Risk Independence and Multiatributed Utility Functions*

by

Ralph L. Keeney

OR 001-71

June 1971

*This research was supported in part by the U. S. Army Research Office (Durham) under Contract No. DAHCO4-70-C-0058.
Abstract

The concepts of conditional risk aversion, the conditional risk premium, and risk independence pertaining to multiattributed utility functions are defined. The latter notion is then generalized to what is called utility independence. A number of theorems useful for simplifying the assessment of multiattributed utility functions given certain risk independence and utility independence assumptions are stated.

*Adapted from a thesis, supervised by Professor Howard Raiffa (Harvard), presented to the M.I.T. Operations Research Center in partial fulfillment of the requirements for the degree of Doctor of Philosophy, June, 1969. Additional supervision and other expenditures associated with the work reported herein were supported (in part) by the U.S. Army Research Office (Durham), under Contract Number DA-31-124-ARO-D-209 and (in part) by the Office of Naval Research under Contract Nonr-3963 (06), NR 276-004, at the M.I.T. Operations Research Center. During his doctoral program the author was supported by the Bell Telephone Laboratories' Doctoral Study Program.

**Currently Assistant Professor of Civil Engineering and Staff Member of the Operations Research Center.
1. Introduction and Summary

In assessing cardinal utility functions for assets or any other single attribute, it has proven to be useful to begin by specifying certain qualitative characteristics to which the decision-maker subscribes. Aside from monotonicity, the important characteristics are those concerning the decision-maker's attitude toward risk, in particular, risk aversion and decreasing risk aversion. Given one's risk characteristics, his utility function can often be restricted to one or a few functional forms. The problem is then reduced to finding a member of these families of utility functions appropriate to the particular decision-maker. This is usually done by assessing certainty equivalents for a few simple lotteries and using this information to fix the parameters of the family of utility functions.

In this paper, we attempt to extend this idea. More specifically, a measure of risk relevant to multiattribute cardinal utility functions is defined. Restrictions on the functional form of the utility functions are indicated provided this measure satisfies certain conditions. In related work, Fishburn [1, 2, 3] and Pollak [7] have looked at the functional forms of multiattribute utility functions implied by assumptions about the decision maker's preferences for various lotteries. Stiglitz [9] recently investigated restrictions on the indifference map implied by assumptions about the multiattribute cardinal utility function, and restrictions on that utility function implied by assumptions about the indifference map.

The concepts of a conditional utility function and risk independence and the notation to be used are defined in the next section, followed by a proof of our main result for two-attribute utility functions in section 3. In section 4,
the conditional risk premium is introduced. The notion of risk independence is then considered in a different context which permits extensions and generalizations of the results. These are presented in the final section as representation theorems which simplify the assessment of multiattribute utility functions.

2. Definition of Risk Independence

Pratt [8] defines the local risk aversion \(r(x) \) by

\[
 r_i(x) = -\frac{u''(x)}{u'(x)},
\]

where \(u(x) \) is a utility function for the continuous scalar attribute \(X \) and \(u'(x) \) and \(u''(x) \) are respectively the first and second derivatives of \(u(x) \). By integrating (1), exponentiating, and integrating again, he showed

\[
 u(x) = k_1 \int e^{-\int r(x)dx} dx + k_2,
\]

where \(k_1 \) and \(k_2 \) are constants of integration. One can observe that the risk aversion function \(r(x) \) contains all the essential information about \(u(x) \) while eliminating the arbitrariness introduced by positive linear transformations.

For multiattributed utility functions, it seems natural to develop conditional risk aversion functions on the same basis as \(r(x) \). More specifically, consider the utility function \(u(x_1, x_2, \ldots, x_n) \) for attributes \(X_i, i = 1, 2, \ldots, n \) and for notational convenience, let us designate \(X_1 \times X_2 \times \ldots \times X_n \) as \(X \) and
$X_1 \times \cdots \times X_{i-1} \times X_{i+1} \times \cdots \times X_n$ as X_{-i}. Then the conditional risk aversion for X_i, which we denote by $r_i(x)$, will be defined by

$$r_i(x) = -\frac{u''(x)}{u'(x)},$$

(3)

where $u'(x)$ and $u''(x)$ are the first and second partial derivatives of $u(x)$ with respect to x_i.

We will say that X_i is risk independent of X_{-i} if $r_i(x)$ does not depend on x_{-i}. In other words, X_i is risk independent of the other attributes if the riskiness (as measured by r_i) of lotteries involving only uncertain amounts of X_i does not depend on the fixed amounts of the other attributes. This may be a reasonable assumption in many situations. That is, if all of the risk is associated with only one attribute and the other attributes are all fixed, the decision-maker's attitudes toward risk will depend only on that attribute involving the risk.

