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Abstract

In recent years there has been a great deal of new activity at the interface of biology
and computation. This has largely been driven by the massive influx of data from
new experimental technologies, particularly high-throughput sequencing and array-
based data. These new data sources require both computational power and new
mathematics to properly piece them apart. This thesis discusses two problems in
this field, network reconstruction and multiple network alignment, and draws the
beginnings of a connection between information theory and population genetics.

The first section addresses cellular signaling network inference. A central challenge
in systems biology is the reconstruction of biological networks from high-throughput
data sets, We introduce a new method based on parameterized modeling to infer
signaling networks from perturbation data. We use this on Microarray data from
RNAi knockout experiments to reconstruct the Rho signaling network in Drosophila.

The second section addresses information theory and population genetics. While
much has been proven about population genetics, a connection with information
theory has never been drawn. We show that genetic drift is naturally measured
in terms of the entropy of the allele distribution. We further sketch a structural
connection between the two fields.

The final section addresses multiple network alignment. With the increasing avail-
ability of large protein-protein interaction networks, the question of protein network
alignment is becoming central to systems biology. We introduce a new algorithm,
IsoRankN to compute a global alignment of multiple protein networks. We test this
on the five known eukaryotic protein-protein interaction (PPI) networks and show
that it outperforms existing techniques.

Thesis Supervisor: Bonnie Berger
Title: Professor of Applied Mathematics
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Chapter 1

Introduction

In this thesis, we introduce a number of techniques for using modern mathematical

and computational tools to address problems at the cutting edge of biological research.

In this chapter we introduce and summarize the main contributions of this thesis.

The remained of this document will be divided into three main parts. The first, con-

cerning inference of signaling networks from perturbation experiments is drawn heav-

ily from a paper which appeared at RECOMB 2008 [9] as well as another manuscript

currently in review. The second, concerning the connection between population ge-

netics and information theory, is in preparation for journal publication. The third,

concerning a method for multiple alignment of protein-protein interaction networks

has recently appeared in Bioinformatics [54].

1.1 Signaling Network Inference

A central challenge in systems biology is the reconstruction of biological networks

from high-throughput data sets. A particularly difficult case of this is the inference

of dynamic cellular signaling networks. Within signaling networks, a common motif

17



18 CHAPTER 1. INTRODUCTION

is that of many activators and inhibitors acting upon a small set of substrates. In the

first chapter of this thesis, we present a novel technique for high-resolution inference

of signaling networks from perturbation data based on parameterized modeling of

biochemical rates. We also introduce a powerful new signal-processing method for

reduction of batch effects in microarray data. We demonstrate the efficacy of these

techniques on data from experiments we performed on the Drosophila Rho-signaling

network, by comparing to chemilluminescent Western blot data. In comparison to

existing techniques, we are able to provide significantly improved prediction of sig-

naling networks on simulated data, and higher robustness to the noise inherent in all

high-throughput experiments. While previous methods have been effective at infer-

ring biological networks in broad statistical strokes, this work takes the further step

of modeling both specific interactions and correlations in the background to increase

the resolution. The generality of our techniques should allow them to be applied to

a wide variety of networks.

1.2 Information Theory and Population Genetics

Population Genetics is the study of the dynamics of genetic information as it is

transmitted from one generation to the next. While much has been proven about

these dynamics, a connection with information theory has never been drawn. Of

particular interest is the phenomenon of genetic drift, namely the loss of information

inherent in the discrete resampling of a population between generations. This is

generally studied in the context of neutral models, in which mutation is taken to be

non-existant and no allele has a selective bias over any other. In the second part of

this thesis, we show that under most commonly studied neutral models of population

dynamics the total entropy of the population decreases linearly in each generation.

Moreover, this linear factor is dependent only on the number of alleles present and the
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ratio of the effective population of the model to the effective population of the well-

studied Wright-Fischer Model. This is the first result of any sort on the information

dynamics of population genetics. Further we describe a deep structural connection

between communication over a noisy channel and inter-generation dynamics, in the

hope that this leads to a better understanding of the information theoretic nature of

evolution.

1.3 Multiple Protein-protien Network Alignment

With the increasing availability of large protein-protein interaction networks, the

question of protein network alignment is becoming central to systems biology. Net-

work alignment is further delineated into two sub-problems: local alignment, to find

small conserved motifs across networks, and global alignment, which attempts to find

a best mapping between all nodes of the two networks. In this chapter, our aim is

to improve upon existing global alignment results. Better network alignment will en-

able, among other things, more accurate identification of functional orthologs across

species. In the third part of this thesis, we introduce IsoRankN (IsoRank-Nibble) a

global multiple-network alignment tool based on spectral clustering on the induced

graph of pairwise alignment scores. IsoRankN outperforms existing algorithms for

global network alignment in coverage and consistency on multiple alignments of the

five available eukaryotic networks. Being based on spectral methods, IsoRankN is

both error-tolerant and computationally efficient.
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Part I

Inference of Signaling Networks

From Perturbation Data
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Chapter 2

Introduction

Our goal in this section is to develop a technique for the high-throughput inference

of signaling networks. We test and develop these methods on the Drosophila Rho-

signaling network. The majority of this chapter has appeared in RECOMB 2008 [9],

the remainder is contained in a paper to appear later this year, currently in review.

Biological signaling networks regulate a host of cellular processes in response to

environmental cues. Due to the complexity of the networks and the lack of effective

experimental and computational tools, there are still few biological signaling networks

for which a systems-level, yet detailed, description is known [31]. Substantial evidence

now exists that the architecture of these networks is highly complex, consisting in large

part of enzymes that act as molecular switches to activate and inhibit downstream

substrates via post-translational modification. These substrates are often themselves

enzymes, acting in similar fashion.

In experiments, we are able to genetically inhibit or over-express the levels of

activators, inhibitors and the substrates themselves, but rarely are able to directly

observe the levels of active substrate in cells. Without the ability to directly observe

the biochemical repercussions of inhibiting an enzyme in real-time, determining the

22
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true in vivo targets of these enzymes requires indirect observation of genetic pertur-

bation and inference of enzyme-substrate relationships. For example, it is possible

to observe downstream transcription levels which are affected in an unknown way by

the level of active substrate [40].

The specific problem we address is the reconstruction of cellular signaling net-

works studied by perturbing components of the network, and reading the results via

microarrays. We take a model-based approach to the problem of reconstructing net-

work topology. For every pair of proteins in the network, we predict the most likely

strength of interaction based on the data, and from this predict the topology of the

network. This is computationally feasible as we are considering a subset of proteins

for which we know the general network motif.

We demonstrate the efficacy of this approach by inferring from experiments the

Rho-signaling network in Drosophila, in which some 40 enzymes activate and inhibit

a set of approximately seven substrates. This network plays a critical role in cell

adhesion and motility, and disruptions in the orthologous network in humans have

been implicated in a number of different forms of cancer [68]. This structure, with

many enzymes and few substrates (Fig. 2-1), is a common motif in signaling net-

works [2, 21].

To complicate the inference of the Rho-signaling network further, not every enzyme-

substrate interaction predicted in vitro is reflected in vivo [63]. As such, we need more

subtle information than is provided by current high-throughput protein-protein in-

teraction techniques such as yeast two-hybrid screening [27, 35].

To probe this network, we have carried out and analyzed a series of knockout

and overexpression experiments in the Drosophila S2R+ cell line. We measure the

regulatory effects of these changes using DNA microarrays. It is important to note

that microarrays measure the relative abundance of the gene transcript, which can be
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+ + ++ - - --

Activators Inhibitors

Substrates

Figure 2-1: The many enzyme-few substrate motif. A triangular arrowhead represents
activation, a circular arrowhead inhibition.

used as a rough proxy for the total concentration of gene product. What they do not

elucidate, however, is the relative fraction of an enzyme in an active or inactive state,

which is crucial to the behavior of signaling networks. To reconstruct the network

from measurement, rather than directly use the microarray features corresponding

to the proteins of interest, we instead use correlations in observations of the affected

downstream gene products.

We take the novel approach of constructing and optimizing a detailed parameter-

ized model, based on the biochemistry of the network we aim to reconstruct. For the

first part of the network model, namely the connections of the enzymes to substrates,

we know the specific rate equations for substrate activation and inhibition. By model-

ing the individual interactions in like manner to the well-established Michaelis-Mentin

rate kinetics [62, 14, 65], we are able to construct a model of the effects of knockout

experiments on the level of active substrate. Lacking prior information, we model the

effect of the level of active substrate on the microarray data by a linear function. If

the only source of error were uncorrelated Gaussian noise in the measurements, we

could then simply fit the parameters of this model to the data to obtain a best guess

at the model’s topology.

However, noise and “batch effects” [50] in microarray data are a real-world com-
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plication for most inference methods, which we address in a novel way. Noise in mi-

croarrays is seemingly paradoxical. On one hand, identical samples plated onto two

different microarrays will yield almost identical results [5, 51]. On the other hand,

with many microarray data sets, when one simply clusters experiments by similarity

of features, the strongest predictor of the results is to group by the day on which the

experiment was performed. We hypothesize, in this analysis, that the batch effects

in microarrays are in fact other cellular processes in the sample unrelated to the ex-

perimental state. Properly filtering the ever-present batch effects in microarray data

requires more than simply considering them to be background noise. Specifically,

instead of the standard approach of fitting the data to our signal and assuming noise

cancels, we consider the data to be a combination of the signal we are interested in

and a second, structured signal of the batch effects.

Fitting this many-parameter model with physical constraints to the actual data

optimizes our prediction for the signaling network, with remarkably good results.

To test this method we have constructed random networks with structure similar

to the expected biology, and used these to generate data in simulated experiments.

We find that when compared to reconstructions based on other methods, we were

able to obtain significantly more accurate network reconstructions. That is to say, at

every specificity we obtained better sensitivity and vice-versa. The details of these

other methods can be found in Sec. 5.1.

We have also reconstructed the Rho-signaling network in Drosophila S2R+ cells

from a series of RNAi and overexpression experiments we performed. We attempted

to verify our predictions with a series of chemilluminescent western blots – while the

data is still preliminary, it is reasonably consistent with our predictions.



Chapter 3

Background on Signaling Network

Inference

In this chapter we establish some necessary background on signaling networks. We

also briefly discuss the two experimental technologies critical to the experiments,

RNAi and cDNA microarrays. We conclude the chapter with a discussion of previous

computational work on network inference.

3.1 Biological

3.1.1 Signaling Networks

Many proteins have an active and inactive state. Of these, a large number activate

and deactivatie other proteins, often by attaching or detaching small molecules (e.g.

phosphor groups) causing a change in conformation of the protein which reveals or

occludes the active site. These relatively fast-acting interactions form a network that

is used by the cell for most behaviors that require fast responses. In this thesis we

examine the Rho signaling network, which is integral to cytoskeletal regulation, and

26
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plays a central role in cell motility.

3.1.2 RNAi

RNAi allows the in vivo silencing of genes in many higher organisms [61] . This is

achieved by inserting a section of double-stranded RNA (dsRNA) that matches a

section of a gene. By the action of a set of proteins whose actions are still not fully

understood, the cell silences all transcription of that region of the DNA.

This machinery is thought to be a type of cellular immune system [36] against

RNA viruses, but we can also exploit it for experimental purposes.

3.1.3 Microarrays

cDNA microarrays measure the level of a given set of RNA sequences present in the

cell. The specific type of array we use is a CombiMatrix 4x2k CustomArray. Custom

array technology is notable as the end-user can choose the probe sequences which are

then printed onto an array by use of a modified CMOS array to electrochemically

guide synthesis. Other forms of custom microarrays are achieved by ink-jet printing

the nucleotides directly onto the chip. Measurements are obtained by first extracting

the RNA from a population of cells, cutting it into fragments, plating it to the array

where it binds with complementary sequences, fluorescent dying the bound fragments,

and imaging them with a scanner.

With the custom microarray technology, we were able to choose a set of 2072 se-

quences of lengths between 25 and 35 corresponding to a selection of genes throughout

the cell. As the microarray probe densities are not calibrated, they are not an effec-

tive measure of the relative abundances of transcripts. However, as the manufacturer

claims the probe density is nearly consistent from array to array, they can be used to

measure differential expression under differing experimental conditions.
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Table 3.1: The strength of batch effects as measured by the mean Pearson correlation
coefficient between the same or differing experiments performed on the same or dif-
fering days. The number of pairs of experiments represented is shown in parentheses.

Mean correlation (Number) Same Experiment Different Experiment

Same Day 0.971 (56) 0.955 (642)
Different Day 0.835 (1024) 0.840 (14154)

Noise

Noise in microarrays is seemingly paradoxical. A number of factors can confound

measurements, most notably the nonlinear response curve of microarray florescence

with respect to sample density. Another non-negligable source of error is intensity

biases introduced by the processes of hybridization or scanning.

