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ABSTRACT 

Realm of data storage density has expanded from gigabyte- to terabyte-domain. In such a 

high areal density, bit-patterned media is a promising candidate to overcome the 

superparamagnetic limit faced by the conventional continuous media. However, the 

patterned media concept has not been realized in mass production due to several reasons. 

Beside the stringent requirement of high-resolution lithography, high production cost is 

inevitably the major challenging problem. If a low-cost mass fabrication scheme is 

available, bit-patterned media will be an innovative way in hard disk technology to 

achieve a storage density beyond 1 Tb/in
2
. 

 

The objective of this thesis is to review the patterned media technology and discuss its 

challenges and commercialization viability. A possible mass-production scheme is 

discussed. Electron beam lithography and self assembly process of block copolymer are 

used to fabricate the master template. To ensure high throughput, template replication as 

well as disk fabrication are carried out by UV-nanoimprint lithography (UV-NIL).  

 

Considering the large opportunity of patterned media to enter the market, a business plan 

was constructed. Enormous profit was proved to be possible when the barrier of 

technology, intellectual property, and funding can be surpassed. Therefore, patterned 

media shows to be superior in terms of performance and cost compared to the 

conventional media. 
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1. Introduction 

Hard Disk Drive (HDD) is a robust industry with shipments of 593.2 million units in 

2008, up by 14.93 percent compared with 516.2 million units in 2007, according to a 

market research firm iSuppli Corp. [1]. The history of magnetic recording technology 

dates back to 1898 when Valdemar Poulsen patented the telegraphone [2]. Its application 

to HDD industry began in 1956 when IBM introduced Random Access Method of 

Accounting and Control (RAMAC) with an areal density of approximately 2 kb/in
2 

[3]. 

Since then, the areal density of HDD has been improved to meet the ever-increasing 

requirement of performance. As shown in Fig. 1.1, there has been more than a three-

order-of-magnitude increase of areal density since 1990s, suggesting that HDD industry 

is on the way to enter the terabyte-era. To ensure a smooth transition, there is a strong 

driving force for HDD industry to shift from the conventional continuous-grain magnetic 

media to bit-patterned media (BPM). 

 

 

Fig. 1.1. Areal density trend [4]. 

 

Conventional HDD records data by writing the magnetization pattern on a thin film with 

perpendicular magnetic anisotropy axis. However, terabyte storage density is not a 

possible scheme with this current conventional method. In continuous thin film media, 

http://www.eetasia.com/ART_8800415566_480700_NT_61445c6c.HTM
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one bit consists of several grains or magnetic units. As the density of data storage 

increases, superparamagnetic phenomenon occurs. Magnetic recording trilemma, among 

SNR, areal density, and thermal stability, is inevitable. Consequently, perpendicular 

magnetic recording (PMR) technology is predicted to reach its limit at 600 Gb/in
2 

[5]. 

BPM, firstly proposed in 1989 by Nakatani et al. [6], is a promising candidate to surpass 

this limitation. BPM stores the data on a uniform array of magnetic cells, each of which 

will store one bit of information. In contrast with PMR, the bits in BPM, either 

polycrystalline or single crystal, act as single-domain magnets. The data density of BPM 

could extend to 1000 times that of continuous media
 
[7].  

 

Nonetheless, the commercialization of BPM is faced with several challenges. Despite the 

fact that patterned media concept has been reported since 20 years ago, it has not been 

realized in mass production. There had been various proposals of possible mass-

production schemes until 2008 when two major data storage companies, Hitachi and 

Seagate, shared the same view on a single most optimum manufacturing strategy for 

BPM [8],[9]. Beside the stringent requirement of high-resolution lithography, high 

production cost is inevitably the major challenging problem. Not until its production cost 

is lower or comparable to the cost of conventional method will the commercialization of 

BPM be feasible. 

 

The objective of this thesis is to review the BPM technology and discuss its 

commercialization viability. A brief introduction about HDD and its recording schemes is 

given in Chapter 1. The idea of BPM technology and its manufacturing method are 

detailed in Chapter 2 and 3. The market opportunity and business plan are discussed in 

Chapter 4 and 5, respectively. Finally, Chapter 6 concludes the thesis. 
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2. Bit-Patterned Media Technology 

2.1. Fundamentals of Magnetic Recordings 

HDD belongs to the group of magnetic storage. It integrates many key elements, one of 

which is the magnetic recording media. To have a clear picture of the magnetic recording 

media, it is essential to understand the physics behind the magnetic recording process. 

 

Magnetic properties of a material are typically characterized by its hysteresis loop, as 

shown in Fig. 2.1. 

 

Fig. 2.1. Hysteresis loop of a permanent magnet
 [10]. 

 

Hysteresis is the result of an irreversible conversion from energy to heat, with the energy 

lost in going round a cycle is equal to the area inside the major loop. In this loop, we can 

observe two important properties of a permanent magnet: remanence and coercivity.  

Remanence is the ability of a material to retain its magnetization after the magnetic field 

causing the material to achieve saturation is removed, while coercivity is the amount of 

required reverse magnetic field to bring the magnetization back to zero
 
[11]. It is 

remanence which makes the recording process possible. 

 

A particle can have either multi domains or single domain depending on its size. 

Different magnetic domains on a particle will be separated by a transition zone in 

between which is called the domain wall. A large particle will show multi-domain 
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behavior while a particle less than 1 µm long is single-domain in zero external field [11].  

This phenomenon is derived from energy consideration. As can be seen in Fig. 2.2, The 

domain wall energy is proportional to the area of the wall (~L
2
) while the magnetostatic 

energy is proportional to the particle volume (~L
3
). Therefore, a large particle will 

arrange itself to minimize its magnetostatic energy by creating magnetic domains, and 

hence multi-domain configuration. Meanwhile, a smaller particle will prefer a single-

domain configuration to minimize its domain wall energy. 

 

Fig. 2.2. Magnetostatic and domain-wall energies versus particle size
 [11]. 

 

For a small single-domain particle under an applied magnetic field, the magnetization 

process proceeds by rotation of the total magnetic moment of the particle, as shown in 

Figure 2.3. The hysteresis behavior is depicted in Figure 2.4.  Due to anisotropy, a 

particle will have easy and hard axes. If a sufficiently large magnetic field is applied 

parallel to the hard direction of the particle, the M-H curve will be linear, which means 

there is no hysteresis. The magnetic moment will rotate towards the field direction and 

rotate back to its easy axis when the field is removed. On the other hand, if the field is 

applied along the easy axis, the magnetic moment must rotate through the hard direction 

to fully reverse its orientation. In this regard, the coercivity will be large, and the particle 

will exhibit square hysteresis loop.  

 

Fig 2.3. Magnetization change of a very small particle (single-domain particle)
 [12]. 
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Fig 2.4. Hysteresis behavior of a single-domain particle with the external field applied along (a) the easy 

axis, and (b) the hard axis
 [13]. 

 

For magnetic recording application, it is preferable to use small single-domain particles 

with the writing magnetic field applied parallel to the easy axes. The recorded data is 

stable because a considerable force is required to switch the orientation of the magnetic 

moment. 

 

2.2. Limitations of Conventional Perpendicular Media 

In conventional perpendicular media recording (PMR), one bit consists of many grains. 

To achieve high areal density, the bit must be as small as possible. In this case, to ensure 

high signal-to-noise ratio (SNR), a large number of grains per bit cell is needed. Thus, the 

size of the grains must also be lowered. However, as the scaling down continues, the 

superparamagnetic effect is inevitable. Superparamagnetism is anhysteretic behavior of 

magnetization loop which is observed at temperature well above the blocking 

temperature (TB) [14].  Superparamagnetism is similar to paramagnetism, except that the 

magnetization is much larger in the former because each particle behaves like a giant 

spin, as depicted in Fig. 2.5. 

 

In superparamagnetism, a particle exhibits zero coercivity and zero remanence. As we 

decrease the particle diameter, the coercivity will increase until the particle has reached a 

critical size, below which the coercivity will decrease down to zero (Fig. 2.6). This 

critical size depends on the particle anisotropy. Typically, for an anisotropic spherical 

particle at room temperature, superparamagnetism will be observed when the particle 

diameter is less than 100 Å [15].  
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Fig 2.5. Hysteresis behavior of superparamagnetic materials [16]. 

 

 

Fig 2.6. Coercivity versus size for a small particle [13]. 

 

Due to this paramagnetic effect, the small grains become magnetically unstable and tend 

to spontaneously flip, causing loss of data. To maintain magnetic stability for about 10 

years, the ratio between magnetic energy and thermal energy of a magnetic medium 

should not be less than 40 (KV/kT  40, where K is the anisotropy constant, V is the grain 

volume, k is the Boltzmann constant, and T is the temperature in Kelvin) [17].
 
To prevent 

data loss, we need to use a material with high anisotropy constant K. However, this 

material will then possess a very high coercivity and need a very high magnetic field to 

be magnetized for data recording. The coercivity evolution due to increase in areal 

density is shown in Fig. 2.7. The three requirements of high SNR, high areal density, and 
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good writability thus create a trilemma in magnetic recording. PMR scenario is thus 

expected to reach its limit at an areal density of 600 Gb/in
2
 [5]. 

 

Fig. 2.7. Disk coercivity versus areal density evolution [18]. 

 

2.3. Prospects of Bit-Patterned Media 

In BPM technology, the trilemma in magnetic recording is addressed by modifying the 

recording media. The media are patterned so that one bit is one magnetic entity. The 

restriction KV > 40 kT still holds except that V is now the bit volume, which is obviously 

larger than the grain volume. Thus, the thermal limit can be satisfied without sacrificing 

the writability. Stable high-density media can be achieved by using this technology. Areal 

density beyond 1Tb/in
2
 is expected to be achievable in BPM. Currently, the best 

achievable resolution of block copolymers (BCP) is 3 nm, equivalent to approximately 10 

Tb/in
2
 areal density [19]. 

 

Transition jitter is also eliminated in BPM since the bits are isolated one from another. 

Moreover, unlike the conventional media, the track width in BPM can be reduced without 

affecting the SNR. This can further increase the areal density of BPM [5]. To isolate the 
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magnetic entities, physical spacing or filling of non-magnetic materials can be used. The 

comparison between continuous media and BPM is shown in Fig. 2.8.  

 

Fig. 2.8. Schematic of (a) conventional thin film medium, consisting of single-domain grains. Bits are 

represented as transitions between regions of opposite net magnetization. Each bit occupies an area of tens 

to hundreds of grains. (b) Patterned medium with in-plane magnetization. Now the bits are defined 

lithographically with a period p. The bits can either be polycrystalline (indicated by dotted lines) or single 

crystal, but they magnetically act as single domains. (c) Patterned medium with out-of-plane magnetization. 

The period, height, and diameter are p, h, and d, respectively. Binary one and zero are indicated [7]. 

 

2.4. Challenges to Bit-Patterned Media Technology 

Unfortunately, the implementation of BPM still faces several challenges associated with 

media fabrication and micromagnetic characteristics. Apart from those aspects, there are 

also challenges in the read/write head and signal synchronization as the complementary 

technologies, which will be addressed in Chapter 4.  

 

2.4.1. Media Fabrication 

The major challenge on fabricating BPM is the requirement of high resolution to 

lithographically pattern every bit on the disk. Examples of required lithography 
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dimensions for various areal density and bit aspect ratio (BAR) are given in Table 2.1. 

