig. 11-19.

This construction makes use of the governing equations for the motion of a hydro-

magnetic shock, discussed in previous reports (1,2). These equations have been

reworked in a more convenient form, as follows.
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In expressions 1-5: u s stands for the shock velocity with respect to the fluid ahead of

it; co, 1' for the characteristic velocity of propagation ahead of and behind the shock;
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Fig. II-20. Smear camera photograph for shock predicted in Fig. II-19.
Magnetic field, 0. 373 webers/m 2 ; pressure, 0. 5 mm Hg;
capacitive discharge voltage, 16. 5 kv.
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Fig. II-21. Maximum shock velocity versus initial magnetic field.

I0-

8
8 O

0 0

-
06

-- 0 EXPERIMENTAL

4 n CALCULATED

INITIAL MAGNETIC FIELD 0.373 WEBERS/M
2

o 2- INITIAL PRESSURE O.5MM Hg

II 12 13 14 15 16 17 18 19 20 21 22

CAPACITOR VOLTAGE (KV)

Fig. 11-22. Maximum shock velocity versus initial capacitor voltage.
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Fig. 11-23. Maximum shock velocity versus initial pressure.
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Fig. 11-24. Smear camera photograph showing three successive shocks. Magnetic field,
0. 373 webers/m 2 ; pressure, 0. 5 mm Hg; capacitors' discharge voltage,
12. 5 kv.
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Fig. II-25. Probe measurement of the magnetic field profile in the vicinity of the shock.
The shock moves from left to right. The small dip ahead of the shock is
caused by the return path of the lines of force, as indicated in the
accompanying sketch.
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u V for the velocity ahead and behind the shock; p *, for the total pressure (sum
O, 1 0

of particle and magnetic pressure); so0 1' for the ratio of the speed of sound squared

to the Alfven velocity squared; po, 1, for the density ahead of and behind the shock; and

y, for the ratio of specific heats.

When the density ratio, pl/P is eliminated from Eqs. 1-5, and the ratios p 1/Po

cl/co are plotted against (ul-Uo)/co, the curves depend very slightly on the param-

eter s o . If the total pressure p* and the characteristic velocity

yp B2
c =-+-

P Ro P

are used, the governing equations for the hydromagnetic shock moving in a transverse

field become analogous to those for a conventional gas dynamic shock.

As the current increases, the compression waves are generated. These eventually

steepen into a shock wave. Conversely, a decreasing current generates expansion waves

that catch up with the shock and slow it down. We note from Fig. II-19 that the shock

front first accelerates, then decelerates as the expansion waves catch up with it. This

is corroborated by experiment, as shown in the smear camera photograph (Fig. II-20).

The maximum shock velocity for any given set of conditions can be calculated from

Eqs. 1-5. Comparison of experiment and theory is presented in Figs. 11-21, 11-22, and

11-23. Agreement is seen to be good, except at very low pressures, at which the losses

to the wall and surroundings become excessive.

The back emf caused by the motion of the shock wave through a magnetic field

increases as the velocity of the shock wave increases. At low initial capacitor voltages,

the voltage applied to the electrodes may be less than that required to overcome the

back emf. In this case, the driving current sheet may be extinguished, and the arc

strikes again elsewhere in the gas. This phenomenon is clearly shown in Fig. 11-24,

in which the formation of three successive shock waves is shown.

Measurement of the transient magnetic field is made by inserting a small probe into

the shock tube on its axis. A typical oscillogram obtained in this way is shown in

Fig. 11-25.
Z. J. J. Stekly, O. K. Mawardi
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