In general, identical samples plated onto two different microarrays side-by-side

will yield almost identical results [5, 51]. However, identical samples plated on two

different days produce results that diverge significantly [52]. This was notably present

in our results (Table 3.1.3).

The sources of these so-called ”batch effects” are not well-understood, though it

has been recently discovered that the dyes used are ozone-reactive [26, 13], and so

differing ozone concentrations in the laboratory on different days will yield different

results.

These batch effects are thus properly considered not to be noise in the classical

sense of independent perturbation of measurements, but rather an auxiliary signal to

that of the experiments.
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3.2 Previous Work

A number of related techniques for inferring global patterns based on high-throughput

data exist. Many of these utilize the technique of probabilistic graphical mod-

els [32, 67, 33, 66, 53]. While these techniques are effective for inferring networks

in broad statistical strokes, we increase the resolution and model the rate coefficients

of individual reactions. The mathematics of our methodology is in fact isomorphic

to a probabilistic graphical model approach; however as our parameters correspond

directly to physical quantities or coefficients, we are able to dramatically narrow our

model space when compared to a more general technique such as Bayesian or Markov

networks [32]. In doing so we are able to gain both greater sensitivity, specificity,

and robustness to noise. A related technique, based on modeling of rate kinetics in

the framework of Dynamic Bayesian Networks has been effective in modeling genetic

regulatory networks [65]. Techniques from information theory, such as ARACNE (Al-

gorithm for the Reconstruction of Accurate Cellular Networks) [58, 7] and nonparam-

eteric statistics, such as GSEA (Gene Set Enrichment Analysis) [75] have also been

used to infer connections in high-throughput experiments. While not generally used

for signaling network reconstruction, GSEA notably has been popular recently [50, 8],

in part for its efficacy in overcoming batch effect noise.
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Our Approach

In order to infer the Drosophila Rho-signaling network in a more efficient manner than

traditional biochemistry, we performed a number of knockout experiments, whose

effect we measured with microarrays. As this is an entirely novel method for inference

on new data, new mathematical techniques were required as well.

4.1 Experimental Approach

Chris Bakal, in the Perrimon Lab at Harvard Medical School performed 144 ex-

periments, systematically knocking out (via RNAi) and over-expressing components

of the Rho-signaling network in D. melanogaster. These were plated on to custom

single-channel microarrays manufactured by Combimatrix.

For details of the experiments performed and Microarray design, see Appendix A.

By the publication of this thesis, all data will have been uploaded to GEO [6].

30
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4.2 Modeling Challenges

As experiments of this sort had not previously been performed, a number of new

mathematical and computational techniques were required to infer a connections from

them. The first, most obvious, difficulty is that the quantities we measure, the level

of mRNA transcripts, and the quantities we care about, the amount of active-form

GTPase do not have a direct or clearly known relationship. Beyond this, the measure-

ments themselves are obscured by the high level of noise inherent to the microarray

technology. Further, even with perfect measurements, the system is obscured by feed-

back, namely if we knock out one important protein, the cell is likely to respond by

changing the amount of other proteins with redundant and overlapping function.

4.2.1 Indirect Observation

To understand the signal in our data, we construct a parameterized model of the

Rho-signaling network in the hopes that knowing the expected shape of what we are

looking for will help us find it.

We first illustrate our approach for a single activator-inhibitor-substrate trio before

extending to the many-node case. We start by deriving the time dependence of

the concentration1 ρ of active substrate in terms of the concentrations ρ̄ of inactive

substrate, η of activator, α of inhibitor, and the base rates γ̄ of activation and γ of

de-activation. Fig. 4-1 depicts these kinetics. As the rate at which inactive substrate

becomes active is proportional to its concentration times the rate of activation and

vice-versa,
dρ

dt
= −dρ̄

dt
= ρ̄ (γ̄ + η)− ρ (γ + α) . (4.1)

1Choice of units of concentration is absorbed by scalar factors of the fit once the xjk and yjk

coefficients are added; see Eq. 4.3.
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Figure 4-1: The dynamics of an activator-inhibitor-substrate trio. The circled vari-
ables are proportional to protein concentrations.

We are primarily interested in ρ, the level of active substrate, as the downstream

effects of the substrate are dependent on this concentration. As the measurements are

taken several days after perturbation and are an average over the expression levels of

many individual cells, by ergodicity we expect to find approximately the equilibrium

(dρ/dt = 0) concentration of substrate.

Solving for ρ at equilibrium yields:

ρ =
κ (γ̄ + η)

γ̄ + η + γ + α
. (4.2)

where κ = ρ+ ρ̄ is total concentration of the substrate, approximately available from

the microarray data. By choice of time units we can let γ̄ = 1. This result, by no

coincidence, is similar to the familiar Michaelis-Mentin rate kinetics.

We now generalize the model to multiple substrates κk, interchangeable activa-

tors ηj with relative strength xkj, and inhibitors αj with relative strength ykj. The

equilibrium concentration of the level of active substrate ρk then becomes:

ρk =
κk

(
1 +

∑
j xkjηj

)
1 +

∑
j xkjηj + γk +

∑
j ykjαj

. (4.3)

Lacking more detailed biological information, and aiming to avoid the introduc-



4.2. MODELING CHALLENGES 33

tion of unnecessary parameters, we assume a linear response from features in the

microarray. Specifically, for a vector of microarray feature data ~ϕ, we model the ef-

fect as a general linear function of the levels of active substrate, of the form ~a~ρ + ~r.

Additionally we introduce a superscripted index z for those variables which vary by

experiment. The level, ϕzi , of the ith feature in microarray z is in our model:

ϕzi =
∑
k

aik

 κzk

(
1 +

∑
j xkjη

z
j

)
1 +

∑
j xkjη

z
j + γk +

∑
j ykjα

z
j

+ ri + βzi + εzi , (4.4)

where the batch effects ~β and noise ~ε are considered additively.

4.2.2 Noise

While much of the inconsistency intrinsic to microarray technology is dealt with by

proper pre-processing of the data (see Section 6.1), there remains the problem of

batch effects. As batch effects in microarrays are highly correlated, our approach

is to construct a linear model of their structure. Empirically, batch effects tend to

have a small number, s, of significant singular values (from empirical data s ' 4). In

the singular vector basis, we can model the batch effects as a (features × s) matrix

~c. To determine the background as a function of experiment batch, we rotate by an

(s×batches) rotation matrix ~u. Thus ~c~u =
∑

j cijujd is a (features × batches) matrix

whose columns are the background signal by batch. Finally to extract the batch effect

for a given experiment z, we multiply by the characteristic function of experiments

by batches, ~χ, where χzd = 1 if experiment z happened in batch d and is 0 otherwise.

Our model of batch effects is then:

βi =
∑
l,d

ciluldχ
z
d. (4.5)
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All together, our detailed model for experimental data based on the network,

experiments, and noise becomes:

ϕzi =
∑
k

aik

 κzk

(
1 +

∑
j xkjη

z
j

)
1 +

∑
j xkjη

z
j + γk +

∑
j ykjα

z
j

+ ri +
∑
l,d

ciluldχ
z
d + εi. (4.6)

4.2.3 Feedback

Transcriptional feedback, i.e. changes in GAP/GEF/GTPase expression levels in

response to experimental perturbation, can confound inference techniques. To take

this into account, we set the expression level variables in the network model to reflect

the observed expression levels for those proteins. Specifically, the parameters ηzj , α
z
j ,

and κzj were set to be the multiplicative difference over the mean intensity averaged

over all features for that gene, (e.g. ηzj is set to 0.5 when the observed mRNA level of

GEF k in experiment z is half its mean expression). The corresponding parameters

were set to 0 in experiments where RNAi experiments were performed.

While the inclusion of feedback clearly improves the model fit to data, the effect

of its inclusion of result quality is unclear.

4.3 Model Parameter Fitting

Having now constructed a model of our system, we minimize the least-squares dif-

ference between the model predictions and observed data (detailed in Sec. 5.2), to

obtain optimal model parameters. The resultant values of ~x and ~y predict the relative

strengths of the activator-substrate interactions.

It is important to keep in mind which parameters are known and which we must

fit. We know s and ~χ from experiment. In lieu of detailed knowledge of the activity

levels of the activator and inhibitor, we take κzk, η
z
j and αzj to be 1 normally, 0 on those
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experiments for which the gene is silenced, and 2 for those in which it is overexpressed.

The remaining fitting parameters of our model are ~x, ~y,~a,~γ, ~r,~c, and ~u.

For a vector of experimental data ~d, we construct, as above, a model for the

predicted data ~ϕ. Fitting the model to data is done by minimizing:

f(~x, ~y,~a,~γ, ~r,~c, ~u) =
∑
i,z

(dzi − ϕzi )
2 , (4.7)

where ϕzi is given in Eq. 4.6, subject to the constraints

xkj, ykj, δk, κk ≥ 0 (4.8)

and the additional constraint that ~u is a rotation matrix. The fit with lowest objective

value is the maximum likelihood predictor of the network.

To verify that we have more data than parameters, we consider a microarray

with Φ features and a network model with a total of θ activators and inhibitors and

σ substrates. Additionally we consider a 4-dimensional noise model for λ batches.

Then for ζ experiments, we have more data than parameters precisely when:

ζ > σ + 4 +
(θ + 3)σ + 4λ− 10

Φ
(4.9)

In a realistic setting, for 26 enzymes, six substrates, with on average six experiments

per batch, and assuming each experiment has at least 50 features, then we need to

perform at least 14 experiments in order to have more data than parameters. As the

batch effect model has substantially lower rank than the number of batches, as long

as there are at least five batches, over-fitting is unlikely.
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Table 4.1: Full model of signaling network experiments

6804 Independent Variables

ηzj (14 × 126) GEF Perturbations

αzj (13×126) GAP Perturbations

γzj (6 × 126) GTPase Perturbations

dizd (21 × 126) Day Indicator

261072 Independent Variables

dzj (2072 × 126) Microarray Data

23050 Parameters

xk,j (6 × 14) GTPase-GEF affinities
yk,j (6×13) GTPase-GAP affinities
δk (6) Base deactivation rate

ELk (6) GTPase base expression
ai,k (2072 × 6) GTPase-output coefficients
rj (2072) Base spot levels
ci,l (2072 × 4) Batch coefficients
ul,d (4 × 21) Batch rotation

4.3.1 Final Model

The resultant model has 261072 observations2 (dependent variables), 6804 experimen-

tal parameters (independent variables), and 23050 model parameters (see Table 4.3.1).

While largely linear or quadratic, the nonlinearity in the activator-inhibitor-substrate

trio makes the eventual model nonconvex. Thus, unfortunately, direct optimization

of the model parameters is impractical, even with modern software.

2Of which 13155 are missing due to a mid-experiment change in array design.
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Table 4.2: Reduced model of signaling network experiments

4410 Independent Variables

dzj (35 × 126) Microarray Data

643 Parameters

xk,j (6 × 14) GTPase-GEF affinities
yk,j (6×13) GTPase-GAP affinities
δk (6) Base deactivation rate

ELk (6) GTPase base expression
ai,k (35 × 6) GTPase-output coefficients
rj (35) Base spot levels
ci,l (35 × 4) Batch coefficients
ul,d (4 × 21) Batch rotation

4.3.2 Model reduction

To make the model tractable, we must reduce it to one with fewer variables that

captures the overwhelming majority of the variation in the data that the full model

predicts. We use two facts to do this. First, the last step of every component of the

model a, u and r are linear. Thus the model will equivalently fit any rotation of the

data matrix d, i.e. minimizing ||d− φ||2 and ||Ud − φ||2 are equivalent. Second, the

model never explicitly makes use of the fact that the 2072 observations correspond

to known biological components. Thus, if the majority of the variation is on a small

number of dimensions, fitting the model to those dimensions alone will capture the

majority of the variation in the data as well fitting it to the entire dataset. Empirically,

the noise introduced from on-chip errors (measured by computing the variance of

identical features on the same chip) is greater than the error in a 35-dimensional

approximation of the data. We thus fit the model to the top 35 principle components

of the data matrix.
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4.3.3 Optimization

Even with the reduction, finding the global minimum for model error (the maximum

likelihood predictor) is not feasible, nor is it clearly desirable. To find an optimum,

we use a local solver, starting at many randomly chosen points in the parameter

space. Specifically, we used the commercial solver SNOPT [34], which uses sequential

quadratic programming to do local optimization.

Other optimization methods and their failings are discussed in Section 6.3.3.