Several issues are apparent. First, because the bit locations are predefined on the disk, the 

head field needs to be synchronized to them. Second, to minimize disk-drive error rates, 

the lithography tolerance should only be a few nanometers or less. Moreover, there is a 

need of arranging the bits on circular tracks in order to continue using rotating disk and 

flying head, a need of controlling the long-range order of the pattern arrays, a need of 

two-sided patterning because the disk drives record on both sides of a disk, and a need of 

inexpensive fabrication method [20]. To be economically competitive, HDD with this 

BPM technology must maintain the inherent cost advantage compared to other storage 

technology such as semiconductor-based storage.  

 

Table 2.1. Examples of required lithography dimensions for patterned media [20]. 

 

 

Intermediate approaches in implementing the idea of BPM have been carried out by 

patterning the servo marks and patterning the individual tracks, which is termed discrete 

track recording (DTR) [21]. From patterning the servo marks to DTR and BPM, there are 

increase in areal density gain as well as the complexity and cost.  

 

Patterning the servo marks in all the disks is a serial process, resulting in low throughput. 

Servo marks define the track position and thus are useful for the head to write and read 

the data bits reliably. Patterning the servo marks in a master and subsequently 

transferring the pattern to the disks by parallel process such as magnetic lithography will 

increase the throughput. While in DTR, the track edge noise is eliminated, leading to 
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improved areal density [22]. The thermal stability unit in DTR is still one grain which 

means that the areal density gain in DTR is lower compared to BPM.  

 

Both servo marks patterning and DTR introduce lithography steps in their processing.  

The progress of DTR, especially, can be considered as a stepping stone for BPM 

technology although the processing requirements, in terms of resolution and tolerance, 

are less stringent than those in BPM. 

 

2.4.2. Magnetic Properties Uniformity 

In designing BPM, it is desirable to achieve uniform magnetic properties of the bit array. 

However, in practice, it is difficult to control the micromagnetic characteristics and 

structures.  

 

Y. Kamata et al. in 2006 [23] performed a study on CoCrPt-patterned media. The 

CoCrPt-patterned media was fabricated by templated self-assembly of PS-PMMA and 

subsequent nanoimprint lithography (NIL). It is found that the mean dot volume is about 

4.2 x 10
-17

 cm
3
 ( = 2.9 x 10

-17
 cm

3
). The dot height is 40 nm (original CoCrPt film 

thickness: 40 nm) and the mean dot diameter is about 34 nm ( = 4.1 nm). The reasons 

for the dispersion of the dot diameter are the grain size and crystallinity of the CoCrPt 

film and the dispersion of the size of the self-assembled PS–PMMA structure used as an 

etching mask. Non-uniformity in the etching process may also cause dot size deviation 

[24]. To reduce the dispersion, optimization of the compositional ratio of PS and the 

PMMA polymer or choosing another self-assembling material can be done.  

 

Similar to the continuous film, the delta–theta value from the X-ray diffraction (XRD) 

rocking curve analysis showed that the direction of the magnetic easy axis deviated 

randomly from dot-by-dot within a range of 15
0
. In this case, poor crystallinity and thick 

grain boundaries of a continuous film are the origin of the easy axis distribution. A 

patterned dot is separated into grains by grain boundaries and thus each dot has 

macroscopic angle dispersion as a unique property [24]. 
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Fig. 2.9. Coercivity distribution map of patterned media obtained by dot-by-dot analysis. The contrast 

indicates Hc [23]. 

 

 

Fig. 2.10. MFM image of patterned media written by ring head. Black lines indicate a trajectory of the ring 

head [23]. 
 

Besides the dot size variation, magnetic particles in an array will show a distribution of 

switching fields, causing some particles to switch at different applied fields from others. 

An investigation of the microscopic deviation of magnetic properties of CoCrPt-patterned 

media by atomic force microscopy (AFM) and magnetic force microscopy (MFM) was 

also conducted by Y. Kamata et al [23]. From observation of the magnetization reversal 

of each dot, a few misreversed dots were clearly seen in the written „„bit‟‟ patterns. The 

distribution of coercivity HC was investigated by MFM using dot-by-dot analysis in the 
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presence of a magnetic field and the result can be seen in Fig. 2.9. It was found that HC is 

about 4 kOe on the average with a wide distribution ranging from 0.5 to 7.5 kOe. This 

large and spatially random distribution of HC is responsible for magnetization reversal 

defects as can be seen in Fig. 2.10.  

 

Damage by the ion milling process has been said as the possible origin of the HC 

deviation. But, only little change was found in the magnetic anisotropy energy from 

experimental and numerical estimations [24].  

 

This spread of switching fields is attributed to small differences in shape, size, or 

microstructure between the particles. This will create intrinsic variability of the switching 

fields, which is often modeled by a Gaussian distribution [25]. A reduction in coercivity 

due to thermal fluctuation was expected for smaller dots. However, it was found that 

there is no correlation between the dot size and coercivity [23]. Microscopic intrinsic 

distribution of the magnetic properties and long-range magnetic dipole interaction 

between patterned dots are considered as the most possible origins. A continuous film 

sample before etching exhibits intrinsic distribution in the form of a grain-to-grain 

distribution as well as poor crystal orientation. When this film is processed into a 

patterned medium, a dot-to-dot difference in magnetic properties can be observed. To 

know the origin of HC distribution, methods to estimate the distribution both in 

continuous film and in dot patterns are necessary [24]. The problem of HC distribution 

can be resolved through the development of new magnetic materials suitable for 

patterning and read-write design of the patterned media [6]. 

 

Magnetostatic interactions between particles, which generate the net field acting on each 

particle in the array is also likely to be the cause of HC distribution [25]. These 

interactions lower the energy barrier for moment flipping and therefore pose a more 

stringent restriction on the thermal stability. Under this consideration, a simple model is 

built to reproduce the hysteresis loop. In this model, the particle array is assumed to have 

out-of-plane magnetization and Gaussian switching fields (HC, with standard deviation  

<< HC). For a square array of particles, the total magnetic field acting on any particle is 
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equal to 9Hi, where Hi is the nearest neighbor interaction field. Here, to a first 

approximation, magnetized elements are treated as dipoles. In this approximation, Hi = 

m/40r
3
, where m is the moment of each particle and r is the spacing.  

 

This interaction field Hi, acting on each particle is demagnetizing and causing a 

broadening of the switching field distribution. If we consider that all the particles are 

magnetized up and the switching field of a particle is given by Hsw, the particle will 

switch when the applied external reverse field reaches (Hsw - 9Hi). In contrast, if a 

particle magnetized up is surrounded by particles magnetized down, an external field of 

(Hsw + 9Hi) will be needed to reverse it. It is found that without magnetostatic 

interactions, the collective hysteresis loop is square, while if the interactions are included, 

the hysteresis loop becomes sheared, with a slope proportional to the nearest neighbor 

interaction field (Hi). 

  

If the maximum interaction field is smaller than the switching field, the magnetization 

state is stable for any particle, independent of the magnetization direction of its 

neighbors. The remanence will be perfect unity. However, if the interactions are 

sufficiently large, which is defined as 9Hi > HSW, the saturated state is unstable at 

remanence, causing the particles to spontaneously flip their magnetization owing to 

interactions from their neighbors. The requirement 9Hi < Hsw, min where Hsw, min is the 

smallest switching field of a particle in the array (which can be taken as Hc – 3 ), must 

be fulfilled such that interaction fields alone cannot reverse the magnetization of an 

element.  

 

In contrary, magnetostatic interactions for arrays with in-plane magnetization might 

result in better magnetic properties. In this case, if all particles are magnetized parallel to 

each other, the interaction fields from the neighbors can be either demagnetizing or 

stabilizing the magnetization. If the interactions stabilize rows of particles with aligned 

magnetization, the collective hysteresis loops can even be made squarer. Experiments on 

magnetized bars demonstrate that the switching field decreases as the lateral bar spacing 

is decreased [25]. 
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In a patterned medium, the strength of interactions is determined by the proximity 

between the particles, but the resulting interaction will still be smaller than those in thin 

film media. For example, patterned media elements made of high KU materials could 

remain thermally stable even in the size of a few nanometers. H.J. Richter et al. reported 

a design for recording on BPM for areal density 1 – 5 Tb/in
2
 with assumption that the 

deviation in the magnetic properties of each dot is less than 0.5% [24]. However, in 

practice, it is difficult to achieve such small deviation. 

 

To eliminate the micromagnetic distribution, precise control on the lithography, assembly 

processes, and the microstructure of the particles, which will then improve the uniformity 

of the array, must be done. We can also minimize the magnetostatic interaction either by 

lowering the moment of the particles or increasing the spacing between them. However, 

reduced moment of the particles will consequently reduce their readback signal and 

increased spacing between the particles inevitably leads to reduced areal density [25]. 

 

From the above discussion, however, it is clear that the minimum unit of the distribution 

is a single magnetic grain. In BPM, a dot may be divided by grain boundaries into sub-

structure. Thus, it is expected that the origin of the deviation in magnetic properties, i.e. 

thermal fluctuation and/or size distribution, is this sub-structure or sub-grain in each dot 

[24].  

 

An obvious solution is a single-crystal dot made by a single-crystal continuous magnetic 

film. To achieve this, all the multiple number of underlayers, which are necessary to 

control the magnetic properties, should be single crystal too. We would need a single-

crystal substrate which is impractical in the fabrication process.  

 

Another alternative is a polycrystalline dot made by a polycrystalline continuous 

magnetic film with ultra-fine grains, about ten or more sub-grains. Sufficiently thin grain 

boundaries are important to reduce the size distribution of the dots. By this design, we 

can average out the intrinsic distribution of the magnetic properties by the strong 

exchange interaction between sub-grains in a dot. In this design, for the case of more than 
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5 Tb/in
2
, we need to develop nanocrystalline magnetic film as well as underlayers with 

grain size less than a few nm. 

 

Amorphous dot may be an ideal design. Many kinds of amorphous magnetic film made 

by rare earth and transition metal alloy such as TbFeCo have been developed for 

application in magneto-optical recording media.  Advantages of this amorphous dot is 

easy control of the magnetic properties by controlling the composition and perpendicular 

anisotropy is obtained by a sputtering deposition process without using a specific 

underlayer. However, several challenges also appear. Though the XRD measurement 

shows typical amorphous signals, microscopic columnar structure is observed. It may 

cause distribution in magnetic properties of the dots. Because the microscopic magnetic 

properties should be uniform in the range of a few nanometers, the atomic structure 

should also be completely random in the range of a few nanometers. Besides, the 

structure should be uniform in the range of inches. The sensitivity of the rare earth 

materials to oxygen may also cause etching damage [24]. Finally, it is difficult to tailor 

anisotropy in amorphous dots since they do not have magnetocrystalline anisotropy. 

 

The necessary properties of patterned magnetic media, such as switching field, 

anisotropy, magnetic moment, and geometry, have not been well established for either in-

plane or out-of-plane recording system. However, some general guidelines can be made. 

Maximizing areal density and readback signal favors a densely packed array of high-

moment particles with perpendicular magnetization. However, this will create strong 

interactions between the particles. Meanwhile, the writing process imposes an even more 

stringent requirement on particle uniformity. In order to write data faithfully, the write 

element is required to apply a localized field to one element without writing its neighbor. 

