
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-018 April 9, 2010

Kongming: A Generative Planner for
Hybrid Systems with Temporally
Extended Goals
Hui X. Li

Kongming: A Generative Planner for Hybrid

Systems with Temporally Extended Goals

by

Hui X. Li

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

c© Massachusetts Institute of Technology 2010. All rights reserved.

Author .
Hui X. Li

April 9, 2010

Certified by. .
Prof. Brian Williams

Thesis Supervisor

Certified by. .
Dr. Andreas Hofmann

Thesis Committee Member

Certified by. .
Prof. Patrick Winston

Thesis Committee Member

Certified by. .
Prof. Rodney Brooks

Thesis Committee Member

Accepted by .
Prof. Eytan Modiano

Chairman, Department Committee on Graduate Students

2

Kongming: A Generative Planner for Hybrid Systems with

Temporally Extended Goals

by

Hui X. Li

Thesis supervisor: Brian Williams

Abstract

Most unmanned missions in space and undersea are commanded by a “script” that
specifies a sequence of discrete commands and continuous actions. Currently such
scripts are mostly hand-generated by human operators. This introduces inefficiency,
puts a significant cognitive burden on the engineers, and prevents re-planning in
response to environment disturbances or plan execution failure. For discrete systems,
the field of autonomy has elevated the level of commanding by developing goal-directed
systems, to which human operators specify a series of temporally extended goals to
be accomplished, and the goal-directed systems automatically output the correct,
executable command sequences. Increasingly, the control of autonomous systems
involves performing actions with a mix of discrete and continuous effects. For example,
a typical autonomous underwater vehicle (AUV) mission involves discrete actions, like
get GPS and take sample, and continuous actions, like descend and ascend, which
are influenced by the dynamical model of the vehicle. A hybrid planner generates a
sequence of discrete and continuous actions that achieve the mission goals.

In this thesis, I present a novel approach to solve the generative planning problem
for temporally extended goals for hybrid systems, involving both continuous and
discrete actions. The planner, Kongming1, incorporates two innovations. First, it
employs a compact representation of all hybrid plans, called a Hybrid Flow Graph,
which combines the strengths of a Planning Graph for discrete actions and Flow
Tubes for continuous actions. Second, it engages novel reformulation schemes to
handle temporally flexible actions and temporally extended goals. I have successfully
demonstrated controlling an AUV in the Atlantic ocean using mission scripts solely
generated by Kongming. I have also empirically evaluated Kongming on various
real-world scenarios in the underwater domain and the air vehicle domain, and found
it successfully and efficiently generates valid and optimal plans.

1Kongming is the courtesy name of the genius strategist of the Three Kingdoms period in ancient
China.

3

4

献给

我的姥姥和父母

5

6

Acknowledgments

I would like to express my gratitude to all who have supported me in completion of

this thesis.

First, I am grateful to my advisor, Brian Williams, for his guidance and encour-

agement on my research, for his working so hard with me to make the thesis deadline,

and for his help and support when I could not enter the US for over a year.

I would like to thank my committee members and readers, Andreas Hofmann,

Hans Thomas, Jim Bellingham, Maria Fox, Patrick Winston, Paul Robertson, and

Rodney Brooks, for giving me insightful feedback on my thesis and defense. Especially

I want to thank Andreas and Hans for the valuable discussions we had on my thesis,

Maria for spending time going into technical depth of my work and giving me detailed

feedback, and Patrick for giving me great advice on my defense presentation.

I would like to thank Justin Eskesen from the AUV Lab at MIT Sea Grant for

providing Odyssey IV and helping us demonstrate Kongming on it. I had a great time

swimming with the cool robot. I would like to thank Scott Smith and Ron Provine

from Boeing for their help and support over these years.

I would like to thank my labmates in MERS for their help and support. Especially

I want to thank Hiro, Patrick, Henri, David, Shannon and Alborz for the insightful

discussions we had on my research. I would also like to thank everyone who came to

my defense practices. The feedback was very helpful.

I would not have made it without the support and love from my parents and

friends. They helped me go through the extremely tough moments in my life, and

helped me grow stronger. I am truly grateful!

My research was funded by the Boeing Company under contract MIT-BA-GTA-1.

7

8

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Problem Statement . 16

1.2.1 Input . 16

1.2.2 Output . 18

1.3 Challenges . 21

1.3.1 Complex Plan Space . 21

1.3.2 Temporal Constraints and Flexibility 22

1.4 Approach and Innovations . 22

1.4.1 Hybrid Flow Graph . 23

1.4.2 Reformulations . 30

1.5 Contributions . 32

1.6 Thesis Outline . 32

2 Related Work 35

2.1 Problem Representation Language . 35

2.2 Planning with Continuous Change . 39

2.3 Planning for Temporally Extended Goals 41

2.4 Flow Tubes . 42

2.5 Planning Graphs . 44

2.6 Blackbox . 46

9

3 Problem Statement 49

3.1 Problem Statement for KQSP . 51

3.1.1 Input: Variables . 52

3.1.2 Input: Initial Conditions . 53

3.1.3 Input: QSP . 53

3.1.4 Input: Hybrid Durative Action Types 58

3.1.5 Input: External Constraint . 62

3.1.6 Input: Objective Function . 63

3.1.7 Output: Optimal Hybrid Plan 64

3.2 Problem Statement for KDA . 65

3.2.1 Input: Goal Conditions . 66

3.2.2 Output: Optimal Hybrid Plan 66

3.3 Problem Statement for KAA . 68

3.3.1 Input: Hybrid Atomic Action Types 69

3.3.2 Output: Optimal Hybrid Plan 71

4 Plan Representation for KAA 73

4.1 Flow Tube Representation of Actions 75

4.1.1 Flow Tube Definition . 78

4.1.2 Properties . 82

4.1.3 Flow Tube Approximation . 83

4.1.4 Related Work . 85

4.2 Hybrid Flow Graph . 87

4.2.1 Planning Graph . 87

4.2.2 Hybrid Flow Graph: Fact Levels 89

4.2.3 Hybrid Flow Graph: Action Levels 91

4.3 Hybrid Flow Graph Construction . 95

4.3.1 Mutual Exclusion . 95

4.3.2 Definition and Properties of A Hybrid Flow Graph 102

4.3.3 Defining Contained . 105

10

4.3.4 Graph Expansion Algorithm 107

4.3.5 Level Off . 113

5 Planning Algorithm for KAA 115

5.1 Blackbox . 116

5.2 KAA Algorithm Architecture . 118

5.3 KAA Constraint Encoding . 121

5.3.1 Mixed Logical Quadratic Program 121

5.3.2 Encoding Rules . 122

6 KDA: Planning with Durative Actions 131

6.1 LPGP . 132

6.2 KDA . 134

6.2.1 Input & Output . 134

6.2.2 Reformulation . 135

6.2.3 KDA-specific Designs in KAA 140

6.2.4 Reformulation Correctness . 141

6.2.5 Output Conversion . 142

7 KQSP: Planning for A Qualitative State Plan 145

7.1 Input & Output . 146

7.2 Reformulation . 146

7.3 KQSP-specific Designs in KAA . 150

7.4 Reformulation Correctness . 154

7.5 Output Conversion . 155

8 Empirical Evaluation 157

8.1 Demonstration on An AUV . 157

8.2 Experimental Results . 165

8.2.1 Benefit of Hybrid Flow Graph Compared with Direct MLQP

Encoding . 165

8.2.2 Scaling in ∆t . 172

11

8.2.3 Scaling in The Number of Action Types 173

9 Conclusion 177

9.1 Summary . 177

9.2 Future Work . 178

9.2.1 Responding to Disturbances and Uncertainty 178

9.2.2 Heuristic Forward Search . 180

9.2.3 Explanation for Plan Failure 181

9.3 Contributions . 182

A 195

A.1 Mission Script for Test 1 . 195

A.2 Mission Script for Test 2 . 205

B 223

B.1 Underwater Scenario 1 . 223

B.2 Underwater Scenario 2 . 224

B.3 Underwater Scenario 3 . 225

B.4 Fire-fighting Scenario 1 . 226

B.5 Fire-fighting Scenario 2 . 227

12

Chapter 1

Introduction

Contents

1.1 Motivation . 13

1.2 Problem Statement . 16

1.2.1 Input . 16

1.2.2 Output . 18

1.3 Challenges . 21

1.3.1 Complex Plan Space . 21

1.3.2 Temporal Constraints and Flexibility 22

1.4 Approach and Innovations 22

1.4.1 Hybrid Flow Graph . 23

1.4.2 Reformulations . 30

1.5 Contributions . 32

1.6 Thesis Outline . 32

1.1 Motivation

Most unmanned missions in space and undersea are commanded by a “script” that

specifies a sequence of discrete commands and continuous actions. Currently such

13

scripts are mostly hand-generated by human operators. For example, a large number

of undersea missions for ocean observing are conducted by oceanographic research

institutes, such as Monterey Bay Aquarium Research Institute (MBARI) [Ins], MIT

Sea Grant [auv] and Woods Hole Oceanographic Institution (WHOI) [who]. At

MBARI, marine scientists use autonomous underwater vehicles (AUVs) as one means

to survey regions of the ocean, or map the seafloor, for example, in the Monterey

Canyon. The missions are commanded by mission scripts consisting of pre-defined

action sequences, specified by engineers. From conversations with MBARI engineers, I

learned that a typical survey mission is roughly 20 hours long and involves roughly 200

behaviors. The engineers must pinpoint on a map every intermediate way point for

the AUV to surface, in order to get GPS information every 30 minutes, calculate the

depth value for each way point using navigation software, and generate the complete

action sequence.

This introduces inefficiency, the potential for human error, and puts a significant

cognitive burden on the engineers. These problems can be reduced, if we elevate the

level of commanding, such that the operators only need to specify a set of goals that

they want the AUV to accomplish, and have a planner produce the series of actions

that achieve the mission goals. This is generative planning. Such a planner can enable

online re-planning, by generating the action sequence online according to changes

in the mission goals, changes or disturbances in the environment, or plan execution

failure.

In the purely discrete-state domain, where states are discrete and actions only

have discrete effects, the field of autonomy has elevated the level of commanding by

developing goal-directed planning systems [WN97, Chu08]. The mission objectives are

described as a desired evolution of goal states to the goal-directed planning systems.

Given a description of the available operators to the planner, it automatically generates

a correct, executable command sequence. The desired evolution of goal states is called

a temporally extended goal.

Although a purely discrete-state abstraction is sometimes adequate to model and

control an autonomous system, for example, the engine subsystem of a spacecraft

14

[WN97], almost no embedded system is purely discrete in reality. Often a purely

discrete model does not suffice to control an autonomous system. For example, we

need to be able to reason about the continuous effect of an unmanned air vehicle’s fly

action, or the continuous effect of a robotic arm turning its joint. Most embedded

systems, are hybrid systems. They have a mix of discrete and continuous states, and

can perform a mix of discrete and continuous actions. For example, an AUV can have

sampleTaken=true as its discrete state and the 〈x, y, z〉 position as its continuous

state; it can perform discrete actions like take sample and continuous actions like

descend.

Classical AI planning has been well studied for the past few decades. [BF97, KS99,

KS92, DK01a, HN01, BG99, LF99, KNHD97, PW92] are all generative planners.

Later on a number of planners have been developed to handle time and other resources

[SW99, LF02, GS02, DK01b, HG01, CFLS08b, Hof03]. These planners provide a

substantial foundation for the field of AI planning, but cannot reason about actions that

cause continuous changes in state space. There has been work in planning for actions

with continuous changes [GSS04, WW99, PW94, McD03, CCFL09, CFLS08a, SD05],

however, because they assume a fixed rate of change and a decoupled state transition,

none of them can handle systems with complex dynamics, such as a second-order

acceleration bounded system.

The planning problem I am interested in is how to develop a goal-directed, domain-

independent planner for hybrid systems, such that human operators describe to

the planner the temporally extended goals that they intend for a hybrid system

to accomplish, and the planner elaborates a sequence of discrete commands and

continuous actions for the hybrid system to perform to achieve the goals, based on

the model of the hybrid system. The model of the system generally includes the

discrete and continuous action types the system can perform, as well as the continuous

dynamic model.

15

1.2 Problem Statement

The planning problem I am interested in is: given

• initial conditions,

• temporally extended goals,

• hybrid durative action types,

• external constraints, and

• an objective function,

find an optimal sequence of actions and state trajectory from the given action types

that achieve the temporally extended goal without violating any of the constraints.

Next I explain these terms in the following subsections.

1.2.1 Input

In this subsection, I describe an example in order to intuitively demonstrate the

different components of the input. The precise definitions are described in Chapter 3.

The example is based on an MBARI (Monterey Bay Aquarium Research Institute)

science mission scenario.

The scientists define the mission goals as follows:

As seen in the map in Fig. 1-1, first take samples in the A and B regions

at depth 20 meters, and then in the C, D and E regions at depth 16 meters.

The operation engineers add temporal bounds on the mission goals, as shown in

Fig. 1-2. Engineers also add the following based on the environment and ship/fishing

activities of the day:

Avoid traffic and fishing activities, characterized by the shaded polygon in

Fig. 1-1. Maximize the time on surface to have maximum GPS coverage.

16

X

X

X

X

X

A

B

C

D

E

Figure 1-1: Map for the sampling mission in Monterey Bay. Grey area is land, and
white area is ocean. Engineers characterize the area with traffic and fishing activities
with a shaded polygon in the map. It is the obstacle that the AUV needs to avoid.
Picture courtesy of MBARI.

e1

e2

e3

[d2L, d2U]

ge1
ge2

[d1L, d1U]

[d3L, d3U]

sample taken in region A
sample taken in region B

sample taken in region C
sample taken in region D
sample taken in region E

Figure 1-2: A QSP example for the underwater scenario associated with Fig. 1-1.
Small circles represent events or time points. Purple shapes represent goals. Square
brackets specify lower and upper temporal bounds between events.

17

The initial conditions are that the AUV starts from location (-121.8, 36.8), and

no sample has yet been taken. There are four types of actions: waypoint, descend,

ascend, and take sample. Waypoint goes in a straight line to a waypoint on the

surface of the ocean. Descend and ascend move both horizontally and vertically; they

involve different actuation limits from the waypoint action as well as from each other.

Take sample draws in water for sampling.

To summarize, the input is described as follows:

• A temporally extended goal, expressed as a Qualitative State Plan (QSP). In

the example, it is the evolution of goal states specified by the scientists, with

temporal bounds augmented by engineers, shown pictorially in Fig. 1-2.

• Initial conditions. In the example, they are the start location of the AUV and

its discrete state at the start of the mission.

• Model of each action type. In the example, they are the duration bounds, con-

ditions, effects and dynamic model of waypoint, descend, ascend, and take

sample. The actions can have both continuous and discrete effects. Waypoint,

descend and ascend actions in the example all have continuous effects. Their

dynamics are defined by different state transition equations and different bounds

on control inputs. Take sample has a discrete effect - sample taken.

• External constraints. In the example, they are staying outside the shaded

polygon in Fig. 1-1 for avoiding traffic and fishing activities.

• An objective function. In the example, it is to maximize the time that the AUV

spends on the surface, in order to have maximum GPS coverage. Alternatively it

could be to minimize distance traveled, minimize mission time, minimize battery

usage, or other user-defined linear/quadratic objectives.

1.2.2 Output

In this section, I describe the different components of the planner output using our

example. The precise definitions are described in Chapter 3.

18

The output is a sequence of actions formed from the four action types described in

the input example, along with an optimal trajectory. It is visualized in Fig. 1-3. The

AUV first goes to the center of region A, then descends to 20 meters, takes a sample,

and ascends to the surface. The AUV then goes to the center of region B, and repeat

the actions until all goals are achieved.

ABCE D

Take sample
Descend

Ascend
Waypoint

Figure 1-3: An output example for the underwater scenario corresponding to Fig. 1-1.

The output can also be described as a mission script, as shown in Fig. 1-4.

The mission scripts for MBARI science missions normally last roughly 20 hours

and involve roughly 200 behaviors. Hence, the scripts are significantly longer than

the example mission script shown here. However, the number of action types in the

MBARI scripts is similar to the number of action types in the example, which is 4.

More generally, the output of the planner is an optimal partial order hybrid plan.

The hybrid plan consists of an action sequence and a state trajectory that satisfy the

temporally extended goal, the initial condition, and the constraints. The plan is also

optimal according to the objective function given the number of time steps in the

plan.

19

Waypoint 1 (center of region A)

behavior waypoint {

latitude = 36.8225;

longitude = -121.8210;

captureRadius = 5;

duration = 2000;

speed = 1.5;

depth = 0.0;}

Descend to 20 meters

behavior descend {

horizontalMode = heading;

horizontal = 321;

pitch = -15;

speed = 1.5;

maxDepth = 20;

duration = 240;}

Gulp behavior to take samples

behavior gulp {

maxDepth = 20;

duration = 10;}

Ascend to 0 meters

behavior ascend {

duration = 1200;

horizontalMode = heading;

horizontal = 321;

pitch = 20;

speed = 1.5;

endDepth = 0.0;}

Waypoint 2 (center of region B)

behavior waypoint {

latitude = 36.8509;

longitude = -121.8485;

captureRadius = 5;

duration = 1800;

speed = 1.5;

depth = 0.0;}

Descend to 20 meters

behavior descend {

horizontalMode = heading;

horizontal = 328;

pitch = -15;

speed = 1.5;

maxDepth = 20;

duration = 240;}

Gulp behavior to take samples

behavior gulp {

maxDepth = 20;

duration = 10;}

Ascend to 0 meters

behavior ascend {

duration = 1200;

horizontalMode = heading;

horizontal = 331;

pitch = 20;

speed = 1.5;

endDepth = 0.0;}

Waypoint 3 (center of region C)

behavior waypoint {

latitude = 36.8827;

longitude = -121.8751;

captureRadius = 5;

duration = 2100;

speed = 1.5;

depth = 0.0;}

Descend to 16 meters

behavior descend {

horizontalMode = heading;

horizontal = 313;

pitch = -15;

speed = 1.5;

maxDepth = 16;

duration = 180;}

Gulp behavior to take samples

behavior gulp {

maxDepth = 16;

duration = 10;}

Ascend to 0 meters

behavior ascend {

duration = 1200;

horizontalMode = heading;

horizontal = 315;

pitch = 20;

speed = 1.5;

endDepth = 0.0;}

Waypoint 4 (obstacle corner)

behavior waypoint {

latitude = 36.8801;

longitude = -121.8907;

captureRadius = 5;

duration = 1600;

speed = 1.5;

depth = 0.0;}

Waypoint 5 (obstacle corner)

behavior waypoint {

latitude = 36.8801;

longitude = -121.9112;

captureRadius = 5;

duration = 1600;

speed = 1.5;

depth = 0.0;}

Waypoint 6 (center of region D)

behavior waypoint {

latitude = 36.9150;

longitude = -121.9251;

captureRadius = 5;

duration = 2100;

speed = 1.5;

depth = 0.0;}

Descend to 16 meters

behavior descend {

horizontalMode = heading;

horizontal = 347;

pitch = -15;

speed = 1.5;

maxDepth = 16;

duration = 180;}

Gulp behavior to take samples

behavior gulp {

maxDepth = 16;

duration = 10;}

Ascend to 0 meters

behavior ascend {

duration = 1200;

horizontalMode = heading;

horizontal = 331;

pitch = 20;

speed = 1.5;

endDepth = 0.0;}

Waypoint 7 (center of region E)

behavior waypoint {

latitude = 36.9295;

longitude = -121.9508;

captureRadius = 5;

duration = 2000;

speed = 1.5;

depth = 0.0;}

Descend to 16 meters

behavior descend {

horizontalMode = heading;

horizontal = 323;

pitch = -15;

speed = 1.5;

maxDepth = 16;

duration = 180;}

Gulp behavior to take samples

behavior gulp {

maxDepth = 16;

duration = 10;}

Ascend to 0 meters

behavior ascend {

duration = 1200;

horizontalMode = heading;

horizontal = 328;

pitch = 20;

speed = 1.5;

endDepth = 0.0;}

Figure 1-4: Mission script for the example mission, without the initialization and
safety behaviors. 20

1.3 Challenges

There are two key challenges to solving the problem stated in the previous section.

I summarize them here and elaborate in the next two sections. First, in order to

plan with hybrid actions, which have both continuous and discrete effects, we need

a representation for the infinite number of state trajectories associated with the

continuous action effects. In addition, which hybrid actions to take at any time is a

combinatorial choice. It is a challenge to find a representation for this complex plan

space, where the infinite number of trajectories and the combinatorial choices are

combined. Second, in order to plan for temporally extended goals instead of simply

final goals, we need to ensure that the temporal constraints associated with the goals

are satisfied by the output plan. In addition, the hybrid actions have flexible temporal

bounds on their durations. The temporal constraints and flexibility pose a challenge

to solving our planning problem. I next discuss each challenge in more detail.

1.3.1 Complex Plan Space

In traditional AI planning, there are only discrete actions and propositional states.

Hence, the choices to make are discrete or finite domain, for example, in playing chess.

On the other hand, in control and path planning, there are only continuous actions

and real-valued states. For example, navigating a vehicle [Léa05], or controlling a

biped [Hof06]. However, the planning problem I am solving involves both.

A straightforward way is to encode the hybrid planning problem directly into a

mixed discrete/continuous optimization problem, and to solve it using a state-of-the-

art constraint solver. Doing this, however, puts all the computational burden on the

solver. Our experiments in Chapter 8 show that the search space is prohibitive for

even small problems. Therefore, I need a compact representation of the complex plan

space, where the infinite number of trajectories and the finite domain choices are

combined. The representation should contain all the valid plans and prune a large

number of invalid plans, so that the search space becomes manageable.

21

1.3.2 Temporal Constraints and Flexibility

Temporally extended goals not only require the goal states to be achieved, but also

require them to be achieved at different times, over extended durations, in the right

order, and within the right temporal bounds. Moreover, it is unrealistic to fix the

durations of hybrid action types in the problem specification. For example, taking a

sample in the ocean may take from 5 to 30 seconds; and gliding on the surface of the

ocean may take arbitrarily long until the destination is reached or battery runs out.

These temporal constraints and flexibility add an extra complexity to our hybrid

planning problem. When goals and actions have flexible time bounds, there potentially

are an infinite number of choices for their duration value.

I next discuss our approach to addressing the above described challenges.

1.4 Approach and Innovations

My solution to the stated problem is a planning system, called Kongming. Kongming

is a domain-independent generative planner that is capable of planning for temporally

extended goals for a range of hybrid autonomous systems.

Kongming addresses the two challenges described in Section 1.3 with two key

innovations. To address the first challenge (complex plan space), Kongming introduces

a compact representation of the complex plan space, called a Hybrid Flow Graph. It

provides a natural way of representing continuous trajectories in a discrete planning

framework. It combines the strengths of a Planning Graph from Graphplan [BF97]

for discrete actions and Flow Tubes [Hof06] for continuous actions. The Hybrid Flow

Graph contains all the valid plans while pruning many invalid plans. To address

the second challenge (temporal constraints and flexibility), Kongming introduces

two reformulation schemes to encode temporally extended goals as actions and final

goals, and to encode actions with flexible time bounds as actions with fixed and equal

durations. These reformulation schemes pre-process the temporal reasoning part of

our hybrid planning problem, and reduce complexity.

I now describe these two innovations in more detail.

22

1.4.1 Hybrid Flow Graph

When planning with purely discrete actions, as in Graphplan [BF97] and other discrete

planners, the decision variables are discrete, and hence the planner only needs to

reason about a finite number of trajectories in plan space. However, when continuous

actions and continuous states are included in planning, the planner needs a compact

way of representing and reasoning about an infinite number of trajectories and states.

My representation of the plan space is called a Hybrid Flow Graph. It builds upon

the Planning Graph [BF97] and flow tubes [Hof06].

Planning Graph

The Planning Graph introduced in Graphplan [BF97], is a compact structure for

representing the plan space in the STRIPS-like planning domain. It has been employed

by a wide range of modern planners, including LPGP [LF02], STAN [LF99], GP-CSP

[DK01a], to name a few. The Graphplan planner constructs, analyses the graph

structure, and extracts a valid plan. A Planning Graph encodes the planning problem

in such a way that many useful constraints inherent in the problem become explicitly

available to reduce the amount of search needed. Planning Graphs can be constructed

quickly: they have polynomial size and can be built in polynomial time.

A Planning Graph is a directed, leveled graph, which alternates between propo-

sition levels, containing propositions, and action levels, containing action instances.

Proposition level i contains all propositions that can be true at time i, and action

level i contains all possible actions to take place at time i. Fig. 1-5 shows an example

of a Planning Graph.

Graphplan identifies mutual exclusion relations among propositions and actions.

The mutual exclusions make constraints inherent in the planning problem explicit. Two

actions at a given action level are mutually exclusive if no valid plan can contain both.

Similarly, two propositions at a given proposition level are mutually exclusive if no valid

plan can make both true. Identifying the mutual exclusions helps reduce the search for

a subgraph of the Planning Graph that corresponds to a valid plan. Intuitively, this is

23

at R1 Earth

at R2 Earth

at Rocket Earth

fuel Rocket

at R1 Earth

at R2 Earth

at Rocket Earth

fuel Rocket

load R1 Earth

load R2 Earth

move Earth Mars

at Rocket Mars

in R1 Rocket

in R2 Rocket

at R1 Earth

at R2 Earth

at Rocket Earth

fuel Rocket

at Rocket Mars

in R1 Rocket

in R2 Rocket

load R1 Earth

load R2 Earth

move Earth Mars

unload R1 Earth

unload R2 Earth

proposition

level 0

proposition

level 1

proposition

level 2

action

level 0

action

level 1

Figure 1-5: A Planning Graph of 3 proposition levels and 2 action levels. Round black
dots represent no-op (do nothing) actions. Solid lines connect conditions with actions
and actions with add-effects. Dotted lines connect actions with delete-effects.

because an action is not added to an action level if two of its conditions are identified

as mutually exclusive in the previous proposition level. The mutual exclusion relations

are discovered and propagated through the Planning Graph using a few rules. They

prove to be greatly helpful in pruning search space [BF97, KS99].

The Planning Graph works well for discrete planning, but it cannot represent

actions that cause continuous changes in state space, as each action contains an infinite

number of continuous state trajectories. Hence, I use flow tubes as an abstraction for

the continuous state trajectories, and augment the flow tubes in the Planning Graph.

Flow Tube

Flow tubes have been used in the qualitative reasoning community to represent a set

of trajectories with common characteristics that connect two regions. Zhao [Zha92]1

uses them to characterize phase space during analysis of nonlinear dynamical systems.

Hofmann [Hof06] uses flow tubes to represent bundles of state trajectories that take into

account dynamic limitations due to under-actuation, while satisfying plan requirements

for the foot placement of walking bipeds. By defining the valid operating regions for

the state variables and control parameters in the abstracted model of a biped, the flow

tubes prune infeasible trajectories and ensure plan execution. For example, Fig. 1-6

1They are called flow pipes in [Zha92].

24

shows flow tubes for the center of mass of a biped. Similar representations are used in

the robotics community, under the name funnels [Ted09], and in the hybrid systems

community, under reachability analysis [KV07, KGBM04, Gir05, SK03, Kos01].

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat
l1

r2

l2

Foot placement

Fig. 1.15 – The qualitative control plan contains flow tubes that define permissible

operating regions in state space. As long as state trajectories remain within the flow

tubes, the plan will execute successfully. Flow tubes for center of mass are shown,

with initial regions in red, goal regions in black, and tubes in blue. Flow tubes for left

and right foot position are shown using dotted lines.

 36

Figure 1-6: Flow tubes for center of mass of a biped are shown, with initial regions
in red, goal regions in black, and tubes in blue. The flow tubes define permissible
operating regions in state space. [Hof06]

The problem that Kongming uses a flow tube to solve is, given an initial region in

state space, defined by a conjunction of linear (in)equalities over the state variables,

given the model of a hybrid action, including a state equation and actuation limits of

the system dynamics, and given a duration, generate an abstract description of all

possible state trajectories of this action starting from the initial region. Fig. 1-7 shows

an example of a flow tube, starting from an initial region RI , and ending in an end

region. The end region represents all the reachable states by performing the action

for duration d from the initial region. Any cross-section cut through the flow tube at

a specific time point represents all the reachable states by performing the action for

the specific duration from the initial region.

25

ẋ

x t

R
I

d

ẋ

0 2 3

1

3

A B

CD

R
I

x

ẋ

0 2 3

2

3

A

5

5 74

B

CD

6

(a) (b) (c)

x

cs

1 4

2

1

1

4

Figure 1-7: An example of a flow tube of a hybrid action in 1D for a second-order
acceleration limited dynamical system. (a) shows the initial region RI . (b) shows the
end region. (c) shows the flow tube of duration d.

The flow tubes in Kongming are similar to those in [Hof06] in that Kongming

also uses flow tubes to represent bundles of state trajectories that satisfy dynamic

limitations and plan requirements. Flow tubes in Kongming are different in the

following aspects. First, they contain all valid trajectories; whereas flow tubes

in [Hof06] exclude some of the valid trajectories. Second, they also contain invalid

trajectories; whereas flow tubes in [Hof06] only contain valid trajectories. Third, two

flow tubes in Kongming are connected, if the end region of the first flow tube intersects

with the condition of the second flow tube, whereas two flow tubes in [Hof06] are

connected, if the end region of the first flow tube is a subset of the initial region of the

second flow tube. The reason for the first three differences is because Kongming needs

to have a complete representation of all valid plans in the Hybrid Flow Graph, so that

it can search for an optimal plan using a constraint solver, whereas [Hof06] searches

for valid rather than optimal trajectories. Finally, in Kongming, a flow tube can also

be connected to a discrete action, whereas there are no discrete actions in [Hof06].

After introducing the two components of our representation of the complex plan

space, a Hybrid Flow Graph, I next describe how they fit together.

Hybrid Flow Graph Expansion

The initial conditions of the hybrid planning problem form the first fact level of the

Hybrid Flow Graph. The first fact level is followed by the first action level, which

26

contains all the actions whose conditions are satisfied in the first fact level. Then

the effects of these actions form the next fact level. The Hybrid Flow Graph keeps

expanding until the goal conditions are achieved.

Each hybrid action is represented by a flow tube, starting from an initial region

and ending in an end region. In a Hybrid Flow Graph, one flow tube is connected

to another, if the end region of the previous has a nonempty intersection with the

continuous condition of the following. I choose having a nonempty intersection as the

connecting criteria in order to keep the completeness of our plan representation. As

shown in Fig. 1-8(a), the nonempty intersection is the initial region of the following

flow tube. Conversely, as shown in Fig. 1-8(b), if the intersection is empty, then the

following flow tube is not added into the Hybrid Flow Graph.

x

t

Ri1

Ri2

Rg1

Rg2

a1

a2

a2 continuous
precondition

a3 continuous
precondition

Rg2
a2

x

t

Ri2

(a) (b)

Figure 1-8: (a) Flow tube a2 is connected to flow tube a1 because the end region of a1

has a nonempty intersection with the continuous condition of a2. (b) Conversely, flow
tube a3 is not connected to flow tube a2 because the end region of a2 has an empty
intersection with the continuous condition of a3.

An example of a Hybrid Flow Graph is shown in Fig. 1-9. The Hybrid Flow Graph

starts with fact level 1, followed by action level 1, and then fact level 2, followed by

action level 2, and so on. A Hybrid Flow Graph example. Each fact level contains

continuous regions (in blue) and literals (in black). Each action level contains hybrid

actions. The hybrid actions with specified dynamics are represented by flow tubes (in

blue, while the dynamics of some hybrid actions are unspecified (in black). Big black

dots represent no-op actions. Arrows connect conditions to hybrid actions and hybrid

actions to effects.

Similar to Graphplan, identifying and propagating mutual exclusion relations is

27

rudder
GPS

(x,y)∈R1

(x,y)∈R0
¬GPS

¬rudder

fact level 1 action level 1

startRudder
getGPS

(x,y)∈R0
¬GPS

¬rudder

fact level 2

startRudder
getGPS

stopRudder

action level 2

maintain

maintain

maintain

glide

descend

glide

Figure 1-9: A Hybrid Flow Graph example. Each fact level contains continuous regions
(in blue) and literals (in black). Each action level contains hybrid actions. The hybrid
actions with specified dynamics are represented by flow tubes (in blue, while the
dynamics of some hybrid actions are unspecified (in black). Big black dots represent
no-op actions. Arrows connect conditions to hybrid actions and hybrid actions to
effects.

an integral step in constructing and searching the Hybrid Flow Graph. The mutual

exclusion relations can be largely useful in pruning invalid actions and invalid facts,

and therefore invalid plans, in a Hybrid Flow Graph. They are propagated from one

level to the next, using a set of rules. The rules in Kongming are generalized from

those in Graphplan, because in a Hybrid Flow Graph fact levels not only contain

propositional facts but also continuous regions, and action levels contain hybrid actions

instead of purely discrete actions.

Kongming employs a constraint-based planner on the Hybrid Flow Graph to find an

optimal plan. It encodes the Hybrid Flow Graph as mixed logical quadratic programs

(MLQPs), and solves the MLQPs using a state-of-the-art MLQP solver, currently

CPLEX.

The Hybrid Flow Graph is discussed in detail in Chapter 4, and the constraint-

based planner is discussed in Chapter 5. They both follow the assumption that there

is a final goal state, and that the hybrid actions have fixed and equal duration, which

28

I call hybrid atomic actions. However, the problem that Kongming solves contains

hybrid actions with flexible time bounds, which I call hybrid durative actions, and a

qualitative state plan (QSP) as goals, and hence, another important component in

Kongming is the reformulations.

Kongming AA (KAA)
Hybrid Flow Graph

Constraint-based Planner

Durative action Atomic actions

 Qualitative State Plan Durative actions
 Final goal state

Kongming DA (KDA)

Kongming QSP (KQSP)

KAA Output Conversion

KDA Output Conversion

Figure 1-10: Overview of Kongming’s approach.

As shown in the approach overview diagram in Fig. 1-10, the core of Kongming is

a planner for atomic actions, which I call KongmingAA or KAA. KongmingDA or KDA

is a planner that handles durative actions with flexible durations, by reformulating

durative actions to atomic actions and then engaging KAA. KongmingQSP or KQSP is

a planner that plans for QSPs instead of a final goal state, by reformulating the QSP

to durative actions and a final goal state, and then engaging KDA. The output of KAA,

KDA and KQSP are slightly different, as defined in Chapter 3. Hence, KDA has the

KAA output conversion module used to process the output from KAA, and similarly,

KQSP has the KDA output conversion module used to process the output from KDA.

29

1.4.2 Reformulations

I introduce the two layers of reformulation in this section. I first introduce the

reformulation of hybrid durative actions to hybrid atomic actions in KDA, and then

introduce the reformulation of a QSP to hybrid durative actions and a final goal state

in KQSP.

Reformulating A Hybrid Durative Action in KDA

Kongming reformulates a hybrid durative action as a set of hybrid atomic actions.

This generalizes upon the encoding of LPGP [LF02]. LPGP encodes each discrete

durative action as a start, an end and one or more invariant checking instantaneous

actions, as shown in Fig. 1-11. Kongming combines the LPGP encoding with flow

tubes to reformulate hybrid durative actions as hybrid atomic actions.

A-start
A-invariant

check
A-end.

Durative action A

A-invariant

check

Figure 1-11: In LPGP [LF02], a durative action is formulated as a start action at the
start, an end action at the end, and a series of actions for invariant checking in the
middle.

Kongming generalizes the LPGP encoding to hybrid durative actions with flexible

durations. Because the LPGP encoding only applies to actions with discrete conditions

and effects, the main challenge is how to incorporate the flow tubes of the hybrid

actions in the encoding.

Kongming encodes each hybrid durative action as a set of atomic actions, by

“slicing” the flow tube into multiple pieces. All flow tube slices have the same duration,

∆t. This is because Kongming allows flexible control input in the specification of

hybrid action types. The constant length, ∆t, for each flow tube slice ensures linearity

in flow tube computation and the MLQP encoding.

30

Kongming combines the flow tube slices with the LPGP encoding, to ensure that

first, the start flow tube slice is performed first, followed by one or more intermediate

flow tube slices, and ending with the end flow tube slice; second, the conditions at

various stages are enforced at the beginning of each flow tube slice; third, the effects

at various stages are added at the end of each flow tube slice.

Reformulating A Qualitative State Plan in KQSP

Kongming reformulates a QSP as hybrid durative actions and a final goal state. This

is based on the idea that each goal state of a QSP can be achieved by specifying them

in the conditions of an action. Kongming creates a hybrid durative action for each

goal state of a QSP. The conditions of the action include all the state constraints on

the goal state. In order to make the effects of the action true, the conditions have to

be satisfied, which enforces the goal state to be achieved.

(:durative-action a2
 :duration d ∈ [lb2, ub2]
 :condition (and
 (start (cs2)(ge1-ended))
 (overall (co2))
 (end (ce2)))

 :discrete-effect (and
 (start ())
 (overall ())
 (end (ge2-ended)))
:dynamics ())

e1 e2 e3
Start: cs1
Overall: co1
End: ce1

[lb2, ub2]

ge1

ge2

ge3

[lb1, ub1]

Start: cs2
Overall: co2
End: ce2

Start: cs3
Overall: co3
End: ce3

Figure 1-12: Hybrid durative action type a2 is created for goal episode ge2. ge1-ended
and ge2-ended are literals, representing respectively the fact that ge1 and ge2 are
achieved. cs2, ci2 and ce2 are the constraints at different times of ge2.

On the left-hand side of Fig. 1-12, there is a QSP, with three goal episodes. We

focus on goal episode ge2. The reformulation of ge2 is shown on the right-hand side of

Fig. 1-12. It shows the hybrid durative action created for goal ge2. The duration of

the action is bounded by the simple temporal constraint on the goal episode, if there

is any. The conditions of the action include the state constraints of the goal episode,

and the fact that all predecessors of the goal episode have been achieved. The discrete

31

effect of the action at the end is the fact that this goal episode has been achieved.

Dynamics are unspecified.

The final goal state, which is another output of the reformulation, specifies that

the end goal state in the QSP is achieved.

1.5 Contributions

There exist planners that are capable of planning for actions that cause continuous

changes in state space [GSS04, WW99, PW94, McD03, CCFL09, CFLS08a, SD05,

MBB+09], and a few of them [PW94, McD03, SD05, CCFL09, MBB+09] can handle

actions with duration-dependent continuous effects. It is essential to be able to plan for

actions with duration-dependent continuous effects, because such actions are pervasive

in real-world planning problems. For example, the fly action of an air vehicle, the

descend action of an underwater vehicle, or the turn joint action of an robotic arm.

The changes in state space caused by such actions depend on the action duration.

However, all such existing planners assume a fixed rate of change and a decoupled

state transition. None of them can handle systems with coupled dynamics, such as a

second-order acceleration bounded system. The key benefit of our approach is that,

Kongming allows complex dynamics of the hybrid actions through the introduction of

flow tubes. Kongming is unique in that it is the first temporal planner that plans for

autonomous systems, such as air, underwater or land vehicles, whose control input is

not limited to constant and state transition is not limited to decoupled first order.

1.6 Thesis Outline

There are 9 chapters in total in this thesis. Chapter 2 is dedicated to related work.

Chapter 3 formally states the planning problem and gives definitions of the input and

output of Kongming. Chapter 4 through 7 cover the technical approach of Kongming.

Chapter 4 introduces the compact representation of the complex plan space, called

a Hybrid Flow Graph. Chapter 5 describes the constraint-based planning algorithm

32

that operates on the Hybrid Flow Graph representation. Chapter 6 introduces KDA

and its reformulation scheme for durative actions with flexible durations. Chapter 7

introduces KQSP and its reformulation scheme for a QSP. Chapter 8 presents empirical

results. Chapter 9 concludes and discusses future work.

33

34

Chapter 2

Related Work

Contents

2.1 Problem Representation Language 35

2.2 Planning with Continuous Change 39

2.3 Planning for Temporally Extended Goals 41

2.4 Flow Tubes . 42

2.5 Planning Graphs . 44

2.6 Blackbox . 46

2.1 Problem Representation Language

The Planning Domain Definition Language (PDDL) [MtAPCC98] was released in

1998, and has since become the standard language for planning competitions, such

as the AI Planning Systems (AIPS) competitions and the International Planning

Competitions. It is an action-centered language, inspired by the STRIPS [FN71]

formulation of planning problems. PDDL2.1 [FL03] extends PDDL to include numeric

expressions and durative actions. As shown in Fig. 2-1, in the action specification for

pouring water between jugs, the precondition is that the empty volume in jug2 is at

least as much as the amount of water in jug1, and the effect is that the amount of

35

water in jug1 becomes 0 and the amount of water in jug2 increases by the original

amount of water in jug1.

