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A. BEAM-PLASMA DISCHARGES

1. SYSTEM A: MAGNETIC PROBE

Several magnetic probes have been constructed and used to aid in the diagnosis of the

beam-plasma discharge (Fig. XII-1). The coils are 100 turns of No. 36 wire with an

PLASTIC COIL-

FORM

0.005 THICK

STAINLESS STEEL

JACKET

COIL WITH

N - 100 TURNS
-2 2AREA 8.3x 10 cm

Fig. XII-1. Magnetic probe.

-2 2
area of 8.3 X 10 cm . The coils are constructed with their axis either parallel or per-

pendicular to the axis of the coaxial line. The relationship between the voltage at the

terminals and the changing magnetic field through the coil is expressed in Eq. 1.

dB
V= NAg dtdt'

where g is a frequency-dependent factor that accounts for the skin effect of the stainless-

steel jacket. This factor is found experimentally by calibrating the probe in the field

of a solenoid driven by a sinusoidal current source (Fig. XII-2). The effect of the jacket
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Fig. XII-2. Plot of Vprobe vs frequency (...) and plot of NAg vs

at constant current, 0.01 amp (1 amp = 7.8 gauss).

frequency (xxx)

is to limit the high-frequency response of the coil. If the term dB/dt in Eq. 1 can be

expressed as a series of impulse functions, the voltage response will be a series of scan-

ning functions. To a good approximation, the width of the major lobe of the scanning

function is equal to the inverse of the cutoff frequency defined in Fig. XII-2. If the

impulse functions are far enough apart, the major lobes of the scanning functions will not

overlap, and the area of the triangle circumscribed by the major lobe of the scanning

function is equal to the area of the corresponding impulse.

Thus, in Fig. XII-3, we can relate the pulses in the magnetic probe voltage to step

MAGNETIC PROBE VOLTAGE

COLLECTOR CURRENT

TIME 20 pSEC/CM

Fig. XII-3. Oscillogram of magnetic probe voltage and collector current. Vbeam =
-4

5 kv; pressure = 3 X 104 mm Hg hydrogen; B = 320 gauss. Calibration:

Icoll = 0. 2 amp/cm; Vprobe = 5 mv/cm.
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changes in the local axial field of the plasma (the coil axis was aligned parallel with the

dc magnetic field). Typically, the changes in the local field are approximately 0. 5 gauss.

The first pulse occurs simultaneously with the break in beam current, and the second

pulse, usually smaller but longer in duration, occurs at the end of the beam current

(Fig. XII-3).

Figure XII-4b shows that by turning the probe 90 0 with respect to the dc magnetic

field, the pulses disappear. At low pressures (5 X 10- 6 mm Hg) when the electron beam

does not initiate a beam-plasma discharge, there is no voltage induced on the magnetic

Vprobe

LIGHT

Ic

Fig. XII-4. Pulse structure and oscillatory nature of magnetic probe
-4

voltage. Vam 10 kv; pressure, 2.2 X 10 mm Hgbeam
hydrogen; B = 240 gauss.

(a) The magnetic probe is aligned with its coil axis
parallel to the dc magnetic field.
Calibration: 20 1 sec/cm and 10 mv/cm.

(b) The magnetic probe is aligned with its coil axis
radially perpendicular to the dc magnetic field.
Calibration: 20 psec/cm; 20 mv/cm.

(c) The magnetic probe voltage is expanded to 1 Isec/cm;
20 mv/cm.

In all three oscillograms, the light calibration is
50 Lsec/cm; 5 volts/cm.
Collector current calibration: 50 1 sec/cm; 0.5 amp/cm.

probe for any orientation of the probe axis. In Fig. XII-4a, the change in Bz
measured from the pulse at the end of the beam-plasma discharge is 0.9 gauss.
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Using the relationship

BAB eANT, (2)
10

we obtain

ANT = 5 X 1024 BAB. (3)

If we assume a density of 1012/cc, we can estimate an electron temperature of 11 ev.

In some experiments, it was observed that another set of pulses appears before the

beam current ends (Fig. XII-5). This set of pulses can (tentatively) be interpreted as

Vprobe Figure XII-5.

"Collapse" and rebuild-up of beam-generated

plasma. Vbeam = 5 kv; pressure = 1.8 X 10 mm

Hg hydrogen; B = 350 gauss. Calibration: time,

t20 sec/cm; Vprobe, 5 mv/cm; x-ray, 50 mv/cm.

START END

OF BEAM CURRENT

the "collapse" and rebuilding of the beam-generated plasma. On a simultaneous display

of x-rays in Fig. XII-5, it is seen that the x-rays precede such a "collapse" of the

END OF BEAM CURRENT
Figure XII-6.

Presence of 600-kc oscillation on
collector current. Vbeam = 10 kv;

_ _ _ _ _ _ _ _ _ _ _-4

pressure= 2.2 X 10-4 mm Hg hydro-

Icoll gen; B = 340 gauss. Calibration:

time, 10 sec/cm; V = 5 mv/cm;

Vprobe  Icoll, 20 ma/cm.

plasma. This phenomenon has not been studied in great detail.

A very clean sinusoidal oscillation sometimes with second harmonics, with a fre-

quency of 450 kc to 1 mc has also been observed (Figs. XII-4 and XII-6). This oscil-

lation occurs at high beam voltages (-10 kv). The frequency of the oscillation gradually

decreases as the magnetic field is increased by a factor of 3. The frequency of the

oscillation does not depend on the mass of the gas (argon and hydrogen were used ) or on
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pressure. At high pressures (-~1±) the amplitude of the oscillation decreases. The

oscillations start after the first pulse appears, and may last long after the beam current

has ceased (Fig. XII-6). The oscillations are also seen on other collectors (Fig. XII-6).

These oscillations have a standing-wave character. The half wavelength of a 450-kc

oscillation found from a movable magnetic probe is 15 cm. This gives a phase velocity

of 1.35 X 107 cm/sec, which is larger than the acoustic velocity (~106 cm/sec) and

smaller than the Alfv6n velocity (~108 cm/sec). The mechanism of the generation of

these oscillations is being studied.
H. Y. Hsieh

2. SYSTEM B: ROTATIONAL INSTABILITY AND QUENCHING

Studies of the beam-plasma discharge in the long solenoid apparatus (System B) have

disclosed a low-frequency rotation of the plasma that is assumed to represent an insta-

bility or a mechanism by which the plasma leaks across the field. We have also observed

WINDOW

BEAM SPLITTER

931 A

931 A

(b)

Fig. XII-7. (a)
(b)

Plasma current probes.
Space-time resolved light arrangement.
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some critical values of magnetic field for which no beam-plasma interaction occurs.

a. Rotational Instability

Independent measurements of plasma currents and plasma light have been used to

measure the rotation. The two experiments are illustrated in Fig. XII-7. Use of two

small apertures for each photomultiplier and a beam splitter allowed simultaneous

1200 -

1000 -

800 -

600 -

400 -

200 -

BEAM VOLTAGE: 7.2KV

PRESSURE: 2.2 x 10-4mm Hg

I I I I I

0 10 20 30

PERIOD OF ROTATION (pSEC)

40 50

Fig. XII-8. Rotational period vs applied magnetic field.

20 30 40 50

FREQUENCY OF ROTATION (KC)

Fig. XII-9. Rotational frequency vs pressure.
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measurements of light at difference positions in the cross section of the plasma column.

The variation of rotational period with magnetic field (Fig. XII-8) suggests an E/B drift

with E - 2 volts/cm. The variation of rotational frequency with gas pressure is shown

in Fig. XII-9. Work is in progress to determine if a helical mode exists and to deter-

mine dc space-charge fields.

b. Quenching of Beam-Plasma Discharge

Values of the applied magnetic field for which the beam-plasma discharge is extin-

guished have been measured. For critical values of the magnetic field the beam passes

through the gas without exciting microwave oscillations, although low-frequency oscil-

lations (a few megacycles) are present.1 The "stability" depends on pulse length.

1000 - PULSE LENGTH: 150 pSEC

S 1.42 x 10-4 300 pSEC PULSE
STABLE BAND DECREASES AS

Kp 
= 

2 PULSE LENGTH INCREASES
800 -

B
600 -

400 -

200 -

0
0 1 2 3 4 5 6 7

BEAM VOLTAGE (KV)

Fig. XII-10. Beam-gas stability. Solid line indicates band of stability.

Thus, a wide band of magnetic field strength produces stability for short pulses, but the

range of B decreases as the pulse length increases. The stability depends on perveance

and is more easily attained at lower pressures. The regions of stability at micro-

perveance 2 are plotted in Fig. XII-10.

B. A. Hartenbaum
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3. SYSTEM C: STRONG INTERACTION BETWEEN A HIGH-DENSITY, HOLLOW

ELECTRON BEAM AND A PLASMA

For several years our experiments1' on strong electron beam-plasma interactions

have indicated that high beam perveance is important. Evidence of this can be seen by

increasing the perveance by only 20-30 per cent. Such an increase usually results in

stronger x radiation, rf oscillations, and light output from the plasma. There are good

theoretical reasons for expecting this behavior. The one-dimensional theory 3 for

collision- or temperature-limited reactive-medium amplification predicts that the max-

imum amplification rate increases rapidly with the ratio nb/n p where nb and np are

the beam and plasma electron densities. Since the beam density is proportional to per-

veance for space-charge-limited flow, an increase in perveance would produce a greater

amplification rate and consequently a stronger interaction. More recent theoretical

work has shown that a large value of nb/np is important if low-frequency ion oscilla-

tions are to be excited. To investigate the interaction with a much denser beam than

used heretofore, we have constructed an experiment in which the interaction between

a high-perveance, hollow electron beam and a beam-generated plasma will be studied.

In this report we shall describe the apparatus and some observations made in our first

exploratory operation of the experiment.

The interaction takes place in a 6-inch diameter stainless-steel vacuum tube that is

coaxial with a solenoid. The solenoid has an inside diameter of 7 inches, and outside

PEAK OF PEAK OF

MIRROR MIRROR
24

SLIDING MAGNETRON ARMCO IRON SHIELD GLASS

SEAL INJECTION GUN CROSS

VACUUM TUBE COLLECTOR TO DIFFUSION PUMP

VIEWING SPACE
COOLING WATER TUBES

Fig. XII-11. Top view of hollow-beam experimental apparatus.

diameter of 13.5 inches, and is 40 inches long. The plasma can be observed

through 1-inch diameter quartz windows that can be viewed through spaces between the

coils of the solenoid. The vacuum chamber and solenoid are illustrated in Fig. XII-1 1.
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The electron gun, which is also shown in Fig. XII-11, is mounted on a sliding tube

that can be set at any desired axial position along the solenoid. All gun parts are non-

magnetic. An Armco iron shield is mounted at the opposite end of the vacuum tube. This

shield produces a magnetic mirror and magnetically shields the electron-beam collector.

