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ABSTRACT

Several extensions of energy balance models (EBMs) are explored in which (i) sea ice acts to insulate the

atmosphere from the ocean and (ii) ocean heat transport is allowed to have some meridional structure

controlled by the wind, with minima at which the ice edge can rest. These new models support multiple stable

ice edges not found in the classical EBM and a hysteresis loop capable of generating abrupt warming as the

ice edge ‘‘jumps’’ from mid- to high latitudes. The new equilibria are demonstrated in two classes of model, in

which the wind stress is either specified externally or generated interactively. Wind stress is computed by

introducing a dynamical constraint into the EBM to represent the simultaneous meridional transport of

energy and angular momentum in the atmosphere. This wind stress is used to drive ocean gyres, with

associated structure in their meridional heat transport, so that the atmosphere and ocean are coupled to-

gether both thermally and mechanically.

1. Introduction

The use of simple one-dimensional heat balance equa-

tions to study the climate system, and in particular the

effects of heat transport and ice–albedo feedback, goes

back to Budyko (1969) and Sellers (1969). Important

contributions to the theory of energy balance models

(EBMs) were made by, notably, Held and Suarez

(1974), North (1975a,b), and Lindzen and Farrell

(1977, 1980). A thorough review of this classic literature

is given by North et al. (1981). These simple models

provide an elegant illustration of the ice–albedo feed-

back. Typically, the surface temperature is set by the

competing effects of transport and radiation, while the

ice cover (which sets the albedo and thus exerts a

powerful control on the radiation budget) is determined

by a simple threshold condition on the surface tem-

perature. One of the hallmarks of this nonlinear inter-

action is the existence of at least two vastly different

climates for a given solar forcing: a moderate climate

with a small ice cap or no ice and a very cold, completely

ice-covered climate (which we will refer to as the

‘‘snowball’’ state). Graphs of the ice edge versus solar

constant appear in all the above-cited classic EBM pa-

pers to illustrate the multiple-valued structure of the

solutions. Between the two stable equilibria lies a third

solution with a large but finite ice cover. However, this

large ice cap is unstable to small perturbations and is

thus not a physically realizable state.

In contrast, in this paper we present a new model that

supports multiple stable ice edges: a moderate climate

with high-latitude ice and a colder climate with a mid-

latitude ice edge. We develop the new model in a se-

ries of extensions of the basic EBM, illustrating at each

step how the relationship between ice edge and solar

forcing changes. Sketches of the models can be found in

Figs. 1–4. As we will show, two new pieces of physics are

critical to the existence of a stable midlatitude ice edge.

First, the ice (which here we suppose is sea ice) must be

allowed to insulate the ocean from the atmosphere.

Second, the ocean heat transport must exhibit some

latitudinal structure with minima at which the ice edge is

found to rest. We will discuss how such structure in

ocean meridional energy transport might be expected to

naturally arise as a consequence of, for example, wind-

driven ocean gyres.

The atmosphere and ocean play different roles in set-

ting the sea ice edge. Studies of the modern climate in-

dicate that the spatial distribution of ocean heat transport
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convergence is the most important factor setting the

observed sea ice margin (Bitz et al. 2005). Recent work

on modeling the Neoproterozoic snowball earth has

also emphasized the critical role of ocean heat transport

in limiting sea ice expansion in radically different cli-

mates (e.g., Poulsen et al. 2001; Bendtsen 2002; Lewis

et al. 2003; Poulsen and Jacob 2004; Donnadieu et al.

2004). Recognition that the stability of the climate sys-

tem in the face of the ice–albedo feedback might be

better modeled by treating the atmosphere and ocean

separately in simple models goes back at least to Held

and Suarez (1974). Although there have been numerous

simple model studies of interactions between sea ice and

ocean thermohaline circulation (e.g., Yang and Neelin

1993, 1997; Nakamura 1996; Jayne and Marotzke 1999;

Bendtsen 2002), there has been relatively little attempt

to represent the wind-driven component of the ocean

heat transport in such models, despite evidence from

fully coupled GCMs that the wind-driven circulation

is the most important barrier to sea ice expansion into

the low latitudes in the approach to the snowball

earth (Poulsen and Jacob 2004). Idealized models of the

wind-driven ocean heat transport have been explored by

Klinger (1996), Wang et al. (1995), Klinger and Marotzke

(2000), Cessi (2000), Gallego and Cessi (2000), Primeau

and Cessi (2001), and Hazeleger et al. (2004), among

others. Our goal here is to explore the interaction of the

wind-driven ocean heat transport with sea ice–albedo

feedback in the framework of an EBM.

Our paper is organized as follows: in section 2 we

briefly review aspects of traditional EBMs (Fig. 1), and

we take the first step in our extension of them by in-

troducing distinct representations of the atmosphere

and ocean (Fig. 2). In section 3 we consider refinements

that attempt to more completely capture the role of

meridional structure in ocean circulation and energy

FIG. 1. The classic diffusive energy balance model, (top left) illustrated in a schematic (thin gray arrows represent

radiative fluxes; thick gray arrow represents poleward energy transport due to atmospheric and oceanic circulation,

which is parameterized as a diffusive process). (top right) Temperature and heat transport are plotted as functions

of latitude for a particular numerical solution of (1). (bottom left) We plot S0 vs ice edge fi for two different

parameter sets yielding different sensitivities (d 5 0.32 in black and d 5 0.19 in gray; see Table 1 for all parameter

values). Multiple equilibria for a given S0 can be read horizontally in these plots. The dashed curves show the

analytic steady-state solution of (1) (adapted from North 1975a), including the unstable low- and high-latitude

branches. The solid curves show the equilibrated numerical solutions of the time-dependent system (stable states

only). (bottom right) An expanded view of the stable finite ice cover solutions. The small arrows indicate the path

taken by the numerical integration; the small ice cap instability is evident poleward of about 808.
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transport in setting the ice edge. The resulting model is

illustrated in Fig. 3. We show how the inclusion of ad-

ditional physics, built into the EBM by allowing the

ocean diffusivity to vary with latitude, leads to the new

stable equilibrium with a large, finite ice cover. In sec-

tion 4 we present a significant extension of the EBM

hierarchy in which we attempt to capture not only me-

ridional energy transport by the atmosphere but also its

angular momentum transport, allowing one to infer

patterns of surface winds and thence wind-driven ocean

circulation and its associated energy transport. The

resulting energy-momentum balance model, which is

shown in Fig. 4, couples the atmosphere and ocean both

dynamically and thermodynamically and also supports a

large finite ice sheet as a stable solution. We present

conclusions in section 5.

2. Diffusive energy balance models

a. Brief review of some classic EBM results

Our new model will be developed as an explicit gen-

eralization of the classic one-dimensional hemispheric

diffusive EBM, which we now therefore briefly review.

