
INSTABILITY AND ENERGETICS

IN A BAROCLINIC OCEAN

by

Kuh Kim

S.B., Seoul National University
(1968)

M.S., Seoul National University
(1970)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

August, 1975

Signature of Author .............................
Joint Program in Oceanography, Massachu-

setts Institute of Technology - Woods Hole

Oceanographic Institution, and Department

of Earth and Planetary Sciences, and

Department of Meteorology, Massachusetts

Institute of Technology, August 1975

Certified by............... ....................................
Thesis Supervisor

Accepted by.......
Chairman, Joint Oceanography Committee in
the Earth Sciences, Massachusetts Institute
of Technology - Woods Hole Oceanographic
Institution

WITI

MIT L

i, i1r. -I, r



INSTABILITY AND ENERGETICS
IN A BAROCLINIC OCEAN

by

Kuh Kim

Submitted to the Massachusetts Institute of Technology-Woods
Hole Oceanographic Institution Joint Program in Oceanography
on August 11, 1975, in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

ABSTRACT

This thesis is made of two separate, but interrelated
parts.

In Part I the instability of a baroclinic Rossby wave
in a two-layer ocean of inviscid fluid without topography,
is investigated and its results are applied in the ocean.
The velocity field of the basic state (the wave) is charac-
terized by significant horizontal and vertical shears, non-
zonal currents, and unsteadiness due to its westward propa-
gation. This configuration is more relevant to the ocean
than are the steady, zonal 'meteorological' flows, which
dominate the literature of baroclinic instability. Trun-
cated Fourier series are used in perturbation analyses.

The wave is found to be unstable for a wide range of
the wavelength; growing perturbations draw their energy from
kinetic or potential energy of the wave depending upon
whether the wavelength, 2irL, is much smaller or larger than
21L , respectively, where Lp is the internal radius of.de-

formation. When the shears are comparable dynamically,
L 1 L , the balance between the two energy transfer proc-

esses is very sensitive to the ratios L/Lp and U/C as well,

where U is a typical current speed, and C a typical phase
speed of the wave. For L = L they are augmenting if

U < C, yet they detract from each other if U > C.
The beta-effect tends to stabilize the flow, but per-

turbations dominated by a zonal velocity can grow irrespec-
tive of the beta-effect.

It is necessary that growing perturbations are com-
prised of both barotropic and baroclinic modes vertically.
The scale of the fastest growing perturbation is signifi-
cantly larger than L for barotropically controlled flows
(L < L ), reduces to the wave scale L for a mixed kind

(L \. L )and is fixed slightly larger than L for baro-

clinically controlled flows (L > L ).
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Increasing supply of potential energy causes the nor-
malized growth rate, cL/U, to increase monotonically as
L + L from below. As L increases further beyond L,

the growth rate L /U shows a slight increase, but soon

approaches an asymptotic value.
In a geophysical eddy field like the ocean this model

shows possible pumping of energy into the radius of defor-
mation (b 40 km rational scale, or 250 km wavelength) from
both smaller and larger scales through nonlinear inter-
actions, which occur without interference from the beta-
effect. The e-folding time scale is about 24 days if
U = 5 cm/sec and L = 90 km. Also it is strongly suggested
that, given the observed distribution of energy versus
length scale, eddy-eddy interactions are more vigorous than
eddy-mean interaction, away from intense currents like the
Gulf Stream. The flux of energy toward the deformation
scale, and the interaction of barotropic and baroclinic
modes, occur also in fully turbulent 'computer' oceans, and
these calculations provide a theoretical basis for source of
these experimental cascades.

In Part II an available potential energy (APE) is de-
fined in terms appropriate to a limited area synoptic den-
sity map (e.g., the 'MODE-I' data) and then in terms approp-
riate to time-series of hydrographic station at a single
geographic location (e.g., the 'Panulirus' data).

Instantaneously the APE shows highly variable spatial
structure, horizontally as well as vertically, but the ver-
tical profile of the average APE from 19 stations resembles
the profile of vertical gradient of the reference stratifi-
cation. The eddy APE takes values very similar to those of
the average kinetic energy density at 500 m, 1500 m and
3000 m depth in the MODE area.

In and above the thermocline the APE has roughly the
same level in the MODE area (centered at 28*N, 690 40'W) as
at the Panulirus station (320 10'N, 640 30'W), yet in the
deep water there is significantly more APE at the Panulirus
station. This may in part indicate an island effect near
Bermuda.

Thesis Supervisor: Peter B. Rhines
Title: Senior Scientist, Department of Physical Oceanography,

Woods Hole Oceanographic Institution.
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PART I



I. INTRODUCTION

Prior to this decade currents in the ocean interior

were modelled as a sum of linear Sverdrup flow (Sverdrup,

1947) and linear waves (Veronis and Stommel, 1956). In

regions of intense boundary currents nonlinearity was ad-

ded later (Charney, 1955), and the instability of these cur-

rents was examined numerically (Bryan, 1963). However, dis-

coveries of intense space- and time-dependent mid-ocean

'eddies', begun with the Aries measurements in 1959-60, led

to growing uncertainty about the linear dynamics of either

the mean circulation or the fluctuations.