(define (domain jug-pouring)

(:requirements :typing :fluents)

(:types jug)

(:functions

(amount ?j - jug)

(capacity ?j - jug))

(:action pour

:parameters (?jug1 ?jug2 - jug)

:precondition (>= (- (capacity ?jug2) (amount ?jug2)) (amount ?jug1))

:effect (and (assign (amount ?jug1) 0)

(increase (amount ?jug2) (amount ?jug1)))

)

Figure 2-1: An action example in PDDL2.1, showing the expression of numeric
fluents [FL03]. “?jug1 ?jug2 - jug” means that jug1 and jug2 are of the type jug.
“capacity ?jug2” means the capacity of jug2.

PDDL2.1 also extends PDDL with durative actions. Preconditions and effects are

expressed at the start, in the middle, and at the end of an action. A continuous effect

of a durative action is expressed as a linear function of time past while performing

this action. As shown in Fig. 2-2, conditions and effects are specified for at start,

over all and at end. The continuous effect of action fly is that the fuel-level

decreases by the product of fuel-consumption-rate and t.

(:durative-action fly

:parameters (?p - airplane ?a ?b - airport)

:duration (= ?duration (flight-time ?a ?b))

:condition (and (at start (at ?p ?a))

(over all (inflight ?p))

(over all (>= (fuel-level ?p) 0)))

:effect (and (at start (not (at ?p ?a)))

(at start (inflight ?p))

(at end (not (inflight ?p)))

(at end (at ?p ?b))

(decrease (fuel-level ?p)

(* #t (fuel-consumption-rate ?p)))))

Figure 2-2: A durative action example in PDDL2.1 [FL03].

PDDL+ [FL01] provides an alternative to the continuous durative action model of

PDDL2.1. The main difference is that PDDL+ separates changes to the world that

36

are directly enacted by the system under control from those indirect changes that are

due to physical processes and their consequences. It also provides a formal semantics

by mapping planning instances into constructs of hybrid automata.

The problem representation Kongming uses is PDDL-like. It is described in detail

in Chapter 3. Kongming and PDDL2.1/PDDL+ share the same representation for

the propositional part of initial conditions, action durations, action preconditions at

start, over all and at end, and action effects at start, over all and at end. However,

Kongming differs from PDDL2.1 and PDDL+ in that Kongming includes the following

items:

• The continuous precondition of an action in Kongming’s input is specified

by a conjunction of linear (in)equalities over the state variables, ∧ifi(x) ≤ 0.

This is a polytope1 in state space. PDDL2.1 or PDDL+ can only express the

special case, where each fi(x) is a single-variable linear function, in other words,

the polytope is an orthotope2. This generalization in Kongming is useful. For

example, the action of putting out a forest fire requires the air vehicle to be over

the fire region, which is not necessarily rectangular.

• The state transition of an action in Kongming’s input is defined to be a linear

nth-order state transition equation, ∀ti x(ti) = Ax(ti−1) + Bu(ti−1), where

x is state variables, u is control variables, and A and B are scalar matrices.

In contrast, PDDL2.1 and PDDL+ are limited to 1st order decoupled state

transition. For example, the second-order coupled state equation in Eq. 2.1 is

expressible for Kongming, but not for PDDL2.1 or PDDL+. This generalization

in Kongming is important. For example, the dynamics of an air vehicle normally

cannot be modeled as linear first-order, but they can be modeled as linear

1A polytope is an n-dimensional region enclosed by a finite number of hyperplanes.
2An orthotope is an n-dimensional generalization of a rectangular region.

37

second-order [Léa05].

x

y

vx

vy

 (ti) =

1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

×

x

y

vx

vy

 (ti−1)+

∆t2

2
0

0
∆t2

2

∆t 0

0 ∆t

×

 ax

ay

 (ti−1)

(2.1)

• The continuous initial condition in Kongming’s input is specified by a

conjunction of linear (in)equalities over the state variables, ∧ifi(x) ≤ 0, and

hence, cannot be expressed in PDDL2.1 or PDDL+. The importance of this

generalization is similar to the discussion earlier for the continuous preconditions.

• The external constraints in Kongming’s input, for example, an obstacle

avoidance requirement, is specified by a conjunction of disjunctions of linear

inequalities over the state variables, ∧i ∨j fij(s) ≤ 0. Such constraints cannot be

expressed in PDDL2.1 or PDDL+. This generalization in Kongming is important.

For example, it is unrealistic to assume all obstacles are rectangular.

• The objective function in Kongming’s input is specified by a quadratic or

linear function of the state variables. In PDDL2.1 or PDDL+, the objective

function has to be linear. This generalization in Kongming is important. For

example, in order to minimize the distance traveled, the objective function needs

to be quadratic.

There are mainly two features in PDDL2.1 or PDDL+ that cannot naturally be

expressed in Kongming’s input: conditional effects, and increase/decrease continuous

effects. A conditional effect is an effect of an action that only becomes true if specific

conditions are satisfied. For example, the action move suitcase from the old location

to a new location has the effect that, if the keys are in the suitcase, then they are in

the new location. It has been proven that the Planning Graph [BF97] can be extended

to handling conditional effects [ASW98], the approach of which can be employed by

Kongming to extend the Hybrid Flow Graph.

38

The second feature, increase or decrease continuous effect, allows multiple actions

to accumulatively alter the state of the system under control. For example, a bathtub

can be filled and drained at the same time. The fill action has the effect of increasing

the amount of water in the tub (the state of the system) at a specific rate r1, and the

drain action has the effect of decreasing the amount of water at a specific rate r2.

Accumulatively, the amount of water in the tub (the state of the system) increases at

rate r1 − r2. This is different from Kongming. The continuous effects in Kongming’s

action description constrain the new state of the system, through the state transition

equations in the action dynamics. Kongming allows multiple actions to take place

simultaneously unless their effects constrain the state of the system to be in exclusive

regions.

2.2 Planning with Continuous Change

During the past decade, significant progress has been made in planning with actions

that not only have discrete but also continuous effects. In the area of temporal and

numeric planning, the category of problems where changes in the continuous state are

affected by the durations of actions, is the most interesting to us, as it is the focus of

Kongming. I describe the major planners that address such problems and compare

them with Kongming in this section.

Zeno [PW94] is among the early work that explores planning with continuous

change. It uses first-order logic for problem description and replies on constraint

satisfaction to perform all temporal and metric reasoning during planning. In Zeno,

the continuous processes have linear effects, and are described using differential

equations. Although the continuous effects are linear both in Zeno and in Kongming,

the differential equations of continuous processes in Zeno are first-order, while the state

equations of continuous actions in Kongming can be nth-order. Zeno was impressively

conceived as a first step towards automated planning with expressive metric temporal

languages at the time. However, it is unable to solve problems that involve more than

a dozen steps, and is limited to block-world type of planning.

39

Optop [McD03] is a heuristics-based planner that uses an estimated regression

graph. It is reported that its performance is not promising due to the expensive

computation of regression-match graphs.

TM-LPSAT [SD05] and the recent planner COLIN [CCFL09] can both construct

plans in domains containing durative actions and linear continuous changes. They use

PDDL+ and PDDL2.1 to represent the domain and problem. The differences between

PDDL+/PDDL2.1 and Kongming’s input were already described in Section 2.1. To

recapitulate, TM-LPSAT and COLIN do not solve problems with polygonal continuous

preconditions, coupled multiple-order action dynamics, external disjunctive linear

constraints, and do not optimize with respect to an objective function, while Kongming

solves such problems.

Another important advantage of Kongming is that, the linear continuous effects in

the action specification of TM-LPSAT and COLIN are limited to a fixed rate of change.

For example, a plane flies in a fixed direction at a constant speed (or a constant rate

of change) of 250 m/s. This limitation prevents these planners from being applied to

most autonomous vehicle applications, in which it is unreasonable to assume that the

velocity (or acceleration) in the x, y and z directions is all constant. TM-LPSAT and

COLIN both use a real-valued time line. Kongming uses a discrete-time framework to

accommodate the discrete-time representation of the dynamics of continuous actions.

The discrete time representation is commonly used in modeling dynamic systems in

control [dV93]. Similar to Kongming, TM-LPSAT and COLIN both reason about

durative actions with flexible temporal bounds.

TM-LPSAT encodes the PDDL+ problem description into LCNF [WW99], which

is a propositional CNF formula with linear constraints, and uses the LPSAT [WW99]

constraint solver to extract a feasible solution. Kongming first compactly represents

all valid plans in a graph to reduce search space through mutual exclusion relations,

then encodes the graph into a mixed logic quadratic program (MLQP), and uses

an MLQP solver to extract an optimal solution. Because LPSAT outputs feasible

solutions rather than optimal ones, TM-LPSAT cannot find an optimal plan with

respect to an objective function. Kongming outputs an optimal plan according to any

40

user-defined linear or quadratic objective function.

COLIN is a forward state-space search planner that builds on a temporal planner

CRIKEY3 [CFLS08b]. COLIN uses linear programs to represent temporal constraints

and constraints on linear processes, and extends the temporal relaxed planning graph

heuristic of CRIKEY3 to provide heuristic guidance in problems with continuous

numeric effects. In contrast, Kongming uses a constraint-based planner to operate

on its plan representation (Hybrid Flow Graph) and does not use heuristic search.

A heuristic search planner may be employed on Kongming’s plan representation, as

discussed in future work (Chapter 9).

HAO* [MBB+09] is a heuristic search planner that handles uncertain action

outcomes and uncertain continuous resource consumption. It formulates the planning

problem as a hybrid-state Markov decision process (MDP), where the continuous state

variables represent resources, such as battery power of a rover. HAO* uses heuristic

search that is generalized from the AO* [Pea84] heuristic search algorithm to solve the

MDP problem. The advantage of HAO* is that it allows uncertainty in the system

and in the environment, which is closer to reality than Kongming’s deterministic

model. However, its MDP formulation can suffer from state space explosion due to the

additional continuous state variables. An assumption of HAO* is that only resources

are modeled as continuous variables. In contrast, Kongming reasons about not only

continuous resources but also continuous trajectories of actions. HAO* also limits

the resources to be monotonic, meaning that resources are consumed by actions but

they cannot be replenished. This avoids revisiting states when solving the MDP, and

hence, simplifies the problem.

2.3 Planning for Temporally Extended Goals

There is an extensive literature on planning to achieve temporally extended goals

(TEGs). TLPlan [BK96] and TALPlan [KD00] treat TEGs as temporal domain

control knowledge and prune the search space by progressing the temporal formula.

[BCCZ99, LBHJ04, MR07] extend the planning as satisfiability approach [KS92].

41

[BM06] transforms the problem of planning for a TEG into a classical planning

problem and applies heuristics to guide search. None of the existing TEG planners

can plan with hybrid actions, where actions may have both discrete and continuous

duration-dependent effects. To our knowledge, Kongming is the first to address these

issues. Kongming plans for TEGs with both discrete and continuous actions, through

encoding TEGs as durative actions and incorporating them in the plan representation.

TLPlan [BK96] uses a version of metric interval temporal logic (MITL) [AFH96],

extended to allow first-order quantification to be expressed. Kongming uses a qualita-

tive state plan (QSP) [Léa05, Chu08, Hof06] to represent a TEG. A QSP is defined

and compared with MITL in Section 3.1.3. The QSP representation of TEGs in

Kongming can be encoded as MITL formulae.

Kongming uses Flow Tubes [HW06, Hof06] to capture the continuous dynam-

ics of actions, and builds upon the Planning Graph from Graphplan [BF97] and

Blackbox [KS99]. I review them respectively in the following sections.

2.4 Flow Tubes

Flow tubes have been used in the qualitative reasoning community to represent a set

of trajectories with common characteristics that connect two regions. Zhao [Zha92]3

uses them to characterize phase space during analysis of nonlinear dynamical systems.

Hofmann [Hof06] uses flow tubes to represent bundles of state trajectories that take into

account dynamic limitations due to under-actuation, while satisfying plan requirements

for the foot placement of walking bipeds. By defining the valid operating regions for the

state variables and control parameters in the abstracted model of a biped, the flow tubes

prune infeasible trajectories and ensure plan execution. Similar representations are used

in the robotics community, under the name funnels [Ted09], and in the hybrid systems

community, under reachability analysis [KV07, KGBM04, Gir05, SK03, Kos01].

A large body of literature [CK98b, CK98a, AHH96, KGBM04, Gir05, SK03, Kos01,

KV07] is dedicated to exact or approximate computation methods of flow tubes for

3They are called flow pipes in [Zha92].

42

representing sets of trajectories of a dynamic hybrid system from a given set of initial

states. I compare them with the flow tube computation in Section 4.1.4.

The use of flow tubes in Kongming is inspired by Hofmann’s work on executing

qualitative state plans for continuous systems applied to controlling biped walking.

[Hof06, HW06] use flow tubes to represent bundles of state trajectories of biped walking

that satisfy plan requirements, while also satisfying dynamics and actuation limitations.

The flow tubes are computed in order to project the feasible future evolution of the

bipeds state, as shown in Fig. 2-3. Once the flow tubes are computed, a program

executes the plan by adjusting control parameters in order to keep trajectories within

the tubes.

Figure 2-3: Flow tubes for biped center of mass are shown, with initial regions in red,
goal regions in black, and tubes in blue. Flow tubes for left and right foot position are
shown using dotted lines. As long as state trajectories remain within the flow tubes,
the plan will execute successfully [Hof06].

There are two main reasons why Kongming uses flow tubes. Existing hybrid

43

planners that plan for both discrete and continuous actions are limited to first-order,

decoupled state transition and a fixed rate of change, as described in Section 2.2. These

limitations prevent those planners from being applied to most air/ground/underwater

vehicle applications, in which it is unreasonable to assume that the velocity (or

acceleration) in the x, y and z directions is all constant. Flow tubes can capture coupled

nth-order linear or nonlinear dynamics of the actions, and provide an abstraction for

representing and reasoning about the infinite number of trajectories of each action.

The second reason is for Kongming to have a least commitment strategy. When

a hybrid action is performed, Kongming computes the feasible region in state space

instead of a specific point through flow tube computation. This way Kongming

provides not only temporal flexibility, but also spatial flexibility. Some of the existing

hybrid planners provide temporal flexibility, but none of them is able to output

spatially flexible plans.

For the afore mentioned reasons, Kongming uses flow tubes to represent the

abstraction of an infinite number of trajectories and to compute the reach sets of

hybrid actions.

2.5 Planning Graphs

In this section, I first review the Planning Graph in detail. This is because it is

important to understand the Planning Graph in order to understand Kongming’s plan

representation, which I call the Hybrid Flow Graph.

The Planning Graph introduced in Graphplan [BF97], is a compact structure

for representing the plan space in the STRIPS-like planning domain. It has been

employed by a wide range of modern planners, including LPGP [LF02], STAN [LF99],

GP-CSP [DK01a], to name a few. The Graphplan planner constructs and analyzes

the planning graph structure, and extracts a valid plan from it. A Planning Graph

represents all valid plans and prunes many invalid ones. Planning Graphs can be

constructed quickly: they have polynomial size and can be built in polynomial time.

As shown in Fig. 4-7, a Planning Graph is a directed, leveled graph that alternates

44

at R1 Earth

at R2 Earth

at Rocket Earth

fuel Rocket

at R1 Earth

at R2 Earth

at Rocket Earth

fuel Rocket

load R1 Earth

load R2 Earth

move Earth Mars

at Rocket Mars

in R1 Rocket

in R2 Rocket

at R1 Earth

at R2 Earth

at Rocket Earth

fuel Rocket

at Rocket Mars

in R1 Rocket

in R2 Rocket

load R1 Earth

load R2 Earth

move Earth Mars

unload R1 Earth

unload R2 Earth

proposition

level 0

proposition

level 1

proposition

level 2

action

level 0

action

level 1

Figure 2-4: A Planning Graph consisting of 3 proposition levels and 2 action levels.
Round black dots represent no-op actions. Solid lines connect preconditions with
actions and actions with add-effects. Dotted lines connect actions with delete-effects.

between proposition levels, which contain propositions, and action levels, which contain

actions. Proposition level i contains all propositions that can be true at time i, and

action level i contains all possible actions to take place at time i.

Edges in a Planning Graph explicitly represent relations between actions and

propositions. Propositions in proposition level i are connected to actions in action

level i if the propositions are the preconditions of the actions. For example, in

Fig. 4-7, at R1 Earth and at Rocket Earth in proposition level 0 are connected to

load R1 Earth in action level 0, because at R1 Earth and at Rocket Earth are

the preconditions of action load R1 Earth. Actions in action level i are connected

to propositions in proposition level i + 1 if the propositions are the effects of the

actions. For example, in Fig. 4-7, load R1 Earth in action level 0 is connected to

in R1 Rocket and at R1 Earth in proposition level 1, because in R1 Rocket is

the add-effect of load R1 Earth and at R1 Earth is the delete-effect of load R1

Earth. Add-effects are connected using solid lines, and delete-effects are connected

using dotted lines. Because no-op actions exist, every proposition that appears in

proposition level i also appears in proposition level i+ 1.

The mutual exclusion relations among proposition and action nodes make con-

straints inherent in the planning problem explicit. Two actions at a given action level

are mutually exclusive if no valid plan can contain both. Similarly, two propositions

45

at a given proposition level are mutually exclusive if no valid plan can make both

true. Identifying the mutual exclusions helps reduce the search for a subgraph of the

Planning Graph that corresponds to a valid plan. The mutual exclusion relations are

discovered and propagated through the Planning Graph using a few rules. They prove

to be greatly helpful in pruning search space [BF97, KS99].

There are two main reasons why Kongming builds upon the Planning Graph

framework. The first reason is to take advantage of the powerful mutual exclusion

relations. Kongming defines a set of new rules such that continuous actions and

continuous states are included in the mutual exclusion relations, which help reduce

the hybrid plan space. The second reason is that Planning Graphs can be constructed

quickly and easily: they have polynomial size and can be built in polynomial time.

2.6 Blackbox

Kongming encodes its plan representation, the Hybrid Flow Graph, into a constraint

encoding, in an analogous way to the Blackbox planning system. Therefore, I review

Blackbox in this section.

Blackbox [KS99] is a planning system that unifies the planning as satisfiability

framework with the Planning Graph approach. Blackbox was inspired by a comparison

between Graphplan and SATPLAN [KS92]. SATPLAN encodes the STRIPS input

directly as a SAT problem and solves the SAT problem using a SAT solver. Graphplan

is good at instantiating the propositional structure, while SATPLAN uses powerful

search (extraction) algorithms [KS99]. Blackbox combines the advantages from both

worlds: the instantiation power of Graphplan and the search capability from SAT

solvers.

It encodes the Planning Graph as a SAT problem, and solves it using a state-of-

the-art SAT solver. More specifically, Blackbox solves the planning problem in the

following four steps:

• Turns STRIPS input into a Planning Graph;

46

• Translates the Planning Graph to a conjunctive normal formula in propositional

logic;

• Applies simplification techniques, including unit propagation, failed literal and

binary failed literal;

• Solves using a SAT solver.

Kongming takes an analogous approach. It combines the instantiation power of

Graphplan, extended for hybrid plans, and the search capability from state-of-the-art

constraint solvers. More specifically, Kongming encodes the representation for hybrid

plans, called Hybrid Flow Graph, as a mixed logic quadratic program (MLQP), and

solve the MLQP problem using a state-of-the-art MLQP solver.

To summarize, in this chapter I discussed related work in terms of the problem rep-

resentation, planning for actions with continuous changes, and planning for temporally

extended goals. I also described the three main pieces of prior work that Kongming

builds upon: flow tubes, Graphplan, and Blackbox. In the next chapter, I formally

define the problem statement.

47

48

Chapter 3

Problem Statement

Contents

3.1 Problem Statement for KQSP 51

3.1.1 Input: Variables . 52

3.1.2 Input: Initial Conditions . 53

3.1.3 Input: QSP . 53

3.1.4 Input: Hybrid Durative Action Types 58

3.1.5 Input: External Constraint 62

3.1.6 Input: Objective Function 63

3.1.7 Output: Optimal Hybrid Plan 64

3.2 Problem Statement for KDA 65

3.2.1 Input: Goal Conditions . 66

3.2.2 Output: Optimal Hybrid Plan 66

3.3 Problem Statement for KAA 68

3.3.1 Input: Hybrid Atomic Action Types 69

3.3.2 Output: Optimal Hybrid Plan 71

In this thesis, I solve the problem of generating an optimal hybrid plan that

achieves a temporally extended goal given the initial state of the system under control.

49

A temporally extended goal is a set of goals that are temporally constrained. The

temporally extended goal for the underwater example in Section 1.2 is shown pictorially

in Fig. 3-1. Model-based programming [WICE03] is a framework that allows engineers

to program reactive systems by specifying desired behaviors in terms of qualitative

descriptions of state evolution. This desired state evolution is called a qualitative

state plan (QSP) [Chu08, Léa05, Hof06]. In this thesis, I use a QSP to represent a

temporally extended goal. I define a QSP in Def. 5 later on in this chapter.

e1

e2

e3

[d2L, d2U]

ge1
ge2

[d1L, d1U]

[d3L, d3U]

sample taken in region A
sample taken in region B

sample taken in region C
sample taken in region D
sample taken in region E

Figure 3-1: A temporally extended goal example for the underwater scenario associated
with Fig. 1-1.

Kongming AA (KAA)
Hybrid Flow Graph

Constraint-based Planner

Durative action Atomic actions

 Qualitative State Plan Durative actions
 Final goal state

Kongming DA (KDA)

Kongming QSP (KQSP)

KAA Output Conversion

KDA Output Conversion

Figure 3-2: Overview of Kongming’s approach.

The problem statement is divided into three parts, corresponding to the three

planners in Kongming, as shown in Fig. 3-2. As described in Chapter 1, KongmingQSP

50

or KQSP is a planner that plans for QSPs instead of a final goal state, by reformu-

lating the QSP to durative actions and a final goal state, and then engaging KDA.

KongmingDA or KDA is a planner that handles durative actions with flexible dura-

tions, by reformulating durative actions to atomic actions and then engaging KAA.

KongmingAA or KAA is a planner that handles atomic actions and a final goal state.

I define the problem for each planner in the following sections.

3.1 Problem Statement for KQSP

The planning problem KQSP solves is, given initial conditions, a qualitative state plan,

hybrid durative action types, external constraints, and an objective function, find an

optimal sequence of actions from the given action types and an optimal state trajectory

that achieve the the QSP without violating any of the constraints.

First, I formally define the hybrid planning problem as follows:

Definition 1. [Hybrid QSP Planning Problem] Given < s,u, I,QSP ,DA, C, f >,

a hybrid QSP planning problem is to return Pqsp, where

• s = 〈x,p〉 is a set of real-valued and propositional state variables (Def. 2),

• u is a set of real-valued control variables (Def. 3),

• I is the initial conditions (Def. 4),

• QSP is a qualitative state plan (Def. 5),

• DA is a set of hybrid durative action types (Def. 10),

• C is a set of external constraints (Def. 16),

• f is an objective function (Def. 17),

• Pqsp is a hybrid optimal plan (Def. 18).

Next, I define each of them in detail. In the following subsections, I demonstrate

these concepts using the example of an unmanned air vehicle performing a fire fighting

51

mission. The map for the scenario is shown in Fig. 3-3. To simplify the example, the

world is assumed to be 2D and the air vehicle is assumed to fly at a constant altitude.

There are two forest fires that need to be extinguished. Fire 1 has a higher priority

because it is closer to a residential area. There are two no fly zones (NFZs) that the

vehicle must avoid and two lakes. There is an unmanned air vehicle at the base that

is equipped with a water tank and a camera. It can take water from the lakes, put

out fires, and take photos.

Base
Fire 1

Lake 1

Lake 2

Fire 2

y

x0

Figure 3-3: The map of the fire fighting scenario. There are two forest fires that need
to be extinguished. Fire 1 has a higher priority because it is closer to a residential
area. There are two no fly zones (NFZs) and two lakes.

3.1.1 Input: Variables

The state variables, s, represent the continuous and discrete state of the system.

Definition 2. [State Variables] s = 〈x,p〉, where x ∈ <n is a vector of real-

valued variables, x = 〈x1, x2, . . . , xn〉, and p is a vector of propositional variables,

p = 〈p1, p2, . . . , pl〉.

In the fire fighting example, the real-valued state variables are the position, velocity

and fuel of the air vehicle, x = 〈x, y, vx, vy, fuel〉, and the propositional state variables

are p = 〈fire1-out, fire2-out, have-water, photo1-taken, photo2-taken〉.
The control variables, u, represent the control input to the system.

52

Definition 3. [Control Variables] u ∈ <m is a vector of real-valued control vari-

ables, u = 〈u1, u2, . . . , um〉.

In the fire fighting example, the control variables are the acceleration and the fuel

consumption rate of the air vehicle, u = 〈ax, ay, rf〉.

3.1.2 Input: Initial Conditions

The initial conditions, I, specify constraints on the initial value of the state variables

s.

Definition 4. [Initial Conditions] I = (Ax ≤ b) ∧i li, where Ax ≤ b is a system

of linear inequalities over the real-valued state variables x, and each li is a positive or

negative literal for a propositional state variable pi ∈ p.

In the fire fighting example, the initial conditions constrain the initial position,

velocity and fuel of the air vehicle, and specify the initial value of the propositional

state variables. I = {2x− y ≥ −38, 2x + y ≤ 68, y ≥ 50, vx = 0, vy = 0, fuel = 100,

¬fire1-out, ¬fire2-out, ¬have-water, ¬photo1-taken, ¬photo2-taken}. This translates

to that, the air vehicle is initially at base, with zero velocity and 100 units of fuel;

neither fire is extinguished; the air vehicle has no water; and no photo has been taken.

3.1.3 Input: QSP

In model-based programming, a goal specification formalism called a qualitative state

plan (QSP) is used to describe a temporally extended goal. In effect, a temporally

extended goal specifies the allowed state trajectories of the system.

Similar to the definition of a QSP in [Chu08], I define it as follows.

Definition 5. [QSP] A qualitative state plan (QSP) is a 3-tuple 〈E ,GE , CT 〉, where

• E = {e1, . . . , em} is a finite set of events, representing points in time (Def. 6).

• GE = {ge1, . . . , gen} is a finite set of goal episodes that specify the desired state

evolution over time (Def. 7).

53

• CT is a finite set of temporal constraints on events E (Def. 9).

e1 e2 e3
Start:
Overall: fuel ≥ 5
End: fire1-out ∧ photo1-taken

[10, 20]

ge1 ge2

[0, 45]

[10, 30]

Start:
Overall: fuel ≥ 5
End: fire2-out ∧ photo2-taken

Figure 3-4: A QSP example of the fire fighting scenario. There are three events (time
points), e1, e2 and e3. There are two goal episodes, ge1 and ge2. There are three
temporal constraints, one between e1 and e2, one between e2 and e3, and one between
e1 and e3.

I illustrate a QSP diagrammatically by an acyclic directed graph in which events are

represented by nodes, goal episodes by arcs labeled with associated state constraints,

and temporal constraints by arcs. The QSP of the fire fighting example is shown in

Fig. 3-4.

Event

Definition 6. [Event of a QSP] An event of a QSP is a real-valued time point,

e ∈ <. The time for each ei is measured from a reference event called the QSP start

event, and denoted as es.

In the QSP shown in Fig. 3-4, there is a total of three events, E = {e1, e2, e3}. e1
is the QSP start event, that is es ≡ e1.

Goal Episode

Each goal episode in a QSP specifies the desired state of the system under control

over a sub-interval of the planning horizon. Each goal episode is associated with state

constraints, a start event and an end event.

Definition 7. [Goal Episode of a QSP] A goal episode, ge, is a 3-tuple 〈ei, ej, Cs〉,
where

• ei ∈ E is the start event of the goal episode.

54

• ej ∈ E is the end event of the goal episode, such that ei ≤ ej.

• Cs is a state constraint over the state variables (Def. 8).

In the QSP shown in Fig. 3-4, there is a total of two goal episodes, GE = {ge1, ge2}.

Definition 8. [State Constraint of a Goal Episode] A state constraint of a goal

episode, Cs, is a 3-tuple 〈cs, co, ce〉, where

• cs is the start state constraint, representing the constraint that holds at the start

event of the goal episode.

• co is the overall state constraint, representing the constraint that holds over the

duration of the goal episode, excluding the start event and the end event.

• ce is the end state constraint, representing the constraint that holds at the end

event of the goal episode.

cs, co and ce are all specified by (Ax ≤ b) ∧i li, where Ax ≤ b is a system of linear

inequalities over the real-valued state variables x, and li is a positive or negative literal

for a propositional state variable pi ∈ p.

In the QSP shown in Fig. 3-4, in both goal episodes, ge1 and ge2, there is no start

state constraint, and the overall state constraint is fuel ≥ 5. The end state constraint

of ge1 is fire1-out ∧ photo1-taken. The end state constraint of ge2 is fire2-out ∧
photo2-taken. Goal episode ge1 requires that, at the end of the episode, Fire 1 is put

out and a photo is taken, and throughout the episode, there is at least 5 units of fuel

on the air vehicle. Similar for goal episode ge2. Moreover, Fire 1 is required to be put

out before Fire 2.

Temporal Constraint

The last element of a QSP is temporal constraints. They specify temporal bounds

between two events.

Definition 9. [Temporal Constraint of a QSP] A temporal constraint, CT , is a

simple temporal constraint (STC) [DMP91]. CT = 〈ei, ej, lb, ub〉, where

55

• ei ∈ E is the starting event of the temporal constraint.

• ej ∈ E is the end event of the temporal constraint, such that ei < ej.

• lb ∈ < ∪ {−∞} is the lower bound on the time between ei and ej.

• ub ∈ < ∪ {+∞} is the upper bound on the time between ei and ej.

In the QSP shown in Fig. 3-4, there are three temporal constraints. One requires

the time between e1 and e2 to be at least 10 units and at most 30 units. One requires

the time between e2 and e3 to be at least 10 units and at most 20 units. One requires

the time between e1 and e3 to be at least 0 units and at most 45 units.

Comparison of QSP with MITL

I compare my definitions of a QSP to Metric Interval Temporal Logic (MITL) in-

troduced in [AFH96]. MITL is a logic-based language introduced to specify desired

behaviors of real-time systems. Like a QSP, it uses a dense representation of time. An

MITL formula is formally defined in Eq. 3.1, where p is a proposition that is required

to be true. UI is the until operator, where I is a time interval with left bound l(I)

and right bound r(I). By definition, φ1 UI φ2 is true at time t if and only if φ1 is

true at time t, and remains true for at least l(I) and at most r(I) time units, until φ2

becomes true.

φ := p | ¬φ | φ1 ∧ φ2 | φ1UIφ2 (3.1)

Additional operators can be constructed from Eq. 3.1, including the eventually

operator ♦I , the always operator �I , and the unless operator IW. ♦Iφ means that

φ must eventually be true at some time instant within the time interval I, and is

equivalent to true UI φ. �Iφ means that φ must always be true during the time

interval I, and is equivalent to ¬♦I¬φ. Finally, φ1 IW φ2 means that φ1 must be

true at all times during the time interval I, unless φ2 becomes true before the end

of interval I, in which case φ1 may only be true until φ2 becomes true. φ1 IW φ2 is

equivalent to ¬((¬φ2) UI (¬φ1)).

56

ei ej

[lb, ub]

ge

Start: cs
Overall: co
End: ce

...

Figure 3-5: Part of a QSP. There is a goal episode ge and a temporal constraint cT
between two events ei and ej.

I next show that any QSP can be expressed in MITL. Suppose between two events ei

and ej in a QSP, there is a goal episode ge = 〈ei, ej, cs, co, ce〉 and a temporal constraint

cT : [lb, ub], where cs, co and ce are the start, overall and end state constraints for the

goal episode, and lb, ub are the lower and upper bounds of the temporal constraint,

as shown in Fig. 3-5. The goal episode and temporal constraint can be expressed in

MITL as follows.

• Let interval I be [lb, ub], and hence, the left bound l(I) = lb and the right bound

r(I) = ub;

• cs ∧ (co UI ce) holds at time ei;

• ce holds at time ej.

Thus, it is enforced that the start state constraint cs holds at the start event of the

goal episode, the end state constraint ce holds at the end event of the goal episode,

and the overall state constraint co holds in between for at least lb and at most ub.

ei ej

[l(I), r(I)]

ge1

Start:
Overall:
End:

ge2

Start:
Overall:
End:

ek

ei ej

[lb, ub]

ge

Start: cs
Overall: co
End: ce

...

Figure 3-5: Part of a QSP. There is a goal episode ge and a temporal constraint cT

between two events ei and ej.

I next show that any QSP can be expressed in MITL. Suppose between two events ei

and ej in a QSP, there is a goal episode ge = 〈ei, ej, cs, co, ce〉 and a temporal constraint

cT : [lb, ub], where cs, co and ce are the start, overall and end state constraints for the

goal episode, and lb, ub are the lower and upper bounds of the temporal constraint,

as shown in Fig. 3-5. The goal episode and temporal constraint can be expressed in

MITL as follows.

• Let interval I be [lb, ub], and hence, the left bound l(I) = lb and the right bound

r(I) = ub;

• cs ∧ (co UI ce) holds at time ei;

• ce holds at time ej.

Thus, it is enforced that the start state constraint cs holds at the start event of the

goal episode, the end state constraint ce holds at the end event of the goal episode,

and the overall state constraint co holds in between for at least lb and at most ub.

On the other hand, any non-disjunctive MITL can be expressed in QSP. We focus

on the until operator, φ1UIφ2, to explain the mapping. Recall that φ1 UI φ2 is true

at time t if and only if φ1 is true at time t, and remains true for at least l(I) and

at most r(I) time units, until φ2 becomes true. This can be expressed in QSP as in

Fig. ??.

3.1.4 Input: Hybrid Durative Action Types

DA specifies the set of hybrid durative action types that a system can perform. The

actions are hybrid, as they have both continuous and discrete effects. The actions are

55

ei ej

[lb, ub]

ge

Start: cs
Overall: co
End: ce

...

Figure 3-5: Part of a QSP. There is a goal episode ge and a temporal constraint cT

between two events ei and ej.

I next show that any QSP can be expressed in MITL. Suppose between two events ei

and ej in a QSP, there is a goal episode ge = 〈ei, ej, cs, co, ce〉 and a temporal constraint

cT : [lb, ub], where cs, co and ce are the start, overall and end state constraints for the

goal episode, and lb, ub are the lower and upper bounds of the temporal constraint,

as shown in Fig. 3-5. The goal episode and temporal constraint can be expressed in

MITL as follows.

• Let interval I be [lb, ub], and hence, the left bound l(I) = lb and the right bound

r(I) = ub;

• cs ∧ (co UI ce) holds at time ei;

• ce holds at time ej.

Thus, it is enforced that the start state constraint cs holds at the start event of the

goal episode, the end state constraint ce holds at the end event of the goal episode,

and the overall state constraint co holds in between for at least lb and at most ub.

On the other hand, any non-disjunctive MITL can be expressed in QSP. We focus

on the until operator, φ1UIφ2, to explain the mapping. Recall that φ1 UI φ2 is true

at time t if and only if φ1 is true at time t, and remains true for at least l(I) and

at most r(I) time units, until φ2 becomes true. This can be expressed in QSP as in

Fig. ??.

3.1.4 Input: Hybrid Durative Action Types

DA specifies the set of hybrid durative action types that a system can perform. The

actions are hybrid, as they have both continuous and discrete effects. The actions are

55

ei ej

[lb, ub]

ge

Start: cs
Overall: co
End: ce

...

Figure 3-5: Part of a QSP. There is a goal episode ge and a temporal constraint cT

between two events ei and ej.

I next show that any QSP can be expressed in MITL. Suppose between two events ei

and ej in a QSP, there is a goal episode ge = 〈ei, ej, cs, co, ce〉 and a temporal constraint

cT : [lb, ub], where cs, co and ce are the start, overall and end state constraints for the

goal episode, and lb, ub are the lower and upper bounds of the temporal constraint,

as shown in Fig. 3-5. The goal episode and temporal constraint can be expressed in

MITL as follows.

• Let interval I be [lb, ub], and hence, the left bound l(I) = lb and the right bound

r(I) = ub;

• cs ∧ (co UI ce) holds at time ei;

• ce holds at time ej.

Thus, it is enforced that the start state constraint cs holds at the start event of the

goal episode, the end state constraint ce holds at the end event of the goal episode,

and the overall state constraint co holds in between for at least lb and at most ub.

On the other hand, any non-disjunctive MITL can be expressed in QSP. We focus

on the until operator, φ1UIφ2, to explain the mapping. Recall that φ1 UI φ2 is true

at time t if and only if φ1 is true at time t, and remains true for at least l(I) and

at most r(I) time units, until φ2 becomes true. This can be expressed in QSP as in

Fig. ??.

3.1.4 Input: Hybrid Durative Action Types

DA specifies the set of hybrid durative action types that a system can perform. The

actions are hybrid, as they have both continuous and discrete effects. The actions are

55

ei ej

[lb, ub]

ge

Start: cs
Overall: co
End: ce

...

Figure 3-5: Part of a QSP. There is a goal episode ge and a temporal constraint cT

between two events ei and ej.

I next show that any QSP can be expressed in MITL. Suppose between two events ei

and ej in a QSP, there is a goal episode ge = 〈ei, ej, cs, co, ce〉 and a temporal constraint

cT : [lb, ub], where cs, co and ce are the start, overall and end state constraints for the

goal episode, and lb, ub are the lower and upper bounds of the temporal constraint,

as shown in Fig. 3-5. The goal episode and temporal constraint can be expressed in

MITL as follows.

• Let interval I be [lb, ub], and hence, the left bound l(I) = lb and the right bound

r(I) = ub;

• cs ∧ (co UI ce) holds at time ei;

• ce holds at time ej.

Thus, it is enforced that the start state constraint cs holds at the start event of the

goal episode, the end state constraint ce holds at the end event of the goal episode,

and the overall state constraint co holds in between for at least lb and at most ub.

On the other hand, any non-disjunctive MITL can be expressed in QSP. We focus

on the until operator, φ1UIφ2, to explain the mapping. Recall that φ1 UI φ2 is true

at time t if and only if φ1 is true at time t, and remains true for at least l(I) and

at most r(I) time units, until φ2 becomes true. This can be expressed in QSP as in

Fig. ??.

3.1.4 Input: Hybrid Durative Action Types

DA specifies the set of hybrid durative action types that a system can perform. The

actions are hybrid, as they have both continuous and discrete effects. The actions are

55

ei ej

[lb, ub]

ge

Start: cs
Overall: co
End: ce

...

Figure 3-5: Part of a QSP. There is a goal episode ge and a temporal constraint cT

between two events ei and ej.

I next show that any QSP can be expressed in MITL. Suppose between two events ei

and ej in a QSP, there is a goal episode ge = 〈ei, ej, cs, co, ce〉 and a temporal constraint

cT : [lb, ub], where cs, co and ce are the start, overall and end state constraints for the

goal episode, and lb, ub are the lower and upper bounds of the temporal constraint,

as shown in Fig. 3-5. The goal episode and temporal constraint can be expressed in

MITL as follows.

• Let interval I be [lb, ub], and hence, the left bound l(I) = lb and the right bound

r(I) = ub;

• cs ∧ (co UI ce) holds at time ei;

• ce holds at time ej.

Thus, it is enforced that the start state constraint cs holds at the start event of the

goal episode, the end state constraint ce holds at the end event of the goal episode,

and the overall state constraint co holds in between for at least lb and at most ub.

On the other hand, any non-disjunctive MITL can be expressed in QSP. We focus

on the until operator, φ1UIφ2, to explain the mapping. Recall that φ1 UI φ2 is true

at time t if and only if φ1 is true at time t, and remains true for at least l(I) and

at most r(I) time units, until φ2 becomes true. This can be expressed in QSP as in

Fig. ??.

3.1.4 Input: Hybrid Durative Action Types

DA specifies the set of hybrid durative action types that a system can perform. The

actions are hybrid, as they have both continuous and discrete effects. The actions are

55

ei ej

[lb, ub]

ge

Start: cs
Overall: co
End: ce

...

Figure 3-5: Part of a QSP. There is a goal episode ge and a temporal constraint cT

between two events ei and ej.

I next show that any QSP can be expressed in MITL. Suppose between two events ei

and ej in a QSP, there is a goal episode ge = 〈ei, ej, cs, co, ce〉 and a temporal constraint

cT : [lb, ub], where cs, co and ce are the start, overall and end state constraints for the

goal episode, and lb, ub are the lower and upper bounds of the temporal constraint,

as shown in Fig. 3-5. The goal episode and temporal constraint can be expressed in

MITL as follows.

