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ABSTRACT

This survey presents the state of the art of vehicular scheduling problems.

The basic problems, node and branch routing, are defined. Extensions, general-

izations and results for such cases are given.



I. Problem Definition and General Background

In most large scale endeavors it is essential to either deliver goods or ser-

vice a set of prespecified tasks in a given area. Problems of such generality

are quite common in large organizations of both government and private enterprise.

As a result, an effort has been directed to classify such problems according to

necessary assumptions and desired goals. In addition to establishing a general

theoretical foundation, researchers have directed themselves to real problems

to increase operating capacity while decreasing costs for particular users.

While certain smaller problems have been essentially solved by hand; computer

codes as the IBM VSPX [3] have been developed to handle more extensive problems

with various options.

We shall consider problems of routing and scheduling with a non-real time

demand. Routing will be defined as the aggregation of a collection of pickup

or delivery points which a vehicle must traverse in a specific order. Scheduling

is the aggregation of a set of feasible routes.

The basic problem is to have a specified depot from which all vehicles will

depart and return, that is, all journeys will begin and end at one point for all

vehicles. All outlets or service points are serviced by the vehicles originating

from the depot and terminate there after the final call, although any particular

vehicle may be required to make more than one call. It will be further assumed

that the average quantity to be delivered at a call is less than the size of the

smallest vehicle employed. These specifications and assumptions while quite gen-

eral are typical of a good number of vehicular scheduling problems. Yet one

must keep in mind that they are by no means final. Later we shall mention vari-

ations and extensions to the basic problem which have been treated. There are

also possibilities for other variations as the application may dictate. In

general we are directing ourselves to problems of distribution of goods and

services.
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Typically there are three types of problems, node or discrete routing, branch

or continuous routing, and the general routing problem, a combination of node and

branch routing. In routing vehicles through a set of nodes, node routing, a map

of the region (network) to be considered is transferred to a set of nodes N and

a set of arcs A. The objective is to determine a set of routes to service (pick

up or deliver), that is, a set of nodes subject to capacity and other physical

constraints, while minimizing the number of vehicles needed. For the one vehicle

case we have the Traveling Salesman Problem to be considered in more detail later.

In routing vehicles along the branches of a network, branch routing, our objec-

tive is to minimize the total time vehicles need for traversing the branches of

a network more than the required number of times again subject to certain capacity

constraints. Equivalently we must minimize deadheading (or deadhitting) of a

vehicle which is the time a vehicle is being routed over the branches in a net-

work more than the required number of times. For a discussion of the general

branch routing problem see Orloff [27].

In addition to defining the problem we must decide upon some set of operatin?

criteria which translated in terms of a cost will be desirable to minimize (or

maximize in terms of profits). Many different applications have similar ex-

penses. First we must determine a set of calls, service points or routing tours

so that the route of each vehicle used is well-defined. An optimal or desirable

set of calls is one which minimizes the number of vehicles or yields a reasonable

number of vehicles so all points can be serviced while minimizing the mileage of

each vehicle. Obviously one could use an enormous fleet of vehicles to satisfy

any servicing objective at the expense of the cost of vehicles, cost of manpower

and any other established work standards. Clearly this is undesirable. In ad-

dition, we must consider the less apparent costs as the fixed costs of licenses,

rents, wages, insurance, and interest plus operating costs of fuel, lubricants,
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tires and various parts, maintenance, and depreciation. Thus beginning with

numerous if not an infinite number of possible ways to service points, our ob-

jective to provide low operating costs will permit only a few such routes. Fur-

thermore, it is our objective to efficiently find such an optimal routing tour.

Perhaps the most common scheduling problems are the single and multi-route

truck dispatching problems or equivalently referred to as the vehicle scheduling

problem, delivery problem, cloverleaf problem or the truck routing problem.

Essentially we wish to schedule vehicles of a given capacity with non-uniform

demands on the vehicles. In addition, there may be constraints on demands for

service.