A second magnetic mirror is produced near the electron gun by running higher currents

through two of the solenoid coils. We thus have a magnetic bottle with a 2:1 mirror ratio

at each end. The distance between the peaks of the field is 24 inches.

To obtain a dense electron beam, we are using the magnetron injection gun designed

and deseribed by Poeltinger. This gun is located at a peak of the mirror field. Its

perveance ranges from 5 X 10 amp per (volt)3 / 2 to 20 X 10 6 amp per (volt)3 / 2

the range depending on the magnetic field and beam voltage. The outside diameter of

the beam is approximately 0.5 inch, and the beam thickness is less than 10 per cent of

its diameter. The electron density is 1011 electrons/cm 3

An artificial-delay-line pulser has been built to drive the electron gun. This sys-

tem is designed to operate up to 20 kv and 30 amps at a repetition rate of 10 pps. The

pulse length is 300 1 sec. A pulse transformer is used to match the 30-ohm line to the

electron gun, whose nominal impedance is 500 ohms.

In the experiment the hollow beam is injected into the magnetic bottle near the peak

of one of the mirrors. The beam diameter increases as it passes into the region of

lower field between the mirrors. At the beam energies used in the experiment the beam

passes through the second mirror and into the shielded collector, which is shown in

Fig. XII-11. With the hydrogen pressure set in the range 10- 4 - 10 . 3 mm Hg in the

vacuum tube, a plasma is rapidly generated by the beam. We have observed that this

plasma strongly interacts with the hollow beam.

Our first exploratory experiments were made at beam voltages and currents up to

10 kv and 10 amps. The electron gun operated well in this range, and strong interaction

was observed. Each beam pulse produced a very bright plasma whose color was light

blue or light pink. At some operating conditions it was found that the light output was

delayed 100-200 psec after the start of the beam pulse. During this period, the cur-

rent to the vacuum-tube walls was carried by ions and oscillated violently from zero to

several amperes at frequencies of approximately 10 me. Similar behavior has been

observed previously. 2 A scintillator showed that x radiation escaped from the vacuum

tube. Measurements with aluminum absorbers indicated that the x-ray energy, which

was assumed to be monoenergetic, was in the range 17-20 kv. Observations of the

microwave spectrum of the energy radiated by the plasma were made with the gun oper-

ating at 9 kv and 7. 5 amps, and with the hydrogen pressure at 0. 3 4 Hg. Strong micro-

wave output was observed at frequencies as high as 32 kmc. The maximum oscillation

frequency is assumed to equal the plasma frequency. 1 Strong oscillations were also

observed at lower frequencies, particularly in the range 100-1500 me. Plasma
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oscillations at a plasma frequency of 32 kmc would correspond to a density of
13 3

10 electrons/cm 3 . The neutral gas density at the pressure of 0.3 p. Hg has approxi-

mately the same value, and therefore the plasma may be fully ionized.

W. D. Getty, L. D. Smullin
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4. FAST-ACTING, CURRENT-ACTUATED GAS VALVE

The purpose of this investigation was to develop a valve that would admit repeatable

quantities of gas (0.1-1 cc at S.T.P.) into a vacuum in pulses of less than 100 psec.
The valve that was developed is discussed in a Master's thesisl; therefore, only a brief

discussion of its operation and characteristics will be given here.

GAS INLET COIL LEADS

HIGH PRESSURE DELRIN BOOT
PLENUM

f TO VACUUM

TEFLON SEALING O-RING (7/16" O.D.)

DISK

O-RING SPRING (SILICONE RUBBER 1" O.D.)

Fig. XII-1 2. Magnetically driven gas valve.

The valve shown in Fig. XII-12 consists of a 1-inch O.D. disk of copper, brass or

aluminum which is held against the Teflon O-ring by the precompressed silicone rubber
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O-ring. The 1-inch O.D. coil (1.7 ph) consists of nine turns of 0.25 X 0.021-inch cop-

per tape, insulated with 0.004 Mylar ribbon and potted in epoxy. The 0.25-inch diam-

eter coil leads are connected through a mechanical switch to a 2-[If capacitor that is

initially charged to 3500-7000 volts. The ringing frequency of this circuit is approxi-

mately 90 kc, and its damping time constant varies between 4 psec and 10 [sec, the

variation depending on the material of the disk.

When the capacitor is discharged through the coil, the eddy currents induced in the

disk cause a repulsive force between the coil and the disk. This force causes the disk

to move downward and thus allows the gas to pass between the disk and Teflon O-ring,

and then through the central hole in the disk. The energy-conversion efficiency of this

device is approximately 0.5 per cent; however, the available force may be as high as

700-1000 pounds for a period of a few microseconds.

The period and amplitude of the disk motion may be accurately calculated by consid-

ering the valve as a damped spring-mass system in which the spring is precompressed

and restrained from moving through its equilibrium position. The damping ratio is

approximately p = 0.88 (in this case the damping is due to hysteresis in the O-ring

spring). The period of the motion is not affected by variations in the initial capacitor

voltage. However, when positive stops are added in order to limit the motion of the disk,

the period varies not only with the stiffness and precompression of the O-ring but also

with the initial capacitor voltage (the period decreases with increasing voltage) and the

allowable excursion of the disk. In practice, the period could be varied 50-250 [sec,

and the maximum amplitude was approximately 0. 025 inch.

Finally, there are several difficulties that still must be corrected. The first is that

the disk bounces on the Teflon O-ring, thereby reopening the valve. This bouncing is

especially pronounced when high initial capacitor voltages are used with low precom-

pression of the O-ring spring. This may be rectified by using a softer sealing O-ring.

A second difficulty, excessive heating of the coil and disk, may be encountered if the

valve is to be cycled rapidly for long periods of time.

D. S. Alles, L. D. Smullin
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B. INSTABILITY IN THE HOLLOW-CATHODE DISCHARGE

As previously reported, 1 a rotating instability has been observed in the hollow-

cathode discharge. The instability causes a cloud of plasma, a "spoke, " to rotate about

the axis of the system, for sufficiently large values of axial magnetic field. This spoke
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has fairly uniform properties in the direction of the magnetic field, and exhibits no heli-

cal pattern. During the past quarter, time-resolved, space-potential measurements

have been made, and a theoretical study has been initiated to describe macroscopic,
low-frequency instabilities of a magnetized plasma.

1. Effect of the Instability on Diffusion

Measurements of the average density at a point 4 inches from the system axis vs

magnetic field indicate that the presence of the instability is a major factor in the dif-

-3
(a) p 9x 10-3mmHg

(b) p = 5x 10-3mm Hg(b) p -5 x10- mm H9

CLEAR SPOKE

VISIBLE

0 100 200 300 400 500 600

AXIAL MAGNETIC FIELD (GAUSS)

Fig. XII-13. Density 4 inches from system axis vs magnetic
visible above ~220 gauss.

field. Clear spoke is

0 200 250 300 350

AXIAL MAGNETIC FIELD (GAUSS)

Fig. XII-14. Minimum axial magnetic field
arc current.

for instability vs

fusion of plasma across the magnetic field (Fig. XII-13). The average density increases

with increasing magnetic field after the instability appears. Plasma density in the source

region remains nearly constant as the magnetic field is varied.
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2. Onset of the Instability

As the arc current is increased, the spoke appears at decreasing values of magnetic

field (Fig. XII-14). To investigate this effect, the space-potential distribution was

measured for various values of arc current and magnetic field (Fig. XII-15). The spoke

appears when the space potential rises to approximately 10 volts with respect to the

walls, and decreases for increasing radius. It is observed that the spoke rotates

about the field lines in the left-handed sense, which is the direction of the Hall drift

for an outward-directed electric field. The spoke is present only in the region

in which the electric field is directed outward. The inner boundary of this region

moves closer to the axis as the magnetic field is increased.

320 GAUSS

240 220

0
> 9 220 60

8 160 n
z
0- 7

< 6 o

5

0 1" 2" 3" 4" 0 1" 2" 3" 4" 0 1" 2" 3" 4

ARC CURRENT - 6A ARC CURRENT = 10A ARC CURRENT = 14A

(a) (b) (c)

Fig. XII-15. Plasma-potential distribution for various magnetic
fields and arc currents. Top curve indicates dis-
tribution as instability appears.

3. Time-Resolved Space-Potential Measurements

To correlate the motion of the spoke and particles within the spoke with theory, a

knowledge of the density and potential gradients is necessary. The density measure-

ments have been previously reported, 1 and space-potential measurements have now

been completed.

Figure XII-16 shows the variation of space potential with time for various radial

positions. Since the spoke moves approximately as a rigid body, this is equivalent to

plotting the potential around the circumference of a circle centered on the system's

axis. The bottom curve is proportional to plasma density at a distance of 3 inches from

the system axis. It shows the slowly rising leading edge and the sharply dropping

trailing edge of the distrubance.
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If the space potential within the spoke is plotted against radius, a linear descent with

radius is obtained. This explains our observation that the spoke is clearest when the

magnetic field is shaped so that its axial component falls off approximately as 1/r to

give an approximately constant value of E/rB. The rotational frequency calculated

from the Hall mobility agrees with the observed behavior by better than a factor of 2,

over a range of magnetic field from 300 gauss to 500 gauss.

10 - DISTANCEo
FROM
AXIS

9 2

3
8

7 - 4"
z

5 -

6

4

PROPORTIONAL TO DENSITY (LINEAR SCALE)

0 100 200 300 400 500 600 700

TIME (SEC)

Fig. XII-16. Space potential vs time. Period of rotation, 600 ksec. Density
3 inches from axis plotted for reference. Azimuthal E-field to
the right corresponds to outward radial Hall drift.

When the space potential in Fig. XII-16 descends to the right at a given radius, the

result is an azimuthal electric field that drives particles radially outward at a speed

determined by the Hall mobility. These phenomena occur in the region of increasing

density. The Hall mobility tends to force particles inward after the spoke has passed,

possibly explaining its sharp trailing edge. The net flux of particles will be outward,

however, since the region of inward flow is one of very low density.

