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Abstract 
 
Firms’ financial data vary considerably with the size of their operations.  Such scale differences 
potentially confound several types of inferences, of which this paper analyzes three.  This paper 
evaluates two potential solutions to these inference problems suggested by theory: (i) deflating 
the data by a proxy for scale; and (ii) including a scale proxy as an independent variable.  First, 
simulations show that deflating the data more effectively mitigates coefficient bias than 
including that proxy as an independent variable.  Reconciling this result with the opposing 
conclusion of Barth and Kallapur (1996, Contemporary Accounting Research) reveals that the 
prior results depend on assumptions that are economically and statistically unreasonable.  
Second, the deflation approach results in more accurate tests of incremental association in terms 
of mean squared error.  Third, deflating by a scale proxy results in well-specified tests of relative 
association using Vuong’s (1989) Z-statistic for non-nested models whereas including the scale 
proxy as an independent variable results in overstated significance.  Given the additional 
advantages of deflation with respect to heteroscedasticity and the coefficient of determination 
(R2) demonstrated in prior studies, researchers should generally deflate their models when scale 
differences exist in the data. 
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1. Introduction 

Scale is a pervasive notion in accounting research.  Simply stated, scale refers to the size of an 

observation.  It is a variable that affects all of the analysis variables (dependent and 

independent), but scale itself is seldom a variable of interest in the sense that the research 

question does not concern the marginal impact of scale on the experiment.1  For example,  

In capital markets research, large firms have high values for equity market value, equity book 

value, income, losses, and so on.  If one were to analyze the association of equity market value 

with its book value, the likely positive association would be partly attributable to the fact that 

large firms have both large market values and book values.  In other words, the association is not 

entirely due to the relation between market values and book values per se. 

The clearest example where scale confounds economic relationships is provided by the 

association between market values and losses.  We expect a positive relation between earnings 

and value, so that firms with larger losses should be worth less, ceteris paribus.  However, with 

sufficiently large variations in firm size (i.e., all else is not equal), we observe that firms with 

larger losses have larger market values of equity than firms with smaller losses.  For example, 

Figure 1a illustrates the hypothetical positive relation in scale-free data, while Figure 1b shows 

that the relation turns negative when half of the data is scaled up by a factor of 5.  This negative 

association obtains not because losses add value per se, but because larger firms have larger 

market values and they have sufficient capital to incur large losses.  Thus, if research data is 

affected by scale, such as those illustrated in Figure 1b, then inferences are potentially 

confounded by scale. 

                                                 
1 A case when scale is a variable of interest is, of course, analyses related to economies-of-scale.   In the natural 
sciences, the mass of an object is of interest in the study of gravity, but in most other contexts, experiments equalize 
or otherwise control for mass. 
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 An informal survey of the most current four issues of The Accounting Review 

demonstrates the pervasiveness this scale issue.  As summarized in Table 1, at least seven of the 

forty articles published in the journal in the 12 months up to April 2004 use variables that are 

affected by scale, including analysts’ forecast errors, market value of equity, stock price, 

earnings, stock option compensation cost, deferred taxes, brand value, and environmental capital 

expenditures.  Also shown in Table 1 are the different ways in which the studies define their 

variables; some deflate the scale-affected variables and others do not.  

The differing treatments of scale in these studies reflect the considerable disagreement 

that currently exists among researchers over what is the best, acceptable, or appropriate 

specification of variables for use in capital market research.  Some advocate for the inclusion of 

a scale proxy as an independent variable (Barth and Kallapur, 1996), while others recommend 

that scale-affected variables should be deflated by a scale proxy (Christie 1987 and Brown, Lo, 

and Lys, 1999), and yet others argue that variables should be deflated by the dependent variable 

on the basis that it is the best measure of scale (Easton 1998, Easton and Summers 2003).  This 

range of recommendations arises primarily because the studies focus on mitigating different 

inference problems such as coefficient bias, R2 bias, and heteroscedasticity.2 

The following analyses will show that, in most circumstances, coefficient bias is more 

effectively mitigated by deflating by a scale proxy than including that scale proxy as an 

independent variable.  The contrast between this finding and Barth and Kallapur (1996) is due to 

this paper’s use of assumptions that are economically and statistically more reasonable.  In 

particular, Barth and Kallapur’s assumptions result in up to 24% of observations attaining 

negative values of the scale proxy, which can be interpreted as negative prices and market 

                                                 
2 Easton and Sommers (2003) consider the issue of influential observations, which is a combination of 
heteroscedasticity and nonlinearity (i.e., misspecification).  The latter is an issue that is not directly related to scale 
since it is a potential issue in any research context, so the focus here is on the heteroscedasticity component. 
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values.  In contrast, this paper’s assumptions ensure that simulated prices and market values are 

positive. 

Additional simulations using these revised assumptions show that tests of incremental 

association in multivariate settings and tests of relative value relevance using Vuong’s (1989) 

statistic are more accurate using deflated models compared with undeflated models that include a 

scale proxy as a regressor.  Combined with prior findings that R2 bias and heteroscedasticity are 

mitigated by deflation, and further that any residual heteroscedasticity in deflated equations can 

be corrected by White’s (1980) adjustment to standard errors, I conclude that deflation by a scale 

proxy is unambiguously the preferred solution to the three problems arising from cross-sectional 

scale differences. 

The next section reviews the background related to scale issues and the context in which 

such issues arise.  Section  3 replicates the key simulation results from Barth and Kallapur (1996) 

while Section  4 analyzes those simulations.  Using modified assumptions, Section  5 shows that 

coefficient bias is more effectively mitigated using the deflated model compared with the 

undeflated model.  Section  6 compares the efficacy of deflation in tests of incremental and 

relative association.  Section  7 concludes the paper. 