Considerable work in vehicular scheduling has been directed towards public

service routing (Marks and Stricker [22]). In the course of a day in our typical

cities, trash must be collected, streets cleaned, and mail delivered. The ob-

jective for each of the above problems is to find an optimal route for vehicles

which must service every street in a network. Graph theoretically the problem

is known as the Chinese Postman Problem: Trace the shortest continuous path

through a network so that every arc is covered at least once. In the case of

trash collection (Marks and Str icker [22]), not only do vehicles have a common

origin point, but there are also capacity constraints on the vehicles; that is,

one truck cannot service an entire city in any feasible period of time. So it

is necessary to find distinct continuous tours for vehicles since the trucks

that fill up must return to some origin and unload before resuming service. This

type of public service problem may have other conditions to be met as the size

of the crew or frequency of collection. It must be mentioned that although the

truck delivery problem and the waste collection problem are quite different in

objectives, theoretically they are essentially the same. The dump site is re-

placed by the depot and pickup points become delivery points, so similar tech-

niques are used for both problems.
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II. The Fundamental Problems

In this section we shall define and discuss the two fundamental problems

in vehicular scheduling. They are most commonly referred to as the Traveling

Salesman Problem and the Chinese Postman Problem. For the general arbitrarily

large network these problems remain unsolved. Although optimal solutions cannot

be guaranteed, there are numerous procedures which shall be discussed later which

are believed to give, if not optimal, near optimal solutions in a relatively

short amount of time. Many of these procedures are based on heuristics and are

easier for one vehicle.

IIA. The Traveling Salesman Problem

Perhaps the most well-known node routing problem is the Traveling Salesman

Problem: Given N cities with pairwise distances between each city known, find

the tour that permits one to visit each city and return to the starting (ter-

minal) point while minimizing the total distance traveled. This is considered a

single route problem, that is, one salesman visits all the cities. Otherwise we

have the m-salesman problem. Given N cities with pairwise distances between

each city known and a terminal where each salesman starts and ends his tour and

assume that each of the m salesmen can only visit k (k N) cities before return-

ing to the terminal. Find the m tours the salesmen must make so that all the

cities are visited and the distance traveled is minimized. Each tour must there-

fore have k nodes, plus the terminal, so m = N/k. If N/k is not integral, we

must add or delete cities to maintain integrality.

Here we shall state the mathematical formulation of the Traveling Salesman

Problem (Garfinkel and Nemhauser [16]).



N N
MIN . E

i=1 j=l Cij (1)

N
s.t. .. = 1 jl,,N (2)

i=l J

N
z xij - 1 il,...,N (3)

j=l

z .x-*
icQ jQ 1J > 1 for every Q A, (4)

Q 0

xij = ,1 i,j 1...,N (5)

where

N is the number of nodes in the network

A is the set of arcs

xj is the number of times arc (i,j) is traversed

C.j is the length of arc (i,j)

Q is a subset of nodes

-Q- is the complement of Q, i.e., A-Q

Equation (1) represents the distance to be minimized. Equation (2) states

that for every node i exactly one edge (i,j) must be in every tour, i.e., a city

is left only once. Similarly equation (3) states that for every node j, exactly

one edge (j,i) must be in every tour, i.e., a city is entered only once.

Equation (4) eliminates possible subtours among a subset of the total number

of cities. For example, it eliminates one solution for a five-city problem drawn

in Figure 1 which is clearly unacceptable. Xij = 0 implies arc (i j) is not

traversed while x = 1 implies arc (i,j) is traversed. A branch and bound algo-

rithm is usually used to solve this problem.
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Figure 1: This solution to the traveling salesman problem will satisfy
constraints (2), (3) and (5) but will violate constraint (4).