If the switching fields of the neighbors vary by , the head field gradient must be much 

greater than /r, where r is the array period, in order to safely write one element but not 

its neighbor. It is found from dynamic calculations that switching appears to occur more 

rapidly for low-aspect ratio particles. Therefore, short particles with magnetocrystalline 

anisotropy are preferable over tall particles with shape anisotropy [25].  
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In the case of readback, it is not necessary to uniformly magnetize the elements to 

saturation, as long as there is sufficient remanence to be detected by the recording 

system. Several possible readback schemes are detecting the magnetization directly (such 

as a near-field magneto-optical probe), the field above the element (such as in an MR 

head), or the field gradient above the element (such as in MFM). Most readback methods 

described in the literature, however, rely on the detection of either field or field-gradient, 

so that the fields from neighboring particles will affect the readback and could introduce 

signal jitter. 
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3. Fabrication of Bit-Patterned Media 

In 2008, Hitachi and Seagate proposed a common fabrication plan, which can be seen in 

Fig. 3.1. The plan, which promisingly enables high resolution and high throughput, 

inserts some new steps into the traditional PMR disk process flow. The fabrication plan 

can be divided into two main processes, template fabrication and media fabrication 

process. 

 

 

Fig. 3.1. Proposed fabrication plan of BPM [9]. 

 

3.1. Structures of Recording Media 

Fig. 3.2 shows a schematic view of various functional layers in a typical perpendicular 

recording medium. In practice, there may be more than one layer involved for every 

function. Most of the layers in a hard disk medium are deposited by sputtering process. 

Each functional layer can be described as follow: [26], [27] 

1. Substrate (~ few mm). The recording medium is typically AlMg alloy pre-coated with 

a NiP layer or a glass substrate. Server and desktop HDDs have disk substrates with 

an outer diameter of 3.5”, while HDDs for laptops have disks with an outer diameter 

of 2.5”. Other form factors such as 1.8 and 1” are also common in consumer 

electronics (CE) applications such as MP3 players. HDDs with 1.3” disks are also 

being considered to compete with the flash drives in the CE market. Prior to the 
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deposition of any layer, the substrates are cleaned to remove chemical and particle 

contaminants. 

2. Adhesion layer (~10 nm). This layer – made of Ta, Ti, or an alloy of these materials – 

helps in improving the adhesion of SUL and all the other layers with the substrate. 

3. Antiferromagnetic layer, made of IrMn or FeMn, is used to exchange-bias SUL. By 

biasing, SUL will have single domain and the easy axis of magnetization towards the 

radial direction. This is meant for minimizing spike noise from SUL. 

4. SUL (~80 nm, with antiferromagnetic layer), which is a stack of SUL 1/Ru/SUL 2. 

SUL 1 and 2 is each a CoTaZr layer, which helps in conducting the flux from the 

writing pole of the head to the trailing pole. The antiferromagnetic coupling will 

minimize remanence and magnetostatic energy of SUL and thus lower the noise 

during reading process. 
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Fig. 3.2. Functional layers of perpendicular recording medium. Layers are not to scale [27]. 
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5. Seedlayer. It is made of Ta and used for better crystallographic control of the 

recording layer. 

6. Intermediate layer/IL (~ 20 nm, with seedlayer). IL 1 is made of Pd/Ru and used to 

provide epitaxial growth conditions for the recording layer. Seedlayer wil enhance 

this preferred growth. For perpendicular media with Co-based recording layers, it is 

essential to obtain grains with a Co[0002] orientation perpendicular to the film plane. 

Therefore, the intermediate layer should have the fcc(111) or hcp(002) texture. IL 2 is 

made of Ru and used to control grain segregation, and thus controlling the coercivity 

(Hc). IL as a whole serves to exchange-decouple the SUL and the magnetic layer, thus 

reducing the noise of the recording medium. 

7. Recording layer (~15 nm). Typically, CoCrPt:SiO2 is used. The function is to store 

information for a long period, typically 10 years, and to produce the read-back signal. 

8. Overcoat layer and lubricants (~ 4 nm). Both serve to prevent the disk from failures 

due to chemical reactions or mechanical impacts (head-disk collision). Overcoat layer 

is typically amorphous carbon (a-C). 

 

3.2. Template Fabrication 

In BPM, we need a feature size of 10-25 nm period with a precision tolerance of 5%. 

Electron beam lithography (EBL) can fulfill this requirement. However, EBL is a serial 

process so that using EBL alone will consume much time and cost. On the other hand, 

self-assembly process is relatively more efficient and cheaper in the expense of worse 

precision tolerance.  

 

Combination of top-down and bottom-up techniques, i.e. EBL and self-assembly process, 

can offer small feature size and high precision with low cost and high efficiency. For 

BPM application, chemical pre-patterning is more suitable than graphoepitaxy because it 

can give high-quality stringent pattern without compromising the storage area [28]. Here 

chemically-assisted self-assembly process will be used to obtain feature density 

multiplication and pattern quality rectification as shown in Fig. 3.3. 
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Fig. 3.3. Chemically-assisted pattern generation [9]. 

 

Self-assembly process of BCP alone is lack of control of orientation and ordering of 

microdomains. Chemically patterned substrates with length scales comparable to the 

natural periodicity of the BCP can be used to precisely register various microdomains of 

BCP. Commensurability and chemical affinity of the microdomains to the patterned 

substrate play important roles. In the self-assembled process of BCP on chemically 

patterned surface, commensurability between the natural length scales of BCP system and 

the periodic pattern on a substrate must exist in order to induce recognition of the pattern 

on the substrate by the polymer as well as accurate replication. It is found that for BCP 

adsorption from solution, the stripe width L must satisfy the limits of D < L  L
*
, where D 

is the correlation length of an adsorbed blob of similar chain segments, and L
*
  2Nn

2/3
a, 

where blocks of length Nn segments of size a are adsorbed with a surface energy kBT per 

segment (Appendix 1).  

 

The investigation of the effects of both commensurability and chemical affinity on the 

registration of lamellar BCP has also been conducted in the stripes of polymer brush and 

a hydrophilic surface, by varying degree of commensurability (L0/Ls) and the ratio of PS-

r-PMMA stripes on the substrate. The results of the SEM examination are shown in Fig. 
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3.4. It can be seen that the chemical affinity of the substrate improves the registration of 

the lamellar PS-b-PMMA.  For chemically neutral stripes, PS-r-PMMA with ratio 50:50, 

the registration of the lamellar PS-b-PMMA is limited even when  ~ 1. While for very 

high affinity (100% PS stripes), the defects are less pronounced and the window for good 

patterning registration is wider. 

 

 

Fig. 3.4. SEM images of lamellae-forming PS-b-PMMA block copolymer films (L0 = 48 nm) on chemically 

nanopatterned substrates as a function of LS (LS = 42.5 nm, 47.5 nm, and 52.5 nm) and composition of the 

random-copolymer brush used to create the chemical pattern. The blue beads represent PS units and red 

beads represent PMMA units in the random block copolymer brush layer. Higher percentages of PS in the 

random block copolymer brush produce the higher chemical contrast of the surface patterns to PS-b- 

PMMA. Stronger chemical contrast favors replication of the underlying pattern [29]. 
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Fig. 3.5. Process to create lithographically defined, chemically pre-patterned surfaces, and subsequent 

directed assembly. (A) Electron-beam lithography patterns at LS = L0 (left) and LS = 2L0 (right). (B) 

Chemical contrast on the substrate after O2 plasma exposure on the e-beam–defined spots above. (C) Block 

copolymer thin film. (D) Guided self-assembly in registration with the underlying chemical pattern [28]. 

 

The chemically-assisted pre-patterning process is shown in Fig. 3.5. First, rotary-stage 

electron beam lithography (EBL) is used to pattern the resist on top of the substrate. 

Rotary-stage EBL is chosen because it can define concentric layouts as required in hard 

disk media. Rotary-stage EBL is capable of fabricating grooves and bits on narrow pitch 

in concentric arrays with sub-50-nm range [30]. The schematic of rotary-stage EBL for 

creating concentric patterns on master template is given in Fig. 3.6. 

 

Fig. 3.6. Rotary-stage EBL [22]. 
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In this process, the servo patterns are also written simultaneously with the data patterns. 

The continuous stage movement flyback lithography (CSFL) of rotary-stage EBL is 

capable of working in conjuction with a blankingless beam shift lithography (BLSL). 

This combination is very effective for fabricating various kinds of servo pattern elements. 

The layout of servo patterns can be seen in Fig. 3.7. Servo patterns are included on hard 

disks to enable the head element to read and write data at precise locations. We need to 

write the servo patterns only once in the master template, thus eliminating the need for 

servo writing in subsequent processes [22]. The disk is then exposed to oxygen plasma. 

Upon removal of the resist, a chemical contrast on the substrate is obtained.  

 

Fig. 3.7. Servo pattern element write using the CSFL function. (a) Groove and dot, (b) dot and shifted 

elliptical dot, (c) groove and right-angled groove, and (d) different-length pits with various doses [30]. 

 

One important thing is that for a constant spin speed, the outer part of the media will 
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move with larger linear velocity. This implies that the data rate will be larger at the outer 

part. To resolve this, the bit size must vary with radius, i.e. larger bits for increasing 

radius. This requirement is easily accomplished in EBL system. 

 

The bottom-up process begins by spin coating block copolymer (BCP) film onto the 

substrate. The ultimate resolution (R) expected in this process is basically proportional to 

the domain period D of BCP film. For BCP lithography purpose, we have to be in the 

strong segregation limit (N >> 10). In this region, the domain period is given 

by
2 1

3 6~D aN  , where a is the segment length, N is the overall number of segments 

(monomers), and  is the Flory-Huggins interaction parameter. However, D is the period 

or the sum of the characteristic length scale of the BCP domains (PS and PMMA in our 

case). Since one domain is selectively etched away, the resolution will be the volume 

fraction of PS or PMMA (whichever is smaller) times the period. Theoretically, BCPs 

may form ordered periodic structures at the molecular scale ranging from 5-50 nm [31]. 

 

For BPM application purpose, it is required that the BCP lithography process has high 

resolution. Therefore, it is necessary to choose BCP with a high  and decrease the block 

length (N) [32]. The resolution will also depend on etch selectivity between the blocks 

and subsequent pattern transfer process. It is required that the BCP has cylindrical or 

spherical morphologies. The morphology of BCP is determined by the volume fraction of 

each block, the relative chain-length differences of the constituent copolymers, and the 

processing condition. [33].  

 

PS-b-PMMA has been widely used due to excellent chemical selectivity between PS and 

PMMA blocks, smooth microphase separation, the same glass-transition temperature, and 

a wide range of available solvents [34]. However, now PS-b-PDMS has also been 

considered since it has a high , giving a large driving force for microphase segregation, 

and a high chemical selectivity between the two blocks [35].  
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As shown in Fig. 3.8, the BCP film is annealed in vacuum to obtain cylindrical PMMA 

morphologies in PS matrix. The self assembly process of PS-b-PMMA is guided by the 

pre-patterned template, which is created by e-beam, to create a long-order pattern. The 

PMMA block will preferentially wet the spots exposed to oxygen plasma while the PS 

block will be slightly attracted to the background areas. The PMMA domains can then be 

selectively etched. This self-assembly process will increase the resolution of e-beam 

features by a factor of four and reduce the needed exposure time. 

