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ABSTRACT

This paper studies the one-period, general network distribution

problem with linear costs. The approach is to decompose the

problem into a transportation problem that represents a stocking

decision, and decoupled newsboy problems that represent the

realization of demand with the usual associated holding and

shortage costs. This approach leads to a characterization of

optimal policies in terms of the dual of the transportation

problem. Specifically, it is shown that there is a correspon-

dence between the optimal policies and the extreme points,

edges, faces etc. of the dual feasible region. This method is

not directly suitable for the solution of large problems

but the exact solution for small problems can be obtained.

It is shown that the three location case involves 37 policies

as compared to seven for the two location case. For the numerical

solutions of large problems, the problem has been formulated

as a linear program with column generation. This latter approach

is quite robust in the sense that it is easily extended to in-

corporate capacity constraints and the multiproduct case.

Extensions of this work are briefly discussed.



-1-

Introduction :

In this paper we consider the single product, single period, multilocation

inventory problem with stochastic demands and transshipment between lo-

cations. This problem was posed and investigated by Gross [.-], where

exact solutions were obtained for the one location and two location cases.

Gross' method of solution rapid';becomes complicated to the point of

intractability as the number of locations increases, and Gross suggests

that search techniques be used to obtain numerical solutions for

larger problems.

Krishnan and Rao in [ 2 have tackled a one-period problem similar to

that proposed by Gross. However while Gross' formulation considered

ordering and shipping decisions made simultaneously at the start of the

period, the approach here was to determine optimal ordering decisions

given that transshipment decisions could be deferred till demand was

realized. An additional simplification made in this paper was to assume

that all transshipment costs are equal. This allows arbitrary parti-

tioniing of the locations into groups ith the same transportation cost

still obtaining between any two groups.

We will here examine the problem as formulated by Gross, and using an

alternative approach provide efficient methods for characterising the

solutions and obtaining exact and approximate solutions.

The Problem :

The problem can be stated as :

: () t C2 .. . /'

j _ , 2 · · m' 

; j i2jys,

o 5.
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where :

S.° : Initial inventory position at warehouse i.

o. : Quantity ordered from central location for warehouse i.

Xj : Quantity transshipped from warehouse i to warehouse j.

S& : Total quantity stocked at warehouse i after ordering

and transshipment.

tp : Variable cost of ordering for warehouse from central

location. ($/unit)

C i : Transshipment cost from warehouse i to warehouse j ($/unit).

Cb :· Cost of overstocking at warehouse i ($/unit)

Cb : Cost of understocking at warehouse i ($/unit).

f;(.) : Distribution of demand at warehouse i.

The assumptions made in this model are as follows :

a) The demand at each warehouse is a continuous random variable characterised

by a continuous density function.

b) Delivery of stock is immediate.

c) Setup costs of ordering and transshipping are negligible.

d) Inventory cannot be disposed of or salvaged.(This assumption is easily

relaxed).

e) Purchasing, transshipping , holding and shortage costs are all linear.

With respect to the last two we may make the weaker assumption that

the one-period costs are convex.

f) There are no capacity restrictions on warehouses.

g) There is no restriction on the amount of supply available from the

central location.

It is also assumed in [i ] that
i) C_ = cjG

ii) lph + C > Ps )

^� �_� �1_11� ------
.I -_- ll--~ -II _1 1_ -� I�--_I ·.- I�II----�1I-I I·..-�IIIIYL-II--�-



The last restriction is the so-called'triangular restriction' which

says that it is always cheaper to order directly at any location,

rather that ordering at another location and transshipping. It turns

out that this assumption really leads to the most general case in

terms of the number of different optimal policies involved, and so

we will employ it.

Let us first write down the Kuhn-Tucker conditions for the problem.

We note that since the problem involves minimising a convex function

over a convex set, these conditions are necessary and sufficient.

i) +ck(:5 ) Xi ( 3a)

.-

ci \4 - .. a , o vt , i

[ r(i' ) t

-t I

Ie, ,; · )i ,*.