This model is illustrated in schematic form at the top left

of Fig. 1. To help situate our discussion and introduce

notation, we now write down an equation for this well-

known model:

C
a

›T
a

›t
5 D

y
C

a
K

a

›T
a

›y

� �
1AS� B

out
T

a
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out
, (1)

where Ta is the surface air temperature, A is the coal-

bedo, S is the latitudinal distribution of incident solar

radiation, Aout 1 BoutTa is the outgoing longwave radi-

ation (OLR), Ca (J m22 8C21) is a heat capacity for

the column, Ka (m2 s21) is a large-scale diffusivity,

and Dy is an operator representing the meridional di-

vergence (all quantities represent zonal averages).1 This

equation is readily derived from a zonally averaged and

FIG. 2. As in Fig. 1, but for the atmosphere–ocean EBM, Eq. (5), with constant diffusivities Ka, Ko. (right)

meridional profiles of Ta, Ts,Ht,Ha, andHo together with the ice edge are shown. Note that the use of constant Ko

allows for significant ocean heat transport poleward of the ice edge, which cannot, therefore, be insulating. (bottom

left) We plot S0 vs fi for this system (only stable solutions, obtained numerically, are shown). The path taken by the

numerical integration is again illustrated by the small arrows.

1 In (1) and what follows, we express the meridional component

of the divergence in terms of the operator Dy[h(f)] 5 (a cosf)21

›/›f[cosfh(f)] for any function h(f), where f is latitude and a is

the planetary radius. This operator simplifies the notation while

including the necessary spherical geometric factors. Gradients are

expressed in terms of a dimensional variable dy 5 a df.
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column-averaged heat budget for the climate system,

with parameterizations relating the radiation, transport,

and albedo as functions of Ta. Note that in this simplest

of EBMs there is no attempt to represent atmospheric

and oceanic heat transport separately.

Our calculations use the following:

S 5
S
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[1 1 s
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2
(sinf)], (2a)
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Equation (2a) is a reasonable approximation to the

observed annual mean distribution of solar radiation,

where P2(x) 5 (3x2 2 1)/2 is the second Legendre poly-

nomial, s2 5 20.48, and S0 is the solar constant (W m22).

Equation (2b) is the crucial representation of the ice–

albedo feedback, with the threshold temperature Tf typ-

ically taken to be 2108C [based on the observed annual

mean snow and ice line, going back to Budyko (1969)].

Equation (2c) is a formula from North (1975b) designed

to account crudely for observed changes in cloudiness

and solar zenith angle with latitude. Detailed justification

for these parameterizations can be found in North et al.

(1981) and references therein.

We have followed Sellers (1969) in representing me-

ridional heat transport H as a diffusive process directed

down the mean temperature gradient. This is one of two

classes of parameterizations used for H in the EBM

literature. The other, going back to Budyko (1969), is

slightly more convenient mathematically but provides a

less clear connection to the more sophisticated models

considered later in this paper.

When Ka is constant, the steady-state form of (1) has

known analytic solutions (e.g., North 1975a; Held and

Suarez 1974). The crucial nondimensional parameter

for these models can be written as

FIG. 3. As in Fig. 2, but for the AO-EBM (5) with latitudinal structure in the ocean diffusivity Ko. A prescribed

wind stress (taken from Fig. 4) is used to drive ocean gyres through the parameterization (11). Here Ko is set to zero

under the ice to account for the insulating effect of sea ice. The gyre model gives a bimodal ocean heat transport with

a minimum at the midlatitude zero curl line. This leads to qualitatively different behavior of the ice edge compared to

the simple EBM. Two stable ice edges are found for a range of S0 values: (top right) one moderate solution with

partial ice cover over the subpolar gyre (solution 1) and (bottom right) one cold solution with a completely ice-

covered subpolar gyre (solution 2). (bottom left) The S0–fi curves for this model. The small arrows at lower left again

indicate the path taken by the ice edge in numerical integrations.
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which is the ratio of radiative (Ca/Bout) to dynamical

(a2/Ka) time scales; it measures the efficiency of the

poleward heat transport (Stone 1978).2 Held and Suarez

(1974) discuss in detail how the sensitivity of the ice

edge to changes in the radiative budget increases with d.

We confirm this by plotting the equilibrium ice edge (at

latitude fi) versus solar constant S0 for d 5 0.32 and d 5

0.19. The analytic solutions are plotted as dashed lines

in the lower panels of Fig. 1; the value of d determines

the slope of these curves (the sensitivity of the ice edge)

but does not alter the qualitative behavior of the system.

The S0 versus ice edge curves in Fig. 1, which for

brevity will henceforth be referred to as fi–S0 curves,

illustrate the well-known multiple-equilibrium property

of the EBM: for a given S0, there may be anywhere from

one to five different values of fi that solve (1) exactly.

The regions of the graph where dS0/dfi , 0 are unstable

(Cahalan and North 1979) and thus physically are un-

realizable. The ‘‘large ice cap instability’’ occupies the

subtropical and tropical latitudes; an ice margin within

these latitudes expands rapidly toward the equator. The

‘‘small ice cap instability’’ (SICI) occupies the polar lat-

itudes. A very small amount of polar ice must either melt

completely or grow to a minimum stable size. There is

thus a range of solar constants over which a total of three

stable solutions coexist: ice-free, moderate ice cap, and

snowball. Discussions of SICI and its physical mecha-

nism are given by Held and Suarez (1974), Lindzen and

Farrell (1977), and North (1984). The minimum stable

ice cap size is proportional to d (as can be seen in Fig. 1)

FIG. 4. Solutions from the energy-momentum balance model. The atmosphere is now represented by two layers

of QGPV [Eq. (13)], with the temperature Ta in thermal wind balance with the vertical wind shear. Meridional

fluxes of heat and angular momentum (sketched in light and dark gray respectively) are implicitly represented by a

meridional eddy QGPV flux (sketched in medium gray). The ocean is driven by t, generated interactively by the

atmospheric model (the westerlies being maintained by the convergence of momentum fluxes in midlatitudes);

otherwise the ocean is identical to that shown in Fig. 3. The model supports multiple stable ice edges, as illustrated

in the top right and bottom right. The S0 2 fi relationships (lower left) are similar to those in the AO-EBM with

fixed wind-driven gyres (Fig. 3).

2 This parameter is called D in North’s papers. The equivalent

parameter for the Budyko-type EBM is called d by Held and

Suarez (1974).
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and represents the minimum distance over which the

temperature (and thus the outgoing radiation) can ad-

just locally to the albedo forcing of the ice cap—shorter

length scales are wiped out by diffusion. SICI has been

explored in both EBMs and more comprehensive cli-

mate models by Huang and Bowman (1992), Matteucci

(1993), Lee and North (1995), Maqueda et al. (1998),

and Langen and Alexeev (2004), among others. SICI is

far from universal in climate models, however, as many

of the above references point out. SICI can be easily

eliminated from the diffusive EBM by making some

small changes to the heat transport parameterization

(North 1984).