 

 

Fig. 3.8. Self-assembly of block-copolymer [9]. 

 

In HDD industry, we need to produce millions of disks. One method that provides 

simplicity, low cost, and high throughput is nanoimprint lithography (NIL). However, in 

imprinting such high volume of disks, the template can be easily damaged. Thus, 

template replication is essential to extend the template lifetime. Before proceeding to the 

media fabrication step, the obtained master template is first replicated by UV-NIL 

followed by a plasma-based transfer process into thousands of thin silica molds. These 

silica molds are then used in UV-NIL process to produce the disks. 

 

3.3. Media Fabrication 

To achieve high throughput, double-sided patterning is carried out using NIL. In UV-NIL 

process, as shown in Fig. 3.9, a layer of resist is sprayed on the substrate and the thin 

silica mold is brought into intimate contact with the substrate. To ensure intimate contact, 
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the template is bowed so that its center forms an initial contact with the center of the 

substrate. Then, capillary force will pull the entire template into conformal contact with 

the disk. Upon exposure to UV light, the imprinted resist will crosslink. Examples of 

patterned structures resulted from UV-NIL process are given in Fig. 3.10. 

 

 

Fig. 3.9. UV-NIL process for patterned media [22]. 

 

 

Fig. 3.10. Patterned media imprint examples [36]. 
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The next step is then to transfer the pattern to a magnetic film. The magnetic film must be 

thin (<20 nm) for the write and read head to be able to resolve the high density islands. 

There are two generic approaches to this pattern transfer: [20] 

(1) pre-patterning a substrate and subsequent deposition of a magnetic film; 

(2) depositing a magnetic film and then dry-etching or milling it through a mask to 

define the islands.  

It is also possible to use a lift-off process where the magnetic film is deposited onto the 

patterned resist and then the unwanted parts are dissolved to leave isolated magnetic 

islands. However, lift-off has not been particularly successful at sub-10 nm dimensions.  

 

 

Fig. 3.11. Steps in the fabrication of patterned magnetic media [20]. 

 

The approach of pre-patterning a substrate, as shown in Fig. 3.11, has probably been the 

front running approach to date. The main motivations for using the pre-patterned 

substrate were: 

(1) no good reactive ion etching (RIE) chemistry was known for the magnetic materials 

of interest; 

(2) ion milling tends to result in redeposition; 

(3) it would be necessary to clean all resist and redeposition to produce a clean, flyable 

disk; 
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(4) pre-patterning the substrate puts the patterning process earlier in the manufacturing 

process, and thus minimizing the impact of lower yields.  

This approach has progressed significantly, with published patterned densities of 300 

Gb/in
2
, the growth of thin perpendicular anisotropy layers, an understanding of the 

reversal processes, and static tester recording studies. However several challenges still 

exist. First, magnetic material in the trenches can give rise to noise. Second, the trenches 

also affect the stabilities in the flying. Moreover, there have been significant progresses 

in the RIE of magnetic materials and ion beam etching technology. So magnetic film 

etching is receiving renewed interest. At this time, the question of how to best pattern the 

magnetic film is still open. 

 

For high-density recording, the head must fly within a close distance above the media. 

The magnetic spacing requirements for increasing areal density are illustrated in Fig. 

3.12. BPM process creates topographies and thus imposing a high probability for the 

head to collide with the surface. Therefore, planarization scheme is introduced. First, a 

non-magnetic material is deposited by CVD or sputtering. Then, to obtain a planar disk 

surface, dry etching or milling can be used. Spin deposition and etch back can also be an 

option. However, it results in poor uniformity from the disk inside-diameter (ID) hole. 

Another alternative is using chemical mechanical polishing (CMP). CMP is a very 

mature process, but wet chemistry and consumables are problems. A planar disk is also 

advantageous in the overcoat process. 

 

Fig. 3.12. Magnetic spacing requirements for HDD [4]. 
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According to Hitachi and Seagate, the overall proposed schemes ensure high resolution 

and high throughput. Molecular Imprint Inc. claims that each of their NIL tools can 

produce millions of disks with only a single master template, as illustrated in Fig. 3.13. In 

their scenario, one master template can be faithfully replicated into 10,000 silica daughter 

templates, each of which can reproduce 10,000 disks. It is worthwhile to mention, 

however, that this estimation has not been proven in real industry. 

 

 

Fig. 3.13. Illustration of high throughput disk fabrication with the proposed fabrication plan [9]. 
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4. Market Opportunity 

4.1. Technology Supply Chain 

In order to understand the importance of our technology, it is essential to locate the 

position of recording media in HDD process chain. The HDD supply chain is illustrated 

in Fig. 4.1.  

 

Fig. 4.1. HDD supply chain [37]. 

 

A typical HDD manufacturing process starts with the fabrication of media, head, 

electronic components and motors. Through the various assembly steps, all the 

components are integrated into commercial products to be used in computers, 

telecommunication equipments, and other electronic devices.  The BPM technology will 

play a role in the fabrication of the media. With the capability of meeting consumers‟ 

demand of high-density recording, an investment in this area is promising to gain 

significant profit.  

 

The globalization of HDD supply chain can be seen in Fig. 4.2. It is important to note that 

the HDD media are mainly fabricated in USA, Malaysia, and Singapore. 
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Fig. 4.2. Globalization of HDD supply chain [38]. 

 

4.2. Competing Technologies 

In order to achieve areal densities higher than PMR, besides using BPM as new recording 

media, we can use write-assist method to write in materials with a very high anisotropy. 

Several write-assist methods have been proposed, such as heat-assisted magnetic 

recording (HAMR), microwave-assisted magnetic recording (MAMR), and exchange-

coupled composite (ECC) media [39]. All these write-assist methods are based on the same 

concept, i.e. enabling higher KU to enable smaller grain and thus better signal-to-noise ratio 

(SNR).  

 

4.2.1. Heat-Assisted Magnetic Recording 

HAMR uses localized heat energy to reduce the medium coercivity. Its principle is similar 

to magneto-optical recording [40]. In this technology, we introduce write temperature as 

a new degree of freedom. Writing in media with higher anisotropy is made possible by 

using a laser to heat the recording layer up to slightly below TC (Curie temperature) where 
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the coercivity is lowered below the available applied magnetic field. The written region is 

then rapidly frozen during the cooling process. The media can then be stably stored in 

room temperature. This writing process of HAMR is illustrated in Fig. 4.3. 

 

 

Fig.4.3. Diagram of HAMR writing process [41]. 

 

However, there are several challenges faced by HAMR. First, at TC, the media grains are 

paramagnetic and do not respond to a field. This phenomenon is known as 

superparamagnetic trap. As the grains cool down from TC, the magnetization fluctuates 

rapidly. If the cooling rate after initial heating is too fast, the magnetization will be 

quenched in an arbitrary state. On the other hand, if the cooling rate is too slow, thermal 

erasure will increase due to heat that diffuse to neighboring bits [42]. Thus, temperature 

dependence of the medium magnetic properties, particularly around TC, is crucial for 

recording rate limitations and recording quality in HAMR. Factors that limit the rate of 

magnetization collapse and reformation along with the quality of the magnetization 

formation during freezing should be well understood. Recording simulations are needed 

to answer those questions. 

 

 

The second and the ultimate challenge is breaking the diffraction limit of the laser source. 

In optical data storage, diode lasers have been widely used because they are inexpensive 

and capable of emitting high-power coherent light. The problem here is that those diode 

lasers available have wavelengths ranging from several hundred nanometers and longer. 
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State-of-the-art diode lasers are available at 375nm wavelength. However, to obtain 

storage densities beyond 1Tb/in
2
, we need spot size < 50nm [43]. The diffraction limit of 

far-field optics would provide achievable spot sizes that are too large. Thus, near-field 

optics has to be used [42]. In addition, an efficient technique must be provided for 

delivering large amount of light power to the recording medium and confining the light to 

sufficiently small optical spots. Finally, all the optical parts should be coupled for a 

complete optical system. 

 

There are also challenges associated with building an integrated head for HAMR, 

lubricant, overcoat, and head-disk interface tribology due to high operating temperature. 

 

4.2.2. Microwave-Assisted Magnetic Recording 

In MAMR, an ac field with microwave frequency is applied along the easy axis opposite 

to the initial magnetization as shown in Fig. 4.4. The ferromagnetic resonance (FMR) 

frequency of the grain is determined by the externally applied reversing field and the 

anisotropy field of the grain. If the frequency of the ac field matches that of the grain, the 

system will absorb energy from the ac field. Above a certain switching field threshold, 

the magnetization precession will increase its precession angle and irreversibly gyro 

downwards within the duration of the pulsed reversing field. Thus, MAMR allows 

recording in the medium with anisotropy field higher than the maximum recording field 

[44]. As one of the proof of MAMR concept, reduction of switching field of single 20nm 

Co particle in the presence of an ac field has been demonstrated [45]. 

 

 
Fig. 4.4. MAMR process [41]. 



44 

 

Proposed design of MAMR is illustrated in Fig. 4.5 (a). During the recording process, 

magnetization oscillation is generated in the field generating layer (FGL), as illustrated in 

Fig. 4.5 (b). Assuming that the magnetization of the perpendicular layer in the oscillating 

stack is along its anisotropy easy axis, the magnetization of the FGL is experiencing an 

effective magnetic field along the perpendicular axis. If the interlayer exchange field is 

greater than 4Ms, when the spin polarized current is zero, the magnetization will align 

itself in the perpendicular direction due to the damping torque. However, spin-polarized 

current will induce spin momentum transfer that generates a torque, termed spin torque, 

that is antiparallel to the damping torque. At sufficient current density, precession angle  

will be achieved. The angular frequency of the magnetization precession is
effectiveH  . 

Current variation can tune the frequency directly over a very broad range, thus the 

frequency-current correlation is very important. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5. (a) Schematic illustration of the ac field assisted perpendicular head design. (b) Illustration of 

magnetization precession of the field generating layer facilitated by the spin torque. int is the interlayer 

exchange coupling surface energy density, MS is the saturation magnetization, and  is the thickness [44]. 

 

There are many advantages of MAMR, such as the direct coupling of assist energy into 

the magnetization mode and well understood theory behind it. However, MAMR also 

faces obstacles in its implementation. The device that is embedded in the head has not 

been proven to be technologically viable yet. Controlling the location of ac field and 

gradient is also a major obstacle in MAMR.  

 

(a) (b) 
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Moreover, according to J. Zhu et al., the optimum value for the switching field reduction 

is at field angle  = 30
0
. At this optimum angle, the minimum switching field is ~1/3 of 

the minimum switching field in the absence of ac field (Stoner-Wohlfarth value). 

Therefore, MAMR is only able to achieve about three times of perpendicular recording 

areal density (>1.5Tb/in
2
). In the most recent simulation, it was shown that a circular ac 

field of 2.5 kOe peak amplitude and 50 GHz frequency will enable an areal density of 

1.88 Tb/in
2
 with a medium SNR above 18 dB. The highest obtainable density is 2.34 

Tb/in
2
 at damping constant of 0.175 [20]. 