4.3.4 Predicted Connections

We used a consensus of local fits to predict connections, as the different local minima

found were all within noise of one another’s fit qualities. Specifically, as the models

fits all had approximately the same residual (within 0.75%), there was no a priori

way to choose a best fit. Local fits were started from a large number of starting

points, each with a subset of the possible connections strongly present, in order to

get effective sampling of the space. Of the resulting fits, those which were identical

or who a strictly better linear combination were merged.

While the majority of predicted affinity parameters (x and y) were fit to be exactly

0, those which were not were taken to be connections. The fraction of parameter fits

which show a connection is treated as the confidence in the predicted edge.

4.3.5 Forced Connections

A major advantage of using a parameterized model is the ability to to add further

previous knowledge about the system to reduce the space of possible model fits. To

this end, we created a literature-compiled set of connections which are believed to

not be present in the Drosophila Rho-signaling network, and forced the corresponding
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parameters in the model to be zero. We then re-fit the model by the same procedure

as above with this further constraint.
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Results

To test our model, we first tested the model on simulated data. Then we tested the

predictive power of the model on real data. Finally we evaluated our predictions

against a set of connections inferred from literature.

The first two sections describe work done on the first 80 experiments, the available

data for [9].

5.1 Simulated Data

We have generated simulated data on randomly created networks. The density of

activator-substrate and inhibitor-substrate connections was chosen to reflect what

is expected in the Rho-signaling network described in Section 5.2. From this, we

have generated model experiment sets consisting of one knockout twice of each of the

substrates and a single knockout of each activator and inhibitor in batches in random

order. To further mimic our biological data set we included at least one baseline

experiment in each batch. From this model we simulated experimental data with

both noise and a batch-effect signal and attempted to fit the generated data.

40
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To test against other techniques, we applied the statistics used by GSEA and

ARACNE (see Section 6.4), modified for use on our model data sets. While GSEA

is not typically used for signaling network reconstruct, its general usefulness in mi-

croarray analysis necessitates the comparison. ARACNE, on the other hand, while

designed for a similar situation, does not directly apply, and so needs to be modified

to make a direct comparison. As a baseline, we also computed the näıve (Pearson)

correlation of experimental states.

On noiseless data, with only a minimal set of experiments and batch effects of

comparable size to the perturbation signal, we are able to achieve a perfect network

reconstruction which was not achieved by any of the other methods we consider. On

highly noisy data, we cannot reconstruct the network perfectly; however we consis-

tently outperform the other methods in both specificity and sensitivity (Figure 5-1).

Moreover, we find that while the model alone out-performs other techniques (com-

parably to AMI), the batch effect fit is of crucial importance. While this is clearly a

biased result, as the simulated data is generated by the same model we assume in the

fit, it does show that we are able to obtain a partial reconstruction even under high

noise conditions. As this is a best-guess model from prior biological knowledge, the

assumptions are far from unreasonable.

5.2 Predictive Power on Real Data

We used our method, discussed above, on forthcoming microarray data collected from

RNAi and overexpression experiments to predict the structure of the Rho-signaling

network in Drosophila S2R+ cells. This network consists of approximately 47 pro-

teins, divided roughly as 7 GTPases, 20 Guanine Nucleotide Exchange Factors (GEFs)

and 20 GTPase Activating Proteins (GAPs). Importantly, we have the additional in-

formation that, despite their misleading names, the GEFs serve to activate certain
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Figure 5-1: Typical ROC curve for highly noisy simulated data. Our model (dark
blue) is closest to the actual network, which would be a point at [0, 1]. Model fit-
ting without batch effects (purple) is also considered. The other lines represent the
predictions obtained by a GSEA-derived metric (red), an ARACNE-derived metric
(light blue), and näıve correlation (green). The diagonal black line is the expected
performance of random guessing. This particular set of simulated data has no repeat
experiments for GAPs or GEFs, a batch signal of half the intensity of the perturba-
tions, and an approximate total signal-to-noise ratio of 1.5.
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GTPases and the GAPs serve to inhibit them. The exact connections, however, are

for the vast majority, unknown.

Labeled aRNA, transcribed from cDNA, was prepared from S2R+ Drosophila

cells following five days incubation with dsRNA or post-transfection of overexpres-

sion constructs. The aRNA was then hybridized to CombiMatrix 4x2k CustomArrays

designed to include those genes most likely to yield a regulatory effect from a pertur-

bation to the Rho-signaling network. After standard spatial and consensus Lowess [17]

normalization, we k-means clustered [57] the data into 50 pseudo-features to capture

only the large-scale variation in the data.1

After fitting, we have computed the significance of our fit using the Akaike and

Bayesian Information Criteria (AIC and BIC) [1, 70]. These measure parameter fit

quality as a function of the number of parameters, with smaller numbers being better.

AIC tends to under-penalize free parameters while BIC tends to over-penalize, thus we

computed both. As a baseline, we computed the AIC/BIC of the null model. While a

direct fit of the pseudo-features yielded a lower AIC but not BIC, an iterative re-fit and

solve technique, not unlike EM, produced a significant fit by both criteria (Table 5.1,

prediction in Table 5.3). This re-fitting was done by greedily resorting the groupings

for meta-features based on the model fitness and refitting the model to the new meta-

features. As each step strictly increases fit quality, and there are only finitely many

sets of meta-features, this is näıvely guaranteed to converge in O(nk) iterations for

n features and k meta-features. We find, however that the convergences generally

to happens in around 5 iterations, leaving feature variance intact (an indication that

this is not converging to a degenerate solution).2

To further test the accuracy of our model, we fit the model to four subsets of

1The fact there are fewer than 50 significant singular values in the data and the linearity of ~a, r
and ~β, indicates that we can not get more information from more clusters.

2This procedure has been replaced in current work by PCA.
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Table 5.1: AIC/BIC of the null model, best näıve fit, and best fit.

Model Fit (f) AIC BIC

Null Model (ϕzi = 0) 0.9885 -8.389 -8.387
Best Fit 0.2342 -9.480 -8.366

Adapted Features 0.0328 -11.446 -10.332

Table 5.2: Prediction error on test data.

Test Set Size #Unduplicated Total Fit (f) Test Set Fit Error

1 9 4 0.0280 0.1307 14.6%
2 17 4 0.0288 0.0632 6.10%

3c 9 0 0.0302 0.0371 3.13%
4c 9 0 0.0301 0.0517 4.06%

the 87 experiments and tested the prediction quality on the remaining experiments.

The prediction error is calculated as the mean squared error of the predicted values

divided by the mean standard deviation by feature. We tested on four sets: Sets

1 and 2 were chosen randomly to have nine (10.3% of experiments) and seventeen

(19.5% of experiments) elements respectively, of which four of each are unduplicated

experiments. Sets 3c and 4c were chosen randomly to have nine elements but were

constrained not to have two elements from the same batch or experimental condition.

We find that the model accurately predicts test set data (Table 5.2) for repeated

experiments. Note that in Set 1, when 44% of the experiments in the test set are non-

duplicated, the prediction error is significantly higher. This indicates the necessity of

both the batch and network components of the model.
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5.3 Model Fit on Current Data

5.3.1 Dimensionality of the reduction

Figure 5-2 shows a single model optimization for differently sized reductions of the

data. While the model residual does not improve substantially beyond ten dimensions,

it does show slight improvement for higher dimensions. While the ultimate model is

restricted to 10 linear dimensions, these are not necessarily exactly the dimensions of

largest variation in the data.
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Figure 5-2: One run of the model fit at each reduction size.
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5.3.2 Feedback Improves Model Fit

A lower objective value was consistently achieved with the addition of regulatory

feedback. This is notable as it required no additional model parameters, and is a

strong indication that the model is correctly capturing at least some aspect of the

network. As seen in Figure 5-3, the chance of this happening with random feedback

data is exceedingly small.
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Figure 5-3: Residual of model fits for randomly permuted feedback vs true feedback.
4 of the 100 random feedback fits have a better residual than the mean of the true
fits.
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5.4 Predicted Connections

The final model fit predicted 66 connections, shown in Table 5.3.

5.4.1 Biochemical Validation

At the time of this writing, non-repeated validation of only 36 of the predicted con-

nections was performed. These were performed biochemically by attaching dyes that

preferentially bind to either the active or inactive forms of human Rac1 and Cdc42

and measuring their relative abundances using a quantified Western blot, in the hope

that the human versions of these antibodies are similarly specific in Drosophila. As

Western blot data is notoriously noisy, their implications about the model’s predictive

capacity should be treated as comparably unreliable, at least until repeat experiments

are performed.

The level of active Rac1 was measured after knockout of nearly all of the GEFs

and GAPs. Cdc42 was measured only for GAP knockouts.

Rac1

Our predictions lined up remarkably well with the observation of GAP-response levels

in Rac1. For GEF responses, however, our predictions were no better than chance.

(Figure 5-4) This is consistent with the condition in which Rac1 is normally primarily

in the inactive state, i.e. removal of activators would have no effect and so would be

detected by neither microarray nor Western blot, while the removal of repressors

would have readily observable effects. While consistent, our data does not prove this,

and independent experiments should be performed to verify this hypothesis.
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Table 5.3: The predicted network. Each entry is the fraction of the nine local minima
containing that connection, here taken to be a measure of the strength of prediction.

Type Name Rac1 Rac2 Rho1 Cdc42 RhoL MTL

GEFs

Cdep 0 0 0 0.88889 0 0
sif 0 0 0 0 1 0

pbl 0.11111 0.66667 0 0 1 0
trio 0 0 0 0 0 0

CG3799 0.44444 0.77778 0.22222 0.22222 0.44444 0.11111
CG10188 0 0 0 0 0 1
CG14045 0 0.22222 0 0 0 1
CG15611 0 0 0 0.77778 0 1
CG30115 0 0.11111 0 0.11111 0 0
CG30456 0 0 0 0 0 0

RhoGEF3 0 0 1 0 0 0
RhoGEF4 0 0 0 0 0 0

RhoGEF64C 0.22222 0.66667 0.11111 1 1 1
RhoGEF2 0 0 0.55556 0 0.44444 0

GAPs

p190RhoGAP 0.11111 0.33333 0 0 0 0
RhoGAP1A 0.44444 0.11111 0.22222 0.22222 1 0
RhoGAP5A 0 0 0 0 0 0

RhoGAP16F 0.11111 0.55556 0 0 1 0
RhoGAP19D 0 0 1 0.66667 0 1
RhoGAP50C 0.55556 0.33333 0.66667 0 0 1
RhoGAP54D 0.11111 0.22222 0 0.77778 0 0
RhoGAP71C 0 0.11111 0 0.11111 0 0.33333
RhoGAP84C 0.11111 0 1 1 1 1
RhoGAP92B 0.33333 0.66667 0.11111 0 0.44444 1
RhoGAP93B 0 0.44444 0 0 1 0

RhoGAP100F 0 0 0.11111 0 1 0
CdGAPr 0 0.33333 0 0.66667 0 0
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Figure 5-4: Rac1 predicted connections vs. validation data. The points have been
jittered slightly horizontally to be distinguishable, however the two clusters in each
figure with confidence around 0 or 0.1 are in fact all identical. (a) GAPs, correlation:
0.77, higher is better. (b) GEFs, correlation: -0.04, lower is better.

Cdc42

Our predicted GAP-Cdc42 connections show at best minimal correspondence with

validation data. This could be genuine, or it could also be due to the fact that we

used human Cdc42 antibodies to probe for Drosophila Cdc42. (Figure 5-5)
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Chapter 6

Implementation

The purpose of this chapter is to walk a reader through the implementation of every

step, from the data outputted by the microarray scanner to evaluation of predicted

networks. Select sections of code, primarily written in MATLAB, are included in

Appendix B where noted.

6.1 Preprocessing

Experimental data arrives as a .tiff image of the microarray. (Figure 6-1.) The

chemical concentrations of mRNA binding to each probe are reflected in the recorded

brightnesses of the corresponding spots on the scan of the microarray. To convert

this to useable data, the following steps are required:

1. Extract median intensities from the images, i.e. convert the image to a list of

numbers.

2. Remove spatial artifacts from the arrays. In this case we used an iterative

surface-fit method to remove spatial structure.
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Figure 6-1: Raw Microarray Data. Each circle on the inset is a single probe.

3. Integrate different array designs. In the case of these experiments, the array

design was changed after 11 experiments, yielding 44 arrays of the old design

and 92 of the new design.

4. Normalize the values between arrays. In this case we used a consensus Loess

method to produce commensurate data.

5. Removal of spurious data. Several arrays in this data set either did not hybridize

properly or produced data which was clearly spurious. These were removed.