Analytic methods are not practical for the more

complex models considered later, so we will need to

integrate the time-dependent equations numerically to

map out their fi 2 S0 relationships. The basic proce-

dure, which will be repeated for each model, is very

similar to that described by Huang and Bowman (1992).

We start from a warm, ice-free state and first decrease

and then increase S0 by small increments, allowing the

system to re-equilibrate after each perturbation, turning

around just before the large ice cap instability threshold.

This method finds only the stable equilibria. Numerical

results for the simple EBM are plotted in Fig. 1 along

with the analytic solutions; the curves differ only in

the polar latitudes, where the analytic solution shows

an unstable equilibrium but the numerical solution

‘‘jumps’’ over it (this is the effect of SICI).

In anticipation of our later results, note the uniqueness

of the ice edge in Fig. 1. Although the EBM supports

multiple equilibria in the form of snowball and ice-free

solutions, there is never more than one stable solution

with a finite ice edge.

b. A note on parameter values

Numerical values for all our calculations are listed in

Table 1. Our main results are qualitative and not sen-

sitive to specific parameter choices. For each of the four

classes of models presented here, we choose parameter

values giving pole-to-equator temperature differences,

heat transport profiles, and ice edges in reasonable

agreement with the observed climate. Two solutions are

shown in each case, taking the outgoing longwave sen-

sitivity Bout as either 2.9 or 1.7 W m22 8C21 and tuning

Aout to give the same fi for S0 5 1367 W m22. The Bout

values are based on linear regression of long-term mean

Northern Hemisphere National Centers for Environ-

mental Prediction (NCEP) reanalysis OLR against tem-

perature at 500 and 1000 hPa, respectively. Given that

Ta in our models effectively represents both the surface

and the midtroposphere (see below), we take these

values to be reasonable upper and lower bounds on

Bout. In every case, smaller Bout is associated with en-

hanced sensitivity of fi to changes in S0, analogous to

increasing d in the simple EBM (although the corre-

sponding nondimensional parameter is not so clearly

defined in the more complex models considered later).

TABLE 1. Parameter values used for the numerical solutions of the four classes of models. In each case two solutions are computed,

using two sets of values for the longwave cooling Aout, Bout as shown. The dash (—) indicates unitless parameters or parameters that are

not used in particular models.

Parameter Units

AO-EBM

(constant Ko)

Fig. 2

AO-EBM

(fixed wind)

Fig. 3

EBM

Fig. 1

EMomBM

Fig. 4

a m 6.373 3 106 same same same

Tf 8C 210 same same same

s2 — 20.48 same same same

a0 — 0.70 same same same

a2 — 20.078 same same same

A
i

— 0.38 same same same

Ca J m22 8C21 107 same same same

Co J m22 8C21 — 107 same same

Ka m2 s21 2.2 3 106 2.7 3 106 2.7 3 106 —

Ko m2 s21 — 5.2 3 105 — —

Bup W m22 8C21 — 15 same same

Aup W m22 — 238 same same

Bout W m22 8C21 2.9/1.7 2.9/1.7 2.9/1.7 2.9/1.7

Aout W m22 207/212 199/211 208/217 205/216

R J kg21 8C21 — — — 287

� kg m22 s21 — — — 0.04

kl m2 s21 — — — 6 3 106

Ld m — — — 5 3 105

m m3 kg21 8C21 — — — 350
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c. Extension to a simple atmosphere–ocean EBM

Our goal here is to extend (1) to include an explicit

atmosphere and ocean, with both thermodynamic and

dynamic coupling. The first step is to separate the ther-

modynamics into two layers, with the lower layer rep-

resenting the ocean and the upper layer representing

the atmosphere. This is the next member of our model

hierarchy, which is sketched in Fig. 2. We let the surface

(ocean) and atmosphere have temperatures Ts and Ta

respectively. The albedo is controlled by Ts [replacing

Ta in (2b)]; the outgoing radiation is again given by

Aout 1 BoutTa. Here Ta will be treated as a measure of

the free tropospheric temperature, say at 500 hPa.

However, we will express it as an equivalent surface air

temperature, assuming a constant lapse rate.

The atmosphere will be treated as transparent to solar

radiation, so that the net solar fluxAS is absorbed at the

surface. The net heat flux from the surface to the at-

mosphere is defined as

F
up

5 A
up

1 B
up

(T
s
� T

a
), (4)

with Aup, Bup constant. This is a crude representation of

the net effect of infrared radiation, turbulent heat fluxes,

and convection.

To represent atmospheric and oceanic heat transport

explicitly, we assume a down-gradient transport in both

layers. We can thereby write our atmosphere–ocean

EBM (AO-EBM) as a pair of coupled diffusion equa-

tions:
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(T
s
� T

a
). (5b)

Held and Suarez (1974) looked at a similar atmosphere–

ocean generalization of the Budyko-type EBM. With

constant coefficients, they showed a mathematical

equivalence of their AO-EBM to the simple one-layer

EBM. Thus, although the extension to two layers may

provide a physically more meaningful framework for

estimating parameter values, it does not lead to any

qualitatively new behavior in the climate. Similarly, al-

though we use the more physically motivated diffusive

(Sellers-type) transport, we find that our AO-EBM [(5)]

does not yield any qualitatively new behavior when

the diffusivities Ka, Ko are constant in latitude.3 This

equivalence of (5) and (1) is confirmed by the results

plotted in Fig. 2. Despite the added complexity of the

distinct atmosphere and ocean layers with separate heat

transport, there is no qualitative change in the fi–S0

graph compared to Fig. 1 (these are numerical solutions,

so only stable solutions are shown).

A clue as to what is required to endow the EBM with

qualitatively new behavior is offered by Lindzen and

Farrell (1977): they argue that the stability of the ice

edge depends only on the range of latitudes over which

a heat transport mechanism is acting to smooth tem-

perature and the efficiency with which it does so. In the

real world, the ocean is driven by the wind stress, which

varies over subplanetary scales, leading to considerable

structure in the ocean’s meridional energy transport. In

simple EBMs we represent the ocean heat transport as a

hemispheric-scale diffusion, which cannot capture the

important physics of the gyre scale. In the next section

we constrain the ocean in a physically more meaningful

way and in doing so, we introduce smaller, more real-

istic scales to ocean heat transport. This turns out to be

crucial to the sensitivity of the ice edge.

3. Ocean heat transport and sea ice

In this section we refine the surface Eq. (5b) of the AO-

EBM to account more fully for the separate roles of

oceanic transport and ice cover on the energy balance.