 

4.2.3. Exchange Coupled Composite Media 

In ECC, a soft layer is used to assist the switching of the hard layer. Illustration of a grain 

in an ECC medium is given in Fig. 4.6. This write-assist process, known also as domain-

wall-assisted switching, occurs only in the presence of an applied field [39]. The applied 

field will reverse the magnetization in the soft layer, creating a domain wall within each 

grain. This domain wall exerts pressure onto the hard layer and thus the switching field 

will be reduced. Very high anisotropy contrast between the layers is desired. Ideally, by 

using ECC, infinitely high anisotropy fields can be switched. 

 

Fig. 4.6. Illustration of a grain in an ECC medium. It consists of a magnetically hard part and a 

magnetically soft part [39]. 

 

Fig. 4.7 depicts a schematic of the layer and magnetic structure for the proposed ECC 

media. [Co–PdSiO]n is used as the hard layer and FeSiO acts as the soft layer with a non-
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magnetic PdSi interlayer between the hard and soft layer to tune the exchange coupling. 

SiO was doped into Pd layer to get magnetically isolated grains.  

 

Advantages of ECC media compared to conventional continuous media are: 1) writability 

could be significantly improved without compromising its thermal stability; 2) the 

switching field of the media is much less sensitive to the angle dispersion (angle between 

the easy axis and applied field) compared to the perpendicular media. It is necessary to 

conduct further research to find out a better combination of hard and soft layer and 

optimize relevant magnetic parameters such as thermal stability and switching field to 

reach areal density beyond 1 Tb/in
2
. 

  

 

Fig. 4.7. Basic structure of proposed ECC media [46]. 

 

4.2.4. Comparison among HAMR, MAMR, and ECC media 

Among those three write-assist methods, HAMR is the most extensively studied. MAMR 

and ECC media are still in the infancy of their development to be currently considered as 

feasible manufacturing options. HAMR might enter the market before BPM, thus 

threatening the potential of commercializing BPM technology. 

 

However, BPM can be combined with HAMR and ECC systems [24]. Magnetic isolation 

and small size distribution in BPM will enhance the HAMR and ECC areal density 

capabilities. By using a matrix with low heat conductivity, BPM can control heat 
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diffusion and thermal fluctuation in HAMR, thereby resolving the problem of erasure of 

information on adjacent tracks and recorded bit instability. Meanwhile, in ECC, the 

completely isolated magnetic grains in BPM will help totally eliminate the exchange 

coupling between magnetic grains. Thus, even if HAMR or ECC is established first, we 

can still use our media in their systems. The combination of HAMR with BPM is even 

projected to reach an areal density of ~100 Tb/in
2
 based on the thermal stability of known 

magnetic materials [47]. 

 

4.2.5. Outer Competitor 

In the market, besides HDD, there are still many other types of storage disks. Solid-state 

drive (SSD) has especially gained commercial success due to its high speed, low noise, 

and low power consumption. However, as can be seen in Fig. 4.8, HDD offers the best 

areal density, capacity, and cost. Therefore, HDD shipment volume can be predicted to 

continue being on top as long as it can fulfill the increasing demand of areal density and 

capacity while maintaining its low cost. 

 

 

Fig. 4.8. Comparison between HDD and SSD [36]. 
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4.3. Complementary Technologies 

4.3.1. Head Technology 

The recording and reading process in BPM is different from that of PMR. Reading the 

data faithfully from such small bits is challenging. For example, the head must fly within 

a reasonably close spacing from the media to resolve the high-density media, while at the 

same time maintain a safe distance to avoid collisions with the media due to protrusions 

and dust. To solve this problem, planarization process is inserted in the fabrication 

process. In the area of the read sensor, significant advances will be required for Tb/in
2
 

applications. Challenges faced by read head are summarized in Table 4.1. The 

geometrical requirements for read head at high density are further listed in Table. 4.2. 

 

Table 4.1. Read head challenges [4]. 

Small Geometry Track width 

Shield spacing 

High Sensitivity (mV/Oe) ΔV = i η (ΔR/R) R 

Low Noise Johnson noise 

Shot noise (TMR) 

Magnetic noise 

Design Constraints 50 Ω < R < 500 Ω 

Temperature Rise 

Breakdown Voltage 

Spin Torque Instability 

Magnetic Self-Field 
 

Table 4.2. Geometrical requirements for head for patterned media [4]. 

 
 

To fulfill these requirements, head technology has been evolving from CPP TMR to CPP 

GMR, as illustrated in Fig. 4.9. The structure of CPP TMR and CPP GMR are basically 

similar, except that the CPP GMR uses non-magnetic metal such as Cu instead of oxide 

as the interlayer between two ferromagnetic layers. The current CPP TMR sensor is 

based on spin-dependent tunneling mechanism. As the areal density increases, the sensor 



49 

 

size must shrink. This will impose very high resistance. Fig. 4.10 shows the trends of data 

transfer rate for high-end HDD systems and allowed resistance-area product (RA) of read 

head sensors with a CPP structure versus areal density. As shown, in order to increase the 

data transfer rate for higher areal density recording, RA must be reduced accordingly. 

This fact indicates that the TMR head, with a predicted minimum achievable RA value of 

1 m
2
, will reach a limit at about 300 Gb/in

2
. On the other hand, CPP GMR structure 

which uses a metallic spin-valve is a reliable candidate for much higher areal densities 

because it can achieve a minimum RA of about 0.1 m
2
.  

 

 

 

 
 

Fig. 4.9.(a) Evolution of head technology; (b) Structure of CPP TMR and CPP GMR heads [4]. 

 

 

 

(a) 

(b) 

CPP TMR CPP GMR 
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Fig.4.10. Trends of data transfer rate for high-end HDD systems and allowed resistance-

area product (RA) of read head sensors with CPP structure versus areal density [48]. 

 

CPP GMR is then projected to be applied for 1Tb/in
2
 areal density around 2011. In CPP 

GMR, since the spacer layer is conductive and the current flows in a direction 

perpendicular to the plane of the layers, the overall electrical resistance, or sheet 

resistance, is extremely low. This result in a RA that is too small to achieve a 

sufficiently high signal-to-noise ratio (SNR). Fig. 4.11 shows the required RA of the 

CPP-GMR for various recording densities as estimated for the following parameters: 

output signal voltage for sufficient SNR = 1.5 mV, head efficiency = 30%, sense current 

density = 100 MA/cm
2
, power consumption of sensor element = 0.6 mW. One special 

feature of the CPP-GMR is that the absolute R value increases as the sensor size 

decreases. Therefore, the required RA becomes smaller as the recording density 

approaches 300 Gb/in
2
, where the power consumption of the sensor is the dominant 

factor in limiting the sense current. Meanwhile, the current density limit becomes 

dominant over 300 Gb/in
2
, saturating the required RA to be about 5 mm

2
.  
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Fig 4.11. Estimated required RA of CPP-GMR for higher recording densities for output 

signal voltage = 1.5 mV, head efficiency = 30%, sense current density = 100 MA/cm
2
, 

power consumption of sensor element = 0.6 mW [48]. 

 

Several methods have been described to enhance the CPP-GMR, such as 

1. To use a novel synthetic ferrimagnet pinned-layer structure in CPP spin-valves. 

This structure will effectively enhance the RA while maintaining a high 

magnetic pinning field. 

2. To use newly developed high-resistivity ferromagnetic alloys for the free and 

reference layers. 

The high RA of 7.7 mm
2
 was achieved in a fully metallic CPP-GMR element with an 

RA of around 0.1 m
2
 by using high-resistivity, high spin-asymmetry coefficient 

materials such as Co-Fe-Al. These materials will enable an areal density ~1 Tb/in
2
. 

 

CPP-GMR sensors with an Al2O3 current-confined-path (CCP) insertion layer in the Cu 

spacer have also been investigated. A RA product of 30 mm
2
 was demonstrated for 

devices with dimensions of 50 x 150 nm
2
 (width and stripe height). Spinstand testing 

demonstrated that heads with these CCP-GMR sensors are able to recover data with a 

BER of 10
-4.3

 at 1420 kbpi, indicating a possible areal density capability higher than the 
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conventional structure. In the future, more effort will be put on controlling the size and 

distribution of the conducting channel for even smaller sensors [49]. 

 

The dominant noise in modern sensors no longer arises from resistive (Johnson) noise or 

shot-noise (for TMR sensors) but from the thermal agitation of the sensor magnetization 

itself. As in the case of the recording medium, there is a minimum KuV/kT that must be 

maintained by a sensor to assure sufficient SNR for the required bandwidth or data-rate. 

Here the equivalent of Hk in the sensor, often referred to as stiffness field, is a 

complicated function of intrinsic anisotropy, external bias fields, demagnetizing fields, 

current-induced fields, and exchange coupling. In addition, especially for CPP GMR 

devices where currents are higher, the spin-torque associated with the flow of spin-

polarized electrons is a limiting consideration since it can cause the devices to go into an 

unstable oscillatory mode [50]. Thus several readback sensor technologies have also been 

proposed for future demand such as extraordinary magnetoresistance, spin FET, 

tunneling anisotropic magnetoresistance, and Coulomb blockade magnetoresistance. 

 

Table. 4.3. Various design scenarios for BPM recording systems [51]. 

 

 

In a recording system, it is important to write sharp transitions in the medium and retain 

the data reliably for at least 10 years. Various design schemes for BPM at areal density 1-

5 Tb/in
2
 with its corresponding bit error rate (BER) have been proposed as can be seen in 

Table 4.3. 
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4.3.2. Disk Drive Electronics 

Signal processing/synchronization is also an important issue to tackle in BPM 

technology. While the head defines all the bit locations in continuous media, the bit 

locations are predefined on BPM. Therefore, the head field needs to be synchronized to 

bit locations. Thus, any imperfections in the media fabrication process such as misplaced 

islands can cause write or read back errors. This will consequently require precise control 

on all the media property distributions such as bit size, bit location, and magnetic 

anisotropy [20]. The problem in signal processing/synchronization is more challenging 

since it is still in the research stage.  

 

Today's disk drives use feedback (closed loop) control, as well as some other 

supplemental techniques. Standard feedback block diagram can be seen in Fig. 4.12. Disk 

drive electronics have evolved towards a minimal and economical design. A typical drive 

has three key integrated circuits (ICs) [50]. 

1. Preamplifier/write-driver mounted on the actuator. 

The preamplifier sets the bias to the read head and must be able to sense and 

amplify the tiny readback voltages without adding much additional noise. The 

write-driver provides an adjustable write current plus one or two additional 

degrees of freedom to shape the leading edge of the transitions in the waveform. 

In addition to the pre-amplifier and write-driver, there is now also a „heater 

driver‟ to provide power into the thermal actuator on each slider and thus allows 

the flying height to be accurately adjusted. This is an important feature to protect 

the delicate read and write elements from electrical overstress and electrostatic 

damage. 

2. Motor driver or „combo chip‟ that looks after both the spindle motor and the 

voice-coil motor (VCM) and also contains DC-DC converters. 

3. Large SoC or „system-on-chip‟ containing the hard-disk controller, the read/write 

(R/W) channel, and the high-speed interface to the outside world. 

The R/W channel itself has undergone a rapid evolution starting with very simple 

„peak-detect‟ circuits and single burst-error correcting „Fire‟ codes. The error-

correction schemes quickly evolved to utilize Reed–Solomon codes universally. 



