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Abstract

In 1986, the total profits of the U.S. airline industry were of the order of
$800 million, while its total delay costs due to congestion approached the figure
of $2 billion. Motivated by this important problem of congestion costs and
observing that ground delays are far more preferable than airborne delays, we
have formulated and studied generic integer programming models in order to
assign optimal ground holding delays in a general network of airports, so that
the total (ground plus airborne) delay cost of all flights is minimized. All
previous research on this problem has been restricted to the single-airport case,
which neglects “down-the-road” effects due to transmission of delays between
successive flights performed by the same aircraft.

We give three general pure 0-1 integer programming formulations of the

problem, one of which also takes into account the possibility of cancelling flights.



We then present a heuristic algorithm which finds a feasible solution to the inte-
ger program by rounding the optimal solution of the LP relaxation. Finally, we
present extensive computational results with the goal of obtaining qualitative
insights on the behaviour of the problem under various combinations of the in-
put parameters. We demonstrate that the problem can be solved in reasonable
computation times for networks with at least as many as 6 airports and 3000
flights. Our formulations refer to static deterministic versions of the problem,

but they can be easily extended to cover dynamic versions.

Congestion problems are becoming increasingly acute in many major European
and American airports. For European airlines, the total yearly delay cost due to
congestion (including cost to passengers) was estimated to be $8 billion in 1989 [1].
For U.S. airlines, the direct delay cost due to congestion was claimed to be $2 billion
in 1986 [2]. Given the fact that, in 1986, the total profits of the U.S. airline industry
were about $800 million [2], it can be seen that congestion problems are a phenomenon
of undeniable significance.

Limited capacity is the major cause of congestion. The problem with airport
capacity is that it is highly variable, since it is heavily influenced by, among other
factors, weather conditions (visibility, wind, precipitation). It is not unusual to en-
counter 2:1 and even 3:1 ratios between the highest and the lowest capacity of an
airport.

Solution approaches to this problem vary according to the contemplated time-
horizon. Long-term approaches include construction of additional airports, construc-

tion of additional runways at existing airports, and use of larger aircraft. Medium-



term approaches include modification of the temporal pattern of aircraft flow in order
to eliminate periods of “peak” demand. Short-term approaches have a planning hori-
zon of 6-12 hours and include, most importantly, “ground-holding” policies. These
policies are based on the fundamental fact that airborne delays are much costlier
than ground delays, because the former include fuel, maintenance, depreciation, and
safety costs. Thus, the motivation underlying ground-holding policies is that one may
hold an aircraft on the ground before take-off so that, when the aircraft arrives at its
destination, it will not have to wait in the air before landing.

Ground-holding policies have been in effect for several years. The Federal Aviation
Administration operates in Washington, DC, an Air Traflic Control System Command
Center (ATCSCC, formerly called the Central Flow Control Facility), equipped with
outstanding information-gathering capabilities. ATCSCC, however, relies primarily
on the judgement of its expert air traffic controllers rather than on any decision-
support or optimization models to develop flow management and ground-holding
strategies.

The problem of determining how much (if at all) each aircraft must be held on
the ground before take-oft (and also, possibly, in the air during the flight, e.g., by
means of a speed reduction en route) in order to minimize the total (ground plus
airborne) delay cost will be referred to as the Ground-Holding Problem (GHP). Static
and dynamic versions of the GHP can be distinguished. In the static versions, the
ground (and airborne) holds are decided once for all at the beginning of the day,
whereas in the dynamic versions they are updated during the course of the day as

better weather (and hence capacity) forecasts become available. Deterministic and



probabilistic versions of the GHP can also be distinguished, according to whether
airport capacities are considered deterministic or probabilistic.