These issues are most easily understood in an aquaplanet

framework with interacting atmosphere, ocean, and sea

ice but without land surfaces, as in the coupled model of

Marshall et al. (2007), because land ice is constrained less

directly than sea ice by sea surface conditions and ocean

heat transport. We therefore now focus attention on the

representation of sea ice and its interaction with the ocean.

a. Sea ice

Sea ice has three basic properties that are crucial for

the large-scale energy balance: it forms where the sea

surface temperature reaches the freezing point, it is

highly reflective compared to open water, and it insulates

the ocean surface from the atmosphere (e.g., Bendtsen

2002). The albedo parameterization in the simple AO-

EBM in Fig. 2 captures the first two of these properties,

but not the third. With Ko constant everywhere, there is

a nonzero ocean heat transport convergence under the

ice, which is communicated upward to heat the atmo-

sphere exactly as it would be in the absence of ice.

3 North (1975b) showed that the diffusive EBM and the Budyko-

type EBM are equivalent under a spectral truncation. It can also be

shown that the steady-state, constant-K form of (5) is isomorphic

with (1) up to a spectral truncation error.
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The simplest time-dependent model of sea ice is the

‘‘0-layer’’ thermodynamic model of Semtner (1976),

which assumes an ice top temperature Ti in balance with

the heat fluxes at the surface, the temperature at the

base of the ice fixed at freezing Tf, and a linear con-

ductive heat flux through the ice pack: Fc 5 ki(Tf 2 Ti)/

hi, where ki is constant. The prognostic variable is the ice

thickness hi, evolving in response to imbalances in the

energy flux at the top and bottom of the ice pack. This

model is an approximation to the detailed thermody-

namic model of Maykut and Untersteiner (1971), itself

an approximation to the fundamental equations for a

two-phase brine–ice mixture or ‘‘mushy layer’’ (Feltham

et al. 2006). Bendtsen (2002) coupled this type of sea ice

model to a zonally averaged atmosphere–ocean EBM.

Focusing on the steady-state response to mean annual

forcing, we consider an even simpler limit, in which the

ice is a perfect insulator. Setting ki 5 0 in the Semtner

model effectively means that the ice thickness hi drops

out of the problem, and the existence of ice can be di-

agnosed directly from the temperatures (as in the

EBM). Therefore, if we let Ti be determined by local

radiative equilibrium with the atmosphere and assume

that the underlying ocean temperature To 5 Tf every-

where under the ice, then the ocean heat transport goes

to zero at the ice edge. We represent this limit with a

single equation [(5b)] for a single temperature Ts simply

by setting Ko 5 0 and A 5 Ai wherever Ts , Tf. The

temperature Ts characterizes whichever surface is ex-

posed to the atmosphere—either ocean or ice.4

Before proceeding to a more sophisticated ocean model,

we note that simply setting Ko 5 0 poleward of the ice

edge but otherwise holding it constant does not gener-

ate additional equilibria in the AO-EBM [(5)]. The fi 2

S0 graph in this case (not shown) is similar to Fig. 2

except that the SICI is absent (there are stable ice edges

all the way to the pole). Thus, we conclude that the

insulating property of sea ice alone is not sufficient to

generate new equilibria in the AO-EBM.

b. Wind-driven gyres and ocean diffusivity

We now develop a simple parameterization for ocean

heat transport (denoted H
o
) by wind-driven gyres. We

consider the heat budget of a homogeneous ocean layer

of depth hm, driven by the zonal mean wind stress t and

exchanging heat with the atmosphere. Physically we

might conceptualize this as a horizontally circulating

wind-driven mixed layer overlying a motionless abyss

with no overturning, in which there is no significant land

surface but the ocean is confined to a basin geometry by

a thin continental ridge running from pole to equator

[the ‘‘ridgeworld’’ of Enderton and Marshall (2009)]. In

this simple limit we can write the ocean heat transport

across zonal sections as

H
o

5 2pa cos fC
o
y9T9

s
, (6)

where y is the meridional flow and Co 5 corohm, where

co and ro are respectively the specific heat and density of

the ocean of depth hm. We assume here that the trans-

port is dominated by ocean gyres, so that it is well ap-

proximated by an interior in Sverdrup balance, with

return flow in a western boundary layer. The interior

meridional velocity is therefore

y
S

5 � 1

br
o
h

m

D
y
(t), (7)

where b 5 2Va21 cosf is the planetary vorticity gradi-

ent, t is the applied zonal wind stress (assumed to be

constant in longitude), and Dy is our divergence oper-

ator.5 We further assume that the temperatures of the

interior and western boundary current differ by DT,

which is a function of latitude only. Then for a western

boundary current of fractional width g, the temperature

flux can be written

y9T9
s

5
(1� g)DT

br
o
h

m

D
y
(t). (8)

Under these assumptions, the problem of heat trans-

port by ocean gyres reduces to finding a closure for DT.

The temperature anomaly results from preferential ad-

vection in the western boundary, such that it could

plausibly depend on the steepness of the meridional tem-

perature gradient. The sign and strength of the advec-

tion depend on the sense of the gyre, itself set by

the wind curl. In this spirit we choose the following

closure:

DT 5 �m*
(a cosf)2

t
0

D
y
(t)

›T
s

›y
. (9)

4 We continue to take Tf 5 2108C (the canonical threshold

temperature in simple EBMs, based on the mean annual position

of the land-based snow line) for ease of comparison with estab-

lished results. A more appropriate threshold for this sea ice model

might be Tf 5 228C, roughly the freezing point of seawater. The

main results of this paper (in particular, the existence of multiple

stable ice edges to be discussed later) are not sensitive to this

choice: we have obtained the same qualitative results using Tf 5

228C.

5 Here Dy is used to take the curl of stress t (more precisely, the

vertical component of the curl). This has the same mathematical

form as the divergence because t varies only in latitude.
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Here t0 is a constant scale value for the stress, and the

constant of proportionality m* is a dimensionless num-

ber, related to the fractional zonal temperature differ-

ence across the basin with respect to a given meridional

temperature change. In practice m* is an adjustable pa-

rameter that sets the magnitude of the ocean heat

transport (the shape being set by the wind).

With this parameterization [substituting (9) and (8)

into (6)] we can write the ocean heat transport in terms

of the wind stress curl and temperature gradient thus

[absorbing the factor (1 2 g) into m*]:

H
o

5 �
2p(a cosf)3c

o
m*

bt
0

[D
y
(t)]2 ›T

s

›y
. (10)

Note thatH
o

depends on the square of the wind curl and

is thus nonnegative at all latitudes: both the subtropical

and subpolar gyres carry heat poleward despite the

change in sign of the mass transport because DT also

changes sign.6 The dependence of Ho on the square of

the wind curl corresponds to the weak gyre advection

and strong temperature-restoring limit of the idealized

gyral heat transport problem studied by Wang et al.