2. Background and development 

Since the 1980’s, there has been a large number of studies in capital markets research that in 

whole in part use a “levels approach” for their analyses.3  This approach uses variables measured 

at the firm level or as per share values so that the magnitudes of the dependent variables depend 

to a large extent (but not solely) on the scale of the observations.  For studies that use firm level 

data, scale reflects the size of the firm; larger firms tend to have large values of many variables, 

                                                 
3 Recent papers in this long list include Begley and Feltham (2002), Bowen, Davis, and Rajgopal (2002), Bryant 
(2003), and Kallapur and Kwan (2004).  
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such.  For studies that use per share values, scale reflects the size of the shares; some firms’ 

shares are more valuable than others’ shares because the former have fewer shares issued and 

outstanding, independent of other valuation characteristics such as the amount of anticipated 

future cash flows.  In practically all instances, scale is a nuisance variable – one in which the 

researcher is not directly interested.  However, the fact that scale has affected the observations 

leads to a number of econometric problems, including coefficient bias, R2 bias, and 

heteroscedasticity.  These issues, which are described more fully below, have been together 

described as “scale effects.”4 

 Following Barth and Kallapur (1996, BK hereafter) and Brown et al. (1999), consider the 

bivariate relation between z = (z1, . . ., zn) and w = (w1, . . . , wn).  Assuming that the relation 

between the two variables is linear with a normally distributed disturbance, we can write: 

 iii wz εβα ++= . (1) 

Equation (1) models the relation “free of scale.”  One might think of z as market values at the 

end of a period that result from investing $1 in each of the n assets.  However, a researcher may 

not be able to observe the data free of scale but instead observes data affected by a scale factor s 

= (s1, . . . , sn) which reflects differential amounts of investment, resulting in: 

 iiiiiii swsszs εβα ++= . (2) 

The theoretically correct regression equation that satisfies the specification of (2) is 

 
.,,

,

iiiiiiiii

iiii

swsxzsywhere

xsby

εξ

ξβα

===

+++=
 (3) 

Equations (2) and (3) are identical, except for the addition of the intercept term b in (3) to 

                                                 
4 The generic term “scale effect” does not refer to any single problem and the use of this term has lead to some 
confusion in the past.  For example, Easton and Sommers (2003) state, “The overwhelming influence of large firms 
in these regressions is referred to as the ‘scale effect’,” but that definition is considerably different from that used in 
other studies.  In this paper, I deliberate avoid this general term, and instead use the more specific names: coefficient 
bias, R2 bias, and heteroscedasticity. 



 6

maintain the econometric consistency of the estimated coefficients (see Kennedy 1992, 111).  

Suppose that, instead of the theoretically correct specifications of (1) or (3), researchers omit the 

unobservable variable s and estimate: 

 iii xbby η++= 10 . (4) 

 Brown, Lo, and Lys (1999) analyze the impact of scale on the coefficient of 

determination, or R2, resulting from equation (4).  They analytically show that R2 is a function of 

the coefficient of variation of the scale factor, and in the context of capital market research, that 

relation is usually positive.  They conclude that cross-sample comparisons of R2 are ill-advised 

without correcting for the differential variation in scale across samples. 

 The presence of scale in the data also leads to heteroscedastic errors in equation (4).  

Intuitively, larger observations have a higher likelihood of having errors with magnitude higher 

than a particular cutoff value.  For example, there is a high likelihood of a valuation error of 

more than $1 billion for a firm with market value of a $100 billion, whereas that likelihood 

would be quite small for a firm with $100 million market capitalization.  Technically, from 

Equations (4) and (1), 01 )()( bwbss iiiii −−++= βεαη .  Therefore, if the underlying errors εi 

have constant variance, then ηi will have variance proportional to the variance of si, which can be 

assumed to be in increasing in si.  Insofar as there are standard corrections for heteroscedasticity 

(e.g., standard errors computed according to White 1980), the researcher can accept the presence 

of heteroscedasticity.  Alternatively, the researcher can divide the observed variables by a proxy 

for s and then estimate an approximate version of equation (1), thereby mitigating 

heteroscedasticity.5  This latter alternative is particularly useful when the requisite test statistics 

                                                 
5 Any remaining heteroscedasticity from a deflated model could of course be accommodated by the same 
adjustments as in the undeflated model.  In addition, if homoscedasticity is achieved by deflation, then there is no 
need to incur the efficiency less loss of using non-OLS methods such as White’s (1980) correction. 
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do not (yet) have standard corrections for heteroscedasticity.  For example, the Vuong (1989) 

statistic for non-nested models does not explicitly contemplate heteroscedastic errors, and 

Section  6 examines the degree to which inferences using the Vuong’s Z-statistic is affected using 

a deflated model compared with an undeflated model that includes a scale proxy as a regressor.   

 The third problem arising from scale differences is coefficient bias.  Estimation of 

equation (4) will result in coefficients that are biased due to the omission of si, which is clearly 

correlated with the included variable xi, since xi = siwi.  Brown et al. show that the estimated 

coefficients from Equation (4) will be: 
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In other words, the amount of bias in the slope estimate ( β−)ˆ( 1bE ) is increasing in α, the 

intercept from the original model, and c1, the degree of association between the scale factor and 

the independent variable x.  This latter association will increase with the variation in the scale 

factor. 

The above equations point to two approaches to mitigate coefficient bias: deflating by a 

scale proxy or including a scale proxy as an independent variable.  By deflating both dependent 

and independent variables by a scale proxy s′, the first approach attempts to recover the original 

equation (1), although with error.  In the second approach, adding an independent variable s′ 

results in an approximate version of equation (3).  Barth and Kallapur (1996) find that the former 

approach is inferior to the latter approach for scale proxies that are as much as 95% correlated 
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with the true scale factor.  The next section replicates the principal simulation results from BK, 

followed by a re-examination of this conclusion in Section 4.  

3. Replication of results in Barth and Kallapur (1996) 

The main conclusion arising from BK, that including a scale proxy as an independent variable is 

more effective at mitigating coefficient bias than deflating by the same scale proxy, is derived 

from regressions using simulated data.  The simulations begin with 1990 Compustat firms with 

book value of equity and net income greater than 0.01 ($ million), from which were selected the 

500 firms with the largest total assets.  A summary of BK’s other assumptions are as follows 

(with relabelling to be consistent with the notation above), with 2σ  denoting the variance of the 

subscripted variable, and ρ  the correlation between s and s′:6 

A1. zi = α + 7wi + εi  (i.e., β = 7) 

A2. α = {1500, 150, 15}  

A3. wi ~ N(200, 1002) 

A4. εi ~ N(0, 7002) 

A5. si = book value of equity is the assumed scale factor 

A6. si is independent of both zi and wi 

A7. iii vss +=′  is the simulated scale proxy 

A8. vi ~ N(0, 2
ivσ ) where 2

ivσ  satisfies 2
22

2

ρ
σσ

σ
=

+
ii

i

vs

splim  and 22
iv s

i
∝σ  

This condition restricting the ratio of the variances is derived from the fact that this ratio is the R2 

from a simple regression of  A7, which equals the square of the correlation between is′  and si 

                                                 
6 These assumptions are described on p. 538 and 540 of BK, although  A8 will not be evident from a casual reading.  
For brevity, the analysis focuses on a subset of the most important simulation results reported in BK.  
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(i.e., ρ2).  It is this correlation that will be varied in the simulations.  Note also that the variance 

of both scale s and the scale proxy s′ are non-constant and depend on i.  In  A8, let k be the 

proportionality constant so 22
iv ks

i
=σ .  Then this assumption is equivalent to: 

  A8. vi ~ N(0, 2
ivσ ) where 22

iv ks
i

=σ  where 22

2

2 11

ss

sk
σµ

σ
ρ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  

For example, BK (p. 538) calculate that with a desired correlation of ρ = 0.95, and with in-

sample estimates of µs =3181, σs = 4625, it is necessary that ( ) 22
5616
15212

iv s
i

=σ .  It should further be 

noted that the results replicated here also apply to the special but less descriptive case when s has 

constant variance. 