Because each of a large number of aircraft performs more than one flight on any
given day, “network” (or “down-the-road”) effects may be important: when a specific
aircraft is delayed, in many cases the next flight performed by the same aircraft
will also be delayed. Moreover, at a “hub” airport, a late arriving aircraft may
delay the departure of several flights, given current airline scheduling practices which
emphasize passenger transfers. To the best of our knowledge, previous research on
the GHP has neglected network effects, and has been restricted to the single-airport
problem. Odoni [2] seems to be the first to have given a systematic description of
the problem. Andreatta and Romanin-Jacur [3] proposed a dynamic programming
algorithm for the single-airport static probabilistic GHP with one time period. Terrab
[1] proposed an eflicient algorithm to solve the single-airport static deterministic GHP,
as well as several heuristics for the single-airport probabilistic GHP. He also suggested
two formulations for the multi-airport static deterministic GHP. Finally, Richetta [4]
dealt with the single-airport dynamic probabilistic GHP. It seems that no significant
research has been done to date concerning the effects of ground-holding policies on
an entire network of airports.

In this paper, the multi-airport GHP is being addressed for the first time. By
using a mathematical programming approach, we solve the deterministic network
GHP in a quite general setting. We propose several integer programming formulations
which have the important advantages of being remarkably simple while capturing the

essential apects of the problem and of being sufficiently flexible to accommodate



various degrees of modeling detail. We present several structural insights on the
parameters that influence the problem, based on extensive computational experience.
Most importantly, our approach enables one to solve realistic size problems involving,
e.g., 6 airports and 3000 flights in very reasonable computation times. (This should
be compared with the previous “record” of about 600 flights for the single-airport
GHP [1].) Our approach can thus be used to assign ground holds for at least a major
part of the network of the most important U.S. or European airports. Although we
focus on the static multi-airport GHP, our algorithms could also be used dynamically
by solving the problem, say, every two hours, as better capacity estimates become
available.

The outline of this paper is as follows. Section 1 defines the problem and gives in-
teger programming formulations of three versions of it. Section 2 proposes a heuristic
based on the solution of a linear programming relaxation. Section 3 gives insights on
the parameters influencing the behaviour of the problem, based on an extensive series
of actual runs. Finally, Section 4 summarizes the results of the paper and points out

directions for future research.

1 Problem definition and formulations.

1.1 Notation.

Consider a set of airports K = {1,..., K} and an ordered set of time periods 7 =
{1,...,T}. For instance, K might be the set of the 20 or so busiest U.S. airports,

and 7 might be a set of 64 time periods of 15 minutes each, amounting to a time



horizon of 16 hours, i.e., the portion of a day from 7am to 11pm (when most flights
take place). Consider finally a set of flights 7 = {1,...,F}. (Note that a single
aircraft may perform several of these flights.) F is the set of all flights of interest,
e.g., all flights departing from an airport in X and arriving to another airport in
K. This interpretation of F corresponds to a closed network of airports, for which
departures from and arrivals to the external world are not considered important. If
an open network of airports is to be considered, then one of the airports in K must
represent the external world.

For each flight f € F, the following data are assumed to be known: kf € K,
the airport from which f is scheduled to depart; &} € K, the airport to which f is
scheduled to arrive; dy € T, the scheduled departure time of f; ry € T, the scheduled
arrival time of f; ¢}(.), the ground delay cost function of f (whose argument is the
ground delay of f in time periods); and c}(.), the airborne delay cost function of f
(whose argument is the airborne delay of f in time periods). For each (k,t) € K x T,
the departure capacity Di(t) and the arrival capacity R(t) (in number of aircraft)
are also given. Since this paper deals with deterministic versions of the GHP, these
capacities are considered fixed numbers rather than random variables.

Consider finally the set 7' C F of those flights that are “continued”. A flight is
said to be continued if the aircraft which is scheduled to perform it is also scheduled to
perform at least one more flight later in the day. For each flight f' € F', we assume we
know the next flight f scheduled to be performed by the same aircraft, and the “slack”
or “absorption” time sz such that, if f' arrives at its destination at most s time

periods late, the departure of the next flight f will not be affected. s; is obviously




equal to the difference between (i) the time interval between the scheduled departure
time of f and the scheduled arrival time of f', and (ii) the minimum “turnaround”

time of the aircraft performing both flights.