(1995). An expression very similar to (10) was previ-

ously derived by Gallego and Cessi (2000) for heat

transport by wind-driven gyres, although their model

also includes a constant background diffusivity inde-

pendent of the wind forcing.

Because we have set Ho proportional to the temper-

ature gradient, our heat equation once again takes the

form of a diffusion equation—in fact, we recover (5b),

but with the ocean diffusion coefficient now propor-

tional to the square of the local wind stress curl:

K
o

5
a3 cosfm

f
0
C

o

[D
y
(t)]2, (11)

where we have rewritten the constants using f 0 5

2V sin(458) 5 (
ffiffiffi
2
p

cosf)�1
ba and defined a dimen-

sional constant m 5 (
ffiffiffi
2
p

t
0
)�1c

o
m*.

In the next section we find solutions to the AO-EBM

(5) with the ocean diffusivity (11) and with Ko 5 0 in the

ice-covered region. This model setup is sketched at the

top left of Fig. 3. Note that because the ocean heat

equation depends on the product CoKo, which is inde-

pendent of depth hm, the steady-state solutions are also

independent of hm.

c. Multiple equilibria in the AO-EBM with
specified winds

To explore the properties of our new model, let us

first suppose that the wind stress is externally specified.

The final member of our model hierarchy, to be dis-

cussed in the next section, is capable of generating a

wind stress interactively in response to the differential

heating of the atmosphere. For now, we will simply

‘‘borrow’’ the wind field generated by the interactive

model, which is plotted in Fig. 4. It features a broad

band of easterlies stretching from the equator to 338 and

an even broader and more intense band of westerlies

peaking at 648 and extending almost to the pole. We

show in the appendix that the surface stress associated

with this wind field is subject to a momentum constraint

ensuring that its area-weighted global integral is zero.

The main disparity between this idealized wind field and

the observed time- and zonal-mean zonal wind fields is

the position of the westerly maximum, which actually

occurs near 508. Taking the square of the curl of this

wind stress to apply our ocean diffusivity parameteri-

zation (11) leaves us with two broad regions of enhanced

diffusivity centered at 328 and 768, which we associate

with subtropical and subpolar gyres; Ko has minima at

the zero curl lines located near 118, 568, and 888. We in-

tegrate (5) numerically with this variable Ko but with

constant atmospheric diffusivity Ka. We also set Ko 5 0

poleward of fi at each time step to set meridional ocean

energy transport to zero, thus representing the insulating

effect of sea ice.

Figure 3 is analogous to Figs. 1 and 2, giving results for

this AO-EBM with fixed winds and insulating sea ice.

Parameters are chosen to yield a high-latitude fi for a

realistic value of S0 (see Table 1). This solution is plot-

ted in detail in the top right of Fig. 3. The ocean heat

transport Ho now exhibits a subhemispheric-scale me-

ridional structure imposed by the wind: there is a pri-

mary maximum in the subtropical gyre and a secondary

maximum in the subpolar gyre with a minimum in be-

tween, at the midlatitude zero curl line.7

At bottom right in Fig. 3 is an additional stable so-

lution for the same solar forcing, in which the entire

subpolar gyre is frozen over and fi rests at the zero curl6 In the real oceans the gyres contribute to poleward heat

transport everywhere except in the equatorial regions, where the

circulation is opposite to that of the neighboring subtropical gyres,

but there is no corresponding change in sign of DT. However, the

equatorward heat transport by the equatorial gyres is small and is

overwhelmed by the substantial poleward heat transport by wind-

driven subtropical cells (see, e.g., Hazeleger et al. 2004; Enderton

and Marshall 2009).

7 It is interesting to note that Enderton and Marshall (2009) find

a qualitatively similar bimodal Ho in coupled GCM simulations in

‘‘ridgeworld’’ geometry, where the ocean circulation is dominated

by gyres (see, e.g., their Fig. 10). The 2D wind-driven ocean model

of Primeau and Cessi (2001) also generates such a bimodal Ho.
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line (and the climate is consequently much colder). This

new stable equilibrium state, which has no analog in the

simple EBM, is the principal new result of this paper. Its

existence is intimately related to the meridional struc-

ture imprinted on the ocean heat transport by the wind.

The fi – S0 graphs for this wind-driven model (lower

left in Fig. 3) are qualitatively different than those of the

constant-diffusivity cases considered earlier: there is a

marked asymmetry between the cooling and warming

branches due to the new multiple equilibrium regime.

In the cooling phase, the ice edge advances gradually

over the subpolar gyre as S0 is reduced. In the warming

phase, fi remains at the zero curl line over a wide range

of S0 values until a threshold is reached near 1400 W m22,

which causes a complete melting of the subpolar ice

cover. An additional, similar multiple equilibrium regime

and threshold at higher S0 values is associated with the

zero curl line near the pole.

These results can be understood as follows. At steady

state, Ho must go smoothly to zero at fi; this requires

either zero wind curl or zero temperature gradient [see

Eq. (10)]. Thus it is possible for the ice edge to rest in

the interior of a gyre, but only if Ts flattens out at Tf just

equatorward of fi. In contrast, if the ice edge rests at a

zero curl line, the system can support ocean tempera-

tures above freezing just equatorward of fi (this can be

seen in Fig. 3). This icy solution collapses when the

temperature just poleward of fi (set by radiative bal-

ance with the atmosphere) rises above Tf.

The cooling branch of the fi – S0 curves differ in im-

portant ways from the constant-diffusivity cases, even

disregarding the existence of the multiple equilibria.

Their slopes are highly variable—the ice is much more

sensitive to changes in the heat budget when the edge is

located in the interior of a gyre (i.e., a latitude of effi-

cient ocean heat transport). On the other hand, fi is

quite insensitive to changes in the heat budget when it is

located near a zero curl line (i.e., at a latitude charac-

terized by inefficient ocean heat transport). This is a

somewhat more general argument than the wind-curl

dependence posited here. It implies that the regions of

low ocean transport efficiency are the most likely places

for the ice edge to rest.

There are no qualitative differences between the

small Bout and large Bout versions of the model in Fig. 3.

The multiple equilibrium regime spans a larger range of

S0 values for larger Bout. We emphasize that the new

equilibrium is not an expression of SICI; here we have

the coexistence of two finite ice caps of different sizes,

and the underlying physical mechanism is rather dif-

ferent than the SICI mechanism outlined in section 2.

This model does not have a minimum stable ice cap size

(Fig. 3 shows that stable small polar ice caps are possi-

ble). Furthermore, in the new cold solution in Fig. 3 the

ice edge is slaved to the position of the midlatitude zero

wind curl line because there is no ocean heat transport

across this line. Thus, the ice edge is fixed at a particular

latitude (about 558) for a wide range of solar forcing,

unlike the multiple equilibria generated by SICI in the

simple EBM (Figs. 1 and 2).

