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Abstract—We propose a novel approach to auto-
matically fill holes in triangulated models. Each hole
is filled using a minimum energy surface that is
obtained in three steps. First, we unfold the hole
boundary onto a plane using energy minimization.
Second, we triangulate the unfolded hole using a con-
strained Delaunay triangulation. Third, we embed
the triangular mesh as a minimum energy surface
in R

3. The running time of the method depends
primarily on the size of the hole boundary and
not on the size of the model, thereby making the
method applicable to large models. Our experiments
demonstrate the applicability of the algorithm to the
problem of filling holes bounded by highly curved
boundaries in large models.
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1. INTRODUCTION
The wide use of laser range sensors and other types of

3D sensing devices has produced increasingly detailed
3D models. However, holes, due to a variety of reasons,
are usually present in models built from range scans.
Some holes are caused by the intrinsic limitations of the
sensors. Others are the result of object self-occlusion,
insufficient view coverage, and shallow grazing angles.
Davis et al. [7] give an account of holes and their causes
in different situations.
Many methods have been proposed for hole filling.

The majority of them fill holes by interpolating the
nearby geometry [7]. This method is only effective
when the holes are small. Manual, interactive tools
are often used to fix large holes. To keep the surface
smoothness the same as the nearby areas, interactive
methods were proposed in a way that imitates image
touch-up tools such as those found in Adobe Photoshop
where users “cut and paste” surface geometry from
nearby areas [22].
We propose a novel approach to automatically fill

holes in triangulated models. We assume that the holes
are bounded by a simply connected loop that is an
unknot. That is, it can be continuously deformed to a
circle without introducing self-intersections. The hole
can be large and the boundary loop can be highly
curved. We fill the hole with an approximate minimum
energy surface. A mimimum energy surface (MES) is a
surface with fixed boundary b that minimizes a given

energy functional over all surfaces with boundary b.
For the examples shown in this paper we two energy
functions: the least-squares mesh function [24] and the
discrete fairing energy [14]. However, other energy
functionals, for example to preserve smooth change in
surface normal, could be used instead. The complexity
of our algorithm depends primarily on the complexity
of the hole boundary instead of on the complexity
of the triangular mesh. Note that this is a significant
improvement over algorithms that operate on the full
mesh because the complexity of the boundary is often
small even for large models.
To fill a hole bounded by a loop of boundary edges,

the proposed approach proceeds in three steps. In the
first step, the boundary loop is gradually unfolded to
a simple planar polygon. During this unfolding, we
constrain the motion such that the loop does not self-
intersect.
In the second step, the simple planar polygon is

triangulated using a constrained Delaunay triangula-
tion algorithm. The resulting triangulation has three
properties. First, the triangulation contains all of the
edges of the unfolded polygon. Second, the triangulation
does not add any Steiner points. Third, the triangulation
maximizes the minimum angle over all triangulations
that have the first two properties.
In the third step, the triangulated patch is embedded in

R
3 using the known boundary positions. As the ordering
of the vertices is maintained during the unfolding, the
resulting patch closes the hole. We refine the patch to
have the same resolution as the surrounding surface. The
interior vertices are positioned to approximate a MES.

2. RELATED WORK

Geometric methods for filling holes in a mesh model
interpolate the hole boundary or extrapolate the surface
geometry from the surrounding areas. Two types of
representations are used: volumetric representations and
triangular meshes.
The volumetric representation discretizes the surface

mesh into regular 3D grids or an octree structure ei-
ther locally or globally. Davis et al. [7] diffuse the
geometry from the hole boundary to the interior until
the fronts meet. This method handles complex topo-
logical configurations such as holes with islands. How-
ever, it may change the existing mesh. Podolak and
Rusinkiewicz [20] embed the incomplete mesh in an
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octree and use a graph cut method to decide the connec-
tions between pairs of the hole boundaries. It resolves
difficult boundary topologies globally. Ju [11] constructs
a volume using an octree grid and reconstructs the sur-
face using contours. Volumetric approaches work well
for complex holes. However, they are time consuming.
Furthermore, the topology of the generated result may
be incorrect in case of large holes.
The triangle-based approaches to hole filling work

directly on the surface mesh. The advantage of working
directly with the surface mesh is that the rest of the
surface is unchanged when the holes are filled. Let the
mesh contain n vertices and let the mesh boundary
containm vertices. This class of algorithms usually only
deal with holes bounded by a simple loop that is unknot.
That is, holes with islands can usually not be filled using
these algorithms.
Barequet and Sharir [2] give an O(n + m3) algo-