Let x_{-i} represent any amount of X_{-i} and let x_{-i}^0 be a specific amount. Then we can define the conditional utility function for X_i given $x_{-i} = x_{-i}^0$ to mean any positive linear transformation of $u(x_i, x_{-i}^0)$.

Given this notation, we can efficiently prove an important lemma. If X_i is risk independent of X_{-i}, then

$$u(x_i, x_{-i}) = f(x_{-i}) u(x_i, x_{-i}^0) + g(x_{-i}),$$

(4)

where $f(x_{-i}) > 0$.

Proof. Given \(r_i(x_i, x_{-i}) = r_i(x_i, x_i^0) \), it follows from (3) that

\[
\frac{\partial}{\partial x_i} \log u_i(x_i, x_{-i}) = \frac{\partial}{\partial x_i} \log u_i(x_i, x_i^0),
\]

so by partial integration and exponentiation,

\[
u_i(x_i, x_{-i}) e^{a(x_{-i})} = u_i(x_i, x_i^0) e^b,
\]

where \(a(x_{-i}) \) and \(b \) are integration constants. Integrating again,

\[
u(x_i, x_{-i}) e^{a(x_{-i})} + c(x_{-i}) = u(x_i, x_i^0) e^b + d
\]

which becomes (4) when rearranged and \(f(x_{-i}) \equiv e^{b-a(x_{-i})} \) and \(g(x_{-i}) \equiv [d-c(x_{-i})] \cdot e^{-a(x_{-i})} \).

The lemma becomes almost obvious when we consider that \(r_i(x) \) specifies the conditional utility function for \(X_i \) uniquely up to positive transformations and that \(r_i(x) \) does not depend on \(x_{-i} \).

This result is useful in a number of situations. For example, suppose \(X_i \) is risk independent of \(X_{-i} \) and suppose \(r_i(x_i, x_{-i}) = c_i > 0 \). That is, the decision maker is constantly risk averse over \(X_i \) for some \(x_i \) in \(X_i \). Given these
conditions, it follows directly from Pratt[8] that \(u(x_1, x_1^0) \) must be a positive linear transformation of \(-e^{-c_1 x_1}\). Then from the lemma, we know \(u(x_1, x^-) \) for all \(x^- \) in \(X^- \) can be expressed by

\[
u(x_1, x^-) = -f(x^-) e^{-c_1 x_1} + g(x^-), \quad f(x^-) > 0.\]

Stiglitz[9] considers a utility function of this form in the context of consumer behavior under uncertainty.

3. Utility Functions and Risk Independence

In this section, we derive the functional form of a utility function with two attributes given each attribute is risk independent of the other. As before, if \(u(x, y) \) represents the utility function for attributes \(X \) and \(Y \), it must be assumed \(u \) is increasing and twice continuously differentiable in each attribute.

In section 5, the concept of risk independence is viewed in a slightly different context which allows us to eliminate these restrictions.

An important result is

THEOREM 1. Given \(X \) is risk independent of \(Y \) and \(Y \) is risk independent of \(X \), then \(u(x, y) \) can be expressed by

\[
u(x, y) = u(x, y_o) + u(x_o, y) + k u(x, y_o) u(x_o, y), \tag{5}\]

where \(k \) is an empirically evaluated constant and \(u(x, y_0) \) and \(u(x_o, y) \) are consistently scaled conditional utility functions.

Proof. For reference, let us define the origin of \(u(x, y) \) by

\[
u(x_o, y_o) = 0. \tag{6}\]
Since X is risk independent of Y, from (4) we know
\[u(x, y) = f_1(y) u(x, y_0) + g_1(y). \]
(7)

Similarly, Y is risk independent of X so
\[u(x, y) = f_2(x) u(x_0, y) + g_2(x). \]
(8)

Then by evaluating (7) at \(x = x_0 \), we have
\[u(x_0, y) = f_1(y) u(x_0, y_0) + g_1(y) = g_1(y), \]
(9)

and likewise, evaluating (8) at \(y = y_0 \) yields
\[u(x, y_0) = g_2(x). \]
(10)

Now substituting (9) into (7) and (10) into (8) and equating the resulting equations,
\[f_1(y) u(x, y_0) + u(x_0, y) = f_2(x) u(x_0, y) + u(x, y_0) \]
(11)

which, after rearranging, is
\[\frac{f_1(y) - 1}{u(x_0, y)} = \frac{f_2(x) - 1}{u(x, y_0)}, \ x \neq x_0, \ y \neq y_0. \]
(12)