• Let interval I be [lb, ub], and hence, the left bound l(I) = lb and the right bound

r(I) = ub;

• cs ∧ (co UI ce) holds at time ei;

• ce holds at time ej.

Thus, it is enforced that the start state constraint cs holds at the start event of the

goal episode, the end state constraint ce holds at the end event of the goal episode,

and the overall state constraint co holds in between for at least lb and at most ub.

On the other hand, any non-disjunctive MITL can be expressed in QSP. We focus

on the until operator, φ1UIφ2, to explain the mapping. Recall that φ1 UI φ2 is true

at time t if and only if φ1 is true at time t, and remains true for at least l(I) and

at most r(I) time units, until φ2 becomes true. This can be expressed in QSP as in

Fig. ??.

3.1.4 Input: Hybrid Durative Action Types

DA specifies the set of hybrid durative action types that a system can perform. The

actions are hybrid, as they have both continuous and discrete effects. The actions are

55

Figure 3-6: A QSP representing φ1UIφ2. Goal episode ge1 specifies that φ1 is true for
at least l(I) and at most r(I). Goal episode ge2 specifies that φ2 is true immediately
after.

On the other hand, any non-disjunctive MITL can be expressed in QSP. We focus

on the until operator, φ1UIφ2, to explain the mapping. Recall that φ1 UI φ2 is true

57

at time t if and only if φ1 is true at time t, and remains true for at least l(I) and

at most r(I) time units, until φ2 becomes true. This can be expressed in QSP as in

Fig. 3-6.

3.1.4 Input: Hybrid Durative Action Types

DA specifies the set of hybrid durative action types that a system can perform. The

actions are hybrid, as they have both continuous and discrete effects. The actions are

durative, as they have flexible durations.

Definition 10. [Hybrid Durative Action Type] A hybrid durative action type is

a 4-tuple, 〈Cond,Eff,Dyn, d〉, where

• Cond is a finite set of conditions of the hybrid durative action type (Def. 11).

• Eff is a finite set of discrete effects of the hybrid durative action type

(Def. 12).

• Dyn is the dynamics of the hybrid durative action type (Def. 13).

• d ∈ < is the duration of the hybrid durative action type (Def. 15).

Similar to the PDDL languages [MtAPCC98, FL03, FL01], the action types are

parameterized, such that one action type can be applied to various objects by various

subjects.

As an example, in the fire fighting scenario, the air vehicle can perform the following

hybrid durative action types: fly, get-water, extinguish-fire, take-photo. The

action specifications are shown in Fig. 3-7.

Action get-water can be applied to both lakes. “?l - lake” means that l is of

the type lake. Each lake l corresponds to a specific polyhedron region on the map

(Fig. 3-3): lake1 = {3x − y ≥ 64, x + 2y ≤ 180, x − 4y ≤ −184, 7x − 2y ≤ 220},
and lake2 = {7x − 11y ≥ 167, 5x + 2y ≤ 415, x + 5y ≥ 175}. Likewise, action

extinguish-fire and take-photo can be applied to both fire regions. Each fire

region f corresponds to a specific polyhedron region on the map (Fig. 3-3): fire1 =

{x ≤ 95, x ≥ 90, y ≤ 58, y ≥ 52}, and fire2 = {x ≤ 85, x ≥ 80, y ≤ 32, y ≥ 26}.

58

(:durative-action fly
 :condition (overall (fuel ≥ 0))
 :discrete-effect ()
 :dynamics (and (Eq.3.4)(Eq.3.5))
 :duration (d ∈ [0, +∞)))

(:durative-action get-water
 :parameter (?l - lake)
 :condition (and (start (¬ have-water))
 (overall (at ?l))(overall (fuel ≥ 0)))
 :discrete-effect (end (have-water))
 :dynamics ()
 :duration (d ∈ [3, 5]))(:durative-action extinguish-fire

 :parameter (?f - fire)
 :condition (and (start (¬ fire-out ?f))
 (start (have-water))
 (overall (fuel ≥ 0))(overall (at ?f)))
 :discrete-effect (and (end (¬ have-water))
 (end (fire-out ?f)))
 :dynamics ()
 :duration (d ∈ [4, 8.5]))

(:durative-action take-photo
 :parameter (?f - fire)
 :condition (and (start (fire-out ?f))
 (start (¬ photo-taken ?f))
 (overall (fuel ≥ 0))(overall (at ?f)))
 :discrete-effect (end (photo-taken ?f))
 :dynamics ()
 :duration (d ∈ [1, 2]))

Figure 3-7: In the fire fighting scenario, the air vehicle can perform the following
hybrid durative action types: fly, get-water, extinguish-fire, take-photo.

Conditions

Conditions are requirements that must be satisfied in order for an action to take place.

They are specified in different stages of the action: start, overall, and end.

Definition 11. [Condition of a Hybrid Durative Action Type] A condition of

a hybrid durative action type is a 3-tuple, 〈conds, condo, conde〉, where

• conds is the start condition, representing the state constraint that holds at the

start point of the action.

• condo is the overall condition, representing the state constraint that holds for

the duration of the action, excluding the start and the end point of the action.

• conde is the end condition, representing the state constraint that holds at the

end point of the action.

conds, condo and conde are all specified by (Ax ≤ b) ∧i li, where Ax ≤ b, called

the continuous condition, is a system of linear inequalities over the real-valued state

variables x, and each li, called a discrete condition, is a positive or negative literal for

a propositional state variable pi ∈ p.

59

In the fire fighting scenario, as shown in Fig. 3-7, the condition of action fly is

that the vehicle has fuel throughout the action; the condition of action get-water

is that the vehicle has no water at the start, is at the lake throughout, and has fuel

throughout the action; the condition of action extinguish-fire is that the fire is

not out at the start, the vehicle has water at the start, has fuel throughout, and is at

the fire throughout the action; and the condition of action take-photo is that the

fire is out at the start, photo of the fire is not taken at the start, the vehicle has fuel

throughout, and is at the fire throughout the action. Note that the condition of being

at lake or being at fire corresponds to a system of linear inequalities over the state

variables. For example, the condition of being at Lake 1 translates to Eq. 3.2.

(x, y) ∈ {3x− y ≥ 64, x+ 2y ≤ 180, x− 4y ≤ −184, 7x− 2y ≤ 220} (3.2)

Discrete Effects

Discrete effects capture the changed propositional truth values as a result of the action.

They are specified in different stages of the action: start, overall, and end.

Definition 12. [Discrete Effect of a Hybrid Durative Action Type] A discrete

effect of a hybrid durative action type is a 3-tuple, 〈effs, effo, effe〉, where

• effs is the start effect, which is true at the start point of the action.

• effo is the overall effect, which is true for overall of the action.

• effe is the end effect, which is true at the end point of the action.

effs, effo and effe are all specified by ∧ili, where li is a positive or negative literal

of a propositional variable pi ∈ p.

In the fire fighting scenario, as shown in Fig. 3-7, the discrete effect of action fly

is unspecified; the discrete effect of action get-water is that the vehicle has water at

the end of the action; the discrete effect of action extinguish-fire is that the fire

60

is out at the end, and the vehicle has no water at the end of the action; the discrete

effect of action take-photo is that photo of the fire is taken at the end of the action.

Dynamics

Dynamics describe the state transition and the actuation limits of a system when

performing an action.

Definition 13. [Dynamics of a Hybrid Durative Action Type] Dynamics of a

hybrid durative action type is a pair, 〈TranS, Lim〉, where

• TranS represents the state transition equation (Def. 14).

• Lim, representing the actuation limits, is a pair, 〈lb,ub〉, where lb ∈ <m and

ub ∈ <m are lower and upper bounds on the control variables u: u ∈ [lb,ub].

Definition 14. [State Equation of a Hybrid Durative Action Type] Given a

time discretization 〈t0, t1, . . .〉 ∈ <N , a state equation is a linear relation, expressing

the value of the real-valued state variables x, at all time steps ti, as a function of x

and u, at time step ti−1, in the form of Eq. 3.3,

∀ti, x(ti) = Ax(ti−1) + Bu(ti−1), (3.3)

where A is a n× n matrix of constants, and B is a n×m matrix of constants

In the fire fighting scenario, as shown in Fig. 3-7, the dynamics of action fly are

shown in Eq. 3.4 and Eq. 3.5 ; and the dynamics of other actions are unspecified.

x

y

vx

vy

fuel

(ti) =

1 0 ∆t 0 0

0 1 0 ∆t 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

×

x

y

vx

vy

fuel

(ti−1)+

∆t2

2
0 0

0
∆t2

2
0

∆t 0 0

0 ∆t 0

0 0 ∆t

×

ax

ay

rf

 (ti−1)

(3.4)

61

ax ∈ [−7.5, 7.5]

ay ∈ [−7.5, 7.5]

rf ∈ [−1,−1] (3.5)

Eq. 3.4 shows how the continuous state of the air vehicle (position, velocity and

fuel) evolves from time ti−1 to time ti. As shown in Eq. 3.5, the fuel consumption rate

is -1, while the x and y accelerations of the air vehicle can take any value within the

range specified in Eq. 3.5.

Duration

Actions have flexible durations. Each duration is a real-valued variable bounded by a

lower bound and an upper bound.

Definition 15. [Duration of a Hybrid Durative Action Type] The duration of

a hybrid durative action type, d, is a pair, 〈dl, du〉, where dl ∈ < is the lower bound

and du ∈ < is the upper bound, such that d ∈ [dl, du].

In the fire fighting scenario, the bounds on the duration for each action is shown

in Fig. 3-7.

3.1.5 Input: External Constraint

External constraints, C, impose external requirements on the state of the system

under control. They are in conjunctive normal form (CNF), and are specified by a

conjunction of clauses, each of which is a disjunction of linear inequalities over the

state variables x.

Definition 16. [External Constraint] An external constraint c is defined as a

conjunction of disjunctions of linear inequalities, ∧i(∨j a
′
ijx ≤ bij), where x ∈ <n

is the continuous state variables, a′ij is the transpose of aij, aij ∈ <n is a vector of

constants, and bij ∈ < is a constant.

62

Each disjunction, ∨ a′x ≤ b, is called a clause. When a clause is composed only of

one linear inequality, it is called a unit clause.

In the fire fighting scenario, the external constraints require that the position of

the air vehicle be outside the no fly zones (NFZs) and be inside the map at all times.

The constraint for outside NFZ 1 is shown in Eq. 3.6. The constraint for outside NFZ

2 is shown in Eq. 3.7. The constraint for inside the map is shown in Eq. 3.8, which is

a conjunction of unit clauses.

∀t, x ≥ 26 ∨ x ≤ 18 ∨ y ≥ 54 ∨ y ≤ 49 (3.6)

∀t, x ≥ 80 ∨ x ≤ 63 ∨ y ≤ 34 ∨ 5x− 17y ≤ −620 (3.7)

∀t, {x ≥ 0, x ≤ 100, y ≥ 0, y ≤ 70} (3.8)

3.1.6 Input: Objective Function

An objective function f is a linear or quadratic function to be minimized. It is a

function over real-valued state variables x, control variables u, and time. In this thesis,

the objective function is limited to be linear or quadratic, purely due to the limitation

of the state-of-the-art constraint solver that is used.

Definition 17. [Objective Function] An objective function is a function from

<n+m+1 to <, f : <n+m+1 7→ <. It is a linear or quadratic function, f = a′X or

f = X′AX + b′X, where X = [x u t]′ is the combined vector of the state variables,

control variables and time; a′ is the transpose of a, a ∈ <n+m+1 is a vector of constant;

A : <n+m+1 ×<n+m+1 is a constant matrix; b′ is the transpose of b, and b ∈ <n+m+1

is a vector of constants.

In the fire fighting scenario, typical objective functions are to minimize fuel use,

distance traveled, or mission completion time.

63

3.1.7 Output: Optimal Hybrid Plan

To recapitulate, the hybrid planning problem for KQSP is, to output an optimal hybrid

plan PQSP , given an initial state, a QSP, a set of available action types, external

constraints to satisfy and an objective function. I define the optimal hybrid plan in

this section.

Definition 18. [Optimal Hybrid Plan of KQSP] An optimal hybrid plan of KQSP

is a triple, PQSP =< A∗,S∗,U∗ >, where

• A∗ = {a∗d(tn1), a
∗
d(tn2), . . . , a

∗
d(tnm)} is an optimal sequence of action-duration

pairs; a∗d(tni
) is the set of 〈a, d〉 pairs at time tni

; in each pair, a is an action

instantiated from the hybrid durative action types DA that starts at time tni
,

and d is its duration;

• S∗ = {s∗(t1), s∗(t2), . . . , s∗(tN)} is an optimal sequence of assignment to the

continuous and discrete state variables s = 〈x,p〉, s∗(ti) is the assignment to s

at time ti;

• U∗ = {u∗(t1),u∗(t2), . . . ,u∗(tN−1)} is an optimal sequence of assignment to the

control variables u, u∗(ti) is the assignment to u at time ti;

such that all of the following are true:

• T ′ ⊆ T , where T ′ = {tn1 , tn2 , . . . , tnm} and T = {t1, t2, . . . , tN}, and ∀ti, ti−1 ∈
T, ti − ti−1 = ∆t, where ∆t is a discretization constant.

• Initial conditions are satisfied. s∗(t1) = 〈x∗(t1),p∗(t1)〉 ∈ I, where I is the

initial conditions;

• QSP is satisfied. ∀gei, C
j
T ∈ QSP, S∗ satisfy Ci

s and Cj
T , where QSP is the

input QSP, gei is a goal episode of the QSP, Ci
s is the state constraint of the

goal episode, and Cj
T is a temporal constraint of the QSP;

• No actions that overlap in time are mutex. ∀ti ∈ T, no actions that take place

at time ti are mutex (Table 4.1);

64

• If an action is performed at time ti, then all its preconditions are resolved

(Def. 33) at time ti;

• If a fact is true at time ti, where i > 1, then at least one action that causes the

fact to be true is performed at time ti−1;

• Each action satisfies its dynamics. ∀ti = t1, . . . , tN−1, u∗(ti) ∈ Lim(a(ti)), ∀a
that takes place at time ti, and {x∗(ti),u∗(ti),x∗(ti+1)} satisfy TranS(a(ti)), ∀a
that takes place at time ti, where Lim(a(ti)) is the dynamic limitation of action

a that takes place at time ti, and TranS(a(ti)) is the state transition equation of

action a that takes place at time ti;

• The duration of each action satisfies the duration bounds of its action type.

∀tni
∈ T ′, ∀〈a, d〉 ∈ a∗d(tni

), d ∈ [dl, du], where [dl, du] are the duration bounds

of action a;

• External constraints are satisfied. ∀ci ∈ C, the optimal continuous state variables

{x∗(t1),x∗(t2), . . . ,x∗(tN)} satisfy ci, where C is the external constraints;

• The objective function f is minimized.

3.2 Problem Statement for KDA

The previous section defined the problem that KQSP solves. In this section, I define

the problem that KDA solves. Recall that KQSP reformulates the QSP to durative

actions and a final goal state, and then engages KDA. KDA is a planner that handles

durative actions with flexible durations.

Definition 19. [Hybrid Durative Action Planning Problem] Given

< s,u, I,G,DA, C, f >, the hybrid durative action planning problem of KDA is to

return Pda, where

• s = 〈x,p〉 is a set of real-valued and propositional state variables (Def. 2),

• u is a set of real-valued control variables (Def. 3),

65

• I is the initial conditions (Def. 4),

• G is the final goal conditions (Def. 20),

• DA is a set of hybrid durative action types (Def. 10),

• C is a set of external constraints (Def. 16),

• f is an objective function (Def. 17),

• Pda is a hybrid optimal plan (Def. 21).

Def. 19 is similar to the hybrid QSP planning problem (Def. 1) that KQSP solves,

with two differences. First, the goals in Def. 1 are expressed by a QSP, whereas the

goals in Def. 19 are expressed as the final goal conditions, G. Second, the output

hybrid optimal plan is slightly different.

3.2.1 Input: Goal Conditions

The goal conditions, G, specify constraints on the final value of the state variables s.

Definition 20. [Goal Conditions] G = (Ax ≤ b) ∧i li, where Ax ≤ b is a system

of linear inequalities over the real-valued state variables x, and each li is a positive or

negative literal for a propositional state variable pi ∈ p.

In the fire fighting example, the goal conditions constrain the final position, velocity

and fuel of the air vehicle, and specify the final value of the propositional state variables.

3.2.2 Output: Optimal Hybrid Plan

Definition 21. [Optimal Hybrid Plan of KDA] An optimal hybrid plan of KDA

is a triple, PDA =< A∗,S∗,U∗ >, where

• A∗ = {a∗d(tn1), a
∗
d(tn2), . . . , a

∗
d(tnm)} is an optimal sequence of action-duration

pairs; a∗d(tni
) is the set of 〈a, d〉 pairs at time tni

; in each pair, a is an action

instantiated from the hybrid durative action types DA that starts at time tni
,

and d is its duration;

66

• S∗ = {s∗(t1), s∗(t2), . . . , s∗(tN)} is an optimal sequence of assignment to the

continuous and discrete state variables s = 〈x,p〉, s∗(ti) is the assignment to s

at time ti;

• U∗ = {u∗(t1),u∗(t2), . . . ,u∗(tN−1)} is an optimal sequence of assignment to the

control variables u, u∗(ti) is the assignment to u at time ti;

such that all of the following are true:

• T ′ ⊆ T , where T ′ = {tn1 , tn2 , . . . , tnm} and T = {t1, t2, . . . , tN}, and ∀ti, ti−1 ∈
T, ti − ti−1 = ∆t, where ∆t is a discretization constant.

• Initial conditions are satisfied. s∗(t1) = 〈x∗(t1),p∗(t1)〉 ∈ I, where I is the

initial conditions;

• Goal conditions are satisfied. s∗(N) = 〈x∗(N),p∗(N)〉 ∈ G, where G is the goal

conditions;

• No actions that overlap in time are mutex. ∀ti ∈ T, no actions that take place

at time ti are mutex (Table 4.1);

• If an action is performed at time ti, then all its preconditions are resolved

(Def. 33) at time ti;

• If a fact is true at time ti, where i > 1, then at least one action that causes the

fact to be true is performed at time ti−1;

• Each action satisfies its dynamics. ∀ti = t1, . . . , tN−1, u∗(ti) ∈ Lim(a(ti)), ∀a
that takes place at time ti, and {x∗(ti),u∗(ti),x∗(ti+1)} satisfy TranS(a(ti)), ∀a
that takes place at time ti, where Lim(a(ti)) is the dynamic limitation of action

a that takes place at time ti, and TranS(a(ti)) is the state transition equation of

action a that takes place at time ti;

• The duration of each action satisfies the duration bounds of its action type.

∀tni
∈ T ′, ∀〈a, d〉 ∈ a∗d(tni

), d ∈ [dl, du], where [dl, du] are the duration bounds

of action a;

67

• External constraints are satisfied. ∀ci ∈ C, the optimal continuous state variables

{x∗(t1),x∗(t2), . . . ,x∗(tN)} satisfy ci, where C is the external constraints;

• The objective function f is minimized.

3.3 Problem Statement for KAA

The previous section defined the problem that KDA solves. In this section, I define the

problem that KAA solves. Recall that KDA reformulates the durative actions to atomic

actions, and then engages KAA. KAA is the core planner of Kongming. It handles

atomic actions.

Definition 22. [Hybrid Atomic Action Planning Problem] Given

< s,u, I,G,AA, C, f >, the hybrid atomic action planning problem of KAA is to return

Paa, where

• s = 〈x,p〉 is a set of real-valued and propositional state variables (Def. 2),

• u is a set of real-valued control variables (Def. 3),

• I is the initial conditions (Def. 4),

• G is the final goal conditions (Def. 20),

• AA is a set of hybrid atomic action types (Def. 23),

• C is a set of external constraints (Def. 16),

• f is an objective function (Def. 17),

• Paa is a hybrid optimal plan (Def. 27).

Def. 22 is similar to the hybrid durative action planning problem (Def. 19) that

KDA solves, with two differences. First, the action types in Def. 19 are durative with

flexible durations, whereas the action types in Def. 22 are atomic. Second, the output

hybrid optimal plan is slightly different.

68

3.3.1 Input: Hybrid Atomic Action Types

AA specifies the set of hybrid atomic action types that a system can perform. The

actions are hybrid, as they have both continuous and discrete effects. The actions are

atomic, as they all have equal and fixed duration.

Definition 23. [Hybrid Atomic Action Type] A hybrid atomic action type is a

4-tuple, 〈Cond,Eff,Dyn, d〉, where

• Cond is a finite set of conditions of the hybrid atomic action type (Def. 24).

• Eff is a finite set of discrete effects of the hybrid atomic action type (Def. 25).

• Dyn is the dynamics of the hybrid atomic action type (Def. 13).

• d ∈ < is the duration of the hybrid atomic action type (Def. 26).

Similar to the hybrid durative action types introduced in Section 3.1.4, the atomic

action types are parameterized and have the same dynamics as in Def. 13. The

differences from the durative action types lie in the conditions, discrete effects and

duration. I describe them in detail in the following sections.

In the fire fighting scenario, I described the hybrid durative action types that the

air vehicle can perform in Fig. 3-7. The corresponding atomic action types are shown

in Fig. 3-8.

Conditions

Recall that conditions are requirements that must be satisfied in order for an action to

take place. The definition of a condition of a hybrid atomic action type is similar to

that of a hybrid durative action type. The difference is that the condition of a hybrid

atomic action type is only specified at the start of the action.

Definition 24. [Condition of a Hybrid Atomic Action Type] A condition of a

hybrid atomic action type is specified by Ax ≤ b ∧i li, where Ax ≤ b is a system of

linear inequalities over the continuous state variables x, and li is a positive or negative

literal for a propositional state variable pi ∈ p.

69

(:atomic-action fly
 :condition (fuel ≥ 0)
 :discrete-effect ()
 :dynamics (and (Eq.3.4)(Eq.3.5))
 :duration (d = 2))

(:atomic-action get-water
 :parameter (?l - lake)
 :condition (and (¬ have-water)
 (at ?l)(fuel ≥ 0))
 :discrete-effect (have-water)
 :dynamics ()
 :duration (d = 2))(:atomic-action extinguish-fire

 :parameter (?f - fire)
 :condition (and (¬ fire-out ?f)
 (have-water)
 (fuel ≥ 0)(at ?f))
 :discrete-effect (and (¬ have-water)
 (fire-out ?f))
 :dynamics ()
 :duration (d = 2))

(:atomic-action take-photo
 :parameter (?f - fire)
 :condition (and (fire-out ?f)
 (¬ photo-taken ?f)
 (fuel ≥ 0)(at ?f))
 :discrete-effect (photo-taken ?f)
 :dynamics ()
 :duration (d = 2))

Figure 3-8: In the fire fighting scenario, the air vehicle can perform the following
hybrid atomic action types: fly, get-water, extinguish-fire, take-photo.

In the fire fighting scenario, as shown in Fig. 3-8, the conditions are similar to

those in Fig. 3-7 for durative action types, except that they are not specified over

various stages of the actions. For example, the condition of action get-water is that

the air vehicle has no water, is at the lake and has fuel at the start of the action.

Discrete Effects

Recall that discrete effects capture the changed propositional truth values as a result

of the action. The definition of a discrete effect of a hybrid atomic action type is

similar to that of a hybrid durative action type. The difference is that the discrete

effect of a hybrid atomic action type is only specified at the end of the action.

Definition 25. [Discrete Effect of a Hybrid Atomic Action Type] A discrete

effect of a hybrid atomic action type is specified by ∧ili, where li is a positive or

negative literal for a propositional state variable pi ∈ p.

In the fire fighting scenario, as shown in Fig. 3-8, the discrete effects are similar

to those in Fig. 3-7 for durative action types, except that they are not specified over

various stages of the actions. For example, the discrete effect of action get-water is

that the air vehicle has water at the end of the action.

70

Duration

The atomic action types all share the same fixed duration.

Definition 26. [Duration of a Hybrid Atomic Action Type] The duration of

a hybrid atomic action type is a fixed real-valued number, d ∈ <.

In the fire fighting scenario, as shown in Fig. 3-8, all action types have duration

d = 2.

3.3.2 Output: Optimal Hybrid Plan

I define the optimal hybrid plan output of KAA in this section.

Definition 27. [Optimal Hybrid Plan of KAA] An optimal hybrid plan of KAAis

a triple, PAA =< A∗,S∗,U∗ >, where

• A∗ = {a∗(t1), a∗(t2), . . . , a∗(tN−1)} is an optimal sequence of actions instantiated

from the hybrid atomic action types AA, a∗(ti) is the set of actions to be

performed at time ti;

• S∗ = {s∗(t1), s∗(t2), . . . , s∗(tN)} is an optimal sequence of assignment to the

continuous and discrete state variables s = 〈x,p〉, s∗(ti) is the assignment to s

at time ti;

• U∗ = {u∗(t1),u∗(t2), . . . ,u∗(tN−1)} is an optimal sequence of assignment to the

control variables u, u∗(ti) is the assignment to u at time ti;

such that all of the following are true:

• ∀i = 1, . . . , N − 1, ti+1 − ti = ∆t, where ∆t is a discretization constant.

• < A∗,S∗,U∗ > is a valid hybrid plan (Def. 36).

• The objective function f is minimized.

This chapter formally defined the problem statement for the three planners in

Kongming: KQSP, KDA and KAA. Chapter 4 will introduce the plan representation of

KAA, and Chapter 5 will introduce the planning algorithm of KAA.

71

72

Chapter 4

Plan Representation for KAA

Contents

4.1 Flow Tube Representation of Actions 75

4.1.1 Flow Tube Definition . 78

4.1.2 Properties . 82

4.1.3 Flow Tube Approximation 83

4.1.4 Related Work . 85

4.2 Hybrid Flow Graph . 87

4.2.1 Planning Graph . 87

4.2.2 Hybrid Flow Graph: Fact Levels 89

4.2.3 Hybrid Flow Graph: Action Levels 91

4.3 Hybrid Flow Graph Construction 95

4.3.1 Mutual Exclusion . 95

4.3.2 Definition and Properties of A Hybrid Flow Graph 102

4.3.3 Defining Contained . 105

4.3.4 Graph Expansion Algorithm 107

4.3.5 Level Off . 113

73

As defined in Chapter 3, Kongming plans for a qualitative state plan (QSP) with

temporally flexible hybrid actions. Recall that Kongming is divided into three planners,

as shown in Fig. 4-1. KQSP is a planner that plans for QSPs, by reformulating the QSP

to durative actions and a final goal state, and then engaging KDA. KDA is a planner

that handles durative actions with flexible durations, by reformulating durative actions

to atomic actions and then engaging KAA. KAA is a planner that handles atomic

actions and a final goal state. I describe the plan representation for KAA in this

chapter.

Kongming AA (KAA)
Hybrid Flow Graph

Constraint-based Planner

Durative action Atomic actions

 Qualitative State Plan Durative actions
 Final goal state

Kongming DA (KDA)

Kongming QSP (KQSP)

KAA Output Conversion

KDA Output Conversion

Figure 4-1: Overview of Kongming’s approach.

KAA consists of the following two parts: 1) a compact representation of the space of

possible hybrid plans (plan space), which can be employed by a wide range of planning

algorithms, from constraint-based planning [WW99, SD05, KS92, KS99, DK01a] to

heuristic search [CCFL09, HN01, MBB+09, DK01b, BG99, BG01, McD96]; and 2) a

constraint-based planning algorithm that operates on the hybrid plan representation.

I introduce the plan representation in this chapter, and the constraint-based planning

algorithm in the next chapter.

74

Kongming’s plan representation, called the Hybrid Flow Graph, builds upon the

Planning Graph from Graphplan [BF97] and Flow Tubes [Hof06]. Flow tubes represent

all valid trajectories of continuous actions, starting from an initial region. A flow tube

is followed by a flow tube or a discrete action, if the first flow tube’s end region has a

non-empty intersection with the follower’s continuous condition. Similar to a Planning

Graph, a Hybrid Flow Graph is a directed, leveled graph that alternates between fact

levels and action levels. Different from a Planning Graph, fact levels in a Hybrid Flow

Graph contains not only propositional facts but also continuous regions, and action

levels contain hybrid actions. A Hybrid Flow Graph represents all valid plans while

pruning some invalid plans through mutual exclusion.

This chapter is organized as follows. First, I introduce the flow tube representation

of hybrid actions. Second, I introduce Hybrid Flow Graphs to represent all valid plans.

Finally, I describe the algorithm for constructing a Hybrid Flow Graph.

4.1 Flow Tube Representation of Actions

Recall the discussion in Section 2.4. When planning with purely discrete actions, as

in Graphplan [BF97] and other discrete planners, the decision variables are discrete,

and hence the planner only needs to reason about a finite number of trajectories in

plan space. However, when continuous actions and continuous states are included in

planning, the planner needs a compact way of representing and reasoning about an

infinite number of trajectories and states. Kongming’s representation of each set of

trajectories is a flow tube in the spirit of [Hof06].

In this section, I address the problem of how to compactly represent the infinite

number of trajectories of each continuous action. More specifically, the problem

I am solving is, given an initial region in state space, defined by a conjunction of

linear (in)equalities over the continuous state variables, x, and given an action model,

including continuous conditions, a state equation of the system dynamics, actuation

limits, and a duration, generate an abstract description of all possible state trajectories

of this action, starting from the initial region. I justify this problem statement as

75

follows.

• Each action is assumed to start from an initial region, which is more general

than an initial point. Due to execution uncertainty, the initial state of an action,

when it is executed, is uncertain. This uncertainty is partly addressed by keeping

a region for the initial state.

• In this section, the initial region is considered as given, and the focus is on the

core concepts of generating flow tubes. Section 4.2.3 addresses the computation

of initial regions, in the context of the Hybrid Flow Graph.

• Recall the definition of hybrid atomic action types in Chapter 3. A hybrid atomic

action type consists of four components: conditions, discrete effects, dynamics,

and duration. The continuous condition in the action model constrains the

initial region from where the action starts, which will be discussed in Section

4.2.3. The discrete conditions and effects in the action model do not affect the

continuous state trajectory of the action, and hence, are not considered. The

dynamics are derived from the physical properties of the autonomous system

performing the action. More specifically, the state equation governs the evolution

of the continuous state variables from one time point to the next. The actuators

of the autonomous system, for example, electric motors, have limited power, and

hence, there are actuation limits.

• Recall from the problem statement for KAA in Section 3.3, there are external

constraints, C, which impose external requirements on the state of the system.

For example, C could include constraints requiring that the position of a vehicle be

outside an obstacle, which are expressed as a disjunction of linear (in)equalities

over the state variables. However, in this section, I simplify the problem

of representing the possible state trajectories of an action by ignoring these

constraints, so that I can focus on the core concepts of flow tubes. The constraints

will be discussed in Section 4.2.2.

• I am interested in a description of all feasible state trajectories that an action

76

could evolve through, in order to have a complete plan representation. KAA

engages its constraint-based planner on the complete plan representation, to

search for an optimal plan, which will be described in Chapter 5.

KAA uses a flow tube as the abstract description of all possible state trajectories of

each continuous action. I call a hybrid action that has specified dynamics a continuous

action. Intuitively, a continuous action, alters or maintains the continuous state of

the autonomous system over time. I start the explanation with the simplest case. A

continuous action starting from a specific initial state, with a specific control input

and a specific duration, maps to a state trajectory of the action, connecting the initial

state and the end state of the system. For example, as shown in Fig. 4-2, the x axis is

the continuous state space of an AUV, and the t axis is time. The glide action with

control value v between t1 and t2 corresponds to the line connecting point (t1, x1) and

point (t2, x2).

x

t

x2

= x1 + v*(t2 - t1)

x
2

0

x
1

t
2

t
1

action: glide

Figure 4-2: Glide action with control input value v between t1 and t2 corresponds to
the line connecting point (t1, x1) and point (t2, x2).

Autonomous systems in general can have a range of control input values. For exam-

ple, an AUV’s x-velocity may be directly controllable and have range [−2m/s, 2m/s].

Thus an action with a range of control values for a specific duration maps to a range of

state trajectories. I use a flow tube to represent the range of trajectories. For example,

as seen in Fig. 4-3, line AB represents the trajectory for control value vmax and line

AC represents the trajectory for control value vmin. Triangle ABC is the flow tube

used to represent the range of trajectories. Line BC is called the cross section at time

77

t2 of action glide that starts from initial state x1 at t1. A flow tube is a collection of

all the cross sections between two time points.

x

t

v ∈ [vmin, vmax]

xmin
 = x1 + vmin*(t2 - t1)

xmax
 = x1 + vmax*(t2 - t1)

0 t2t1

xmin

xmax

x1

B

C

A

action: glide

Figure 4-3: Line AB corresponds to the trajectory for control value vmax and line AC
corresponds to the trajectory for control value vmin. Triangle ABC is the flow tube
used to represent the range of trajectories.

4.1.1 Flow Tube Definition

I define a flow tube through the concept of cross sections. Given an initial region, an

action model and a duration, a cross section cs is the set of all reachable states over

the duration.

Definition 28. [Cross Section] Given a time point ti and a non-negative duration

d, given the state equation of an action type V, x(ti + d) = Ax(ti) + Bu(ti), given

time invariant bounds on the control variables u(ti) ∈ [ulb,uub], and given an initial

region RI = {x ∈ <n | ∧jgj(x) ≤ 0}, where x(ti) ∈ RI and each gj(x) is a linear

function over x, the cross section of duration d of a V type action that starts from

RI , cs(RI , d), is the range of function

Ax(ti) + Bu(ti), where x(ti) ∈ RI and u(ti) ∈ [ulb,uub]. (4.1)

For the special case where d = 0, cs(RI , d) = RI .

The properties of a cross section cs largely depend on the properties of its initial

region RI . Hence, I first describe the properties of RI . Because the initial region RI

is a polytope, defined by a conjunction of linear inequalities ∧jgj(x) ≤ 0, it has the

78

nice properties associated with a polytope. I describe the properties here. For formal

proofs, please refer to [BT97]. If RI is a non-empty polytope, then

• RI can always be represented a polytope with at least one vertex (extreme

point).

• Let x1, . . . ,xp be the vertices of RI , and w1, . . . ,wq be a complete set of extreme

rays of RI . Then

RI =

{
p∑

k=1

λkx
k +

q∑
l=1

θlw
l | λk ≥ 0, θl ≥ 0,

p∑
k=1

λk = 1

}
. (4.2)

Eq. 4.2 states that every point in RI can be represented by a convex combination

of the vertices of RI and a linear combination of the extreme rays of RI . Because

it is trivial to compute the range of function Ax(ti) + Bu(ti), where x(ti) is a point

and u(ti) ∈ [ulb,uub], this property provides an exact way of computing cross section

cs(RI , d). I provide the equations for computing the cross section in the following

lemma, and prove its correctness.

Lemma 1. Let ti be a time point and d be a non-negative duration. Let the state

equation of an action type V be x(ti + d) = Ax(ti) + Bu(ti). Let RI = {x ∈ <n |
∧jgj(x) ≤ 0} be an initial region, such that x(ti) ∈ RI . Let RI be a non-empty

polytope with at least one vertex. Let x1, . . . ,xp be the vertices, and w1, . . . ,wq be a

complete set of extreme rays of RI . Let cs(xk, d) be the cross section of duration d of

a V type action starting from an initial state xk. Let cs(RI , d) be the cross section of

duration d of a V type action starting from RI . Then all of the following hold:

cs(RI , d) =

{
p∑

k=1

λk cs(x
k, d) + A

q∑
l=1

θlw
l | λk ≥ 0, θl ≥ 0,

p∑
k=1

λk = 1

}
(4.3)

{
w1, . . . ,wq

}
= ∅ ⇒ cs(RI , d) =

{
p∑

k=1

λk cs(x
k, d) | λk ≥ 0,

p∑
k=1

λk = 1

}
(4.4)

Proof. (4.3): From Eq. 4.2, we know that any point in RI can be represented as∑p
k=1 λkx

k +
∑q

l=1 θlw
l, where λk ≥ 0, θl ≥ 0,

∑p
k=1 λk = 1. From Definition 28, we

79

know that cs(RI , d) is the range of function Ax(ti) +Bu(ti), where x(ti) ∈ RI ,u(ti) ∈
[ulb,uub]. Hence,

cs(RI , d) =

{
A(

p∑
k=1

λkx
k +

q∑
l=1

θlw
l) + Bu(ti) | λk ≥ 0, θl ≥ 0,

p∑
k=1

λk = 1

}

=

{
p∑

k=1

λkAxk + Bu(ti) + A

q∑
l=1

θlw
l | λk ≥ 0, θl ≥ 0,

p∑
k=1

λk = 1

}

=

{
p∑

k=1

λkAxk + Bu(ti)

p∑
k=1

λk + A

q∑
l=1

θlw
l | λk ≥ 0, θl ≥ 0,

p∑
k=1

λk = 1

}

=

{
p∑

k=1

λk(Axk + Bu(ti)) + A

q∑
l=1

θlw
l | λk ≥ 0, θl ≥ 0,

p∑
k=1

λk = 1

}

=

{
p∑

k=1

λkcs(x
k, d) + A

q∑
l=1

θlw
l | λk ≥ 0, θl ≥ 0,

p∑
k=1

λk = 1

}

(4.4): Eq. 4.4 naturally follows Eq. 4.3.

A flow tube is a set of all the cross sections between two time points. This set of

cross sections is infinite and is described analytically through a function of time.

Definition 29. [Flow Tube] Given a time point ti and a non-negative duration

d, the state equation of an action type x(ti + d) = Ax(ti) + Bu(ti), time invariant

bounds on the control variables u(ti) ∈ [ulb,uub], and an initial region RI = {x ∈ <n |
∧jgj(x) ≤ 0}, where x(ti) ∈ RI and each gj(x) is a linear function over x, a flow

tube of the action that starts from initial region RI is a function ft(RI , t) defined in

the interval of [0, d] such that

ft(RI , t) = cs(RI , t), t ∈ [0, d]. (4.5)

ft(RI , 0) = RI is called the initial region of the flow tube, and ft(RI , d) is called the

end region of the flow tube.

Lemma 1 provides the equations for computing the cross section. It says, when

the initial region is bounded and has n corners, the cross section of the initial region

80

over a duration, is the convex hull of all n cross sections, each of which is computed

from a corner of the initial region.

Fig. 4-4 shows an example of how to compute a flow tube of an action in 1D for a

second-order acceleration limited dynamic system. The state space is the position-

velocity space, x =< x, ẋ >. The control input is acceleration, u =< ax >. Starting

time point is ti, and duration d = 1. The state equation is

 x

ẋ

 (ti + d) =

 1 d

0 1

×
 x

ẋ

 (ti) +

 d2

2

d

× [ax

]
(ti) (4.6)

The actuation limit is bounds on acceleration, ax ∈ [−1, 2]. The initial region RI

is shown in Fig. 4-4(a) in the position-velocity space, with its 4 corners marked A,

B, C and D. The cross section for each corner is computed, based on Eq. 4.6 and

Def. 28. The cross section for corner A is region {x ∈ [2.5, 4], ẋ ∈ [0, 3]}, for B is

region {x ∈ [3.5, 5], ẋ ∈ [0, 3]}, for C is region {x ∈ [5.5, 7], ẋ ∈ [2, 5]}, and for D is

region {x ∈ [4.5, 6], ẋ ∈ [2, 5]}, as shown in Fig. 4-4(b). Finally, the convex hull of

the 4 cross sections is computed as the cross section of initial region RI . The convex

hull is shown in the figure as the union of the 4 cross sections and additional regions

specified by the slanted dashed lines, as shown in Fig. 4-4(b). Fig. 4-4(c) shows the

resulting flow tube.

ẋ

x t

R
I

d

ẋ

0 2 3

1

3

A B

CD

R
I

x

ẋ

0 2 3

2

3

A

5

5 74

B

CD

6

(a) (b) (c)

x

cs

1 4

2

1

1

4

Figure 4-4: An example of constructing a flow tube of an action in 1D for a second-
order acceleration limited dynamical system. (a) shows the initial region RI . (b)
shows the cross section of RI . (c) shows the flow tube of duration d.

81

4.1.2 Properties

In this section, I discuss the properties of cross sections and flow tubes. A cross section

contains and only contains all the reachable points. A flow tube contains all the valid

trajectories, but also contain some invalid trajectories.

Based on the definition of cross sections, I describe two important properties.

Lemma 2. Let ti be a time point and d be a non-negative duration. Let the state

equation of an action type V be x(ti + d) = Ax(ti) + Bu(ti). Let time invariant

bounds on the control variables be u(ti) ∈ [ulb,uub]. Let cs(RI , d) be the cross section

of duration d of a V type action starting from initial region RI . Then the following

hold:

(a) cs(RI , d) contains all points that are reachable at ti + d by the action from RI .