In the next section we introduce a dynamical process

into the EBM in order to calculate t interactively. As we

will see, this fully coupled model generates essentially

the same multiple equilibrium behavior discussed above,

but without the need to externally specify a wind stress

forcing.

4. An energy-momentum balance model

We now develop an extension to the atmospheric

EBM framework that allows us to simultaneously rep-

resent poleward heat transport by synoptic eddies and

their associated angular momentum transport that acts

to maintain the surface wind stress. In so doing, and by

coupling this atmosphere to the wind-driven ocean de-

veloped in the previous section, we arrive at a simple

system of equations in which the atmosphere and ocean

are coupled together both dynamically and thermody-

namically. This final member of our model hierarchy is

illustrated in the top left of Fig. 4. In it we represent the

transfer of angular momentum by Reynold stresses

transporting westerly momentum out of the tropics in to

midlatitudes, inducing tropical trade winds and midlat-

itude surface westerlies. To represent this angular mo-

mentum transfer,8 we hypothesize that atmospheric

eddies mix potential vorticity (PV) subject to a global

angular momentum constraint—that is, eddies should

not generate any net momentum but only redistribute it.

a. Formulation

We exploit an idea first developed by Green (1970),

who, using a quasigeostrophic (QG) beta-plane frame-

work, represented the eddy forcing of the zonal mean

wind through a diffusive parameterization on the QG

potential vorticity (QGPV). By assuming a plausible

form for the baroclinicity of the atmosphere, Green

(1970) and White (1977) were able to derive analytic

solutions for the zonal mean surface wind, obtaining the

familiar tropical easterlies, midlatitude westerlies, and

polar easterlies. Subsequently, Wu and White (1986)

8 As has been known since the work of Jeffreys (1926), angular

momentum transport by synoptic eddies cannot be represented as

a diffusive process because westerly momentum is transported up

the mean gradient to maintain the midlatitude westerly jet. Instead

we choose to mix PV, following Green (1970).

SEPTEMBER 2009 R O S E A N D M A R S H A L L 2837



demonstrated the extension of Green’s idea to the sphere,

using a two-level QGPV framework, and showed that

the existence of polar easterlies is rather sensitive to

model details. Here we couple the two-level, spherical

QGPV system to an energy balance calculation, such

that the baroclinicity and the surface wind are predicted

simultaneously. Essentially we diffuse PV in two at-

mospheric layers, rather than, as in the previous section,

diffusing temperature in a single layer. Similar models

were previously considered by Cessi (2000) and Gallego

and Cessi (2000) in Cartesian beta-plane geometry, and

by Primeau and Cessi (2001) in spherical geometry. The

two-level approach was also used by Marshall (1981) for

a zonally averaged ocean channel model. The details of

the derivation are laid out in the appendix. Briefly, the

two-level QGPV equations are zonally averaged, and

the eddy flux terms are closed by

y9
i
q9

i
5 �K

i

›q
i

›y
, for i 5 u, l, (12)

where q is the zonal-mean PV, K is a diffusivity, and the

subscripts u and l refer respectively to the upper and

lower atmospheric levels. The diffusion coefficients are

assumed to peak in the midlatitudes and to go to zero at

the equator and pole. Their relative magnitudes are

related by exploiting an angular momentum constraint

that states that the surface stress, when integrated over

the globe, identically vanishes at equilibrium. This

leaves a single scalar parameter to be chosen to control

the absolute magnitudes of the diffusivities.

Following the notation of the previous section, t is

the stress of the wind acting on the ocean. With the

diffusive closure (12) for PV, we can then write the

time-dependent two-level PV system as

›

›t
q

u
5 D

y
K

u

›q
u

›y

� �
� R

C
a
L2

df
0

_Q, (13a)

›

›t
q

l
5 D

y
K

l

›q
l

›y

� �
1

R

C
a
L2

d f
0

_Q 1
2g

p
0

D
y
(t), (13b)

where _Q is the diabatic heating rate in watts per square

meter, R is the gas constant for dry air, and Ld is the

deformation radius.

The heating is specified in the same way as in the AO-

EBM, so that _Q 5 A
up

1 B
up

(T
s
� T

a
)�A

out
� B

out
T

a
.

The system (13) is solved by expressing the temperature

and stress in terms of the winds, which are related to the

PV gradients by

›

›y
q

u
5 b� ›

›y
[D

y
(u

u
)] 1

u
d

L2
d

and (14a)

›

›y
q

l
5 b� ›

›y
[D

y
(u

l
)]�

u
d

L2
d

, (14b)

where uu and ul are the upper- and lower-level zonal

mean winds and ud 5 uu 2 ul is the shear. The winds are

obtained by inversion of (14) subject to u 5 0 at f 5 08,

908. We use a linear drag law to relate the stress [last

term in (13b)] to the winds, and the imposed momentum

constraint on the PV diffusion ensures that t integrates

to zero globally at equilibrium. The atmospheric tem-

perature Ta is set by the wind shear from the thermal

wind balance up to a constant of integration. We solve

for the global mean temperature by invoking global

energy conservation:

C
a

d

dt
hT

a
i5 h _Qi, (15)

where the angle brackets represent an area-weighted

global mean hhi 5
Ð p/2

0 h cosf df.

Our atmosphere thus consists of two coupled diffu-

sion equations [(13)] for PV with thermal, mechanical,

and eddy forcing calculated from winds and tempera-

ture, along with the prognostic equation (15) for global

mean temperature. The ocean is represented by the

heat diffusion equation (5b) with the wind-driven dif-

fusivity (11), which is now coupled to the atmosphere

thermodynamically through the heat exchange Aup 1

Bup(Ts 2 Ta) and mechanically through the stress t. We

thus have a system of three prognostic PDEs and one

prognostic ODE that can be integrated numerically by a

simple timestepping procedure, with inversion of the

QGPV according to (14) between each time step. We

refer to this system as the energy-momentum balance

model, or EMomBM.9 The model is readily spun up to

steady state on a laptop.

Our EMomBM is similar to the zonally averaged

wind-driven model discussed by Gallego and Cessi

(2000), which also couples together Green’s model for

atmospheric eddy momentum fluxes with an energy

balance calculation and a simple description of wind-

driven ocean gyres. Our model differs from this earlier

work in the inclusion of sea ice and spherical geometry

and the lack of an explicit delay time for the wind

forcing of the ocean (in our model gyres adjust instan-

taneously to changes in wind forcing, implying very fast

Rossby wave speeds). These differences reflect the very

different intended applications of the two models. We

are primarily interested in the role of the wind-driven

ocean circulation in setting sea ice extent and thus,

9 Not to be confused with an energy–moisture balance model,

which is sometimes abbreviated EMBM in the literature.
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through the nonlinear albedo feedback, allowing for

multiple stable equilibria (as we show in the next section).