_ I ] 7 r o d;/i, , I<

iii) j
-;X 5 _ 0; z= M *d X3

i 

S* C> IS / t.~ 

(5L7)

(Lb)

We now reformulate the problem by separating the objective function into

a linear part and a non-linear stochastic part. The non-linear part can

be decoupled into independent newsboy problems and the linear partforms

a transshipment problem (with the triangular restriction, this is a

transportation problem).

ii)

( )

-- 0 V' 1 AI L 

[ t

(4 k)

I I _I

i

'Xh U t.- S



+ 4eL(J') i

St A. 9 J

>t. 0

( )

V , -... , 2 t

Ol - t x

,
L j -. 

CI; x 3

- 1 31
/

(7a)

Now we can write the Kuhn-Tucker conditions for each of this pair

of problems and show that under certain obvious restrictions they are

equivalent to the optimality conditions for the original problem.

NLP :
O (Sj") 0 0

I '(s .) + YjI S(

*

LP : i) Primal Constraint

, I
ii) Dual Constraints :

Tr -

4 I.

P L

- O (S- )

r~ 

C"3
C) ; (.9 )

VI'

I/ t' 

clo-.)

c 1j .,o )

1�___1_ I_ I��_ L --- --

N L I 1-1 � -A

A.

I' t

IL

:5 '
t.
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iii) Complementary Slackness:

- . \ 

TCK4, ': "

N )

Now i we add to these conditions the requirements that TT- l; and

~s~'L 5 , we see that these conditions are identical to the Kuhn-

Tucker conditions for the original problem. This immediately suggests

that a naive algorithm for solving the problem might consist of alter-

nately solving the two subproblems; using the NLP to generate target

inventory levels 5 for the LP, while the LP determines shadow prices

T'; that are then used in the NLP as the marginal cost of purchase

.;. However it turns out that such a procedure will not lead to the
optimum. However before we discuss algorithmic procedures in any

detail let us first draw attention to the dual of the transportation

subproblem. We can write the dual as :

S sT. ITJ

TV'-T < Ct 9 c

We see that the dual has a very simple structure as might be expected.

Interpreting T' as the marginal cost of providing an extra unit at the

i'th location gives the dual constraints an intuitive meaning. The first

set of constraints says that the marginal price should be less than or

equal to the variable cost of ordering from the central location. The

second set says that the cost of providing an extra unit at the jth

__ I
___1~1 _I___~_l^_ l__ _lLl.._ _--·X-C-I�-·III�-
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location should be less than or equal to the cost of providing that unit

at the ith location and then transshipping it to the jth location at a

cost C .

To obtain some insight into the structure of the problem, we now examine the

two location problem in some detail

The Two-Location Problem :

Let us assume for the sake of simplicity and without loss of generality

that the transshipment costs between the two locations are equal in

either direction. We will also assume that the "triangular restriction"

is operative, so that :

.,< w t e C

Now we can visualise the problem as setting target stock levels st and

z so as to minimise the total costs of transshipment and subsequent

realization of demand. We have to set target stock levels such that

the total stock in the system is not less than the starting stock, since

we cannot dispose of any stock. Hence the problem can be written as :

s, ,S~
z( , SL) + , (1) + (S )

.5' -o - C D
.5 Z>~ 10·~

CX12 -r X 1 4 F I P1 - L

= S - S. °

0 2

14 / X '-./ , 02

II / I

(2 t 

warYC Z (I 5, ) X )
I

-P ~S.-f 
2- /

cj,-[

- xI + x I

I_ �·_ _1_1 _ 1_ 111_1 11-·1�1·-___--1�-1�-�

m, .