(b) cs(RI , d) only contains points that are reachable at ti + d by the action from RI .

Proof. (a). Suppose there exists outside cs(RI , d), a point x∗ ∈ Rn that is reachable

at ti + d from RI . x∗ is a reachable point, so x∗ satisfies x∗ = Ax̄ + Bū, where x̄ ∈ RI

and ū ∈ [ulb,uub]. Because cs(RI , d) is the range of function Ax(ti) + Bu(ti), where

x(ti) ∈ RI ,u(ti) ∈ [ulb,uub], we know Ax̄ + Bū ∈ cs(RI , d). Hence x∗ ∈ cs(RI , d),

which contradicts the assumption. Therefore, there does not exist such a point x∗.

(b). Suppose there exists a point x∗ ∈ Rn in cs(RI , d) that is not reachable at ti + d

from RI . Because x∗ ∈ cs(RI , d), we know

x∗ ∈ { range of function Ax(ti) + Bu(ti) | x(ti) ∈ RI ,u(ti) ∈ [ulb,uub]} .

Hence, there must exist a x̄ ∈ RI and ū ∈ [ulb,uub], such that x∗ = Ax̄ + Bū.

Therefore, x∗ is reachable, which contradicts the assumption.

Based on the definition of flow tubes, I describe two important properties.

Lemma 3. Let ti be a time point and d be a non-negative duration. Let cs(RI , t), t ∈
[0, d] be cross sections of duration from 0 to d, of a type V action that starts at ti

82

from initial region RI . Let ft(RI , t) be the flow tube of the type V action. Then the

following hold:

(a) ft(RI , t) contains all the valid trajectories.

(b) ft(RI , t) also contains invalid trajectories.

Proof. (a). Suppose there exists a valid trajectory traj(ti, ti +d) of the action between

two time points ti and ti + d, and it goes outside ft(RI , t). A trajectory is a function

of time. traj(ti, ti + d) = y(t), t ∈ [ti, ti + d]. The image of each time t through the

function is an assignment to the state variables x. A flow tube is a function of time

(duration), ft(RI , t). The image of each time t through the function is a cross section,

ft(RI , t) = cs(RI , t), t ∈ [0, d]. Since traj(ti, ti + d) goes outside ft(RI , t), there must

exist at least a time point t∗, such that y(t∗) is not contained in cs(RI , t
∗−ti). Because

traj(ti, ti + d) is a valid trajectory, y(t∗) is a reachable point. This contradicts Lemma

2(a), hence the assumption is false.

(b). I give two examples of the invalid trajectories. As shown in Fig. 4-5, inside flow

tube ft(RI , t), there are two invalid trajectories. The straight dashed line satisfies the

state equation, but its control variable value is outside the actuation limit. The curvy

solid line satisfies neither the state equation nor the actuation limit.

4.1.3 Flow Tube Approximation

Computing a flow tube is equivalent to computing its cross sections, Def. 29. Lemma 1

provides an exact way of computing a cross section. However, it requires enumerating

every vertex and extreme ray of the initial region RI , and taking the convex hull. As

shown in [KV07, ABS97], even in low dimensional systems the number of vertices can

grow very large with the number of steps. The number of steps in the context of this

thesis means the number of consecutive flow tubes in the Hybrid Flow Graph. When

there are a large number of vertices or extreme rays, computing the cross section

becomes expensive. In this thesis, the cross sections are approximated with external

83

x

t

x(t
j
)min

 state equation:

x(t
j
)=x(t

i
)+vx*(tj-ti)

 actuation limit:

vx ∈ [vxmin, vxmax]

 cross section cs(R
I
,t
j
):

x(t
j
)min = x(t

i
)min + vxmin*(tj-ti)

x(t
j
)max = x(t

i
)max + vxmax*(tj-ti)

cs(R
I
,t
j
)

R
I

x(t
i
)min

x(t
i
)max

x(t
j
)max

t
i

t
j

vxmax

vxmin

ft(R
I
,t)

Figure 4-5: Examples of invalid trajectories in a flow tube. There is one state variable,
x. There is one control variable, vx. The state equation and actuation limit of the
action are listed on the right. Inside flow tube ft(RI , t), two invalid trajectories are
shown. The straight dashed line satisfies the state equation, but its control variable
value is outside the actuation limit. The curvy solid line satisfies neither the state
equation nor the actuation limit.

orthotopes1.

I define the approximate cross section as follows.

Definition 30. [Approximate Cross Section] Given a time point ti and a non-

negative duration d. Given the state equation of an action type V, x(ti + d) =

Ax(ti)+Bu(ti). Given time invariant bounds on the control variables u(ti) ∈ [ulb,uub].

Given an initial region RI = {x ∈ <n | ∧jgj(x) ≤ 0}, where x(ti) ∈ RI and each

gj(x) is a linear function over x. Let xlb(ti) ∈ Rn be the lower bound of x(ti), and

xub(ti) ∈ Rn be the upper bound of x(ti). The approximate cross section, c̃s(RI , d),

is

c̃s(RI , d) = {x ∈ Rn | x ∈ [xlb,xub]}, where (4.7)

xlb = Axlb(ti) + Bulb, and xub = Axub(ti) + Buub.

The approximate cross section for the example in Fig. 4-4 is computed as follows.

The state equation is in Eq. 4.6. The initial region RI is shown in Fig. 4-4(a). As

mentioned previously, the state space is the position-velocity space, x =< x, ẋ >, the

1An orthotope is an n-dimensional generalization of a rectangular region.

84

control variable is acceleration, u =< ax >∈ [−1, 2], and duration d = 1. According to

Def. 30, we know xlb(ti) =< xlb(ti), ẋlb(ti) >=< 2, 1 >, xub(ti) =< xub(ti), ẋub(ti) >=<

3, 3 >, and we can compute xlb = Axlb(ti) + Bulb =< 2.5, 0 >, and xub = Axub(ti) +

Buub =< 7, 5 >. The resulting approximate cross section of the cross section in

Fig. 4-4(b) is shown in Fig. 4-6.

x

ẋ

0 2 3

2

3

A

5

5 74

B

CD

6

(a)

1

1

4

x

ẋ

0 2 3

2

3

A

5

5 74

B

CD

6

(b)

1

1

4

Figure 4-6: (a) shows the exact cross section. (b) shows the orthotope external
approximation of the cross section.

Intuitively, an approximate cross section is an orthotope that contains its corre-

sponding exact cross section, c̃s(RI , d) ⊇ cs(RI , d). Based on Lemma 2, the approxi-

mate cross section contains all reachable points of the action, and may also contain

points that are not reachable.

4.1.4 Related Work

Hofmann [Hof06] uses flow tubes to represent bundles of state trajectories that take into

account dynamic limitations due to under-actuation, while satisfying plan requirements

for the foot placement of walking bipeds. By defining the valid operating regions for

the state variables and control parameters in the abstracted model of a biped, the

flow tubes prune infeasible trajectories and ensure plan execution.

Kongming is similar to [Hof06] in that Kongming also uses flow tubes to represent

bundles of state trajectories that satisfy dynamic limitations and plan requirements.

Flow tubes in Kongming are different from those in [Hof06] in the following aspects.

85

• Flow tubes in Kongming contain all valid trajectories; they are complete. Flow

tubes in [Hof06] exclude some of the valid trajectories; they are incomplete.

• Flow tubes in Kongming contain invalid trajectories, while flow tubes in [Hof06]

only contain valid trajectories.

• Two flow tubes in Kongming are connected, if the end region of the first flow tube

intersects with the continuous condition of the second flow tube, as described in

Section 4.2. Two flow tubes in [Hof06] are connected, if the end region of the

first flow tube is a subset of the initial region of the second flow tube.

• In Kongming, a flow tube can also be connected to a discrete action, if the end

region of the flow tube intersects with the continuous condition of the discrete

action. There are no discrete actions in [Hof06].

Similar representations are used in the robotics community, under the name

funnels [Ted09], and in the hybrid systems community, under reachability analysis

[KV07, KGBM04, Gir05, SK03, Kos01]. Reachability analysis for general polytopes is

implemented in the Multi-Parametric Toolbox (MPT) for Matlab [KGBM04], which

is used by [Hof06]. It computes the geometric sum of polytopes at every time

step, by finding the vertices and calculating the convex hull. As pointed out by

[KV07, ABS97], this is very computationally intensive. [Gir05] uses zonotopes for

external approximation of the reach sets. [SK03] uses oriented rectangular polytopes

for external approximation. It is similar to the approximation method KAA uses in

that both methods use rectangular polytopes for external approximation. However,

[SK03] orients the rectangular polytopes to best approximate the reach sets. It gives

a better approximation, at the cost of more computation effort. [Kos01] approximates

the reach sets with parallelotopes. [KV07] approximate with external and internal

ellipsoids.

86

4.2 Hybrid Flow Graph

Thus far I have described how to represent hybrid actions as flow tubes, and the

computation and approximation of flow tubes. In this section, I introduce how to

incorporate the flow tubes into a graph structure similar to a Planning Graph [BF97].

The resulting graph is called a Hybrid Flow Graph.

4.2.1 Planning Graph

Because the Hybrid Flow Graph builds upon a Planning Graph [BF97] structure, I

first review a subset of a Planning Graph that is relevant to the Hybrid Flow Graph.

Additional review can be found in Section 2.5.

The Planning Graph introduced in Graphplan [BF97], is a compact structure for

representing the plan space in the STRIPS-like planning domain. It has been employed

by a wide range of modern planners, including LPGP [LF02], STAN [LF99], GP-CSP

[DK01a], to name a few. The Graphplan planner constructs, analyses the structure,

and extracts a valid plan from it. A Planning Graph encodes the planning problem in

such a way that many useful constraints inherent in the problem become explicitly

available to reduce the amount of search needed. Planning Graphs can be constructed

quickly: they have polynomial size and can be built in polynomial time.

at R1 Earth

at R2 Earth

at Rocket Earth

fuel Rocket

at R1 Earth

at R2 Earth

at Rocket Earth

fuel Rocket

load R1 Earth

load R2 Earth

move Earth Mars

at Rocket Mars

in R1 Rocket

in R2 Rocket

at R1 Earth

at R2 Earth

at Rocket Earth

fuel Rocket

at Rocket Mars

in R1 Rocket

in R2 Rocket

load R1 Earth

load R2 Earth

move Earth Mars

unload R1 Earth

unload R2 Earth

proposition

level 0

proposition

level 1

proposition

level 2

action

level 0

action

level 1

Figure 4-7: A Planning Graph of 3 proposition levels and 2 action levels. Round black
dots represent no-op actions. Solid lines connect conditions with actions and actions
with add-effects. Dotted lines connect actions with delete-effects.

87

As shown in Fig. 4-7, a Planning Graph is a directed, leveled graph, which alternates

between proposition levels, containing propositions, and action levels, containing action

instantiations. Proposition level i contains all propositions that can be true at time

i, and action level i contains all possible actions to take place at time i. There are

special actions, called no-op actions. They preserve propositions from one proposition

level to the next.

Propositions in proposition level i are connected to actions in action level i if

the propositions are the conditions of the actions. For example, in Fig. 4-7, at R1

Earth and at Rocket Earth in proposition level 0 are connected to load R1 Earth

in action level 0, because at R1 Earth and at Rocket Earth are the conditions of

action load R1 Earth.

Actions in action level i are connected to propositions in proposition level i + 1

if the propositions are the effects of the actions. For example, in Fig. 4-7, load R1

Earth in action level 0 is connected to in R1 Rocket and at R1 Earth in proposition

level 1, because in R1 Rocket is the add-effect of load R1 Earth and at R1 Earth

is the delete-effect of load R1 Earth. Add-effects are connected using solid lines, and

delete-effects are connected using dotted lines. Because no-op actions exist, every

proposition that appears in proposition level i also appears in proposition level i+ 1.

Similar to a Planning Graph, a Hybrid Flow Graph is a directed, leveled graph that

alternates between fact levels and action levels. Fact level i contains all facts that can

be true at time i, and action level i contains all possible actions that can take place

at time i. Different from a Planning Graph, a fact level contains both propositional

facts and continuous regions, and an action level in a Hybrid Flow Graph contains

hybrid actions.

In a Hybrid Flow Graph, the no-op actions do not preserve the continuous regions

in a fact level. This is because a no-op action for a continuous region means that the

state variables do not change their values unless an action explicitly changes them.

For a hybrid autonomous system, this means that the system is assumed to be able to

stop. This is a reasonable assumption for certain systems, such as vehicles that move

very slowly. However, it is not a reasonable assumption for systems like bi-peds, many

88

AUVs, or air vehicles. Therefore, no-op actions in a Hybrid Flow Graph are only for

preserving literals. If a system can stop, it can have a hybrid action type defined

in the input, called maintain. The function of maintain would be maintaining the

values of the state variables. Flow tubes of this action type would have equivalent

initial regions and end regions.

In the following sections, I introduce the fact and action levels of a Hybrid Flow

Graph, and then describe the construction of the Hybrid Flow Graph.

4.2.2 Hybrid Flow Graph: Fact Levels

Recall that there are two types of levels in a Hybrid Flow Graph: fact levels and

action levels. In this section, I introduce fact levels. Different from in a Planning

Graph, a fact level in a Hybrid Flow Graph contains not only propositional facts

that are positive or negative literals, but also continuous regions that are specified by

conjunctions of linear inequalities over state variables.

There are two sources for the positive or negative literals.

• The discrete initial conditions. As defined in Section 3.3, they are part of the

initial conditions, specified by a set of literals.

• Discrete effects of actions. As defined in Section 3.3, the discrete effects of a

hybrid action type are a set of literals. No-op actions preserve literals from

the previous fact level to the next. Hence, the effects of no-op actions are also

literals.

In Section 4.1 when flow tubes are introduced, I ignore the existence of external

constraints C, in order to focus on the core concepts of flow tubes. I now take these

constraints into consideration.

As defined in Section 3.3, the constraints are described by a conjunction of clauses,

each of which is either a disjunction of linear inequalities over the state variables, or

a unit clause, which is a linear inequality over the state variables. For example, a

constraint can require that the position of a vehicle be outside an obstacle, which is

89

expressed as a disjunction of linear inequalities over the state variables. A constraint

can also require that the position of a vehicle be within a region, which is expressed

as a conjunction of linear inequalities over the state variables.

As described in Section 4.1, a cross section is all reachable points of an action

without considering the constraints. The end region of flow tube is a cross section,

and the intersection of the end region and the constraints represents the set of all the

reachable points of an action that satisfy the constraints. Because there are non-unit

clauses in the constraints, the region that the constraints represent is not convex.

Hence, the intersection of a cross section and the constraint region is not necessarily

convex. This will break the convexity assumption for initial regions RI in computing

cross sections and flow tubes. Therefore, I ignore the non-unit clauses and keep the

unit clauses in the constraints when taking the intersection. However, because the

intersection region ignores the non-unit clauses in the constraints, the region can

contain points in state space that violate some of the constraints.

Definition 31. [Resolved End Region] Let Rg be the end region of flow tube ft,

and let C be the external constraints defined in the input. The resolved end region Rrg

of ft is, Rrg = Rg

⋂ C ′, where C ′ is C without non-unit clauses.

Because both Rg and C ′ are convex regions, specified by a conjunction of linear

inequalities over the state variables, their intersection, Rrg, is also a convex region,

specified by a conjunction of linear inequalities over the state variables.

There are two sources for a continuous region in a fact level.

• The continuous initial condition. As defined in Section 3.3, it is a continuous

region, specified by a conjunction of linear inequalities over the state variables.

• The resolved end region of a flow tube. It is a continuous region, specified by a

conjunction of linear inequalities over the state variables.

Note that a fact level contains a limited collection of literals, as they are pre-

defined in the input. This is also the case in a Planning Graph. However, the resolved

end regions in a fact level are not pre-defined. There is an unlimited collection of

90

continuous regions that can be included in a fact level. This affects the termination

property of the Hybrid Flow Graph, as described later in Section 4.3.5.

Definition 32. [Fact Level] Given an action level at i ≥ 0, AL(i), a fact level at

i + 1, FL(i + 1), is < P,R >, where P = {p1, p2, . . .} is a set of literals that either

are discrete effects of actions in AL(i) or are literals preserved by no-op actions in

AL(i). R = {r1, r2, . . .} is a set of continuous regions, each specified by a conjunction

of linear inequalities over state variables, ∧jgj(x) ≤ 0. Each r is a resolved end region

of a flow tube in AL(i). When i = 0, AL(i) does not exist, and FL(i+ 1) = FL(1) is

the first level in the graph. In FL(1), P is the set of literals in the initial conditions

and R is the continuous region in the initial conditions.

Fig. 4-8(a) shows an example of a fact level. It contains literals and continuous

regions.

¬ GPS
Camera

R1 = {(x,y) | x≤25,
x≥10, y≤55, y≥35}

R2 = {(x,y) | x+y≥20,
x-3y≥-40, 3x-y≤40}

getGPS
turnOffCamera

glide1
glide2

no-op (¬ GPS)
no-op (Camera)

(a) (b)

y

td

x

cs
RI ft (glide1)

y

td

x
R2 ft (glide2)

cs

Figure 4-8: (a) shows an example of a fact level. It contains literals, circled in blue,
and continuous regions, circled in red. (b) shows an example of an action level. It
contains instantiations of hybrid action types. The ones with dynamics are represented
by flow tubes. It also contains no-op actions.

4.2.3 Hybrid Flow Graph: Action Levels

Recall that there are two types of levels in a Hybrid Flow Graph: fact levels and action

levels. I have described fact levels thus far; next I introduce action levels. An action

level consists of instantiations of hybrid action types defined in the input (Section

91

R
1

R
2

r
R
3

... ...

... ...

R
1

R
2

R
3

fact level

Figure 4-9: Suppose R1, R2 and R3 are in a fact level. As R1, R2 and R3 all have
nonempty intersection with a region r, R1, R2 and R3 are all resolved conditions of r
in the fact level.

3.3). The hybrid action types that have specified dynamics are represented by flow

tubes. Fig. 4-8(b) shows an example of an action level. It also contains no-op actions.

An action type is instantiated in an action level, if its conditions are resolved in

the previous fact level.

Definition 33. [Resolved] A literal p is said to be resolved in fact level FL, if ∃
literal p′ ∈ FL such that p = p′. A continuous region r is said to be resolved in

fact level FL, if ∃r′ ∈ FL such that r
⋂
r′ 6= ∅. p′ is called a resolved condition

of p. r′ is called a resolved condition of r. If p and r are conditions of an action

a, then p′ is called a discrete resolved condition of a, r′ is called a continuous

resolved condition of a, and the intersection of r and r′, r
⋂
r′, is called a resolved

intersection of a.

When a literal is resolved in a fact level, there is only one resolved condition

of this literal. However, when a continuous region is resolved in a fact level, there

can be multiple resolved conditions of this continuous region. This is because many

continuous regions can have nonempty intersection with a continuous region. For

example, as shown in Fig. 4-9, suppose R1, R2 and R3 are in a fact level. As R1, R2

and R3 all have nonempty intersection with a region r, R1, R2 and R3 are all resolved

conditions of r in the fact level.

The concept of a discrete resolved condition is used in Graphplan. In a Planning

92

Graph, it is the literal in a fact level that matches a condition of an action. The

concept of a continuous resolved condition is new. The pseudo code for deciding

whether a literal or a continuous region is resolved is in Alg. 1. Line 1-8 states that if

there exists a literal in the fact level that matches the condition, then the condition is

resolved. Line 9-16 state that if there exists a continuous region that has a nonempty

intersection with the condition, then the condition is resolved.

Alg. 1 Resolved(condition: cond, fact level: fl) returns true or false

1: if cond is a literal then
2: for each literal p in fl do
3: if cond = p then
4: return true
5: end if
6: end for
7: return false
8: end if
9: if cond is a continuous region then

10: for each continuous region r in fl do
11: if cond

⋂
r 6= ∅ then

12: return true
13: end if
14: end for
15: return false
16: end if

Recall that in the previous section introducing flow tubes (Section 4.1), the initial

region RI is considered as given, in order to focus on the core concepts of flow tubes.

Now I explain how the initial region RI of a flow tube ft(RI , t) is derived.

When a continuous region r in fact level i has a non-empty intersection with the

continuous condition of action a in action level i, in other words, when r is a resolved

condition of a, the intersection is taken as the initial region RI of the flow tube of

action a. As shown in Fig. 4-10, suppose r represents the continuous region in a fact

level, and suppose Rp represents the continuous condition of an action. They intersect,

and the non-empty intersection is RI , which is the initial region of the flow tube ft of

the action.

When there are multiple such non-empty intersections for one action, multiple

93

y

td

x

cs

R
I

ft
R
p

r

Figure 4-10: Suppose r represents the continuous region in a fact level, and suppose Rp

represents the continuous condition of an action. They intersect, and the non-empty
intersection is RI , which is the initial region of the flow tube ft of the action.

flow tubes are constructed to instantiate this action. For example, in Fig. 4-8 there

are two different flow tubes instantiating the action type glide. The flow tubes have

different initial regions and end regions.

Recall that a hybrid action is called a continuous action if it has specified dynamics,

otherwise it is called a discrete action. An action level is defined as follows.

Definition 34. [Action Level] Given a fact level at i ≥ 0, FL(i), an action level

at i, AL(i), is 〈DI, FT, noop〉, where DI are discrete action instantiations whose

conditions are resolved in FL(i), FT are flow tubes for continuous actions whose

conditions are resolved in FL(i), and noop are no-op actions that preserve each of the

propositional facts in FL(i).

After I described fact levels and action levels, I now show an example of a Hybrid

Flow Graph, shown in Fig. 4-11. The Hybrid Flow Graph starts with fact level 1,

followed by action level 1, fact level 2, and action level 2.

As shown in Fig. 4-11, each fact level contains continuous regions (in red) and

literals (in black). Each action level contains hybrid actions. The continuous actions

(in blue) are represented by flow tubes. Discrete actions are in black. Large black

dots represent no-op actions. The flow tube of action glide in action level 1 is shown

on top. Arrows connect resolved conditions to hybrid actions and hybrid actions to

effects.

94

rudder
GPS

(x,y)∈R1

(x,y)∈R0
¬GPS

¬rudder

fact level 1 action level 1

startRudder
getGPS

(x,y)∈R0
¬GPS

¬rudder

fact level 2

startRudder
getGPS

stopRudder

action level 2

maintain

maintain

maintain

glide

descend

glide

Figure 4-11: A Hybrid Flow Graph example. Each fact level contains continuous
regions (in red) and literals (in black). Each action level contains hybrid actions. The
continuous actions (in blue) are represented by flow tubes. Discrete actions are in
black. Large black dots represent no-op actions. The flow tube of action glide in
action level 1 is shown on top. Arrows connect resolved conditions to hybrid actions
and hybrid actions to effects.

4.3 Hybrid Flow Graph Construction

Thus far I have introduced the flow tube representation for hybrid actions, as well as

fact levels and action levels in a Hybrid Flow Graph. In this section, I use the building

blocks to describe the construction of a Hybrid Flow Graph. Before presenting the

graph expansion algorithm, I describe the mutual exclusion relations a Hybrid Flow

Graph. They play an important role in pruning some of the invalid plans in the graph.

4.3.1 Mutual Exclusion

Two actions are mutually exclusive if no valid plan could contain both in the same action

level. Likewise, two facts are mutually exclusive if no valid plan could possibly make

both true in the same fact level. Similar to Graphplan, identifying and propagating

mutual exclusion relations is an integral step in constructing the Hybrid Flow Graph.

Identifying mutual exclusion relations can be largely useful in reducing the search for

95

a valid plan in a Hybrid Flow Graph [BF97].

To identify the mutual exclusion relations, Kongming propagates them forward

from the first fact level throughout the Hybrid Flow Graph using a set of rules. The

rules in Kongming are generalized from those in Graphplan, because in a Hybrid Flow

Graph fact levels not only contain propositional facts but also continuous regions, and

action levels contain hybrid actions instead of purely discrete actions. Mutex is used

as a short form for mutual exclusion in the rest of this thesis.

Action Mutex

[Interference] In a given action level, two actions are mutex of each other, if a

discrete effect of an action is the negation of a discrete condition or a discrete effect of

the other action.

rudder

(x,y)∈R1

(x,y)∈R0

¬rudder

startRudder

glide

Figure 4-12: An example of action mutex based on the interference rule.

For example, in Fig. 4-12, startRudder and glide are mutex because an effect of

startRudder negates a condition of glide. This rule only depends on the definition

of action types, therefore, we know startRudder and glide are always mutex in any

action level. This rule is essentially the same as in Graphplan, but it is more general

as it applies to hybrid actions.

[Competing Needs] In a given action level, two actions are mutex of each other,

if mutex relations exist between resolved conditions of two actions, in any of the

following four cases:

1. Every continuous resolved condition of one action is mutex with every continuous

resolved condition of the other action.

2. Every continuous resolved condition of one action is mutex with at least one

discrete resolved condition of the other action.

96

3. At least one discrete resolved condition of one action is mutex with at least one

discrete resolved condition of the other action.

4. Every resolved intersection of one action is mutex with every resolved intersection

of the other action.

rudder

¬rudder

(x,y)∈R1

stopRudder

glide

¬ GPS

(x,y)∈R1

(x,y)∈R2

(x,y)∈R3

(x,y)∈R4

getGPS

takeSample

¬ GPS

(x,y)∈R1

(x,y)∈R2

rudder1

rudder2

getGPS

descend

(1) (2) (3)

Figure 4-13: An example of action mutex for case 1-3 of the competing needs rule. (1)
shows case 1. (2) shows case 2. (3) shows case 3.

R2

R1

ra1

ra2

R2 ⋂ ra2

R1 ⋂ ra1

(x,y)∈R1
(x,y)∈R2

a1
a2

fact level i action level i

ra1: continuous condition of a1
ra2: continuous condition of a2
R1 ⋂ ra1: resolved intersection of a1
R2 ⋂ ra2: resolved intersection of a2

Figure 4-14: An example of action mutex for case 4 of the competing needs rule.
The continuous condition of a1 and the continuous condition of a2 have a nonempty
intersection, ra1 ∩ ra2 6= ∅. The resolved condition of a1 and the resolved condition of
a2 have a nonempty intersection, R1 ∩R2 6= ∅. However, the resolved intersection of
a1 and the resolved intersection of a2 do not intersect, (R1 ∩ ra1) ∩ (R2 ∩ ra2) = ∅.
This prevents a1 and a2 from taking place at the same time.

Note that in the competing needs rule, continuous resolved conditions are treated

differently from discrete resolved conditions. This is due to the reason discussed in

4.2.3; namely, in a fact level, a literal can only have one resolved condition, but a

continuous region can have many resolved conditions.

Fig. 4-13 shows an example of each case of the competing needs rule. Suppose based

on rules for mutex facts that will be described below, we have identified mutex pairs

97

in the fact level, connected with red arrows in the figure. (1) In the fact level, R1 is

mutex with R3, and R2 is mutex with R4. Because every continuous resolved condition

of getGPS is mutex with every continuous resolved condition of takeSample, getGPS

and takeSample are mutex. (2) In the fact level, R1 is mutex with rudder1, and R2 is

mutex with rudder1. Because every continuous resolved condition of getGPS is mutex

with a discrete resolved condition of descend, getGPS and descend are mutex. (3) In

the fact level, rudder and ¬rudder are mutex. Because a discrete resolved condition

of stopRudder is mutex with a discrete resolved condition of glide, stopRudder and

glide are mutex.

Fig. 4-14 shows an example of action mutex for case 4 of the competing needs rule.

The continuous condition of a1 and the continuous condition of a2 have a nonempty

intersection, ra1 ∩ ra2 6= ∅. The resolved condition of a1 and the resolved condition of

a2 have a nonempty intersection, R1 ∩R2 6= ∅. However, the resolved intersection of

a1 and the resolved intersection of a2 do not intersect, (R1 ∩ ra1) ∩ (R2 ∩ ra2) = ∅.
This prevents a1 and a2 from taking place at the same time.

This rule not only depends on the definition of action types, but also depends

on the mutex relations identified previously. This rule is more general than that in

Graphplan, as the concept of a resolved condition is more general (Def. 33).

Fact Mutex

1. At a given fact level, two facts are mutex of each other, if they are literals, and

one negates the other.

rudder

GPS

¬GPS

¬rudder

Figure 4-15: An example of fact mutex based on rule 1.

For example, in Fig. 4-15, rudder and ¬rudder are mutex because they negate

98

each other, and GPS and ¬GPS are mutex because they negate each other. This

rule is the same as in Graphplan.

2. At a given fact level, two facts are mutex of each other, if they are continuous

regions that do not intersect.

x

y

0

R2

R1

(x,y)∈R2

(x,y)∈R1

Figure 4-16: An example of fact mutex based on rule 2.

For example, in Fig. 4-16, suppose continuous region R1 = {x ∈ Rn | ∧ifi(x) ≤
0}, and continuous region R2 = {x ∈ Rn | ∧jgj(x) ≤ 0}. R1

⋂
R2 = ∅, so there

is no assignment to x such that both ∧ifi(x) ≤ 0 and ∧jgj(x) ≤ 0 are satisfied.

Therefore, the state variables cannot be constrained to be in both continuous

regions. This rule does not exist in Graphplan.

3. If all actions that create one fact are mutex with all actions that create the other

fact.

rudder

(x,y)∈R1

startRudder

glide

(x,y)∈R0

¬rudder

Figure 4-17: An example of fact mutex based on rule 3.

For example, in Fig. 4-17, in the fact level, rudder and (x, y) ∈ R1 are mutex,

because startRudder in the action level is the only way of creating rudder, and

99

glide is the only way of creating (x, y) ∈ R1, and we know from the Interference

rule example that startRudder and glide in the action level are mutex. This

rule is essentially the same as in Graphplan, but it is more general as it applies

to not only propositional facts but also continuous regions.

Two Actions Are Mutex:
Interference If a discrete effect of an action is the negation of a discrete

condition or a discrete effect of the other action.

Competing Needs
1. Every continuous resolved condition of one action is mutex
with every continuous resolved condition of the other action.
2. Every continuous resolved condition of one action is
mutex with at least one discrete resolved condition of the
other action.
3. At least one discrete resolved condition of one action is
mutex with at least one discrete resolved condition of the
other action.
4. Every resolved intersection of one action is mutex with
every resolved intersection of the other action.

Table 4.1: Table of action mutex rules.

The procedure for identifying action mutex is in Alg. 2. It corresponds to the rules

in Table 4.1. Line 2 corresponds to the Interference rule. Line 4 corresponds to the

Competing Needs rule case 1, line 6 corresponds to case 2, line 8 corresponds to case

3, and line 10 corresponds to case 4.

The procedure for identifying fact mutex is in Alg. 3. It corresponds to the rules

in Table 4.2. Line 2 corresponds to rule 1, line 4 corresponds to rule 2, and line 6

corresponds to rule 3.

Two Facts Are Mutex:
1 If they are literals, and one negates the other.
2 If they are continuous regions that do not intersect.
3 If all actions that create one fact are mutex with all actions that create the

other.

Table 4.2: Table of fact mutex rules.

100

Alg. 2 IdentifyActionMutex(action level k: al(k), mutex fact pairs for level k:
fPairs(k)) returns mutex action pairs for level k: aPairs(k). (a.eff: an effect of a;
a.dp: a discrete condition of a; a.drp: a discrete resolved condition of a; a.crp: the set
of all continuous resolved conditions of a; a.ri: the set of all resolved intersections of
a.)

1: for each pair of actions 〈a1, a2〉 in al(k) do
2: if (∃ a1.eff s.t. a1.eff = ¬a2.dp ‖ a1.eff = ¬a2.eff) ‖ (∃ a2.eff s.t. a2.eff = ¬a1.dp

‖ a2.eff = ¬a1.eff) then
3: aPairs(k).add(〈a1, a2〉)
4: else if @ r1 ∈ a1.crp, r2 ∈ a2.crp s.t. ¬ 〈r1, r2〉 ∈ fPairs(k) then
5: aPairs(k).add(〈a1, a2〉)
6: else if (∃ a1.drp s.t. @ r2 ∈ a2.crp s.t. ¬ 〈a1.drp, r2〉 ∈ fPairs(k)) | (∃ a2.drp s.t.

@ r1 ∈ a1.crp s.t. ¬ 〈a2.drp, r1〉 ∈ fPairs(k)) then
7: aPairs(k).add(〈a1, a2〉)
8: else if ∃ a1.drp, a2.drp s.t. 〈a1.drp, a2.drp 〉 ∈ fPairs(k) then
9: aPairs(k).add(〈a1, a2〉)

10: else if @ r1 ∈ a1.ri, r2 ∈ a2.ri s.t. ¬ 〈r1, r2〉 ∈ fPairs(k) then
11: aPairs(k).add(〈a1, a2〉)
12: end if
13: end for
14: return aPairs(k)

Alg. 3 IdentifyFactMutex(fact level k: fl(k), mutex action pairs for level k − 1:
aPairs(k − 1)) returns mutex fact pairs for level k: fPairs(k). (a.rg: the resolved
end region of the flow tube of a; a.noop: fact preserved by no-op action a.)

1: for each pair of facts 〈f1, f2〉 in fl(k) do
2: if f1 is literal & f2 is literal & f1 = ¬f2 then
3: fPairs(k).add(〈f1, f2〉)
4: else if f1 is continuous region & f2 is continuous region & f1

⋂
f2 = ∅ then

5: fPairs(k).add(〈f1, f2〉)
6: else if 〈a1, a2〉 ∈ aPairs(k−1), ∀〈a1, a2〉 s.t. (a1.eff = f1 ‖ a1.rg = f1 ‖ a1.noop

= f1) & (a2.eff = f2 ‖ a2.rg = f2 ‖ a2.noop = f2) then
7: fPairs(k).add(〈f1, f2〉)
8: end if
9: end for

10: return fPairs(k)

101

4.3.2 Definition and Properties of A Hybrid Flow Graph

In this section, I formally define a Hybrid Flow Graph and its properties. A Hybrid

Flow Graph is a leveled, directed graph, formally defined as in Def. 35.

Definition 35. [Hybrid Flow Graph] A Hybrid Flow Graph of N levels is a 4-tuple

〈FL,AL,FM,AM〉, where

• FL = {FL(1), FL(2), . . . , FL(N)} is a sequence of fact levels, each defined in

Def. 32. FL(1) = I, where I is the initial conditions (Def. 4).

• AL = {AL(1), AL(2), . . . , AL(N−1)} is a sequence of action levels, each defined

in Def. 34.

• FM = {FM(1), FM(2), . . . , FM(N)} is a sequence of fact mutex sets. FM(i)

is a set of all pairs of mutex facts in fact level i. Each pair of mutex facts follows

at least one rule in Table 4.2.

• AM = {AM(1), AM(2), . . . , AM(N − 1)} is a sequence of action mutex sets.

AM(i) is a set of all pairs of mutex actions in action level i. Each pair of mutex

actions follows at least one rule in Table 4.1.

A Hybrid Flow Graph represents the following.

• All valid hybrid plans (Def.36);

• Some invalid plans.

A valid hybrid plan is defined as follows.

Definition 36. [Valid Hybrid Plan] A valid hybrid plan of N levels is a triple,

Ph =< A,S,U >, where

• A = {a(1), a(2), . . . , a(N − 1)} is a sequence of actions instantiated from the

hybrid atomic action types AA (Def. 23). a(i) is the set of actions to be

performed at level i;

102

• S = {s(1), s(2), . . . , s(N)} is a sequence of assignment to the continuous and

discrete state variables s = 〈x,p〉 (Def. 2). s(i) is the assignment to s at level i;

• U = {u(1),u(2), . . . ,u(N − 1)} is a sequence of assignment to the control

variables u (Def. 3). u(i) is the assignment to u at level i.

such that all of the following are true:

• No actions at the same level are mutex. ∀i a(i) contains no action pairs that

are mutex (Table 4.1);

• If an action is performed at level i, then all its preconditions are resolved (Def. 33)

at level i;

• If a fact is true at level i, i > 1, then at least one action that causes the fact to

be true is performed at level i− 1;

• Each action in the action sequence satisfies its dynamics. ∀i = 1, . . . , N − 1,

u(i) ∈ Lim(a(i)), ∀a(i) ∈ a(i), and {x(i),u(i),x(i+1)} satisfy TranS(a(i)), ∀a(i) ∈
a(i), where Lim(a(i)) is the dynamic limitation of action a that takes place at

level i, and TranS(a(i)) is the state transition equation of action a that takes

place at level i;

• Initial conditions are satisfied. s(1) = 〈x(1),p(1)〉 ∈ I, where I is the initial

conditions (Def. 4);

• Goal conditions are satisfied. s(N) = 〈x(N),p(N)〉 ∈ G, where G is the goal

conditions (Def. 20);

• External constraints are satisfied. ∀ci ∈ C, the continuous state variables

{x(1),x(2), . . . ,x(N)} satisfy ci, where C is the external constraints (Def. 16).

I show an example of a valid hybrid plan in a Hybrid Flow Graph in Fig. 4-18. The

simple planning task is to start from an initial point, take a sample from a specific

region, and return to the starting point. To simplify the problem, there is no external

constraints.

103

(x∈[-30,30],
y∈[-15,15])

sample
¬sample

(x∈[-10,10],
y∈[-5,5])

¬sample

(x,y)=(0,0)

¬sample

fact level 1 action level 1

move

fact level 2

takeSample

action level 2

move

fact level 3

(x∈[-20,20],
y∈[-10,10])

¬sample

move (x∈[-40,40],
y∈[-20,20])

sample
¬sample

takeSample

move

action level 3 fact level 4 action level 4 fact level 5

(:action takeSample
 :cond (and (x∈[15,20], y∈[8,10]) (¬sample))
 :eff (sample)
 :dyn ())

(:action move
 :cond ((x,y)∈(-∞,+∞))
 :eff ()
 :dyn (and (vx∈[-10,10])
 (vy∈[-5,5])
 (xi=xi-1+vxi-1*d)
 (yi=yi-1+vyi-1*d)))

Initial conditions:

 {(x,y)=(0,0), ¬sample}

Goal conditions:

 {(x,y)=(0,0), sample}

State variables: <x, y>
Control variables: <vx, vy> d=1

Figure 4-18: A Hybrid Flow Graph constructed for the planning problem listed below.
Large dots represent no-op actions. Mutex relations are marked with red arrows. The
sequence of concurrent actions and facts in blue shows a valid hybrid plan.

The details are listed in Fig. 4-18, and described as follows. Suppose the state

variables are < x, y > and control variables are < vx, vy >. The initial conditions

are {(x, y) = (0, 0),¬ sample}. The goal conditions are {(x, y) = (0, 0), sample}.
There are two action types: takeSample and move. Action type takeSample has its

conditions being {(x ∈ [15, 20], y ∈ [8, 10]),¬ sample}, and its effect being sample.

takeSample has no dynamics. Action type move has its condition being (x, y) ∈
(−∞,+∞), its actuation limits being vx ∈ [−10, 10], vy ∈ [−5, 5], and its state

equation being x(ti) = x(ti−1) + vx(ti−1) ∗ d, y(ti) = y(ti−1) + vy(ti−1) ∗ d. The fixed

and equal duration over all actions is d = 1.

The valid plan consists of the following. move at time 1, move at time 2, takeSample

and move at time 3, move at time 4. A consistent assignment to the state variables

is (x(1), y(1)) = (0, 0), (x(2), y(2)) = (10, 5), (x(3), y(3)) = (20, 10), (x(4), y(4)) =

(10, 5), (x(5), y(5)) = (0, 0). A consistent assignment to the control variables is

(vx(1), vy(1)) = (10, 5), (vx(2), vy(2)) = (10, 5), (vx(3), vy(3)) = (−10,−5),

(vx(4), vy(4)) = (−10,−5).

Similar to the fact that a Planning Graph represents not only all valid plans but

also some invalid plans, a Hybrid Flow Graph also represents some invalid plans. For

example, the sequence of concurrent actions and facts in red in Fig. 4-19 shows an

invalid plan, for the same planning problem shown in Fig. 4-18.

104

(x∈[-30,30],

y∈[-15,15])

sample

¬sample

(x∈[-10,10],

y∈[-5,5])

¬sample

(x,y)=(0,0)

¬sample

fact level 1 action level 1

move

fact level 2

takeSample

action level 2

move

fact level 3

(x∈[-20,20],

y∈[-10,10])

¬sample

move

action level 3 fact level 4

Figure 4-19:

To differ from the invalid plans that exist in a Planning Graph, this invalid plan

example focuses on the inconsistent assignment to state and control variables. The

goal conditions are contained in fact level 4, as (x ∈ [−30, 30], y ∈ [−15, 15])
⋂

(x =

0, y = 0) 6= ∅ and sample is in the fact level, without being mutex. However, there

exists no consistent assignment to (x(3), y(3)), (x(4), y(4)), and (vx(3), vy(3)), such

that the continuous condition of takeSample at time 3 is satisfied, the dynamics of

move at time 3 are satisfied, and (x(4), y(4)) = (0, 0).