54 

 

Modern HDDs typically use codes based on 10-bit symbols to correct 20 or more 

error-symbols. 

 

In HDD, multiple controller designs, with the same structure, are optimized for different 

tasks, i.e. seeking, settling (transition from seeking to following), and track following. 

For HDD track following: 

 Reference input is the desired head position 

 Measured output is the measured head position 

 Error is the position error signal (PES) 

 Mechanical plant consists of the driver, VCM, arm dynamics, etc. 

 Disturbance consists of flutter, external vibrations, etc. 

 

 

Fig. 4.12 Standard feedback block diagram [52]. 

 

Currently, data-rate has approached 2 Gb/s on the outside radius of a 15,000 rpm server 

drive. This poses a considerable challenge for the coupling between the read and write 

heads and the preamplifier and write-driver. The analog-to-digital converter in the R/W 

channel and much of the subsequent digital signal processing must also operate at this 

high clock-rate. Simple scaling to a system with an areal density of 10 Tb/in
2
 would 

apparently involve data-rates exceeding 10 Gb/s. While the electronics could meet this 

challenge, the magnetic components themselves will struggle to reach much beyond 3 

Gb/s due to gyromagnetic effects (magnetization resulting from rotation) [50]. 

 

4.4. Intellectual Property 

Intellectual property (IP), mainly patent, must be carefully considered before the 

commercialization of BPM technology. Patent grants a monopoly for the inventor of a 
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certain technology in a certain period of time. According to United States Patent and 

Trademark Office (USPTO) and Intellectual Property Office of Singapore (IPOS), a 

patent is generally valid for 20 years after the filing date [53],[54]. Any patents which can 

prevent the commercialization of BPM technology should be identified. For the following 

analysis, patents associated with different parts of our technology, i.e. the fabrication of 

the template and the media, will be discussed. 

 

BPM technology is firstly proposed by Nakatani et al. in Japan Patent No. 888363
 
in 

1989 [55]. Table 4.4 shows the most relevant patents to our proposed technology. It can 

be seen that the most relevant patents to our technology are owned by large companies in 

HDD industry, such as Hitachi, Toshiba, and Seagate. Thus, collaboration with large 

companies must be done if we want to start a company in this field. 

 

Table 4.4. Several relevant patents to BPM. 

Patent # 

(Filing Year) 

Ref Subject Assignee Patent 

Office 

US 7460321 

(2007) 

[56] E-beam mastering of one small 

arcuate portion of the master, and 

then replicating that portion around a 

circular path on the master several 

times to create a full disk master. 

Hitachi 

Global 

Storage 

Tech. 

USPTO 

US 7471484 

(2004) 

[57] A patterned medium comprised of 

land areas that store data and trough 

areas that inhibit storage of data, a 

write element which writes the data 

and a read element which reads the 

data and servo information.  

WD Media, 

Inc. 

USPTO 

US 7306743 

(2006) 

[58] A recording medium includes a 

substrate, and a recording layer 

formed on the substrate having a 

recording track band, and recording 

Kabushiki 

Kaisha 

Toshiba 

USPTO 
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cells regularly arrayed in the 

recording track band to form a 

plurality rows of sub-tracks.  

US 7378028 

(2004) 

[59] A method of fabricating a patterned 

magnetic layer which consists of 

forming a layer of a mask material, 

forming a topographical pattern, 

selectively removing portions of the 

layer of non-magnetic material, 

treating the exposed portions of the 

layer of magnetic material with a 

liquid for reducing the magnetic 

properties. 

Seagate 

Technology 

LLC 

USPTO 

US 7347953  

(2006) 

[60] Methods for forming improved self-

assembled patterns of block 

copolymers. 

IBM Corp. USPTO 

US 6,746,825 

(2001) 

[61] Guided self-assembly of block 

copolymer films on 

interferometrically nanopatterned 

substrates. 

Wisconsin 

Alumni 

Research 

Foundation 

USPTO 

US 6,926,953 

(2004) 

[62] Guided self-assembly of block 

copolymer films on 

interferometrically nanopatterned 

substrates. 

Wisconsin 

Alumni 

Research 

Foundation 

USPTO 

137768 

(2007) 

[63] Data storage device with bit patterned 

media with staggered islands. 

Seagate 

Technology 

LLC 

IPOS 

128567 

(2006) 

[64] A method for manufacturing a 

patterned media in which a magnetic 

layer is processed in patterns of servo 

signals and tracks or data bits. 

Kabushiki 

Kaisha 

Toshiba 

IPOS 



57 

 

There are still rooms for us to file patents in this field. However, in manufacturing BPM, 

we will need assistance from patent lawyers to file patents or acquire licenses. We should 

also conduct further studies about how to optimize the fabrication of BPM such as: 

1. Optimizing the BCP parameters such as the polymer length and Flory-Huggins 

parameters as well as the possibility of using other copolymers.  

2. Minimizing defects in deposition of the magnetic materials process 

3. Evaluating the optimum method to get planar surface and solving the overcoat 

process problems. 

It should also be noted that if we would like to apply for a new patent, we should apply in 

disk-manufacturing countries, such as US, Singapore, and Malaysia. 

 

4.5. Target World Market 

According to Veeco Instrument Inc., HDD industry is now in consumer era, when HDD 

application is not only limited to servers, desktop PC or laptop PC, but also including 

mobile phones, iPod, personal video recorder, and MP3, as can be seen in Fig. 4.13. 

These application demands enable healthy growth of HDD industry. 

 

 

Fig. 4.13. Trend in HDD application [65]. 

 

Veeco research in 2007 provided the overall annual sales of HDDs. There has been a 

steady increase in the HDD sales, which is predicted to continue up to $730 million in 
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2010 as can be seen in Fig. 4.14. Fig. 4.15 shows that the market is shared by several 

companies such as Seagate, Western Digital and Hitachi.  

 

 

Fig. 4.14. HDD shipments and revenue [65]. 

 

 

Fig. 4.15. HDD industry forecast and market share [66]. 

 

BPM, providing high areal density, will be incorporated only in high end applications, i.e. 

PC. The worldwide PC shipment also grows steadily as shown in Fig. 4.16. It is predicted 
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that the total value of worldwide PC shipments will reach 333.7 M units in 2010. BPM is 

likely to enter the market in 2011. If we further extrapolate this forecast, in 2011, it can 

be expected that the worldwide PC shipments will reach 400 M units. 

 

 

Fig. 4.16. Worldwide PC shipments forecast. 

 

 

 

 

 

 

 

 

 

 

 

 



60 

 

5. Business Plan 

5.1. Operational Plan 

One set of fundamental issues that must be addressed in a business plan is how the 

business will create its products. Questions that must be answered include [67]: 

 What is the general approach to manufacturing? What are the sources of raw 

materials? 

 Which processes will be used in manufacturing? What are the labor requirements? 

 How will suppliers and vendors be used? 

 

Because the business plan has the objectives of both forward planning and immediate 

capital raising from the investors, it is often difficult to adjust proper balance between 

sophistication and simplicity in explaining the sometimes complicated manufacturing and 

process technologies. This section will be more of a virtual operational plan, so that 

several simplifying assumptions will be made on the cost modeling. 

 

There are several start-up company formats. The company may choose to, i) license the 

technology, ii) form a partnership, or iii) manufacture the product. Table 5.1 compares 

important aspects of each start up format.  

 

Table 5.1. Comparison of start-up company formats [68]. 

Path Overhead/Organizational 

Complexity 

Degree of 

Control 

Funding 

Requirements 

Risk 

License Minimum Minimum Minimum Minimum 

Alliance Moderate Moderate Moderate Moderate 

Production Maximum Maximum Maximum Maximum 

 

Licensing a technology eliminates the need of machines, land, labor, and marketing. 

However, the revenue obtained is much smaller than the other two options. In strategic 

partnership, several companies can share responsibilities for a product. Meanwhile, in 



61 

 

manufacturing, high revenue can be obtained but a huge amount of funding and a 

complex organization are needed.  

 

It is essential to understand how the company will manufacture its products. One way to 

convey such information is to examine this activity in terms of resources, processes, and 

output. Resources may be characterized as those elements the firm must utilize in an 

effort to manufacture a desired product. These typically include manufacturing facilities, 

machinery, equipment, materials and related assets, and labor. After describing the 

production resources, it is important to discuss the production processes that will be used. 

Finally, there should be some description of the manufacturing output. By examining the 

plant capacity, we may predict the potential financial performance. 

 

Since BPM is a new fabrication method, there can be several differences from the 

conventional method in terms of processing techniques, which imply that there are also 

differences in the manufacturing tools and materials being used. As explained in Chapter 

3, BPM introduces new steps into the existing media fabrication process. Therefore, what 

we calculate is the imposed additional cost due to the additional processing steps. The 

additional cost breakdown is listed in Table 5.2. Several assumptions have been made on 

the cost modeling: 

1) All basic costs, such as labor, land, and materials are constant across the time period. 

2) The cost modeling is for a 2.5” disk. 

3) NIL output is 1 M disks/year (Appendix 2), which sets the production volume each 

year. NIL is actually a slow process for recording media application, as compared to 

the existing media fabrication scheme [27]. 

4) For pattern transfer process, we will first deposit the film and then milling it to define 

the islands. 1 NIL tool requires 1 ion miller to pattern the magnetic recording layer 

(Appendix 3). 

5) For planarization step, every 56 NIL tools require 1 sputtering machine while every 7 

NIL tools require 1 dry etcher (Appendix 4) 

6) 1 NIL consumes 10 kW of electricity. 

7) 1 ion miller consumes 2500 W of electricity because each cell in the miller needs 500 



62 

 

W (Appendix 3). 

8) 1 sputtering machine consumes 12 kW of electricity. 

9) 1 plasma etcher consumes 10 kW of electricity. 

10) Cleanroom is designed for Class 10 (ISO 4) and ballroom arrangement. Economic 

lifetime of a cleanroom is estimated to be 15 years, equivalent to 6.67% depreciation 

cost per year [69]. 

11) Each tool occupies a space of 100 ft
2
 in the clean room. 

12) 1 master template created by EBL can create 10,000 replicas, which correspond to 

100 M disks. 

13) Labor salary is set at $2,000/month/pax or $24,000/year/pax.  

14) Each machine will operate on two shifts per day, each shift is attended by two 

workers.  

15) One disk consumes 1 ml of resist. 

16) Cost for polymers (~few dollars) and silica (~hundreds of dollars) are negligible 

compared to other contributing factors. 

17) Depreciation cost  for the tools is 10% per year, or equivalent to 10 years of lifetime  

18) Production volume is 100 M disks/year 

 

Table 5.2. Additional cost breakdown for PV = 100 M disks/year and Capacity = 600 GB/disk. 