WI (5, /s;, :
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The above is a restatement of the problem in the two location case which

emphasises that the costs can be represented in terms of the target

stock vector (,S,) . This is made possible by the characterisationof

the transshipment costs as the function -Z ; (§,.). We shall now obtain

this transshipment cost function explicitly by considering the dual

of the problem P:

( D j 2 STI L T C

t- . < en

The feasible region to this program is shown in Figure 1. Given a

target stock vector - (,,<',we wish to find a feasible pair i,, , '. )

so as to maximise the objective function. That is to say, to maximise

the projection on the gradient vector of the dual objective function.

We can see by direct inspection of the dual feasible region that :

1) For s,-s,°> , 5 - S>D ,Q 1 )is the optimal point and

2) For S,-s, -> (¥,-cL,)is the optimal point and

( 2) Fr - (Pw -C) /t ) C P, (S1 - >it,)

3) For s, - , (,, ?P-c)is the optimal point and

E(e,,_ ) - Pt ( S_ b) q (S. C ) ( 57 )

These represent the extreme points of the feasible region and we

get an expression for the objective function in each case, in terms

of (s, ,se) . We can also say something about the cases where

the objective function is parallel to an edge of the feasible region:

_ ___1_1�1
__ 1 1_1_· 111-- -·LY-I--_ __ �_ I -- I---
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C) ? ,Ctz)/"

(3) (1

I

P1 r )

' I. ' I- 1 1 I.... -w1!

T -

The Two-Location Case

Feasible region for the Dual

?J L

C-

Figure 1
Problem

__ __
_�I_ ���YI_ ___I _1_13Cl___··I__��__YIWL__-�-___I ---__~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~..
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4) For S,-s, =o s O- we have 1 K - i

5) For S,-S s S: = we have T, ?,-cC " !: ',

6) For S O ; C G .-C , s 5- S ' > o wehave that

T2 7'Ti C , -; -

7) For SD _S*. C D we have that

and finally:

8) For (5s s, .L ak-; ) < c we have an unbounded solution to

(D)corresponding to an infeasible primal .

We can represent this information about the dual variable values on

the ,,)plane. This has been shown in Figure 2. The feasible region

for the original problem M is the portion of the [Ss,5)plane such

that S,. , i ; S, 2 o . The regions of the boundary

of the dual feasible region correspond to regions in the (-,,i~ ) plane

and have been marked correspondingly with the appropriate'T, Bry )values
shown.

We note the geometrical nature of the correspondence between the

solutions to (D) and the($,KS)plane:

The extreme points 1,2 and 3 of the dual correspond to the interiors

of regions 1,2 and 3 in the s-plane.

The edges of the dual correspond to boundaries between regions in the

s-plane.

And finally, the starting stock position which is point 0 in the

s-plane corresponds to the degenerate case of a dual objective function

which is identically zero so that all points feasible in (D) are also

optimal.

Thus we can view this correspondence intuitively and geometrically as

point to plane, line to line, and plane to point.

If we now examine the original problem M, we see that it consists of

minimising a convex function over a convex set. Thus a unique optimum

exists which can fall in any of the regions marked in the s-plane,

^I__ __ I� 1__1 _ __
· I--I~I l ^II-l ll·I--- .-_ -1 -11-�11 -·1 ----·-P---·l�l



0

X V2 - P 

X, c l- , c7(p,. ?,-c)

i ,

rr1, pif 2t--c.

S - tS, j &\O 45)

Figure 2: The Two-Location Case

Policy Regions in the (sls2) plane.
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giving an optimal policy corresponding to each of the regions. Since

these regions arise in the process of characterising the transporta-

tion cost as the function z(sl,s2), the number of policies invol-

ved depends on this function, which as we saw depended on the geo-

metrical features of the feasible region of (D). The number of dis-

tinct forms of optimal policy can thus be determined simply by

examining the feasible region.