4.3.3 Defining Contained

Before introducing the graph expansion algorithm in KAA, I first introduce a simple

concept, “contained”, which will be useful in explaining the expansion algorithm in the

following section. KAA adds an action instantiation to an action level, if the conditions

of the action are contained in the previous fact level. Intuitively, contained means

resolved and without mutex relations.

Definition 37. [Contained] Given a set of conditions, Cond = {q1, q2, . . . , qm, r},
where each qi is a literal, and r is a continuous region, r = {x ∈ Rn | ∧jgj(x) ≤ 0},
with each gj(x) being a linear function of x. Given a fact level, FL. Given the

complete set of mutex fact pairs in FL, fPairs. Cond is contained in FL, if all of

105

the following hold:

(a) ∀i, qi is resolved in FL.

(b) r is resolved in FL.

(c) Let R′ = {r′1, r′2, . . .} be the set of all resolved conditions of r. Let Q′ =

{q′1, q′2, . . . , q′m} be the set of resolved conditions of {q1, q2, . . . , qm}. Then ∃ r′ ∈ R′

s.t. @ f1, f2 ∈ {Q′
⋃

r′} s.t. < f1, f2 >∈ fPairs.

Def. 37(c) states two requirements. First, at least one of the resolved conditions of

r is not mutex with any of the resolved conditions of qi. Second, no two of the resolved

conditions of qi are mutex. The pseudo code for checking whether specific conditions

are contained in a fact level is in Alg. 4. Line 1-6 correspond to Def. 37(a), line 7-10

correspond to Def. 37(b), and line 11-13 correspond to Def. 37(c). The pseudo code

for Resolved() is Alg. 1.

Alg. 4 Contained(conditions: {q1, q2, . . . , qm, r}, fact level: fl, mutex fact pairs in
fl: fPairs) returns true or false

1: for each qi do
2: if Resolved(qi,fl) then
3: a← true
4: q′i ← resolved condition of qi
5: end if
6: end for
7: if Resolved(r,fl) then
8: b← true
9: R′ = {r′1, r′2, . . .} ← all resolved conditions of r

10: end if
11: if ∃ r′ ∈ R′ s.t. @ f1, f2 ∈ {q′1, q′2, . . . , q′m, r′} s.t. < f1, f2 >∈ fPairs then
12: c← true
13: end if
14: if a & b & c then
15: return true
16: else
17: return false
18: end if

For example, as shown in Fig. 4-20, fact level i is on the left, and the set of

106

¬ rudder

GPS

¬ GPS

R1 = {(x,y) | x≤10, x≥0,

y≤10, y≥0}

R2 = {(x,y) | x+y≥3,

x+y≤8}

R3 = {(x,y) | x≥0, y≤-5}

y

x

fact level i

conditions:

{GPS, ¬ rudder, r={(x,y) | x≤3, x≥0, y≤3, y≥0}}

10

10
0

3

3

-5

R3

R1

R2

r

R1⋂r ≠ ∅

R2⋂r ≠ ∅

R3⋂r = ∅

R1,R2: resolved

conditions of r

Figure 4-20: Fact level i is on the left, and the set of conditions are listed on the
top. Suppose ¬rudder and R1 in the fact level are known to be mutex, connected by
red arrows. Conditions GPS and ¬rudder are resolved in the fact level. Condition r
is resolved. Both R1 and R2 are resolved conditions of r. GPS and ¬rudder are not
mutex, and R2 is not mutex with either GPS or ¬rudder in the fact level. Therefore,
the conditions are contained in the fact level.

conditions are listed on the top. Suppose ¬rudder and R1 in the fact level are known

to be mutex, connected by red arrows. Alg. 4 line 1-6 check literals: we know GPS and

¬rudder are resolved in the fact level. Alg. 4 line 7-10 check the continuous region:

we know r is resolved. Both R1 and R2 are resolved conditions of r. Alg. 4 line 11-13

check mutex: we know GPS and ¬rudder are not mutex, and R2 is not mutex with

either GPS or ¬rudder in the fact level. Therefore, the conditions are contained in

the fact level.

4.3.4 Graph Expansion Algorithm

Now we are ready to introduce the algorithm for expanding the Hybrid Flow Graph,

ExpandGraph(). The input of ExpandGraph() is a subset of the input of KAA,

including initial conditions, final goal conditions, hybrid atomic action types, and

external constraints that are unit clauses. The output of ExpandGraph() is a Hybrid

Flow Graph.

On the high level, the initial conditions of the hybrid planning problem form the

first fact level of the Hybrid Flow Graph. The first fact level is followed by the first

107

action level, which consists of all the actions whose conditions are contained in the

first fact level. Then the effects of these actions form the next fact level. The Hybrid

Flow Graph keeps expanding until the goal conditions are contained in a fact level.

The pseudo code is in Alg. 5. It consists of the following steps:

Alg. 5 ExpandGraph(hybrid action types: aSet, initial conditions: I, goal con-
ditions: G, unit-clause external constraint set: C ′) returns Hybrid Flow Graph:
hfg

1: hfg(1)← Initialize(I) {Alg. 6}
2: k ← 1
3: while !Contained(G, f l(k), fPairs(k)) & k ≤ N do
4: hfg(k + 1)← ExpandOneLevel(hfg(k), aSet, C ′) {Alg. 7}
5: k ← k + 1
6: end while
7: return hfg

• Initialize (line 1). It is described in Alg. 6.

• While the goal conditions are not contained in the current fact level within N

iterations, repeat the process of expanding the graph by one level (line 3-6).

ExpandOneLevel() is described in Alg. 7. This is limited to N iterations in

order to avoid running into an infinite loop when the goal conditions are not

reachable. This is discussed in Section 4.3.5.

Alg. 6 Initialize(initial conditions: I) returns 1-level Hybrid Flow Graph: hfg(1)

1: hfg ← {} {create an empty hybrid flow graph.}
2: fl(1)← I {create the first fact level from the initial conditions.}
3: fPairs(1)← {} {create an empty fact mutex set for fact level 1.}
4: hfg.add(fl(1)), hfg.add(fPairs(1))
5: return hfg

In Initialize() (Alg. 6), KAA creates fact level 1 from the initial conditions, initializes

the fact mutex set for fact level 1 as empty, and adds the fact level and fact mutex set

to an empty Hybrid Flow Graph. The mutex set for fact level 1 is empty, because it is

assumed that the initial conditions specified in the input are not mutex. For example,

as shown in Fig. 4-21, the initial conditions form fact level 1.

108

(x,y)∈R0

¬GPS

¬rudder

fact level 1

current

fact mutex: { }

initial conditions:

{(x,y)∈R0, ¬GPS, ¬rudder}

Figure 4-21: Initialization: KAA creates fact level 1 from the initial conditions,
initializes the fact mutex set for fact level 1 as empty.

Alg. 7 ExpandOneLevel(k-level Hybrid Flow Graph: hfg(k), hybrid action types:
aSet, unit-clause external constraint set: C ′) returns (k+1)-level Hybrid Flow Graph:
hfg(k + 1)

1: if k ≥ 2 then
2: fPairs(k)← IdentifyFactMutex(fl(k), aPairs(k − 1)) {Alg. 3}
3: hfg.add(fPairs(k))
4: end if
5: al(k) ← {}, fl(k + 1) ← {} {create the current action level and the next fact

level, both initialized empty.}
6: for each action type a in aSet do
7: 〈al(k), f l(k + 1)〉 ← InsertAction(a, fl(k), fPairs(k), d, C ′, al(k), fl(k + 1))

{Alg. 8}
8: end for
9: for each discrete fact f in fl(k) do

10: if f does not contain -int suffix then
11: al(k).add(new no-op)
12: fl(k + 1).add(f)
13: end if
14: end for
15: aPairs(k)← IdentifyActionMutex(al(k), fPairs(k)) {Alg. 2}
16: hfg.add(al(k)), hfg.add(fl(k + 1)), hfg.add(aPairs(k))
17: return hfg

109

The algorithm for expanding the graph by one level is in Alg. 7. It consists of the

following steps.

• If there are two or more levels in the graph, then identify fact mutex in the

current fact level and add the fact mutex set to the graph (line 1-4). The

algorithm for finding fact mutex is in Alg. 3. The rules were explained in Section

4.3.1. Because the fact mutex set for fact level 1 is empty and is already included

in the graph in Initialize(), fact level 1 is skipped here.

• Check whether to instantiate each hybrid action type in the current action level

(line 6-8). The algorithm InsertAction() is described in Alg. 8.

• Create a no-op action for each literal in the current fact level, unless the literal

contains a “-int” suffix, and add the facts to the next fact level (line 9-14).

Checking the “-int” suffix is a feature specifically created for KDA. It will be

explained in Chapter 6.

(x,y)∈R0

¬GPS

¬rudder

fact level 1 action level 1 fact level 2

current current next

¬GPS

¬rudder

Figure 4-22: No-op actions are created for literal ¬rudder and literal ¬GPS in fact
level 1, represented by black dots.

For example, in Fig.4-22, no-op actions are created for literal ¬rudder and

literal ¬GPS in fact level 1, represented by black dots in the figure. The no-op

actions are added to action level 1, and the literals they preserve are added to

fact level 2.

• Identify action mutex in the current action level (line 13). The algorithm for

finding action mutex is in Alg. 2. The rules were explained in Section 4.3.1.

110

• Add the action level and the next fact level to the Hybrid Flow Graph (line 14).

Alg. 8 InsertAction(a hybrid action: a, current fact level: fl, fact mutex pairs
of the fact level: fPairs, duration: d, unit-clause external constraints: C ′, current
action level: al, next fact level: nfl) returns current action level and next fact level:
〈al, nfl〉

1: if Contained(a.conditions, fl, fPairs) then
2: if a.dynamics = ∅ then
3: al.add(a)
4: else
5: for each crp in a’s continuous resolved conditions do
6: resolved end region rg ← ComputeFlowTube(a, crp, d)

⋂ C ′
7: if rg 6= ∅ then
8: al.add(a)
9: nfl.add(rg)

10: end if
11: end for
12: end if
13: nfl.add(a.effects)
14: end if
15: return 〈al, nfl〉

Algorithm InsertAction() checks a hybrid action to see whether it should be added

to the action level, as shown in Alg. 8. The algorithm can be divided into the following

three parts. They are explained with the example shown in Fig.4-23.

• If the conditions of a hybrid action type are contained in the current fact level,

then this action type is instantiated (line 1).

For example, in Fig.4-23, the conditions of startRudder, getGPS and glide are

all contained in fact level 1.

• If this action type has no dynamics (line 2), the instantiation is simple. Namely,

the action is added to the current action level (line 3), and its discrete effects

are added to the next fact level (line 13).

For example, in Fig.4-23, startRudder and getGPS have no dynamics. They

are added to action level 1, and their discrete effects are added to fact level 2.

111

(x,y)∈R0
¬GPS

¬rudder

fact level 1 action level 1 fact level 2

current current next

startRudder
getGPS

glide

rudder
GPS

(x,y)∈R1

y

td

x

cs
RI

ft

RG

(:action startRudder
 :cond (¬rudder)
 :eff (rudder)
 :dyn ())
(:action getGPS
 :cond (and (¬GPS)
 ((x,y)∈RGPS))
 :eff (GPS)
 :dyn ())
[RGPS ⋂R0 ≠ ∅]

(:action glide
 :cond (and (¬rudder)
 ((x,y)∈ Rglide))
 :eff ()
 :dyn (and (vx∈rangevx)
 (vy∈rangevy)
 (xi=xi-1+vx*d)
 (yi=yi-1+vy*d)))

[Rglide ⋂R0=RI ≠ ∅]
[RG⋂C'=R1 ≠ ∅]

Figure 4-23: The action types are defined on the right. The conditions of startRudder,
getGPS and glide are all contained in fact level 1. startRudder and getGPS have no
dynamics. They are added to action level 1, and their discrete effects are added to fact
level 2. glide has dynamics. There is one continuous resolved condition, (x, y) ∈ R0,
so one flow tube is constructed, shown on the top. The initial region of the flow tube,
RI , is the intersection of the continuous condition of glide, Rglide, and the continuous
resolved condition of glide, R0. The resolved end region of the flow tube, R1, is
the intersection of the end region of the flow tube, RG, and the unit-clause external
constraints, C ′. R1 is not empty, and is added to fact level 2.

112

• If this action type has dynamics, a flow tube is computed for each continuous

resolved condition of this action (line 5-11). Flow tube computation is as

described in Section 4.1. The resolved end region (Def. 31) is the intersection of

the end region of the flow tube and the unit-clause external constraints (line

6). If the resolved end region is not empty (line 7), the flow tube is added to

the current action level (line 8), and its resolved end region is added to the next

fact level (line 9). Its discrete effects are added to the next fact level (line 13).

For example, in Fig.4-23, glide has dynamics. There is one continuous resolved

condition, (x, y) ∈ R0, so one flow tube is constructed. The initial region of

the flow tube is the intersection of the continuous condition of glide and the

continuous resolved condition of glide. The resolved end region of the flow tube

is the intersection of the end region of the flow tube and the unit-clause external

constraints. The resolved end region is not empty, and is added to fact level 2.

4.3.5 Level Off

When there exists no solution to the planning problem, there should be a mechanism

to prevent the planning algorithm from running forever through an infinite number of

stages. Graphplan is guaranteed to return failure when no solution exists [BF97], due

to its “level off” property. I first review the definition of “level off” and the reasoning

behind it. I then discuss the termination conditions of KAA when no solution exists.

A Planning Graph is said to have leveled off, when it reaches the point where

two adjacent proposition levels Pn and Pn+1 have identical propositions and mutex

relations. It is called “level off”, because as shown in [BF97], once two adjacent

proposition levels Pn and Pn+1 are identical, all future levels will be identical to Pn as

well. Intuitively, this is because first, propositions, once added to a level, remain in

successive levels. In other words, propositions monotonically increase. Second, once a

mutex has decayed, it never reappears. In other words, mutex relations monotonically

decrease. Hence, the graph eventually reaches a fix point, where propositions and

mutex relations no longer change.

113

In Graphplan, there are two termination tests for when no solution exists. First, if

the goal conditions are not contained in the “level off” level Pn, then the goal conditions

will not be contained in any levels after Pn either. In this case, Graphplan returns

failure. Second, if the goal conditions are contained, but higher order exclusions, called

memos, are preventing a solution. Memos are exclusions higher order than mutual

exclusions, which also monotonically decrease. They may change after the “level off”

point but will eventually reach a fixed point. Hence, the second termination test is to

test whether a solution can be extracted after memos stop changing.

In KAA, however, the Hybrid Flow Graph is not guaranteed to level off, due to the

continuous regions in fact levels. More specifically, there are two reasons. First, recall

from Section 4.2.1, that no-op actions do not preserve continuous states from one fact

level to the next. If the system under control cannot perform the “maintain” action,

then continuous regions do not monotonically increase in fact levels, in contrast to the

propositions in a Planning Graph. The second reason is that unlike the propositions

predefined in the input, there is an unlimited collection of continuous regions that can

be contained in fact levels. It is possible that new continuous regions are created in

every fact level as time elapses. Therefore, the graph is not guaranteed to reach a fixed

point, even if facts and actions were monotonically increasing. In the special case,

however, where Kongming is limited to purely discrete actions and propositional facts,

as in Graphplan, Kongming follows the same termination conditions as in Graphplan,

and Kongming is guaranteed to return failure when no solution exists.

In this chapter, I introduced the flow tube representation of hybrid actions, the

Hybrid Flow Graph to represent all valid plans, and the algorithm for constructing

a Hybrid Flow Graph. In the next chapter, I will introduce the constraint-based

planning algorithm that KAA employs on the Hybrid Flow Graph.

114

Chapter 5

Planning Algorithm for KAA

Contents

5.1 Blackbox . 116

5.2 KAA Algorithm Architecture 118

5.3 KAA Constraint Encoding 121

5.3.1 Mixed Logical Quadratic Program 121

5.3.2 Encoding Rules . 122

Recall that KAA consists of two parts: a compact representation of the space of

possible hybrid plans and a constraint-based planning algorithm that operates on the

hybrid plan representation. I introduced the plan representation in Chapter 4. In this

chapter, I introduce the constraint-based planning algorithm.

For discrete planning problems, Planning Graphs [BF97] have been employed

within a range of planning paradigms. The most notable planning paradigms are

constraint-based planners and heuristic search planners. Constraint-based planners

[WW99, SD05, KS92, KS99, DK01a] formulate the discrete planning problem as a

satisfiability (SAT) problem or constraint satisfaction problem (CSP), and solve it

using a SAT or CSP solver. The strength of constraint-based planners is that they

leverage the advantage of state-of-the-art constraint solvers to perform the search for

a valid plan. Heuristic forward search planners [CCFL09, CFLS08a, HN01, MBB+09,

115

DK01b, BG99, BG01, McD96] perform search directly on the plan representation

using heuristics obtained from relaxation. The strength of heuristic search planners is

that heuristics estimate the cost to goal to guide the search for a valid plan.

For hybrid planning problems, where actions have both continuous and discrete

effects, KAA employs a constraint-based planning algorithm on the Hybrid Flow Graph

representation. I will discuss the heuristic forward search approach as future work in

Chapter 9. The planning algorithm of KAA takes an analogous approach to Blackbox

[KS99], which operates on Planning Graphs. Blackbox encodes the Planning Graph as

a SAT problem, and solves it using a state-of-the-art SAT solver. Kongming generalizes

the Blackbox approach, and encodes the Hybrid Flow Graph as mixed logical quadratic

programs (MLQPs). Kongming solves the MLQPs using a state-of-the-art solver,

currently CPLEX.

This chapter is organized as follows. First, I review Blackbox. Second, I introduce

the high-level algorithm in KAA, in comparison with the high-level algorithm in

Blackbox. Finally, I describe the constraint encoding of the Hybrid Flow Graph.

5.1 Blackbox

Blackbox [KS99] is a planning system that unifies the planning as satisfiability frame-

work [KS92] with the Planning Graph approach [BF97]. Graphplan is good at

instantiating the propositional structure, while SATPLAN uses powerful search algo-

rithms [KS99]. Blackbox combines the advantages from both worlds: the instantiation

power of Graphplan and the search capability from SAT solvers. Blackbox solves the

planning problem in the following process.

1. Turns STRIPS input into a Planning Graph of length k. It interleaves instantia-

tion and pruning using mutex.

2. Translates the Planning Graph into a conjunctive normal form (CNF) wff1.

1A wff is a well-formed formula. It is an abstraction expressed using the symbols and formal
grammar of a formal language.

116

3. Simplifies using general limited deduction, such as unit propagation, failed literal,

binary failed literal.

4. Solves the SAT problem using a state-of-the-art solver.

5. If a model of the wff is found, then converts a model to the corresponding plan;

otherwise, increments k and repeat the process.

The algorithm architecture of Blackbox is shown in the diagram in Fig. 5-1.

Build Planning Graph of length k

Encode Planning Graph as SAT

Simplify SAT encoding

Solve SAT problem

Solution found?

Yes

No

Return plan

k ← k+1

Figure 5-1: The algorithm architecture of Blackbox.

Blackbox represents each proposition and each action in a Planning Graph with a

propositional variable p. p = true if the corresponding propositional fact or action is

included in the valid plan; otherwise p = false. Blackbox employs a few simple rules

to translate the Planning Graph into a CNF wff. I explain them as follows, along with

the example in Fig. 5-2.

• All facts in fact level 1 are true. This is because they are the initial conditions.

• The last fact level contains the goal conditions.

117

• A fact in level i+ 1 implies at least one of the actions that cause it in level i. For

example, in Fig. 5-2, “Fact1” implies at least one of “Action1” and “Action2”.

Fact1 =⇒ Action1 ∨ Action2.

• An action in level i implies all its conditions in level i. For example, in Fig. 5-2,

“Action1” implies both of “Pre1” and “Pre2”. Action1 =⇒ Pre1 ∧ Pre2.

• Mutex facts or actions cannot co-exist. For example, in Fig. 5-2, “Action2” and

“Action3” cannot co-exist, and “Fact1” and “Fact2” cannot co-exist. ¬Action2∨
¬Action3, ¬Fact1 ∨ ¬Fact2.

Pre 1

Pre 2

Action1

Action2

Fact1

Fact2

Action3

fact level i action level i fact level i+1

Figure 5-2: A Planning Graph example to demonstrate the encoding rules of Blackbox.
“Pre1” and “Pre2” are conditions of “Action1”. “Action1” and “Action2” both have
“Fact1” as an effect. “Action2” and “Aciton3” are mutex. “Fact1” and “Fact2” are
mutex.

5.2 KAA Algorithm Architecture

I explain the high-level algorithm of KAA in this section. Recall that the input to the

KAA is defined in Section 3.3. The input consists of initial conditions, goal conditions,

hybrid atomic action types, external constraints and an objective function. The output

of KAA is an optimal plan, as defined in Def. 27.

118

The high-level algorithm for KAA expands the Hybrid Flow Graph until the goal

conditions are contained. It then interleaves between expanding the graph by one

level (action and fact), and encoding the graph as a mixed logical quadratic program

(MLQP) and solving it, until an optimal plan is found. The algorithm architecture is

shown in the diagram in Fig. 5-3.

Initialize

Encode MLQP

Solution found?

Yes

No

Return K-level optimal plan Return failure

Expand Hybrid Flow
Graph by one level

Goal contained?

Yes

More than N levels
in graph?

No

Yes

No

Figure 5-3: The algorithm for KAA.

The pseudo code of this high-level algorithm is given by Alg. 9. I explain the

pseudo code in accordance with the diagram in Fig. 5-3 as follows.

• Initialize (line 1). The Hybrid Flow Graph of 1 level is created through Initialize()

(Alg. 6 in Chapter 4).

• Repeat until the number of levels in the graph reaches N (line 2-10). N is the

cutoff number to prevent KAA from running infinitely when no solution exists.

Within the loop, check two conditions:

– Check whether the goal conditions are contained in the last level of the

graph (line 3). If they are, encode the graph as an MLQP and solve it (line

4). The algorithm for encoding the MLQP is in Alg. 10.

119

– Check whether there is a solution to the MLQP (line 5). If there is, return

the solution (line 6).

• When there is no solution for the graph, expand the graph by one level (line 9).

The algorithm for expanding the graph by one level is in Alg. 7 in Chapter 4.

Alg. 9 KAA(state variables: x, control variables: u, propositional variables for facts:
pf, propositional variables for actions: pa, initial conditions: I, goal conditions: G,
hybrid action types: HT , external constraint set: C, unit-clause external constraint
set: C ′ ⊆ C, objective function: f) returns optimal plan: solution

1: hfg(1)← Initialize(I) {Alg. 6}
2: for k ← 1: k ≤ N : k ← k + 1 do
3: if Contained(G, f l(k), fPairs(k)) then
4: solution ← EncodeMLQP&Solve(hfg(k), x, u, pf, pa, I,G,HT , C, f)

{Alg. 10}
5: if solution 6= nil then
6: return solution
7: end if
8: end if
9: hfg(k + 1)← ExpandOneLevel(hfg(k),HT , C ′) {Alg. 7}

10: end for

Compared with the high-level algorithm in Blackbox, KAA is different in the

following aspects.

• KAA encodes mixed logical quadratic programs, whereas Blackbox encodes

satisfiability formulas. This is because there are real-valued variables and linear

constraints in KAA.

• Blackbox employs SAT simplification techniques on the encoding before giving it

to a SAT solver, whereas KAA does not simplify the encoding before giving it to

the MLQP solver. This is because a set of well-developed inexpensive techniques

exist for SAT formulas, but not for MLQP formulas. Developing such techniques

is not the focus of this thesis.

• KAA searches for a k-level optimal plan, whereas Blackbox searches for a valid

plan. KAA optimize the solution plan according to the objective function specified

in the input.

120

• When no solution exists, KAA checks whether the number of levels in the graph

has exceeded N , as the termination test. Blackbox returns failure when no

solution exists, as it implements Graphplan’s termination test.

5.3 KAA Constraint Encoding

In this section, I introduce the algorithm for encoding the Hybrid Flow Graph as an

MLQP, namely, EncodeMLQP&Solve() as previously mentioned in Alg. 9.

The input to EncodeMLQP&Solve() is 〈hfg(k),x,u,pf ,pa, I,G,HT , C, f〉, where

hfg(k) is a k-level Hybrid Flow Graph, x is the continuous state variables, u is the

control variables, pf is the propositional variables for facts, pa is the propositional

variables for actions, I is the initial conditions, G is the goal conditions, HT is the

set of hybrid action types, C is the set of external constraints, and f is the objective

function. The output of EncodeMLQP&Solve() is an optimal plan, as defined in

Def. 27.

5.3.1 Mixed Logical Quadratic Program

I define an MLQP in this section. As my definition of an MLQP derives from that of

an MLLP, introduced in [HO99], I review the definition of an MLLP first.

Minimize cx

Subject to pj(y, h)→ (Ajx ≥ aj), j ∈ J | qi(y, h), i ∈ I.
(5.1)

In Eq. 5.1, pj(y, h) and qi(y, h) are general logic wff’s. y = (y1, . . . , yn) are

propositional variables. h = (h1, . . . , hm) are finite-domain variables. For example,

pj(y, h) or qi(y, h) can be (y1 ∨ y2) ∧ (h1 6= h2). Ajx ≥ aj is a system of linear

inequalities, where x are real-valued variables. Ajx ≥ aj is enforced when pj(y, h) is

true. The objective function cx is a linear function of x.

In this thesis, I modify the definition in Eq. 5.1 as follows.

• I generalize the objective function to allow quadratic functions. This is because

121

it is useful to minimize distance traveled, which is quadratic in the position

variables. The objective is either a linear or a quadratic function of the real-

valued variables s, where s = 〈x,u〉.

• I remove the finite-domain variables, because as mentioned before, (x, u, pf,

pa) are the only variables in the input to EncodeMLQP&Solve(). (x, u) are

real-valued variables, and (pf, pa) are propositional variables.

In this thesis, I define an MLQP as:

Minimize f(s)

Subject to pj(p)→ (Ajs ≥ aj), j ∈ J | qi(p), i ∈ I.
(5.2)

where s = 〈x,u〉, and p = 〈pf ,pa〉.
In Eq. 5.2, f(s) is a linear or quadratic objective function of s. pj(p) and qi(p)

are general logic wff’s over propositional variables, p = 〈pf ,pa〉. For example, pj(p)

or qi(p) can be (pf1 ∨ pa1) ∧ ¬pa3. A
js ≥ aj is a system of linear inequalities, where

s are real-valued variables. Ajs ≥ aj is enforced when pj(p) is true.

5.3.2 Encoding Rules

A Hybrid Flow Graph is encoded into a MLQP. The specific encoding rules of KAA

are as follows, in accordance with Alg. 10.

1. All facts in fact level 1 are true (line 1). This is because fact level 1 is formed

from the initial conditions I. It is specified in Eq. 5.3.

∧pfi(1), ∀pfi(1) ∈ pf(1) (5.3)

For example, in Fig. 5-4, the corresponding constraint encoding is pf1(1) ∧
pf2(1) ∧ pf3(1).

2. Facts that are true in the last fact level of the k-level Hybrid Flow Graph contain

122

pf1(1): (x,y)∈R0
pf2(1): ¬GPS

pf3(1): ¬rudder

fact level 1

Initial conditions:

{(x,y)∈R0, ¬GPS, ¬rudder}

Figure 5-4: An example of the first level of a Hybrid Flow Graph. The initial conditions
are listed on the right.

pf1(k): rudder

pf2(k): GPS

pf3(k): (x,y)∈R1

pf4(k): ¬GPS

pf5(k): (x,y)∈R2

fact level k

Goal conditions:

{(x,y)∈R, GPS, rudder}

[R ⋂R1 ≠ ∅]

[R ⋂R2 ≠ ∅]

Figure 5-5: An example of the last level of a k-level Hybrid Flow Graph. The goal
conditions are listed on the right.

the goal conditions G (line 2). It is specified in Eq. 5.4.

(∧pfi(k), i ∈ I) ∧ (∨pfj(k), j ∈ J) ∧ (x ∈ rG), (5.4)

where pfi(k), i ∈ I represent the discrete resolved conditions of G in level k,

pfj(k), j ∈ J represent the continuous resolved conditions of G in level k, and

rG represents the continuous region in G.

For example, in Fig. 5-5, the corresponding constraint encoding is pf1(k)∧pf2(k)∧
(pf3(k)∨ pf5(k))∧ (x, y) ∈ R. As explained in Section 4.2.3, multiple continuous

regions in a fact level can have nonempty intersections with a continuous region,

but only one of them is needed in a valid plan.

3. If fact f in fact level m is true, then at least one of the actions in action level

m− 1 that have f either as a discrete effect or as a resolved goal region is true

(line 3). It is specified in Eq. 5.5.

pf(m) =⇒ (∨pai(m− 1), i ∈ I), (5.5)

123

pf1(m): (x,y)∈R1

pf2(m): ¬ fire

action level m-1

pa1(m-1): dropWater

pa2(m-1): fly

pa3(m-1): no-op

fact level m

Figure 5-6: ¬fire is an effect of dropWater and the effect of an no-op action. (x, y) ∈
R1 is the resolved goal region of fly.

where pf(m) represents the fact f in fact level m, pai(m− 1), i ∈ I represent

all the actions in action level m− 1 that cause f .

For example, in Fig. 5-6, the corresponding constraint encoding is pf1(m) =⇒
pa2(m− 1), and pf2(m) =⇒ pa1(m− 1) ∨ pa3(m− 1).

4. If action a in action level m is true, then (1) a’s resolved conditions in fact

level m are true, and (2) the state variables for level m satisfy a’s continuous

condition (line 4). They are specified in Eq. 5.6.

pa(m) =⇒

 (1) (∧pfi(m), i ∈ I) ∧ (∨pfj(m), j ∈ J)

(2) x(m) ∈ r
(5.6)

where pfi(m), i ∈ I represent the discrete resolved conditions of a, pfj(m), j ∈ J
represent the continuous resolved conditions of a, and r represents the continuous

condition of a.

For example, in Fig. 5-7, the corresponding constraint encoding is pa1(m) =⇒
pf1(m)∧ pf2(m)∧ (x, y) ∈ Rfly, and pa2(m) =⇒ pf3(m)∧ (pf1(m)∨ pf4(m))∧
(x, y) ∈ R.

5. Mutex facts or actions cannot both be true (line 5). It is specified in Eq. 5.7.

¬pfi(m) ∨ ¬pfj(m),¬pai(m) ∨ ¬paj(m), (5.7)

where pfi(m) and pfj(m) represent two mutex facts in fact level m, and pai(m)

and paj(m) represent two mutex actions in action level m.

124

pf1(m): (x,y)∈R1
pf2(m): haveFuel
pf3(m): haveWater
pf4(m): (x,y)∈R2

action level m

pa1(m): fly
pa2(m): dropWater

fact level m

dropWater
 :condition (and
 (haveWater)
 ((x,y)∈R))

[R ⋂R1 ≠ ∅]
[R ⋂R2 ≠ ∅]

fly
 :condition (and
 (haveFuel)
 ((x,y)∈Rfly))

[Rfly ⋂R1 ≠ ∅]

Figure 5-7: The conditions of action dropWater and fly are listed on the right.
(x, y) ∈ R1 and haveFuel are the resolved conditions of fly. (x, y) ∈ R1, (x, y) ∈ R2

and haveWater are the resolved conditions of dropWater.

pf1(m+1): rudder

pf2(m+1): GPS

pf3(m+1): (x,y)∈R1
pf4(m+1): ¬ GPS

action level m

pa1(m): startRudder

pa2(m): getGPS

pa3(m): glide

pa4(m): no-op

fact level m+1

(x,y)∈R0

¬GPS

¬rudder

Figure 5-8: startRudder and glide are mutex actions. getGPS and no-op are mutex
actions. rudder and (x, y) ∈ R1 are mutex facts. GPS and ¬GPS are mutex facts.

For example, in Fig. 5-8, the corresponding constraint encoding is ¬pa1(m) ∨
¬pa3(m), ¬pa2(m) ∨ ¬pa4(m), ¬pf1(m+ 1) ∨ ¬pf3(m+ 1), and ¬pf2(m+ 1) ∨
¬pf4(m+ 1).

6. If action a-end in action level j is true, then the time between a-end and its

corresponding a-start action is within the duration bounds of the durative action

a (Line 6).

pa(j) =⇒ dlb ≤ (j − i+ 1) ∗∆t ≤ dub, (5.8)

where pa(j) is the propositional variable representing an -end action in action

level j, its matching -start action is in action level i, and [dlb, dub] are the lower

and upper bounds on the duration of the corresponding durative action.

This encoding rule is specifically for KDA, to enforce the flexible temporal bounds

on the duration of durative actions. It will be explained in Chapter 6.

7. If continuous region r in fact level m is true, then the state variables for fact

125

pf1(m): (x,y)∈R0

pf2(m): GPS

pf3(m): (x,y)∈R1

pf4(m): ¬GPS

fact level m

R0={(x,y)∈ℜ2 | ∧gi(x,y)≤0}

R1={(x,y)∈ℜ2 | ∧hj(x,y)≤0}

Figure 5-9: An example of fact level m contains continuous regions and literals.
Continuous regions R0 and R1 are specified by conjunctions of linear inequalities.

level m satisfy r (Line 7). It is specified in Eq. 5.9.

pf(m) =⇒ x(m) ∈ r, (5.9)

where pf(m) represents continuous region r in fact level m.

For example, in Fig. 5-9, the corresponding constraint encoding is pf1(m) =⇒
∧gi(x, y) ≤ 0, and pf3(m) =⇒ ∧hj(x, y) ≤ 0.

8. If hybrid action a with specified dynamics in action level m is true, then (1) the

control variables for action level m are within the actuation limits of action a,

and (2) the state variables for fact level m and m+1 and the control variables for

action level m satisfy a’s state equation (Line 8). They are specified in Eq. 5.10.

pa(m) =⇒

 (1) u(m) ∈ [ulb,uub]

(2) x(m+ 1) = A× x(m) +B × u(m)
(5.10)

where pa(m) represents action a in action level m, [ulb,uub] is a’s actuation

limits, A and B are the matrices of constants in a’s state equation.

For example, in Fig. 5-10, the corresponding constraint encoding is in Eq. 5.11.

pa1(m) =⇒

 (1) vx(m) ∈ [vxlb, vxub], vy(m) ∈ [vylb, vyub]

(2) x(m+ 1) = x(m) + vx(m) ∗ d, y(m+ 1) = y(m) + vy(m) ∗ d
(5.11)

126

pf1(m+1): (x,y)∈R1
pf1(m): (x,y)∈R0
pf2(m): ¬rudder

fact level m action level m

pa1(m): glide

fact level m+1

y

td

x

cs
RI

ft

RG

(:action glide
 :cond (and (¬rudder)
 ((x,y)∈ Rglide))
 :eff ()
 :dyn (and (vx∈[vxlb, vxub])
 (vy∈[vylb, vyub])
 (xi=xi-1+vx*d)
 (yi=yi-1+vy*d)))

RI = Rglide ⋂R0 ≠ ∅
Rglide = {(x,y)∈ℜ2 | ∧gi(x,y)≤0}
R0 = {(x,y)∈ℜ2 | ∧hj(x,y)≤0}

Figure 5-10: Action glide in action level m. Its type definition is listed on the right.
Rglide is its continuous condition, specified by a conjunction of linear inequalities.
R0 is its resolved condition in fact level m, also specified by a conjunction of linear
inequalities.

9. The state variables satisfy the external constraint set C for all fact levels (Line

9). It is specified in Eq. 5.12.

∀m = 1, . . . , k, C(x(m)) (5.12)

where k is number of fact levels in the Hybrid Flow Graph.

For example, as in Fig. 5-11, the external constraint set is for obstacle avoidance

and within map region. C = {∨gi(x) ≤ 0, ∨hj(x) ≤ 0, ∧fk(x) ≤ 0}. The corre-

sponding constraint encoding is ∀m = 1, . . . , k, (∨gi(x(m)) ≤ 0)∧ (∨hj(x(m)) ≤
0) ∧ (∧fk(x(m)) ≤ 0).

10. In each action level, either both action Ai-start and action Aj-start take place,

or neither of them take place, where action Ai and action Aj are created for two

goal episodes that share the same start event (Line 10):

∀k = 1, . . . , K (Ai-start(k) ∧ Aj-start(k)) ∨ (¬Ai-start(k) ∧ ¬Aj-start(k))

(5.13)

Similarly, when action Ai and action Aj are created for two goal episodes that

127

Obstacle 1

Obstacle 2

Map region

Outside O1: ∨ gi(x)≤0

Outside O2: ∨ hj(x)≤0

Inside map: ∧ fk(x)≤0

Figure 5-11: An example of external constraints: within the map region, and outside
the obstacles.

share the same end event:

∀k = 1, . . . , K (Ai-end(k) ∧ Aj-end(k)) ∨ (¬Ai-end(k) ∧ ¬Aj-end(k)) (5.14)

This encoding rule is specifically for KQSP, to enforce the temporal relations of

goal episodes in the input QSP. It will be explained in Chapter 7.

11. All simple temporal constraints in the input QSP are satisfied (Line 11):

∀ simple temporal constraint{〈ei, ej〉, [lb, ub]} ∈ QSP , ej−ei ∈ [lb, ub]. (5.15)

This encoding rule is specifically for KQSP, to enforce the temporal constraints

on events in the input QSP. It will be explained in Chapter 7.

Recall the review of Blackbox in Section 5.1, Rule 1-5 are similar to the constraint

encoding rules in Blackbox. The continuous resolved conditions or conditions, which

do not exist in Blackbox, are the major difference in Rule 1-5. Rule 6-11 are special

rules for hybrid planning, and do not exist in the Blackbox framework.

In this chapter I reviewed Blackbox, and introduced the high-level algorithm in

KAA, in comparison with the high-level algorithm in Blackbox. I also described the

constraint encoding of the Hybrid Flow Graph. In the next chapter, I will introduce

KDA, the Kongming planner that handles durative actions with flexible temporal

bounds.

128

Alg. 10 EncodeMLQP&Solve(k-level hybrid flow graph: hfg(k), state variables:
x, control variables: u, propositional variables for facts: pf, propositional variables for
actions: pa, initial conditions: I, goal conditions: G, hybrid action types: HT , external
constraint set: C, objective function: f) returns k-level optimal plan: solution

1: Rule 1: All facts in fact level 1 are true
2: Rule 2: Facts that are true in fact level k contain G
3: Rule 3: Fact in fact level m implies at least one of the actions in action level m− 1

that cause the fact
4: Rule 4: Action in action level m implies all resolved conditions in fact level m
5: Rule 5: Mutex facts or actions cannot both be true
6: Rule 6: Action a-end in action level j implies the time between a-end and its

corresponding a-start action is within the duration bounds of a
7: Rule 7: Continuous region r in fact level m implies x(m) ∈ r
8: Rule 8: Action a with specified dynamics in action level m implies (1) u(m) are

within the actuation limits of action a, and (2) x(m), x(m+ 1), u(m) satisfy a’s
state equation

9: Rule 9: x satisfy C for all fact levels
10: Rule 10: Two actions start in the same action level, if they represent two goal

episodes that share the same start event; Two actions end in the same action level,
if they represent two goal episodes that share the same end event

11: Rule 11: All simple temporal constraints in the input QSP are satisfied
12: if solution to MLQP found then
13: return solution
14: else
15: return nil
16: end if

129

130

Chapter 6

KDA: Planning with Durative

Actions

Contents

6.1 LPGP . 132

6.2 KDA . 134

6.2.1 Input & Output . 134

6.2.2 Reformulation . 135

6.2.3 KDA-specific Designs in KAA 140

6.2.4 Reformulation Correctness 141

6.2.5 Output Conversion . 142

Chapter 4 and 5 introduced KAA, the core planner of Kongming that plans for a

final goal state, with hybrid atomic actions. Recall that Kongming is divided into

three planners. KDA plans with hybrid durative actions with flexible durations, by

reformulating durative actions to atomic actions and then engaging KAA. KQSP plans

for QSPs instead of a final goal state, by reformulating the QSP to durative actions

and a final goal state, and then engaging KDA. This chapter introduces KDA, and next

chapter will introduce KQSP.