 BK examine the ability of a number of different models to mitigate coefficient bias, by 

comparing the distributions of the estimates for β to the true coefficient in equation (1).  Of these 

various models, this paper examines the two models that are most important and relevant, 

compared with the benchmark Model 1, as follows: 

Model 1:  iii ewbaz 111 ++=  (6) 

Model 2:  iiiii esxbasy 222 // +′+=′    (7) 

Model 3:  iiii escxbay 3333 +′++=  (8) 

Model 2 deflates the observed variables by a scale proxy, whereas Model 3 uses the observed 

variables, undeflated, but includes the scale proxy as a regressor. 

 Table 2 shows the descriptive statistics for the sample of 500 firms used to replicate BK’s 

results and for all simulations in this study.  The mean and standard deviation of s (i.e., book 

value) are slightly higher than those reported in BK, at 3393 and 4729, respectively.  However, 

these minor differences should not affect the results materially. 

Figures 2a and 2b shows the results of replicating BK’s Figures 1A and 1C for α = 1500 
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and α = 15, respectively.  (The intermediate value of α =150 has been omitted in this paper for 

brevity.)  The results charted are, for each of Models 2 and 3, the 5th percentile, median, and 95th 

percentile of estimated slope coefficients less the true value of 7, for 250 randomizations using 

the above assumptions A1 to  A8.  A comparison with BK shows that their results have been 

successful replicated.   

4. Analysis 

Figures 2a and 2b show that Model 3 generally results in less coefficient bias compared with 

Model 2.  Furthermore, Model 3 is more efficient since the distribution of coefficients from 

Model 3 has lower variance.  Thus, just as BK conclude, including a scale proxy as a regressor 

(Model 3) is superior to deflating by the same scale proxy (Model 2).  However, this conclusion 

are only warranted if the assumptions that generate the data are reasonable.  While on the surface 

all the assumptions appear benign, detailed analysis of  A7 and  A8 show that the scale proxies 

generated have unusual characteristics. 

 Examine the 10 mini-charts in Figure 3.  At the top is a representative plot of the 

underlying (scale-free) data for the 500 observations generated for one iteration of the simulation 

using  A1 to  A4.  Visual inspection confirms that this data is generally well-behaved.  The nine 

charts in the three rows below this graph plot relationships with ρ = {0.95, 0.75, 0.50}  First, 

focus on the left column.  These three charts show that, when the correlation between s and s′ is 

0.95, the scale proxy has appropriate characteristics of (i) increasing one-to-one, on average, 

with the true scale factor; and (ii) positivity.  However, when the correlation declines to 0.75 and 

0.50, a substantial number of observations have negative values of the scale proxy.  Deflating by 

negative values changes the sign of the observations in Model 2, and essentially moves data that 

generally reside in first Cartesian quadrant to the third quadrant, as illustrated in the three charts 
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in the central column.  Such negative values do not make economic sense if the dependent 

variable reflects market value or stock price, for examples.  The implication of the negative 

values of the scale proxy is that the estimated intercept is biased toward zero (when it should be 

1500 in this case), while the slope coefficient in upwardly biased.7  In addition, these three charts 

show that the domain and range of the deflated data become increasingly large as ρ declines, due 

to the increasing likelihood of deflators that are close to zero when the true scale is not close to 

zero, which results in some extreme and influential observations which magnify the bias created 

by the observations in the third quadrant.  These unusual values of the scale proxies explain why 

deflation according to Model 2 does poorly except when the correlation is extremely high.  In 

contrast, the undeflated data in the three charts on the right column of Figure 3 show no 

substantial changes as ρ declines, except for some increased heteroscedasticity.  Consequently, a 

regression of Model 3 does consistently well.  

 The plots in Figure 3 provide a visual impression of the data, but it is difficult to gauge 

more precisely the frequency or likelihood that the simulations generate the problematic 

observations.  Consequently, Figure 4 shows the expected probability of observations that have 

negative scale proxies, small scale proxies (relative to the true scale factor), or both.  For 

example, the probability of a negative scale proxy is computed as follows: 

                                                 
7 To see this, consider three observations with coordinates (w, z) = {(0, 1500), (500, 5000), (500, 5000)}.  The 
estimated intercept equals 1500, and slope equals 7, with zero error.  Suppose the s/s’ = {1, 1, -1}.  Therefore, the 
deflated data has coordinates (x/s’, y/x’) = {(0, 1500), (500, 5000), (-500, -5000)}.  The estimated intercept is biased 
downward to 500 and the slope is biased upwards to 10.   
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For ρ = 0.95, µs =3181, σs = 4625, we obtain %01.0)69.3()|0( =−<=<′ iii Zprsspr , a 

probability that is so negligible that one does not expect to see even one instance of this 

occurrence in 500 observations.  However, when ρ = 0.50, on average 121 of 500 observations 

are expected to have a negative scale proxy, since %2.24)700.0()|0( =−<=<′ iii Zprsspr .  

Even when the correlation is at a reasonably high level of 0.75, the probability is a non-trivial 

8.4%.  The heavy solid line in Figure 5 shows these probabilities at values of ρ from 0.50 to 

0.99.  