One method of explicitly determining these policies is to visualise

the problem as starting at point 0 in Figure 2 with a stock position

~(s,s?,) and moving away from this point in a feasible direction to

a new stock level that minimises the total cost (,/Q. The point

O communicates with all seven regions and it is worth moving away

from it in the direction of one of these regions if the cost in that

direction is decreasing. We can clearly use gradient arguments to

characterise the policies, especially when we note that the deriva-

tive of the cost function in the direction of one of the axes, is

independent of the other variable ; that is to say

'V (sIs>) / (l 'E);} , 4 (5& Tz2)

where X:, ahd T,2 depend on the region in which Vb_ is evaluated. We
may also note that

a) For, s , Tr1T 4 i v 

b) For S2 2 , - , S ° A- C

It is thought that this approach will prove useful in larger problems

in making numerical computations.However, to determine the exact nature

of the optimal policies in this case, it is simplest to directly apply

the Kuhn-Tucker optimality conditions to each region, noting that the

associated values of the dual variables already satisfy conditions(9)

through (11). So we have to consider only conditions (8a)-(8c) which

effectively imply that either S o or K, (<'i ) .+; T = 

We will assume merely for convenience that S. 5 c although the

reader may keep in mind that an optimal stock level of zero is a
theoretical possibility.

Also for notational ease, we define S (p) to be the solution of
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'(:- ) + ? = o

We also note-that since J(') is convex, ta( ) is a non-decreasing

function of its argument and it thus follows that c, (p) is a non-

increasing function of p . (This simply says that as the marginal

cost of supplying a location increases, the optimal stock level

at that location decreases).

Now applying the K-T conditions to ech of the regions, we have :

Region 1 : The region is defined by s,, S, US. Furthermore we have:

1 ' - ) 4 P -, ( os, ) + p=_ -o

Therefore the optimal policy is

Is, = S,5 ( )

and this policy applies when

j _S~. X " 'i
S <I 

-s)- ~ S 

Region 2 We have (: , i) _o
I 5-~\

- c. o 0

which imply the optimal policy
s : , 5, )

C ( . j i )+ P .2, 1 ::' 

S A c (;. C.

This policy is optimal for starting stock ( s/i)such that

S, C -C /

:SoI0-s 4 SI I" -+ C. > l )

As for region 2 :

The optimal policy is

This policy applies if

/ " ' 2 * ( I¾e;111- 

e < ' 5". : I ) ; .5 > >5 ,- pi - c )

S, S -

Region 4 : We have s-= 3,- and since C's ) + o we -

that s- - st, i Cp
Now we know that the optimal value of the dual variable X,

iave

must

be such that p.-c -T c p . Hence this policy will apply when

Region 3 i,Csi )I P I ; t(5; 4 ' C) -

__1_ _sll_ _I� 1 �I�-·-----
_1 1- _ -*1--_- 11--··(-i-~_ 1�-·1-·11 �111 1 111 _1_111 I I_

52 ; 5 C 1.L 

5 10> 1 * ( I - C 

I V 
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1) 

;' ,Ci -(i
N~ Kc,(r 'I -

S i 'Y , ) ", -C )

Region 5: As in region 4, the optimal policy is :

This policy applies when

S. 5 Sl ( , ) /

/ - I .
"i~~~~~~~1

C , ' p ) C sI X C ! S K '( ' L)4 1 1

And the optimal value of the dual variable is given by

+ 7I (S ) '+ -7 C

Region 6 : The region consists of points in the feasible region such that

hit< St , 4 - , S 

For the dual variables, we have that

a)nd P'< w . th; con- li : n

and we have the conditions

) 4a (S) X IT 21

From the conditions on the dual variables, we have that the policy

will apply when
* o ; -P ) art- S f 

The optimal policy is given by s, and SL$ such that

dI , ) - Aft"L ( si -C

and S + :. SC, + £ 

Region 7 : The analysis here is similar to Region 6 .The optimal policy

is given by
c (S * ) d- 4- (sly )- C

S .-S - Si + S 

This policy is optimal for starting stocks such that

S 2 S2 ( pt ) ;

The various optimal policy regions correspond to conditions on the

starting stocks. We can thus represent these conditions on the s-plane

so that depending in which region the starting stock falls, we imme-

diately know the optimal policy. This is done in Figure 3, and this

diagram will be seen to be identical with the results obtained by

Gross [1]. We have thus succeeded in recovering his results.