The core of KDA is a reformulation scheme that converts hybrid durative actions

131

to hybrid atomic actions. The reformulation builds upon the encoding in LPGP

[LF02]. LPGP encodes each discrete durative action as a start, an end and one or

more intermediate actions. KDA combines the LPGP encoding with flow tubes to

reformulate hybrid durative actions as hybrid atomic actions.

In this chapter, I first review LPGP, and then introduce the reformulation of hybrid

durative actions.

6.1 LPGP

The reformulation of hybrid durative actions as hybrid atomic actions builds upon

the encoding in LPGP [LF02]. In this section, I review the LPGP encoding.

LPGP encodes each discrete durative action A as a start action, A-start, an end

action, A-end, and one or more invariant checking actions, A-inv. A-start and A-

end encode the start and the end of A, while A-inv encodes the period when A is

maintained. Two propositions, A-ing-inv and i-A-ing-inv, are introduced as flags, in

order to sequence the these actions together. The net effect is to ensure that A-start

is performed first, followed by one or more A-inv, and ending with A-end.

As shown in Fig. 6-1, between a start action and an end action, there are one or

more actions for invariant checking in the middle of a durative action.

A-start
A-invariant

check
A-end.

Durative action A

A-invariant

check

Figure 6-1: A durative action is formulated as a start action at the start, an end action
at the end, and a series of actions for invariant checking in the middle.[LF02]

I review the encoding of the start action, the inv (invariant checking) action, and

the end action as follows, in accordance with Fig. 6-2. On the left-hand side of the

figure, there is the specification of a durative action A. On the right-hand side of the

132

figure, there is the specification of the start action, the inv action, and the end action.

• The conditions of A-start: the start conditions of A.

• The effects of A-start: the start effects of A and literal A-ing-inv.

• The conditions of A-inv: the overall conditions of A and literal A-ing-inv

• The effects of A-inv: the overall effects of A and literals A-ing-inv and

i-A-ing-inv.

• The conditions of A-end: the end conditions of A and literal i-A-ing-inv.

• The effects of A-end: the end effects of A and literals ¬A-ing-inv and ¬i-A-ing-inv.

• LPGP stores the duration value of each action in a separate file, while adding a

special duration field to each of the start and end actions.

(:action A-start
 :duration dA
 :condition (cond-start)
 :effect (and (eff-start)(A-ing-inv)))

(:durative-action A
 :duration dA
 :condition (and
 (start (cond-start))
 (over all (cond-inv))
 (end (cond-end)))
 :effect (and (start (eff-start))
 (over all (eff-inv))
 (end (eff-end))))

(:action A-end
 :duration dA
 :condition (and (cond-end)(i-A-ing-inv))
 :effect (and (eff-end)(¬ A-ing-inv)(¬ i-A-ing-inv)))

(:action A-inv
 :condition (and (cond-inv)(A-ing-inv))
 :effect (and (eff-inv)(A-ing-inv)(i-A-ing-inv)))

Figure 6-2: The LPGP encoding of a durative action. On the left-hand side of the
figure, there is the specification of a durative action A. On the right-hand side of the
figure, there is the specification of the start action, the inv action, and the end action.

LPGP applies this encoding of durative actions to Graphplan [BF97], with a few

modifications to Graphplan. I review the modifications as follows.

133

• LPGP has a stronger requirement than Graphplan to ensure that actions do

not interfere with one another. It requires that two actions to be mutex if they

share the same end effect. This is to avoid situations where two actions have to

be synchronized to end at exactly the same time.

• No no-op actions are constructed for the literals that have an -inv suffix. This

forces the invariant checking actions to be used to propagate these facts between

levels, ensuring that the invariant conditions are checked as the propagation is

carried out.

• The graph search in Graphplan is modified, so that constraints on action

durations can be incorporated. When an end action is selected, a temporal

constraint is added. The temporal constraint requires that the total duration

between the start and end actions of the durative action must equal the duration

of the durative action.

6.2 KDA

Thus far I have reviewed the LPGP approach for encoding discrete durative actions.

In this section I introduce KDA, by starting with the input and output.

6.2.1 Input & Output

Recall that the problem statement for KDA was defined in Section 3.2. I review them

here.

The input consists of initial conditions I (Def. 4), final goal conditions G (Def. 20),

hybrid durative action types DA (Def. 10), external constraints C (Def. 16), and an

objective function f (Def. 17). The output consists of an optimal hybrid plan PDA

(Def. 21).

As shown in Fig. 6-3, there are three components in KDA. The first component

is Reformulation. It encodes hybrid durative action types (Def. 10) into hybrid

atomic action types (Def. 23). The second component is KAA. It is in charge of the

134

Kongming AA (KAA)

Durative action Atomic actions

Kongming DA (KDA)

KAA Output Conversion

Figure 6-3: KDA overview diagram. There are three components: reformulation of
hybrid durative actions types into hybrid atomic action types, KAA, and KAA output
conversion.

core planning and was introduced in Chapter 4 and 5. The third component is the

KAA output conversion. It converts the output of KAA to the output of KDA. In

the following sections, I first describe the Reformulation part and then the Output

Conversion part.

6.2.2 Reformulation

KDA generalizes the LPGP encoding for hybrid durative actions. Because the LPGP

encoding only applies to actions with discrete conditions and effects, the main challenge

is how to incorporate the flow tubes of the hybrid actions in the encoding.

Fig. 6-4 shows a simple flow tube representation of a hybrid durative action with

flexible duration. The specification of a hybrid durative action is listed on the right.

Its flow tube representation is on the left. The start, overall and end conditions need

to be checked at the start, in the middle and at the end of the flow tube. The start,

overall and end discrete effects need to be added at the start, in the middle and at

the end of the flow tube.

KDA encodes each hybrid durative action as a set of atomic actions, by “slicing”

the flow tube into multiple pieces. All flow tube slices have the same duration, ∆t.

KDA combines the flow tube slices with the LPGP encoding, to ensure that first, the

135

x

td

RI

cond-start
eff-start

cond-int
eff-int cond-end

eff-end

cs(RI ,d)

dlb dub

(:durative-action A
 :duration d ∈ [dlb , dub]
 :condition (and
 (start (cond-start))
 (overall (cond-int))
 (end (cond-end)))
 :discrete-effect (and
 (start (eff-start))
 (overall (eff-int))
 (end (eff-end)))
:dynamics (and
 (u ∈ [ulb , uub])
 (xi+1 = Axi + Bui)))

Figure 6-4: The specification of a hybrid durative action is listed on the right. Its flow
tube representation is on the left. cond-start represents the set of start conditions;
cond-int (intermediate) represents the set of overall conditions; cond-end represents
the set of end conditions. eff-start represents the set of start discrete effects; eff-int
represents the set of overall discrete effects; eff-end represents the set of end discrete
effects. The duration of the action is flexible. The start, overall and end conditions
need to be checked at the start, in the middle and at the end of the flow tube. The
start, overall and end discrete effects need to be added at the start, in the middle and
at the end of the flow tube.

conditions at various stages are enforced at the beginning of each flow tube slice;

second, the effects at various stages are added at the end of each flow tube slice; and

third, the start flow tube slice is performed first, followed by one or more intermediate

flow tube slices, and ending with the end flow tube slice.

As shown on the left-hand side of Fig. 6-5, first, the flow tube in Fig. 6-4 is divided

into multiple flow tube slices, each having duration ∆t. Second, as shown on the

right-hand side of Fig. 6-5, the flow tube slices are combined with the LPGP encoding.

More specifically, the first flow tube slice corresponds to atomic action A-start. The

last flow tube slice corresponds to atomic action A-end. The flow tube slices in the

middle correspond to atomic action A-int. The duration for all the atomic actions

is ∆t. Moreover, the atomic actions all keep the same dynamics as in the durative

action.

This encoding of a hybrid durative action not only discretizes the flow tube into

slices with length of ∆t each, but also uses the conditions of the action type at different

stages to prune the invalid regions in state space and hence invalid trajectories in

136

∆t ∆t ∆t ∆t
∆t

∆t ∆t ∆t ∆t ∆t

Durative action A

A-intA-start A-int A-int A-end

x

t

Figure 6-5: KDA reformulates a hybrid durative action into hybrid atomic actions by
combining the flow tube slices with the LPGP encoding. On the left-hand side, the
flow tube of a hybrid durative action is divided into slices, each with length ∆t. On
the right-hand side, the flow tube slices are combined with the LPGP encoding. The
blue line represents the continuous condition of A-start. The red lines represent of
the continuous condition of A-int. The green line represents the continuous condition
of A-end. The initial region of a flow tube slice is the intersection of the continuous
condition of its corresponding atomic action and the resolved goal region of its previous
flow tube slice.

the flow tube. As shown on the right-hand side of Fig. 6-5, the initial region of each

flow tube slice is constrained by the condition of its corresponding atomic action.

As described in Section 4.2.2 and Section 4.2.3, the initial region of a flow tube is

the intersection of a resolved goal region and the continuous condition of the hybrid

atomic action, where a resolved goal region is the intersection of the goal region of the

previous flow tube and unit-clause external constraints. In other words, initial region

= resolved goal region
⋂

continuous condition. Therefore, the initial region of the

following flow tube is a subset of the resolved goal region of the previous flow tube.

The procedure of reformulating a hybrid durative action type is given in Alg. 11.

The input of the reformulation is a hybrid durative action type, as reviewed in Section

7.1. The output of the reformulation is a set of hybrid atomic action types that satisfy

the definition reviewed in Section 6.2.1. It builds upon the LPGP encoding reviewed

in Section 6.1. I describe the similarities and differences between my encoding and

LPGP as follows, in accordance with the pseudo code in Alg. 11.

Similarities: KDA encodes a hybrid durative action A into three hybrid atomic

actions: A-start, A-int (for intermediate), and A-end. A-start and A-end encode the

137

start and the end of A, while A-int encodes the intermediate period after A starts and

before A ends. Two propositions, A-ing-int and i-A-ing-int, are introduced as flags, in

order to sequence the three actions together. The net effect is to ensure that A-start

is performed first, followed by one or more A-int, and ending with A-end. See details

of the similarities as follows.

• Three atomic action types are created for each durative action type A: A-start,

A-int, and A-end (line 1, 6, 11 in Alg. 11).

• The conditions of A-start are the start conditions of A (line 3).

• The discrete effects of A-start are the start discrete effects of A and literal

A-ing-int (line 4).

• The conditions of A-int are the overall conditions of A and literal A-ing-int

(line 8).

• The discrete effects of A-int are the overall discrete effects of A and literals

A-ing-int and i-A-ing-int (line 9).

• The conditions of A-end are the end conditions of A and literal i-A-ing-int (line

13).

• The discrete effects of A-end are the end discrete effects of A and literals

¬A-ing-int and ¬i-A-ing-int (line 14).

Differences: KDA divides the flow tube of a hybrid durative action A into smaller

flow tubes, each of which has a fixed duration ∆t.

• Each flow tube represents a hybrid atomic action, which can be A-start, A-int,

or A-end.

• The duration of each atomic action is ∆t (line 2, 7, 12 in Alg. 11).

• Each atomic action keeps the same dynamics as in durative action A in order to

construct each flow tube (line 5, 10, 15).

138

Alg. 11 ConvertHybridAction(hybrid durative action type: A) returns a set of
hybrid atomic action types: aSet. {A.cond-start: the set of start conditions of A;
A.cond-int: the set of overall conditions of A; A.cond-end: the set of end conditions of
A; A.eff-start: the set of start discrete effects of A; A.eff-int: the set of overall discrete
effects of A; A.eff-end: the set of end discrete effects of A.}

1: create atomic action type A-start
2: A-start.duration ← ∆t
3: A-start.condition ← A.cond-start
4: A-start.discrete-effect ← (A.eff-start & A-ing-int)
5: A-start.dynamics ← A.dynamics
6: create atomic action type A-int
7: A-int.duration ← ∆t
8: A-int.condition ← (A.cond-int & A-ing-int)
9: A-int.discrete-effect ← (A.eff-int & A-ing-int & i-A-ing-int)

10: A-int.dynamics ← A.dynamics
11: create action type A-end
12: A-end.duration ← ∆t
13: A-end.condition ← (A.cond-end & i-A-ing-int)
14: A-end.discrete-effect ← (A.eff-end & ¬A-ing-int & ¬i-A-ing-int)
15: A-end.dynamics ← A.dynamics
16: return aSet.add(A-start, A-inv, A-end)

Now I discuss what the appropriate value of ∆t can be.

Recall from Chapter 4 that all actions in the input to KAA are hybrid atomic

actions, which all have fixed and equal duration. Hence, the duration of each action

level in a Hybrid Flow Graph is fixed and equal. Since the hybrid atomic action types

that are output from the reformulation have duration ∆t, the duration of each action

level in a Hybrid Flow Graph is ∆t.

Recall from the definition of the dynamic state equation of a hybrid action type

(Def. 14), that time is discretized as 〈t0, t1, . . .〉 ∈ RN . One option is to set the

duration of each hybrid atomic action (∆t) to the time increment in the discretization,

ti − ti−1. This ensures that the flow tube computation for each hybrid atomic action

is as accurate as the state equation. For some dynamic systems, where the time

increment in the state equation is not very small, this option works well. For example,

the time increment for an autonomous underwater vehicle can be 2 seconds [ody].

However, for other more agile dynamic systems, the time increment is small. For

example, the time increment for an unmanned air vehicle [Léa05] or a bi-ped system

139

[Hof06] can be 0.1 seconds. Because ∆t is also the length of each action level in a

Hybrid Flow Graph, if ∆t is set this small, for a planning problem of horizon on the

order of hours, the number of levels in the Hybrid Flow Graph will be on the order

of 104. In this case, constructing the Hybrid Flow Graph and searching for a plan

become too computationally expensive. Thus, in this case, KDA sets ∆t bigger than

the time increment of the dynamic system under control, but as small as computation

power allows. I discuss the value of ∆t further in the empirical results in Chapter 8.

6.2.3 KDA-specific Designs in KAA

Recall from the KAA planner, introduced in Chapter 4 and 5, that a few features in

KAA are created specifically for KDA and were not explained in detail in Chapter 4

and 5. I explain them in detail in this section.

The first feature is that no no-op actions are constructed for the facts that have

an “-int” suffix. This feature is similar to the second modification LPGP makes to

Graphplan in order to apply its encoding of durative actions to Graphplan (Section

6.1). This feature enforces that only the intermediate (-int) actions can be used to

propagate the “-int” facts between levels.

The second feature is to enforce that the sum of all ∆t between the -start and

-end atomic actions of the same durative action is within the duration bounds of the

durative action. This simple temporal constraint is enforced in the MLQP constraint

encoding of KAA, if the -end action takes place. It is specified by the following formula.

pa(j) =⇒ dlb ≤ (j − i+ 1) ∗∆t ≤ dub, (6.1)

where pa(j) is the propositional variable representing an -end action in action level j,

its matching -start action is in action level i, and [dlb, dub] are the lower and upper

bounds on the duration of the corresponding durative action.

This feature is similar to the third modification LPGP makes to Graphplan, as

reviewed in Section 6.1. The purpose of both is to enforce the temporal constraint

on action duration. In LPGP, the modification happens in the back-chaining search

140

in Graphplan. When an end action is selected, LPGP adds to the linear program a

temporal constraint that requires that the total duration between the start and end

actions of the durative action must equal the duration of the durative action. In KAA,

the feature takes place in the MLQP constraint encoding, described in Chapter 5. The

main difference is that because in KDA the durative actions have flexible durations,

KAA adds to the MLQP encoding a temporal constraint that requires that the total

duration should be within the duration bounds of the durative action.

As shown in Fig. 6-6, for example, action A-end is in action level i+2, its matching

A-start action is in action level i. If A-end takes place, then the time between the

beginning of action level i and the end of action level i+ 2, 3 ∗∆t, needs to be within

the duration bounds on A’s duration.

A-start A-ing-int A-int

A-start

A-ing-int
i-A-ing-int
A-ing-int

A-int
A-end
A-int

action level
i

fact level
i+1

action level
i+1

fact level
i+2

action level
i+2

∆t ∆t ∆t
3*∆t

Figure 6-6: Action A-end is in action level i + 2, its matching A-start action is in
action level i. If A-end takes place, then the time between the beginning of action
level i and the end of action level i+ 2, 3 ∗∆t, needs to be within the duration bounds
on A’s duration.

6.2.4 Reformulation Correctness

In this section, I show that the reformulation is correct. In other words, the output

of the reformulation is equivalent to the input of the reformulation. Recall that a

hybrid durative action type consists of a duration, conditions, discrete effects, and

dynamics. I show that each component is kept equivalent in the hybrid atomic action

types reformulated from the durative action type.

The duration of a hybrid durative action type is flexible and bounded by a lower

and upper bound, d ∈ [dlb, dub]. As described in Section 6.2.3, a KDA-specific feature in

141

KAA enforces the sum of all ∆t between the -start and -end atomic actions of the same

durative action to be within the duration bounds of the durative action. Therefore,

the duration bounds of the durative action are satisfied by the total duration of the

sequence of atomic actions reformulated from the durative action.

The conditions of a hybrid durative action type are specified in three stages: start,

overall, and end. As described in Alg. 11, the conditions in the start stage are included

in the conditions of the -start atomic action. Likewise for the conditions in the overall

and the end stage.

The discrete effects of a hybrid durative action type are specified in three stages:

start, overall, and end. As described in Alg. 11, the discrete effects in the start stage

are included in the discrete effects of the -start atomic action. Likewise for the discrete

effects in the overall and the end stage.

The dynamics of a hybrid durative action type are kept the same in all the

corresponding hybrid atomic action types.

6.2.5 Output Conversion

Recall from Chapter 3 that the optimal hybrid plan that is output from KDA is slightly

different from the output plan from KAA. I present the conversion from KAA’s output

to KDA’s output in this section.

The main difference between the two output plans is that, in KAA’s output, the

actions in the optimal action sequence are atomic, whereas in KDA’s output, they are

durative.

More specifically, as defined in Chapter 3, the optimal action sequence out-

put from KAA is in the form of A∗AA = {a∗(t1), a∗(t2), . . . , a∗(tN−1)}, where ∀ti =

t1, . . . , tN−1, ti+1− ti is equal to a discretization constant ∆t, a∗(ti) is the set of actions

to be performed at time ti, and the actions are instantiated from the hybrid atomic ac-

tion types AA. For example, in the underwater domain, the optimal action sequence is

as follows. At time t1, {glide-start}; at time t2, {glide-int, setRudder-start}; at

time t3, {glide-int, setRudder-int}; at time t4, {glide-end, setRudder-end}; at

time t5, {descend-start, setGulper-start}; at time t6, {descend-int, setGulper-int};

142

at time t7, {descend-end, setGulper-end}; at time t8, {takeSample-start}; at time

t9, {takeSample-int}; at time t10, {takeSample-int}; at time t11, {takeSample-end}.
On the other hand, as defined in Chapter 3, the optimal action sequence output from

KDA is in the form of A∗DA = {a∗d(tn1), a
∗
d(tn2), . . . , a

∗
d(tnm)}, where {tn1 , . . . , tnm} ⊆

{t1, . . . , tN−1}, a∗d(tni
) is the set of 〈a, d〉 pairs at time tni

; in each pair, a is an

action instantiated from the hybrid durative action types DA that starts at time tni
,

and d is its duration. For example, corresponding to the optimal action sequence

example introduced previously for KAA, if the discretization constant ∆t = 1, then

the optimal action sequence output from KDA is as follows. At time t1, {〈glide, 4〉};
at time t2, {〈setRudder, 3〉}; at time t5, {〈descend, 3〉, 〈setGulper, 3〉}; at time t8,

{〈takeSample, 4〉}.
The output conversion module in KDA is responsible for converting the optimal

action sequence of KAA, named A∗AA, to the optimal action sequence of KDA, named

A∗DA. Output Conversion involves two steps. First, it identifies the -start actions in

A∗AA. Second, it counts how many time steps there are between each pair of A-start

and A-end actions in A∗AA. If there are n time steps, then the duration of action A is

n×∆t. The pseudo code of Output Conversion in KDA is shown in Alg. 12.

Alg. 12 OutputConversionDA (optimal action sequence of KAA: A∗AA) returns
optimal action sequence of KDA: A∗DA

1: create hash table A∗DA {Stores time points as keys and action-duration pairs as
values}

2: for ti = t1, . . . , tN−1 do
3: for each action a in a∗(ti) do
4: if a contains -start then
5: a ← (-start removed from a) {Identifies the -start actions}
6: tj ← ti+1

7: while a-end is not in a∗(tj) do
8: j ← j + 1 {Looks for the corresponding -end action}
9: end while

10: d← tj − ti {Computes action duration}
11: add (ti, 〈a, d〉) to A∗DA

12: end if
13: end for
14: end for
15: return A∗DA

143

This chapter presented KDA, the planner that plans with hybrid durative actions

with flexible durations, by reformulating them to atomic actions. In the next chapter

I will introduce KQSP.

144

Chapter 7

KQSP: Planning for A Qualitative

State Plan

Contents

7.1 Input & Output . 146

7.2 Reformulation . 146

7.3 KQSP-specific Designs in KAA 150

7.4 Reformulation Correctness 154

7.5 Output Conversion . 155

In Chapter 6, I introduced KDA. It plans with hybrid durative actions with flexible

durations, by reformulating durative actions to atomic actions and then engaging KAA.

KQSP plans for QSPs instead of a final goal state, by reformulating the QSP to durative

actions and a final goal state, and then engaging KDA. This chapter introduces KQSP.

The core of KQSP is a reformulation scheme, which reformulates a QSP to durative

actions and a final goal state. The reformulation is based on the idea that each goal

state of the QSP can be achieved through the conditions of an action. KQSP creates a

hybrid durative action for each goal episode of the QSP. The conditions of the hybrid

durative action include all the state constraints of the goal episode. In order to make

the effects of the action true, the conditions have to be satisfied, which enforces the

state constraints to be achieved.

145

7.1 Input & Output

Recall that the problem statement for KQSP was defined in Section 3.1. I review them

here.

The input consists of initial conditions I (Def. 4), a QSP QSP (Def. 5), hybrid

durative action types DA (Def. 10), external constraints C (Def. 16), and an objective

function f (Def. 17). The output consists of a hybrid optimal plan PQSP (Def. 18).

 Qualitative State Plan Durative actions
 Final goal state

Kongming DA (KDA)

Kongming QSP (KQSP)

KDA Output Conversion

Figure 7-1: KQSP overview diagram. There are three components: reformulation of a
qualitative state plan (QSP), KDA, and KDA output conversion.

As shown in Fig. 7-1, there are three components in KQSP. The first component is

Reformulation. It encodes a qualitative state plan (QSP) into a set of hybrid durative

action types (Def. 10) and a final goal state (Def. 20). The second component is KDA,

introduced in Chapter 6. The third component is the KDA output conversion. It

converts the output of KDA to the output of KQSP. In the following sections, I first

describe the Reformulation part and then the Output Conversion part.

7.2 Reformulation

It is important to be able to plan for multiple goals at different times of a task. Often

we would like to specify an ordering of goal achievement. For example, delivery services

should deliver all priority packages first and then deliver the regular mail. Every so

146

often we also want to specify goals to achieve in parallel. For example, in an unmanned

aerial vehicle fire-fighting mission, a reconnaissance vehicle should monitor the fire

situation before, during and after other vehicles put out the fire. Such temporally

extended goals specify goal requirements at various times of the execution of a plan.

In this thesis, temporally extended goals are represented as qualitative state plans

(QSPs), as defined in Section 3.1.3.

In this section, I introduce how to reformulate a QSP as a set of hybrid durative

action types and a final goal state.

KQSP reformulates a QSP into hybrid durative action types and a final goal state,

by creating a hybrid durative action type for each goal episode, and encoding the fact

that all goal episodes in the QSP are achieved as a final goal state. A QSP (Def. 5)

was defined in Chapter 3. I first review the definition of a QSP.

A QSP consists of a set of events, each representing a point in time, a set of

goal episodes, and a set simple temporal constraints on the events. A goal episode

consists of a start event and an end event of the goal episode, as well as a set of state

constraints that must hold at the start, for the duration, and at the end of the goal

episode. Each state constraint is a conjunction of a linear system over the continuous

state variables and a set of literals over the discrete state variables. Each simple

temporal constraint in a QSP consists of a start event, an end event, and a lower and

an upper bound on the time between the two events. An example of a QSP is shown

in Fig. 7-2.

We observe that goal episodes in a QSP are similar to hybrid durative actions in

that they are durative, and have constraints specified at the start, over the duration,

and at the end. An encoding that represents goal episodes as durative actions may be

used. The main difference is that goal episodes establish conditions to be satisfied,

while actions establish effects to be produced. In addition, a QSP specifies which goal

episodes precede and follow other goal episodes, while there is no specific description

on how durative action types are ordered.

Fig. 7-3 shows the reformulation of one of the goal episodes in a QSP. On the

left-hand side of the figure, there is a QSP of three goal episodes, as introduced in

147

Fig. 7-2. Let us focus on goal episode ge2. On the right-hand side of the figure, the

action created for goal episode ge2 is listed. The duration of the action is bounded

by the simple temporal constraint on the start and end events of the goal episode, if

there is any. The conditions of the action include the state constraints of the goal

episode, and the fact that all predecessors of the goal episode have been achieved.

The discrete effect of the action at the end is the fact that this goal episode has been

achieved. Dynamics are unspecified.

I explain the reformulation procedure as follows, in accordance with the pseudo

code in Alg. 13.

• A hybrid durative action type a is created for every goal episode ge in the QSP

(line 2).

• If there exists a simple temporal constraint in the QSP on the time between the

start event and the end event of the goal episode (line 3), then the duration of a

is bounded by the lower and upper bounds in the temporal constraint (line 4).

Otherwise, the duration of a is unbounded, specified as [0,+∞) (line 6).

• The state constraints of ge are encoded as the conditions of a. More specifically,

the start constraints of ge are encoded as the start conditions of a (line 8); the

overall constraints of ge are encoded as the overall conditions of a (line 9); and

the end constraints of ge are encoded as the end conditions of a (line 10).

• Another start condition of a requires that all the predecessors of ge have been

achieved (line 8). Naturally, a goal episode cannot be started if any of its

predecessors have not completed.

• The only discrete effect of a is that ge has completed, specified by a literal

ge-ended (line 13). This effect is the end effect, because naturally, before the

end of a goal episode, it cannot be considered completed. The start and overall

effects of a are empty (line 11-12).

• The dynamics of a are unspecified (line 14), because the actions are “pseudo”

148

e1 e2 e3

Start: cs1
Overall: co1
End: ce1

[lb2, ub2]

ge1

ge2

ge3

[lb1, ub1]

Start: cs2
Overall: co2
End: ce2

Start: cs3
Overall: co3
End: ce3

Events:
 e1, e2 , e3
Goal Episodes:
 ge1: {<e1,e2>, cs1, co1, ce1}
 ge2: {<e2,e3>, cs2, co2, ce2}
 ge3: {<e2,e3>, cs3, co3, ce3}

Temporal Constraints:
 (e1, e3, lb1, ub1)

 (e2, e3, lb2, ub2)

Figure 7-2: The events in the QSP are e1, e2 and e3. The goal episodes are ge1, ge2
and ge3. cs1, co1 and ce1 are the state constraints of ge1. cs2, co2 and ce2 are the state
constraints of ge2. cs3, co3 and ce3 are the state constraints of ge3. The temporal
constraint on e1 and e3 has lower bound lb1 and upper bound ub1. The temporal
constraint on e2 and e3 has lower bound lb2 and upper bound ub2.

(:durative-action a2
 :duration d ∈ [lb2, ub2]
 :condition (and
 (start (cs2)(ge1-ended))
 (overall (co2))
 (end (ce2)))

 :discrete-effect (and
 (start ())
 (overall ())
 (end (ge2-ended)))
:dynamics ())

e1 e2 e3
Start: cs1
Overall: co1
End: ce1

[lb2, ub2]

ge1

ge2

ge3

[lb1, ub1]

Start: cs2
Overall: co2
End: ce2

Start: cs3
Overall: co3
End: ce3

Figure 7-3: Hybrid durative action type a2 is created for goal episode ge2. ge1-ended
and ge2-ended are literals, representing respectively the fact that ge1 and ge2 are
achieved. cs2, co2 and ce2 are the constraints at different times of ge2.

149

actions that do not produce any actual effects. They are created to enforce the

state constraints of goals in the QSP.

• The final goal state fg requires that all goal episodes in the QSP are achieved,

specified by ∧i gei-ended,∀gei ∈ qsp (line 16).

Alg. 13 ReformulateQSP(a QSP: qsp) returns (a set of hybrid durative action
types aSet, a final goal fg)

1: for each goal episode ge in qsp do
2: create hybrid durative action type a
3: if (ge.start-event, ge.end-event) ∈ temporal constraints of qsp then
4: a.duration ← [lb, ub]
5: else
6: a.duration ← [0,+∞)
7: end if
8: a.condition(start) ← (ge.constraints(start) & ∧i gei-ended) {Every gei is a

predecessor of ge.}
9: a.condition(overall) ← ge.constraints(overall)

10: a.condition(end) ← ge.constraints(end)
11: a.discrete-effect(start) ← ∅
12: a.discrete-effect(overall) ← ∅
13: a.discrete-effect(end) ← ge-ended
14: a.dynamics ← ∅
15: aSet.add(a)
16: fg.add(ge-ended)
17: end for
18: return (aSet, fg)

7.3 KQSP-specific Designs in KAA

Recall from the KAA planner, introduced in Chapter 4 and 5, that a few features in

KAA are created specifically for KQSP to incorporate the temporal information in a

QSP, and were not explained in detail in Chapter 4 and 5. I explain them in detail in

this section.

Recall that a QSP consists of three components: events, goal episodes, and temporal

constraints. There are two types of temporal information associated with events. First,

a goal episode is the predecessor of another goal episode, if the end event of the first

150

goal episode is the start event of the second goal episode. This temporal information is

included in the reformulation introduced in the previous section. However, the second

type of temporal information associated with events is ignored in the reformulation.

Namely, by sharing the same start or end event, goal episodes are required to start or

end at the same time. For example, in Fig. 7-2, ge2 and ge3 are required to start and

end at the same time.

In addition, some temporal constraints are also ignored in the reformulation,

namely, the temporal constraints whose start and end events do not belong to any

goal episodes in the QSP. For example, in Fig. 7-2, the temporal constraint over e1

and e3 is not captured in the reformulation.

In summary, the KQSP-specific features in KAA consist of two types of temporal

constraints:

1. If an event is the start (or end) event of multiple goal episodes, then these goal

episodes should start (or end) at the same time. For example, ge2 and ge3 in

Fig. 7-2.

2. Simple temporal constraints that are not over any specific goal episode in the

QSP. For example, [lb1, ub1] between e1 and e3 in Fig. 7-2.

As introduced in Chapter 5, Temporal Constraint 1 is included in the MLQP

constraint encoding of KAA. Suppose goal episode gei and goal episode gej share the

same start event e, and suppose gei is encoded as hybrid durative action type Ai,

and gej is encoded as hybrid durative action type Aj. Suppose there are K levels in

the Hybrid Flow Graph. Then a constraint needs to be added to require that in any

action level, either both action Ai-start and action Aj-start take place, or neither of

them take place. It is specified as follows:

• ∀k = 1, . . . , K (Ai-start(k) ∧ Aj-start(k)) ∨ (¬Ai-start(k) ∧ ¬Aj-start(k))

Likewise for two goal episodes sharing the same end event:

• ∀k = 1, . . . , K (Ai-end(k) ∧ Aj-end(k)) ∨ (¬Ai-end(k) ∧ ¬Aj-end(k))

151

As introduced in Chapter 5, Temporal Constraint 2 is in the form of simple

temporal constraints, ti − tj ∈ [lb, ub], in the MLQP encoding of KAA. In the QSP,

the temporal bounds [lb, ub] are associated with event pairs. The tricky part is to

identify time points in a Hybrid Flow Graph that correspond to the event pairs.

In order to identify the time points that correspond to the event pairs, I first

describe an observation of a QSP. We observe that there are six cases in total for an

event in a QSP. They are as follows.

1. An event is only the start event of a goal episode. See Fig. 7-4 (1).

2. An event is only the end event of a goal episode. See Fig. 7-4 (2).

3. An event is both the start event of a goal episode and the end event of another

goal episode. See Fig. 7-4 (3).

4. An event is not directly connected to any goal episode, but is the first event of

the QSP. See Fig. 7-5 (4).

5. An event is not directly connected to any goal episode, but is the last event of

the QSP. See Fig. 7-5 (5).

6. An event is in the middle of two events. See Fig. 7-5 (6).

e
Start: cs
Overall: co
End: ce

ge

e
Start: cs
Overall: co
End: ce

ge

e
Start: cs2
Overall: co2
End: ce2

Start: cs1
Overall: co1
End: ce1

ge2ge1

(1) (2) (3)

Figure 7-4: Case 1, 2, and 3 for an event in a QSP. (1) An event is the start event of
a goal episode. (2) An event is the end event of a goal episode. (3) An event is both
the start event of a goal episode and the end event of another goal episode.

In Case 1 - 5, the event, e, can be identified as follows.

1. Event e is the start event of goal episode ge: e is when ge starts. Suppose ge

is encoded as hybrid durative action A. Then e = t(A-start), where t(A-start)

represents the time of the fact level immediately before A-start.

152

e

(4) (5) (6)

ei

First Last

ei e ei e ej

Figure 7-5: Case 4, 5, and 6 for an event e in a QSP. (4) An event is not directly
connected to any goal episode, but is the first event of the QSP. (5) An event is not
directly connected to any goal episode, but is the last event of the QSP. (6) An event
is in the middle of two events.

2. Event e is the end event of goal episode g: e is when ge ends. Suppose ge

is encoded as hybrid durative action A. Then e = t(A-end), where t(A-end)

represents the time of the fact level immediately after A-end.

3. Event e is both the start event of goal episode ge1 and the end event of goal

episode ge2: e is when ge1 starts and when ge2 ends. Suppose ge1 is encoded

as hybrid durative action A1 and ge2 is encoded as hybrid durative action A2.

Then e = t(A1-start) = t(A2-end), where t(A1-start) represents the time of the

fact level immediately before A1-start, and t(A2-end) represents the time of the

fact level immediately after A2-end.

4. Event e is not directly connected to any goal episode, but is the first event of

the QSP: e = t(1), where t(1) represents the time of the first fact level.

5. Event e is not directly connected to any goal episode, but is the last event of

the QSP: e = t(K), where t(K) represents the time of the last fact level.

In Case 6, we observe that the three events in Fig. 7-5 (6) can be collapsed to two

events without changing any of the temporal constraints on the goal episodes. I show

that this can be done even when the QSP is complicated, in Fig. 7-6. This way we

know that Case 6 can be transformed to one of Case 1 - 5.

Now we know how to identify the time point in a Hybrid Flow Graph that

corresponds to any event e in the QSP. The following constraint in the MLQP

encoding of KAA represents Temporal Constraint 2:

∀ simple temporal constraint{〈ei, ej〉, [lb, ub]} ∈ QSP , ej − ei ∈ [lb, ub]. (7.1)

153

e ej
Start: cs2
Overall: co2
End: ce2

[lbj, ubj]

[lb, ub]

[lbn, ubn]

ei
Start: cs1
Overall: co1
End: ce1

[lbi, ubi]

[lbm, ubm]

ejei [lbi+lbj, ubi+ubj]

[lb, ub]

ge1 ge2

Start: cs1
Overall: co1
End: ce1

ge1
Start: cs2
Overall: co2
End: ce2

ge2

[lbn-lbj, ubn-ubj]
[lbm-lbi, ubm-ubi]

Figure 7-6: I show that the three events in Fig. 7-5 (6) can be collapsed to two events
without any change in the temporal constraints on the goal episodes. The temporal
bounds between events are modified accordingly.

7.4 Reformulation Correctness

In this section, I show that the reformulation is correct. In other words, the output

of the reformulation is equivalent to the input of the reformulation in terms of the

constraints to be enforced.

A QSP consists of two types of constraints: state constraints and temporal con-

straints. Each goal episode in a QSP has a set of state constraints. If the state

constraints are satisfied at the right time, the goal episode is considered achieved.

Temporal constraints define the order of goal episodes, and the lower and upper bounds

on the time between two events in a QSP.

Suppose there are m goal episodes in a QSP. For goal episode ge1, ge2, . . . , gem,

KQSP creates durative action a1, a2, . . . , am, and a final goal state ∧igei-ended, i =

1, 2, . . . ,m. In order to achieve the final goal state, each individual gei-ended needs

to be true. Because only action ai can create the positive literal gei-ended, action ai

needs to take place, which enforces the conditions of ai to be true. Therefore, the

state constraints of each goal episode in the QSP are enforced.

Suppose goal episode gei has a set of predecessors gej, j ∈ K. KQSP creates

154

durative action ai for gei, and the start conditions of ai include ∧jgej-ended, j ∈ K.

This enforces all the predecessors to be achieved before starting goal episode gei.

Moreover, as explained in the previous section, the first KQSP-specific feature in KAA

ensures that, goal episodes that share the same start event or end event should start

or end at the same time. Therefore, the temporal constraints that define the order of

goal episodes in the QSP are enforced.

The last type of temporal constraints in a QSP we need to consider are the lower

and upper bounds on the time between two events. As described in the previous

section, the second KQSP-specific feature in KAA is to identify the time point in a

Hybrid Flow Graph that corresponds to any event e in the QSP, and add to the MLQP

encoding ej − ei ∈ [lb, ub] for every such temporal constraint. Therefore, the temporal

constraints that define the lower and upper bounds on the time between two events in

the QSP are enforced.

7.5 Output Conversion

Recall from Chapter 3 that the optimal hybrid plan that is output from KQSP is

slightly different from the output plan from KDA. I present the conversion from KDA’s

output to KQSP’s output in this section.

The main difference between the two output plans is that, the optimal action

sequence in KDA’s output includes actions that are created from the goal episodes in

the QSP, whereas the optimal action sequence in KQSP’s output does not include such

actions.

More specifically, as defined in Chapter 3, the optimal action sequence output

from KDA, which I call A∗DA, and the optimal action sequence output from KQSP,

which I call A∗QSP , are both in the form of {a∗d(tn1), a
∗
d(tn2), . . . , a

∗
d(tnm)}, where

{tn1 , . . . , tnm} ⊆ {t1, . . . , tN−1}, a∗d(tni
) is the set of 〈a, d〉 pairs at time tni

; in each

pair, a is an action instantiated from the hybrid durative action types DA that starts

at time tni
, and d is its duration. However, A∗DA includes actions that are created

from the goal episodes in the input QSP, whereas A∗QSP omits actions that are created

155

from the goal episodes in the input QSP.

For example, the optimal action sequence output from KDA is as follows. At

time t1, {〈goal-sample1, 12〉, 〈glide, 4〉}; at time t2, {〈setRudder, 3〉}; at time

t5, {〈descend, 3〉, 〈setGulper, 3〉}; at time t8, {〈takeSample, 4〉}; at time t13,

{〈goal-sample2, 13〉, 〈glide, 5〉}; at time t18, {〈descend, 3〉}; at time t21, {〈takeSample,

4〉}. In this action sequence, goal-sample1 and goal-sample2 are actions created

from goal episodes in the input QSP.

The output conversion module in KQSP is responsible for removing the actions that

are created from goal episodes of the input QSP from the optimal action sequence of

KDA, namely from A∗DA. The pseudo code of Output Conversion in KQSP is shown

in Alg. 14. It enumerates the time points in A∗DA (Line 1), and finds the actions that

are created from goal episodes and removes them (Line 3-5).

Alg. 14 OutputConversionQSP (optimal action sequence of KDA: A∗DA) returns
optimal action sequence of KQSP: A∗QSP

1: for ti = tn1 , . . . , tnm do
2: for each action a in a∗d(ti) do
3: if a is created from a goal episode then
4: remove a from a∗d(ti)
5: end if
6: end for
7: end for
8: return A∗QSP ← A∗DA

This chapter presented KQSP, the planner that plans with qualitative state plans

and hybrid durative actions with flexible durations. This completes the four approach

chapters on Kongming. In the next chapter I will present empirical evaluation.

156

Chapter 8

Empirical Evaluation

Contents

8.1 Demonstration on An AUV 157

8.2 Experimental Results . 165

8.2.1 Benefit of Hybrid Flow Graph Compared with Direct MLQP

Encoding . 165

8.2.2 Scaling in ∆t . 172

8.2.3 Scaling in The Number of Action Types 173

Kongming is implemented in Java, and uses CPLEX 10.1 to solve its MLQP

encoding of the hybrid planning problem. In this chapter, I first report our field

demonstration of Kongming on the Odyssey IV autonomous underwater vehicle,

provided by the MIT AUV Lab [auv], in the Atlantic ocean. I then describe a series

of experiments in simulation, based on real-world scenarios.