From this one obtains data amenable to mathematical analysis. With the excep-

tion of Spotting, all of this was done in a combination of PERL and MATLAB.
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6.1.1 Spotting

To extract the spot intensities from the raw data, we used the Microarray Imager soft-

ware (Figure 6-2) provided by CombiMatrix with the arrays. This has the advantage

that it interacts natively with their XML description of the array, and so produces

easily-accessed CSV files with all of the relevant information (probe sequence, label,

species, mean and median intensity, etc.). The other major advantage is that the chip

shape (number, size and spacing of probes) is pre-programmed, so one only needs to

specify alignment and scaling.

Figure 6-2: CombiMatrix’s Microarray Imager software in action.

While the software nominally comes with a routine for automatically finding the

array, in practice this is only occasionally effective. In practice, the most effective

technique is to attempt an auto-align, then use the GUI to align the upper-left and
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lower-right spots on the chip. While (likely due to distortions in the scanner feed),

some spots are occasionally not precisely aligned, in practice this yields almost every

spot being almost entirely within the recording area.

The software at this point measures the intensities of every spot within the target

circle and records the mean, median, and variance of the recorded intensities. While

in practice the mean and median intensities vary only slightly, the median was chosen

so as to avoid data contamination from artifacts and slightly misaligned spotting.

6.1.2 Spatial Normalization

The logic behind removal of spatial artifacts is that modulo outliers, spot intensity

should not vary substantially based on location on the microarray. I.e., the spots in

one area of a microarray should have the same mean intensity as those in another.

More specifically, as the spots were distributed randomly across the array, any spatial

structure that we do see in the array is likely due to experimental error and not a

signal in the data.

Put more precisely, a smooth surface fit to the data as a function of its x- and

y- coordinates should be entirely flat. To ascertain the background intensity surface,

we used the gridfit.m tool [22], which fits a surface to the data regularized by the

gradient at each point (Figure 6-3). While other tools (e.g. 2D Loess) were tried,

gridfit produced indistinguishable fits considerably faster.

Specifically, to get a fit without outliers, we first fit the surface to the entire data

set, then flagged all points more than 2 standard deviations from the fit surface. Re-

moving these points the surface was re-fit. All points more than 2 standard deviations

from the new surface fit were flagged, and this process was iterated until convergence.

This surface, minus its mean, was then pointwise subtracted from the correspond-

ing spots on the array, yielding a new data set with no appreciable spatial signal.
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Figure 6-3: An example of a spatial artifact. The two horizontal axes are the true
physical location of the spot, the vertical axis is the intensity of the spot. The resulting
surface fit is shown, with outliers shown in red.

6.1.3 Integration of Different Array types

In order to better probe the genes thought most likely to vary from changes in active

GTPases, after completing 44 experiments Dr. Bakal changed the design of the

microarrays. The result of this was that a number of spots which were previously

present were no longer, a number of new spots were present, and many of the repeated

spots changed in multiplicity. To deal with this, all spots were averaged by probe

sequence, producing 2072 distinct probes (1934 in the old set, 1985 in the new). Thus,

the resulting data matrix is 281792 features over 136 experiments, with 14076 missing
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values. For the principal components reduction of dataset size, all features which did

not appear in all arrays were thrown out, leaving 1847 probes, for a total of 251192

measurements.

6.1.4 Removal of Spurious Data

The two experiments with technical errors, as well as those with similarly low corre-

lation to the mean, the ConA experiments, and an experiment in which bsk (not a

g-protein) was knocked out, were removed from the dataset, to filter out both known

and suspected gross experimental errors. See Figure 6-4. Notably, every removed

experiment had a duplicate of itself within the kept dataset, implying that the large

deviations are likely a result of error and not experimental effect.
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Figure 6-4: The mean correlation of experiments to the mean. Data points removed
from the analysis are highlighted.
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6.1.5 Inter-array Normalization

A further problem with microarray data is that different experiments (even of the

same biological state) yield different background distributions of spot intensities. In

general, either quantile [11] or Loess (Locally Weighted Scatterplot Smoothing) [18,

19, 81] normalization is used to deal with this (Figure 6-5), on the assumption that

while the levels of various spots on the microarray should change with experiments,

the overall shape of the distribution of spot intensities should not.

For these experiments, we Loess-normalize all of the microarrays to the feature-

wise mean of all arrays. The geometric and arithmetic means in the case are spot-wise

identical to four significant digits, so the choice of which mean to use is irrelevant.

For each array, we compute the Loess regression of its intensity levels as a function

of the difference from consensus intensity levels. If the two arrays have the same

intensity distribution, the Loess fit should be precisely zero. If not, the fit curve

is subtracted from from the corresponding features in the experiment, resulting in

normalized data.1

Specifically, Loess works by a local center-weighted quadratic fit to windows of

the data. For our experiments, we used the MATLAB Bioinformatics Toolbox [59]

implementation of Loess normalization (malowess) with span 0.4 and order 2.

6.2 Model Creation

6.2.1 PCA reduction

We reduced the dataset to 35 features per experiment by way of an SVD. The number

35 was chosen empirically to capture the variation of the model to within an approx-

1This results in all experiments having the same mean and variance. On linearly-rescaled data,
once every experiment is translated by the mean and rescaled by the standard deviation of the
consensus, the resulting transform is precisely the Z-score normalization.



58 CHAPTER 6. IMPLEMENTATION

imation of the on-chip noise, computed by examining repeat experiments. (Figure

5-2).

6.2.2 AMPL Implementation

In order to use SNOPT [34], the model required translation to AMPL [30], a commonly-

used modeling language. This was created in a straightforward manner via a script

to convert the model minimization problem into AMPL form. While a number of

isomorphic phrasings of the problem were tried, the following was the most effective:

minimize objvar:

sum {i in I} ( sum {z in 1..126} (( (phi[i,z] - sum {k in K}

(a[i,k]*(kappa[k,z]*(1+sum {j in JE} (x[k,j]*eta[j,z]))/

(1+sum {j in JE} (x[k,j]*eta[j,z]) + g[k] +

sum {j in J} (y[k,j]*alpha[j,z])))) - r[i] -

sum {l in L} (sum {d in D} (c[i,l]*u[l,d]*chi[d,z]))) )^2));

See Appendix B for an almost-full example (the input vectors and initial conditions

are suppressed for space).

6.3 Model Fitting

6.3.1 Regularization

In order to for the model fit to converge to a minimum, a regularization term was

added to the model objective function. Thus we were in fact minimizing the residual

plus 0.01 times the L1 norm of x, y, and γ, i.e.

minimize objvar:
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sum {i in I} ( sum {z in 1..126} (( (phi[i,z] - sum {k in K}

(a[i,k]* (kappa[k,z]*(1+sum {j in JE} (x[k,j]*eta[j,z]))/

(1+sum {j in JE} (x[k,j]*eta[j,z]) + g[k] +

sum {j in J} (y[k,j]*alpha[j,z])))) - r[i] -

sum {l in L} (sum {d in D} (c[i,l]*u[l,d]*chi[d,z]))) )^2))

+0.01*sum{k in K}(sum{j in JE}(x[k,j])+sum{j in J}(y[k,j])+g[k]);

The minima found with this showed precisely the same topologies as the unregu-

larized fits were at after 100,000 iterations.

6.3.2 Consensus of Found Minima

Over 100 fits of the model to data found only 9 minima. These were all within the

level of noise on the chip of one another, thus there was no a priori way to decide

between them. As the average of the nine minima, while having a higher residual, still

was within the noise threshold, we used it as a predicted model, and used a voting

scheme to score the confidence of our predictions. Thus the fraction of minima in

which a connection occurs is taken to be the confidence in its existence.

6.3.3 Other Methods

Other methods of model minimization were tried, but were not as effective as SNOPT,

including the builtin routine in MATLAB, Newton-Raphson, and Genetic Algorithms.

MATLAB builtin

While MATLAB’s built-in routine, fmincon is passable for small models, when the

number of parameters exceeds approximately 700, it becomes inefficient to the point

of being unusable for this purpose.
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Newton-Raphson

For a problem of this size, Newton-Raphson proved infeasible. Each step took pro-

hibitively long, and did not converge nearly as quickly as SNOPT. After 3 days of

computation, Newton-Raphson had not found a local minimum, whereas SNOPT

usually takes under 5 minutes.

Genetic Algorithms

Apropos a question at RECOMB 2008, a genetic algorithm was written to optimize

the fit of model parameters. Despite trying a large number of crossover, mutation,

and selection strategies, the genetic algorithm was unable to find a solution with a

residual within an order of magnitude of the one found by SNOPT.

6.4 Other Techniques for Inference

6.4.1 Näıve Correlation

This starts with the assumption that if a GAP deactivates a given GTPase, the

differential change to the expression profiles will be more strongly correlated than if

not. Conversely it assumes that if a GEF activates a GTPase, their expression profiles

will be anti-correlated.

Subtracting the same-day background experiment from each experiment, and av-

eraging the knockouts of each protein, the Pearson correlation coefficient for proteins

x and y (datasets dx and dy respectively) is computed as

S :=

〈
(dxi − µdx) (dxi − µdy)

σdxσdy

〉
. (6.1)

An arbitrary cutoff distinguishes connections from non-connections. For the pur-
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pose of this work, all cutoffs were tested (Figure 5-1).

6.4.2 GSEA

GSEA starts by constructing, for each experimental condition, two subsets (“gene

sets”) of the features, one positive and one negative, which are used as indicators of

the condition. To test whether a specific state is represented in a new experiment, the

Kolmogorov-Smirnov enrichment score of those subsets in the new data is calculated

(for details, see [75]). If the positive set is positively enriched and the negative set

negatively enriched, the test state is said to be represented in the data. Likewise if the

reverse occurs, the state is said to be negatively represented. If both are positively

or negatively enriched, GSEA does not make a prediction. We are able to apply

GSEA by computing positive and negative gene sets based on perturbation data for

the substrates and then testing for enrichment in each of states in which we perturb

an activator or inhibitor.

6.4.3 ARACNE

ARACNE, on the other hand, begins by computing the kernel-smoothed approximate

mutual information (AMI) of every pair of features (for details, see [58]). In order

to remove transitive effects, for every trio of features A,B,C, the pair with the

smallest mutual information is marked to not be an edge. The remaining set of

all unmarked edges is then a prediction of the network. As already discussed, we do

not have features in our experiment that correspond directly to the levels we wish

to measure. However, treating each experimental state as a feature, we are able to

apply the AMI metric to obtain the relative efficacies of the activator and inhibitor

perturbation experiments as predictors of the substrate perturbations. We know from

the outset that the network we are trying to predict has no induced triangles, and
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so ARACNE would not remove any of the edges. However, the relative strengths of

these predictions yield a predicted network topology.
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Figure 6-5: Loess Normalization – all axes are log arbitrary intensity units. In all
figures the blue scatter is the data, the green is the ideal line (i.e. matching the
mean), and the red is the loess fit (a) An experiment vs. the mean intensity across
experiments. (b) The same experiment as (a), after subtraction of the loess fit. (c)
The same experiment as (a) vs. the difference between the experimental value and
the mean. (d) The same experiment vs. the difference between its values and the
mean after Loess normalization.
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Chapter 7

Introduction

In this section we attempt to draw the beginnings of a deep structural connection

between population genetics and information theory. We show that the natural quan-

tification of genetic drift is in terms of the entropy of the population, as it n expec-

tation decreases by a constant each generation, barring mutation and selection. Of

interesting historical note is that Claude Shannon’s MIT thesis was on the topic of

population genetics [72], though Shannon himself does not appear to have studied

the connection further.

Population genetics is the study of the genetic makeup of a population as it evolves

over time. While these dynamics have been studied since the early 20th century, there

remain many unsolved problems in the field.

In Part II of this thesis we address genetic drift. Drift here is the accumulation

of sampling artifacts, arising from the fact that every generation has a quantized

reproduction procedure. A particularly useful setting in which to study genetic drift

is the neutral model, i.e. the case where there is no mutation and all alleles are selected

for equally. In large populations, drift tends to be relatively unimportant, however in

isolated groups, or if the population experiences a bottleneck, the effects of drift can
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be quite dramatic.

We address the quantification of genetic drift under neutral conditions. While the

time scales of mutation and selection are well understood, drift has eluded a natural

quantification.

The idea of studying biology in an information theoretic context has been in

the air for some time. It has been used to study the information an entity receives

about its environment[49] as well as to study message transmission between biological

entities[15]. The idea of measuring genetic diversity in terms of information theory

has been proposed[15], though it has not been studied in the context of canonical

models of population genetics.