1.2 Preliminary remarks.

We define the decision variables gs, f € F, equal to the number of time periods
that flight f is held on the ground before being allowed to take off, and the decision
variables ay, f € F, equal to the number of time periods that flight f is further held
in the air (e.g., by means of a speed reduction en route) before being allowed to land.
Since this paper deals with static versions of the GHP, it is assumed that these ground
and airborne holds are decided once for all at the beginning of the day for all flights.

Consider now the following description of the real-world situation. If a flight f is
scheduled to depart at period dy and is delayed on the ground for g; periods, then it
will be available to depart at period dy + g;. Will it actually depart at that period?
This will depend on whether the total number of aircraft available to depart from
airport k? at that time period will exceed or not the available departure capacity. If
it does exceed it, then the aircraft performing flight f will have to wait q? time periods
in the departure queue. q? will depend on the particular service discipline adopted
for the departure queue. So flight f will actually take off at period dy + g7 + q‘;
Since flight f will be further delayed in the air for a; time periods, it will arrive at its
destination, airport k}, and will be available to land at period r¢+g¢ +qF+a;. Will it
actually land at that period? This will depend on whether the total number of aircraft
available to land at airport k} at that period will exceed or not the available landing
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capacity. If it does exceed it, then the aircraft performing flight f will have to wait ¢}
time periods in the arrival queue, and will actually land at period rs+ gy +qf+as+q5.
The total cost corresponding to flight f will be the sum of ¢}(gs + ¢f) (the ground
delay cost) and c}(ay + ¢%) (the airborne delay cost).

Because we are examining the deterministic case, the above description can be
considerably simplified. In fact, it makes little sense to assign to a flight f a ground
hold of gs time periods such that f will have to further wait q? time periods in the
departure queue: one might as well assign to f a total ground hold of g; + q? time
periods such that f will not have to wait at all in the departure queue. Similar
remarks hold for airborne delays. Given this simplification, the total ground delay
of flight f will be g¢, and its total airborne delay will be ay, resulting in a cost of
ct(gs) + c}(as). This leads us to the following integer programming formulation of

the static deterministic multi-airport GHP.

1.3 A pure 0-1 integer programming formulation of the

multi-airport GHP.

(P) min  YF_, cfgs + cay

St pasor tge < Dalt), (k,t) € K x T (1)
2 pka=k Vft < Ri(t), (k,t) e K xT; (2)
DierpUse = 1, felF; (3)
Teerpvpe=1,  feF; (4)




gp +ap —sp < g5, fEF] (5)
ay > 0, feF; (6)

Upt,vge € {0,1};

where uy, is 1 if flight f finally takes off at period t (i.e., if 74 + g5 = t) and 0
otherwise, and vy, is 1 if flight f finally lands at period ¢ (i.e., if ry + g; + a5 = t)
and 0 otherwise. For every flight f, exactly one of the variables uf; must be equal
to 1 and the others must be equal to zero, and similarly for the variables vy;. (This
is ensured by constraints (3) and (4).) Given this fact, the delay variables g; can be

expressed in terms of the assignment variables uy; in the following way:

gr= Y tup—ds, f€F,

d
tG?}

—_—
-3
~—

where ’Z}d is the set of time periods to which flight f may be assigned to take off,
given by: T¢ = {t € T : dy <t < min(d; + Gy,T)}. This simply says that flight
f cannot take off before period dy, its scheduled departure time, nor can it take off
after dy + Gy, where Gy is an upper bound on the acceptable ground delay of f.
Similarly, the delay variables a; can be expressed in terms of the assignment

variables vy in the following way:

ag= Y tvg—rs—gs fEF, (8)

teTj“

where 7 is the set of time periods to which flight f may be assigned to land, given




by: Tf = {t € T : vy <t < min(ry + Ay, T)}, where Ay is an upper bound on the
acceptable airborne delay of f.