..._.. __qlll-··ll_-__�·L--I __. ·- _Lsll�-----_Il--·-L·�^�_ �pllll �_ --- -- ---- ·�llll�·ll�·mU��

: ( f, , ' ) +- 1, I n, 

.0 0 " ,(~-r* ~ ( F . )
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Figure 3: The Two-Location Case.
Optimal policies for different starting

stock conditions.
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The approach used here, while admittedly more devious than that of

Gross, is essentially simpler and more intuitive. Furthermore it

can be extended to larger problems and suggests algorithmic pro-

cedures. We will discuss below the three location case, and a com-

putational method for attacking large problems.

The Three-Location Problem :

The extension of the results obtained to the three location case is
straightforward but tedious. We will briefly indicate how this might

be done without deriving detailed results.

As before we can write the dual of the associated transportation sub-

problem as : ( )

+ ( S . I)I X + (s ;3 ) T53

<t X

i L.5. -

Irk

-1, I

TiI

-Ti 3

-qIT

mn R , t r, 3

! C Q

C C11c~

4 CutI 3
_. c:~z

3 8
& Cz3

~c~
+ TI 3

U.t I.

�___·_I_ _�____ I_ I--I_1I�_III11-I Illll�.ltllll -�LI--I--·-PIIII�LI�I)--�-_ ---· �r �· ·s� L --- --

h -Y 5,-'" 7 
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The equations in (a) represent rmutually perpendicular planes, which are

perpendicular to the axes, and intersect at (P, , .P,) The six equa-

tions in (b) form a"pipe" or parallelpiped of hexagonal cross-section

that intersects the cuboid formed by the otherequations . The resul-

ting feasible region is a convex polyhedron shaped rather like a pen-

cil, bounded by its "point" in the positive orthant, and unbounded

in the negative orthant. We may again assume that C -c without

loss of generality, and we may also assume that the "triangular

restriction" holds so that

>; - 'I Lj V , c# t

The last assumption in fact leads to the most general case since it

ensures that the feasible region includes the point (,,P,[3), i.e.

the parallel piped cuts the "corner" of the cuboid. This construc-

has been sketched in Figure 4.

As in the two-location case, we can characterise the transportation

cost function z(sl,s 2,s 3) by the extreme points, edges and faces of

the feasible region. Again, a particular extreme point (or boundary

point) will become optimal if the gradient of the objective function

given by (s-ss2-s2 s3-s) lies in the appropriate region.As before

we can plot these regions in s-space (R3) with a geometrical corres-

pondence obtaining as follows:

Faces (planes) of the dual correspond to lines in the s-space, edges

correspond to planes and extreme points correspond to volumes. It

may also be noted that an edge in Figure 4 formed by the intersection

of two faces (or the linear combination of two extreme points),corres-

ponds in the s-space to the plane generated by the vectors correspon-

ding to the two faces ( or the boundary between the two volumes corr-

esponding to the two extreme points.) These regions in s-space are

shown in Figure 5.

Recall that in the two-location case, we obtained a policy for each

point and edge of the dual feasible region giving a total of seven

policies. It is easily verified that in the three location case we

have a maximum possible 10 extreme points, 18 edges (of which six

are extreme rays) and 9 faces (of which six are unbounded and form

the parallelpiped) . Thus in this case there are 37 distinct poli-

cies to be considered. We will not here list the exact nature of

_ 1__1 I_ _ _1_--
_ Iyl 1_@11 1___1___--- II -�I��I·-- __ --- ·LIII�
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Figure 4: The Three-Location Case
Feasible Region for the Dual Problem
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o [ (Ke 5 )% 

Figure 5 : The Three-Location Case

Policy Regions in the (sl,s2,S3)
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Computational Methods :

While the exact method used above has much to recommend it from a theo-

retical point of view, its practicability diminishes rapidly as the

number of locations increases. For one thing geometric intuition is of

little help beyond the cases already discussed and for another, the

number of distinct policies to be considered becomes very large as

the dimensionality of the problem increases. It would clearly be use-

ful to have a method of computing the optimal solution for a given

starting stock position without having to know the whole solution.