 The probabilities for deflators (i.e., scale proxies) that are small relative to the true scale 

factor can be computed using calculations similar to Equation (9).  “Small” here means that the 

ratio |/| ii ss′  is below a specified cutoff.  For example, if |/| ii ss′  < 0.5, then deflation will make 

the value of the observation at least twice as large as the true data.  Again, Figure 5 shows that 

for all except the highest correlations, there is a substantial probability that the scale proxy will 

take values that are small.  For a cutoff value of 0.5, the gap between the topmost and 

bottommost lines shows the probability to be about 20% and almost constant until ρ reaches 

0.85.  Likewise, for a cutoff value of 0.20, there is roughly a 9% chance that deflation will make 
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observations at least five times as large as the true data.  Although not shown in the chart, there 

is in fact a 2% probability (10 out of 500 observations) that the deflator will make observations 

more than 20 times as large as the true data for correlations up to 0.85.  Even more problematic 

is that about half of each of these probabilities (20%, 9%, and 2%) are for scale proxies that are 

both small and negative.  For example, there is about a 1% chance that deflating by the scale 

proxy will change the sign of the observation and move it 20 times away from the origin (i.e., 

iiiii wsxss 20/)0,05.0(/ −<′⇔−∈′ ) for ρ up to 0.80.  Therefore, the scale proxy can be very 

poor even while there is a reasonably high stated correlation between s and s′.    

The source of the discrepancy between the stated correlations and the resultant quality of 

the scale proxy lies in BK’s approach to generating the scale proxy s′.  Referring back to 

assumptions  A7 and  A8, noise (v) is added to the true scale factor s to obtain the proxy s′, with 

the amount of noise determined by the desired correlation between s and s′.  While simple, this is 

not the usual approach to generate correlated variables in monte carlo simulations.  (Additional 

discussion of a better approach appears in the next section.)  The biggest problem with this 

approach is that the scale proxy necessarily has higher variance than the true scale factor.  When 

the desired correlation is high, say 0.95, 222 )95.0/1( ss σσ =′ , there is not much difference in the 

variances and, if given a high enough mean (µs), there is a very low chance that the scale proxy 

will reach small or negative values.  However, when the correlation is 0.50, then 

222 )50.0/1( ss σσ =′ ; the scale proxy will have four times the variance of the true scale factor.    

Had BK extended the analysis to ρ = 0.10, the variance of the scale proxy would be 100 times as 

high.  (Keep in mind that the mean is not changing, so the coefficient of variation increases along 

with the variance.)    

While it is arguably an empirical issue whether such a relation is valid, a priori it does not 
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appear reasonable.  The high variances result in substantial probabilities that the scale proxy 

becomes relatively small or negative, resulting in many observations that do not make economic 

sense.  One may argue that it does not matter as long as all competing models use the same scale 

proxy.  However, the approach used to construct the scale proxy handicaps Model 2 (deflation) 

but doesn’t do so for the Model 3 because of the error assumption in  A7 is additive (i.e., 

iii vss +=′ ).  Consequently, the distributions are reasonable in a linear sense: by definition, 

ii ss −′  is distributed normally because vi is assumed Normal, so that extreme values of ii ss −′  

are always limited to Normal probabilities.  In contrast, the distribution of ii ss ′/  is highly non-

Normal, as shown by the above probabilities of extreme values.  In fact, the distribution of ii ss /′  

is ),1( kN , so the inverse ii ss ′/  has a Cauchy distribution, which has a non-existent mean and 

infinite variance.  To justify the approach in BK, one may also argue these outcomes are 

appropriately part of the simulation.  This is not reasonable because negative scale proxies are 

non-sense deflators that either do exist in the data, and when they do exist, are not used by 

researchers.  For examples, a common deflator is market value of equity, which is always 

positive.  When researchers use other deflators that could have negative values, such as total 

assets or book value of equity, they generally exclude observations with such negative deflators. 

 To obtain an idea of the impact of the small and negative values of the scale proxy on the 

estimates of coefficient bias shown in Figures 2a and 2b, one can simply eliminate observations 

that have such characteristics.  Admittedly, this process is ad hoc, but this analysis is simply 

intended to gauge whether the unusual deflators could be driving the poor performance Model 2.  

A technically sound approach requires re-generating the data with other, more reasonable 

assumptions, which will be provided in the next section. 

 Figure 5a and 5b are analogous to Figures 2a and 2b, except that observations with 0.5 < 
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ii ss /′ < 2 (i.e., values of the scale proxy and the true scale factor are no more than 100% away 

from each other).  These figures show that, once unusually large or small scale proxies are 

excluded, Model 2 (deflating) performs  as well as or better than Model 3 (including a scale 

proxy as regressor).  Specifically, there is little difference between the two methods on average, 

and the distribution of coefficient bias is much tighter for Model 2.  As the next section will 

show, these findings are not just due to the ad hoc way in which poor values of the scale proxy 

have been discarded.  Rather, the results from these reduced samples reflect more general 

outcomes when the distribution of the scale proxy is more reasonably specified. 

5. Alternative assumptions to generate scale proxies 

The previous section showed that assumptions  A7 and  A8 result in scale proxies that have 

unreasonable characteristics.  To reiterate, those assumptions inflate the variance of the scale 

proxy as the specified correlation decreases, and this increased variance results in non-trivial 

numbers of observations with values of the scale proxy that are negative, or approach zero 

arbitrarily closely.8  An approach that avoids this problem is to use variations of a Cholesky 

decomposition that is used in many monte carlo simulations. 

 For technical reasons as shown in Appendix A, a standard Cholesky decomposition is not 

appropriate for the present circumstances.  Instead, a modified approach that uses the general 

framework of the Cholesky method is required.  Essentially, for a two variable case, the 

decomposition starts with two independent and identically distributed variables (call these z1 and 

z2).  One of the variables of interest (s in the present case) is set to equal z1. The second variable 

of interest (s′) is defined as a weighted average of z1 and z2, with the weights set precisely to 

attain the required degree of correlation (see Appendix A for derivation of these weights).  In a 
                                                 
8 Of course, since the distributions are continuous, there is zero probability of the scale proxy taking the value of 
exactly zero, in which case the deflated values would not exist. 
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standard decomposition, both the mean and variance s′ would equal those of s.  However, the 

fact that s is always positive results in simulated s′ that only preserve the mean or the variance, 

but not both.9 

 Two weighting schemes are thus employed to generate scale proxies, as follows, 

replacing  A7 and  A8: 

A9. Scheme A:  iii tss )1( λλ −+=′   

A10. Scheme B:  iii tss 21 ρρ −+=′  

The random variable ti is independent of and has the same distribution as si.  The simplest way to 

generate ti is to sample from the actual s vector, randomly with replacement.  The first weighting 

scheme is just a linear combination of two independent variables with the same distribution, so 

)()( ii sEsE =′ , but the variance will be )()()221()( 2
iii sVarsVarsVar <+−=′ λλ  for )1,0(∈λ .10  

Scheme B uses the Cholesky weights based on the specified correlation ρ.  This weighting 

scheme results in equal variances, with )()()1()()( 22
iiii sVarsVarsVarsVar =−+=′ ρρ , but 

unequal expected values, with )()( ii sEsE >′  for )1,0(∈λ .  There are no strong justifications to 

prefer equal means or equal variances, so the analysis below examines both. 