We analyze the expected change in Shannon entropy, −
∑
pi log pi, of a popula-

tion under neutral conditions. To do this we consider both the classically studied

Wright-Fischer Model, the more recent Moran Model, and the continuous diffusion

approximation of population dynamics. While genetics has been previously consid-

ered in terms of entropy of an individual’s genome [82], the entropy we here consider

is that of a genome across a population.

We discover that in the neutral case of all three models, total entropy (entropy

times population) in expectation decreases linearly. Moreover, the speed with which

it decreases is dependent only on the number of present alleles and a constant relating

the effective population of the model to the actual population. This suggests entropy

is a natural measure of the diversity of a population with which to quantify drift.

This result has a clear discontinuity at the loss of an allele, and as such become less

accurate as it approaches this point. We find, however, that a modified measure of

entropy, −
∑

(1−pi) log(1−pi), decreases in a similar linear fashion without the same

discontinuity. The significance of this alternate entropy measure is not understood.

This suggests a deep connection between information theory and population ge-
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netics, namely that the the dynamics of genetic diversity in a population can be seen

as the transmission of a coded message through a noisy channel.



Chapter 8

Background on Population

Genetics and Information Theory

In this Chapter we lay out the necessary background on Population Genetics and

Information Theory insofar as they pertain to the results of this section. For a more

thorough treatment of population genetics and information theory, we refer the reader

to the excellent books by Ewens [25] and Cover and Thomas [20] respectively.

8.1 Population Genetics

Evolutionary dynamics has been analyzed in a number of models, both discrete and

continuous. Of the discrete time models, the Wright-Fischer and Moran are the

most studied. Both are discrete-time Markov processes, in which, at each time step,

randomly chosen members of the population die and reproduce. While neither is an

exact model of actual dynamics, the hope is that these models capture the critical

dynamics in evolutionary processes.

In all models we consider a population of size N , consisting of kj alleles at time j,
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for which xji is the number of members of the population with allele i and compute

xj+1
i at each step. A particularly useful and interesting case of both models is the

neutral case, in which there is no mutation and selection is unbiased[46], i.e. the case

in which in expectation E[xj+1] = xj.

Note in both of these cases that the absorbing states are precisely of the form

(1, 0, . . . , 0) up to permutation.

8.1.1 Wright-Fischer Model

In each generation of the Wright-Fischer model, the population is replaced by an

exactly equal number of new members, each of whom is assigned a random member

(with repeats) of the previous generation with whom it is exactly identical[28, 79].

(see Figure 8-1). This mapping can also be seen exactly as a multinomial resampling

of the previous generation’s allelic distribution.1

In the neutral case, for a population xt = (xt1, x
t
2, . . . , x

t
k) ,

P
((
xt+1

1 , . . . , xt+1
k

)
= (y1, . . . , yk)

)
=

n!

y1! · · · yk!

(
xt1
N

)y1
· · ·
(
xtk
N

)yk

(8.1)

=
n!

y1! · · · yk!
(
xt1
)y1 · · · (xt1)yk N−N ,

and critically,

P
(
xt+1
i = m

)
=

(
N

xt+1
i

)(
xti
N

)m(
1− xti

N

)N−m
. (8.2)

A well-known result that the expected fixation time, i.e. the time to homogeneity,

of a two-allele haploid population is 2N(−x log x − (1 − x) log(1 − x)) generations

[46, 78, 24, 16] is, in fact, a consequence of a more general result we develop later in

1For the sake of uniformity of notation we consider the haploid case; however the results for a
haploid population of size N apply exactly to a diploid population of size N/2.
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Figure 8-1: Three generations of the Wright-Fischer Model, showing the rapid effects
of drift on a small population. The numbers inscribed in the individuals in generations
i+ 1 and i+ 2 indicate the randomly chosen ancestor.

this chapter.

8.1.2 Moran Model

In the Moran Model, in each iteration two random members of the population are

chosen (with replacement), one of which is removed and replaced with the other.

Thus, in the neutral case:

P
((
xt+1

1 , . . . , xt+1
k

)
= (y1, . . . , yk)

)
=



(
xt

i

N

)(
xt

j

N

)
if yi = xti + 1, yj = xtj − 1,

∀(l 6= i, j), yl = xtl∑
i

(
xt

i

N

)2

if ∀i, yi = xti

0 otherwise.
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Thus in the first case, a member with allelotype i is chosen to replace allele j, and

in the second a member of some allelotype is chosen to replace itself, resulting in

no change in the population. While generally considered even less realistic than the

Wright-Fischer Model, this model is, in general, far more mathematically tractable.

It is more readily generalizable to structured populations (e.g. those where not all

individuals can replace all others). A recent, useful generalization of the Moran

process has been to evolution on arbitrary directed graphs [55].

8.1.3 Diffusion Model

Both studied cases fall under the broader category of models which are well-approximated

by diffusion [46]. Diffusion models describe the probability density f(x; t) of finding

a configuration x at time t. In the neutral case, the evolution of f(x; t) is given by:

∂f

∂t
=

1

2

k−1∑
i=1

∂2f

∂x2
i

{xi (1− xi)} −
1

2

∑
i,j<k

∂2f

∂xi∂xj
{xixj} (8.3)

where the time unit is N generations.

8.2 Information Entropy

Entropy is a measure of the uncertainty of a random variable. For a discrete random

variable X with values {x1, . . . , xn} the entropy of X is defined as:

S(X) := −
∑
i

p (xi) log p (xi) (8.4)

Treating the alleles seen in a population as representative of the output of a

random variable, we can define the entropy of a population of size N with k allelotypes
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of sizes {x1, . . . , xk} as:

S(x) := −
∑
i

xi
N

log
(xi
N

)
(8.5)

While the population is not a random variable (though reproduction is a random

process), this provides a natural measure of the diversity of a population.



Chapter 9

Neutral Model Results

The neutral model is when selection and mutation are both zero. In this case, only

genetic drift is important, allowing its dynamics to be studied in isolation. In the

Wright-Fischer Model and Moran Model we find total entropy decreases linearly as a

function of the effective population and the number of nonzero alleles. Moreover, we

show that for any diffusion-approximable model this result holds.

Thus, in most reasonable models of population genetics, in absence of mutation

and selection, T (x), the total entropy of the population, decreases linearly with time,

dependent only on the number of possible alleles at time t.

9.1 The k-allele Wright-Fischer Model

In this model, one assumes that in each generation every member of a population

chooses a random parent from the previous generation and as identical to it. Whereas

the classical Wright-Fischer Model addresses strictly the case of a two-allele system,

the result follow as a specific case. This amounts to multinomial sampling of the
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parent generation’s allele distribution, thus in a given generation:

〈∆x〉 = 0 (9.1)

µ2 = σ2
i =

〈
∆x2

i

〉
= xi

(
1− xi

N

)
(9.2)

This allows us to compute 〈∆T (x)〉 = N 〈S(x+ ∆x)〉, the expected change in

entropy in a generation. We do this by way of a second-order approximation, yielding:

〈∆T (x)〉 ≈ NS(x)− k − 1

2
. (9.3)

For details of the derivation, see Appendix C.2.1.

9.2 The Moran Model

In each time step of the Moran Model, one member of the population is chosen at

random for duplication and one for death. In the event that these two are the same,

the population is unchanged. The natural definition of a “generation” in this case is

N time steps, as this yields an expected number of breeding events per population

member of 1.

In this case for n ∈ N,

〈
∆x2n−1

i

〉
= P (∆xi = 1)− P (∆xi = −1) = pi(1− pi)−

∑
j 6=i

pjpi = 0 (9.4)

and

〈
∆x2n

i

〉
= P (∆xi = 1) + P (∆xi = −1) = pi(1− pi)−

∑
j 6=i

pjpi = 2
xi
N

(1− xi
N

) (9.5)
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and so in the Moran Model:

〈∆T (x)〉 = −k − 1

N
+O

(∑ 1

x2
i

)
(9.6)

For details of the derivation, see Appendix C.2.2.

9.3 Diffusion Approximation

Recall that both the Wright-Fischer Model and Moran Model fall under the class of

diffusion-approximable models, in which, in the neutral case:

∂f

∂t
=

1

2

k−1∑
i=1

∂2f

∂x2
i

{xi (1− xi)} −
1

2

∑
i,j<k

∂2f

∂xi∂xj
{xixj} (9.7)

Taking S(t) in this case1 to be the expectation over x, i.e.:

S(t) ≡
∫

P
xi≤1

S(x)f(x; t)dx (9.8)

we find:

∂S(t)

∂t
= −k − 1

2
(9.9)

in the case where xi = 0⇒ f(x; t) = 0, i.e. when the probability of having already

lost an allele is 0. In general, we let k(x) be the number of non-zero alleles at x and

find:

1Note that we are interested in the expected entropy of the distribution allelotypes in the popu-
lation, not the differential entropy of the distribution of distributions, −

∫P
xi≤1

f(x; t) log f(x; t)dx.
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∂S(t)

∂t
=

∫
P
xi≤1

1− k(x)

2
f(x; t)dx. (9.10)

As we’ve normalized our time unit to N generations, this implies that in any

diffusion-approximable model (Moran and Wright-Fischer included) with effective

population Ne:

〈
∆Te(x

j+1)
〉
≈ −k − 1

2
. (9.11)

9.4 −
∑

(1− pi) log (1− pi) Analysis

Interestingly, when we consider the functional

Z(x) ≡
∑
i

− (1− pi) log (1− pi) = −
∑(

1− xi
N

)
log
(

1− xi
N

)
(9.12)

the results of the section 9.1 come out more cleanly. Specifically:

〈Ne∆Z(x)〉 ≈ −1

2
(9.13)

The significance of this functional remains unclear, though we hypothesize it is re-

lated to the population-sum constraint (
∑

i xi = N). This also provides an alternate

derivation of the result that the expected time to fixation of a k allele population is

−2Ne

∑
i(1− pi) log(1− pi).



Chapter 10

The Analogy to Information

Theory

The results presented earlier in this chapter are strong hints that the informatic

structure of population dynamics merits further study. Beyond these results, a clear

analogy between the structure of population genetics and classical information theory

problems exists. In this chapter we lay out some of the similarities in the hopes

that this provides a basis for future study of the believed deep connection between

information theory and population genetics.

10.1 Structural Similarities

There exists a striking analogy between population genetics and information theory,

(Fig. 10-1). It is our hope that by making this structure explicit, information theoretic

results can be used to further illuminate our understanding of the flow of genetic

information in populations.

In essence, the population genotype encodes the phenotype, which is transmitted
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Figure 10-1: The general structure of the connection between information theory and
population genetics.

to the next generation. This signal is subject to resampling (selection, drift) as well

as noise (mutation), and it is the coding scheme from genome to phenome which

dictates the effects of this process on phenotypic variation.
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Multiple Network Alignment
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Chapter 11

Introduction

Almost every biological process is mediated by a network of molecular interactions.

A few examples of these include: genetic regulatory networks, signaling networks,

metabolic networks, and protein-protein interaction networks. The structure of these

networks is becoming increasingly well known, especially with the advent of high-

throughput methods for network inference [77, 41, 48]. As with the genome, there

is significant conservation of network structure between organisms [60, 83]. Thus,

knowledge about the topology of a network in one organism can yield insights about

not only the networks of similar organisms, but the function of their components. A

problem with accurate cross-species comparison of such networks is that the known

networks, however, are both incomplete and inaccurate [37, 38].

The specific problem we address is that of global alignment of multiple Protein-

Protein Interaction (PPI) networks. A PPI network is an undirected collection of

pairwise interactions on a set of proteins, where an edge represents interaction be-

tween two proteins. Given a pair of PPI networks, and a list of pairwise sequence

similarities between proteins in the two networks, the problem is to find an optimal

mapping between the nodes of the two networks that best represents conserved bio-

82
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logical function. We distinguish such global network alignment from local alignment

where the goal is to find multiple network motifs, i.e. independent regions of localized

network similarity. In the multiple global network alignment case, with k networks,

the problem is extended to finding clusters of proteins across the networks such that

these clusters best represent conserved biological function.

This search for such an alignment is motivated by the intuition that evolution of

genes happens within the context of the larger cellular system they are part of. Global

network alignment can be interpreted as an evolutionary analysis done at this systems

level rather than in a piecemeal, local fashion. Once a global network alignment has

been estimated, we can analyze it to gather more localized, granular insights, e.g.,

estimating functional orthology across species.

Alignment of multiple networks poses two key problems. The first is that the com-

putational complexity (i.e., the number of possible alignments) grows exponentially

in the number of networks. The second is that the genomes corresponding to the var-

ious networks being aligned may vary widely in size (say, because of differing degrees

of gene duplication). A multiple network alignment algorithm must thus efficiently

identify a biologically-appropriate mapping between the genes.