rithm for triangulating a 3D polygonal boundary which
represents the boundary of a hole. When triangulating
the hole boundary, a divide and conquer technique is
used. No new vertices are added to the mesh. Liepa [18]
extends this method to include a surface fairing step.
The high complexity of the algorithm limits the use of
this method. Jun [12] proposes another method based on
subdividing the hole into simple regions. Each simple
hole is filled with a planar triangulation. This algorithm
is not guaranteed to find a result. Li et al. [17] extend
the method to achieve higher efficiency and stability.
However, the algorithm is not guaranteed to find a result
for arbitrary holes.
Dey and Goswami [8] use a Delaunay triangulation-

based method, called Tight Cocone, in which tetrahe-
drons are labeled as in or out. In this method, no extra
vertices are added to the mesh. The method is shown to
perform well to fill small holes. However, the method is
inappropriate to fill large holes because the geometry is
extrapolated from the nearby boundary.
Carr et al. [4] use radial basis functions (RBF) to

compute an implicit surface covering the hole. One RBF
is computed for the full surface. Hence, the complexity
of the algorithm is a function of n. That is, in cases
where the surface is large and the hole boundary is
small, the algorithm is inefficient. To overcome this
problem, Branch et al. [3] extend this approach to use
local RBF for each hole. Chen et al. [5] use an RBF-
based approach to fill holes and recover sharp features
in the hole area.
Tekumalla and Cohen [25] propose an approach that

fills the hole by repeatedly using moving least squares
projection. The approach iteratively adds layers of tri-
angles onto the boundary until the hole is filled. Zhao
et al. [27] fill holes in a similar way. After finding an
initial triangulation by iteratively adding layers to the
boundary, the position of the vertices is optimized by
solving a Poisson equation. The goal of the optimization
is to achieve smooth normal changes across the mesh.
Lévy [16] proposes a general technique for surface

editing based on global parameterization. The method
can fill holes in a surface by parameterizing the surface
in the plane, filling the hole in the parameter domain,
and placing the added vertex coordinates in three di-
mensions to approximate a MES. Unlike the previously
discussed approaches, this approach can fill holes with
arbitrary boundaries. However, the complexity of the
algorithm is a function of n. That is, in cases where the
surface is large and the hole boundary is small, the algo-
rithm is inefficient. Furthermore, it is hard to ensure that
no global overlap occurs during the parameterization of
an incomplete mesh. If the parameterization overlaps,
then the holes cannot be filled.
In this paper, we propose a novel approach to fill

holes in triangular meshes. Our approach is similar
to the approach by Lévy [16] in that we construct a
planar parameterization. However, unlike Lévy, we do
not parameterize the full mesh in the plane, but only
the boundary of the hole. Note that this restricts our
algorithm to operate on holes bounded by simple loops.
However, if the triangular mesh and the boundaries of
the holes are given, our algorithm is independent of
the complexity n of the mesh and depends primarily
on the complexity m of the hole boundary. If the
boundaries of the holes are not given, our algorithm can
extract the boundaries in O(n) time. Furthermore, if our
algorithm finds a solution, then the parameterization of
the boundary is not self-intersecting.

3. ALGORITHM

Given a triangular manifold S with n vertices with
partially missing data, we aim to fill the holes of S by
a triangular manifold meshes of minimum energy.
We first identify the boundaries of holes of S. Since

S is a manifold, we can find the edges of S bounding
a hole as edges that touch exactly one triangle. We
fill each hole separately. Filling a hole bounded by
m edges with a triangulation that does not have self-
intersections may require an exponential number of
Steiner points in m [9]. Furthermore, the problem of
deciding whether such a triangulation exists is an NP -
complete problem [1]. Hence, we do not require that
the mesh avoids self-intersection. However, unlike the
approach by Barequet and Sharir [2], we add Steiner
points to the mesh to reduce the occurrence of self-
intersections.
Our approach proceeds in three steps. First, the

boundary loop is gradually unfolded to a simple planar
polygon. During this unfolding, the loop does not self-
intersect. Second, the simple planar polygon is tri-
angulated using a constrained Delaunay triangulation
algorithm. Third, the triangular patch is embedded in R

3

and refined to match the resolution of the surrounding
mesh. The following sections give a detailed description
of these steps.
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3.1 Unfolding the Boundary
We aim to unfold a boundary loop in R

3 into a
simple planar polygon with similar curvature as the
boundary loop by gradually moving the vertices of the
loop without causing any self-intersections of the loop.
This is only possible if the original loop is an unknot.
Hence, in the following, we assume that an unknotted
boundary loop is given.
The aim is to unfold the loop to a planar polygon.