For simplicity of exposition, variables g; and a; were kept in formulation (P),
but it should be clear that they can be eliminated by mere substitution through (7)
and (8), so that uy and vy, are the only decision variables.

Note that nonnegativity of g; is guaranteed by (7), whereas nonnegativity of ay
is not guaranteed, this is why constraints (6) are needed.

In the objective function of (P;), the cost functions c§(¢), c}(t) were replaced by
their linear counterparts c}t,cjt (c%,c} being the constant marginal costs). Con-
straints (1) and (2) are the departure and arrival capacity constraints, respectively.
Recall that these have to be satisfied because we choose g and ay such that the queue-
ing delays ¢, ¢ are 0 (and that we can do this because the problem is deterministic).
(Strictly speaking, we also need the condition that Gy and Ay be sufficiently large.)
Constraints (5) are the coupling constraints: they “transfer” any excessive delay of
flight f’ to its next flight f. In fact, the coupling constraints say that, if flight f'
arrives at its destination with a total delay gy + ay which is greater than sz (the
“slack” defined above), then the next flight f will have to be delayed on the ground at
least g4 + ay — sy time periods; otherwise, the departure of the next flight f will not
be affected. Note that the existence of these coupling constraints allows us to have a
separable objective function: the cost of delaying flight f because of an excessive de-
lay of its previous flight f’ is taken into account via the term of the objective function
corresponding to f (i.e., c}g¢), and so need not be included in the term corresponding

to f'. Note also that, if the coupling constraints did not exist, the problem would be
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decomposable into K subproblems concerning one airport each, so that one could use
the already existing techniques to solve for each of the K airports separately. A final
interesting remark concerning the coupling constraints is that they can be interpreted
in a more general way than the linking of successive flights scheduled to be performed
by the same aircraft; i.e., they can be used to link any pair of flights f’ and f such
that f cannot be allowed to depart before f’ has arrived (possibly because passengers
in f’ connect to f). In this interpretation, a flight f' may have more than one “next”

flights f. This interpretation will not be pursued in the sequel.

1.4 A simpler case: infinite departure capacities and zero
airborne delays.

Formulation (P, ) is about as general as one could wish for the static deterministic case,
but it can be simplified considerably without significant loss of practical applicability.
Note, first, that it is usually undesirable to delay aircraft in the air. In fact, the
fundamental goal of ground holding policies is to avoid this kind of delay. Therefore,
we may eliminate airborne delays as decision variables. We will be left then with
airborne delays resulting only from arrival queueing (denoted earlier by q%), and our
only decision variables will be g;. (Note that, since the problem is deterministic, q%
are determined if gy and service disciplines for the arrival queues are given.)

Now consider a feasible solution {gs, f € F} and the associated arrival queueing
delays {q%, f € F}, and compare its cost with the cost of the new solution {9s+4%, f €

F}, in which all airborne delays are incorporated into ground holding delays. Given
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that the cost functions are linear, and given that airborne delays are costlier than
ground delays (i.e., for any positive ¢, and for all f, c}(t) > c}(t)), it is easy to show
that the new solution will have a lower cost than the previous solution. In fact,
g + ) = cfgr) + cHq}) < ci(gs) + 3(q})- It would appear, therefore, that
airborne delays need not be taken into consideration, because they will never appear
in an optimal solution. The problem, however, is that the new solution {g; + ¢%, f €
F} will not necessarily satisfy the departure capacity constraints. This problem
disappears if we assume that all departure capacities are infinite, but are we entitled
to make this assumption? For practical purposes, this assumption may often be a
good approximation, since congestion problems are mostly due to limited landing
rather than departure capacities. Moreover, computational experience reported in
Section 3 shows that the impact of finite departure capacities is indeed negligible.
This a posteriori: argument justifies the assumption of infinite departure capacities.
Note that, in the single-airport case, which is the only case considered so far in
the literature, no departure capacities are involved, so that one is in fact rigorously
Jjustified to consider only feasible solutions with zero airborne delays (provided the
problem is deterministic and the cost functions are linear).