The applications of this problem statement are numerous. Job shop scheduling,

aircraft routing, vehicle routing, and production planning models can be formulated

in this mathematical framework. There have been three fundamental approaches to

the Traveling Salesman Problem. The first is a tour to tour improvement tech-

nique based on heuristics which gives a good but usually suboptimal solution

The order which cities are visited are switched while maintaining feasibility;

that is, no city is visited more than once. Termination occurs when the analyst

feels there is no significant improvement. Although a solution is suboptimal it

is obtained rather quickly. Secondly, the tour building technique first presented

by Little et al.[21] provides a means of successively choosing the next city to

be visited. Heuristics as choosing the nearest city have been used for this se-

lection. Pierce and Hatfield [29] have introduced an interesting application to

a production sequencing problem with additional constraints dealing with job

deadlines. Pierce [28] also extended his work to the single and multi-route

truck dispatching problem to be discussed later. Lastly, subtour elimination is

one where a less constrained problem is solved which may not be feasible, that

is, all cities may not be visited in one connected tour. To insure feasibility,

constraints are added to eliminate disconnected subtours.

For routing more than one vehicle the above procedures can be augmented by

other heuristics. There are generally two basic choices in node routing procedures.
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First one may divide a network into subgraphs and route one vehicle over each

subgraph, cluster first -- route second. Then one exploits optimization tech-

niques as previously mentioned for the smaller more tractable problem. Usually

the number of required vehicles in unknown, so we usually parametrize on this

number, i.e., the number of necessary subgraphs. Secondly, one may initially

simplify the problem by disregarding for the moment, time and capacity constraints

of the vehicles, then form a giant tour through all the nodes (or branches) in

the network. In order to satisfy the necessary constraints this great tour is

subdivided into subtours, route first -- cluster second (Newton and Thomas [26]).

In choosing which of the above two procedures one must consider the number of

pick-up or delivery points for the tour of a vehicle, the number of routes to be

created, and the travel time between service points,and service points and the

terminal point. Usually for few routes to be created and many service points for

each route it is more effective to form a giant tour which is then partitioned

into smaller subtours. For many tours with few service points per tour it is

generally more effective to form the routes first. In Newton and Thomas [26] this

analysis is carried out for different problems. See Beltrami and Bodin [6] and

Bodin [7] for further discussion s.

IIB. The Chinese Postman Problem

The second problem we shall consider is the continuous counterpart of the

Traveling Salesman Problem, and is called the Chinese Postman Problem. Here we

wish to find a tour on a connected, undirected graph G that includes each edge of

G at least once and minimizes the total distance traveled, where the length of

each edge is nonnegative. Symbolically we have,
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N N
MIN z C.. x.. (6)

i=l j=l 1J 1j

N N
s.t. - z xi = 0il , N (7)

k=l Ki K=l K

x.j + xj 1 for all (i,j)s A (8)
j 31

Xj 0 (9)

Xij integer (10)

where

N is the number of nodes in the network

A is the set of arcs

xij is the number of times arc (i,j) is traversed

Cij is the length of arc (i,j)

Equation (6) represents our objective, to minimize the distance traveled

subject to conditions stated in equations (7) - (10). Equation (7) is the con-

tinuity equation, i.e., every time we enter a node, we must leave that node.

Equation (8) states that each edge is covered at least once while equations (9)

and (10) state that an edge cannot be traversed a negative nor a nonintegral num-

ber of times. Thus we have again formulated a pure integer linear programming

problem. Traditional techniques as branch and bound or cutting plane algorithms

however, have not proven to be adequate because of the size of most problems.

There are usually hundreds of arcs and the number of variables and constraints

is generally twice the number of arcs. For all branches either directed or un-

directed and only one vehicle, exact procedures for the solution of this problem

are known (Leibling [19], Edmonds and Johnson [14], Christofides [8]). For both

directed and undirected arcs we have heuristic methods (Edmonds and Johnson [14]).