Minimizing an energy that encourages all sets of four
vertices on the loop to be planar is computationally
expensive because it takes O(m4) time to evaluate the
energy. Hence, we minimize an energy that encourages
all sets of four consecutive vertices on the loop to be pla-
nar. This energy can be evaluated in O(m) time. As we
unfold the curve gradually, we expect that the resulting
planar curve has similar curvature as the boundary loop.
In particular, we expect that concavities of the curve
are preserved. Maintaining concavities helps to obtain a
triangulation that does not self-intersect.
Let p0, p1, . . . , pm−1 denote the m vertices of the

boundary loop. To unfold the boundary loop, we aim
to minimize EPE =

∑m−1
i=0 dPE(pi) subject to the

constraint dMD > ε for an arbitrary threshold ε. We
specify these term below:

dPE(pi) = ∠(ni, n(i+1)mod m), where

ni = (pi−p(i+1)mod m)×(p(i+2)mod m−p(i+1)mod m)

and ∠(a, b) denotes the angle between the two vectors a
and b. An illustration of dPE(pi) is shown in Figure 1.
Here, dMD denotes the minimum distance between any
two segments on the boundary loop, which can be com-
puted in O(m2) time. The minimum distance between
two segments can be computed using dot products [15].

pi

pi+1
pi+2

pi+3

ni

ni+1dPE(pi)
ni

Fig. 1. Illustration of the distance dPE(pi). In the illustration, we
assume that i + 3 < m. Otherwise, all subscripts need to be taken
modulo m.

Note that we can compute the gradient of EPE

analytically, which allows to minimize EPE using a gra-
dient descent approach. However, experimental evidence
suggests that such an approach is likely to get trapped
in a local minimum.
Therefore, we solve the minimization problem using

simulated annealing [13], which proceeds by trying
random steps. If the new solution achieves lower energy
than the previous one, the step is always accepted.
Otherwise, the step is accepted according to a proba-
bility distribution that depends on the time that elapsed
since the algorithm was started. In the beginning of the
algorithm, steps that increase the energy are more likely
to be accepted than in the later stages of the algorithm.

This is analogous to the way liquids cool and crystallize.
We use the approach outlined by Press et al. [21, Chapter
10.9] that uses the Boltzmann distribution to decide
whether a step is accepted or rejected. This approach
accepts a new step with probability exp(−(Et+1

P E −Et
P E

kT ),
where Et

PE is the energy in the last step, Et+1
PE is

the energy in the current step, k < 1 is a constant
that describes the rate of cooling, and T is the start
temperature. We enforce the constraint dMD > ε by
restricting the maximum step size of the algorithm to
max(ε, dMD).
As outlined above, a solution that achieves lower

energy than the previous one is always accepted. In this
case, we choose the next random step close to the current
one. Namely, we move each point along a direction
within 10 degrees of the previous random direction.
After the simulated annealing step, we force the

boundary loop to be planar by projecting it to its best-
fitting plane. If it is possible to move the boundary
loop to the projection by linear motions of the vertices
without introducing self-intersections, we accept the
unfolding. Otherwise, we restart the simulated annealing
process. If we cannot find a solution after starting the
simulated annealing process 100 times, we consider the
algorithm inappropriate to fill the hole.

3.2 Triangulating the Planar Patch
After unfolding the boundary as outlined in the pre-

vious section, we aim to triangulate the simple planar
polygon. We use the method and available code by
Shewchuck [23] to complete this step. The algorithm
computes a constrained Delaunay triangulation of the
input polygon. A constrained triangulation of a polygon
is a triangulation that is constrained to contain each of
the edges of the polygon. That is, no Steiner points
are added along the edges of the polygon. The con-
strained Delaunay triangulation of a polygon has the
property that it maximizes the minimum angle over all
constrained triangulations of the polygon. During the
triangulation, we do not add Steiner points.

