
IX. PROCESSING AND TRANSMISSION OF INFORMATION

D. N. Arden
E. Arthurs
J. B. Dennis
M. Eden
P. Elias
R. M. Fano
R. G. Gallager
E. M. Hofstetter
D. A. Huffman
W. F. Schreiber
C. E. Shannon

Prof. J. M. Wozencraft
S. Asano
G. Cheadle
J. E. Cunningham
P. M. Ebert
H. A. Ernst
E. F. Ferretti
T. J. Goblick, Jr.
U. F. Gronemann
F. C. Hennie III

S. Huang
Jelinek
Kailath
Kleinrock
H. Loomis, Jr.
L. Massey
W. Pan
L. Reich
G. Roberts
J. Tretiak
Ziv

A. PICTURE PROCESSING RESEARCH

We have now made computer tapes from original pictures and played the tapes back

for photography. Operations on the IBM 709 computer will begin during the next

reporting period.

An example of a 1024 X 1024 element picture is shown in Fig. IX-1.

Fig. IX-1.

J. E. Cunningham, U. F. Gronemann, T. S. Huang,

J. W. Pan, O. J. Tretiak, W. F. Schreiber
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B. NEW SYSTEMATIC DECODING FOR MEMORYLESS CHANNELS

In this report a sequential decoding scheme for random convolutional codes, which

is to be used for memoryless channels, is described. The average number of compu-

tations does not grow exponentially with n; it is upper-bounded by a quantity proportional
2

to n , for all rates below some cutoff rate R (n is the block length).

When this decoding scheme is averaged over a suitably defined ensemble of code

words it has an average probability of error with an upper bound whose logarithm is

-nE(R). E(R) is dependent on the data rate. (E(R) > 0 for rates below channel capacity.)

The decoding scheme is different from other effective decoding schemes such as sequen-
1 2

tial decoding and low-density parity-check codes. 2

The lower bound on R comp of the systematic decoding scheme that is presented in

this report is the same as the Rcomp of sequential decoding for asymmetric channels.

However, in the case of sequential decoding, R is valid only for the incorrectcomp
subset of code words. The existence of Rcomp for the correct subset has not yet been

established.

Thus, the systematic decoding scheme yields a better bound on the average number

of computations for asymmetric channels. (This is not the case when the channel is sym-

metric, since the modified sequential decoding scheme after Gallager 3 may be used.)

S* * Fig. IX-2. A convolutional tree code.

A convolutional tree code may be viewed topologically as shown in Fig. IX-2. The

words are all the directed paths from the input node to the output nodes of the tree (there

are no closed paths). From all nontrivial intermediate nodes there emerge f directed

links, one for each of I nodes. Let the number of input symbols per code word be n.

Let the number of input symbols per link be d. Then the number of links per word is

m = n/d (m is the number of information digits per word). In Fig. IX-2, n = 6; m = 2;

d= 3; f = 2.

Reiffen 4 has shown that the convolutional codes may be generated sequentially.

1. The Decoding Procedure

The decoding procedure consists of the following successive operations:

Step 1: The a posteriori probability of each one of the I links of length d that

120



(IX. PROCESSING AND TRANSMISSION OF INFORMATION)

emerge from the input node to the first k nodes in the tree is computed. The one link

that yields the largest a posteriori probability is chosen to represent the corresponding

part of the transmitted code word. This detected link connects the input node with one

of the f nodes of the next set of nodes (set I in Fig. IX-3).

The same procedure is then repeated with the detected node of set I as a starting

point. Thus, the a posteriori probability of each one of the f links emerging from the

d * Fig. IX-3. The decoding procedure of step 1.

d

I I

IN I I T

node that was previously detected, is now computed, and a decision is made. This pro-

cedure is then repeated again and again until termination (i. e., until the detected path

reaches one of the output nodes). A metric of the form D(u, v) = In P(v/u) is then com-
L P(v)

puted. Here, P(v/u) is the a posteriori probability of the complete detected word, u,

and P(v) is the probability of the output symbol v.

If D(u, v) is larger than some preset threshold Do , a final decision is made and the

detection of the first information digit is completed. If D(u, v) < D o , the computation

procedure is then to go to step 2.
2

Step 2: The a posteriori probability of each one of the 1 links of length 2d that

emerge from the input node to set II (that consist of f2 nodes) is computed (Fig. IX-4).

The one link that yields the largest a posteriori probability is chosen to represent the

corresponding part of the transmitted code word.

The same procedure is then repeated with the detected node of set I as a starting

point, and so on. This procedure is continued until termination (i. e., until the detected

path reaches one of the output nodes).
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D(u, v) is then computed for the detected path and compared with the threshold D .
o

If D(u, v) > Do, a final decision is made with respect to the first information digit. If

Fig. IX-4. The decoding procedure of step 2.
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D(u, v) < D O the computation procedure is then to go to step 3.