In comparing the radial flux of particles caused by the instability with the unper-

turbed flux, we note that the radial and azimuthal electric fields are roughly the same

size, but the Hall mobility is much larger than the perpendicular mobility. With this

kind of reasoning, the particle flux can be conservatively estimated to be a factor of 10

larger than the unperturbed flux.
D. L. Morse
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C. INTERACTION BETWEEN AN ELECTRON BEAM AND PLASMAS

1. Model Description

The plasma consists of electrons neutralized by ions of finite mass. Their unper-

turbed charge density may have a transverse variation. The dc charge density and the

well-defined velocity along the axis of the waveguide of the electrons in the beam also

may have a transverse variation. The electrons in the beam also are neutralized by

ions of finite mass.

The waveguide is a hollow, uniform, metal tube of arbitrary cross section. There-

fore we shall use a system of generalized orthogonal coordinates with the z axis taken

to be parallel to the axis of the waveguide. There is a uniform, finite, axial magneto-

static field along the axis of the waveguide.

The treatment is relativistic and non quasi-static and makes use of the small-signal

theory. We neglect temperature and pressure gradients, as well as collisions.

In our previous report1 we derived the dielectric tensor, which proved to be non-

Hermitian because we neglected the term 0 X EB in the Lorentz force equation. We are

not permitted to omit this term, even for a nonrelativistic treatment. The consideration

of the v X B term will make the dielectric tensor Hermitian, as it must be for a loss-
o

less passive system.

2. Dielectric Tensor

From the Lorentz force equation, we find

SVmT TVmo
V = jM (E+Vo XB) + jiz o (1)

m m om z o
rm

The subscript m denotes the species of particle and can be e for plasma electrons,

i for ions, and b for beam electrons.

The tensor M has the form:
m

M I -jM 0

M iM Mm (2)
m - xm Im

0 M
11 m
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Let R = [1-(2 /c ]1/2
om om

jy vom. Then the elements of the

=e /m ;lim m/mom W cm
mobility tensor are

(Tm/R om) B om om o'
and w = w +rm

M m rmM
Im R

M m WcmM
om (2 2rm

cm 1rm

M
lm 3 oR rm

om

By using the following relation from Maxwell's equations:

(V x E) TBT j

Eq. 1 may be written

vm -jMopm E.m o~m

iz X [VTEz+y ET]
(4)

Here,

M M
op, m m

rm
Co

V
om

7T

and I is the 2 X 2 identity matrix.

The dielectric tensor K is definedop

K E = E E+
op j0oE o

by the equation

By using the definition of current densities,

(Eqs. 1 and 7), we obtain

= 1+ 7op Eo w
m

Pom T

om om

rm

the law of conservation of charges

0

op, m'

om

rm
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with the explicit form

KL -jK x

K K

k T k z T
o o

jK K 1

= . . .. . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. .(9)
op

K K K K
4  5  6  K 7jVT -+i z VTX k KII- VT VT+Jiz VTX VT

T k k Kk2 T z T 2 T
o o k ko o

It should be noted that in the tensor of Eq. 9, which determines the electric displace-

ment vector D = K * E, the upper right operator is a 1 X 2 matrix operating on Ez, and

the lower left operator is a 2 X 1 matrix operating on the transverse components of E;

the lower right operator is a 1 X 1 matrix operating on only E z .

Let

2 1m Pom Pomem
WpmT R om Eo Eo mT

and

2 TIm Pom Pomem
pmz R 3  E Em

om

Then the elements of the K tensor are given by

2 2
Wpm TWrm

K= 1 + Z2 2 (Oa)
wo o -w

m cm rm

2

K pmT cm rm (Ob)
K = 1 (10b)
x 2 2 2w w - m

m cm rm

2

K = 1 - Z (1Oc)

m rm

2
K4  1 pmT rm

4 1 (10d)
k 2 2 2 om

0 w w -w
m cm rm
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Wpm Tcm
V

2 2 om
w -w

cm rm

2 2
p pmT 2

2 2 om
m -rmcm rm

K
5

k o

K
6

2
o

K7

k
2

o

3. Hermitian Character of the K Tensor
op

In the following discussion we shall write Kop as K. For propagating wave, y=jp,

in a lossless passive system we can show2 that

S Kh El da - E 1 . Kh E da = 0.
A 2 h l A lh

(11)

Relation (11) applied for E 1 = E 2 = E shows that fA E K - E da is a real number.

We may easily see

2 o
- V -( X H ) -j2wO (4 ° -L4- o E oE -

(12)

that for a lossless passive system Re fA 2 (ETXHT iz da = 0. The integral

fA E • K * E da must be a real number.

In general, y = a + j p. In this case, the K tensor has Hermitian and anti-Hermitian

parts: K = K + K . The definition for K ish a a

E 2 K a Eda+ E1 Ka E 2 da = 0. (13)

In the above-given proof for the Hermitian character of K for y = jp, we have used

the property that the K's in Eqs. 10 are real for y = jp. Therefore for y = a + jp the Kh

will be found when we consider the real part of the K's, and the Ka , when we consider

the imaginary part of the K's.

There are many applications of Eq. 12. One of them is the extension of the varia-

tional principle for the propagation constant y to the beam-plasma system.2

4. Plane Waves

If we assume a plane wave of the form exp(jwt-jk - r) with k on the x-z plane, the

dielectric tensor, Eq. 9, becomes
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12
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1
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2
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k x
+K 4 kX

o

k x
jK 5 kx

0

K

jK
x

k
K 4 x

k
0

This relation has already been used for the investigation of various waves.

5. Field Analysis

We shall assume hereafter uniform dc charge density and dc beam velocity.

The longitudinal fields are coupled, as in the case of plasma alone 4 ' 5 "

72 E + aE = bH
Tz z

7 11H + cH = dE
Tz z z

The coefficients now are

ko 2)

K
2y K4 2K 6

(15)

(16)

(17a)

2
+ K4 - K K

jY( j K)+
x k 0

2-y K 4KI- j k

c = 2 k2K - k2K 2

ko(K K5 -KxK 4 )

2 K
y K6

2

k 0

jy
k

(17b)

2
K4 - KK6

K 2

K

K -j k 2 +
o k

0

K4K 5-K +2 K
6 K

x

2
K4 -KK6

E
d = -K b.

Q 0o II
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-jK x

K
Ii

k

-5 k

k
2

k
K + K X

(14)

b = jwLo

(17c)
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The transverse fields are given in terms of the longitudinal fields by the relations

ET P r Q s TE z

HT T p U q VTH z

(18)
i XE -Q -s P s i z XVT E

z T z

i X H T  -U -q T p iX TH
z T z Tz

Here,

K4  K
P = p - wEo ks - jo -r (I9a)

o 0

K4  K5P = p - -r -jwe r (19a)

ok ok

K 4  K
T = t - wEo-j-- q - jE o p  (19c)o o

K K
U = u + We r - JWEo -k-- (19d)

o o

5and p, q, r, s, t, and u are the known expressions.

Our formulation for the beam-plasma system is similar to the formulation for

plasma alone. Hence, for the rest of this report, we can use techniques and results

that are already known. 4, 6

The dispersion relation is

U = u (a+c)p + ac - bd = q,0 (19d)

The determinantal equation is derived from boundary conditions. For a completely

filled circular waveguide it has the same form as for an anisotropic plasma.

A n -A 2 nnAr, (21)

Jn(Plro) Jn(PZro)

where A1 , AZ, and A 3 are algebraic functions of w, y, vom, Wpm' Wcm' Pi and p2.

6. Energy-Power Theorems and Variation Theorems

Assuming that the fields are of the form A (ul, u 2 , z, t) = A (ul, u 2) exp(jwt-y z) and

manipulating Maxwell's equations, we obtain
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aP = - Im UEa

aQe = O (Um-UEh )

PPe = W(U -U +U Th-U zh + 2 Re UE zTa )

pQe = w Im (UEza-UE Ta-2UEzTh),

where

Pe + jQ e= A SE XH T i da2T T z

UE EE K Eda

UET= 4 EoET * KT * ET da

U =L EoEK E da
Ez 4-o z z z

U --E E T E da
EzT 4o T Tz z

Um = - Loi IZ da.
m4T

subscript h (or a) means that we must

of K in the corresponding formulae.

consider the Hermitian (or anti-Hermitian)

By use of Maxwell's equations and their variations, we get

8(aPe) = - 5(w Im UEa)

P zRe f(6f Xi- i* -
5aQe Re-ET T) da

+ (W(U mT-Umz) + oE 5 (wK h) E E * 8(K Th)mT m(oKzh) z 4 T (Th)

2 Re E[6EZ zTh T+KzaEz)

S(WKaT z ) E daz

-6ET (KTz h Ez + KTa E T)] da

(28)
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5pPe a Im (5ETX H -ETXSH ) i da + U 6me 2 T TTT z m

+ o E  - (wKh)- E da - Re 5E • K - E da (29)

(pQe) = w Im (UEza-U TQ-2UEzTh)] (30)

If a = 0 (K=Kh), Eq. 29 gives

p _ E -" a Pe (m8(wK)

8w e 4o 8p _ e <P m> (31)
1 E 8(wK) ] daW1 1 -

Therefore Eq. 31 is applicable even when K is an operator.

For a * 0 we may derive the expression for the average power density (which is

unique 7 ) from Eq. 22. Equation 22 is valid for any K tensor. When our system is loss-

less and a conservation principle for the time-averaged power may be derived for it,

we have

aPe = -aP (32)

By use of Eq. 22, we get

P Im U (33)
M a Ea

Equation 33 is valid for a € 0. For a -0 we find

lim PM ES oE h E da,
a- 0

which checks with the well-known result for a = 0.6

P. E. Serafim, A. Bers
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D. INTERACTION OF AN ELECTRON BEAM WITH IONS IN A WARM PLASMA

OF FINITE TRANSVERSE DIMENSIONS

It has been shown that a one-dimensional model predicts a strong interaction of an

electron beam with the ions of a plasma when the plasma electrons are sufficiently
1

warm. The interaction is of the reactive-

medium type, and it occurs when the beam

space-charge wavelength is less than the
z

plasma Debye wavelength. The present
-B0  report is concerned with the extension of

these results to a beam-plasma system

e j(t - Pz) with finite transverse dimensions.