Generally for more than one vehicle two choices are available as in the Traveling

Salesman Problem. One can cluster nodes into subgraphs or partition a giant
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tour. Forming a giant tour first.usually results in a better solution; that is,

less deadheading. Yet from an administrative view this technique is usually

undesirable. Partitioning first gives non-overlapping regions as opposed to

routes that may interact Although non-overlapping routes are easier to admin-

ister, the deadheading time is usually greater.
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III. Further Research and Results

In this section we examine in more detail the different vehicular scheduling

problems considered to date. Again the problems are fundamentally of two types,

the node covering problems, represented by the Traveling Salesman Problem and

the arc or branch covering problems or the Chinese Postman Problem.

IIIA. Node Covering Research

The fundamental node routing problem is the Traveling Salesman Problem.

Many variations of this problem have been considered and solved. An extensive

bibliography of this problem is given in Bellmore and Nemhauser [5] and Eilon,

Watson-Gandy, Christofides [15].

The Truck Dispatching Problem is a generalization of the Traveling Sales-

man Problem. Dantzig and Ramser [10] consider N points (cities) with demands

qi for deliveries and a terminal point with no demand. Let C = the capacity of

each vehicle and N
max < qi <C < 7 qi

1 <-i -N i=l

Suppose further that the shortest routes between any two cities is given. The

problem is to find routes for all vehicles such that the city's demands are satis-

fied and the total distance traveled by the vehicle is minimum. The formulation

can be simply stated as the following integer program:

N N
MIN 7, Cx

i=l jl J 

N
£ X.. = 1 i=l,...,N

s.t. j=l 1J

X = X..

Xj= (0, 1)

where Cij is the distance between cities i and j

x.. = 1 if city i and j are paired
iJ 0 otherwise
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The method of solution is to synthesize a sequence of solutions in a number

of stages of aggregations. Once cities are paired, they are considered as a

single point for the next iteration, that is, they remain paired throughout.

Suboptimization is taken on pairs or groups of points and routes are built up

until the capacity constraint of a vehicle is met. The problem is solved as a

linear program and heuristics are used to treat fractional xij.

Dantzig and Ramser also suggest and treat various extensions of this

problem. One may stipulate that the vehicle must return to the terminal when

it has reached m of the N- 1 remaining cities where m is a division of N- 1.

For small m, optimal routes can easily be determined by sight. They present

near optimal solutions for m large. The particular extension is referred to as

the Clover Leaf Problem. Furthermore, these results can be extended from one

product delivered by trucks all with the same capacity to many carriers with

different capacities, i.e., multiple truck capacities. Multiple-product demand,

demands for several products at each city, can be treated.

Clarke and Wright [9] extend the work of Dantzig and Ramser and seek the

optimum routing of a fleet of trucks with different capacities from a terminal

to a number of cities or delivery points. Similar assumptions of Dantzig and

Ramser are also made. Locations to be serviced are paired and ranked according

to a savings in time associated with each pair. Points are combined while main-

taining feasibility until all the points are used. Essentially they use a clus-

ter first-route second approach. Altman et al.[l;] consider a further extension

where towns are assigned on certain days of the week. Beltrami and Bodin [6]

discuss other variants of the Clarke and Wright algorithm.

Clarke and Wright's work provide a basis for IBM's scheduling software pack-

age VSPX (3). This package provides for a network analysis which computes

travel distances and times between delivery points and then considers only dom-

inating schedules. An algorithm based on Mills [24] is used to find the shortest
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route through a network. Additional constraints can be included in the routing

problem, as priority ratings, earliest and latest starting times, different ve-

hicle capacities and several commodities carried by a vehicle. At present VSPX

is the most extensive software package of its kind in existence.

Balinski and Quandt [4] consider a set overing formulation which is applic-

able for small multi-route truck dispatching problems. Single vehicle schedules

are enumerated and then an optimal route is chosen. So for large problems we

must first generate many schedules which can be very time consuming. Yet for a

highly constrained problem, the number of feasible routes may be small and this

method is then better.

Pierce [28] treats the single routing problem with additional constraints.