3.3 Embedding the Triangular Mesh in R
3

The previous section constructs a planar triangular
mesh. This section outlines how we move this mesh to
the boundary of the hole to obtain a watertight model.
First, we embed the mesh in R

3 by moving the
vertices of the mesh to their corresponding vertices on
the hole boundary. As the order of the vertices along
the boundary polygon is maintained during unfolding,
this yields a watertight model, and, as we expect con-
cavities to be preserved during the gradual unfolding,
we expect to obtain a triangulation that does not self-
intersect. For the non-pathological examples shown in
our experiments, no self-intersections occur.
The result of this step is similar to the result by

Barequet and Sharir [2]. Our approach takes O(m2cd)
time to compute this result, where c is the number
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of unfolding steps during each SA run and d is the
number of SA runs required to find the result, while
the approach by Barequet and Sharir takes O(m3) time.
The number of simulated annealing steps counts how
often we need to restart the simulated annealing process
while the number of unfolding steps counts the number
of random steps taken in one simulated annealing step.
The resolution from the filling mesh may be different

from the resolution of the surrounding mesh, so we
refine the mesh using the approach by Chew [6]. Steiner
points are added such that the Delaunay triangulation
of the added points is guaranteed to have all the angles
between 30◦ and 120◦ and where the edge lengths are at
most twice as long as the edges of the mesh surrounding
the hole. The running time of the algorithm is linear in
the number of generated triangles.
Finally, we embed the interior vertices PInt of the

mesh, such that PInt minimize an energy function. In
this paper, we use two energy functions: a Laplacian
energy to obtain a least-squares mesh [24] and a discrete
fairing energy [14]. Note that these energies can be
replaced by any desired energy function. For example,
different boundary conditions can be used. Or, if images
are captured for texture mapping, a photo consistency
energy can be minimized.
To obtain a MES using the Laplacian energy, the

newly added interior vertices of the mesh filling the hole
are repositioned to minimize the area of the triangular
mesh subject to the boundary constraints provided by the
positions of the boundary vertices. This can be achieved
by repeatedly applying Laplacian smoothing because
Laplacian smoothing is equivalent to minimizing the
surface area [10].
To improve the efficiency of the algorithm, we formu-

late Laplacian smoothing as an optimization problem.
For each vertex p of the mesh, define

U(p) =
1

|N1(p)|
∑

q∈N1(p)

q − p,

where N1(p) is the 1-ring neighborhood of p and
|N1(p)| is the cardinality of the set N1(p). We aim to
minimize

EAREA =
∑

p∈PInt

(U(p))2 ,

where PInt denotes the set of interior vertices of the
mesh. Note that the gradient of EAREA with respect
to p can be expressed explicitly. We solve the opti-
mization problem using a quasi-Newton method [19].
Note that this is equivalent to computing a least-squares
mesh [24].
To obtain a MES using discrete fairing, we minimize

a second-order Laplacian energy. For each vertex p of
the mesh, we compute U(p) as before. Next, compute
for each interior vertex of the mesh

U2(p) =
1

|N1(p)|
∑

q∈N1(p)

U(q)− U(p).

We aim to minimize the energy

EDF =
∑

p∈PInt

(
U2(p)

)
.

We minimize this energy using an iterative approach in
our experiments.

4. EXPERIMENTS

This section presents experiments using the algorithm
presented in this paper. The experiments were conducted
using an implementation in C++ using OpenMP on an
Intel Pentium D with 3.5 GB of RAM. We set k =
0.9, T = 0.5, and ε = 10−5 in all of our experiments.
In all of the figures showing holes in the models, back
faces are shown in blue.
We first apply the algorithm to holes arising from the

limitations of range scanners. The first experiment fills
the holes present in the scan of a chicken model. The
model was scanned using a ShapeGrabber laser range
scanner. The scanned model contains 135233 vertices.
The algorithm filled eight holes with a total of 666
vertices on the boundaries. The model along with the
filled holes is shown in Figure 2. The model is grey
and the filled holes are colored. Figures 2 (a) and (b)
show the front and back of the chicken with five and
three holes respectively. The most complex of the five
holes on the front is located underneath the little chicken
and shown in detail in Figure 2 (c). Another complex
hole on the front of the chicken is located under the eye
and shown in detail in Figure 2(d). Figures 2 (e) and
(f) show large complex holes at the back base of the
chicken model. Our algorithm took the longest to fill
the two highly curved holes shown in Figure 2 (f). We
can see that the proposed algorithm fills all of the holes
present in the scan with approximate MES of similar
resolution as the surrounding mesh.
The unfolding of all the holes took about 6.5 min-