It is assumed that both the beam

Fig. XII-17. Beam-plasma system. and the plasma are homogeneous, and

fill a cylindrical waveguide structure

(Fig. XII-17). The beam moves with unperturbed velocity, vo, parallel to a large mag-

netic field, B o , which constrains electrons to motion along the field lines. The ions

are assumed to be cold; however, transverse motion of the ions is allowed. When the

quasi-static assumption is made, it is found that the potential satisfies the two-

dimensional Helmholtz equation

VT + p 2 = 0, (1)

2
where V T is the Laplacian operator in the transverse plane. Also

2 2 K 11
p -P K (2)

where

2 2
Wpi 2 f (vz) dv Wpb

II pe (w-Pv) (w-pv 0 )
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pi
K = 1 - 2 2

Wo -w
(4)

and all symbols have been defined previously.

As in the one-dimensional case, strong interaction with ions is expected only when

Re p

Im P

2
(a2 iPD >P 2 2

Wpi- Lci

- -~-777r

//

-j//-//
22 2 %

b) P 2 2

Wpi- Wci

Fig. XII-18. Dispersion in a hot electron plasma.

0 << VTe, where VTe is the average thermal velocity of the plasma electrons. There-

fore, attention will be restricted to the range in which w << PVTe. In this limit,

2 2 2
pi pe pb

K 21 - + 2 (5)
S P VTe (w-pvo)

For the plasma in the absence of the beam, the dispersion relation can be written as
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PD + p 2K
2 2

pi
1-

where pD = wpe/VTe is the Debye wave number. This dispersion is illustrated in

Fig. XII-18 for wci < wpi. In the limit VTe - oo, the dispersion becomes identical to

that of a cold ion cloud, as would be expected. 2 Normally, however, for reasonable

electron temperatures, the resonance at wpi belongs to a forward wave.

The dispersion equation for the beam-plasma system is a 4 -order equation in P.

\ j

Re p
-o- Re P1

S COMPLEX P
Im J

0 o00-0 -

pI

Fig. XII-19. Dispersion
nb T

for e
n 2V

p o

The results of some computations are shown in Figs. XII-19, XII-20, XII-21 for protons

with = , nb 10 - 2 n , and w . = 2w ., and for values of the "temperature"
with pb np pi ci
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Figure XII-20.
nb T

Dispersion for e 1n 2V
p o

Figure XII-21.

Dispersion for Te = .e
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2
nb T 2

parameter b e D equal to 0.5, 1, and oo. The condition for obtaining real P for
np 2V 2

pb
w > w . now is

pl

2
2 2 ci 2

Ppb+P 2 2 >~D' (7)

Wpi - cipl Ci

in agreement with the numerical computations.

The interpretation of these plots by means of the amplifying criterion that was

recently derived by the authors is being investigated. It is interesting to note that the

complex root of p with Im p - oc at w = pi carries negative kinetic power if the Debye

wave number in the range

2 2
2 2 ci> 2 2 ci (8)
pb +P 2 2 D > p  (8)

pl ci pi ci

This raises a strong suspicion that this wave is an amplifying wave with a spatial

growth rate tending to infinity, under the condition of Eq. 8.

R. J. Briggs, A. Bers
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E. TEST AND MODIFICATION OF LARGE SUPERCONDUCTING SOLENOID

1-4
The large superconducting solenoid described at length in previous reports has

been completed and temperature-cycled twice. The coils could not be cooled below the

superconducting transition temperature; the system has a repairable thermal short.

To give an idea of what happened, we summarize the pertinent assembly details.

Figure XII-22 shows a cross section of one end of the magnet. The view is not drawn

to scale so that the critical small dimensions will be visible. Unlabeled dimensions

have no relevance to the present discussion. Some vacuum flanges and other detail in

irrelevant places are not shown. All radiation shields are held off surfaces by nylon

studs; bolt and screw locations are shown by simple lines, as pins.

The 0. 25-in. span between magnet coils and shield H was originally intended to be

larger (>0. 5 in.), but the individual magnet coils (24 of them) spread axially when wound,

and thus reduced the clearance and created part of our problem.
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As the coils cool, the supporting column shrinks almost 0. 25 in.; the spacings shown

are for the system "cold." The system was aligned before evacuation and cooling.

During cooling, however, the supporting columns shrank unevenly, moving the nitrogen

shield to the left, and the magnet coils to the right. Thus the magnet coil structure

touched the shield H; also, the coils swung (out of the paper in the sketch) and a metallic

connection was made between the coils and the side of the nitrogen shield F. Total motion

was approximately 0. 25 in. The coils cooled to approximately 15°K (estimated) through

circulation of helium through the pipes, K, attached to the coil. By forcing excess helium

through the system, the thermal switches at point J could be made superconducting

SUPPORT

A

MIDPLANE

Fig. XII-22. Sketch (not to scale) of cross section of magnet, upper
right quadrant, showing critical dimensions, in inches.
A. Cylindrical vacuum wall, O. D.
B. Cylindrical vacuum wall, I. D.
C. End flange
D. Sealing ring and O-rings, I. D.
E. Nitrogen shield, including cooling pipes and radi-

ation shield, I. D.
F. Nitrogen shield, O. D. and end flanges
G. Annular joining ring, nitrogen shield
H. Radiation shield, supported off end of nitrogen shield
I. Radiation shield, supported off end of vacuum wall
J. Position of thermal switches
K. Helium precooling line
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L

Fig. XII-23. Modification to magnet.
L. New vacuum wall, I. D.
M. New nitrogen shield, I. D.
N. Thermal sealing ring
P. Axial spacer
Q. End flange adaptor

because the helium line ends at a reservoir there.

No contact between the nitrogen shield and the outer wall took place. For the coils
-5

and nitrogen shield together, the thermal isolation is good, even at a pressure of 2 X 10 5

mm Hg. Temperature rise was 10-15oK/day at 77 0 K.

Heat transfer from the cooling pipes K to the magnet coils has been recalculated and

found more than adequate for initial solenoid tests. The largest thermal impedance lies

in the coils themselves, where the wire is insulated by 0.001-in. nylon and 0.010-in. mylar

between wire layers. The cooling time constant is ~100 sec at 20°K, and will be higher

near 4°K. Times of 100-1000 sec are acceptable. It is calculated that the thermal con-

tacts that had been found could reasonably account for the 25-watt heat input to the mag-

net coil (as determined by helium enthalpy rate into and out of the magnet coil structure).

A relatively simple modification is planned to correct the difficulty at the cost of

1 inch in working radius. The modification is sketched in Fig. XII-23 (not drawn to

scale). The vacuum cylinder A, the end plate C, and the nitrogen shield F are retained.

These are the most expensive items. A new I. D. vacuum wall L, of 3-in. radius, has

been made, and a new inner nitrogen shield M is attached to it with nylon studs. Cooling

is brought to it by a pipe and bellows from shield component F. Radial clearance to the
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magnet coil I. D. is now almost 1 inch. Also, the end of shield F is cut off, and a cylin-

drical strip is inserted to extend F axially 0. 75 inch. The nitrogen shielding is com-

pleted by a new annular copper ring N, bolted to M, and loosely pinned to the end wall F.

The axial modification requires a ring spacer P on the outside diameter, and the

radial modification requires plate Q, which clamps to C with an O-ring and holds the I. D.

wall L. These modifications have been made at both ends of the magnet.

Dimensions at the outer diameters (magnet coils radially to F, for example) are large

and require no modification.
D. J. Rose, L. M. Lidsky, E. Thompson, J. Woo

References

1. D. J. Rose and L. J. Donadieu, Quarterly Progress Report No. 62, Research
Laboratory of Electronics, M. I. T., July 15, 1961, p. 68.

2. L. J. Donadieu and D. J. Rose in Proc. International Conference on High Magnetic
Fields, edited by H. Kolm (The M. I. T. Press, Cambridge, Mass., 1961), pp. 358-369.

3. L. J. Donadieu, Large-volume superconducting solenoid, Quarterly Progress
Report No. 66, Research Laboratory of Electronics, M. I. T., July 15, 1962, p. 139.

4. L. J. Donadieu, Superconducting solenoid, Quarterly Progress Report No. 68,
Research Laboratory of Electronics, M. I. T., January 15, 1963, p. 86.

F. ORBIT STABILITY IN THE CORKSCREW

1. Introduction

The transfer of longitudinal to transverse kinetic energy in a helically perturbed

magnetic field has been demonstrated experimentally by Wingerson, 1 Dreicer et al.,2

and discussed in detail by Wingerson, Dupree, and Rose. 3 The energy transfer depends

on a resonance of the position and velocity of the particle with the orientation and mag-

nitude of the perturbing magnetic field. It has been shown, 3 and is now shown in greater

detail in this report, that this resonance is stable to first order, that is, a particle dis-
placed from the stable orbit will oscillate about the position of stability. We address

ourselves here to the question of second-order stability - do the oscillations about the

stable orbit grow or decay?

It will be shown in this report that the linearized equations of motion predict growth

of the oscillations in an axially decelerating corkscrew and decay of the oscillations in

an axially accelerating corkscrew. The equations of motion for perturbations about the

stable orbit in an optimized (in the sense explained elsewhere 3 ) corkscrew are displayed.
Numerical solutions of these equations are presented, and the results discussed.

2. Linearized Equations of Motion

For the coordinate system of Fig. XII-24, the orbital equations for v, the azimuthal

velocity, and X, the relative azimuthal angle, for total energy E o , are
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dv
d = r(r, z) cos X

dX

dz
- rz +

P(z)

where r = qBr/m,

z

[Uv2] /2

Wz= qB /m,
z z

(1)

(2)

U = ZE /m, and P(z) is the local pitch length. The

assumption is made that the radial velocity, but not the radial position, can be ignored.

Z

Bz 

Fig. XII-24. Coordinate system for derivation of the
orbital equations.

8=ANGULAR POSITION OF
FIELD MAXIMUM

€=ANGULAR POSITION
OF PARTICLE

If v = v + v 1 and X = Xo + X 1 where v (z ) and X (z) refer to the unperturbed orbit

of the particle, then to first order in the perturbation variables

dv
dz - (3)
dz -r(r, z) sin X (4)

dX 1 _ _ c Vv 1

dz P(z) U2] 3/2

Equations 3 and 4 yield a second-order differential equation for X,

2
dX dX 1

I + g(z) dz + h(z) X1  = 0, (5)
dz

where

3 dP 1 o (6)
g(z) = P dz v dz

0

and

h(z) =
(Zr) 3 v(z) w(r, z) sin X(7)

w2P 3(z)z
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The coefficient of X 1 is positive for both accelerating and decelerating corkscrews.

For deceleration with wr > 0, Eq. 1 limits the particle position to the first or fourth

quadrant (that is, the azimuthal velocity must increase with z). A particle in the first

quadrant displaced forward in X will be decelerated less strongly, move with too high

z velocity relative to the local pitch and so move back toward the original position.