Gallego and Cessi (2000), on the other hand, focus on

coupled modes of variability in the midlatitude atmo-

sphere–ocean system, and their model exhibits decadal-

scale oscillatory solutions due to the finite cross-basin

Rossby wave transit time. A more comprehensive model

would include both sea ice and a finite delay time for the

gyres; whether such a model would exhibit multiple os-

cillatory solutions is left as an open question.

b. Multiple equilibria in the EMomBM

Parameters for EMomBM are listed in Table 1 (see

the appendix for further definitions). Values were cho-

sen to give roughly the same ice edge and heat trans-

ports as found for the fixed-wind AO-EBM in Fig. 3.

The maximum value of atmospheric diffusivity is 6 3

106 m2 s21, which occurs in the midlatitude lower tro-

posphere; this is consistent with a simple scaling in terms

of eddy mixing lengths and wind speeds.

The EMomBM exhibits multiple equilibria that are

quite similar to that found in the fixed-wind model, as

illustrated by the two solutions plotted at top right and

bottom right of Fig. 4. The similarity to the solutions

plotted in Fig. 3 demonstrates two things: the two-level

QGPV diffusion equations [(13)] can reproduce the

temperature field predicted by the one-level heat diffu-

sion equation [(5a)], and the surface wind stress gener-

ated by the EMomBM is quite robust (the winds in the

upper and lower panels look nearly the same, despite

substantial changes in albedo and temperature).

Because the winds do not vary much, the fi – S0 graph

(lower left in Fig. 4) is quite similar to its fixed-wind

counterpart in Fig. 3. Thus our earlier discussion on the

multiple equilibrium regimes applies equally to this

EMomBM. There are, however, some differences from

the fixed-wind case: the ranges of S0 for which the

multiple equilibria exist are smaller, and the jump in fi

as the system warms past its threshold is more modest.

These differences are related to subtle shifts in the po-

sition and magnitude of the wind stress, and thus the

shape of Ko, that occur in response to changes in fi (and

thus the differential heating of the atmosphere). Ap-

parently the feedback among ice, wind, and ocean heat

transport in the EMomBM acts to destabilize the cold

solution somewhat. Paradoxically, this may actually in-

crease the likelihood of abrupt changes in the system

under variable forcing because smaller variations in the

heat budget are required to span the hysteresis loop.

Here we briefly explore the climatic implications of

the hysteresis loop in the EMomBM. The fi –S0 graphs

suggest that an external forcing that raises and lowers

the energy budget of the climate system has the po-

tential to generate asymmetric warming and cooling,

without driving the climate to snowball extremes. To

make this idea explicit, we integrate the EMomBM with

imposed time-dependent sinusoidal variations in Aout

(setting the global mean longwave cooling) while holding

S0 fixed.10

The time history of the forcing and of the response for

three different runs is shown in Fig. 5. We impose Aout

variations on the order of 10 W m22, which is roughly

equivalent to a threefold variation in CO2 concentration,

based on the classic radiative transfer calculations of

Manabe and Wetherald (1967), holding relative humidity

fixed. For these integrations we have set the ocean heat

capacity to Co 5 4 3 108 J m22 8C21, corresponding to an

ocean mixed layer depth of about 90 m. The time scale of

the forcing (2000 yr) is arbitrary but long compared to

the equilibration time of the system (roughly 10 yr).

We show in Fig. 5 that by making small changes in the

amplitude of Aout variations (61 W m22), we can gen-

erate very different climate variability in the EMomBM.

Each of the three runs is initialized from a warm state

and cools gradually in response to the increase in

longwave emission. In one case (dashed curve) the cli-

mate varies linearly with the forcing, with the ice ex-

panding and melting back gradually through three forc-

ing cycles. The maximum value of Aout (first reached

after 1000 yr) is not large enough in this case for fi to

reach the midlatitude zero curl line. A second case (solid

curve) does get cold enough to freeze over the entire

subpolar gyre, and fi consequently remains fixed at the

zero curl line while the ‘‘greenhouse warming’’ in-

creases (Aout decreases) until the system warms past the

melting threshold. The resulting climate variations have

a sawtooth shape illustrating a distinct asymmetry:

gradual cooling and abrupt warming. The third case

(dashed–dotted curve) has a slightly greater minimum

Aout value, such that the abrupt warming threshold is

never reached. In this case, the climate cools gradually

during the first cycle, and fi reaches the zero curl line

and never recovers. As a result, the global mean air

temperature is some 68C colder than the other two runs

at the warmest point in the cycle.

5. Conclusions

The main goal of this paper was to demonstrate the

existence of an additional stable equilibrium climate

10 Here we choose to vary Aout partly to explore a different

parameter sensitivity in the model, but we do so also because Aout

is a better analog to the effects of greenhouse gas concentration

than S0, since S0 projects both onto the global mean energy budget

and its pole-to-equator gradient.
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state in an extension of the well-known energy bal-

ance model. The new equilibrium state features a mid-

latitude ice edge and has no analog in the simple EBM.

It coexists with the warmer, small ice cap solution

and the very cold ‘‘snowball’’ solution found in the

simple EBM. The minimal new physics required to

support this new equilibrium are twofold: the ocean

heat transport must have some latitudinal structure with

a minimum in midlatitudes, and the sea ice must insu-

late the ocean from the atmosphere (which requires that

the ocean heat transport go to zero at the ice edge at

steady state).

We have described a new energy-momentum balance

model, at the heart of which is two new features. For

the ocean, we have considered wind-driven gyres in

Sverdrup balance whose meridional energy transport is

represented by a heat equation in which the diffusion

coefficient is set proportional to the square of the curl of

the wind stress. Thus, the meridional scales of the wind

forcing are imprinted on the ocean, and in particular,Ho

has a minimum within the midlatitude band of west-

erlies. We have modeled the atmosphere as a two-level

quasigeostrophic system in order to solve simultaneously

for the energy and angular momentum balance in the

simplest possible way. The surface stress generated by

the QG atmosphere is used to drive the ocean. The two

fluids are thus coupled together both thermodynamically

and mechanically. This model responds to an imposed

differential heating by fluxing heat poleward in the at-

mosphere while simultaneously generating a midlatitude

westerly wind band that drives subtropical and subpolar

ocean gyres, both of which also carry heat poleward (so

long as they are not frozen over).

Our results with the fixed-wind model indicate that

the mechanical coupling between atmosphere and ocean

in the EMomBM is not required to support the new

equilibrium state; heat diffusion with Ko varying in lati-

tude but fixed in time is sufficient for the new behavior.

However, we feel that the EMomBM is interesting in its

own right. It is one of the most compact expressions of

the simultaneous conservation of heat and angular

momentum in the climate system. With only a modest

increase in computation over the simplest EBM, we

solve for a quantity (wind stress) that is fundamental to

atmosphere–ocean coupling. This EMomBM may there-

fore help fill in a gap in our spectrum of climate models.