Here we introduce IsoRankN (IsoRank-Nibble), which takes the approach of de-

riving pairwise alignment scores between every pair of networks, using the original

IsoRank methodology [73, see Box 12-1]; then finds alignment clusters based on these

scores. To find clusters, we use a spectral partitioning method that is both effi-

cient and automatically adjusts to the wide variation in sizes of the species-specific

networks. The algorithm is similar to the recently developed PageRank-Nibble al-

gorithm [3], which approximated the Personalized PageRank vector. A PageRank

vector (i.e., one that describes a ranking of graph nodes for, say, search) is called a

Personalized PageRank vector if, given a particular graph node, its preference scores
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are concentrated on a small set of vertices, the set being tailored to the given node.

This notion of vertex-specific rankings is applied in IsoRankN to find dense, clique-like

clusters of proteins when computing the global alignment of multiple PPI networks.

We tested IsoRankN on the five known eukaryotic PPI networks, i.e. Human,

Mouse, Fly, Worm, and Yeast. Much of the related previous work has focused on

local network alignment; hence, a direct comparative evaluation of our results was

difficult. As a gold standard alignment does not yet exist, we instead evaluate our

alignment method on a variety of indirect criteria, including number of clusters pre-

dicted, within-cluster consistency, and GO/KEGG enrichment [4, 43]. In order to

measure within-cluster consistency, we introduce a novel metric based on the entropy

of the GO/KEGG annotations of predicted clusters. We believe that the characteris-

tic of a correct global network alignment would be to preserve the relative functions

of various network parts; this can be well-measured by the various GO enrichment

analyses described above.

A number of related techniques for PPI network alignment exist. Most notably,

these include NetworkBLAST-M [42], Græmlin 2.0 [29] and IsoRank [73], though

a number of other techniques exist as well [10, 23, 44, 45, 47]. NetworkBLAST-M

computes a local alignment by greedily finding regions of high local conservation

based on inferred phylogeny. Græmlin 2.0, by contrast, computes a global alignment

by training how to infer networks from phylogenetic relationships on a known set of

alignments, then optimizing the learned objective function on the set of all networks.

IsoRank uses spectral graph theory to first find pairwise alignment scores across

all pairs of networks, the details of which are provided later (Box 12-1); these pairwise

scores, computed by spectral clustering on the product graph, work well in captur-

ing both the topological similarity as well sequence similarity between nodes of the

networks. However, to find multiple network alignments, IsoRank uses these scores
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in a time-intensive greedy algorithm. Instead, IsoRankN uses a different method of

spectral clustering on the induced graph of pairwise alignment scores. The new ap-

proach provides significant advantages, not only over the original IsoRank but also

over other methods.

To test IsoRankN, we show that on the PPI networks from five different eukaryotic

species, IsoRankN produces an alignment with a larger number of aligned proteins,

higher within-cluster consistency, and higher biological similarity than existing meth-

ods, as measured by GO/KEGG enrichment using GO TermFinder [12]. While other

techniques for measuring GO enrichment exist [71, 69], they did not apply directly

to the context in which we work. Additionally, IsoRankN does not require training

and does not rely on induced phylogeny; thus it is not sensitive to errors in the phy-

logenetic tree. While this is not a significant problem with eukaryotes, inference of

accurate bacterial phylogeny has proven far more difficult.

Contributions. We introduce the IsoRankN algorithm which uses an approach sim-

ilar to the PageRank-Nibble algorithm to align multiple PPI networks. In so doing,

we bring a novel spectral clustering method to the bioinformatics community. We use

IsoRankN to align the known eukaryotic PPI networks and find that it efficiently pro-

duces higher-fidelity alignments than existing global multiple-alignment algorithms.



Chapter 12

IsoRank N

12.1 Methods

12.1.1 Functional Similarity Graph

The central idea of IsoRankN is to build a multiple network alignment by local par-

titioning of the graph of pairwise functional similarity scores. Specifically, given k

PPI networks, G1, G2, . . . , Gk, we first compute the functional similarity scores of ev-

ery pair of cross-species proteins (vi, vj) ∈ (Gl, Gm). This is done using the original

IsoRank algorithm (see Box 12-1), but without the final step of greedily selecting an

alignment. The scores generated by IsoRank have the advantage of being highly noise

tolerant, a result of using a spectral approach.

The result is a functional similarity graph, a weighted complete k-partite graph

on the k sets of proteins, where each edge is weighted by its functional similarity

score. If the PPI networks were complete and exact, the multiple alignment problem

would simply be to find maximally weighted cliques. As the networks are not, we

introduce the star-spread method to find highly similar near-cliques, which yields a

multiple alignment. In addition, in contrast to the seed-path extension method used

86
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Box 12-1. The Original IsoRank Algorithm.

IsoRank works on the principle that if two nodes of different networks are aligned,
then their neighbors should be aligned as well. In lieu of sequence similarity
information, the functional similarity score Rij between vertex vi and vj is the
set of positive scores which satisfies:

Rij =
∑

vu∈N(vi)
vw∈N(vj)

1

|N(vu)||N(vw)|
Ruw,

where N(vi) is the neighborhood of vi within its own network. This can also be
viewed as the steady-state distribution of a random walk on the direct product
of the two networks.
To integrate a vector of sequence homologies, E, IsoRank takes a parameter-
ized average between the network-topological similarity and the known sequence
homology. It uses the power method to find the unique positive R satisfying

R = αAR + (1− α)E, with 0 ≤ α ≤ 1,

where

Aij,uw =

{
1

|N(vu)||N(vw)| , vu ∈ N(vi), vw ∈ N(vj),

0, otherwise.

Given the resulting vector of pairwise functional similarity scores, R, a discrete
network alignment is then greedily generated.

by NetworkBLAST-M, our method is similar to the star aligned approach in multiple

sequence alignment introduced by [56] and CLUSTAL W [76].

12.1.2 Star Spread

We first compute, for every protein v in a chosen species, every neighbor connected to

v by an edge with weight greater than a threshold; this is the star, Sv of the protein

(see Figure 12-1(a)). We greedily order the proteins in v by the total weight of Sv and

for each find the subset S∗v ⊂ Sv such that S∗v is a highly weighted neighborhood of v

(see Figure 12-1(b)). This is done using a spectral local graph partitioning algorithm
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Figure 12-1: An example of star spread on the five known eukaryotic networks. (a)
SYDR001C, the set of all neighbors of YDR001C with a similarity bounded by a thresh-
old β = 0.01. The illustration emphasizes the key idea of star spread, that the neigh-
borhood of a single protein, YDR001C, has many high-weight neighbors in other
networks, each of which are connected to others with varying weights. As the data
are noise, we seek a highly weighted subset of this neighborhood, as opposed to a
clique. (b) The shaded area is the resulting conserved interaction cluster S∗YDR001C,
containing YDR001C, as generated by our local graph partition algorithm.

with approximate Personalized PageRank vectors, similar to the PageRank-Nibble

algorithm. The resulting S∗v represents a functionally conserved interaction cluster, a

set of network-aligned proteins. This is repeated for every protein in all species not

already assigned to an S∗v , yielding assignments for all vertices. While it is not clear

exactly how the order of vertex choice affects the results, this ordering performs better

empirically than others we have tried, including random ordering. The ordering of

species is discussed below.

12.1.3 Spectral Partitioning

The main algorithmic challenge in obtaining functionally conserved interaction clus-

ters S∗v is uncertainty introduced by the incomplete and inaccurate PPI network
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data. Thus instead of finding a maximally weighted clique containing v, we find a

low-conductance set containing v.

The conductance, Φ(S), of a subset S of a graph is the ratio of the size of the

edge cut to separate S to the number of edges in the larger of the two remaining sets,

providing a very natural measure of “clusterness” of a subset of vertices. Formally,

Φ(S) = σ(S)
min{vol(S),2m−vol(S)} , where σ(S) = |{(vx, vy); vx ∈ S, vy /∈ S}|, vol(S) =∑

i deg(vi), and m is the number of edges in S.

[3] showed that a low-conductance set containing v can be computed efficiently

via the personalized PageRank vector of v. A personalized PageRank vector Pr(γ, v)

is the stationary distribution of the random walk on Sv in which at every step, with

probability γ, the walk “teleports” back to v, and otherwise performs a lazy random

walk with transition probabilities proportional to R, the vector of pairwise interaction

scores (i.e. with probability 1/2, the walk does not move). Thus in this case, a

personalized PageRank vector is the unique solution to:

Pr(γ, v) = γχv + (1− γ)Pr(γ, v)W, (12.1)

where γ ∈ (0, 1], χv(x) = δx,v is the indicator vector of v, W = 1
2
(I + D−1R) is the

lazy random walk transition matrix, and D is the diagonal of column-sums of R. For

the purposes of this chapter, we instead use an efficient approximation p ≈ Pr(γ, v),

the details of which can be found in [3].

To compute the minimal conductance cut, we consider the sets T pj ={
vi

∣∣∣ p(vi)P
k Rik

≥ p(vj)P
k Rjk

}
, or those vertices which contain at least as much of the mass of

p, normalized by R. As in [3], we then find the set S∗v as:

S∗v = min
j

Φ
(
T pj
)
. (12.2)
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12.1.4 Star Merging

While highly efficient, the star spread method has the limitation of not assigning other

members of the original network to the neighborhood Sv, and so S∗v by necessity does

not contain any other proteins in the same network as v, even if it is appropriate to

do so. To get around this, we introduce a procedure for merging stars, by looking

at the neighbors of the neighbors of v. For two stars, S∗v1 and S∗v2 , where v1 and v2

are in the same PPI network, if every member of S∗v1 \ {v1} has v2 as a neighbor and

vice-versa, we merge S∗v1 and S∗v2 .

Table 12.1: Comparative consistency on the five eukaryotic networks
IsoRankN IsoRank Græmlin1K Græmlin2K NB-M

Mean Entropy 0.274 0.685 0.857 0.552 0.907
Mean Normalized Entropy 0.179 0.359 0.451 0.357 0.554
Exact cluster ratio] 0.380 0.253 0.306 0.355 0.291
Exact protein ratio† 0.261 0.165 0.159 0.248 0.142

Mean entropy and mean normalized entropy of predicted clusters. Note that the
boldface numbers represent the best performance with respect to each measure.
]The fraction of predicted clusters which are exact., i.e. all contained proteins have
the same KEGG or GO group ID.
†The fraction of proteins in exact clusters.

12.1.5 The IsoRankN Algorithm

Given k PPI networks G1, G2, . . . , Gk, and a threshold β, IsoRankN proceeds as

follows:

1. Run the original IsoRank on every pair of networks to obtain scores Rij on all

edges of the functional similarity graph.

2. For every protein v, compute the star

Sv = {vj ∈ N(v)|w(v, vj) ≥ βmax (w(v, vj))}, where N(v) is the neighborhood

of v in the functional similarity graph.
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3. Pick an arbitrary remaining PPI network G` and order the proteins v ∈ G`

by the sum of edge weights in the induced graph on Sv. In order, excluding

proteins already assigned to clusters, spectrally partition Sv to obtain S∗v .

4. Merge every pair of clusters S∗v1 and S∗v2 in which ∀vi ∈ S∗v2 \ {v2}, w(v1, vi) ≥

βmaxj (w(v1, vj)) and ∀vj ∈ S∗v1 \ {v1}, w(v2, vj) ≥ βmaxj (w(v2, vj)).

5. Repeat steps 3 and 4 until all proteins are assigned to a cluster.

12.2 Results

Experimental datasets. We tested IsoRankN on five eukaryotic PPI networks: H.

sapiens (Human), M. musculus (Mouse), D. melanogaster (Fly), C. elegans (Worm),

and S. cerevisiae (Yeast). IsoRankN requires two forms of data as input: PPI net-

works and sequence similarity scores. The PPI networks were constructed by combin-

ing data from the DIP [80], BioGRID [74], and HPRD [64] databases. In total, these

five networks contained 87,737 proteins and 98,945 known interactions. The sequence

similarity scores of pairs of proteins were the BLAST Bit-values of the sequences as

retrieved from Ensembl [39]. We evaluated the biological relevance of our results

against two gene ontology databases, GO [4] and KEGG [43]. For this chapter, we

set α = 0.6 and β = 0.01, and use Human, Mouse, Fly, Worm, Yeast as the order

of species that are at the center of the star-spread. We further investigated other

species permutations as discussed later.

Testing. In the results that follow, we have aimed to evaluate our method along

two key dimensions: coverage and consistency. Coverage is the set of genes for which

our algorithm makes non-trivial predictions. It is thus a proxy for sensitivity; a

higher coverage would be desirable in that it suggests our algorithm can explain a
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larger amount of data. The other dimension, consistency, measures the functional

uniformity of genes in each cluster. The intuition here is that each cluster should

correspond to a set of genes with the same function; higher consistency is better.