Step 3: This step is similar to step 2, except that the computation length in this

case is 3d, and the number of links involved at each stage is . If no termination

occurs at step 3, the computation procedure then reaches step 4, and so on. Following

the detection of the first information digit, the whole procedure is repeated for the next

digit, and so forth.

a. The Average Number of Computations per Information Digit

The number of computations that are involved in step 1 is equal to m . . The

number of computations in step 2 is equal to (m. 2). The number of computations in

step 3 is equal to (m.3 ).

In general, the number of computations in step k is

Nk = mfk

Let Ck be the condition that no termination occur at step k. Step k will be used

only if there were no terminations at all in the previous k - 1 steps. Thus the proba-

bility of step k being used is

P(k) = Pr(C1 ,C 2' C2, 3 C4. Ck-)
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The average number of computations is given by

N = N 1P(1 ) + N 2 P(2) + ... + NkP(k) + ... NmP(m)

m m

= NkP(k) = I mfkP(k). (2)

k=l k= 1

b. An Upper Bound on the Average Number of Computations

P(k) may be bounded by

P(k) = Pr(C1, C2 C3 C4 ' Ck-l)

< Pr(Ck- 1). (3)

Thus

m

N= N Pr(Ck-1) = (m-k+l) Ik r(Ck-l1) (4)

k= 1 k= 1

Now let uk be the code word detected at step k, and let u be the transmitted code word.

Then

Pr(Ckl) = Pr(D(uk, v).< Do)

= Pr(D(uk' v) Do;uk=u) + Pr(D(uk, v) 2< Do;Uku)

= Pr(D(u, v) < Do;uk=u) +Pr(D(uk, v) -< Do;Uk#u)

Thus

Pr(Ckl) - Pr[D(u,v) <Do] + Pr[uku] (5)

The threshold D is set so as to make
0

Pr[D(u, v)-<DO] < e
- (R)n, (6)

where -E(R) is a function of the rate R.

The number of detected links needed to construct uk is, as we have shown, (m-k+1).

Now, u is equal to uk only if all of the (m-k+1) links of uk are equal to the corresponding

links of u.
k-1

Let e. be the condition that the a posteriori probability of one of the (f-l)k links
1 th th

emerging from the i node of u and not including the (i+l) node of u is greater or

equal to that of the corresponding link of u. Then
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Pr(Uk=U) = Pr(not el; not e 2 ; not e 3; ... ; not e i ... ; not em-k+1)

Pr(uk*u) = 1 - P r(uk=u) = Pr U
L i=1

The probability of the union of events is upper-bounded by the sum of the probabil-

ities of the individual events. Thus

Pr(uk*u) -<

m-k+ 1

z Pr(ei)

The rate per symbol is defined as

R In M 1 In m In /d In 1n n n d

where M is the number of code words of length n. Thus

1
R = - In Id

Fano has shown that for a given rate R and a given word length n the probability

of error is bounded by

P(e) < 2 e opt(R). n(9)

(8)

E(R) , is the optimum exponent

the rate R.

of the average probability of error and is a function of

Now, in the case of Pr(ei), the number of the involved links is (-1) jk-1

and the length of each link is kd; thus

1 k 1
Rk < -k Ink =- Ink = R

Therefore

-E opt(R)kd
Pr(ei) - 2e opt

Thus, by Eqs. 7 and 10,

-E (R)kd

P(uk u) < 2m e opt

Therefore, by Eqs. 5, 6, and 11,

Pr(Ck) < e - (R)n + 2m e opt
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Pr(Ck) < 2m eE(R)kd

because, as we shall show, by Eq. 21, E(R) -< E opt(R).
opt

Pr(Ck - 1 ) <
2 me - E (R)( k - 1 )d

The average number of computations, by Eqs. 4 and 14, is therefore bounded by

m

N < 2m 2 p ke-E(R)(k-l)d

k=l

Now,

R = 1 (k-1)d
(k-l) d

Thus ek-1 = e(k-1)dR. Therefore

m

2m 21 e(k-1)d[R-E(R)].

k=

Thus

(14)

(15)

(16)

Let R
comp

be the solution of

R = E(R)

Then, for all rates below Rcomp, R - E(R) < 0, and

N 2m2 1 (18)

1_ e[R-E(R)]d .

The average amount of computations is therefore an algebraic function of m for all

rates below R
comp

c. Evaluation of R
comp

Fano has shown that

and

E op t (R ) = E op t ( 0 ) - R;
opt opt

opt opt

for R < Ritcrit

for R .< R < C.crit

Let us set D o so as to make E (R) of Eq. 6 equal to

E(R) = Eopt(0) - Rcomp.
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Thus, by Eqs. 12 and 21,

R =E (O)-Rcomp opt comp

or

R E (0). (22)
comp 2 opt

Also,

E(R) =E (O)-R - E (0). (23)
opt comp 2 opt

Thus

1
N < 2m 2

S- exp d R- Eopt(0)

E opt(0) is the zero-rate exponent of the upper bound on the average probability of error