8.1 Demonstration on An AUV

Our field demonstration of Kongming was in the Atlantic ocean in Cape Cod on

Odyssey IV (see Fig. 8-1), an AUV designed and built by the MIT AUV Lab at Sea

Grant. One of the main goals of the demonstration was to show Kongming’s capability

of producing optimal hybrid plans off line to achieve temporally extended goals. A

157

more important goal of the demonstration was to show Kongming’s capability of

generating mission scripts that run seamlessly on an AUV in a natural environment.

Prior to this field demonstration, Odyssey IV and other AUVs at the MIT AUV Lab

have only been controlled by mission scripts hand written by the engineers. Kongming

automatically generates optimal plans, and enables online re-planning. The online

re-planning demonstration is not recorded in this thesis, but can be found at [rep].

Figure 8-1: Odyssey IV, an AUV from the MIT AUV Lab at Sea Grant, is 0.7× 1.4×
2.2m, weighs 500kg dry and about 1000kg wet, and has rated depth 6000m. More
information about the vehicle can be found in [ody].

As this was our first field demonstration, although Kongming is fully capable of

planning in 3D, for safety reasons, the vehicle was kept on the surface during the

tests, in order to maintain constant communication. As the vehicle was limited to

operate on the surface, this reduced planning to one continuous action type, namely

the GoToWaypoint behavior. Moreover, at the time of the demonstration, the vehicle

could not perform any discrete action, so GoToWaypoint was the only hybrid action

type available for the field demonstration.

I conducted two major tests. The Test 1 scenario consists of reaching three

waypoints before going to the pickup point. The graphical user interface (GUI) used

by Kongming for the scenario is shown in Fig. 8-3. As we can see, an obstacle prevents

Odyssey IV from following a straight line from waypoint 2 to 3. The obstacle is

158

imaginary in the ocean. I use a Visibility Graph (VG) path planner to pre-process

obstacle avoidance. More specifically, when two waypoints are separated by an obstacle,

the VG path planner identifies and inserts some of the obstacle corners to form the

shortest path between the two waypoints to go around the obstacle.

Note that Kongming is capable of avoiding obstacles, by encoding this requirement

as external constraints C. The constraint encoding was introduced in Section 5.3.2.

In this deployment, I use a VG path planner to pre-process obstacle avoidance. The

purpose is to avoid the classic pitfall in discrete-time constraint-based path planning,

where “outside of obstacles” is only guaranteed at each time step but not in between

the time steps. Hence, the resulting path may “cut the corners” of the obstacle. I

show an example of a corner-cutting path, compared with a VG-pre-processed path in

Fig. 8-2. The blue path shows the path when using the VG pre-processing, and the

red path shows the path without the VG pre-processing. As we can see, along the

red path, the position at time step i and the position at time step i+ 1 are outside

the obstacle, but the path in between the two time steps is undesirably inside the

obstacle.

The QSP input to Kongming is shown in Fig. 8-4. As we can see, two goal episodes,

ge3 and ge4, to reach the obstacle corners are added. As the vehicle is limited to

operate on the surface, this reduces planning to one continuous action type, namely

the GoToWaypoint behavior. At the time of the demonstration, the vehicle could

perform no discrete action, so GoToWaypoint was the only hybrid action type in this

field demonstration. The initial condition for Kongming is to be at the start point, as

seen in Fig. 8-3. The external constraints C are empty, because obstacles are avoided

using VG path planner, and there are no other external constraints. The objective

function is a quadratic function to minimize the total distance traveled.

The mission script generated by Kongming is comprised of 22 behaviors, and is

listed in Appendix A. The mission script commands Odyssey IV to go to the waypoints

specified in the QSP as well as all the intermediate waypoints generated by Kongming.

The behavior-based controller of the vehicle then maneuvers the vehicle to those

waypoints within specified time bounds. The trajectory of the vehicle is shown in

159

time step i

time step i+1

Figure 8-2: Comparison of an example of a corner-cutting path with a VG-pre-
processed path. The blue path shows the path when using the VG pre-processing, and
the red path shows the path without the VG pre-processing. As we can see, along the
red path, the position at time step i and the position at time step i+ 1 are outside
the obstacle, but the path in between the two time steps is undesirably inside the
obstacle.

Fig. 8-5, where the wavy parts were due to currents in the ocean and the fact that the

behavior-based controller was under-tuned. The extra leg close to the bottom of the

plot occurs because at the start of the mission, the vehicle was not at the assumed

start location. Hence it had to traverse to the assumed start location first.

Test 2 covers a larger area in the ocean and is a longer mission than Test 1. Test 2

shows that Kongming performs efficiently when I scale up the problem size in this

scenario. It took Kongming 0.455 seconds to generate an optimal plan for Test 2,

while it took Kongming 0.319 seconds to generate an optimal plan for Test 1 on the

same machine and with the same CPLEX solver.

The scenario consists of reaching 10 waypoints before the pickup point, in order to

draw the letter K (for Kongming), as shown in the GUI in Fig. 8-6. No obstacle is

involved. The QSP input to Kongming, as shown in Fig. 8-7, is different from that of

Test 1. The rest of the input to Kongming is the same as in Test 1.

The mission script generated by Kongming is comprised of 37 behaviors, and is

listed in Appendix A. The mission script commands Odyssey IV to go to the waypoints

160

Figure 8-3: Display of Kongming’s graphical user interface for the scenario of Test 1.
The mission requires Odyssey IV to reach three waypoints before going to the pickup
point. There is an obstacle between Waypoint 2 and 3.

e1 e2 e3

ge1 [1,200] ge2 [1,100]
Start:
Overall:
End: at Waypoint 1

Start:
Overall:
End: at Waypoint 2

ge3 [1,100]
Start:
Overall:
End: at Corner 1

e4e7 e6 e5

ge6 [1,300] ge5 [1,100]
Start:
Overall:
End: at Pickup Point

Start:
Overall:
End: at Waypoint 3

ge4 [1,100]
Start:
Overall:
End: at Corner 2

Figure 8-4: The QSP for Test 1. Each goal episode in the QSP specifies the state
of reaching a waypoint. The start point:(-18,240), Waypoint 1:(7.3,271.3), Waypoint
2:(7.5,287.3), Obstacle Corner 1:(1.3,296.2), Obstacle Corner 2:(-12.9,296.2), Waypoint
3:(-17.7,287.5), the Pickup Point:(-19.1,242.9). The temporal constraint for each goal
episode is specified in square brackets.

161

Assumed start point

Actual start point

Figure 8-5: The plot of the actual trajectory of Odyssey IV executing the mission
script generated by Kongming. AUV’s trajectory is in blue dots, and the waypoints
planned by Kongming are in red crosses. The extra leg close to the bottom of the
plot occurs because at the start of the mission, the vehicle was not at the assumed
start location. Hence it had to traverse to the assumed start location first.

162

Figure 8-6: Display of Kongming’s graphical user interface for the scenario of Test 2.
The mission requires Odyssey IV to reach 10 waypoints before going to the pickup
point, in order to spell the letter K (the first letter in Kongming).

e1 e2 e3

ge1 [1,200] ge2 [1,200]
Start:
Overall:
End: at Waypoint 1

Start:
Overall:
End: at Waypoint 2

ge3 [1,100]
Start:
Overall:
End: at Waypoint 3

e4e6 e5

ge6 [1,100] ge5 [1,200]
Start:
Overall:
End: at Waypoint 5

ge4 [1,200]

e7 e8 e9

ge7 [1,200] ge8 [1,200]
Start:
Overall:
End: at Waypoint 7

Start:
Overall:
End: at Waypoint 8

ge9 [1,100]

e10e12 e11

ge11 [1,200]
Start:
Overall:
End: at Pickup Point

ge10 [1,200]

Start:
Overall:
End: at Waypoint 4

Start:
Overall:
End: at Waypoint 6

Start:
Overall:
End: at Waypoint 9

Start:
Overall:
End: at Waypoint 10

Figure 8-7: The QSP for Test 2. Each goal episode in the QSP specifies the
state of reaching a waypoint. The start point:(-18,240), Waypoint 1:(-17.7,283.1),
Waypoint 2:(22.8,308.1), Waypoint 3:(11.5,309.2), Waypoint 4:(-17.8,285.8), Way-
point 5:(-18.5,328.1), Waypoint 6:(-11.6,328.1), Waypoint 7:(-12.5,283.1), Waypoint
8:(25.1,247.4), Waypoint 9:(14.6,247.0), Waypoint 10:(-12.9,277.9), and the Pickup
Point:(-12.4,240.5). The temporal constraint for each goal episode is specified in square
brackets.

163

Figure 8-8: The plot of the actual trajectory of Odyssey IV executing the mission
script generated by Kongming. AUV’s trajectory is in blue dots, and the waypoints
planned by Kongming are in red crosses.

specified in the QSP as well as all the intermediate waypoints generated by Kongming.

The behavior-based controller of the vehicle then maneuvers the vehicle to those

waypoints within specified time bounds. The trajectory of the vehicle is shown in

Fig. 8-8, where the wavy parts were due to currents in the ocean and the fact that

the behavior-based controller was under-tuned.

Note that due to the limitations and safety constraints of Odyssey IV, the

GoToWaypoint behavior is the only available action type in the field demonstra-

tion. This reduces the hybrid QSP generative planning problem that Kongming solves

to a QSP path planning problem, which can be solved by path planners, such as

Sulu [LW05a, Léa05]. Although this field demonstration did not showcase Kongming’s

full capability, it demonstrated Kongming’s capability of generating mission scripts

that run seamlessly on an AUV in a natural environment. As mentioned before, prior

to this field demonstration, all AUVs at the MIT AUV Lab have only been controlled

by mission scripts hand written by the engineers. Kongming automatically generates

optimal plans, and enables online re-planning.

164

8.2 Experimental Results

I tested Kongming in simulation in two domains: the underwater vehicle domain and

the air vehicle domain. In the underwater domain, I used scenarios adapted from

MBARI science missions. In the air vehicle domain, I used fire fighting scenarios,

which are variants of the scenario described in Section 3.1.

I tested Kongming in the following three aspects. First, in order to show the benefit

of Kongming’s compact plan representation, the Hybrid Flow Graph, I developed

a direct constraint encoding of the hybrid planning problem, which bypasses the

Hybrid Flow Graph. I compared the performance of Kongming with that of the direct

encoding. Second, I showed how Kongming scales computationally in terms of the

length of the time increment ∆t, which is the length of each action level in the Hybrid

Flow Graph. Finally, I showed how Kongming scales computationally in terms of the

number of hybrid action types. More specifically, I compared Kongming’s scalability in

the number of hybrid action types with specified dynamics with Kongming’s scalability

in the number of hybrid action types without specified dynamics.

8.2.1 Benefit of Hybrid Flow Graph Compared with Direct

MLQP Encoding

As mentioned in Section 1.3, a straightforward way to solving the hybrid planning

problem is to encode the problem directly into a mixed logic quadratic programming

(MLQP) problem, and solve it using a state-of-the-art MLQP solver. Doing this,

however, puts all the computational burden on the solver. Our experiment in this

section shows that the search space is prohibitive for even small problems, by comparing

the performance of Kongming with that of the direct encoding planner, which I call

PlannerDE.

The main difference between Kongming and PlannerDE is the Hybrid Flow Graph,

which Kongming uses to represent the hybrid plan space. As introduced in Chapter

4, the Hybrid Flow Graph builds upon the Planning Graph [BF97], and captures all

feasible continuous state trajectories using flow tubes. The flow tube computation in

165

essence provides projection of reachable states into the future. The main benefit of this

projection is to help identify mutually exclusive actions whose continuous preconditions

or continuous state trajectories are mutually exclusive. As shown in [BF97], identifying

mutual exclusion relations is largely useful in reducing the search space.

PlannerDE encodes directly the hybrid planning problem that KAA solves. Its

encoding rules are listed as follows.

1. Initial conditions are satisfied;

2. Goal conditions are satisfied;

3. If an action takes place at time i, then its preconditions are true at i, and its

discrete effects are true at i+ 1;

4. If an action with specified dynamics takes place at time i, then its control

variables at i are within the control limits, and its state variables and control

variable satisfy the state transition equation;

5. If a propositional fact is true at time i+ 1, then at least one of the actions that

have the fact as an effect takes place at i;

6. If the continuous state changes from time i to time i+ 1, then at least one of

the actions with specified dynamics takes place at i;

7. If two propositional facts negate each other, then they are statically mutually

exclusive and cannot be true at the same time;

8. If one action’s effect or precondition negates the other action’s effect or precondi-

tion, or if the continuous preconditions of two actions have an empty intersection,

then the actions are statically mutually exclusive and cannot take place at the

same time;

9. External constraints are satisfied;

10. Durative actions’ duration bounds are satisfied;

166

11. QSP temporal constraints are satisfied.

The main difference of the direct encoding from Kongming’s approach introduced

in Chapter 4 and 5 is the mutual exclusion relations. There are two aspects to the

mutual exclusion relations. First, in the direct encoding, there are only static mutual

exclusions, for example, two propositions that negate each other are always mutually

exclusive. They are called static because their mutual exclusion relations never

change. In contrast, there are not only static but also non-static mutual exclusions in

Kongming’s approach. The non-static mutual exclusions may change over time. For

example, two facts are mutually exclusive if all actions that create one fact are mutually

exclusive with all actions that create the other fact. Because more actions may become

available for creating the facts as time elapses, at a different time step, the mutual

exclusion relation may disappear. The second aspect is that, in the direct encoding,

mutual exclusions among facts are limited to propositions, whereas in Kongming’s

approach, mutual exclusions among facts also include continuous regions. This is

enabled by flow tube computation in the Hybrid Flow Graph expansion. In summary,

the differences in mutual exclusion relations contribute to the main difference between

the direct encoding approach and Kongming’s approach. I show their difference in

performance as follows.

I compare the performance on two sets of scenarios: a set of underwater scenarios

and a set of fire fighting scenarios. The corresponding input files are given in Appendix

B.

• Underwater Scenario 1 involves that an underwater vehicle goes to a specific

region on the surface of the ocean to take a sample. The world is 2D and within

a square map. There is one goal in the QSP, one action type with specified

dynamics, glide, and one action type without specified dynamics, take sample.

The objective is to minimize distance traveled.

• Underwater Scenario 2 involves that an underwater vehicle goes to two

specific regions on the surface of the ocean to take samples. The world is 2D and

within a square map. There are two goals in sequence in the QSP, one action

167

type with specified dynamics, glide, and one action type without specified

dynamics, take sample. Note that the location for take sample can be either

of the two regions. The objective is to minimize distance traveled.

• Underwater Scenario 3 involves that an underwater vehicle goes to a specific

region in the ocean to take a sample. The world is 3D and there is a dangerous

water column in the middle that the vehicle needs to avoid. There is one goal in

the QSP, three action types with specified dynamics, glide, descend, ascend,

and one action type without specified dynamics, take sample. The objective is

to minimize distance traveled.

These three scenarios are adapted from the MBARI survey missions, and are repre-

sentative of part of the real missions.

#	�me	steps	to	reach	solu�on

Figure 8-9: Logarithmic scale plot of the result of Underwater Scenario 1. The
horizontal axis is the number of time steps to reach solution. The vertical axis is
computation time in seconds. Blue line shows the performance of Kongming. Red
line shows the performance of PlannerDE. Kongming scales well. At time step 44, the
computation time is 5.677 sec. However, after time step 13, the computation time of
PlannerDE goes beyond 48 hours, which is 1.728E+05 seconds.

The logarithmic scale plot of the result of Underwater Scenario 1 is shown in

Fig. 8-9. The x axis is the number of time steps to reach solution. The vertical axis is

computation time in seconds.

168

The number of time steps in the x axis means the following. If there are n time

steps, in PlannerDE it means that the last time index is n + 1, as the initial time

index is 1; and in Kongming it means that the last fact level is Level n + 1, as the

initial fact level is Level 1. When I shrink the velocity range of the action types and

keep the rest of the problem unchanged, more time steps need to be taken in order to

reach the same goals. Increasing the number of time steps increases the complexity of

the hybrid planning problem, because there are more variables and constraints in the

MLQP encoding, and for Kongming the Hybrid Flow Graph is expanded into a larger

graph.

As we can see from the plot, Kongming scales well. At time step 44, the computation

time is 5.677 sec. However, after time step 13, the computation time of PlannerDE

goes beyond 48 hours.

1 

10 

100 

1000 

10  11  12  13 

se
co
nd

s

)me steps to reach solu)on

Kongming vs Direct Encoding (Underwater 2)
Kongming  Direct Encoding 

Figure 8-10: Logarithmic scale plot of the result of Underwater Scenario 2. The
horizontal axis is the number of time steps to reach solution. The vertical axis is
computation time in seconds. Blue line shows the performance of Kongming. Red
line shows the performance of PlannerDE. Kongming scales well. However, after time
step 12, the computation time of PlannerDE goes beyond 48 hours.

The logarithmic scale plot of the result of Underwater Scenario 2 is shown in

Fig. 8-10. The x axis is the number of time steps to reach solution. The vertical axis

is computation time in seconds. As we can see from the plot, Kongming scales well.

However, after time step 12, the computation time of PlannerDE goes beyond 48 hours.

The logarithmic scale plot of the result of Underwater Scenario 3 is shown in

169

1 

10 

100 

1000 

11  12  13  14  15 

se
co
nd

s

)me steps to reach solu)on

Kongming vs Direct Encoding (Underwater 3)
Kongming 

Figure 8-11: Logarithmic scale plot of the result of Underwater Scenario 3. The
horizontal axis is the number of time steps to reach solution. The vertical axis
is computation time in seconds. Blue line shows the performance of Kongming.
Kongming scales well. However, PlannerDE cannot solve any instances within 48
hours.

Fig. 8-11. The x axis is the number of time steps to reach solution. The vertical axis

is computation time in seconds. As we can see from the plot, Kongming scales well.

However, PlannerDE cannot solve any instances within 48 hours.

The following two scenarios are adapted from fire fighting missions in [Léa05], and

closely resemble the original missions.

• Fire-fighting Scenario 1 involves that an air vehicle goes to a fire region and

extinguishes the fire. To put out the fire, the vehicle needs to have water, which

it can take from a lake. After the fire is extinguished, the vehicle needs to take a

photo. The world is 2D as we assume the air vehicle flies at a constant altitude.

There is one goal in the QSP, one action type with specified dynamics, fly,

and two action types without specified dynamics, fill water and take photo.

The objective is to minimize distance traveled.

• Fire-fighting Scenario 2 involves that an air vehicle goes to extinguish two

fires. To put out the fire, the vehicle needs to have water, which it can take

from a lake. After the fires are extinguished, the vehicle needs to take photos.

The world is 2D with a no-fly zone to avoid. There are two goals in the QSP,

170

one action type with specified dynamics, fly, and two action types without

specified dynamics, fill water and take photo. Note that the location for

take photo can be either of the two fire regions. The objective is to minimize

distance traveled.

1 

10 

100 

1000 

10000 

100000 

11  12  13  14  15 

se
co
nd

s

)me steps to reach solu)on

Kongming vs Direct Encoding (Fire Figh)ng 1)
Kongming  Direct Encoding 

Figure 8-12: Logarithmic scale plot of the result of Fire-fighting Scenario 1. The
horizontal axis is the number of time steps to reach solution. The vertical axis is
computation time in seconds. Blue line shows the performance of Kongming. Red
line shows the performance of PlannerDE. Kongming scales well. However, after time
step 14, the computation time of PlannerDE goes beyond 48 hours.

The logarithmic scale plot of the result of Fire-fighting Scenario 1 is shown in

Fig. 8-12. As we can see from the plot, Kongming scales well. However, after time

step 14, the computation time of PlannerDE goes beyond 48 hours.

The logarithmic scale plot of the result of Fire-fighting Scenario 2 is shown in

Fig. 8-13. As we can see from the plot, Kongming scales well. However, after time

step 23, the computation time of PlannerDE goes beyond 48 hours.

To summarize, the non-static and the continuous fact mutual exclusion relations

are essential in reducing the search space, and in order to identify a significant portion

of such mutual exclusion relations, flow tubes need to be computed to propagate the

reachable continuous state regions and expand the Hybrid Flow Graph.

171

1 

10 

100 

1000 

21  23  25  27  29 

se
co
nd

s

)me steps to reach solu)on

Kongming vs Direct Encoding (Fire Figh)ng 2)
Kongming  Direct Encoding 

Figure 8-13: Logarithmic scale plot of the result of Fire-fighting Scenario 2. The
horizontal axis is the number of time steps to reach solution. The vertical axis is
computation time in seconds. Blue line shows the performance of Kongming. Red
line shows the performance of PlannerDE. Kongming scales well. However, after time
step 23, the computation time of PlannerDE goes beyond 48 hours.

8.2.2 Scaling in ∆t

Recall from Chapter 6 that Kongming discretizes the flow tube of a durative action into

“slices”, each of which is ∆t long in time. This ∆t is also the duration of each action

level in the Hybrid Flow Graph. As discussed in Section 6.2.2, it is desirable to set ∆t

equal to the time increment in the state transition equation of a hybrid action type,

∀ti, x(ti) = Ax(ti−1) + Bu(ti−1), because this ensures that the flow tube computation

for each hybrid atomic action is as accurate as the state equation. However, for agile

dynamic systems, such as an air vehicle, whose time increment in the state transition

equation can be as small as 0.1 seconds, Kongming will need to construct a fairly large

Hybrid Flow Graph. If a planning problem has a horizon of half an hour, there are

18000 levels in the Hybrid Flow Graph, which is not computationally realistic. Hence,

the strategy Kongming takes is to set ∆t as small as the computation power allows.

In this section, I tested how Kongming scales in terms of the value of ∆t. I used

Fire-fighting Scenario 1 in this test, and randomly generated 10 problems from the

scenario, by altering the parameters, such as initial location, lake location and fire

location. In each of the 10 problems I decreased ∆t from 1 second to 0.1 second,

which corresponds roughly to from 20 to 200 action levels in the Hybrid Flow Graph

172

on average. I recorded the time to expand the Hybrid Flow Graph and the time to

solve the MLQPs in logarithmic scale in Fig. 8-14. For each ∆t value, I recorded

the average computation time over the 10 problems. The computation time has two

components. One is the time spent on expanding the Hybrid Flow Graph, and the

other is the time spent by CPLEX on solving the MLQPs.

0.1 

1 

10 

100 

1000 

10000 

1  0.8  0.6  0.4  0.2  0.1 

se
co
nd

s
on

 a
ve
ra
ge

∆t (seconds)

Kongming Scaling in ∆t
Time to Expand HFG  Time to Solve MLQP  

Figure 8-14: On the horizontal axis, ∆t is the length of a time step and the temporal
length of each action level. ∆t is decreased while the rest of the problem is unchanged.
The vertical axis shows the average computation time in seconds in logarithmic scale.
Green line shows the time to expand the Hybrid Flow Graph. Orange line shows the
time to solve the MLQPs. As ∆t decreases, the time to solve MLQPs and the time to
expand the Hybrid Flow Graph both increase. The time to solve MLQPs grows 1 to 2
orders of magnitude faster than the time to expand the graph.

We can see from the plot, as ∆t decreases, the time to expand the graph and the

time to solve the MLQPs both increase. The time spent by CPLEX on solving the

MLQPs increases faster than the time to expand the graph. When ∆t is smaller than

0.2, the time to solve the MLQPs exceeds 48 hours. When ∆t = 0.2, the average

number of action levels in the Hybrid Flow Graph is 103.

8.2.3 Scaling in The Number of Action Types

In order to test how the number of hybrid durative action types affects the performance

of Kongming, I randomly generated 70 problems based on Underwater Scenario 3.

Recall that I call hybrid action types with specified dynamics, continuous, for example,

action descend. I call hybrid action types without specified dynamics, discrete, for

173

example, action take sample. In this test, I first increase the number of continuous

action types, while maintaining 3 discrete action types. Second, I increase the number

of discrete action types, while maintaining 3 continuous action types. Note that they

are action types, not action instances.

Among the 70 problems, there are 5 problems for each combination of continuous

action type number and discrete action type number. The 5 problems in each set

contain different parameters, such as initial, goal location, the continuous preconditions

and durations of actions. The average computation time in seconds in logarithmic

scale is recorded over the 5 problems for each set in Fig. 8-15.

1 

10 

100 

1000 

10000 

100000 

2  4  6  8  10  12  14 

se
co
nd

s
on

 a
ve
ra
ge

ac-on types

Scaling in the # of Ac-on Types
Con+nuous  Discrete 

Figure 8-15: Logarithmic plot of computation time in seconds for different number
of continuous action types, and different number of discrete action types. Green line
shows how Kongming scales as the number of discrete action types increases, while
maintaining 3 continuous action types. Orange line shows how Kongming scales as
the number of continuous action types increases, while maintaining 3 discrete action
types.

We can see from Fig. 8-15, Kongming scales better in terms of the number of

discrete action types than in terms of the number of continuous action types. With

more than 10 continuous action types, the computation time of Kongming exceeds

48 hours. Note that 99% of the computation time is spent on solving the MLQPs by

CPLEX in this case. The reason for it is that in each action level, for one continuous

action type, there can be a large number of flow tubes based on different initial regions,

174

which then propagate to a large number of continuous facts in the next fact level,

and so on. This significantly increases the number of variables and constraints in the

MLQPs.

However, the good news is that in real-world problems, there are only a small

number of continuous action types involved, because different continuous action types

correspond to different continuous dynamics of the autonomous system. For example,

an AUV has three continuous action types: glide, descend and ascend.

175

176

Chapter 9

Conclusion

Contents

9.1 Summary . 177

9.2 Future Work . 178

9.2.1 Responding to Disturbances and Uncertainty 178

9.2.2 Heuristic Forward Search 180

9.2.3 Explanation for Plan Failure 181

9.3 Contributions . 182

In this thesis, I have presented a hybrid generative planner, called Kongming. It is

capable of planning for temporally extended goals for hybrid autonomous systems.

Kongming elevates the level of commanding, such that human operators only need to

specify a set of time evolved goals that they want to accomplish, and have the planner

itself produce the series of actions that achieve the mission goals, based on the model

of the physical system under control.

9.1 Summary

In this section, I summarize the chapters in the thesis. Chapter 1 motivates the hybrid

generative planning problem, and gives an overview of the whole thesis. Chapter 2

relates Kongming with prior work, in terms of the problem representation language,

177

continuous planning, and planning for temporally extended goals. Chapter 2 also

reviews prior work that Kongming builds upon. Chapter 3 formally defines the 3

planning problems: the problem for KQSP, the problem for KDA, and the problem for

KAA. Recall that Kongming is divided into three planners. KQSP plans for QSPs, by

reformulating the QSP to durative actions and a final goal state, and then engaging

KDA. KDA plans with hybrid durative actions with flexible durations, by reformulating

durative actions to atomic actions and then engaging KAA. Chapter 4 introduces the

compact plan representation for KAA, called the Hybrid Flow Graph. It includes the

flow tube representation of actions, as well as the definition and construction of the

Hybrid Flow Graph. Chapter 5 introduces the constraint-based planner in KAA. It

includes the algorithm architecture and the mixed logic quadratic program (MLQP)

constraint encoding of the Hybrid Flow Graph. Chapter 6 describes how the KDA

planner plans for durative actions. It reformulates durative actions to atomic actions

and then engages KAA. Chapter 7 describes how the KQSP planner plans for QSPs.

It reformulates the QSP to durative actions and a final goal state, and then engages

KDA. Chapter 8 presents the empirical evaluation of Kongming.

9.2 Future Work

There are several interesting directions for future work.

9.2.1 Responding to Disturbances and Uncertainty

An important goal of having a generative planner for autonomous systems is to react

to the dynamically changing environment, noise in the dynamical system, or plan

execution failure. For example, during the execution of an underwater mission, the

path of an AUV may deviate from the planned path due to currents or system noise.

This error aggregates over time, and can cause plan execution failure. If the planner

outputs a spatially and temporally flexible plan instead of a rigid path, then this

situation can be effectively avoided. In a different case, where goals change, new

obstacles are discovered or the original plan fails to complete, the planner should be

178

able to re-plan online based on the new situation. We next discuss these two cases in

the following subsections.

Qualitative Control Plan Output

In real-world missions, there exist disturbances in the environment and noise in the

dynamical system. Hence, the actual path in execution may deviate from the planned

path. The error generally aggregates over time, and can lead to execution failure.

Flow tubes are a natural solution to this error, because they represent flexible valid

operating regions in state space, rather than a single trajectory.

Currently Kongming uses flow tubes only for planning. Recall the description in

Chapter 4, Kongming builds the hybrid flow graph one level by one level by connecting

together flow tubes that represent hybrid actions. Then Kongming searches for a valid

and optimal plan by encoding the hybrid flow graph as an MLQP and solving it. The

solution to the MLQP corresponds to a trajectory going through the chain of flow

tubes in the hybrid flow graph. The problem with this output of Kongming is that it

is rigid and cannot react to disturbances.

A natural extension to Kongming is to output a chain of flow tubes, instead of

a rigid trajectory. This chain of flow tubes is also called a Qualitative Control Plan

(QCP), as appeared in Hofmann’s work [Hof06]. Thus flow tubes will also be used

in execution, and their spatial and temporal flexibility will be greatly beneficial to

real-world missions in a dynamic and uncertain environment. As described in [Hof06],

so long as the executed trajectory of a vehicle stays within the flow tubes, a valid

control policy is guaranteed to exist, and the plan will execute successfully.

Incremental Re-planning

When goals change, new obstacles are discovered or the original plan fails to complete

during execution, it is desirable that the planner is capable of re-planning online based

on the new situation. Currently Kongming is capable of preliminary re-planning. In

other words, whenever re-planning is needed, Kongming takes the current state of the

autonomous system as the new initial condition, the new temporally extended goal,

179

which excludes the goals that have already been achieved from the original temporally

extended goal, and the new external constraints due to environment changes. The

rest of the input to Kongming remains unchanged from the original input. Then

Kongming solves the updated planning problem from scratch.

Re-planning from scratch is not very efficient, as the information obtained previously

from expanding the Hybrid Flow Graph and encoding and solving the MLQPs is

lost every time re-planning takes place. In most real-world scenarios, there is little

time allowed for re-planning. For example, when an air vehicle detects an unexpected

storm in front blocking its planned route, it needs to re-plan fast enough to avoid

the storm and still reach the original goals with as little detour as possible. Under

tight timing constraints for re-planning, an incremental version of Kongming would

be highly desirable.

9.2.2 Heuristic Forward Search

Recall that the core of Kongming (KAA) consists of the following two parts: 1) a

compact representation of the space of possible hybrid plans, which can be employed

by a wide range of planning algorithms, from constraint-based planning to heuristic

search planning; and 2) a constraint-based planning algorithm that operates on the

hybrid plan representation.

Heuristic forward search planners [CCFL09, CFLS08a, HN01, MBB+09, DK01b,

BG99, BG01, McD96] perform search directly on the plan representation using heuris-

tics obtained from relaxation. The strength of heuristic search planners is that

heuristics estimate the cost to goal to guide the search for a valid plan. I focus on a

recent heuristic search planner, COLIN [CCFL09], as it is the most close to Kongming

with respect to the type of hybrid planning problems it solves. COLIN was compared

with Kongming in Chapter 2. In this section, I review briefly the heuristic search

approach in COLIN.

COLIN extends the temporal relaxed planning graph (TRPG) heuristic of CRIKEY3

[CFLS08b] to handle problems with continuous numeric effects. CRIKEY3 uses a

Simple Temporal Network (STN) to capture the temporal constraints. By constructing

180

a STN at each state in the search space, CRIKEY3 ensures the action choices are

temporally consistent. CRIKEY3 employs a TRPG heuristic to navigate the search

space. In the TRPG, delete effects are ignored, as in classical RPG (relaxed planning

graph). Moreover, the durations of actions are used to offset start and end points

between fact levels in order to capture the temporal constraints on the start and the

end of actions. To provide guidance in problems with continuous numeric effects,

COLIN adds bounds on metric variables in the TRPG, encodes the linear continuous

effects as the start effects of actions, and attaches constraints on continuous resource

consumption to the end points of the relevant actions.

It would be interesting future work to study the possibilities of applying the

extended TRPG in COLIN to the plan representation in Kongming.

9.2.3 Explanation for Plan Failure

When no solution exists for a planning problem, Kongming fails to find a valid plan.

In this situation, more often than not, we would like to know the reason. Such

explanation for plan failure is useful in guiding the user to change the planning

problem specification, so that the problem becomes solvable. For example, if the user

knows that the problem is unsolvable because the autonomous system cannot reach

some of the goals within the specified temporal constraints, then the user can loosen

the temporal constraints or remove some of the goals.

When Kongming solves a hybrid planning problem, there are two conditions under

which no valid plan exists. One is when the goals cannot be all contained in the

Hybrid Flow Graph. The other is when the mixed logic quadratic program (MLQP)

constraint encoding of the Hybrid Flow Graph cannot be solved. The second condition

is of particular interest. In this case, the problem of finding explanation for plan

failure is the problem of finding the minimal set of constraints in the MLQP that

contribute to the infeasibility. There has been a lot of work in finding the minimal

infeasible set or the minimal conflict set from a linear program (LP), a mixed integer

linear program (MILP) or a disjunctive linear program (DLP) [Chi97, PR96, LW05b].

It would be interesting to apply these methods to Kongming’s constraint encoding to

181

identify reason for plan failure.

9.3 Contributions

This thesis has the following contributions:

• I identified and formally defined the hybrid generative planning problem, which

widely exists in the real world in controlling autonomous systems.

• I developed a novel approach to solve the hybrid generative planning problem

for temporally extended goals. There are two main innovations in the approach:

1. A compact representation of the hybrid plan space, called a Hybrid Flow

Graph. It provides a natural way of representing continuous trajectories

in a discrete planning framework. It combines the strengths of a Planning

Graph for discrete actions and Flow Tubes for continuous actions.

2. Novel reformulation schemes to handle temporally flexible actions and

qualitative state plans. They reformulate durative temporally flexible

actions to atomic actions, and reformulate qualitative state plans to durative

actions and a final goal state.

• I implemented a general-purpose planner, called Kongming. It enables first,

simple and natural commanding of autonomous systems by humans, and second,

re-planning to react to disturbances and failure.

• I successfully demonstrated Kongming’s capability of generating mission scripts

that run seamlessly on an autonomous underwater vehicle in the ocean. I also

conducted a range of experiments based on real-world scenarios in simulation,

and showed that the plan representation in Kongming, the Hybrid Flow Graph,

helps reduce the computation time on average by over 3 orders of magnitude.

182

List of Figures

1-1 Map for the sampling mission in Monterey Bay. Grey area is land, and

white area is ocean. Engineers characterize the area with traffic and

fishing activities with a shaded polygon in the map. It is the obstacle

that the AUV needs to avoid. Picture courtesy of MBARI. 17

1-2 A QSP example for the underwater scenario associated with Fig. 1-1.

Small circles represent events or time points. Purple shapes repre-

sent goals. Square brackets specify lower and upper temporal bounds

between events. 17

1-3 An output example for the underwater scenario corresponding to Fig. 1-1. 19

1-4 Mission script for the example mission, without the initialization and

safety behaviors. 20

1-5 A Planning Graph of 3 proposition levels and 2 action levels. Round

black dots represent no-op (do nothing) actions. Solid lines connect

conditions with actions and actions with add-effects. Dotted lines

connect actions with delete-effects. 24

1-6 Flow tubes for center of mass of a biped are shown, with initial regions

in red, goal regions in black, and tubes in blue. The flow tubes define

permissible operating regions in state space. [Hof06] 25

1-7 An example of a flow tube of a hybrid action in 1D for a second-order

acceleration limited dynamical system. (a) shows the initial region RI .

(b) shows the end region. (c) shows the flow tube of duration d. . . . 26

183

1-8 (a) Flow tube a2 is connected to flow tube a1 because the end region

of a1 has a nonempty intersection with the continuous condition of a2.

(b) Conversely, flow tube a3 is not connected to flow tube a2 because

the end region of a2 has an empty intersection with the continuous

condition of a3. 27

1-9 A Hybrid Flow Graph example. Each fact level contains continuous

regions (in blue) and literals (in black). Each action level contains hybrid

actions. The hybrid actions with specified dynamics are represented

by flow tubes (in blue, while the dynamics of some hybrid actions are

unspecified (in black). Big black dots represent no-op actions. Arrows

connect conditions to hybrid actions and hybrid actions to effects. . . 28

1-10 Overview of Kongming’s approach. 29

1-11 In LPGP [LF02], a durative action is formulated as a start action at

the start, an end action at the end, and a series of actions for invariant

checking in the middle. 30

1-12 Hybrid durative action type a2 is created for goal episode ge2. ge1-ended

and ge2-ended are literals, representing respectively the fact that ge1

and ge2 are achieved. cs2, ci2 and ce2 are the constraints at different

times of ge2. 31

2-1 An action example in PDDL2.1, showing the expression of numeric

fluents [FL03]. “?jug1 ?jug2 - jug” means that jug1 and jug2 are of

the type jug. “capacity ?jug2” means the capacity of jug2. 36

2-2 A durative action example in PDDL2.1 [FL03]. 36

2-3 Flow tubes for biped center of mass are shown, with initial regions in red,

goal regions in black, and tubes in blue. Flow tubes for left and right

foot position are shown using dotted lines. As long as state trajectories

remain within the flow tubes, the plan will execute successfully [Hof06]. 43

184

2-4 A Planning Graph consisting of 3 proposition levels and 2 action

levels. Round black dots represent no-op actions. Solid lines connect

preconditions with actions and actions with add-effects. Dotted lines

connect actions with delete-effects. 45

3-1 A temporally extended goal example for the underwater scenario asso-

ciated with Fig. 1-1. 50

3-2 Overview of Kongming’s approach. 50

3-3 The map of the fire fighting scenario. There are two forest fires that

need to be extinguished. Fire 1 has a higher priority because it is closer

to a residential area. There are two no fly zones (NFZs) and two lakes. 52

3-4 A QSP example of the fire fighting scenario. There are three events

(time points), e1, e2 and e3. There are two goal episodes, ge1 and

ge2. There are three temporal constraints, one between e1 and e2, one

between e2 and e3, and one between e1 and e3. 54

3-5 Part of a QSP. There is a goal episode ge and a temporal constraint cT

between two events ei and ej. 57

3-6 A QSP representing φ1UIφ2. Goal episode ge1 specifies that φ1 is true

for at least l(I) and at most r(I). Goal episode ge2 specifies that φ2 is

true immediately after. 57

3-7 In the fire fighting scenario, the air vehicle can perform the follow-

ing hybrid durative action types: fly, get-water, extinguish-fire,

take-photo. 59

3-8 In the fire fighting scenario, the air vehicle can perform the follow-

ing hybrid atomic action types: fly, get-water, extinguish-fire,

take-photo. 70

4-1 Overview of Kongming’s approach. 74

4-2 Glide action with control input value v between t1 and t2 corresponds

to the line connecting point (t1, x1) and point (t2, x2). 77

185

4-3 Line AB corresponds to the trajectory for control value vmax and line

AC corresponds to the trajectory for control value vmin. Triangle ABC

is the flow tube used to represent the range of trajectories. 78

4-4 An example of constructing a flow tube of an action in 1D for a second-

order acceleration limited dynamical system. (a) shows the initial

region RI . (b) shows the cross section of RI . (c) shows the flow tube

of duration d. 81

4-5 Examples of invalid trajectories in a flow tube. There is one state

variable, x. There is one control variable, vx. The state equation and

actuation limit of the action are listed on the right. Inside flow tube

ft(RI , t), two invalid trajectories are shown. The straight dashed line

satisfies the state equation, but its control variable value is outside the

actuation limit. The curvy solid line satisfies neither the state equation

nor the actuation limit. 84

4-6 (a) shows the exact cross section. (b) shows the orthotope external

approximation of the cross section. 85

4-7 A Planning Graph of 3 proposition levels and 2 action levels. Round

black dots represent no-op actions. Solid lines connect conditions with

actions and actions with add-effects. Dotted lines connect actions with

delete-effects. 87

4-8 (a) shows an example of a fact level. It contains literals, circled in blue,

and continuous regions, circled in red. (b) shows an example of an

action level. It contains instantiations of hybrid action types. The ones

with dynamics are represented by flow tubes. It also contains no-op

actions. 91

4-9 Suppose R1, R2 and R3 are in a fact level. As R1, R2 and R3 all have

nonempty intersection with a region r, R1, R2 and R3 are all resolved

conditions of r in the fact level. 92

186

4-10 Suppose r represents the continuous region in a fact level, and suppose

Rp represents the continuous condition of an action. They intersect,

and the non-empty intersection is RI , which is the initial region of the

flow tube ft of the action. 94

4-11 A Hybrid Flow Graph example. Each fact level contains continuous

regions (in red) and literals (in black). Each action level contains hybrid

actions. The continuous actions (in blue) are represented by flow tubes.