Assuming infinite departure capacities eliminates thus airborne delays and gives
the following pure 0-1 integer programming formulation of the static deterministic

multi-airport GHP :

(P2) min o1 €95
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st Dpna=k vse < Ri(t), (kyt) € K xT;
Ete']'fa v =1, feF;
gp —sp < gg, [ EF] (9)

vfte{ml}’ fe}—7t€:’}a;

where g; is determined by setting ay = 0 in (8):

gr= Y tvp—rs fEF, (10)

tede

and variables uy; are now redundant, so that vy, are the only decision variables.

(It can be seen that now Gy and A; express the same bound, so that they must
be taken to be equal.)

Note the simplicity of formulation (P,). The number of constraints is F'+ F'+ KT,
and the number of variables is at most ;¢ »(Gy + 1) which, if all G4 are equal to
4 (corresponding to a maximum ground hold of one hour), becomes 5F. Therefore,
the total number of flights F' is the major determinant of the size of the problem.
The number of time periods 7' has almost no influence on the size of the problem,
and the same holds for the number of airports K. Of course, the number of airports
has an indirect influence on the size of the problem, since it influences the number
of flights to be considered. Typically, a major U.S. airport has 1000-2000 operations
(landings plus take-offs) each day, corresponding to 500-1000 flights per day. But
still, the fact that the problem is insensitive as to how the total number of flights is

distributed among airports and time periods is very welcome. This becomes clear in
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dynamic versions of the ground-holding problem (not treated in this paper), where
the time horizon is limited to a portion of a day, so that fewer flights per airport have
to be considered, and it becomes possible to solve the problem for a large number of
airports.

Note, finally, that, if the coupling constraints (9) are omitted from the formulation,
what is left is exactly the single-airport formulation given, e.g., in [1]. It follows that
the coupling constraints (9) are the gist of the model. It is indeed surprising is that
the network effects can be taken into account in such a simple way without loss of

generality. Simplez sigillum veri (“the simple is the sign of the true”).

1.5 How to handle infeasibility: Cancelling flights.

If the arrival capacities are low, then formulation (P,) may become infeasible. Even
though the total daily capacity of an airport may be sufficient to accommodate the
total number of flights scheduled to arrive at that airport, the problem may still be
infeasible if excessive congestion appears during some portion of the day. This is
mainly due to the requirement that there be an upper bound, Gy, to the delay of
flight f. In order to grasp this point, take the extreme case where the landing capacity
of an airport is reduced to zero for GGy + 1 successive time periods. Then, if a flight
was scheduled to arrive exactly before the zero capacity interval, it will be impossible
to reassign this flight and the problem will become infeasible. Similar remarks hold
for formulation (P;).

In situations where delays become excessive, it is common airline practice to cancel
some flights. Motivated from this, we developed an alternative formulation which

14



eliminates infeasibility problems and takes into account the possibility of cancelling
flights.

The new formulation will be presented as a generalization of (P,). We keep the
old decision variables vy, and we define the decision variables z¢, f € F, to be 1 if
flight f is cancelled and 0 otherwise. Denote by M; the cancellation cost of flight
f. When a flight in F’ (i.e., a flight that is “continued”) is cancelled, there are two
possibilities concerning the next flight initially scheduled to be performed by the same
aircraft: either it is performed by a replacement (or a “spare”) aircraft, or it is also
cancelled. The first case is more common in practice, but our formulation is general
enough to incorporate a combination of both cases. Partition F' into F,, the set of
those flights in F' whose cancellation will not affect their next flight, and F,, the
set of those flights in F’' whose cancellation will entail the cancellation of their next

flight. We will now first give the new formulation and then comment on it.