 Figure 6a shows the results of 250 repetitions of applying Scheme A at each of 20 values 

of λ = {0.05, 0.10, …, 0.90, 0.95, 0.99), for the scenario with potentially high coefficient bias 

because of a large intercept of α =1500.  As a reminder, each repetition involves regressions with 

500 observations.  The scatter plot shows the amount by which the estimated slope coefficients 

                                                 
9 Intuition would suggest that the mean can be stabilized by first de-meaning si and ti, then applying weighting 
Scheme 2, and finally adding back the mean of si.  However, this is inappropriate because, similar to BK’s approach, 
the distribution of is ′  would include values that are negative and approach zero arbitrarily closely. 
10 Readers will recognize this effect as the variance reduction from portfolio diversification.  This lower variance 
results in correlations (in probability limit) that are higher than the weight λ under Scheme A; this correlation can be 

computed as plim corr(s, s′) = λλλλ >+− 2221/ .  In contrast, plim corr(s, s′) =  ρ under weighting Scheme B. 
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from Model 2 or Model 3 deviate from the true value of 7 for each empirical correlation of s and 

s′ on the horizontal axis.  (The empirical correlations are used instead of the specified weights so 

that observations do not cluster at 20 locations on the x-axis and obscure the chart.)  The plot 

shows that Model 2 (deflation) generally results in less coefficient bias, and the coefficients that 

are more tightly distributed compared with Model 3.  Incorporating both bias and efficiency, the 

mean squared error criterion can be used to rank the two models, and this is shown in Figure 6b.  

This chart shows the squared errors (i.e. (estimated slope – 7)2 ) for each of the 20 × 250 = 5000 

repetitions, and a least squares polynomial of the fifth degree to ease interpretation.  The results 

show that the squared errors are on average lower for Model 2 than for Model 3 except for a 

small range from about 0.8 to 0.97.11  

 Figures 7a and 7b repeat this analysis for the scenario with a small intercept of α = 15.  

Because of the smaller potential coefficient bias, Figure 6a shows that there is little discernible 

difference between the two models in terms of bias, but Model 2 clearly dominates Model 3 in 

terms of efficiency.  As a result, Figure 6b shows that the difference in squared errors (Model 2 

less Model 3) are predominantly negative throughout the entire range of correlations, and the 

mean squared error illustrated by the least squares polynomial is always negative in favor of 

Model 2. 

  The previous 4 figures are based on weighting Scheme A.  Very similar results are 

obtained using Scheme B.  For brevity, I show only the plots of the differences in squared errors 

and not the individual slope coefficients, for the two cases of α = {1500, 15}.  Figures 8a and 8b 

look in all material respects identical to Figures 5b and 6b.  Therefore, the general dominance of 

Model 2 over Model 3 is not sensitive to the weighting scheme employed. 

                                                 
11 Similar results obtain if mean squared errors are computed at each of the 20 values of λ instead of fitting a 
polynomial to the scatter plot. 
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 Taken together, the above results show that deflating by a scale proxy in general results 

in less coefficient bias than including the same scale proxy as a regressor.  This is distinctly 

opposite the conclusion drawn in BK.  The different conclusions result from the way the scale 

proxies are generated.  BK’s approach can result in some non-sensible negative values of scale 

proxies, and proxy values that deviate enormously from the true scale values even when there are 

high stated correlations between the scale proxy and the true scale factor.  The current approach 

aims to generate scale proxies that come from the same distribution as the true scale factor, 

resulting in values of the scale proxy that are more reasonable. 

6. Further analyses: tests of incremental and relative association 

The last section has shown that it is more often than not the case that deflating by a scale proxy 

will better mitigate coefficient bias in the case of a single independent variable of interest.  

However, researchers often desire to answer research questions that differ from this simple 

scenario.  For example, the above scenarios could be interpreted as regressions of equity market 

values on net income (deflated or not).  The research question is simply whether net income is 

associated with equity market values (i.e., whether net income is “value relevant”).  A different 

research question is whether another income statement item (e.g., foreign exchange gain/loss, 

other comprehensive income, difference in US and non-US GAAP income) is incrementally 

associated with equity market values (i.e., whether these items are incrementally value relevant).  

Yet another question is which of two methods of computing income is relatively more highly 

associated with equity market values (i.e., whether one method has higher relative value 

relevance).  The following analyses address the impact of scale on these two types of questions. 

6.1. Tests of incremental association 

The following three equations are analogous to those in presented in Section  3, with the addition 
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of variables w2, sx ′/2 , and x2 for Models 1, 2, and 3, respectively.  In incremental tests, what are 

of interest are the coefficients for these variables (i.e., b12, b22, or b32 in the following equations), 

and whether these values are significantly different from zero (or possibly some other value 

under the null hypothesis).   

Incremental Model 1:  iiii ewbwbaz 12121111 +++=  (10) 

Incremental Model 2:  iiiiiii esxbsxbasy 22221212 /// +′+′+=′    (11) 

Incremental Model 3:  iiiii escxbxbay 332321313 +′+++=  (12) 

 The presence of a scale factor in Models 2 and 3 can bias the estimated coefficient b•2 in 

a manner similar to the effect on b•1.  In particular, b22 or b32 could be found to be significant 

even if z is not associated with w2, but because scale induces an association between y = s′z and 

x2 = s′w2.  To investigate which of Incremental Models 2 or 3 is less likely to suffer from this 

problem, I conduct a set of simulations similar to those in the previous section. 