Gross [1] has suggested the use of gradient search techniques invol-

ving n2 variables. Presumably, more efficient search techniques could

be devised using the structural properties of the problem as revealed

in the analyses above. However this subject will be deferred to a

later investigation.

We present below a brief description of a column generation (gene-

ralized programming) technique, which is an inmediate.consequence of

the problem decomposition used in equations (6) and (7).

The subproblems are newsboy problems corresponding to each location,

which generate proposals for the master problem. The proposals are

in the form of columns with entries corresponding to a proposed

target stock level for a location and the associated shortage and

holding cost. These columns are then incorporated into the master

problem, which is a suitably modified version of the transportation

subproblem. The master problem then selects linear combinations of

the proposal columns. Since the holding and shortage cost functions

(bS )are convex, the linear combination of costs from the columns'

will overestimate the true costs involved. This essentially ensures

that successive generation of columns will lead to better approxima-

tions of the cost functions d(). As columns are generated, the

linear combination of adjacent proposals will lead to an inner linear

approximation of these cost functions. Since the master problem is

one of minimisation, it will automatically choose adjacent proposals

when forming linear combinations. This procedure is shown in Fig.6.

I - -- --I -- "I~ -- ·- _l_-_�_-�--____·L� ---�--�ll__�·llll_-L-
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Figure 6 : Inner linear approximation of a subproblem
cost function by successive columns.
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The column. generation procedure can be described as follows :

Initially we will generate n columns corresponding to the starting stocks

at the n locations. This will guarantee the existence of a feasible solu-

tion to the master problem. The master problem at the t'th iteration is

of the form :

M·~~nC 'a<, j :dd u...t /Pn
-x~j L L1 k:J 

W. ,

t

We are assuming here for the sake of simplicity that one column is
generated for each subproblem at each iteration. 711 and V-CA are

the shadow prices corresponding to the constraints as shown. With
these shadow prices we solve n non-linear subproblems of the form

%l;n -4;(s,) ; ;V

These are trivial to solve, and the solutions are then passed up to

the master problem as columns of the form

Cte t

The master is updated to include these columns and then solved again.

The procedure is repeated till optimality is reached or till the solu-

tion is thought to be close enough to optimality. Optimality occurs

when the same single column is picked twice by the master. For examining

the nearness to optimality and upper bound on the cost can be established

at any iteration, but this will not be discussed here.

-Il�---·11I_-ICI1-� -I ---1--·----1··111111111 1_·_-1�-- .C-l--ll-·-L-- - -_- IY U
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There are several refinements possible in this procedure in the

selection and incorporation of columns. For example we may want to

immediately columns that are likely to be important corresponding

to typical policies arising from extreme points of the dual. Examples

of these are s f;;;p- c>). Since the master problem will only

use two columns at a time, it may be possible to throw out some of

the columns generated after f couple of iterations. These and other

issues related to refinement of the procedure will also be deferred

to later investigations.

Conclusions and Extensions :

We have examined a one period, general multilocation problem from

both theoretical and computational points of view. The computational

column generation method can be easily extended to consider the

multiproduct capacitated case. It also appears that considerable

improvement of the computational procedure is possible.

The major theoretical extensions to the problem that will be studied

in future work are the multiperiod problem, the fixed charge case,

and results for special network structures. From a computational point

of view, apart from column generation methods and improved gradient

search methods, a Markovian Decision Process formulation is under

study. The latter would be able to handle multiperiod situations and

also handle the fixed cost case. The major difficulty lies in reducing

the magnitude of the problem to permit computational feasibility.
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