(P3) min Ciaa(chgr + (Mg + chry)zy) (11)
s.t. }:f:k;:k vie < Re(t), (k,t) € K x T; (12)

R A (13)

grr = sprt (sptrp—rp)zp S gp, f1EFy (14)

gr —sp+(sp+rp+Ge+1)zp < gp+(ry+ Gy + 1D)zp, 1€ Fops(15)

it 75 € 0,15 (16)
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The above formulation incorporates some technical tricks which are necessitated
by the fact that, when a flight f is cancelled (i.e., zy = 1), then all vy corresponding
to f are 0 (by (13)), so that (10) gives g = —r;. Keeping this fact in mind, it can
be seen immediately that, when z; = 1, the objective function term corresponding
to fis My. It is also clear that, when z; = 1, (14) becomes —r; < g4, which holds
even if flight f is cancelled (so that cancellation of f' leaves f unaffected). Finally, if
zp =1, (15) becomes Gy + 1 < gy + (v + G¢ + 1)zy, entailing z; = 1 (since g; < Gy
always), which is precisely what we wanted: if f’ is cancelled, then f is also cancelled.

The variables g; were again left in the formulation, but it should be clear that they
can be eliminated by mere substitution through (10). It is important to notice that
the variables zy can also be eliminated through (13), provided that (13) is replaced
by Etefrfa vy < 1. In this case, it can be seen that the objective function becomes:
min Y7, [M; + ety vpi(ci(t — rg) — My)]. It follows that the only decision vari-
ables left are vy, so that the new formulation (P3) has exactly the same number of
variables and of constraints as the previous formulation (P,). (Ps:), however, enjoys
considerable advantages both in terms of generality (the real-world problem is better
approximated) and in terms of flexibility (infeasibility problems are eliminated).

This section has presented three quite general and, we believe, elegant formulations

of the static deterministic GHP.
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2 A heuristic.

This section presents a heuristic which finds a feasible solution of the integer program
(Ps) starting from a feasible solution of the linear programming (LP) relaxation of
(Ps). The next section will show, on the basis of computational experience, that it
is easy to solve optimally the LP relaxation of (P;) and that, when one applies the
heuristic to this optimal solution, one gets a “good” feasible solution of the integer
program (Ps).

The heuristic will be presented in rough outline here. An algorithmic presentation
is given in the appendix.

Consider a feasible solution {vs, : f € F,t € T} U{zs : f € F} of the LP
relaxation of (P;) and denote by ® the set of “problematic” flights f € F, i.e., the
set of flights for which some integrality constraint is violated. The heuristic gives a
“rounding” scheme for flights in & which leaves undisturbed, as far as possible, the
remaining flights (which already satisfy integrality). The basic idea of the heuristic
is to treat each flight in ® once for all.

The heuristic starts by partitioning ® into classes, each class corresponding to an
aircraft and containing all and only the flights of & scheduled to be performed by that
aircraft. The heuristic treats each class separately; the order in which the classes are
treated is more or less arbitrary.

Each class is treated in the following way. The flights in the class are examined
one at a time, in the order in which they are scheduled to be performed by the aircraft

defining the class. For each specific flight ¢, the heuristic takes the following actions.
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For each time period ¢ at which ¢ can be allowed to land, it computes the available
“capacity slacks” ng(t) - Ef,k;:k; vge, which will be denoted by Sg(t). (If some
vy have already been updated by new values, then the new values are used in the
computation of the capacity slacks.) It can be seen that, if S4(f) > 1 — vy, then it
is possible to assign flight ¢ to period ¢t without violating the corresponding capacity
constraint. If this is possible for no ¢, then flight ¢ is cancelled and we are done with
it. Otherwise, i.e., when there are time periods to which it is possible to assign flight
¢ without violating the corresponding capacity constraint, flight ¢ is assigned to the
earliest such period, 7. (Recall that this assignment is made once for all.) After this
asssignment, all constraints involving flight ¢ are satisfied, with the possible exception
of the coupling constraints.