utes. The embedding of all the holes while minimizing
EAREA took about 3 seconds. Note that due to the high
complexity of the model, we only ran the algorithm
once. Hence, the running times are not averaged over
multiple runs for this experiment.
The second experiment based on laser range scans fills

the well-known holes present in the Stanford bunny [26].
There are 5 holes and they contain 79 vertices total.
We fill the holes while minimizing EAREA. Four of the
holes before and after filling are shown in Figure 3.
We next apply the algorithm to a number of artificial

holes. We created holes of large curvature in complete
models to show the applicability of our algorithm in
this case. The first experiment fills the hole present in
the armpit of a human model. The hole boundary has
high curvature. The initial hole as well as the result of
our algorithm are shown in Figure 4.
The following three experiments fill holes present in

the head of a human model. The first hole is shown
in Figure 5. The hole is large and the hole boundary
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(c) (d)

(a) (b) (e) (f)
Fig. 2. Chicken model filled by minimizing EAREA. (a): Front view of the chicken with five filled holes. (b): Back view of the chicken with
three filled holes. (c): Detail view of the filled hole under the little chicken. (d): Detail view of the filled hole under the eye. (e): Detail view
of a filled large hole at the base of the model. (f): Detail views of two filled complex holes at the base of the model.

(a) (b)
Fig. 3. Stanford bunny model filled by minimizing EAREA. (a): Four of the holes in the bunny model. (b): Filled holes.

(c) (d) (e)

(a) (b) (f) (g) (h)
Fig. 4. Armpit model. (a): Hole in the armpit of a human model. (b): Unfolded mesh. (c)-(e): Final embedded mesh obtained by minimizing
EAREA. (f)-(h): Final embedded mesh obtained by minimizing EDF .

is highly curved. Nonetheless, our algorithm finds a
visually pleasing solution.
The second hole is shown in Figure 6. The hole is

large. The hole boundary is highly curved and highly
twisted. Nonetheless, our algorithm finds a visually
pleasing solution.
The third hole is shown in Figure 7. The hole is large.

The hole boundary is curved in all three dimensions.
Nonetheless, our algorithm finds a visually pleasing
solution.
The running times of the experiments are given in

Table 1. We average the running time over 10 runs. Note
that due to the random component in simulated anneal-
ing, the running times of the 10 runs vary significantly.
The running time of the unfolding step depends on the
number of times simulated annealing is restarted and on
the number of steps required to unfold the boundary.
The running time of the embedding step depends on the

number of Steiner points added to the triangular mesh
that fills the hole. Note that the efficiency of the algo-
rithm may be improved by using a more sophisticated
simulated annealing technique than the one described by
Press et al. [21, Chapter 10.9].

5. CONCLUSION
We presented a novel approach to automatically fill

holes in triangulated models. The approach fills the
hole using a minimum energy surface that is obtained
by unfolding the hole boundary into the plane using
an energy minimization approach. The planar curve is
then triangulated and embedded to the three-dimensional
position of the boundary loop. In this paper, we embed
the triangular patch as a minimal surface. Note that this
could be replaced by a prior distribution of the surface’s
geometry to embed the triangular patch. We leave this
for future work.

Authorized licensed use limited to: MIT Libraries. Downloaded on April 05,2010 at 13:54:48 EDT from IEEE Xplore.  Restrictions apply. 



(c) (d) (e)

(a) (b) (f) (g) (h)
Fig. 5. Head model 1. (a): Hole in the head of a human model. (b): Unfolded mesh. (c)-(e): Final embedded mesh obtained by minimizing
EAREA. (f)-(h): Final embedded mesh obtained by minimizing EDF .

(c) (d) (e)

(a) (b) (f) (g) (h)
Fig. 6. Head model 2. (a): Hole in the head of a human model. (b): Unfolded mesh. (c)-(e): Final embedded mesh obtained by minimizing
EAREA. (f)-(h): Final embedded mesh obtained by minimizing EDF .

(a) (b) (c) (d) (e)
Fig. 7. Head model 3 filled by minimizing EDF . (a): Hole in the head of a human model. (b): Unfolded mesh. (c): Final embedded mesh.
(d): Filled hole. (e): Detail view of the filled hole.

The energy used to unfold the boundary loop encour-
ages all sets of four consecutive vertices on the loop
to be planar. This energy can be evaluated efficiently
in O(m) time. We use simulated annealing to minimize
this energy. We leave applying more sophisticated SA
variants to this problem for future work.
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