Similarly, a particle displaced backward in X will suffer stronger deceleration and move

toward the original position. On the other hand, a particle in the fourth quadrant will

move in the direction of the displacement, and rapidly fall out of synchronism. An

accelerating corkscrew, with X necessarily in either the second or third quadrant, is

stable (in the sense that small displacements lead to oscillatory motion about the origin

of the displacement) only in the second quadrant. By the same arguments, if the direc-

tion of the perturbing field is reversed, then Xo must be in the third or fourth quadrant

for oscillatory stability. In any of these cases, h(z) is positive.

Because h(z) is a monotonically varying, always positive function of z, the stability

of the oscillations depends only on the sign of g(z). Equation 6 shows g(z) to be negative

(growing oscillations) for decelerating corkscrews, and to be positive (decaying oscilla-

tions) for accelerating corkscrews.

3. Optimum Corkscrew

Wingerson, Dupree, and Rose demonstrate that the scattering losses for trapped

particles are reduced for a corkscrew in which dv/dz - 0 at both ends. We shall con-

sider first-pass particle motions in such a system. Particularly, we demand that the

perpendicular velocity in the unperturbed orbit, v1 o , be given by

v o  = av sin2 Z , (8)

where a is a parameter describing the total change in perpendicular velocity, v0 is the

TOTAL (vector) velocity of the particle, and the corkscrew is assumed to be of length L.

The resonance condition gives

P(z) = o -a sin4 1/2 (9a)

= Po I - a sin4 1/2 (9b)

Equations 1, 8, and 9b combine to fix the necessary variation of w r(r, t):

(-) sin (-) I [2Trr] + 2zrrj (10)

rr (T = or Zrr (10)
r. r G(Xo, z) cos X 0 LP(x)] + 2 LP(z)]
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where

(ov 2vio(z) 2rvo(z
G (r, z) = ) = I  P() + 12 . ( (z))oz z  o zP(z)

The algebra is simplified by introducing the new variables x = rz/2L, v = v /v o , and

p(x) = P(x) = P . In this notation,

dv _ a sin 2x G(v, x) cos X (12)

SG(Vio, x) cos Xo

and

dX 4L 1
.dx T I I . (13)

dx Po Lv2 1/2 p(x) (13)

We take advantage of the fact that the unperturbed orbit is known and rewrite the

equations in terms of deviations from this orbit; that is, for X 1 (x) = X(z) - X and

v1(z) = v(z) - V(Z).

dv -G(v°+vl ,x)dv a sin 2x o(v°' X)o (cosX 1 -tanXosinX 1) - 1 (14)
dx I  (vx)

dX 1 y1
dx Tx 2 -1/(

Za sin 2 2x
1- 2

p (x)

where

p(x) = [1-a 2 s i n 4 ( x ) ]  (16)

G(v+v1 x a) = sin (x) + v1  + a sin2 (x) + v 1  (17)
G(vo+v l x ) = I + I (17)o p(x) 2 p(x)

y = 4L/Po. (18)

Except for the slowly varying ratio of the G's, Eqs. 14 and 15 are first order in

deviations from equilibrium. The oscillations about the unperturbed orbit are thus

separated from the equations of the orbit itself, and can be studied with far greater

accuracy. Notice also that no additional approximations have been made (that is, these

equations are not linearized).

QPR No. 70 139



0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
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(b)

1.2 1.3 1.4 1.5 1.6

Fig. XII-25. (a) Angular deviation of particle position from the equilibrium orbit as a
function of the normalized distance, x. x = rrz/2L, where z is the
position of the particle, and L is the length of the helical field.

(b) Normalized z-directed energy of the particle as a function of x. The
dashed line illustrates the behavior of an unperturbed particle.
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Equations 14 and 15 were solved numerically by four-step Runge-Kutta integration.

The results presented below were all computed by using a normalized distance incre-

ment of 10 - 3 (1570 steps for a single traverse). The results at the end of a complete

pass were changed at most by 2 parts in the fifth significant figure for distance incre-

ments of 10 - 2 and 10 - 4 . A complete traverse, including computation and print-out of

position, velocity, and energy at 157 points, requires approximately 21 seconds of

IBM 7090 computer time.

4. Numerical Results

The equations of the system are characterized by three parameters:

a the ratio of exit azimuthal velocity to the total velocity of the particle;

y' a number proportional to the number or "corkscrew turns" in the system
(y = 4L/Po); and

Xo the particle phase for which the corkscrew was designed.

Numerical computations were carried out for systems comparable to the electron

corkscrew experiments of Wingerson and Dreicer (y = 20), and for the more finely tuned

systems of ultimate interest. We considered alpha values of 0. 500 and 0. 894 (25 per

cent and 80 per cent of the energy in transverse motion at the exit), gamma values of 50

and 100, and design angles of 30', 450, 750 , and ±1350. The last two values are for the

stable and unstable quadrants for an accelerating corkscrew (Tr/2 < x < rr). The gamma

values are those of an electron corkscrew with, for example, 200-gauss main axial field,

1600-volts injection energy, and 53-cm or 106-cm length. The number of turns depends

on the value of a. For a = 0. 894 and y = 100, this number is approximately 52. Some

typical results are discussed below for this last case.

(a) Decelerating Corkscrews

A corkscrew as defined by Eq. 9 is decelerating for 0 < x < Tr/2, and is phase stable

for X o in the first quadrant. Figure XII-25a shows the effect of a 150 perturbation in

the angular position at x = 0. 4. As expected, the oscillations grow in magnitude and

frequency along the corkscrew. Figure XII-Z5b is a plot of axial energy during these

oscillations compared with the smooth deceleration of an unperturbed particle. The

angular-position perturbation leads to an energy perturbation because a particle in the

first quadrant displaced forward in X is subject to a smaller radial field, and is decel-

erated less strongly than an unperturbed particle.

Figure XII-26 illustrates the effect of an energy perturbation (AE = -0.06) at the

same position. The phase angle X at various axial positions is marked off along the

curve. The particle was lost when x became more negative then -450 at a time when
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the axial velocity was higher than the axial velocity for an unperturbed particle. The

radial field for X < -450 is smaller than the design field, and the particle slipped even

farther behind in phase. The radial field is negative for -3Tr/Z < X < r/2, and the

d9 1 d4
particle was accelerated. It continued to slip behind in phase because dz v dtwas

z

everywhere smaller than dO/dz as defined by the corkscrew windings. Successive cycles

of acceleration (-3Tr/2 + ni < X < Tr/2 + nir) and deceleration (-r/2 ± nTr = X = Tr/2 ± nTr)

followed, but the effect of each became smaller because the particle spent less time in

the successively shorter sections.

Figure XII-27 is a plot of the same case for an initial design phase, Xo, of 750.

Two factors cause this situation to be more stable than that in Fig. XII-26. First, the

particle must slip farther back in phase to see a radial field weaker than the design

field. Second, and more important, the ratio of maximum radial field to design field

is larger for Xo = 75' than it is for X = 450. [ r(X=0) = 1.4 wr(45°) = 3.9 wr(750)].

The improved stability is, of course, accompanied by increased perturbation of pre-

viously trapped particles.

(b) Accelerating Corkscrews

The pitch equation (9) describes an accelerating corkscrew for Tr/2 < x < r. A sys-

tem with parameters identical to the decelerating corkscrew discussed above (a = 0. 894,

y = 100) was investigated for the case X = 1350 and x > Tr/2. The effect of an angular

perturbation at the entrance is depicted in Fig. XII-28. The result of an identical

8

w 7= -1350
w o

w 5
4

3

2 24 26 28 3

NORMALIZED POSITION,XNote that 2 x for this case.-[-2-z -5-6 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0NORMALIZED POSITION,X

Fig. XII-Z8. Angular deviation versus x for an accelerating corkscrew.
Note that Tr/2 < x < Tr for this case.
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In this case, the initial perturbation was in energy.

perturbation for a particle in the unstable accelerating quadrant (X = -135) is shown.

As predicted, the oscillations of the particle in the proper quadrant are rapidly damped.

The angular oscillations resulting from a 5 per cent energy perturbation at the entrance

are shown in Fig. XII-29. The particle was completely unwound at the local minimum

at x = 2. 95. The longitudinal energy at the exit was 0. 9989 of the total energy.

5. Conclusions

The numerical results presented for the decelerating corkscrew thread the passage

between the rock of experiment - the corkscrew decelerates particles - and the whirl-

pools of intuition and linearized theory - the decelerating corkscrew is unstable to

growing oscillations. The corkscrew is indeed unstable, but not too unstable. The

numerical results agree nicely with the experimental work of Dreicer and his

co-workers2 in showing that a small energy spread at the exit is accompanied by a

large spread in exit phase. The size of the "acceptance hole" at the corkscrew entrance

is also in agreement with experiment (± -10 per cent in energy, ± ~30 ° in phase).

Cases similar to that shown in Fig. XII-26, which indicates that particles can be

partially wound up to an extent determined by their initial deviation from the stable orbit,

call into question an earlier conclusion that the optimum system would consist of a finely

tuned corkscrew with a very carefully matched injection system. It is likely that an

injection system with a moderate spread in particle velocity (resulting in a wide spread

in energy and phase at the corkscrew exit) would circumvent many of the difficulties that

plague devices with highly ordered particle motions.

The accelerating corkscrew presents intriguing possibilites for injection into
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"closed" toroidal systems. In the simple form discussed in this report it is capable of

placing particles on the axis of a toroidal system whose minor radius is equal to the

cyclotron radius of a particle with total velocity in the transverse direction. Injection

into a field extending over several cyclotron radii is more desirable. Modifications

of the accelerating corkscrew to accomplish this end are under study.

L. M. Lidsky
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G. FUSION REACTION BLANKET EXPERIMENT: ANALYSIS

OF THRESHOLD-DETECTOR DATA

The neutron-energy spectra in mock-ups of a tritium regenerating blanket to sur-

round a power-producing deuterium-tritium-cycle thermonuclear reactor will be

measured by means of the following threshold reactions: U 238(n, f), P 31(n, p)Si31
56 56 127 126 19 18

Fe56(n, p)Mn 5 6 , I (n, 2n)I 26, and F (n, 2n)F 8
. A description of the experimental

arrangement and of the physical properties of the threshold-detector foils has been given

previously.1 The method of analysis of the activities from these reactions for the pur-

pose of determining the neutron spectrum, generalized to the case of N different thresh-

old reactions, is given in this report.