FIG. 5. A time-dependent case with sinusoidally varying forcing. (top) Three separate inte-

grations of the EMomBM are initialized from a warm, ice-free state and forced by sinusoidal

variations of the longwave cooling constant Aout over 2000-yr periods. The resulting (middle)

ice edge and (bottom) global mean atmospheric temperature. The three runs each produce very

different climate variations as a result of small differences in the amplitude of the thermal

forcing. Parameters are as in Fig. 4 (with Bout 5 1.7 W m22 8C21), but with Co set to a more

realistic value of 4 3 108 J m22 8C21, giving an adjustment time of about 10 yr for the system

(short compared to the time scale of the forcing).
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The specific arguments laid out in section 3 linkingH
o

and t are somewhat tenuous; we do not claim that this is

the most useful coarse-grained description of a wind-

driven ocean. The larger point seems to be that the scales

of motion in the ocean, unlike the atmosphere, are such

that the heat transport mechanisms may operate over

subhemispheric scales, and this can have profound im-

plications on the equilibrium position of the ice edge.

We noted in section 3 that, even ignoring the existence

of multiple equilibria, the sensitivity of the ice edge to

changes in the heat budget varies considerably depend-

ing on the proximity of the ice edge to a region of min-

imum ocean heat transport efficiency (i.e., minimum Ko).

The maintenance of the ice edge in a region of high Ko

therefore requires a rather delicate balance of forcing;

we expect that in a noisy, eddying climate system the ice

edge would spend much more time near minima in Ko.

Finally, we emphasize that the hysteresis loop in our

new model, with its abrupt warmings and gradual cool-

ings, is generated in a coupled atmosphere–ocean–ice

system with a purely wind-driven ocean; we do not con-

sider any ocean overturning or thermohaline effects. This

suggests a need for a more careful consideration of the

role of winds in the dynamics of past climate changes—in

particular, the abrupt warmings known to have occurred

repeatedly throughout the last ice age.
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APPENDIX

Derivation of the Atmospheric Model

The model is based on the dry two-level QGPV

equations first derived on a b plane by Phillips (1956).

The extension of QG theory to spherical geometry is

discussed in detail by Mak (1991). Here we adopt the

form used by Marshall and Molteni (1993), retaining the

full latitude dependence of the Coriolis parameter f 5

2V sinf in the horizontal advection terms but using a

constant value f0 in the stretching term and the thermal

wind equation. Let QGPV be defined in pressure co-

ordinates as

q 5 =2c 1 f 1 f 2
0

›

›p
s�1 ›c

›p

� �
, (A1)

which evolves according to

›

›t
1 v

c
� $

� �
q 5 g

›

›p
(k̂ � $ 3 t)� f

0

›

›p

RJ

sp

� �
, (A2)

where c is the geostrophic streamfunction, vc is the

geostrophic advecting velocity, s is the static stability

(assumed to a function of pressure only), t is a me-

chanical stress, and J is a diabatic heating rate in degrees

Celsius per second.

We now take a zonal average of (A2) (resulting in the

eddy PV flux y9q9 appearing as a forcing on the zonal

mean) and divide the atmosphere into two equal mass

layers. We assume that the bottom boundary at p0 5

1000 hPa is the only significant source of mechanical

stress on the atmosphere, which we will express in terms

of the equal and opposite stress t of the atmosphere on

the surface. The diabatic heating is applied at the in-

terface between the layers (500 hPa). Discretizing the

zonal mean of (A2) by a vertical finite difference yields

the following pair of equations for the zonal mean PV in

the upper and lower layers:

›

›t
q

u
5 �D

y
(y9

u
q9

u
)� R

C
a
L2

df
0

_Q, and (A3a)

›

›t
q

l
5 �D

y
(y9

l
q9

l
) 1

R

C
a
L2

df
0

_Q 1
2g

p
0

D
y
(t), (A3b)

where _Q 5 CaJ is the column-integrated diabatic heat-

ing in watts per square meter and Dy is the meridional

divergence operator as used throughout this paper. We

have also expressed the stratification in terms of a de-

formation radius Ld 5 Dpf 0
21s1/2, which is held constant.

The flow is calculated at each time step by inversion of

the zonal mean PV gradients (14), subject to boundary

conditions uu 5 ul 5 0 at f 5 08, 908 (an equatorial wall).

The system is closed by expressing PV fluxes, heating,

and stress in terms of the winds.

The global momentum conservation constraint can be

expressed on the hemisphere as

ðp/2

0

(y9
u
q9

u
1 y9

l
q9

l
) cosf df 5 0, (A4)

implying a steady-state balance

ðp/2

0

t cosf df 5 0. (A5)

Following Green (1970) and White (1977), we close the

eddy flux terms in the PV equation by setting them to be

down the mean PV gradients, according to (12). The

values of the diffusion coefficients Ku, Kl are thus con-

strained by (A4). More details can be found in Marshall
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(1981) for a two-layer ocean channel model with pa-

rameterized geostrophic eddies. We use Marshall’s as-

sumption of a separable form for the coefficients:

K
i
5 k

i

ju
d
j

ju
d
j
max

, for i 5 u, l, (A6)

where ku, kl are constants. Thus, eddy fluxes are con-

centrated in the region of maximum baroclinicity in

midlatitudes and go to zero at the equator and pole.

Substitution of (A6) into the integral constraint (A4)

leads to the condition

k
u

ðp/2

0

›q
u

›y
ju

d
j cosf df 5 �k

l

ðp/2

0

›q
l

›y
ju

d
j cosf df.

(A7)

We fix kl 5 6 3 106 m2 s21 and compute ku from (A7) at

each time step. This ensures that the parameterized

eddies do not exert a net torque but only redistribute

momentum.

Plugging (12) into (A3), the PV equations take the

form of diffusion equations (13). These equations are

coupled together through the heating term and the dy-

namical constraint (A7), which sets the relative magni-

tudes of the diffusivities.

The bottom stress is modeled as a linear drag acting

on the wind extrapolated down to the surface, following

Phillips (1956):

t 5 �
3

2
u

l
� 1

2
u

u

� �
, (A8)

where � is a constant and p0(g�)21 defines a frictional

damping time.

The thermal wind relation for this model can be written

›T
a

›y
5 �

f
0

R
u

d
. (A9)

The temperature Ta is dynamically related to the tilt of

the interface between the layers and is thus best thought

of as a measure of the midtropospheric temperature,

just as in the AO-EBM introduced in section 2. How-

ever, the dynamics depend only on its slope and not its

magnitude, and all the heating terms are linear, so we

can continue to express Ta as an equivalent surface air

temperature. The heating _Q is calculated from Ta and Ts

as described in the text.
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