ANNUAL ADDITIONAL OPERATIONAL COST BREAKDOWN FOR: 

PRODUCTION VOLUME = 100M disks/year  

AREAL DENSITY  = 1 Tb/in2 = 600 GB/disk  

No Cost Component Qty Unit Unit Cost/yr($) Cost ($) 

1 NIL [70] 100 - 100000 10000000 

2 Ion miller [71]  100 - 50000 5000000 

3 Sputtering machine [72] 2 - 100000 200000 

4 Plasma etcher [73] 15 - 50000 750000 

5 Clean room [74] 21,700 ft
2 

66.67 1446739 

5 EBL [75] 1 Master 480000 480000 

6 Electricity [76] 8202240 kWh 0.15 1230336 

7 Labor 868 - 24000 20832000 

8 Resist [77] 100000 lt 200 20000000 

Total Additional Cost  59939075 

Cost/GB (cents)  1.266565125 

Cost increase/disk (cent)  59.939075 
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5.2. Capitalization 

Capitalization is one of the most critical parts of establishing a business. While it is 

sufficiently difficult to properly run a business even when sufficient resources are 

available, a scarcity of resources will render such an endeavor significantly more 

difficult. The entrepreneur has a wide variety of options to offer his or her capital 

providers for their participation, such as equity, debt, or hybrids such as convertible debt 

(debt that can be converted into equity). Rules of thumb in capital raising: [67] 

(1) Rule one is that sources and uses of capital must be equal in amount. 

(2) Rule two is not to negotiate in the business plan. 

 

When approaching a potential source of financing, there are several guidelines: [67] 

(1) Get an introduction, if possible, from the lawyer, accountant, consultant, banker, 

or someone from the advisory board. 

(2) Be selective. Rather than mass mailing of business plans, it is more advisable to 

selectively approach attractive sources of capital and focus attention on each. 

(3) Be prepared to rethink a plan. If the entrepreneur receives consistently negative 

responses to a business plan, it may suggest a problem with the plan rather than a 

consequence of not approaching enough or the right sources. 

 

Table 5.3. Start-up capital calculation for PV=100M disks/year. 

Start-up Capital Calculation 
No Cost Component Qty Unit Cost ($) Total Cost ($) 

1 NIL [70] 100 - 1M 100,000,000 

2 Ion miller [71]  100 - 0.5M 50,000,000 

3 

Sputtering 

machine [72] 2 - 1M 2,000,000 

4 Plasma etcher [73] 15 - 0.5M 7,500,000 

5 Clean room [74] 21,700 ft
2 

1000 21,700,000 

5 EBL [75] 1 Master 480000 480,000 

6 Electricity [76] 8202240 kWh 0.15 1,230,336 

7 Labor 868 - 24000 20,832,000 

8 Resist [77] 100000 lt 200 20,000,000 

Total Start-up Capital 223,742,336 

 

Raising capital can be a stressful, time-consuming activity. It often represents the first 
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serious obstacle to the entrepreneur. For example, a $40B HDD industry will spend 

approximately $4B annually in capital equipment [70]. Table 5.3 suggests that the start-

up capital can reach ~$200M just for the additional components to fabricate BPM. If we 

take into account the basic cost components to fabricate PMR, the capital needed will be 

much higher. It is probably not viable to expect as much funding from investors. Besides, 

we also need to avoid conflicts with relevant patents. Thus, only established companies 

such as Hitachi, Toshiba, or Seagate can implement the manufacturing of BPM. This 

implies that the most viable route for us, among the options in Table 5.1, is to establish a 

company focusing on technology licensing. 

 

5.3. Financial Plan 

The purpose of the financial section of a business plan is to formulate a credible, 

comprehensive set of projections reflecting the company‟s anticipated financial 

performance [67]. In this section, we try to calculate the profit projection of a BPM-

manufacturing company. Currently, the HDD industry is a twenty-billion-dollar market 

that shipped approximately 500 million units in 2007 [78]. Particularly for PC 

application, the market size will reach ~400 M units in 2011, as explained in Chapter 4. 

Regarding the vast market size, it is essential to create a well-planned financial projection 

as to how the BPM sales and profit of the company grows over time. In this case, we 

target at 25% market share, which is equivalent to production volume of 100M 

disks/year. 

 

Currently, HDD price/GB is still the lowest among other type of recording media. 

However, provided a constant annual reduction line of 50%, SSD NAND Flash memory 

will reach price per GB as low as 15 cents/GB, as can be seen in Fig. 5.1. It is to common 

knowledge that HDD manufacturers keep reducing the price/GB, while the areal density 

of PMR is supposed to be locked at 500 Gb/in
2
, by reducing their profit margin so as to 

be able to compete with flash memory. Therefore, BPM has come at the right time to 

break the areal density limit of HDD and thus scaling down price/GB while maintaining a 

reasonable profit margin. It should be emphasized that Fig. 5.1 presents the price/GB of 

HDD products which includes cost for various processes, such as head and PCB 
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fabrications. Meanwhile, our calculation will focus on the media fabrication.  

 
Fig. 5.1. Diagram plots of the price-per-GB for NAND Flash memory and HDDs. As of Mar 2009, NAND 

Flash memory is about US$1.25 per GB. Prices through Mar 2009 from Nihon Keizei Shimbun, beyond that 

forecasts by Nikkei Electronics [79]. 

 

It is undeniable that SSD offers faster data rate as compared to HDD. Therefore, two 

major companies, Intel and Hitachi, have agreed to co-develop the new generation of 

SSD technology. However, SSD will complement, instead of replace, HDD. The two 

major companies argued that SSD will be particularly useful in storage applications that 
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require extremely high IOPS (Input/Output Operations per Second) [80]. Therefore, HDD 

will retain a secured market share in the future. 

 

To date, HDD has been fabricated on PMR platform, which gives the current cost of 

HDD media at $7/disk [27], or approximately 2 cents/GB, with an areal density limit of 

500 Gb/in
2
, as shown in Fig. 1.1. What we calculate is the cost benefit of utilizing BPM 

scheme as compared to the cost of conventional PMR. BPM introduces an extra cost for 

utilizing NIL, ion milling, and planarization tools. However, with an areal density 

multiplication of two, the cost density is decreased to be approximately 1.27 cent/GB, as 

shown in Table 5.4. 

 

The cost/GB can be further reduced by pushing the limit of e-beam lithography. 

Referring to Appendix 5, the e-beam cost will increase linearly with the areal density. 

However, this increase is relatively small as compared to the obtained cost benefit, as can 

be seen in Table 5.4. The 0.5 Tb/in
2
 is produced by conventional PMR technology, while 

the 1Tb/in
2
 and 2Tb/in

2 
disks are produced by BPM technology.  

 

Table 5.4. Cost modeling for 100M disk/year throughput. 

Areal Density  

(Tb/in
2
) 

0.5 1 2 

Capacity (GB/disk) 300 600 1200 

Throughput (million disk/year) 100 100 100 

Throughput (GB/year) 30 B 60 B 120 B 

Reference cost $ 700,000,000 $ 700,000,000 $ 700,000,000 

Additional cost - $ 59,939,075 $ 60,419,075 

Total cost $ 700,000,000 $ 759,939,075 $ 760,419,075 

Cost/GB  2.33 cent 1.27 cents 0.63 cents 

Reduced cost/GB 0 1.06 cents 1.7 cents 

Total cost benefit 0 $ 636 M $ 2,040 M 

Cost increase/disk 0 59.94 cent 60.42 cent 

 

For other production volume, we plot the cost/GB as shown in Fig. 5.2. It can be seen 

that as we increase the production volume, the cost/GB will drop in an exponential 

manner. Fig. 5.3 depicts cost/GB as a function of both production volume and areal 

density of the HDD. It can be seen that either increasing the areal density or the 

production volume will reduce the cost/GB. 
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Fig. 5.2. Cost/GB for 1Tb/in

2
 as a function of production volume. 

 

 

Fig. 5.3. Cost/GB as a function of production volume and areal density. 
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The calculation of cost benefit assumes that the consumer would want to purchase the 

improved HDD capacity with constant price/GB. This assumption, unfortunately, is not 

plausible. In fact, for an increase of areal density from 0.5 to 1 Tb/in
2
, the increase of cost 

per disk should be less than $1 [27]. This is equivalent to say that the increase of cost per 

disk should not exceed ~15% for a doubling of areal density.  

 

The question now is that for a given areal density (or HDD capacity), how low should the 

cost per GB be in order to be acceptable in the market. Let Cdisk, AD, C, Cp  be the cost 

per disk, areal density, cost per GB and HDD capacity, respectively. Then, 
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Cdisk,max and Cmax are plotted as a function of areal density in Fig. 5.4. Based on the 

information from Fig. 5.4, we can now re-draw Fig. 5.3 in contour representation, as 

shown in Fig. 5.5, to determine our profit margin. For example, for 1 Tb/in
2
, market will 

only accept a maximum cost/GB of ~1.33. Therefore, the contour plot sets a minimum 

production volume of approximately 80M disks/year (10
7.9

 disks/year) as the break-even 

point. Thus, our chosen production volume of 100M disks/year in this cost modeling is 

reasonable. 
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Fig. 5.4. Maximum cost per disk and cost per GB for different areal densities. 
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Fig. 5.5. Contour representation of cost/GB as a function of production volume and areal density 
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We can then define profit as, 

 

 

max

max

Profit Cost/GB Cost/GB Production volume HDD Capacity

          = pC C PV C

   

  
 

where 613.59pC AD  , assuming 2.5” disk. Since Cmax decreases over time, C should 

decrease in a faster rate to ensure a profitable company. This will be the case if BPM 

technology can consistently increase the areal density. BCP has a characteristic length 

scale that can ideally be tuned to be very small, in the order of sub-10 nm [81]. BCP 

resolution of 12.7 nm (1 Tb/in
2
) has been demonstrated in 2008 [28],[82]. Currently, the 

best achievable resolution of BCP is 3 nm [19]. Meanwhile, e-beam lithography has a 

resolution that is limited by the beam spot size. With various aberrations present in the 

system (spherical, chromatic, and diffraction), state-of-the-art resolution of e-beam 

system is ~10 nm [83]. Head technology will be ready for 1 Tb/in
2
 areal density in 2011, 

as shown in Fig. 4.9 (a). This fact is consistent if we assume an annual rate of 50% for the 

projection in Fig. 1.1.  

 

Mathematically, we can write,  

2011

2
( ) 1.5x Tb

AD x
in

  

Along this line, it is projected that the areal density will reach 5 Tb/in
2
 in 2015, 

equivalent to BCP resolution of 5.7 nm, which is obviously achievable. Therefore, the 

areal density increase in overall will be limited by the head capability to read and write 

the tiny features in BPM.  

 

Table 5.4 suggests that the incremental additional cost for an areal density increase is 

attributed to the EBL cost. So, the total cost can be expressed as, 

2

2

Total cost Reference cost + Additional cost

                =$700M + $59,459,075 $480, 000
1 /

                =$759,459,075+ $480,000
1 /

AD

Tb in

AD

Tb in



 
  

 


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Thus, the profit can be written as, 
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It is also important to define a profit margin, 

Profit( )
Profit margin( )= 100%

Revenue( )

x
x

x
  

 which can be calculated as follow, 
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Fig. 5.6. Annual profit projection of HDD media company with BPM technology. 

 

The annual profit projection is given in Fig. 5.6. As can be seen, the profit increases 

steadily with time starting from ~$50 M in 2011 up to ~$350 M in 2015. Since the 

required start-up capital is approximately $200M, this means that the company will reach 
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the break-even point in the third operational year. The profit margin also increases from 

~5% up to more than 30% in five-year operational time, as shown in Fig. 5.7. The actual 

timeframe for BCP technology is however hard to predict, considering its potential to 

reach a very high areal density if combined with other technologies. 