He allows for earliest and latest arrivals at a specific point, optional deliv-

eries, split deliveries, and constraints on vehicles as volume limit, maximum

number of stops and time per trip. The solution is sought by a branch and bound

tour building approach. Two approaches for branching are considered. The first

is flooding, starting with many branches at once and choosing the next branch

which is most profitable. Second, one may follow one specific branch to com-

pletion, i.e., feasibility r infeasibility. The first method usually requires

a long time to prove optimality while the second generates feasible solutions

quickly and a heuristic is used to terminate. This seems to be more successful.

Andrew and Hamann [2] extend Little et al.work and use a tour generating

branch and bound technique. It is good to find a solution quickly and provide

for unequal demands at cities with unequal vehicle route capacities.

Hausmann and Gilmour [18] treat the transport of a commodity or service by

truck from a terminal to m customers. Each customer has a minimum required fre-

quency of delivery which may be increased to take advantage of economics in

truck routing. Two types of costs are considered, the cost per mile of truck

travel and a fixed cost incurred each time a customer receives a delivery.



13

Customers are classified by groups so that when any customer in a group requires

a delivery the entire group is serviced. In addition, Hausman and Gilmour treat

the multi-period problem. An example is given for fuel oil delivery.

IIIB. Arc Covering Research

The first formal statement and significant result in the arc covering

problem was by Euler. This is the Konigsberg Bridge Problem. Euler proved that

it is not possible to trace a continuous path covering every edge in a graph

without repeating any arcs unless the degree of every node is even, i.e., there

are an even number of edges incident to every node. So an Euler tour (minimum

path covering every edge exactly once) exists for an undirected graph if and

only if the degree of every node is even. If odd nodes exist we must cover some

arc at least once.

Mei-Ko [23] later considered the problem for graphs with odd nodes. He

considered the equivalent problem to minimize the sum of the lenghths of the re-

peated edges where the repeated edges, when added to G,form a new graph G* with

every node even. He shows that for 2n odd nodes, n paths must be duplicated be-

tween odd nodes such that the total length of the arcs traversed more than once

is minimum. The necessary and sufficient condition for optimality is that the

sum of the lengths of the respected arcs on every cycle of G* not exceed half the

length of the cycle. His algorithm for finding the optimal tour is however not

computationally efficient.

Edmonds [11], [12], [13] translates the Chinese Postman Problem into

one where a matching algorithm becomes applicable. The matching algorithm is

used to determine which nodes must be paired so that the lengths of the repeated

arcs is minimum. Yet first one must find the shortest paths connecting every pos-

sible pair of odd nodes which can be computationally burdensome for larger net-

works. Further results on considering the one vehicle directed branch routing

problem as a matching problem is given in Beltrami and Bodin [6].
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Glover [17] takes another alternative approach tc the problem. Given a graph

G, Glover find a graph H<G such that every node of G' = G + H is even. H is a

set of duplicated arcs with minimum total length. The arcs of H are called

pseudo-edges. For a graph of 2n odd nodes Glover solves n shortest path prob-

lems in succession to obtain an optimal solution. Like Edmond's algorithm,

Glover's work may become very difficult for large networks occuring in real

routing problems.

Murty's [25] Symmetric Assignment Problem is also an alternative approach to

the Chinese Postman Problem. A minimum edge covering tour is determined by

solving a symmetric assignment problem whose cost matrix is composed of lengths

of the shortest paths between every pair of odd nodes. A branch and bound tech-

nique is used to find the set of shortest paths connecting every pair of odd

nodes whose total path is minimum. The problem is symmetric in that if arc (i,j)

is in the optimal solution so is arc (j,i).

Lin [20] uses a branch exchange method to provide locally optimal solutions

to many variants of one vehicle routing problems for either branch or node

routing.

Striker [30] addresses the m-Postman Problem and solves it heuristically.

Essentially the Chinese Postman Problem is solved for the original network and

then the result is partitioned by several rules. Other approaches solve the dis-

tricting problem first and then solve the Chinese Postman Problem for each

district.
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