The problem is the solution of N simultaneous integral equations for the neutron

spectrum 4(E):

T. = (E) i(E) dE, (j=1, 2. N). (1)

th
Here, the T. is the activation rate per atom of the j threshold detector corrected for

decay, and a-(E) is the activation cross section. The range of all integrals in this dis-

cussion is from the lowest threshold energy to the maximum energy to be expected in

the experiment. Since the general solution of Eq. 1 is intractable, some assumptions

about the cr.(E) and the neutron-energy spectrum (E) must be made. The method
J 2

of Lanning and Brown has been chosen for two reasons: it is relatively simple, and it

allows additional knowledge of the spectrum - in this case, from calculations made with

machine codes developed by Impink 3 - to be taken into account by means of a weight func-

tion w(E).
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In this method p(E) is expanded as a product of w(E) times a weighted sum of poly-

nomials Pi(E):

N

c(E) ~ w(E) aipi (E). (2)
i= 1

The polynomials Pi(E) (of degree i-1) are chosen so that

Pi(E)Pk(E)w(E) dE = 6 ik. (3)

The a-.(E) are approximated as a Fourier expansion of the Pi(E):

N

oj(E) ~ i (E) = jiPi(E), (4)

i=l

where

Tji = Pi(E) (E)w(E) dE. (5)

The method gives a least-squares fit to the cross-section data:

w(E) a (E)-F j(E)2 dE = minimum. (6)

If we use these equations, the activation of the jth foil is given by

N

T = Tjia i , (j=1, ... , N). (7)

j=1

The N equations (7) are solved for the ai; this operation completes the calculation of all

of the parameters that are necessary to determine 4(E) by Eq. 2.

A Fortran-II program has been written to perform the calculations, and has been

tested by using activities computed from spectra calculated by Impink. Two examples

are shown in Fig. XII-30 in which the input spectrum is shown with two spectra calcu-

lated from Eq. 2 by using two different w(E) for two sets of data. Since only 5 foils are

used, the calculated spectrum is dependent on the function chosen for w(E). If the weight

function w(E) is chosen to be the input spectrum, of course, the agreement is excellent.

As an example of a weight function that has the general shape of the input spectrum, but

does not depend directly on the spectrum, a weight function of the form

w(E) = (A+BE )- 1 + C exp(-(E-F) 2 /G 2 ) (8)
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Fig. XII-30. Comparison of spectrum calculated from Eq. 2 with input spectrum calcu-
lated from Impink's codes. Data in (a) are from the first wall of the blan-
ket; data in (b) are from a point approximately 20 cm from the first wall.
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Table XII-1. Comparison of threshold activities.

Calculated activitya

Used to From p(E)
Threshold determine From input according

Reaction energy a. in Eq. 2 spectrum to Eq. 2
(Mev)

U238(n, f) 1. 1 yes 2264. 1 2264. 1

p31(n,p)Si31 1.6 yes 163.65 163. 74

Fe56(n, p)Mn56 4. 5 yes 226. 95 226. 95

S127(n, 2n)Il26 9.5 yes 2103. O0 2103. 0

F 19(n, 2n)F 1 8  11. 1 yes 87. 808 87. 808

Al27(n, a)Na24 6. 1 no 208. 00 208. 75

Zn64(n, p)Cu64 1. 9 no 421. 75 425.69

Ni58(n, 2n)Ni57 12. 3 no 43. 139 42. 609

aActivity calculated by T i = f c(E)-ri(E) dE, where a-i(E) is the cross section, and (E) is the input

spectrum, or the spectrum calculated with w(E) from Eq. 8, by using data from Fig. XII-30a.
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was chosen. The values of the constants A, B, C, F, and G were chosen somewhat

arbitrarily; the fit of the calculated spectrum to the input spectrum is not too dependent

upon the choice. Furthermore, the same w(E) gives a good fit to the data at the first

wall (Fig. XII-30a), where the peak centered about 14. 2 Mev predominates, as well as

farther in the blanket (Fig. XII-30b), where this peak has been attenuated, and the inter-

vening energy regions have been filled in by the moderated neutrons.

Tests were also made with w(E) = 1. 0. The results showed that the input spectrum

is too complicated to be fitted by a fourth-order polynomial: The calculated spectrum,

while it did show the trends at the lower and upper regions of the spectrum, oscillated

about the origin in the region 6-12 Mev.

In these calculations the assumption was made that the T. are known exactly, which

is not actually true. In a series of test runs, the T. calculated from the input spectra

were varied by fixed amounts. The results showed that the shape of the spectrum cal-

culated from Eq. 2 is most sensitive to the activities of the reactions with intermediate
31 56 127

threshold energies: P (n, p), Fe 56(n, p), and especially I 27(n, 2n). Increasing or

decreasing the activities of the foils with the highest and lowest threshold energies

merely increases or decreases the value of the calculated spectrum in the corresponding

energy range.

Since these calculations are based on an integral method, information about c(E) in

regions where it is small (say <0. 01 of its maximum value) can be lost in the uncertain-

ties in the method; likewise for -. (E) in regions where c(E) is large. Thus a fairer test
1

of the method is its ability to reproduce activation rates of reactions which were not used

in determining the calculated spectrum because in performing the integral f c(E)r-(E) dE

to determine these activities, errors in regions where p(E) is small are of less impor-

tance. The activities of three such reactions, obtained by integrating the cross section

for the reaction with the input and calculated spectra are shown in Table XII-1. The

maximum deviation between the activities obtained from the input spectrum, and

those obtained from the spectrum calculated with the Gaussian weight function,

is approximately 1 per cent.

P. S. Spangler
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H. EMISSION OF CYCLOTRON HARMONICS FROM PLASMAS

Considerable interest has been stimulated recently by the observation of maxima

in the emission and absorption spectrum of plasma at harmonics of the cyclotron fre-
1

quency. Since the electron energies in the plasmas were nonrelativistic, some mecha-

nism other than pure single -particle cyclotron radiation must be responsible for the

observed spectrum. Simon and Rosenbluth 2 have suggested that the radiation is due to

electrons whose trajectories pass through sheaths. The electric fields in the sheaths

distort the circular Larmor orbits, and the result is the emission of radiation at the

cyclotron harmonics.

The qualitative aspects of the observed spectrum can also be produced by another

mechanism: the scattering of longitudinal electron waves by the ions. At equilibrium,

such scattering produces a relatively smooth bremsstrahlung spectrum, but for a non-

equilibrium plasma, the spectrum can be quite different. In particular, for a plasma

in a magnetic field, a longitudinal wave traveling perpendicular to the magnetic field

can produce scattered radiation at the cyclotron harmonics.

Given the spectrum of electron and ion fluctuations, the calculation of the scattering

is straightforward but too long to record here. Only the results will be given. We shall

take the externally imposed magnetic field to lie along the z axis with an electron cyclo-

tron frequency wc. We shall assume that the spectrum of (random) longitudinal electron

waves (fluctuations) has a magnitude that generally is greater than the equilibrium level.

The ions are assumed to have infinite mass, but to be correlated with each other. The

average electron and ion densities are n e and n i , respectively. The fluctuations of
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electron and ion density are denoted ne 6Pe(, t) and niSpi(r). The spectral density of

electron fluctuations, <6p Spe I K,L,>, is defined as

00 -iT - -K.a r(t 6p (r+a, t+T

6Pe6pe K ,W = dT e da e -iKa 6pe( pe
-00

Here, the angular brackets denote an ensemble average. In similar fashion, we define

the spectral density of ion fluctuations as

<6Pi6Pil K>= da e- i K a  p (P) p (r+a

The electron fluctuations will be scattered by the ion fluctuations, and produce longi-

tudinal and transverse current-density fluctuations whose spectral density 6j 6ik,w

is given (approximately) by

S, dK g b(K,w) 1 P 6 e K i6i ,

where

2 2
w +(A)

gxx = K z2 c 2

2 1

g =
gzz z 2

gxz = 0

+00 c2 KZI a fe(vZ)
+oo J L

-4 4 c / v
b(K, w) = K m w n e dv +

c p e w + Kv z + Mo c  i
m= -0

Here, wp is the electron plasma frequency, J is a Bessel function, and K 1 = K 2 + K.
p m.x y

The emission power density of scattered radiation into the mode (k, w) is proportional

to j81 k,w>. The actual flux reaching a receiver outside the plasma depends,of course,

on the dielectric properties of the plasma, including the reflection at the boundaries.

One may expect (at least for an optically thin plasma) that the gross features of the

spectrum of<8j I k, .will be present in the observed spectrum.

For convenience, we shall take 6Pipip K> to be the familiar equilibrium expression
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2 1 -2
K+ X-1 2 D

n1 2 + -2
K+XD

D

If K 12
If Kz  D and K D then I b(K, w) 2 has maxima at W mw c . Now suppose that

when Kl= XD, (< 6p ep K,e) is large only for Kz << XD. Then 6J6~ k, will also

have the observed maxima at the cyclotron harmonics. Furthermore, this choice of

the electron fluctuation spectrum is not entirely artificial. One might expect just such

a spectrum in situations in which the unstable modes are those that travel in a direction

approximately perpendicular to the magnetic field so that the Landau damping is at a

minimum.

Since 6pe Pe eK,> should not be large for a > a , one would not expect to observe

harmonics at frequency greater than w . This prediction is in agreement with experi-

ments.

T. H. Dupree
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I. ERRATA: SCATTERING OF LIGHT FROM (PLASMA) ELECTRONS II

In a report with this title, published in Quarterly Progress Report No. 69 (pages

74-79), corrections should be made in two equations.

Page 76 - the third and fourth equations from the top of the page should read:

* AA2 1
V- c

k 1 + cos O

Hence

N m 1/2 c -1/2 mc2( +cos O)-1
dN m c (l+cos e) exp - d,V ,- 2kT o 2 Ta e o 4kk e

o

E. Thompson, G. Fiocco
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J. CONCENTRATION OF EXCITED STATES IN A LOW-ENERGY

CESIUM PLASMA

1. Introduction

In a low-energy cesium plasma ions are lost continuously by ambipolar diffusion and

recombination. In the absence of a sufficient external ion source these losses have to

be balanced by ionization processes occurring in the plasma. Ionization occurs mainly

by inelastic collisions between electrons and cesium atoms. With electrons of low energy

most of these collisions lead to the first excited state of the cesium atom, that is, the

normal 6s level of the valence electron is excited to the 6p level. Ionization can then

occur by further collisions of these excited atoms. In this report the concentration of

atoms in the first excited state is calculated as a first step toward obtaining the rates

of ionization from excited states.