Pe of the same channel, when the optimal decoding scheme is used. 5

2. The Average Probability of Error

Let u be the transmitted code word. Let v be the corresponding channel output

vector. Let u' be one of the M(t-1) code words which starts with an information letter

other than that of u. The probability of error is bounded by

Pe < Pr(D(u, v) Do) + M(-)Pr(D(u' , v)>Do;D(u, v) >D 0 ) (24)

Thus

P e Pr(D(u,v)<Do) + e n R Pr(D(u',v) >D ;D(u,v)>D ) (25)

or

Pe < P (D(u,v)Do) + en R Pr(D(u' , v) >D;D(u, v) > D ) (26)

Let

P(v/u)
D(u, v) = In (v)P(v)

P(v/u')
D(u', v) = In (v)

where

n

P(v/u) = - P(yi/xi)
i=l 1
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and

n
P(v) = -[ P(Yi )

i=l

P(Yi/xi) is the probability that the output is yi, given that the input symbol x i was

transmitted.

P(xi ) P(Yi/Xi) = P(yi)

X.

Thus

D(u, v)=

i=l

where

di(xi, yi) = P(yi/xi )

n P(yi)

Thus by the use of the Chernoff Bound,

Pr(D(u, v) < Do) < e n (G ( s )-s '(s));

Pr(D(u', v) -< D )-< e n ( y(t)-ty'(t)).;

s < 0

t 0

where

and

(s) = P(x) P(y/x) esd(x, y)

xy

y(t) = P(x) P(x') P(y/x) e s d( x 'Iy)

xxy

p(s) = P(x) P(y/x) l + s p(y)-s

xy

y(t) = P(x') P(y)l-t P(y/x')t

x'y

= P(x) P(y)l-t P(y/x)t
xy
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Also,

D

'(s) = y'(t) no

If we let t = 1 + s, it can be shown that y'(t) = 9'(t) (also y(t) = (s)). Thus

P (D(u, v) Do) - en((s) - sF'(s))

P (D(u', v) aD ) < e n ( ( s) - + s ) [ '( s ) ) '

where

D
1(s) -

n

f(s) = ) P(x) P(y/x)1 + s p(y)-.

xy

Thus

P < en(4(s)-s '(s))+ en(R+[(s)-(l+s)'(s))
e

Now, by Eqs. 6 and 23, D o is set so as to get

Pr(D(u, v) < D )< en(4(s )- s - '(s)) = -n(R),

where

E(R) = Eopt();

and, as shown by Fano,

for all R < R
comp

= -n xP(x) P(Y/x) 2

y x

We shall now prove that, once D is set so as to make -i(s) +

(28a)

(28b)

s'(s) = E(R) 1 Eopt(0),
SC(S) :~E(R)

as in Eq. 28, then

1
-l(s) + (i+s) ['(s) > 2 E opt(0).

PROOF: The minimum of {(2s+l)p'(s)-2i(s)} occurs at that s for which

a s [(2s+1) '(s)-2z(s)] = 0

(2s+l) '"(s ) + 2F'(s) - 2l'(s) = 0

1
Thus s = - 1

2

(29)
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Also,

[(1+2s)~(s)-2[(s)] s=-1/2 0 2 , -(- 0,

since i" l(-) is the variance (see Fano5 )

a minimum point. Thus

[(2s+1)i'(s)-2[i(s) > -24 -.

of a random variable.
1 .Thus s = -. is indeed

(30)

Now

- = n P (x) (y)/2 P(y/x)1/2

xy

and therefore

4 1 = In P(x) P(y)1
2

xy

where f(y) = P(x) P(y/x) 1/ 2.
-J

/2 p(y/x)l/2

By the Schwarz inequality,

{ f(y) P(y)1/2 2

y
< f(y )2 1p(y )

Y Y

Thus

y

since P(y) = 1.

P(y) 2 7 P(y)

y

2

y
Y

Therefore, by Eq. 28b,

2 (- In P(x)

y x

P(y/x)1/2 =-E opt(0).opt

Thus -2z(-1) > Eopt(O), and therefore, by Eq. 30,

129
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-[ E(s)-s '(s)i'(s)+(s) +s) (s)] > Eopt(0). (31)

But, by Eq. 28,

1
-E(R) = t(s) - s4'(s) 2 Eopt(0).

Therefore, by Eq. 31,

4(s) - (l+s) 4'(s) > -- Eopt(0) Q.E.D. (32)

Thus, by Eqs. 27, 28, and 32,

P < e opt(0)n + en - Eopt(0)
e

n E (0) n(R-R p )

P 2 e n(R 2 Eopt = n(R-R comp
e

n(R-Rcomp
P <2e comp

e

If Do is set so as to minimize the probability of error by making R+ [(s) - (1+s)['(s) =

L(s)- s '(s) = E(R), Shannon 7 has shown that

-P < 2 -nE(R)P <2e
e

where E(R) > 0 for R < C, and E(0) >Z E (0). However, R is then lower-bounded
opt comp

1 1
by R > -E(0) > E (0).comp -2 E() >4 Ep t(O).
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