 In addition to assumptions  A1 to  A6,  A9, and varying the values of λ (which induces 

various level of correlation between s and s′), the multivariate regressions in Equations (11) and 

(12) requires the specification of w2 and how this variable is correlated with w1.  Thus, it is 

necessary to replace  A1 and  A3 with the following, respectively: 

A11. zi = α + 7w1i + 0w2i + εi  (i.e., β1 = 7, β2 = 0) 

A12. )1,0(~where100200 111 Nvvw iii +=  

iiiiii vvNvvvw 2122
2

12 ),1,0(~where1100100100 ⊥−++= ππ  

Assumption  A11 corresponds to the null hypothesis that the second independent variable is not 

incrementally associated with the dependent variable.   A12 specifies the two independent 

variables with correlation π using the Cholesky decomposition as described in Appendix A.  The 
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choice of E(w2i) = 100 = ½ E(w1i) is empirical descriptive in that the incremental variable will 

usually have a lower mean than then the first (non-incremental) variable.  For examples, foreign 

exchange gain/loss, other comprehensive income, difference in US and non-US GAAP income 

will usually have smaller expected values than net income.12 

 Similar to Figures 6a and 7a, Figure 9a plots the estimates for coefficient b22 and b32 

against the empirical correlations between the scale factor and the scale proxy, when π, the 

correlation between w1 and w2, equals zero, and the intercept α = 1500.  This chart shows that 

Incremental Model 2 is superior.  Figure 9b then extends this analysis over 19 values of π = {-

0.9, -0.8, … -0.1, 0, 0.1, … 0.8, 0.9}and 20 values of λ = {0.05, 0.10, … 0.90, 0.95, 0.99} using 

weighting Scheme A, for a total of 380 combinations.13  This chart shows the differences in the 

mean squared errors of Incremental Model 2 less those of Incremental Model 3 for coefficient 

b•2.  Each mean squared error is computed using estimated coefficients b•2 from 250 iterations 

(as in the previous section).  Figure 9b shows that, in general, the differences in mean squared 

errors are negative.  Incremental Model 2 (deflating by scale proxy) is less biased or more 

efficient, or both, compared with Model 3 (including scale proxy as regressor).  Only for extreme 

values of π, positive or negative, and a small range of λ, are the mean squared errors lower for 

Model 3. 

 Figures 10a and 10b repeats this analysis for α = 15.  Strikingly, in all cases, the mean 

squared errors of the incremental coefficients are lower when the variables are deflated by a 

scale proxy, compared with when the same scale proxy is included as a regressor.  This result 

holds regardless of the extent to which the scale proxy approximates the true scale factor, and 

                                                 
12 The results below are qualitatively similar for E(w2i) = {50, 100, 150} 
13 Because the results of the previous section shows that both weighting scheme result in almost identical inferences, 
only Scheme A is used in this section. 
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regardless of the degree to which the independent variables are correlated.  Taken together, these 

results show that it is in general more effective to deflate by a scale proxy if a researcher is 

interested in testing for incremental associations. 

6.2. Tests of relative association 

Tests of relative association arise frequently in accounting.  For example, a researcher may be 

interested in whether one measure of income is superior to another.  Such a question involves a 

comparison of two non-nested models, in which one model cannot be expressed as a constrained 

version of the other (as was the case in Section  6.2).  Vuong (1989) provides a Z-statistic for 

testing such non-nested models.14  

 Vuong’s model assumes that errors are homoscedastic.  However, since the presence of a 

scale factor can result in heteroscedasticity, Vuong’s Z is potentially mis-specified when scale 

affects the regression variables.  The following analysis examines which of Models 2 or 3 is 

better specified:  which model better matches the theoretical rejection rates under the null 

hypothesis of equal explanatory power for two alternative (sets of) independent variables. 

 To be precise, recall assumptions  A1 to  A8 and as adjusted in Section  5.  The true data 

generating process is given by  A1 through  A4.  Suppose a researcher is interested in comparing 

the explanatory power of the following two equations:   

Relative Model 1′:  iii ewbaz 111 ′+′′+′=  (13) 

Relative Model 1″: iii ewbaz 111 ′′+′′′′+′′=  (14) 

Neither w′ nor w″ is the true independent variable w.  Rather, under the null hypothesis, both 

variables are equally correlated with w.  Again utilizing the Cholesky decomposition in 

Appendix A, the variables are constructed as follows, replacing assumption  A3: 
                                                 
14 Vuong (1989) provides statistics for both nested and non-nested models, although the latter have proven most 
useful because of the availability of other statistics for nested models.  
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Here, θ is the desired correlation between the true variable w and either of the actual regressors 

w′ and w″.  Under these assumptions, Vuong’s Z-statistic for Model 1′ vs. Model 1″ (denoted as 

VZ1) has a standard normal distribution. 

 Of interest to this study are the distributions of the Z-statistics (denoted as VZ2 and VZ3) 

for the following two sets of equations:  

Relative Model 2′:  iiiiii eswsbasy 222 // ′+′′+=′    (15) 

Relative Model 2″: iiiiii eswsbasy 222 // ′′+′′′+=′  (16) 

Relative Model 3′:  iiiii escwsbay 3333 ′+′+′+=  (17) 

Relative Model 3″:  iiiii escwsbay 3333 ′′+′+′′+=  (18) 

 The distributions of these VZ statistics are simulated using  A1,  A2,  A4 to  A6,  A9,  A13, 

with intercept α = {1500, 15}, correlation between w and w′ (or w″) θ = {0.50, 0.95}, and λ = 

{0.50, 0.95}.  To obtain a sufficient degree of accuracy in the simulated probabilities for nominal 

p-values as low as 0.001, the statistics are computed over 10,000 iterations.  

 Table 3 shows the results of the simulation.  The reported results are for α = 1500; those 

for α = 15 are similar and have been omitted for brevity.  The table shows the probabilities of 

obtaining a VZ statistic (frequency of occurrence ÷ 10,000) whose value is more extreme than 

the cutoff value for the corresponding p-value.  First, observe that the benchmark VZ1 indeed has 

a standard Normal distribution in accordance with theory.  Second, we see that VZ2, computed 

from the deflated models, has an almost identical distribution.  All of the empirical probabilities 

approximate those of the standard Normal p-values, the mean value of the statistics is close to 
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zero, and the standard deviation is close to unity.  Interestingly, this is the case regardless of the 

value of θ  and λ.  In contrast, the VZ3 statistics computed from the undeflated models have 

empirical probabilities that consistently exceed those of the Normal values.  For instance, for θ = 

0.50, λ = 0.50, and a lower-tail p-value of 0.05, we observe VZ3 exceeding in magnitude the 

theoretical cutoff value of -1.645 in 0.0951 fraction of the time (951 out of 10,000 iterations), 

almost twice the Normal p-value of 0.05.  For the lower-tail p-value of 0.001, the empirical 

probability of 0.010 is 10 times as large.  While VZ3 is unbiased, with mean close to zero, the 

standard deviation is always significantly higher than unity in all four combinations of θ  and λ.  