In (12), a function of \(x \) is equal to a function of \(y \), therefore, they both must equal a constant. Call this constant \(k \), and we have
\[\frac{f_2(x) - 1}{u(x, y_0)} = k, \ x \neq x_0, \]
(13)

or
\[f_2(x) = k u(x, y_0) + 1. \]
(14)
The restriction $x \neq x_o$ of (13) is not necessary in (14) since $f_2(x_o) = 1$ as can be verified by evaluating (11) at $x = x_o$. Substituting (10) and (14) into (8) we conclude

$$u(x, y) = [k u(x, y_o) + 1] u(x_o, y) + u(x, y_o)$$

$$= u(x, y_o) + u(x_o, y) + k u(x, y_o) u(x_o, y).$$

By evaluating $u(x_1, y_1)$ for arbitrary x_1 and y_1, we find k can be evaluated from

$$k = \frac{u(x_1, y_1) - u(x_o, y_1) - u(x_1, y_o)}{u(x_o, y_1) u(x_1, y_o)}.$$

The converse of theorem 1 is also true and easily proven working directly with the definition of conditional risk aversion in (3). That is, given a utility function for two continuous scalar attributes is of the form (5), then X is risk independent of Y and Y is risk independent of X.

The usefulness of theorem 1 is that it simplifies the assessment of $u(x, y)$ provided the requisite risk independent assumptions hold. The assessment of the two-attribute utility function is reduced to assessing two one-attribute conditional utility functions and the utilities of two additional consequences. The latter are necessary to consistently scale the conditional utility functions and to evaluate k.

4. Conditional Risk Premiums

One of the important results of Pratt's work was his relating the local risk aversion to the intuitively appealing concept of a risk premium. These ideas are also valid in the current context concerning conditional utility functions.
Consider the lottery represented by \((\tilde{x}_1, x_i)\), where the "\(\sim\)" represents a random outcome, and let \(p_i(x_i)\) represent the probability density function describing this outcome. Then the conditional certainty equivalent for \(\tilde{x}_1\) given \(x_i\) is defined as the amount of \(X_1\), call it \(\hat{x}_1\), such that the decision maker is indifferent between \((\hat{x}_1, x_i)\) and \((\tilde{x}_1, x_i)\). The conditional risk premium for this lottery \(\pi_i\) is defined as the amount such that the decision maker is indifferent between \((\hat{x}_1 - \pi_i, x_i)\) and \((\tilde{x}_1, x_i)\), where \(\bar{x}_1\) is the expected value of \(\tilde{x}_1\). It should be clear that \(\pi_i = \bar{x}_1 - \hat{x}_1\).

In general, there is no reason why the conditional certainty equivalent and conditional risk premium for \(\tilde{x}_1\) would not depend on \(x_i\). However, it follows from (4) that when \(X_1\) is risk independent of \(X_i\), the conditional risk premium and conditional certainty equivalent for \(\tilde{x}_1\) will not in fact depend on the condition \(x_i\). This is useful in that it allows us in some situations to assess the expected utility of lotteries in terms of conditional certainty equivalents.

To be specific, consider the lottery \((\tilde{x}, \tilde{y})\), where we have verified \(X\) and \(Y\) are risk independent of each other. We can now calculate the expected utility of \((\tilde{x}, \tilde{y})\) using (5) to find
\[E[u(\tilde{x}, \tilde{y})] = \int \int [u(x, y) + u(x, y) + k u(x, y) u(x, y)] p(x, y) \, dx \, dy \]
\[= E[u(\tilde{x}, y_o)] + E[u(x_o, \tilde{y})] + k E[u(\tilde{x}, y_o) u(x_o, \tilde{y})], \quad (15) \]

where \(E \) denotes expectation and \(p(x, y) \) is the joint probability density function for \((x, y)\). When \(X \) and \(Y \) are probabilistically independent, (15) becomes

\[E[u(\tilde{x}, \tilde{y})] = E[u(\tilde{x}, y_o)] + E[u(x_o, \tilde{y})] + k E[u(\tilde{x}, y_o)] E[u(x_o, \tilde{y})]. \quad (16) \]

But since \(X \) and \(Y \) are risk independent, we can reduce (16) to

\[E[u(\tilde{x}, \tilde{y})] = u(\hat{x}, y_o) + u(x_o, \hat{y}) + k u(\hat{x}, y_o) u(x_o, \hat{y}), \quad (17) \]

where \(\hat{x} \) and \(\hat{y} \) are respectively the conditional certainty equivalents for \(\tilde{x} \) and \(\tilde{y} \). It immediately follows from (17) that

\[E[u(\tilde{x}, \tilde{y})] = u(\hat{x}, \hat{y}) = u(\bar{x} - \pi_x, \bar{y} - \pi_y), \]

where \(\pi_x \) and \(\pi_y \) are the conditional risk premiums.