The concentration of excited states is mainly determined by excitation and

de-excitation collisions with electrons and by emission and absorption of resonance

radiation. The results of calculations on the required electron collision cross sections

are given in this report. The problem of radiation trapping, that is, the successive

emission and absorption of resonance radiation, is also treated. An over-all rate bal-

ance is used to determine the concentration of excited states.

The calculations are carried out for a cesium density of 2 X 1016 cm - 3 , a cesium
14 -3

temperature of 1000 K, an electron density of 10 cm , electron temperature of

approximately 3000 K, and a plasma thickness of 0.025 cm. These values are typical

for the high-current mode of a cesium thermionic-energy converter and can be varied

considerably without affecting the conclusions.

2. Electron Cross Sections

The cross-section curve for excitation of cesium atoms to the first excited state by

electron collisions has not been measured. The excitation curve has been measured,

however, and calculated theoretically for sodium, which is very similar to cesium in

its atomic properties. Because of this similarity, the same theoretical method that

yielded good agreement with the experimental data for sodium is used to calculate the

inelastic cross-section curve for cesium.

The total electron collision cross section represents an upper limit to the inelastic

cross section. Total cross-section curves were measured by Brodel for the alkali

metals - sodium, potassium, rubidium, and cesium. All of the curves have similar

shapes, showing a peak at electron energies of approximately 2 ev and decreasing at

higher energies. The curve for cesium shows the highest cross sections, with a peak
-16 2

value of 570 X 10 cm . This leads to the expectation that the inelastic electron cross

sections for cesium will also be large and will be similar to, but somewhat higher than,
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those for the other alkali metals.

The general shape of the electron cross-section curve for excitation from the ground

state is well known. The cross section is zero up to the excitation potential; then it
rises sharply with increasing electron energy, levels off to a peak a few volts above the
excitation potential, and then declines. Such curves have been measured for sodium,
helium, and mercury.2

In this report we are interested mainly in the initial rise of the excitation curve
because there are very few electrons in the plasma with energies higher than a few ev.
In the low-energy region the normal Born approximation yields cross sections that are
too large. Recently, Seaton 3 has developed a semi-classical "impact-parameter"

method for calculating electron excitation cross sections of optically allowed transitions.

This method yields results that are in good agreement with a variety of available experi-
mental data at low electron energies. To see this point clearly, let us consider the case
of the excitation of sodium to the first excited state, that is, the 3s-3p transition.

In the impact-parameter method the motion of the colliding electron is taken to be

rectilinear. The cross section is calculated in terms of the contributions from different
impact parameters R, where R is the classical distance of closest approach. With ini-
tial state i and impact parameter Ri, let there be a probability Pji(Ri) that the i - j

transition occurs. The cross section is

(i-j) = P..(R.) 2rrRi  dR.. (1)

The probability of transition Pji is calculated from time-dependent perturbation

theory, under the assumption that the atomic potential follows the simple Coulomb law.
This assumption is valid for R i >> ra, where ra is a length that is comparable with the
atomic dimensions, but it is invalid for R. i  ra. For some transitions with large cross
sections such as the 3s-3p transition in sodium the calculated values of P.. violate the
conservation condition, Pji < 1, for the smaller impact parameters. For these transi-
tions the impact-parameter method introduces a cutoff in Eq. I at an impact parame-
ter R1 which is such that

P ji(R I) = 1/2. (2)

For R . < R1 the probability Pji is considered as an oscillatory function with a mean
value of 1/2. The cross section then is

or(i-j) = -TrR2 + P. (R ) 2TrR. dR.. (3)

Seaton3 used the impact-parameter method to calculate the inelastic scattering cross
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section for excitation to the first excited state of the sodium atom, that is, for the 3s-3p

transition. These calculations were repeated and resulted in the cross-section curve

shown in Fig. XII-31. This figure also shows absolute cross-section measurements by

Christoph4 as corrected by Bates, 2 and relative cross-section measurements by Haft 5

as reported by Christoph, 4 scaled to agree with the absolute measurements. Haft's data

as reported here differ somewhat from the curve drawn by Bates,2 who does not seem

to consider Haft's low-energy points and scaled the data to agree with Christoph's abso-

lute measurements at high electron energies, for which Haft's values are too high

because of Doppler broadening of the spectral lines that he observed.

As shown in Fig. XII-31, the impact-parameter approximation gives very good agree-

ment with the experimental data down to 0.8 ev above the excitation potential, which is

2.1 ev for sodium. At these very low energies, Haft's data are not very accurate, but

the agreement is actually better than shown, since in Haft's experiment the electron

energies had a spread of approximately 0.4 ev below their nominal value. At the exci-

tation potential, the impact approximation curve is clearly in error, since it does not

go to zero there. The Born approximation curve is much too high at low energies.

The good agreement between theory and experiment for the 3s-3p excitation of sodium

encouraged the application of the theory to a very similar case, the 6s-6p excitation of

cesium. The two 6p levels of cesium lie close together approximately 1.4 ev above the

ground state. As for sodium, the two levels were treated together and yielded the exci-

tation cross-section curve shown in Fig. XII-32. The curve is very similar to that for

sodium; the maximum is higher and occurs at a lower energy, as expected in view of the

100

80 - Na 3s -3p

60 -

E X o
40 IP

b 20 -

0

0 2 4 6 8 10 12 14 16 18 20 22

Ee (ev)

Fig. XII-31. The 3s-3p inelastic electron collision cross section of sodium
as a function of electron energy. B, Born approximation; IP,
impact-parameter approximation; 0, experimental (Christoph,
absolute); x, experimental (Haft, relative).
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larger total collision cross section and lower excitation energy of cesium. Judged from

the data for sodium, the curve for cesium should be correct down to electron energies

of 2.2 ev. For lower electron energies a conservatively low estimate of the dependence

of the excitation cross section on electron energy E is

-16 2
a (E) = 75 X 10 (E-1.4) cm

(4)

1.4 < E < 2.2 ev.

Once the excitation cross section is known, the de-excitation cross section can be

calculated by invoking the principle of detailed balance. According to this principle,

the rates of electron excitation and de-excitation must be equal under thermal equilib-

rium at all temperatures. It has been shown directly by Fowler that the relation

between the de-excitation cross section ad and the excitation cross section e-x is given

by

a d( E )  o E + Ex
x B (5)

x (E+Ex) x E

where E is the excitation potential and w0 and w are the statistical weights of thex o x
ground state and the excited state. The de-excitation cross section for cesium 6p-6s

has been calculated and is shown in Fig. XII-32. It is approximately constant in the

energy range plotted.

100 -

80 -

Cs 
6

s -
6

p

60-

20 EXTRAPOLATED

0 2 4 6 8 10 12 14 16

Ee (ev)

Fig. XII-32. The 6s-6p excitation and de-excitation electron collision
cross section of cesium as a function of electron energy.
Impact-parameter approximation.
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3. Radiation Trapping

One source of losses of excited atoms in a cesium plasma is the spontaneous emis-

sion of resonance radiation. This radiation consists of sharp lines that have a high prob-

ability of absorption by atoms in the ground state. The process of successive absorption

and emission of resonance radiation, called "radiation trapping," results in an effective

lifetime that is larger than the natural lifetime of the excited state.
-3 -1

The total rate of decay of excited states by spontaneous emission is nx/ n cm sec ,

where n is the concentration, and T7 the natural lifetime of the excited state. Suppose

that the emitted radiation has an average probability p of escaping from the plasma

without absorption. Then the rate at which these photons leave the plasma is

nx -3 -1v = -- cm sec . (6)
r T

n

This is equal to the net radiation loss of excited states per unit volume. Equation 6 can

be written

r = n/Teff' Teff = Tn/P, (7)

where Teff is the effective lifetime for radiative decay of the excited state, averaged

over the plasma. If the photon-escape probability p is small, then Teff will be much

larger than Tn . In this report we are concerned only with low radiation densities, where

radiation-stimulated emission is not important.

An expression for the average radiation-escape probability will be derived from the

absorption cross section and the emission line shape, for a cesium plasma between two

semi-infinite flat plates. Any radiation reaching the plates will be considered to be lost.

It will be seen that the calculations can be easily extended to other resonance lines if

certain physical data are available.

a. Photon Absorption Cross Section and Emission Probability

In calculating the average radiation-escape probability p we must consider the

detailed shape of the emitted line and of the corresponding absorption cross section.

Several disturbing influences cause these shapes to differ from a pure delta function;

these influences are said to broaden the lines. Under thermodynamic equilibrium the

shapes of the absorption and emission lines are the same, since detailed balancing

between emission and absorption must hold at all frequencies. This means that the

effect of a broadening mechanism must only be known well for either absorption or

emission in order to calculate the photon-escape probability.

In the plasma under consideration the dominant broadening mechanism is pressure

broadening. It is due to collisions between excited states and ground-level atoms of the
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same species that cause broadening, frequency shift, and asymmetry of the absorption

cross section. The escape probability of photons is determined by the line shape in

the wings of the line, far from the center. In this region the absorption shape follows

closely the simple Breit-Wigner formula:

(rp /2)2

= • (8)
rV (rp/2)2 + (v-v )2

Here, v is the radiation frequency, a-0 is the absorption cross section at the resonance

frequency v , and r is the halfwidth (full width at half-maximum) resulting from pres-

sure broadening. The absorption cross section at the edges of the resonance curve of

the cesium 6s-6p transition has been measured by Gregory.8 His data agree well with

the theoretical result of Furssow and Wlassow, 9 who calculated the halfwidth resulting

from pressure broadening to be

2
r - 2 e n f, (9)

p 31r mve o

where no is the density of atoms in the ground state and f is the oscillator strength

for the transition.

The value of a-o can be obtained from a consideration of thermodynamic equilibrium

between the radiation and the atoms. The derivation has been given by several
10,11

authors. It can be shown that the integral of the absorption cross section over the

resonance is proportional to the oscillator strength, f:

2
v  dv = we f. (10)
v me

e

Combining Eqs. 8-10 yields

3rr 13Tr I (11)
v nX 2'o ol+t

where ko is the wavelength at the resonance frequency vo and

v-v
t o (12)

rp/2

The emission probability p(v) is just the Breit-Wigner shape scaled to give a total

emission probability of unity:

Srp/2

p(v) . (13)) p/2)2 + (v-v )2
p o
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b. Calculation of the Photon Escape Probability

Consider a semi-infinite plasma of dimension s, as shown in Fig. XII-33.