This measure serves as a proxy for the specificity of our method.

There currently exists no gold standard for network alignment quality, so in order

to evaluate the predictions of IsoRankN we tested two properties of its predictions

that we expect an optimal prediction to have. First we tested within-cluster con-

sistency of GO/KEGG annotation, on the reasoning that predicted orthologs in an

orthology should likely have similar function. Second, we tested coverage, on the

reasoning that an ideal alignment should assign most proteins to a cluster. As local

alignment may have ambiguous, inconsistent or overlapping clusters, we primarily

compare IsoRankN to IsoRank and Græmlin 2.0. We also compare to local aligners

(such as NetworkBLAST-M), however, these will have lower coverage as they only

consider conserved modules.

12.2.1 Functional assignment

We tested IsoRankN as compared to IsoRank, Græmlin 2.0 and NetworkBLAST-M

on the five available eukaryotic networks and found that it outperformed the other

methods in terms of number of clusters predicted, within-cluster consistency, and

GO/KEGG enrichment.

Græmlin 2.0 requires a training set to learn the parameters of its scoring function.

As in [29], we train Græmlin 2.0 on training sets of multiple sizes. The versions of

Græmlin 2.0 trained on 1000 and 2000 KEGG clusters are denoted Græmlin1K and

Græmlin2K respectively. We additionally attempted to train Græmlin 2.0 on 4000

clusters, but have not included the data, as it showed strong evidence of over-fitting.
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Consistency. We first measured the consistency of the predicted network alignment

by computing the mean entropy of the predicted clusters. The entropy of a given

cluster S∗v is:

H(S∗v) = H(p1, p2, . . . , pd) = −
d∑
i=1

pi log pi, (12.3)

where pi is the fraction of S∗v with GO or KEGG group ID i. We also computed the

mean entropy normalized by cluster size; i.e., H̄(S∗v) = 1
log d

H(S∗v). Thus a cluster has

lower entropy if its GO and KEGG annotations are more within-cluster consistent.

While a cluster with one element would have entropy zero, this is to be expected, as

such a cluster is perfectly consistent with itself.

IsoRankN’s predicted clusters have much lower entropy than IsoRank, Græmlin

2.0, and NetworkBLAST-M (see Table 12.1). I.e., the clusters obtained by IsoRankN

have higher consistency of annotation. For the purpose of this measure, proteins

without a GO or KEGG group ID were withheld.

We additionally measure as in [29] the fraction of clusters which are exact, i.e.

those in which all proteins have the same GO or KEGG ID. For GO annotation, we

restrict to the deepest categories, removing questions of multiplicity and specificity of

annotations. We find that IsoRankN predicts significantly more exact clusters than

existing techniques, and that a higher fraction of the predicted clusters are exact

(see Table 12.1). We note that only 60-70% of the proteins in any of the aligned

networks have an assigned GO or KEGG ID, comparable to the fraction of all known

proteins included in GO or KEGG. Additionally the relative performance under either

consistency measure does not change when restricted to GO or KEGG individually.

Coverage. We first measure coverage by the number of clusters containing proteins

from k species. We find that for k ≥ 3, IsoRankN predicts more clusters with more
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Table 12.2: Number of clusters/proteins predicted containing exactly k species.
# of species (k) IsoRankN IsoRank Græmlin1K Græmlin2K

1 -/-∗ 155/402 1418 /4001 1521/2910
2 3844/8739 6499/20580 1354/ 4650 2034/5899
3 4022/13533 3036/13391 947/5414 1116/5072
4 2926/13991 2446/15422 529/5371 310/2067
5 2056/12715 773/9744 58/1467 11/78

Total 12848/48978 12909/59539 4306/20903 4992/16026

The

kth row contains, for each program, the number of predicted clusters for covering
exactly k species and number of constituent proteins in those clusters. Note that
the boldface numbers represent the best performance with respect to each row.
NetworkBLAST-M is not included, as it always outputs k = 5 species in each cluster.
∗All clusters obtained by IsoRankN contain at least two species.

proteins (see Table 12.2) than other methods. Thus, as it has higher consistency, it is

likely that IsoRankN is detecting more distant multiple network homology. For k = 2,

IsoRank has greater coverage; however this is likely due to IsoRankN having a strict

threshold for edge inclusion. Note that as a result of the star-spread approach, all

clusters obtained by IsoRankN contain at least two species. Thus IsoRankN does not

find paralogs within a species without there existing at least one homolog in another

species. Of the 87737 total proteins, IsoRankN is able to find network homologs for

48978 (55.8%), more than any technique but IsoRank. When restricted to clusters

containing at least three species, i.e. the multiple-alignment case, IsoRankN predicts

the most clusters.

We further measure as in [42] coverage by the enrichment of predicted groups with

respect to known ontology as derived from GO and KEGG. We find that IsoRankN

enriches more GO and KEGG categories in every species, with a lower overall p-value

(computed by GO TermFinder [12]), than any other technique (see Table 12.3).

Ordering. While we chose a particular order of genomes in the multiple alignment to

report our general results, we also include results on different orderings of genomes and
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Table 12.3: Comparative GO/KEGG enrichment performance
Species IsoRankN IsoRank Græmlin1K Græmlin2K NB-M]

Total 712/2490 537/1760 296/772 432/1010 107/261
p-value∗ 1.28 e-90 1.31 e-68 5.47 e-38 6.87 e-54 2.19 e-14
Human 632/2200 478/1551 194/545 272/811 66/182
Mouse 605/2124 383/1371 191/538 268/794 65/178

Fly 574/1787 398/924 208/533 261/771 41/135
Worm 552/1698 376/901 104/257 140/389 32/124
Yeast 368/938 257/554 208/486 137/316 45/136

The number of GO/KEGG categories enriched by each method. Note that the bold-
face numbers represent the best performance w.r.t. each row.
∗As computed by GO TermFinder. We remark that this excludes those proteins
tagged IEA (inferred from electronic annotation).
]NetworkBLAST-M is denoted NB-M for convenience.

demonstrate that any ordering outperforms other methods (Fig. 12-2). The particular

order of genomes used above was chosen to have the minimum mean normalized

entropy.

While it may appear that yeast, as the best-annotated network, should be the

first network chosen in the star-spread, it is sufficiently dissimilar to the other species

as to cause inaccurate network alignments on such a small set of species.

Running time. Given the weighted similarity graph, the star-spread component

of IsoRankN (Section 12.1.5, steps 2-5) took under 5 minutes for the 5 eukaryotic

networks above. The computation of the graph, given by the original IsoRank (Section

12.1.5, step 1), took approximately 7 hour on a single processor, though can be easily

10-way parallelized. All computations were run on a 64bit 2.4GHz Linux system with

2GB RAM.
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Figure 12-2: The consistency and coverage performance of IsoRankN under species
permutations in the star-spread. Each dot represents one of the 120 possible permu-
tations of the five species. (a) and (b) report the consistency and coverage of the
network fit as a function of the species first at the center of the star-spread.

12.3 Conclusion

In this chapter we present an efficient method for computing multiple PPI network

alignments. Based on spectral clustering on the induced graph of pairwise alignment

scores, our program IsoRankN automatically handles noisy and incomplete input

data. Our method differs from others in that it does not require training or phylogeny

data and seeks vertex-specific rankings in the spectral clustering.

We demonstrate the effectiveness of this technique on the five available eukaryotic

PPI networks. Our results suggest that IsoRankN has higher coverage and consistency

compared to existing approaches, which should lead to improved functional ortholog

prediction.

In future work we plan to more fully explore and evaluate the database of func-
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tional orthologs as predicted by IsoRankN. Additionally, it may be possible to modify

the star-spread to account for existent gold-standard network homology data, yielding

even higher fidelity multiple network alignments.
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Appendix A

Description of Performed

Experiments and Microarray

Design

A.1 Microarrays

The exact probes used are available at GEO [6], accession number GPL7159. The

URL of GEO is: http://www.ncbi.nlm.nih.gov/geo/.

A.2 Experiments

100
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Table A.1: Experiments

Month Day Year Chip Array Experiment

02 27 2006 A 1 S2Rp.GFPGAL4
02 27 2006 A 2 CG3799
02 27 2006 A 3 oncoCG3799.over
02 27 2006 A 4 CG3799.over
02 27 2006 B 1 S2Rp.GFPGAL4
02 27 2006 B 2 CG3799 RNAi
02 27 2006 B 3 oncoSif.over
02 27 2006 B 4 Sif.over
03 08 2006 A 1 Rho1
03 08 2006 A 2 S2Rp.GFPGAL4
03 08 2006 A 3 Rac1
03 08 2006 A 4 Rac1Rho1
04 01 2006 A 1 S2Rp.GFPGAL4
04 01 2006 A 3 oncoGEF3.over
04 01 2006 A 4 RhoGEF3
04 01 2006 B 1 RhoV14.over
04 01 2006 B 2 RacV12.over
04 01 2006 B 3 RhoGAP92B
04 01 2006 B 4 sif
04 22 2006 A 1 S2Rp.GFPGAL4
04 22 2006 A 2 RhoGAP1A
04 22 2006 A 3 RhoGAP5A
04 22 2006 A 4 RhoGAP16F
04 22 2006 B 1 S2Rp.GFPGAL4
04 22 2006 B 2 RhoGAP69C RNAi
04 22 2006 B 3 RhoGAP71C RNAi
04 22 2006 B 4 RhoGAP84C RNAi
04 24 2006 A 1 S2Rp.GFPGAL4
04 24 2006 A 2 RhoGAP1A.over
04 24 2006 A 3 oncoPbl.over
04 24 2006 A 4 RhoGEF64C.over
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Month Day Year Chip Array Experiment

05 01 2006 A 1 S2Rp.GFPGAL4
05 01 2006 A 2 sif
05 01 2006 A 3 oncoSif.over
05 01 2006 A 4 sifFL.over
06 10 2006 A 1 GFP May 26
06 10 2006 A 2 RhoGAP50C RNAi
06 10 2006 A 3 RhoGAP54D RNAi
06 10 2006 A 4 RhoGEF64C RNAi
06 13 2006 A 1 GFP May 26
06 13 2006 A 2 RhoGAP93B RNAi
06 13 2006 A 3 RhoGAP100F RNAi
06 13 2006 A 4 CG10188 (RhoGEF) RNAi
05 26 2006 A 1 GFP May 26
05 26 2006 A 2 RhoGAP50C RNAi
05 26 2006 A 3 RhoGAP54D RNAi
05 26 2006 A 4 RhoGEF64C RNAi
05 26 2006 B 1 GFP May 26
05 26 2006 B 2 MTL (GTPase) RNAi
05 26 2006 B 3 RhoBTB (GTPase) RNAi
05 26 2006 B 4 RhoL (GTPase) RNAi
05 28 2006 A 1 GFP May 26
05 28 2006 A 2 RhoGAP93B RNAi
05 28 2006 A 3 RhoGAP100F RNAi
05 28 2006 A 4 CG10188 (RhoGEF) RNAi
05 28 2006 B 1 GFP May 26
05 28 2006 B 2 CG30456 (RhoGEF) RNAi
05 28 2006 B 3 Rac F28L overexpress
05 28 2006 B 4 Rho F30L overexpress
06 21 2006 A 1 GFP June 10
06 21 2006 A 2 Cdep (RhoGEF) RNAi
06 21 2006 A 3 CG14045 (RhoGEF) RNAi
06 21 2006 A 4 CG15611 (RhoGEF)
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Month Day Year Chip Array Experiment