5. Generalization of Risk Independence

Results analogous to theorem 1 could be derived for \(n \)-attribute utility functions provided each attribute \(X_i \) was risk independent of all the other attributes. However, there would be some unnecessary limitations of such results. First of all, \(u(x) \) would have to be increasing and twice continuously differentiable in each attribute for each \(r_i(x) \) to be defined. Also, since the risk aversion function is only defined for scalar attributes, there is no corresponding risk aversion function for vector attributes. Thus, an
expression like (5) would not be valid if for instance, \(y = (y_1, y_2) \). Risk independence can be considered in a slightly different context such that the results are not limited by such restrictions.

In the notation of section 2, recall that the lemma states provided \(X_1 \) is risk independent of \(X_1^- \), the conditional utility function for \(X_1 \) given any fixed \(x_1^- \) is a positive linear transformation of the conditional utility function for \(X_1 \) given \(x_1^- = x_1^0 \). The converse is easily shown to be true, so this condition is equivalent to risk independence for increasing and twice continuously differentiable scalar attributes. However, one can see from (4) that such a condition by itself does not require restrictions on the attributes, and that it may hold for non-increasing, non-continuous, vector attributes. Thus, by stating our assumptions in terms of conditional utility functions rather than in terms of the conditional risk aversions, the results can be extended to include many additional situations.

6. Additional Results

Rather than repeat derivations that are found elsewhere [4], we will state only one important result which simplifies the assessment of a multidimensional utility function provided the requisite assumptions hold.

Let \(u(x_1, x_2, \ldots, x_n) \) be a utility function over consequence space \(X = X_1 \times X_2 \times \cdots \times X_n \). Then define vector attributes \(Y \) and \(Z \) such that \(X = Y \times Z \), where \(y = (x_1, x_2, \ldots, x_m) \) and \(z = (x_{m+1}, x_{m+2}, \ldots, x_n) \) represent
specific amounts of Y and Z respectively. Given \(u(y, z) \), Y is said to be
utility independent of Z if the decision-maker's relative preferences over
lotteries on Y, when Z is held fixed at \(z_0 \), are the same regardless of the
amount \(z_0 \). Given this condition, since utility functions are unique up to posi-
tive linear transformations, the conditional utility function for Y, given any
amount of Z, is a positive linear transformation of the conditional utility
function for Y given any other amount of Z. Mathematically stated, if Y is
utility independent of Z, then for any \(z_0 \).

\[
u(y, z) = f(z) + g(z) \ u(y, z_0), \quad \text{all } z.
\]

If Y and Z are utility independent of each other, they are said to be mutually
utility independent. Similarly, if each of the \(X_i \)'s is utility independent of all
the others, they are mutually utility independent.

In the n-dimensional case, if the conditional utility function for \(X_i \) is
denoted by \(u_i(x_i, x^-) \), where \(x^- \) represents a fixed amount of all the other
attributes, and if \(x^*_i \) and \(x_i \) are arbitrarily chosen such that \(u_i(x^*_i, x^-) > u_i(x_i, x^-) \),
then one can prove

THEOREM 2. Given \(X = X_1 \times X_2 \times \ldots \times X_n \) and the \(X_i \) are mutually utility
independent, \(u(x_1, x_2, \ldots, x_n) \) is completely specified by

(a) \(u_i(x_i, x^-) \) for arbitrary \(x^- \), for each \(X_i \), and

(b) \(u(x_1', x_2, \ldots, x_n') \) for all \(x_1' = x^*_1 \) or \(x_1' = x_i \).
When X is partitioned into $Y \times Z$, there is the generalization of Theorem 1 which we state as a

COROLLARY. If Y and Z are mutually utility independent, $u(y, z)$ can be evaluated from

\[u(y, z) = u(y, z_0) + u(y_0, z) + k \, u(y_0, z_0), \]

where y_0 and z_0 are arbitrarily chosen and k is an empirically evaluated constant.

Other related results using the concept of utility independence are found in Meyer [6] and Keeney [5].

7. Conclusions

We have used the concept of risk aversion developed by Pratt [8] which has proven to be important in assessing single-attribute utility functions in defining a conditional risk aversion function relevant to multiattribute utility functions. The functional form of the two-attribute utility function satisfying certain reasonable assumptions concerning one's conditional risk aversion attitudes was derived. The notion of risk independence was then generalized and renamed utility independence. Finally, two representation theorems were stated which simplify the assessment of a multidimensional utility function provided specified utility independence assumptions hold.

8. Acknowledgment

I thank Professor Howard Raiffa of Harvard University who supervised the thesis from which this paper was adapted.
References

Notes

1. It is assumed $u(x)$ is increasing and twice continuously differentiable.

2. It is assumed $u(x)$ is increasing in each X_i and the first and second partial derivatives exist and are continuous.

3. We define a scalar attribute as a single-valued attribute and a vector attribute as a many-valued attribute. For instance, if the set of consequences $X = X_1 \times X_2 \times X_3$, where the X_i are scalar attributes, then $Y = X_1 \times X_2$ would be a vector attribute.