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ABSTRACT

A conjecture by Stein [1], proposing a probabilistic limit result

for the shortest possible route of a bus that has to transfer passengers

between random locations in some region of the plane, is refuted.- The

existence of such limit result remains an open question.

1. Introduction

Let ol, d, 02, d2, 03, d3, ... be a sequence of points in a bounded

planar region R. A problem related to the scheduling of a Dial-A-Ride

transportation system is concerned with finding the shortest route for a

bus that has to transfer passengers from o.i to di for all i n. Let Y

be the length of such shortest route when the capacity of the bus is

unlimited. Let Ln be the length of the shortest path (i.e. travelling
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salesman tour) through the first n points of the sequence ol, d, 02, d2,

03,.

Considering the infinite product of Lebesgue measure on the plane or

alternatively a probability space on which ol, d, 02, d2, 03, ... is a

sequence of independent uniformly distributed random points in R, it has

been shown by Beardwood Halton and Hammerslev (BHH) [2] that there exists a

constant b such that:

L
lim n = b a.e. (almost everywhere) (1)
new 

where a is the area of the region R, and where b has been estimated to be

approximately 0.75.

Noting that Yn > L2n it follows as has already been observed in [1]

that:

y
lim inf n > 4b a.e. (2)

n~o 

In order to achieve an upper limit result, Stein [1] constructs the

following heuristic "two passage" algorithm:

Algorithm A

Partition R into m subregions r, r2, ..., rm each of area a/m. On

the "first passage" through the regions, pick up in each subregion r all

passengers waiting there and deliver all passengers with destinations in

r.i who were picked up in rl, r2, ..., ri_. Then on "second passage"

through rl, r2, ..., rm, deliver the remaining passengers. On each
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passage through a subregion, the bus uses the shortest path through the

points visited at that passage.

Using algorithm A and the BHH result (1), Stein shows that

Y
lim sup -n - b JV a.e. (3)

n-o 3

and demonstrates that the routes obtained by this algorithm are

asymptotically optimal, in a class of so called "simple tours". He

further conjectures that they are actually asymptotically optimal in the

4
class of all possible routes and that bV b/ is actually the limit

of Y /vi (a.e.). In the next section we refute this conjecture by

slightly improving the algorithm described above and demonstrating

that:

lim sup T < 4 b a a.e. (4)
n-*m

One may still ask if Y /n converges at all. This in contrast to (1)

remains an unsettled issue.

2. Proof of (4)

Let 0. be the set of origins in r.. Let D be the set of destinations

in ri for passengers with origins in rl, r2, ..., ri (define D1 = 0)

and let D be the rest of the destinations in r.. According to algorithm
i i

A above, the points in 0. U D are visited during the first passage

through ri, while the points in D are visited on the second passage.
1

It seems worthwhile, however, within the 2-passage partitioning

framework of algorithm A, to:
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(a) Delay some of the deliveries to destinations in D to the
1

second passage through ri (for i = 2, 3, ..., m).

(b) Delay to the second passage some of the pickups of passengers

in ri whose delivery to destinations in ri+l, ri+2, ..., rm is delayed

according to (a) above.

It remains, however, to show that such improvements are

asymptotically significant in the sense that (3) is not tight. We shall

bound from below the reduction of cost possible through (a) and (b)

above. To do this we consider only a part of the worthwhile delivery

delays.

Let Db be the set of destinations in D chosen according to the
1 1

following sequential procedure:

Scan the destinations in D according to their order.1 For each

scanned p E D2, examine the circular neighborhood of radius h-/n
1'

(h > 0) around it. If there are in the circle destinations from Di
1

which have not been selected earlier, then select the one which is

closest to p and include it in D2.

Consider now:

Algorithm B

Same as algorithm A except that delay the delivery of points in D2

for i = 2, 3, ..., m from first passage to second passage.

1That is, the order induced by their order in the sequence ol, dl,
02, d2, .... Also any order which is independent of their locations will
do.

2The reason for that special way of selecting only one at a time is
to avoid statistical dependence between the locations of the points in

1 1
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Note that according to the construction of D2 the points in D1\D2
1' 1 1

(the destinations visited on first passage through ri) are independently

and identically distributed in r. And assuming that n >> m, such that

hJi/n is negligible compared to a/m and that the maximal length of the

boundary of a subregion is (a7m ), we may neglect the asymptotically

diminishing "boundary effects" and say that the points in D\D2 are

distributed uniformly over r..