Suppose that an excited atom at position x decays by emitting a photon of frequency v

in the direction r. The excape probability for this photon is exp(-n 0- r). To obtain the

average excape probability over the emission spectrum one must multiply this exponential

Fig. XII-33. Schematic diagram of the plasma
geometry.

factor by the emission probability p(v) and integrate over all frequencies. Similarly,

the average over all directions of emission is obtained by multiplying by p(r), the prob-

ability of emission in a direction between r and r + dr, and by integrating over all r.

Finally, this is averaged over all values of x. The average escape probability then is

given by

1  s 00 -n cr r
p =- dx p(r) dr p(v) e dv. (14)

s0 x 0

The photons are emitted with equal probability in all directions. The directional

emission probability is

p(r) = X p(r) dr = 1. (15)
r x

Combining Eqs. 11-15 yields

1 s C dr 0 dt ( r  1I
p =-- x dx exp -3r. (16)

0 x r -oo 1+t ol + t2

This integral is rather difficult to evaluate. A first approximation can easily be

obtained, since only photons with frequencies far out in the wings contribute signifi-

cantly to the average escape probability. For these photons t 2 >> 1. If we neglect 1

in comparison with t2 in Eq. 16 the integral is readily evaluated to be
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P 3s (17)

A second approximation to the integral in Eq. 16 was obtained by separating it into
two integrals: one for low values of r, and one for high values. The result is

p= 1 - -~-/. (18)

Since X << s, the correction introduced is negligible and the first approximation, Eq. 17,

gives the average escape probability with sufficient accuracy. This result shows that we

were justified in ignoring the detailed shape of the line near the center, since this region

contributes very little to the escape probability.

c. Calculation of the Effective Lifetime of the Excited States

Equations 7 and 17 give the effective lifetime as

eff = n 4(19)

For the cesium 6p state, Tn = 3.5 X 10 - 8 sec, and X = 0.87 X 10 - 4 cm. With a

plasma spacing, s, of 0.025 cm, the effective lifetime is

-6
Tef f = 2.4 X 10 sec. (20)

It is interesting to note that the effective lifetime is independent of the cesium atom

density. This is only true as long as cesium atoms are the dominant source of resonance

line broadening.

4. Rate Balances

The concentration of excited states is primarily determined by the rate of excitation- 3  -1Vx (cm sec ), the rate of de-excitation v d , and the net rate of radiative decay vr.
The last rate is determined by the effective lifetime Teff of the excited states. The

rate balance is

x = Vd + Vr* (21)

The rate of de-excitation is

Vd = nxne fe(E) Td(E) e (E) dE, (22)

where f (E) is the electron energy distribution function, and n e and v e are the electron
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density and velocity. Since a0 d is approximately constant in the low-energy range of

interest, Eq. 22 can be written

vd = nxne dve

Combining this with Eqs. 7 and 21 yields

-vx - Vd 1
Sd- = R, (23)
Vd T n e dV

eff ede

-16 2 7--6
where Fd = 50 X 106 cm , = 3 x 10 cm/sec, eff = 2.4 106 sec, and n ed3X=50-

- e eff

14 -3
10 cm . With these values, Eq. 23 becomes

v -
x d = R = 0.028. (24)

Vd

Since R << 1, the density of the first excited state is essentially determined by electron

collisions. The rate of excitation is

v = n n fe(E) x (E) ve(E) dE. (25)

x

It is now necessary to specify the electron energy distribution. If this distribution

is Maxwellian, then the integrals in Eqs. 22 and 25 are unique functions of the electron

temperature T e. Taking the ratio of the two equations yields

v n
d x F(T). (26)

v n e
x o

The function F(T e ) can be determined, since at equilibrium vx = vd and

xn exp x k(27)
equil

so that

v no E

v n cx\kTJdx o ex(28)

Combining Eqs. 23 and 28 yields

n c ( E I
x - exp x 1 + (29)

n kT + R
o o e
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Since R << 1, the density ratio of excited to ground states is close to the equilibrium

value given by Eq. 27. This ratio is plotted in Fig. XII-34.

0.14

0.12

0.10
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0.08 -
Fig. XII-34. Equilibrium density ratio of the

6p excited state and ground state
x 0.06 - of cesium plotted as a function of

electron temperature.
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0
0 1000 2000 3000 4000 5000
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0 

K)

There is a large number of other mechanisms that affect the density of excited states
in a plasma, and it is virtually impossible to calculate the contribution of each of them.

It has been shown in this report, however, that the inelastic electron collision cross
sections are very large. Since the electron density is quite high, the inelastic electron
collision rates are dominant in determining the concentration of the first excited state.

This conclusion is directly applicable to the plasma in the high-current mode of a cesium
thermionic -energy converter.

H. L. Witting
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K. ELECTRON GUN FOR PRODUCTION OF A LOW-DIVERGENCE BEAM

A program has been initiated to determine experimentally the properties of the cork-

screw.1 An electron beam of low current (0.1-20 pa) and minimum divergence (less than

3/4"

-f
1 1/4"

1/32"

1 1 4"

COPPER DISK
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Fig. XII-35.
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Electron gun for the production of a low-divergence beam.
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1/500 radian) will be required, and an electron gun has been constructed to produce the

beam. The properties of the present model are:

Beam Current, 0.1-5 la

Gun Length, 20 cm

Lens Aperture, 0.159-cm diameter

Cathode Aperture; 0.102-cm diameter.

The electron gun is shown in Fig. XII-35.

The beam currents investigated (0. 1-3 lia) were well within the region of negligible

space-charge effects, thereby giving a divergence angle of 1/1000 radian at a distance

of 2000 lens aperture radii from the end of the gun for a beam current of approximately

15 ia.

In three separate trials, the average beam-divergence angles over the path length

investigated (1.5 meters) were 1.8, 1.91, and 1.59 X 10- 3 radian.

The observed divergences can be attributed to aberration effects in the gun; spheri-

cal aberration is the predominant cause. Alterations that will be applied to reduce the

aberrations are: (a) adjustment of one relative aperture of one negative lens element,

and (b) addition of postcollimators to define the beam and remove widely divergent par-

ticles.

The gun will then be scaled down by a factor of approximately four for insertion in

the corkscrew experiment.

P. Karvellas
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L. SPACE-CHARGE NEUTRALIZATION EXPERIMENT

The purpose of the experiment is to examine ways of injecting electrons into an ion

beam in order to neutralize its space charge and avoid the consequent stalling of the

beam. Practical applications of the experiment arise in spacecraft ion propulsion.

The ion beam is extracted from a cesium ion source which is shown schematically

in Fig. XII-36.

The porous tungsten ionizer, a, through which the cesium atoms diffuse, is heated

to approximately 1200'C by electron bombardment of its tantalum support.

The method by which electrons are brought into the region of the ion beam is by

extracting them from a filament, c, through the accelerating grid, b.

The experiments were performed in a 14 in. X 15 in. X 36 in. aluminum vacuum
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VACC V N e f

Fig. XII-36. Cesium ion source.
a. Porous tungsten ionizer
b. Accelerating grid
c. Filament producing neutralizing electrons
d. Filament for heating the ionizer
e. Accelerating electrode
f. Tantalum tube for Cs supply
g. Insulator
h. Insulator

-6

chamber, under a pressure of approximately 2 X 10 mm Hg.

The current, I, was measured on a collector, 8 inches in diameter, placed 30 inches

away from the source. The collector, as well as the vacuum chamber, was at ground

potential. The voltage of the ionizer, the accelerating grid, and the neutralizing fila-

ment will be denoted V I, VAcc , and V N , respectively.

Under steady-state operation of the source, currents I of from 10 ma to 20 ma at

voltages, V I, of 3000-5000 volts were obtained, without any neutralizing electrons being

introduced. Space-charge considerations show that an unneutralized ion beam for such

currents is impossible at these voltages. Therefore one must conclude that electrons

were obtained from the environs (for example, by secondary emission from the walls).

The electrons are trapped in the volume of the beam (for example, by losing energy

through inelastic collisions), and in this way form a neutral path through which the ion

current can pass.

This type of neutralization will not occur in space, of course. Its presence, though,

in the laboratory does not allow testing of other ways of injecting electrons.

In order to overcome this difficulty, we examined the time period immediately after

the ion extraction voltage is applied and before the described volume neutralization is

completed.

The ionizer voltage V I was applied as a step with a rise time of less than 0.5 psec,
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Fig. XII-39. Collected ion currents.
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VN = 100 volts.

Transit time, 9 psec.
(a) No electrons: rise time, -20 psec.
(b) With electrons: rise time, -~ 10 psec.
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and the collector current I was subsequently recorded on an oscilloscope.

At low voltages (VI < 700 volts) we found that the time taken for the full ion current

to reach the collector was considerably longer than the transit time for ions of this

energy (Fig. XII-37a). This fact indicates that the beam is temporarily stopped by its

excessive space charge until enough electrons are accumulated from the environs and

trapped in the beam to achieve neutralization.

When electrons were injected from the neutralizing filament the current on the col-

lector reached its full value in a time that was close to the ion transit time.

For example, at VI = 600 volts and I = 0.1 ma (Fig. XII-37), the full current reaches

the collector in approximately 500 psec without electrons, and in approximately 25 psec

with electrons. The ion transit time is 22 psec.
Similar results have been reported by Sellen and Kempl when electrons are made

available to the beam from hot filaments placed in its proximity.

At higher extraction voltages and ion currents, the time taken for the beam to reach

the collector when no electrons are introduced is much shorter, being only 2 or 3 times

the transit time. It appears that under these conditions electrons can be obtained and

trapped faster than before, probably because of the higher electric fields that are pres-

ent.

Introduction of electrons reduces this time still further, bringing it to the level of

the transit time. For example, at VI = 1000 volts, I = 0.1 ma (Fig. XII-38), introduction

of electrons reduces the rise time from approximately 60 4sec to approximately 20 .Isec,

against a transit time of 18 psec.
At VI = 4000 volts, I = 10 ma (Fig. XII-39) the rise time is approximately 20 sec

without electrons and approximately 10 sec with electrons, while the transit time is

9 tsec.

These results indicate that electrons introduced in the region of the beam by an elec-

tron gun are effective in neutralizing the beam space charge.

Further experiments are in progress in order to establish the exact beam pattern

under various conditions. To accomplish this, the walls of the chamber have been

covered with isolated metallic strips, and the collected currents individually measured.

The effect of variations in different parameters, such as the accelerating grid vol-

tage VAcc , neutralizer voltage V N , etc., on the behavior of the beam, is also being

investigated.
G. C. Theodoridis
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