 

 

Fig. 5.7. Profit margin projection of HDD media company with BPM technology. 
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6. Conclusion 

BPM is a way to surpass the areal density limit in current HDD media, without 

compromising the SNR and writability. BPM technology has overcome major 

technological barrier even though it still needs further research to become a mature 

technology. Hitachi and Seagate have set a common fabrication platform for BPM which 

combines both top-down and bottom-up approaches. Combination of EBL and 

chemically-assisted self-assembly process of BCP to fabricate the master template 

provides areal density beyond 1 Tb/in
2
,
 
while the use of UV-NIL for template replication 

and disk production ensure the required high throughput. The fabrication plan inserts 

some new steps into the traditional PMR disk process flow, meaning that the existing 

PMR fabrication tools are still compatible for BPM industry in the future. 

 

In HDD supply chain, BPM technology will play a role in the media fabrication. The 

competing technologies, such as HAMR and ECC, may come out first. However, BPM 

can be integrated in HAMR and ECC to enhance their performance, thus showing their 

mutual synergy. Areal density must increase while low cost must be maintained in order 

for HDD to keep dominating the market over its closest competitor, solid-state memory. 

Head and disk drive electronics as the complementary technologies are also developing 

fast. It is predicted that CPP GMR will be able to read 1Tb/in
2
 data in 2011, setting the 

scene for BPM to enter the market. Prior to that, DTM technology will govern. There are 

still many improvements to pursue in BPM technology. Thus, it is possible to apply for 

patents as we do more intensive research. We should file patents in countries where HDD 

media are made, such as US, Singapore, and Malaysia.  

 

It has been shown that our fabrication method is superior in terms of performance and 

cost compared to the conventional media. As calculated in the business plan, the future of 

BPM industry is bright, with steadily increasing annual profit, as the areal density 

increases. The market share of BPM is very large with the worldwide PC shipments is 

predicted to reach 400 M units in 2011. In this consumer era, BPM will survive in the 

market as long as they can meet the consumer demand of high areal density. According to 

the business plan for 5-year period, the profit increases steadily with time starting from 



74 

 

~$50 M in 2011 up to ~$350 M in 2015, with profit margin increases from ~5% to 30%. 

The actual timeframe for BCP is difficult to estimate. BPM areal density is predicted to 

be able to reach 10 Tb/in
2
. However, if combined with other technologies such as 

HAMR, it can potentially reach 100Tb/in
2
. To fabricate BPM, we need to consider the 

patent conflicts as well as the huge amount of capital. Thus, only established companies 

might pursue the manufacturing of BPM.  
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Appendix 1: Block Copolymers on Chemically Heterogeneous Striped Surface [84] 

 

Fig. A1.1 shows block copolymers adsorption on the chemically heterogeneous striped 

surface. Consider AB diblock copolymers on surface consisting of alternating rectangular 

domains  and  of equal width L. Each of the stripes only has affinity toward one of the 

block species. In this case, block A and block B consist of equal number of monomers 

(NA=NB=Nn) and the adsorption energies of an A(B) energies on an () are . The 

copolymer is modeled as an ideal Gaussian chain. 

 

 
Fig. A1.1. When the width of the stripes is much larger than the size of a block, the copolymers may either 

form 3D brushes within each stripe (a) or 2D brushes along the interfaces between the stripes (b) [84]. 

 

We consider the case of dilute, non-interacting boundaries. As shown in Fig. A1.1, the 

adsorbed layer consists of two regions: (i) Central regions, coated by a polymer brush 

formed from the adsorption of AB diblock copolymers onto the selectively adsorbing 

surface. (ii) Narrow boundary regions near the  border in which the adsorbed layer has 

the structure of 2D planar brush. 

 

The copolymer adsorption is analyzed by minimizing the free-energy density. Within the 

boundary regions, the free energy per block for two-dimensional brush is: 

5
2 2 23

n n nF kT N N W N a           ... (A.1-1) 

with,  

2

nN a W          ... (A.1-2) 

where  is the monomer area fraction, a is the monomer size, and  is the length of the 
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boundary segment of A and B junction.  The first two terms correspond to the adsorption 

free energy (Fads) and the interaction free energy (Fint) in the two-dimensional semi-dilute 

layer respectively. Meanwhile, the third term takes into account the Gaussian elastic 

penalty of the stretched string (Fel). 

 

The linear free-energy density is: 

  2A BF F F            ... (A.1-3) 

5
3 43

3 2 2

2 22 2n nN N aF W

kT kT W

 

   
          ... (A.1-4) 

We need to satisfy two conditions: 

0
W





          ... (A.1-5) 

and 0








         ... (A.1-6) 

 

For a fixed , W can be determined as follow: 

3 4

3 3 2

3 4
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4 2
0
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N a

W

N a
W
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

 
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




  



 

1
3 1

3
n

a
W N a



 
  

 
        ... (A.1-7)  

 

The equilibrium state corresponds to: 

4
3 1

3
int el n

W a
F F N 

 

 
    

 
      ... (A.1-8) 

Thus the linear free-energy density becomes: 

5 4
3 3 1

3
1n

n

N a
N

kT




  

 
    

 
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7
35 1

3 3
n n

a a a
N N

kT


 

 

   
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   
      ... (A.1-9) 

 

Put the result back to equation (A.1-6): 

0
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

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3 3
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N N
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Thus, we get: 

a




 
  
 

         ... (A.1-10) 

Combining (A.1-10) with (A.1-7), we get: 

2
3

nW N a  

 

The central region ceases to exist, i.e. the boundary regions cover the whole of the 

surface, when: 

2
* 32 2 nL L W N a    

The width of the stripes must also be larger than the adsorption blob size D for the 

adsorption blobs to be defined. Thus, for A and B blocks to be registered on  and  

surfaces while maintaining close packing of adsorption, L must satisfy D < L < L
*
. 
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Appendix 2: NIL Cost Calculation 

 

Fig A2.1. Imprio
®
 HD2200 [85]. 

 

The specification of the tool [86]:  

 Resolution:  Sub-20 nm, half-pitch for discrete track and bit patterned media  

 Throughput (double-sided):  180 disks per hour  

 Alignment:   <10 microns (relative to disk spindle hole) 

 Disk Automation: Fully automated cassette-to-cassette and template loading 

 

We assume working time of ~16 hrs/day. Then, 

180 16 360 1
disks hours days disks

Throughput M
hour day year year

     

Production Volume
NIL cost NIL cost/unit

Throughput
   

For PV = 100 M disks/year, 

100M

NIL cost $1M=$100M

1M

disks

year

disks

year

   
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Appendix 3: Ion Miller Throughput Calculation 

 

Fig. A3.1. FAB104 ion miller system [87]. 

 

Specifications: 

 Capacity: 5 cells 

 Max. equivalent current output (mA/cell): 10 

 Beam energy range (KeV): 0.65-2.1 

 Max. power input (W/cell): 500 

 Max. plasma current (mA/cell): 200 

 Applied high voltage range (kV): 1-2.5 

 Typical Ar gas flow (sccm/cell): 15 

 Typical operating pressure (mbar): 1 x 10
-3

 

 Pumping speed requirement (L/sec/cell): 500 

 Min. cooling water (L/min@20
o
C): 2 

 

Typical etch rate for ion milling system is 1-2 m/hr.[88] 

Each magnetic layer has a thickness of 15 nm, thus  

5 

180 

15
0.015

1

180
0.015 0.54 1

5

disks

disks

nm
t hr

m
hr

t hr hr


 

   

 

Thus, NIL and ion miller have the same throughput rate. 
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Appendix 4: Sputtering and Dry Etching Machine Throughput Calculation 

 

Sputtering machine specification (SDT-2000):[89] 

 Substrate: Disc (material: poly-carbonate) of 120 mm in diameter and 1.2 mm in 

thickness  

 Output : 1.8 sec/disc (~70 nm film thickness)  

 Exhaust system: Turbo molecular pump: 210 liters/sec 

Oil rotary pump: 360 liters/min 

 Sputtering source: P-GUN 170CD type (Target Outer Ring of herisert) 

 Power supply: DC 12kW 

1 

15
0.36sec

75 /1.8sec

1
2.8 / sec 10000 /

0.36sec

disk

nm
t

nm

disk
Throughput disks disks hr

 

  

 

So, approximately 56 NIL tools require only one sputtering machine. 

 

 

 

Fig. A4.1. PT770 Dry Etcher system [90]. 

Specification: 

 Ambient: Cl2, BCl3, H2 

 Etch rate (A/min): 3000 

 Selectivity: 10:1 oxide, 0.7:1 resist 

 Substrate size: 3 inch, 100 mm 

 

Assuming that each disk should be etched ~15 nm deep (comparable to the magnetic 

layer thickness), the throughput of the etcher is 
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1 

15
0.05min

300 / min

1
20 / min 1200 /

0.05min

disk

nm
t

nm

disk
Throughput disks disks hr

 

  

 

 

Approximately 7 NIL tools require only one dry etcher machine. Thus, the overall 

throughput is limited by NIL (180 disks/hr). 
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Appendix 5: EBL Cost Calculation 

 
Fig. A5.1. JBX-9300FS EBL system [91]. 

 

Specifications: 

 4nm diameter Gaussian spot electron beam 

 50kV/100kV accelerating voltage 

 50pA – 100nA current range 

 50MHz scan speed, however maximum scan speed has been demonstrated to be 

25MHz [92] 

 +/- 100um vertical range automatic focus 

 +/- 2mm vertical range manual focus 

 ZrO/W thermal field emission source 

 vector scan for beam deflection 

 max 300mm (12") wafers with 9" of writing area 

 < 20nm line width writing at 100kV 

 < 20nm field stitching accuracy at 100kV 

 < 25nm overlay accuracy at 100kV 

Assumptions: 

 Wafer size, dwafer = 2.5” or rwafer = 3.175 cm 

 Digital field (B) = 14 bits 

 Settling time (tsettle) = 4 sec 

 

BPM allows a spatial frequency multiplication of two, or an areal density multiplication 
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of four, from the pattern as-defined by EBL. However, the actual features (pixel size) to 

be written are in the size of the BCP domains. Assuming that one pixel is assigned for 

one magnetic island and one magnetic island has the dimension of half the period, we can 

calculate the required pixel size for 1 Tb/in
2
 as follow, 

12 2

2

12 2

1 1
= 10

Areal density
1

= 10 25.4

1
12.7

2

bit

bit

pixel bit

A in
Tb

in

d in nm

d d nm





 



 

 

In fact, the required pixel size can even be smaller due to the requirement of 5% accuracy 

for the feature locations. The field size (Afield) is then, 

   
22 28 22 2 12.7 43295.95B

field pixelA A nm m    

 

Number of field (N), 

 
2

4

2

3.175 10
73145.90 73146

43295.95

wafer

field

mA
N

A m

 




     

Total pattern generation time (Tpg), 

 

2 28
5

6

2 2
73146 7.854 10 sec 218.17

25 10

B

pgT N hrs
f Hz

    


 

Total settling time, 

73146 4 292584sec 81.27settle settleT N t hrs       

Total time (t), 

218.17 81.27 299.44 300 13pg settlet T T hrs hrs days        

 

From [75], rate of EBL usage for industry is $1600/hr, 

Cost (EBL) = 300 x $1600 = $480,000 ~ $0.5M 

EBL cost for any other areal density can then be calculated as, 

2

Areal density
Cost of EBL $480,000

1
Tb

in

   