Taken together, these results show that deflating by a scale proxy results in VZ-statistics that are 

well-specified, whereas including the scale proxy as a regressor (and not deflating) results in VZ-

statistics that overstate the degree of significance (i.e., understate the p-value).  

7. Conclusions 

The analysis shows that, in general, deflating by a scale proxy provides more accurate inferences 

than including the scale proxy as a regressor (and not deflating).  This conclusion applies to 

simple regressions with one independent variable of interest, tests of incremental association, and 

test of relative association using Vuong’s (1989) Z-statistic.  This conclusion is based on results 

generated from a wide range of correlations between the scale proxy and the true scale factor, a 

wide range of correlations between independent variables (when there are two), and a wide range 

of correlations between proxies for the independent variables and the true variables.  These 

results contrast with those found in Barth and Kallapur (1996) because the prior study uses 

assumptions that produce values of the simulated scale proxies that are economically 

unreasonable whereas no such unreasonable values arise from the modified assumptions in this 

study.  While one may also disagree with the assumptions used in this paper, at the very least it 
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can be said that the conclusion in Barth and Kallapur (that deflation is an inferior approach) is 

not general. 

Many settings in empirical accounting research involve the use of data affected by the 

differential sizes of the observations (firms).  The market value of equity, net income, book value 

of equity, sales, accruals, and cash flows are all dependent on the scale of firms’ operations.  

Thus, inferences on a diverse range of research questions involving equity valuation, alternative 

accounting standards, measurement of discretionary accruals, and the usefulness of accounting 

income versus cash flows are potentially affected by this issue.   
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Appendix A 
 

A standard Cholesky decomposition generates J normal random variables with unit variance and 

correlation matrix Σ.15  This decomposition is achieved by factoring Σ = A′A, where A is an 

upper triangular matrix.  Letting z be a J × 1 vector of independent standard normal random 

variables, then y = A′z will be the desired vector of random variables with unit variance and 

correlation matrix Σ.  For two variables, we have: 
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Notice that this approach yields the desired correlations between two random variables while 

maintaining equal variances, in contrast to assumptions  A7 and  A8.  This would be useful for the 

generation of scale proxies except that si and is′  are not Normal variates; they do not even have  

zero expected values (because scale factors must be positive), which is the essential requirement 

of the decomposition.  To see why, assume that Z1 and Z2 are two i.i.d. distributions with positive 

expected values.  Then it follows from Equation (AP2) that E(y2) > E(y1) for )1,0(∈ρ .  Thus, 

applying a standard Cholesky decomposition would result in scale proxies that systematic over-

estimate the true scale factor. 

                                                 
15 The notation in this appendix is for one observation at a time, as opposed to a vector of observations used in the 
main text of the paper. 
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Figure 1a: Hypothetical relation between negative earnings
and market value of equity in scale-free data
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Figure 1b: Hypothetical relation between negative earnings 

and market value of equity 
when half of data are scaled up by a factor of 5
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Extract from Barth and Kallapur (1996) - Figure 1 Panels A and C 
The top (bottom) line and lightly (darkly) shaded area are, respectively, the mean bias and 95% 
confidence interval for Model 2 – deflated (Model 3 – scale proxy as regressor).   
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Figure 2a: Replication of BK Figure 1A 
Simulated distributions of coefficient bias when Intercept = 1500
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Figure 2b: Replication of BK Figure 1C 

Simulated distributions of coefficient bias when Intercept = 15
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 Figure 3 – Data plot of 500 simulated observations 
from one representative iteration at three levels of 
correlation between the scale proxy and the true 
scale factor 
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Scale-affected data deflated by scale proxy s'
(Note change in scale of axes between charts)
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Figure 4: Probabilities of small and negative deflators
at various correlations of the scale proxy to the true scale factor

using BK's assumptions (A1 to A8)
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Figure 5a: Simulated distribution of coefficient bias when
intercept = 1500 and including only observations with 0.5s < s' < 2s
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Figure 5b: Simulated distribution of coefficient bias when

 intercept = 15 and including only observations with 0.5s < s' < 2s
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Figure 6a: Scatter plot of slope coefficients less true value of 7
from 250 repetitions at each of 20 weightings using Scheme A

when intercept = 1500

-4

-2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Empirical correlation between s and s'

Es
tim

at
ed

 sl
op

e 
co

ef
fic

ie
nt

 le
ss

 7

Darker dots: coefficient bias for Model 3
(Include scale proxy as regressor)

Lighter dots: coefficient bias for
Model 2 (Deflate by scale proxy)

Figure 6b: Model 2 - Model 3 differences in squared errors
of slope coefficients with s' computed using weighting Scheme A

when intercept = 1500
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Figure 7a: Scatter plot of slope coefficients less true value of 7
from 250 repetitions at each of 20 weightings using Scheme A 

when intercept = 15
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Figure 7b: Model 2 - Model 3 differences in squared errors
of slope coefficients with s' computed using weighting Scheme A

when intercept = 15
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Figure 8a: Model 2 - Model 3 differences in squared errors
of slope coefficients with s' computed using weighting Scheme B

when intercept = 1500
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Figure 8b: Model 2 - Model 3 differences in squared errors
of slope coefficients with s' computed using weighting Scheme B

when intercept = 15
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Figure 9a: Estimated coefficients for incremental variable 
from 250 iterations at each of 20 weightings using Scheme A 

when corr(w1, w2) = 0 and intercept = 1500
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Figure 9b: Model 2 - Model 3 differences in mean squared error
for 250 iterations at each of 20 values of lambda 

and 19 values of pi;  intercept = 1500
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Figure 10a: Estimated coefficients for incremental variable 
from 250 iterations at each of 20 weightings using Scheme A 

when corr(w1, w2) = 0 and intercept = 15
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Figure 10b: Model 2 - Model 3 differences in mean squared error
for 250 iterations at each of 20 values of lambda 

and 19 values of pi; intercept = 15
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Table 1 
Papers from The Accounting Review, 78(3) – 79(2), July 2003 – April 2004 for which variables 
are affected by scale. 
Vol. 
(Issue) Authors Title, example regression specification, and approach of dealing with scale 
 
78(3) 

 
Eames and 
Glover 

 
“Earnings predictability and the direction of anaylsts’ earnings forecast 
errors” 
 Forecast Error = f(Earnings Unpredictability, Earnings, Firm Size, Value 

Line Timeliness Rank).  Dependent variable is per share forecast error 
deflated by price at beginning of period. 