06 22 2006 A 1 GFP June 10
06 22 2006 A 2 CG30115 (RhoGEF) RNAi
06 22 2006 A 3 p190RhoGAP RNAi
06 22 2006 A 4 pbl (RhoGEF) RNAi
06 22 2006 B 1 GFP June 10
06 22 2006 B 2 RhoGAP19D RNAi
06 22 2006 B 3 RhoGEF4 RNAi
06 22 2006 B 4 trio (RhoGEF) RNAi
12 18 2006 A 1 GFP December 6
12 18 2006 A 2 Cdc42 RNAi G8 A 06/12/06
12 18 2006 A 3 Cdc42 RNAi G8 B 06/12/06
12 18 2006 A 4 Cdc42 RNAi D21 A 06/12/06
12 18 2006 B 1 ***GFP December 10
12 18 2006 B 2 Rho1 RNAi ****06/12/06
12 18 2006 B 3 Cdc42 RNAi D21 10/12/06
04 11 2007 A 1 GRP April 11 2007
04 11 2007 A 2 Rac1 RNAi 04/11/2007
04 11 2007 A 3 Rac1 RNAi 04/11/2007
04 11 2007 A 4 Rho1 RNAi 04/11/2007
04 11 2007 B 1 GRP April 11 2007
04 11 2007 B 2 Rho1 RNAi 04/11/2007
04 11 2007 B 3 Rho1 RNAi 04/11/2007
04 11 2007 B 4 Rac1 RNAi 04/11/2007
06 21 2007 A 1 GFP May 12 2007
06 21 2007 A 2 RhoL (GTPase) RNAi 05/12/2007
06 21 2007 A 3 RhoBTB (GTPase) RNAi 05/12/2007
06 21 2007 A 4 RhoGAP1A RNAi 05/12/2007
06 28 2007 A 1 GFP May 12 2007
06 28 2007 A 2 RhoL (GTPase) RNAi 05/12/2007
06 28 2007 A 3 RhoBTB (GTPase) RNAi 05/12/2007
06 28 2007 A 4 RhoGAP1A RNAi 05/12/2007
06 28 2007 B 1 GFP June 25 2007
06 28 2007 B 2 RhoF30L (ACTIVATED RHO)
06 28 2007 B 3 Cdc42Y32A (ACTIVATED CDC42)
06 28 2007 B 4 RacF28L (ACTIVATED Rac)
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Month Day Year Chip Array Experiment

08 01 2007 A 3 CG3799 RNAi 07/13/2007
08 01 2007 A 4 CdGAPr (GAP) RNAi 07/13/2007
08 01 2007 B 1 CdGAPr (GAP) RNAi 07/13/2007
08 01 2007 B 2 CG3799 RNAi 07/13/2007
08 01 2007 B 3 MTL (GTPase) RNAi 07/13/2007
08 01 2007 B 4 GFP July 13 2007
08 14 2007 A 1 p190RhoGAP
08 14 2007 A 2 RhoGEF4
08 14 2007 A 3 RhoGEF2
08 14 2007 A 4 GFP August 7 2007
08 14 2007 B 1 pbl (RhoGEF)
08 14 2007 B 2 sif (RhoGEF)
08 14 2007 B 3 RacGAP50C (RhoGAP)
08 24 2007 A 1 GFP August 17 2007
08 24 2007 A 2 Rac 1 (”Amplicon #1” Rac1/Rac2)
08 24 2007 A 3 Rac 1 (”Amplicon #2” Rac1 only)
08 24 2007 A 4 Rac 2 (no Rac1)
09 07 2007 A 2 Rac 1 (”Amplicon #2” Rac1 only)
09 07 2007 A 3 Rac 2 (no Rac1) *AUG18 07 sample
09 07 2007 A 4 Rac 1 (”Amplicon #1” Rac1/Rac2)
09 07 2007 B 1 GFP August 7 2007
09 07 2007 B 2 pbl (RhoGEF) *AUG 7 07 sample
09 07 2007 B 3 sif (RhoGEF) *AUG7 07 sample
09 07 2007 B 4 RacGAP50C (RhoGAP) *AUG7 07 sample
09 18 2007 A 1 RhoGAP1A RNAi 05/12/2007
09 18 2007 A 2 RhoL (GTPase) RNAi 05/12/2007
09 18 2007 A 3 RhoBTB (GTPase) RNAi 05/12/2007
09 18 2007 A 4 GFP May 12 2007



Appendix B

Selected Code for Network

Inference

B.1 AMPL model code

Below is the AMPL code with data and starting values suppressed as indicated.

Complete code is available upon request.

set I := 1 .. 35; #index of features

set K := 1 .. 6; #index of gtpases

set J := 1 .. 13; #index of gaps

set JE:= 1 .. 14; #index of gefs

set L := 1 .. 4; #index of batch dims

set D := 1 .. 21; #index of batches

# Input data (dependent variables)

param eta {JE,1..126}; #gef expression levels

param alpha {J,1..126}; #gap expression levels

105
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param chi {D,1..126}; #batch-experiment indicator

param kappa {K,1..126}; #gtpase expression levels

param phi {I,1..126} ; #observed data

var a {I,K}; #A matrix

var c {I,L}; #feature by batchdims

var u {L,D}; #batchdims by batch Rotation

var r {I}; #feature base level

var x {K,JE} >= 0; #gef-gtpase connections

var y {K,J} >= 0; #gap-gtpase connections

var g {K} >= 0; #base deactivation rates

minimize objvar:

sum {i in I} ( sum {z in 1..126} (( (phi[i,z] - sum {k in K}

(a[i,k]*(kappa[k,z]*(1+sum {j in JE} (x[k,j]*eta[j,z]))/

(1+sum {j in JE} (x[k,j]*eta[j,z]) + g[k] + sum {j in J}

(y[k,j]*alpha[j,z]))))- r[i] - sum {l in L} (sum {d in D}

(c[i,l]*u[l,d]*chi[d,z]))) )^2)) +0.01*sum{k in K}

(sum{j in JE} (x[k,j])+ sum{j in J} (y[k,j])+g[k] );

data;

param eta : #gef expression levels
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[suppressed]

param alpha : #gap expression levels

[suppressed]

param chi : #batch-experiment indicator

[suppressed]

param kappa : #gtpase expression levels

[suppressed]

var x : #starting x

[suppressed]

var y : #starting y

[suppressed]

var c : #starting c

[suppressed]

var u : #starting u

[suppressed]

var a : #starting a

[suppressed]



Appendix C

Derivations of Population Genetic

Results

C.1 Some facts we need

C.1.1 Wright-Fischer Model: Multinomial Sampling

Let
∑
xi = N , the current population. The next population will be

∑
fixi =

∑
(1 +

gi)xi = M .

Properties of multinomial sampling when fi = 1:

〈∆x〉 = 0 (C.1)

µ2 = σ2
i =

〈
∆x2

i

〉
= xi

(
1− xi

N

)
(C.2)

µ3 = xi

(
1− xi

N

)(
1− 2xi

N

)
(C.3)

When fi 6= 1:
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The raw moments are:

µ′1 = 〈xi + ∆xi〉 = fixi (C.4)

µ′2 =
〈
(xi + ∆xi)

2〉 =
〈
x2
i + 2xi∆xi + ∆x2

i

〉
(C.5)

= x2
i + 2xi(fi − 1)xi +

〈
∆x2

i

〉
= (2fi − 1)x2

i +
〈
∆x2

i

〉

Recall that the second central moment in terms of the first two raw moments is

σ2
i = µ2 = µ′2 − µ′1

2
= (2fi − 1)x2

i +
〈
∆x2

i

〉
− f 2

i x
2
i =

〈
∆x2

i

〉
− (fi − 1)2x2

i

Note that this of course holds for moments about any mean and so:

µ2 =
〈
∆x2

i

〉
− 〈∆xi〉2

and

µ3 = 2µ′1
3 − 3µ′1µ

′
2 + µ′3 = µ3 = 2 〈∆xi〉3 − 3 〈∆xi〉

〈
∆x2

i

〉
+
〈
∆x3

i

〉

Thus

〈∆xi〉 = (fi − 1)xi ⇒
∑
〈∆xi〉 = M −N

〈
∆x2

i

〉
= σ2

i + 〈∆xi〉2 = fixi

(
1− fixi

M

)
+ (fi − 1)2x2

i
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〈
∆x3

i

〉
= fixi

(
1− fixi

M

)(
1− 2fixi

M

)
− 2 〈∆xi〉3 + 3 〈∆xi〉

〈
∆x2

i

〉
= fixi

(
1− fixi

M

)(
1− 2fixi

M

)
− 2(fi − 1)3x3

i

+ 3(fi − 1)xi

(
fixi

(
1− fixi

M

)
+ (fi − 1)2x2

i

)
= fixi

(
1− fixi

M

)(
1− 2fixi

M

)
+ (fi − 1)3x3

i

+ 3(fi − 1)xi

(
fixi

(
1− fixi

M

))
= fixi

(
1− fixi

M

)(
1− 2fixi

M
+ 3(fi − 1)xi

)
+ (fi − 1)3x3

i

C.1.2 Shannon Entropy

S(x) = −
∑
i

xi
N

log
(xi
N

)
∂S(x)

∂xi
= − 1

N

(
log
(xi
N

)
+ 1
)

∂2S(x)

∂xi∂xj
= − δij

Nxi

∂3S(x)

∂xi∂xj∂xk
=
δijδjk
Nx2

i

C.1.3 −
∑

(1− pi) log (1− pi)

Z(x) ≡
∑
i

− (1− pi) log (1− pi) = −
∑(

1− xi
N

)
log
(

1− xi
N

)
(C.6)

∂Z(x)

∂xi
=

1

N

(
log
(

1− xi
N

)
+ 1
)

∂2Z(x)

∂xi∂xj
= − δij

N(N − xi)
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∂Z(x)

∂pi
= log (1− pi) + 1

∂2Z(x)

∂xi∂xj
= − δij

1− pi

C.2 Derivations

C.2.1 Neutral Wright-Fischer Model

Below is the derivation for equation 9.3:

〈∆T (x)〉 = N 〈S(x+ ∆x)〉 (C.7)

= N

〈
∞∑
j=0

[
1

j!
(∆x · ∇x′)j S(x′)

]
x′=x

〉

≈ N

〈
S(x) +

∑
xi 6=0

∂S(x)

∂xi
∆xi +

1

2

∑
xi,xj 6=0

∂2S(x)

∂xi∂xj
∆xi∆xj

〉

= NS(x) +N
∑
xi 6=0

∂S(x)

∂xi
〈∆xi〉+

N

2

∑
xi,xj 6=0

∂2S(x)

∂xi∂xj
〈∆xi∆xj〉

= NS(x)− N

2

∑
xi 6=0

〈∆x2
i 〉

Nxi

= NS(x)− N

2

∑ xi
(
1− xi

N

)
Nxi

= NS(x)− 1

2

∑(
1− xi

N

)
= NS(x)− k − 1

2
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C.2.2 Neutral Moran Model

Below is the derivation for equation 9.6:

〈T (x) + ∆T (x)〉 = N

〈
∞∑
j=0

[
1

j!
(∆x · ∇x′)j S(x′)

]
x′=x

〉
(C.8)

= NS(x)−N
∑
k

∞∑
n=1

(2n− 2)! 〈∆x2n
i 〉

(2n)!Nx2n−1
i

= NS(x)−
∑
k

∞∑
n=1

2xi(1− xi

N
)

(2n)(2n− 1)Nx2n
i

= NS(x)−
∑
k

2(1− xi

N
)

N

∞∑
n=1

1(
2n
2

)
x2n−2
i

= NS(x)−
∑
k

(1− xi

N
)

N
x2
i

((
1− 1

xi

)
log

(
1− 1

xi

)
+

(
1 +

1

xi

)
log

(
1 +

1

xi

))
= NS(x)−

∑
k

(1− xi

N
)

N
xi

(
(xi − 1) log

(
1− 1

xi

)
+(xi + 1) log

(
1 +

1

xi

))
= NS(x)−

∑ 1− xi

N

N

(
1 +O

(
1

x2
i

))
= NS(x)− k − 1

N
+O

(∑ 1

x2
i

)

〈∆S(x)〉 ≈ −k − 1

N2
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C.2.3 Neutral Diffusion Model

Recall here that

∂f

∂t
=

1

2

k−1∑
i=1

∂2f

∂x2
i

{xi (1− xi)} −
1

2

∑
i,j<k

∂2f

∂xi∂xj
{xixj}

We use the result [25, (Ewens) 4.83, page 154], that

d

dt
h(t) = Et

[∑
ai (x1, . . . , xk)

∂g

∂xi
+

1

2

∑
bi (x1, . . . , xk)

∂2g

∂x2
i

(C.9)

+
∑∑

cij (x1, . . . , xk)
∂2g

∂xi∂xj

]

In the neutral case,

a (x1, . . . , xk) = 0

bi (x1, . . . , xk) = xi(1− xi)

cij (x1, . . . , xk) = −xixj
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Thus:

d

dt
S(t) = Et

[∑
ai (x1, . . . , xk)

∂S(x)

∂xi
+

1

2

∑
bi (x1, . . . , xk)

∂2S(x)

∂x2
i

(C.10)

+
∑∑

cij (x1, . . . , xk)
∂2S(x)

∂xi∂xj

]
= Et

[
1

2

∑
xi(1− xi)

∂2S(x)

∂x2
i

−
∑∑

xixj
∂2S(x)

∂xi∂xj

]
= Et

[
1

2

∑
xi 6=0

xi(1− xi)
−1

xi

]

= Et

[
1− k(x)

2

]
=

∫
P
xi≤1

1− k(x)

2
f(x; t)dx

Where k(x) is the number of nonzero alleles at point x.
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