In order to deal with the coupling constraint linking flight ¢ with its next flight
é (if such a next flight exists), the heuristic removes certain time periods from the
set of time periods at which ¢ can be allowed to land, and proceeds to examine ¢.
The removed time periods are those which would violate the coupling constraint in
question if ¢ were assigned to them (given that ¢ has already been assigned to 7). It
can be seen that, if flight ¢ has a previous flight ¢, the coupling constraint linking ¢’
and ¢ need not be dealt with while examining flight ¢, because it has already been
dealt with when examining flight ¢' (since ¢ is the nezt flight to ¢'.)

As pointed out above, this is only a rough outline, and a more rigorous formulation

is given in the appendix.
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3 Structural insights.

This section investigates the behaviour of the GHP on the basis of extensive compu-
tational experience. The investigation is conducted in three parts, each part dealing
with one of the formulations (P;), (P;), and (P3). For each formulation, we examine
the variation, as a function of the input parameters, of the optimal objective function
values of the following three mathematical optimization problems: the integer pro-
gram (denoted by I), the corresponding linear programming relaxation (denoted by
L), and the “decomposed” program (denoted by D), defined as the integer program
without the coupling constraints.

It is important to understand the role of D in the comparison. The “decomposed
GHP” corresponding, e.g., to formulation (P,) is simply (P,) without the coupling
constraints (9). Solving the decomposed GHP is equivalent to solving the GHP
for each airport separately, and then adding the optimal objective function values
corresponding to the various airports. Note that the optimal objective function value
of the decomposed GHP is equal to the optimal objective function value of the LP
relaxation of the decomposed GHP, because the constraint matrix of any single-airport
GHP is totally unimodular [1]. Therefore, D can be defined as a linear rather than
an integer program.

Denote the optimal values of I, L, and D by vy, vy, and vp, respectively. Now
the greater the gap between vp and vy (and, a fortiori, the greater the gap between
vp and vy ), the greater the impact of the network effects. A large gap between vp

and vy presumably justifies one in pursuing the application of algorithms pertaining
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to the multi-airport (coupled) GHP rather than solving for each airport separately by
means of the existing methods for the single-airport GHP. This much is clear. What
is less clear is how a very small gap between vp and vy should be interpreted. A small
gap would not necessarily mean that the multi-airport GHP is valueless. Consider the
extreme case where vp = v;. The zero gap means that we could ignore the coupling
constraints without any change in the optimal value of I. But if D has multiple
optimal solutions, then solving it will not necessarily give a solution satisfying the
coupling constraints, i.e., a solution feasible for I.

It should be noted that the objective of this section is to investigate the be-
haviour of the problem under various combinations of the input parameters, not to
demonstrate the efliciency of any particular algorithm. In fact, we solved the various
instances of the problem by using the well-known commercial package MPSX, rather
than any custom-tailored algorithm. We give CPU times simply in order to indicate
whether the problem can be solved in reasonable time, rather than in order to provide
any “good” bounds on computation times.

This section is divided into three subsections. The basic conclusions are reached in
the first subsection, which deals with formulation (P;). The second subsection, which
deals with formulation (P;), verifies that the impact of finite departure capacities
would be negligible in many practical cases. Finally, the third subsection deals with

formulation (P;) (with flight cancellations) and with the performance of the heuristic.
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3.1 The model without flight cancellations.

This subsection deals with formulation (P;). We consider first a test case with K =3
airports, T' = 100 time periods, F = 1800 flights (600 flights per airport), and
F’ = 600 flights. With the exception of capacities, all parameters were kept fixed in
this test case: the cost function slopes were 50, the slacks were 0, the upper bounds
on the delays were 4 time periods, and the scheduled arrival times were arbitrarily
chosen.

As mentioned in Section 1, if arrival capacities are very low, the problem becomes
infeasible. Let us consi