 
 Swanson, 

Rees, and 
Juarez-
Valdes 

“The contribution of fundamental analysis after a currency devaluation” 
 ∆Earnings = f(Pre-tax earnings, fundamental signals).  Dependent 

variable is change in earnings per share deflated by price at beginning of 
period. 

 
78(4) Louis “The value relevance of the foreign translation adjustment” 

 Foreign Earningst+1 = f(Foregin Earningst, Translation Adjustmentt). 
Variables are deflated by beginning market value. 

 
79(1) Gordon and 

Joos 
“Unrecognized deferred taxes: evidence from the U.K.” 
 Unrecognized Deferred Taxes = f(Operational Determinants, 

Opportunistic Determinants).  Dependent variable is deflated by market 
value. 

 
 Kallapur 

and Kwan 
“The value relevance and reliability of brand assets recognized by U.K. 
firms” 
 Market Value of Equity = f(Book Value of Equity, Earnings, Brand 

Assets, year and firm indicators). Variable are measured at firm level 
(not deflated). 

 
79(2) Aboody, 

Barth, and 
Kasznik 

“SFAS No. 123 stock-based compensation and equity market values” 
 Stock Price = f(Book Value of Equity, Earnings, Long-term Growth, 

Option Compensation Cost, industry indicators).  Variables are per share 
values. 

 
 Clarkson, 

Li, and 
Richardson 

“The market valuation of environmental capital expenditures by pulp and 
paper companies” 
 Market Value of Equity = f(Book Value of Equity, Abnormal Earnings, 

Environmental Capital Expenditures, High-pollution Indicator). 
Variables are measured at firm level and not deflated. 
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Table 2 
Descriptive statistics 

 Mean
Std. 
dev.

5th 
%ile Median

95th 
%ile

Book value of equity ($millions) 
(assumed scale factor) 3,393 4,729 234 1,978 11,570
Total assets ($millions) 18,221 32,111 3,118 8,227 63,775
Net income before extraord. items ($millions) 444 642 23 241 1,496
Number of shares (millions) 161 265 12 86 478
Stock price ($) 50 298 9 30 87

 
Sample consists of 500 firms extracted from Compustat for the 1990 fiscal year.  The top 500 
firms ranked by total assets (annual item #6) with positive book value of equity (item #60) and 
net income before extraordinary items (item #18).  Number of shares is item #25 and stock price 
is item #24.   
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Table 3 
Distribution of Vuong’s Z-statistic (VZ) for non-nested models 
   θ = 0.50 
   λ = 0.50    λ = 0.95  
One-tail 
p-value 

Theoretical 
Cutoff (VZ*)  

Model 
1′ vs. 1″ 

Model 
2′ vs. 2″ 

Model 
3′ vs. 3″ 

Model 
1′ vs. 1″ 

Model 
2′ vs. 2″ 

Model 
3′ vs. 3″ 

0.001 -3.090  0.0005 0.0011 0.0100  0.0010 0.0013 0.0027 
0.010 -2.326  0.0098 0.0111 0.0319  0.0104 0.0111 0.0172 
0.025 -1.960  0.0248 0.0254 0.0598  0.0268 0.0267 0.0408 
0.050 -1.645  0.0505 0.0528 0.0951  0.0528 0.0529 0.0696 
0.100 -1.282  0.1008 0.1006 0.1529  0.1081 0.1093 0.1352 
0.500 0.000  0.4911 0.4920 0.5020  0.5019 0.5015 0.5061 
0.100 1.282  0.1041 0.1052 0.1521  0.1004 0.1036 0.1368 
0.050 1.645  0.0537 0.0557 0.0938  0.0493 0.0516 0.0753 
0.025 1.960  0.0267 0.0280 0.0586  0.0256 0.0250 0.0428 
0.010 2.326  0.0098 0.0124 0.0340  0.0099 0.0107 0.0188 
0.001 3.090  0.0013 0.0013 0.0084  0.0017 0.0009 0.0027 
          
Mean(VZ)  0.0097 0.0197 -0.0016  -0.0088 -0.0084 -0.0105 
Standard deviation(VZ)  1.0067 1.0178 1.2722  1.0149 1.0193 1.1427 
   θ = 0.95 
   λ = 0.50    λ = 0.95  
One-tail 
p-value 

Theoretical 
Cutoff (VZ*)  

Model 
1′ vs. 1″ 

Model 
2′ vs. 2″ 

Model 
3′ vs. 3″ 

Model 
1′ vs. 1″ 

Model 
2′ vs. 2″ 

Model 
3′ vs. 3″ 

0.001 -3.090  0.0009 0.0008 0.0129  0.0017 0.0014 0.0049 
0.010 -2.326  0.0106 0.0111 0.0370  0.0107 0.0131 0.0297 
0.025 -1.960  0.0264 0.0259 0.0619  0.0266 0.0271 0.0608 
0.050 -1.645  0.0522 0.0511 0.0994  0.0508 0.0518 0.0973 
0.100 -1.282  0.1014 0.1030 0.1610  0.0971 0.1004 0.1541 
0.500 0.000  0.4932 0.4958 0.5091  0.5002 0.5011 0.4986 
0.100 1.282  0.1007 0.0979 0.1484  0.1018 0.1017 0.1553 
0.050 1.645  0.0490 0.0473 0.0931  0.0490 0.0502 0.0918 
0.025 1.960  0.0259 0.0243 0.0607  0.0244 0.0265 0.0553 
0.010 2.326  0.0107 0.0100 0.0352  0.0092 0.0114 0.0304 
0.001 3.090  0.0009 0.0004 0.0108  0.0012 0.0014 0.0055 
          

Mean(VZ)  0.0047 -0.0058 -0.0258  0.0044 0.0019 0.0046 
Standard deviation(VZ)  1.0044 0.9985 1.3021  1.0032 1.0135 1.2487 

This table shows the empirical probabilities of obtaining a Z-statistic larger in magnitude than 
the theoretical cutoff for common p-values under the null hypothesis of equal explanatory power 
(Model 1′ vs Model 1″, Model 2′ vs Model 2″, Model 3′ vs Model 3″).  Distributions are 
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tabulated from 10,000 iterations at each of the four combinations of θ and λ, for a total of 40,000 
iterations.  Each iteration consists of three Vuong’s Z-statistics, where each Z is computed from 
the residuals from two regressions (Model 1′ and Model 1″, etc).  Each regression has 500 
observations.  θ is the degree of correlation between w and w′ and between w and w″.  λ is the 
weighting on s in the construction of s′.   For assumption A2, α = 1500.  
 