Discrete actions are in black. Large black dots represent no-op actions.

The flow tube of action glide in action level 1 is shown on top. Arrows

connect resolved conditions to hybrid actions and hybrid actions to

effects. 95

4-12 An example of action mutex based on the interference rule. 96

4-13 An example of action mutex for case 1-3 of the competing needs rule.

(1) shows case 1. (2) shows case 2. (3) shows case 3. 97

4-14 An example of action mutex for case 4 of the competing needs rule. The

continuous condition of a1 and the continuous condition of a2 have a

nonempty intersection, ra1 ∩ ra2 6= ∅. The resolved condition of a1 and

the resolved condition of a2 have a nonempty intersection, R1 ∩R2 6= ∅.
However, the resolved intersection of a1 and the resolved intersection of

a2 do not intersect, (R1 ∩ ra1) ∩ (R2 ∩ ra2) = ∅. This prevents a1 and

a2 from taking place at the same time. 97

4-15 An example of fact mutex based on rule 1. 98

4-16 An example of fact mutex based on rule 2. 99

4-17 An example of fact mutex based on rule 3. 99

4-18 A Hybrid Flow Graph constructed for the planning problem listed

below. Large dots represent no-op actions. Mutex relations are marked

with red arrows. The sequence of concurrent actions and facts in blue

shows a valid hybrid plan. 104

4-19 . 105

187

4-20 Fact level i is on the left, and the set of conditions are listed on the

top. Suppose ¬rudder and R1 in the fact level are known to be mutex,

connected by red arrows. Conditions GPS and ¬rudder are resolved in

the fact level. Condition r is resolved. Both R1 and R2 are resolved

conditions of r. GPS and ¬rudder are not mutex, and R2 is not mutex

with either GPS or ¬rudder in the fact level. Therefore, the conditions

are contained in the fact level. 107

4-21 Initialization: KAA creates fact level 1 from the initial conditions,

initializes the fact mutex set for fact level 1 as empty. 109

4-22 No-op actions are created for literal ¬rudder and literal ¬GPS in fact

level 1, represented by black dots. 110

4-23 The action types are defined on the right. The conditions of startRudder,

getGPS and glide are all contained in fact level 1. startRudder and

getGPS have no dynamics. They are added to action level 1, and their

discrete effects are added to fact level 2. glide has dynamics. There

is one continuous resolved condition, (x, y) ∈ R0, so one flow tube is

constructed, shown on the top. The initial region of the flow tube, RI ,

is the intersection of the continuous condition of glide, Rglide, and the

continuous resolved condition of glide, R0. The resolved end region of

the flow tube, R1, is the intersection of the end region of the flow tube,

RG, and the unit-clause external constraints, C ′. R1 is not empty, and

is added to fact level 2. 112

5-1 The algorithm architecture of Blackbox. 117

5-2 A Planning Graph example to demonstrate the encoding rules of Black-

box. “Pre1” and “Pre2” are conditions of “Action1”. “Action1” and

“Action2” both have “Fact1” as an effect. “Action2” and “Aciton3” are

mutex. “Fact1” and “Fact2” are mutex. 118

5-3 The algorithm for KAA. 119

188

5-4 An example of the first level of a Hybrid Flow Graph. The initial

conditions are listed on the right. 123

5-5 An example of the last level of a k-level Hybrid Flow Graph. The goal

conditions are listed on the right. 123

5-6 ¬fire is an effect of dropWater and the effect of an no-op action.

(x, y) ∈ R1 is the resolved goal region of fly. 124

5-7 The conditions of action dropWater and fly are listed on the right.

(x, y) ∈ R1 and haveFuel are the resolved conditions of fly. (x, y) ∈ R1,

(x, y) ∈ R2 and haveWater are the resolved conditions of dropWater. 125

5-8 startRudder and glide are mutex actions. getGPS and no-op are

mutex actions. rudder and (x, y) ∈ R1 are mutex facts. GPS and ¬GPS
are mutex facts. 125

5-9 An example of fact level m contains continuous regions and literals.

Continuous regions R0 and R1 are specified by conjunctions of linear

inequalities. 126

5-10 Action glide in action level m. Its type definition is listed on the right.

Rglide is its continuous condition, specified by a conjunction of linear

inequalities. R0 is its resolved condition in fact level m, also specified

by a conjunction of linear inequalities. 127

5-11 An example of external constraints: within the map region, and outside

the obstacles. 128

6-1 A durative action is formulated as a start action at the start, an end

action at the end, and a series of actions for invariant checking in the

middle.[LF02] . 132

6-2 The LPGP encoding of a durative action. On the left-hand side of

the figure, there is the specification of a durative action A. On the

right-hand side of the figure, there is the specification of the start action,

the inv action, and the end action. 133

189

6-3 KDA overview diagram. There are three components: reformulation of

hybrid durative actions types into hybrid atomic action types, KAA,

and KAA output conversion. 135

6-4 The specification of a hybrid durative action is listed on the right. Its

flow tube representation is on the left. cond-start represents the set of

start conditions; cond-int (intermediate) represents the set of overall

conditions; cond-end represents the set of end conditions. eff-start

represents the set of start discrete effects; eff-int represents the set

of overall discrete effects; eff-end represents the set of end discrete

effects. The duration of the action is flexible. The start, overall and

end conditions need to be checked at the start, in the middle and at the

end of the flow tube. The start, overall and end discrete effects need to

be added at the start, in the middle and at the end of the flow tube. . 136

6-5 KDA reformulates a hybrid durative action into hybrid atomic actions

by combining the flow tube slices with the LPGP encoding. On the

left-hand side, the flow tube of a hybrid durative action is divided

into slices, each with length ∆t. On the right-hand side, the flow

tube slices are combined with the LPGP encoding. The blue line

represents the continuous condition of A-start. The red lines represent

of the continuous condition of A-int. The green line represents the

continuous condition of A-end. The initial region of a flow tube slice is

the intersection of the continuous condition of its corresponding atomic

action and the resolved goal region of its previous flow tube slice. . . 137

6-6 Action A-end is in action level i+ 2, its matching A-start action is in

action level i. If A-end takes place, then the time between the beginning

of action level i and the end of action level i+ 2, 3 ∗∆t, needs to be

within the duration bounds on A’s duration. 141

7-1 KQSP overview diagram. There are three components: reformulation of

a qualitative state plan (QSP), KDA, and KDA output conversion. . . 146

190

7-2 The events in the QSP are e1, e2 and e3. The goal episodes are ge1,

ge2 and ge3. cs1, co1 and ce1 are the state constraints of ge1. cs2, co2

and ce2 are the state constraints of ge2. cs3, co3 and ce3 are the state

constraints of ge3. The temporal constraint on e1 and e3 has lower

bound lb1 and upper bound ub1. The temporal constraint on e2 and e3

has lower bound lb2 and upper bound ub2. 149

7-3 Hybrid durative action type a2 is created for goal episode ge2. ge1-ended

and ge2-ended are literals, representing respectively the fact that ge1

and ge2 are achieved. cs2, co2 and ce2 are the constraints at different

times of ge2. 149

7-4 Case 1, 2, and 3 for an event in a QSP. (1) An event is the start event

of a goal episode. (2) An event is the end event of a goal episode. (3)

An event is both the start event of a goal episode and the end event of

another goal episode. 152

7-5 Case 4, 5, and 6 for an event e in a QSP. (4) An event is not directly

connected to any goal episode, but is the first event of the QSP. (5)

An event is not directly connected to any goal episode, but is the last

event of the QSP. (6) An event is in the middle of two events. 153

7-6 I show that the three events in Fig. 7-5 (6) can be collapsed to two

events without any change in the temporal constraints on the goal

episodes. The temporal bounds between events are modified accordingly.154

8-1 Odyssey IV, an AUV from the MIT AUV Lab at Sea Grant, is 0.7×
1.4 × 2.2m, weighs 500kg dry and about 1000kg wet, and has rated

depth 6000m. More information about the vehicle can be found in [ody].158

191

8-2 Comparison of an example of a corner-cutting path with a VG-pre-

processed path. The blue path shows the path when using the VG

pre-processing, and the red path shows the path without the VG pre-

processing. As we can see, along the red path, the position at time step

i and the position at time step i+ 1 are outside the obstacle, but the

path in between the two time steps is undesirably inside the obstacle. 160

8-3 Display of Kongming’s graphical user interface for the scenario of Test

1. The mission requires Odyssey IV to reach three waypoints before

going to the pickup point. There is an obstacle between Waypoint 2

and 3. 161

8-4 The QSP for Test 1. Each goal episode in the QSP specifies the state of

reaching a waypoint. The start point:(-18,240), Waypoint 1:(7.3,271.3),

Waypoint 2:(7.5,287.3), Obstacle Corner 1:(1.3,296.2), Obstacle Corner

2:(-12.9,296.2), Waypoint 3:(-17.7,287.5), the Pickup Point:(-19.1,242.9).

The temporal constraint for each goal episode is specified in square

brackets. 161

8-5 The plot of the actual trajectory of Odyssey IV executing the mission

script generated by Kongming. AUV’s trajectory is in blue dots, and

the waypoints planned by Kongming are in red crosses. The extra

leg close to the bottom of the plot occurs because at the start of the

mission, the vehicle was not at the assumed start location. Hence it

had to traverse to the assumed start location first. 162

8-6 Display of Kongming’s graphical user interface for the scenario of Test

2. The mission requires Odyssey IV to reach 10 waypoints before going

to the pickup point, in order to spell the letter K (the first letter in

Kongming). 163

192

8-7 The QSP for Test 2. Each goal episode in the QSP specifies the

state of reaching a waypoint. The start point:(-18,240), Waypoint 1:(-

17.7,283.1), Waypoint 2:(22.8,308.1), Waypoint 3:(11.5,309.2), Waypoint

4:(-17.8,285.8), Waypoint 5:(-18.5,328.1), Waypoint 6:(-11.6,328.1),

Waypoint 7:(-12.5,283.1), Waypoint 8:(25.1,247.4), Waypoint 9:(14.6,247.0),

Waypoint 10:(-12.9,277.9), and the Pickup Point:(-12.4,240.5). The

temporal constraint for each goal episode is specified in square brackets.163

8-8 The plot of the actual trajectory of Odyssey IV executing the mission

script generated by Kongming. AUV’s trajectory is in blue dots, and

the waypoints planned by Kongming are in red crosses. 164

8-9 Logarithmic scale plot of the result of Underwater Scenario 1. The

horizontal axis is the number of time steps to reach solution. The vertical

axis is computation time in seconds. Blue line shows the performance

of Kongming. Red line shows the performance of PlannerDE. Kongming

scales well. At time step 44, the computation time is 5.677 sec. However,

after time step 13, the computation time of PlannerDE goes beyond 48

hours, which is 1.728E+05 seconds. 168

8-10 Logarithmic scale plot of the result of Underwater Scenario 2. The

horizontal axis is the number of time steps to reach solution. The vertical

axis is computation time in seconds. Blue line shows the performance

of Kongming. Red line shows the performance of PlannerDE. Kongming

scales well. However, after time step 12, the computation time of

PlannerDE goes beyond 48 hours. 169

8-11 Logarithmic scale plot of the result of Underwater Scenario 3. The

horizontal axis is the number of time steps to reach solution. The

vertical axis is computation time in seconds. Blue line shows the

performance of Kongming. Kongming scales well. However, PlannerDE

cannot solve any instances within 48 hours. 170

193

8-12 Logarithmic scale plot of the result of Fire-fighting Scenario 1. The

horizontal axis is the number of time steps to reach solution. The vertical

axis is computation time in seconds. Blue line shows the performance

of Kongming. Red line shows the performance of PlannerDE. Kongming

scales well. However, after time step 14, the computation time of

PlannerDE goes beyond 48 hours. 171

8-13 Logarithmic scale plot of the result of Fire-fighting Scenario 2. The

horizontal axis is the number of time steps to reach solution. The vertical

axis is computation time in seconds. Blue line shows the performance

of Kongming. Red line shows the performance of PlannerDE. Kongming

scales well. However, after time step 23, the computation time of

PlannerDE goes beyond 48 hours. 172

8-14 On the horizontal axis, ∆t is the length of a time step and the temporal

length of each action level. ∆t is decreased while the rest of the problem

is unchanged. The vertical axis shows the average computation time in

seconds in logarithmic scale. Green line shows the time to expand the

Hybrid Flow Graph. Orange line shows the time to solve the MLQPs.

As ∆t decreases, the time to solve MLQPs and the time to expand the

Hybrid Flow Graph both increase. The time to solve MLQPs grows 1

to 2 orders of magnitude faster than the time to expand the graph. . 173

8-15 Logarithmic plot of computation time in seconds for different number of

continuous action types, and different number of discrete action types.

Green line shows how Kongming scales as the number of discrete action

types increases, while maintaining 3 continuous action types. Orange

line shows how Kongming scales as the number of continuous action

types increases, while maintaining 3 discrete action types. 174

194

Appendix A

A.1 Mission Script for Test 1

The mission script generated by Kongming for Test 1 in Section 8.1 is the following.

Name = test1

Task = FunctionGenerator

{

Priority = 3

Name = Z-axis

TimeOut = 600

InitialState = ON

ErrorFlag = EndMission

FUNCTION = Constant

DOF = HEAVE

Magnitude = 15

}

Task = GoToWaypoint

{

Priority = 3

Name = GoToWaypoint

TimeOut = 600

InitialState = ON

195

CompleteFlag = Atwaypoint0

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -18, 240

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track1

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint0

CompleteFlag = Atwaypoint1

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -9.5608294, 250.4187246666667

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track2

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint1

CompleteFlag = Atwaypoint2

TimeoutFlag = Stop

196

ErrorFlag = Stop

Location = -1.1216587999999978, 260.8374493333333

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track3

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint2

CompleteFlag = Atwaypoint3

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 7.317511800000001, 271.256174

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track4

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint3

CompleteFlag = Atwaypoint4

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 7.365495466666668, 276.62060833333334

197

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track5

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint4

CompleteFlag = Atwaypoint5

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 7.413479133333334, 281.9850426666667

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track6

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint5

CompleteFlag = Atwaypoint6

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 7.461462800000001, 287.34947700000004

Radius = 3.0

Speed = 15.0

198

}

Task = GoToWaypoint

{

Priority = 3

Name = Track7

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint6

CompleteFlag = Atwaypoint7

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 6.533150400000001, 290.30701600000003

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track8

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint7

CompleteFlag = Atwaypoint8

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 5.604838000000001, 293.264555

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

199

{

Priority = 3

Name = Track9

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint8

CompleteFlag = Atwaypoint9

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 1.2608950000000005, 296.222094

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track10

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint9

CompleteFlag = Atwaypoint10

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -3.4528903333333325, 296.222094

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

200

Name = Track11

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint10

CompleteFlag = Atwaypoint11

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -8.166675666666665, 296.222094

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track12

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint11

CompleteFlag = Atwaypoint12

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -12.880460999999997, 296.222094

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track13

TimeOut = 30.0

201

InitialState = OFF

StartFlag = Atwaypoint12

CompleteFlag = Atwaypoint13

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -14.492714666666664, 293.3312216666667

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track14

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint13

CompleteFlag = Atwaypoint14

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -16.104968333333332, 290.44034933333336

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track15

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint14

202

CompleteFlag = Atwaypoint15

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -17.717222, 287.549477

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track16

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint15

CompleteFlag = Atwaypoint16

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -18.18419666666667, 272.680669

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track17

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint16

CompleteFlag = Atwaypoint17

TimeoutFlag = Stop

203

ErrorFlag = Stop

Location = -18.651171333333334, 257.811861

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track18

TimeOut = 30.0

InitialState = OFF

StartFlag = Atwaypoint17

CompleteFlag = Atwaypoint18

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -19.118146, 242.94305300000002

Radius = 3.0

Speed = 15.0

}

Task = EndMission

{

Priority = 1

Name = AllDone

TimeOut = Never

StartFlag = Stop

}

Task = Timer

{

Priority = 3

Name = OverallTimeOut

204

TimeOut = 2000.0

InitialState = On

TimeoutFlag = Stop

}

A.2 Mission Script for Test 2

The mission script generated by Kongming for Test 2 in Section 8.1 is the following.

Name = test2

Task = FunctionGenerator

{

Priority = 3

Name = Z-axis

TimeOut = 900

InitialState = ON

ErrorFlag = EndMission

FUNCTION = Constant

DOF = HEAVE

Magnitude = 15

}

Task = GoToWaypoint

{

Priority = 3

Name = GoToWaypoint

TimeOut = 900

InitialState = ON

CompleteFlag = Atwaypoint0

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -18, 240

205

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track1

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint0

CompleteFlag = Atwaypoint1

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -17.725779333333332, 254.25188933333334

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track2

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint1

CompleteFlag = Atwaypoint2

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -17.45155866666666, 268.5037786666667

Radius = 3.0

Speed = 15.0

206

}

Task = GoToWaypoint

{

Priority = 3

Name = Track3

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint2

CompleteFlag = Atwaypoint3

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -17.177338, 282.755668

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track4

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint3

CompleteFlag = Atwaypoint4

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -3.871832666666661, 291.1529366666667

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

207

{

Priority = 3

Name = Track5

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint4

CompleteFlag = Atwaypoint5

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 9.43367266666667, 299.55020533333334

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track6

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint5

CompleteFlag = Atwaypoint6

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 22.739178000000003, 307.947474

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

208

Name = Track7

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint6

CompleteFlag = Atwaypoint7

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 19.017981833333337, 308.3265773333334

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track8

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint7

CompleteFlag = Atwaypoint8

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 15.296785666666668, 308.7056806666667

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track9

TimeOut = 60.0

209

InitialState = OFF

StartFlag = Atwaypoint8

CompleteFlag = Atwaypoint9

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 11.575589500000001, 309.084784

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track10

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint9

CompleteFlag = Atwaypoint10

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 1.8113190000000001, 301.35875400000003

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track11

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint10

210

CompleteFlag = Atwaypoint11

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -7.952951500000001, 293.632724

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track12

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint11

CompleteFlag = Atwaypoint12

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -17.717222, 285.906694

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track13

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint12

CompleteFlag = Atwaypoint13

TimeoutFlag = Stop

211

ErrorFlag = Stop

Location = -17.927659, 299.89064233333335

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track14

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint13

CompleteFlag = Atwaypoint14

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -18.138096, 313.8745906666667

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track15

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint14

CompleteFlag = Atwaypoint15

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -18.348533, 327.858539

212

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track16

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint15

CompleteFlag = Atwaypoint16

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -16.142481666666665, 327.892744

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track17

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint16

CompleteFlag = Atwaypoint17

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -13.936430333333334, 327.92694900000004

Radius = 3.0

Speed = 15.0

213

}

Task = GoToWaypoint

{

Priority = 3

Name = Track18

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint17

CompleteFlag = Atwaypoint18

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -11.730379, 327.961154

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track19

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint18

CompleteFlag = Atwaypoint19

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -11.95832433333333, 313.04798066666666

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

214

{

Priority = 3

Name = Track20

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint19

CompleteFlag = Atwaypoint20

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -12.186269666666664, 298.13480733333336

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track21

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint20

CompleteFlag = Atwaypoint21

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -12.414214999999999, 283.221634

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

215

Name = Track22

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint21

CompleteFlag = Atwaypoint22

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 0.06115566666666794, 271.319273

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track23

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint22

CompleteFlag = Atwaypoint23

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 12.536526333333335, 259.416912

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track24

TimeOut = 60.0

216

InitialState = OFF

StartFlag = Atwaypoint23

CompleteFlag = Atwaypoint24

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 25.011897, 247.514551

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track25

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint24

CompleteFlag = Atwaypoint25

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 21.585311666666666, 247.38818333333333

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track26

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint25

217

CompleteFlag = Atwaypoint26

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 18.158726333333334, 247.26181566666668

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track27

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint26

CompleteFlag = Atwaypoint27

TimeoutFlag = Stop

ErrorFlag = Stop

Location = 14.732141, 247.135448

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track28

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint27

CompleteFlag = Atwaypoint28

TimeoutFlag = Stop

218

ErrorFlag = Stop

Location = 5.557093333333333, 257.34671933333334

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track29

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint28

CompleteFlag = Atwaypoint29

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -3.6179543333333317, 267.5579906666667

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track30

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint29

CompleteFlag = Atwaypoint30

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -12.793002000000001, 277.769262

219

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track31

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint30

CompleteFlag = Atwaypoint31

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -12.695331999999993, 265.36019466666664

Radius = 3.0

Speed = 15.0

}

Task = GoToWaypoint

{

Priority = 3

Name = Track32

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint31

CompleteFlag = Atwaypoint32

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -12.597661999999993, 252.95112733333335

Radius = 3.0

Speed = 15.0

220

}

Task = GoToWaypoint

{

Priority = 3

Name = Track33

TimeOut = 60.0

InitialState = OFF

StartFlag = Atwaypoint32

CompleteFlag = Atwaypoint33

TimeoutFlag = Stop

ErrorFlag = Stop

Location = -12.499992000000002, 240.54209000000002

Radius = 3.0

Speed = 15.0

}

Task = EndMission

{

Priority = 1

Name = AllDone

TimeOut = Never

StartFlag = Stop

}

Task = Timer

{

Priority = 3

Name = OverallTimeOut

TimeOut = 3000.0

InitialState = On

TimeoutFlag = Stop

}

221

222

Appendix B

B.1 Underwater Scenario 1

Qualitative State Plan (QSP) input:

e1 e2

[1, 50]

Start:
Overall:
End: sample

State variables: posX, posY (x, y position)

Propositional variables: sample

Control variables: velX, velY (x, y velocity)

∆t: 1

Objective: min distance traveled

Initial condition: { (posX, posY) = (0, 0), sample = f }
region(sample): (posX, posY) ∈ ([80,90], [70,80])

Continuous action type: glide

duration ∈ (0, ∞)

condition-start: { (posX, posY) ∈ ([0,100], [0,100]) }
condition-overall: { (posX, posY) ∈ ([0,100], [0,100]) }
condition-end: { (posX, posY) ∈ ([0,100], [0,100]) }
dynamics: { velX ∈ [-10, 10], velY ∈ [-10, 10] }

Discrete action type: take sample

223

duration ∈ [2, 8]

condition-start: { (posX, posY) ∈ region(?sample), ?sample = f }
condition-overall: { (posX, posY) ∈ region(?sample), ?sample = f }
condition-end: { (posX, posY) ∈ region(?sample), ?sample = f }
effect-end: { ?sample = t }

External constraints: (posX, posY) ∈ ([0,100], [0,100]) (map boundaries)

B.2 Underwater Scenario 2

Qualitative State Plan (QSP) input:

e1 e2

[1, 50]

Start:
Overall:
End: sampleA

e3

[1, 60]

Start:
Overall:
End: sampleB

State variables: posX, posY (x, y position)

Propositional variables: sampleA, sampleB

Control variables: velX, velY (x, y velocity)

∆t: 1

Objective: min distance traveled

Initial condition: { (posX, posY) = (0, 0), sampleA = f, sampleB = f }
region(sampleA): (posX, posY) ∈ ([25,30], [30,35])

region(sampleB): (posX, posY) ∈ ([55,60], [40,45])

Continuous action type: glide

duration ∈ (0, ∞)

condition-start: { (posX, posY) ∈ ([0,100], [0,100]) }
condition-overall: { (posX, posY) ∈ ([0,100], [0,100]) }
condition-end: { (posX, posY) ∈ ([0,100], [0,100]) }
dynamics: { velX ∈ [-10, 10], velY ∈ [-10, 10] }

Discrete action type: take sample

duration ∈ [2, 8]

224

condition-start: { (posX, posY) ∈ region(?sample), ?sample = f }
condition-overall: { (posX, posY) ∈ region(?sample), ?sample = f }
condition-end: { (posX, posY) ∈ region(?sample), ?sample = f }
effect-end: { ?sample = t }

External constraints: (posX, posY) ∈ ([0,100], [0,100]) (map boundaries)

B.3 Underwater Scenario 3

Qualitative State Plan (QSP) input:

e1 e2

[1, 45]

Start:
Overall:
End: sample

State variables: posX, posY, posZ (x, y, z position)

Propositional variables: sample

Control variables: velX, velY, velZ (x, y, z velocity)

∆t: 1

Objective: min distance traveled

Initial condition: { (posX, posY, posZ) = (0, 0, 0), sample = f }
region(sample): (posX, posY, posZ) ∈ ([80,90], [70,80], [30,40])

Continuous action type: glide

duration ∈ (0, ∞)

dynamics: { velX ∈ [-10, 10], velY ∈ [-10, 10], velZ ∈ [0, 0] }
Continuous action type: descend

duration ∈ (0, ∞)

condition-start: { (posX, posY, posZ) ∈ ((-∞, +∞), (-∞, +∞), [0, 40]) }
condition-overall: { (posX, posY, posZ) ∈ ((-∞, +∞), (-∞, +∞), [0, 40]) }
condition-end: { (posX, posY, posZ) ∈ ((-∞, +∞), (-∞, +∞), [0, 40]) }
dynamics: { velX ∈ [-10, 10], velY ∈ [-10, 10], velZ ∈ [1, 5] }

Continuous action type: ascend

225

duration ∈ (0, ∞)

condition-start: { (posX, posY, posZ) ∈ ((-∞, +∞), (-∞, +∞), [0, 40]) }
condition-overall: { (posX, posY, posZ) ∈ ((-∞, +∞), (-∞, +∞), [0, 40]) }
condition-end: { (posX, posY, posZ) ∈ ((-∞, +∞), (-∞, +∞), [0, 40]) }
dynamics: { velX ∈ [-10, 10], velY ∈ [-10, 10], velZ ∈ [-5, -1] }

Discrete action type: take sample

duration ∈ [2, 8]

condition-start: { (posX, posY, posZ) ∈ region(?sample), ?sample = f }
condition-overall: { (posX, posY, posZ) ∈ region(?sample), ?sample = f }
condition-end: { (posX, posY, posZ) ∈ region(?sample), ?sample = f }
effect-end: { ?sample = t }

External constraints: (posX, posY, posZ) ∈ ([0,100], [0,100], [0,40]) (within map

boundaries)

External constraints: (posX, posY, posZ) /∈ ([40,50], [30,40], [30,40]) (outside obstacle)

B.4 Fire-fighting Scenario 1

Qualitative State Plan (QSP) input:

e1 e2

[1, 50]

Start:
Overall:
End: ¬ fire, photo

State variables: posX, posY (x, y position)

Propositional variables: fire, water, photo

Control variables: velX, velY (x, y velocity)

∆t: 0.5

Objective: min distance traveled

Initial condition: { (posX, posY) = (0, 0), fire = t, water = f, photo = f }
region(lake): (posX, posY) ∈ ([15,20], [10,15])

region(fire): (posX, posY) ∈ ([30,35], [20,25])

226

Continuous action type: fly

duration ∈ (0, ∞)

dynamics: { velX ∈ [-2, 2], velY ∈ [-2, 2] }
Discrete action type: fill water

duration ∈ [1, 7]

condition-start: { (posX, posY) ∈ region(?lake), water = f }
condition-overall: { (posX, posY) ∈ region(?lake), water = f }
condition-end: { (posX, posY) ∈ region(?lake), water = f }
effect-end: { water = t }

Discrete action type: extinguish fire

duration ∈ [3, 12]

condition-start: { (posX, posY) ∈ region(?fire), fire = t, water = t }
condition-overall: { (posX, posY) ∈ region(?fire), fire = t, water = t }
condition-end: { (posX, posY) ∈ region(?fire), fire = t, water = t }
effect-end: { fire = f, water = f }

Discrete action type: take photo

duration ∈ [1, 5]

condition-start: { (posX, posY) ∈ region(?fire), fire = f, photo = f }
condition-overall: { (posX, posY) ∈ region(?fire), fire = f, photo = f }
condition-end: { (posX, posY) ∈ region(?fire), fire = f, photo = f }
effect-end: { photo = t }

External constraints: (posX, posY) ∈ ([0,100], [0,100]) (map boundaries)

B.5 Fire-fighting Scenario 2

Qualitative State Plan (QSP) input:

e1 e2

[1, 100]

Start:
Overall:
End: ¬ fire1, photo1

e3

[1, 100]

Start:
Overall:
End: ¬ fire2, photo2

227

State variables: posX, posY (x, y position)

Propositional variables: fire1, water, photo1, fire2, photo2

Control variables: velX, velY (x, y velocity)

∆t: 0.5

Objective: min distance traveled

Initial condition: { (posX, posY) = (0, 0), fire1 = t, water = f, photo1 = f, fire2 = t,

photo2 = f }
region(lake): (posX, posY) ∈ ([20,25], [30,35])

region(fire1): (posX, posY) ∈ ([40,45], [45,50])

region(fire2): (posX, posY) ∈ ([70,75], [55,60])

Continuous action type: fly

duration ∈ (0, ∞)

dynamics: { velX ∈ [-15, 15], velY ∈ [-15, 15] }
Discrete action type: fill water

duration ∈ [1, 7]

condition-start: { (posX, posY) ∈ region(?lake), water = f }
condition-overall: { (posX, posY) ∈ region(?lake), water = f }
condition-end: { (posX, posY) ∈ region(?lake), water = f }
effect-end: { water = t }

Discrete action type: extinguish fire

duration ∈ [3, 12]

condition-start: { (posX, posY) ∈ region(?fire), ?fire = t, water = t }
condition-overall: { (posX, posY) ∈ region(?fire), ?fire = t, water = t }
condition-end: { (posX, posY) ∈ region(?fire), ?fire = t, water = t }
effect-end: { ?fire = f, water = f }

Discrete action type: take photo

duration ∈ [1, 5]

condition-start: { (posX, posY) ∈ region(?fire), ?fire = f, ?photo = f }
condition-overall: { (posX, posY) ∈ region(?fire), ?fire = f, ?photo = f }
condition-end: { (posX, posY) ∈ region(?fire), ?fire = f, ?photo = f }

228

effect-end: { ?photo = t }

229

230

Bibliography

[ABS97] D. Avis, D. Bremner, and R. Seidel. How good are convex hull algo-

rithms? Comput. Geometry: Theory Appl., vol. 7, pp. 265301, 1997.

[AFH96] R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality.

Journal of the ACM, 1996.

[AHH96] R. Alur, T. Henzinger, and P. Ho. Automatic symbolic verification of

embedded systems. IEEE Trans. on Software Engineering, 22(3):181-

201, 1996.

[ASW98] C. Anderson, D. Smith, and D. Weld. Conditional effects in graphplan.

Proceedings of the 4th International Conference on Artificial Intelligence

Planning Systems (AIPS-98), 1998.

[auv] http://auvlab.mit.edu.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking

without bdds. Proceedings of TACAS, 1999.

[BF97] A. Blum and M. Furst. Fast planning through planning graph analysis.

Artificial Intelligence, 1997.

[BG99] B. Bonet and H. Geffner. Planning as heuristic search: New results.

Proceedings of ECP-99, 1999.

[BG01] B. Bonet and H. Geffner. Planning as heuristic search. Artificial

Intelligence, 129:5–33, 2001.

231

[BK96] F. Bacchus and F. Kabanza. Planning for temporally extended goals.

Proceedings of AAAI, 1996.

[BM06] J. Baier and S. McIlraith. Planning with first-order temporal extended

goals using heuristic search. Proceedings of AAAI, 2006.

[BT97] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization.

Athena Scientific, 1997.

[CCFL09] A. J. Coles, A. I. Coles, M. Fox, and D. Long. Temporal planning

in domains with linear processes. Proceedings of International Joint

Conference on Artificial Intelligence, 2009.

[CFLS08a] A. Coles, M. Fox, D. Long, and A. Smith. A hybrid relaxed planning

graph-lp heuristic for numeric planning domains. Proceedings of ICAPS,

2008.

[CFLS08b] A. Coles, M. Fox, D. Long, and A. Smith. Planning with problems

requiring temporal coordination. Proceedings of AAAI, 2008.

[Chi97] J. Chinneck. Feasibility and viability. Advances in Sensitivity Analy-

sis and Parametric Programming, International Series in Operations

Research and Management Science, 1997.

[Chu08] S. Chung. Model-based planning through constraint and causal order

decomposition. PhD Thesis, MIT, 2008.

[CK98a] A. Chutinan and B. Krogh. Computing approximating automata for

a class of linear hybrid systems. Hybrid Systems V, Lecture Notes in

Computer Science, 1998.

[CK98b] A. Chutinan and B. Krogh. Computing polyhedral approximations

to flow pipes for dynamic systems. Proceedings of the 37rd IEEE

Conference on Decision and Control, 1998.

232

[DK01a] M. Do and S. Kambhampati. Planning as constraint satisfaction: Solving

the planning graph by compiling it into csp. Artificial Intelligence

Journal 132 (p.151-182), 2001.

[DK01b] M. Do and S. Kambhampati. Sapa: A domain-independent heuristic

metric temporal planner. In Proceedings of ECP, 2001.

[DMP91] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.

Journal of Artificial Intelligence, 49 (1991) 61-95, 1991.

[dV93] J. Van de Vegte. Feedback control systems. Prentice Hall, 3rd Edition,

1993.

[FL01] M. Fox and D. Long. PDDL+ Level 5: An Extension to PDDL2.1

for Modelling Planning Domains Continuous Time-dependent Effects.

Available at http://www.dur.ac.uk/d.p.long/competition.html, 2001.

[FL03] M. Fox and D. Long. PDDL2.1: An extension of pddl for expressing

temporal planning domains. Journal of Artificial Intelligence Research,

2003.

[FN71] R. Fikes and N. Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2:189-208,

1971.

[Gir05] A. Girard. Reachability of uncertain linear systems using zonotopes.

Hybrid Systems: Computation and Control, ser. Lecture Notes in Com-

puter Science, vol. 1790, pp. 3145, 2005.

[GS02] A. Gerevini and I. Serina. LPG: a planner based on local search for

planning graphs. Proceedings of the Sixth International Conference on

Artificial Intelligence Planning and Scheduling (AIPS’02), 2002.

[GSS04] A. Gerevini, A. Saetti, and I. Serina. Planning with numerical expres-

sions in LPG. Proceedings of the 16th European Conference on Artificial

Intelligence (ECAI-04), 2004.

233

[HG01] P. Haslum and H. Geffner. Heuristic planning with time and resources.

Proceedings of European Conference on Planning (ECP’01), 2001.

[HN01] J. Hoffmann and B. Nebel. The FF planning system: Fast plan genera-

tion through heuristic search. Journal of Artificial Intelligence Research

14, 253-302, 2001.

[HO99] J. Hooker and M. Osorio. Mixed logical-linear programming. Discrete

Applied Mathematics 96-97, 395-442, 1999.

[Hof03] J. Hoffmann. The metric-FF planning system: Translating “ignoring

delete lists” to numeric state variables. Journal of Artificial Intelligence

Research, 2003.

[Hof06] A. Hofmann. Robust execution of bipedal walking tasks from biome-

chanical principles. PhD Thesis, MIT, 2006.

[HW06] A. Hofmann and B. Williams. Robust execution of temporally flexible

plans for bipedal walking devices. Proceedings of ICAPS, 2006.

[Ins] Monterey Bay Aquarium Research Institute. http://www.mbari.org/.

[KD00] J. Kvarnström and P. Doherty. TALPlanner: A temporal logic based

forward chaining planner. Annals of Mathematics Artificial Intelligence,

2000.

[KGBM04] M. Kvasnica, P. Grieder, M. Baotić, and M. Morari. Multi-parametric

toolbox (mpt). Hybrid Systems: Computation and Control, ser. Lecture

Notes in Computer Science, vol. 2993, pp. 448462, 2004.

[KNHD97] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending

planning graphs to an ADL subset. Proceedings of the 4th European

Conference on Planning (ECP’97), 1997.

234

[Kos01] E. Kostousova. Control synthesis via parallelotopes: Optimization

and parallel computations. Optim. Meth. Software, vol. 14, no. 4, pp.

267310, 2001.

[KS92] H. Kautz and B. Selman. Planning as satisfiability. Proceedings of

European Conference on Artificial Intelligence, 1992.

[KS99] H. Kautz and B. Selman. Unifying sat-based and graph-based planning.

Proceedings of IJCAI, 1999.

[KV07] A. Kurzhanskiy and P. Varaiya. Ellipsoidal techniques for reachabil-

ity analysis of discrete-time linear systems. IEEE Transactions on

Automatic Control, Vol. 52, NO. 1,, 2007.

[LBHJ04] T. Latvala, A. Biere, K. Heljanko, and T. Junttila. Simple bounded

ltl model checking. Proceedings of FMCAD, 2004.

[Léa05] T. Léauté. Coordinating agile systems through the model-based execu-

tion of temporal plans. Master Thesis, MIT, 2005.

[LF99] D. Long and M. Fox. Efficient implementation of the plan graph in

STAN. Journal of Artificial Intelligence Research 10, 87-115, 1999.

[LF02] D. Long and M. Fox. Fast temporal planning in a graphplan framework.

Proceedings of International Conference on Automated Planning and

Scheduling, 2002.

[LW05a] T. Léauté and B. Williams. Coordinating agile systems through the

model-based execution of temporal plans. Proceedings of AAAI, 2005.

[LW05b] H. Li and B. Williams. Generalized conflict learning for hybrid discrete

linear optimization. Proceedings of the International Conference on

Principles and Practice of Constraint Programming, 2005.

235

[MBB+09] N. Meuleau, E. Benazera, R. Brafman, E. Hansen, and Mausam. A

heuristic search approach to planning with continuous resources in

stochastic domains. Journal of Artificial Intelligence Research, 2009.

[McD96] D. McDermott. A heuristic estimator for means-ends analysis in plan-

ning. Proceedings AIPS-96, 1996.

[McD03] D. McDermott. Reasoning about autonomous processes in an estimated-

regression planner. Proceedings of ICAPS, 2003.

[MR07] R. Mattmuller and J. Rintanen. Planning for temporally extended

goals as propositional satisfiability. Proceedings of International Joint

Conference on Artificial Intelligence, 2007.

[MtAPCC98] D. McDermott and the AIPS ’98 Planning Competition Committee.

PDDL - the planning domain definition languages. Technical Report,

Available at: http://www.cs.yale.edu/homes/dvm, 1998.

[ody] http://seagrant.mit.edu/auvwiki/index.php/Main_Page.

[Pea84] J. Pearl. Heuristics: Intelligent search strategies for computer problem

solving. Addison-Wesley, 1984.

[PR96] M. Parker and J. Ryan. Finding the minimum weight iis cover of an

infeasible system of linear inequalities. Annals of Mathematics and

Artificial Intelligence 17, 1996.

[PW92] S. Penberthy and D. Weld. UCPOP: A sound, complete, partial-order

planner for ADL. Proceedings of the Third International Conference on

Knowledge Representation and Reasoning (KR-92), 1992.

[PW94] S. Penberthy and D. Weld. Temporal planning with continuous change.

Proceedings of AAAI, 1994.

[rep] http://people.csail.mit.edu/rootless/replanning.html.

236

[SD05] J. Shin and E. Davis. Processes and continuous change in a sat-based

planner. Artificial Intelligence, 166, 2005.

[SK03] O. Stursberg and B. Krogh. Efficient representation and computation

of reachable sets for hybrid systems. Hybrid Systems: Computation and

Control, ser. Lecture Notes in Computer Science, vol. 2623, pp. 482497,

2003.

[SW99] D. Smith and D. Weld. Temporal planning with mutual exclusion

reasoning. In Proceedings of IJCAI, 1999.

[Ted09] R. Tedrake. LQR-trees: Feedback motion planning on sparse randomized

trees. Proceedings of Robotics: Science and Systems (RSS), 2009.

[who] http://www.whoi.edu.

[WICE03] B. Williams, M. Ingham, S. Chung, and P. Elliott. Model-based pro-

gramming of intelligent embedded systems and robotic space explorers.

Invited Paper, Proceedings of the IEEE: Special Issue on Modeling and

Design of Embedded Software, 2003.

[WN97] B. Williams and P. Nayak. A reactive planner for a model-based

executive. Proceedings of IJCAI, 1997.

[WW99] S. Wolfman and D. Weld. The LPSAT engine and its application to

resource planning. In Proceedings of IJCAI, 1999.

[Zha92] F. Zhao. Automatic analysis and synthesis of controllers for dynamical

systems based on phase-space knowledge. PhD Thesis, MIT, 1992.

237