We may try now to establish a lower bound to the reduction in cost

in comparison to algorithm A.

We first estimate the asymptotic behavior of IDl, the number of

delayed deliveries. Consider then again the sequential construction of

D2, stopped at some instant, when the number of D destinations which

have not yet been selected is j [y m] for some non-negative y. The

probability that a currently scanned point of D will have a yet
1

unselected point of D in its h7n neighborhood (neglecting the
1

inaccuracy due to the event of vanishingly small probability, that the

scanned D point falls within less than ha7n from the boundary of r) is:

71h a n
pn(j) = 1 - (1 /an)j = 1 - (1- h2) m n/m

n

a/m n

Note that as n t , (1 - m nh2)m t e (where denotes increasing

monotone convergence). Consequently for any > 0 there exists N(&)

such that for all n N(£)

-7th 2 J J- 
n/m < -h 2 n/il ( j) 1 (e -
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2
Let x be the number of D. points that have been scanned so far.m 1

Now suppose the selection process is continued, scanning the next3 [6x-m]

points of D. Let Aj be the number of points that get selected, then
1

Aj [6x- n] and thus 6y j < 6x. In each stage the probability ofm n/m 

actually selecting a point from D lies in the interval
1

[1 - e, h2(y , 1 - (e h - )Y]. It follows (omitting some technicali-

ties) that:

-nh2(y-6x) < lim inf < lira sup y < 1 - e-h 2y a.e.
=~ 6x = 6x =
n-om nxm

It follows that in probability 1, as n X y and x tend to satisfy the

differential equation:

d =-(1 - e-nh2y)
dx

ID'
y(0) (= lim n

m n/m

Let z(x) = y(O) - y(x). Then lim(1 _ m ) a.e. (note that
n- n/m m

JD21ji i- 1
lim n/ = 1 a.e.) and:

n/rn m

dz ) h2 -(h2(i ( - z) 7th2( i - - z)dz m > m
dx-1- e 1+ 7h2(i- z 1 + nh 2 '

1 + h2( - z)m

3If there happen to be less than [6x,-] unscanned points, then scan

only the existing unscanned points.
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where z(O) = 0. Consequently

i 1
z(1 - >

. - 1 i - 1
nth2( i - 1 - z( )) i-

m m (1- 1
1~+h2 (1 )m ,

or explicitly:

i z(1 i - 1h i 7th 2 1
lim n/h m (1limn/m =zl m ) > 1 + 2h 2 m n-*w /mm 

i- )
m a.e. .

We evaluate now a lower bound to the total decrease in route lengths

within the subregion r.. Use the abbreviations: = z(1 i - 1), a =1 m

i The increase of length of second passage through r.m 1
is at most

ID2{ · 2h = 4g m- 2h( n) - a m 1 ·

The decrease of length of first passage through r is asymptotically

The decrease of length of first passage through r is asymptotically

(using the BHH result (1)):

b m(1 + )- b (1 + a ) m= m n a nm m in m m 41 + a - C)

- m b 4 > 1 b
m ->m 22 '

The total decrease of route length in ri is,therefore,at least:

1 b 2h)> ( - 2 h)l+ h2 1 i 1 
in 2J2 - 2h)C 2 nakJ7 - 2h)n i m

and thus the total decrease of route length in the whole region is at

least:
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b nth 2 1 m i - i- 1i
m2(1 -

Nw( 2h)1 + 2h2m i m m

Now for m we have:

1 m i - 1
i= m(1

m i=l m
i - 1) -+ fx(l - x)dx = 1
m 06 '

Hence the total decrease in cost is asymptotically at least

1 b 7h 2

6(2-- 2h)1 + 2nh2 '4n

which for h = b/6V2 (a choice approximately maximizing this expression)

is equal to

nb3l y~b na
722(1 + b

I.e., instead of (3) we have almost everywhere

Yn < 4 bb 3lim sup n - b Tb
7-, Tn=3 722(1 + n~~~cr, ~~~36

= 4J b(1 -
3

Using the estimate b --- 0.75 we ha

nb2 /36
192(1 + Tnb2/36) =

(nb2/36) )j < 4 2 b 

192(1 + Tb) 36

1000024 = 0.00024% ,
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which is a very slight improvement to the previous bound, an improvement

too slight to justify the complication of algorithm A, but which none-

theless refutes its conjectured optimality and the resulting assertion

regarding the limit of Y //i. Note that while further improvements are

certain, we havelfor the sake of analytical tractability, pursued only

the improvement implied by algorithm B.
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