Some recent theories emphasize a new physics, in which

the eddies rapidly alter their horizontal and vertical

structures (in the inertial time-scale of a few weeks to a

few months). At the same time vestiges of linear wave

theory, persistent westward propagation found in numerical

experiments and observations, still apply so that there is

a dual nature to such eddies.

To capture some of this dual nature we examine the

stability of one of the fundamental linear waves, the

baroclinic Rossby wave. Intense instability is found in

which 'noise' added to the simple wave grows. The re-

sulting transfer of energy to new scales forms a tractable

analog of energy cascades in the turbulent numerical models.

(The theory was motivated by an experimental demonstration



of the instability by Rhines (1975a)).

In one extreme (large length scale of the basic wave)

the instability feeds upon the potential energy of the wave.

Classical calculations of baroclinic instability emphasize

steady, zonal flows as basic states, which is appropriate

to the atmosphere, whereas here we show the effect of an

'oceanic' basic state that is neither steady nor zonal nor

infinite in scale.

In another extreme (small initial length scale) the

instability feeds on the kinetic energy of the horizontal

shear. This limit gives, as a special case, the purely

barotropic instability found by Lorenz (1972) and Gill

(1974).

At the important intermediate scale (the internal de-

formation scale 1 50 km), the instability is of a mixed

kind, the two energy sources sometimes augmenting, sometimes

detracting from one another.

The application to the ocean suggests (as do the com-

puter experiments) that a given 'eddy' may receive energy

from a variety of scales of other eddies as well as from

some time-mean flow, and that these 'eddy-eddy' interactions

are probably more vigorous than the eddy-mean flow inter-

action, except in regions of intense currents. The growth-

rates of the instability theory are reasonably close to the

spectral transfer rates found in turbulence, and the struc-

tural similarity of theory and experiments is revealing.



Background

The unexpected discovery of energetic, highly variable

currents from the research vessel Aries in the deep western

North Atlantic Ocean (Crease, 1962) opened a new chapter

in the dynamics of ocean circulation (see Fig. 1.1): the

float trajectories revealed relatively high speeds at

nominal depths of 2 and 4 km, of the order of 5 to 10 cm/sec,

with an apparent period of 50 to 100 days (Swallow, 1971)

and an estimated wavelength of 300 to 400 km (Phillips,

1966).

The hydrographic data from the Panulirus station near

Bermuda show a very distinct month to month variation of

temperature in the main thermocline as shown in Fig. 1.2

(Schroeder and Stommel 1969). The temperature spectrum con-

structed by Wunsch (1972a) from these data reveals that

most of the variance in the main thermocline is located

between the periods of 40 to 200 days as shown in Fig. 1.3.

This band of periods is certainly in the same range as

estimated from the Aries measurements.

In the sections of temperature and salinity from

Fuglister (1960) various length scales can be picked by

eye. Upon the basin-wide variation is superimposed wiggly

structures with scales of hundreds of kilometers. The

zonal variations of the 100 C isotherm depth at 240 S and

240 N are shown in Fig. 1.4. Counting the rise and fall of

IYUX~ _LI~_ ._i~_i~llLi^l.
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Fig. 1.1

Currents observed
during five visits
to a small area
west of Bermudca,

32- R.V.Aries 1960

2000m

From Crease(1962). Trajectories of five series
of floats. Figures at ends of trajectory are
starting and finishing dates. Figures beside
trajectory are average speeds. Currents are
very energetic with an apparent period of 50 to
100 days(Swallow,1971) and an estimated wave-
length of 300 to 400 km(Phillips,1966).

Current unit is cm/sec.
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temporal variation. Anomaly of 10C roughly
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the fSotherm depth greater than 20 m between consecutive

samplings, there are four minima at 240S and six at 240N

over 5077 km. The distance between the minima varies from

about 600 to 1000 km at 240S and from about 450 to 1100 km

at 240N. Because of sparse sampling the horizontal resol-

ution is inadequate to show the kind of variation corres-

ponding to the Aries measurements. Nevertheless these

comparisons are suggestive in implying the presence of

multiple scales at two separated sections.

Katz's (1973) experiments have confirmed the presence

of an intermediate scale in the open ocean in Fig. 1.5. The

east-west distance between a peak and a valley is 180 km

and the north-south is 360 km at least. The corresponding

wavelengths will be 360 and 720 km respectively, which are

somewhat larger than those estimated from the Aries obser-

vations. At the same time Katz's (1973) profiles suggest

that small scales may have slightly (±+10 km) contaminated

Fuglister's (1960) sections. It is very interesting to

notice that the strong gradient in tow 300 in Fig. 1.5

along 640 50'W approximately is not found in the nearest

section at 660W, indicating that Katz's profiles as well

as the wiggles in Fuglister's sections are not permanent.

During the U.S.S.R. POLYGON experiment in the tropocal

North Atlantic a large-scale anti-cyclonic velocity distur-

bance was observed and Fig. 1.6 shows the average speed
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scale anti-cyclonic eddy was observed during the
Polygon experiment and its mean speed is over-
whelmingly larger than mean velocity for all
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25

overwhelmingly larger than the average velocity from the

surface to 1500 m depth. This is another important dis-

closure because the thermocline in the Polygon area is

located at about 250 m, compared with about 800 m in the

Sargasso Sea and the mean horizontal density gradient is

much weaker by an order of magnitude.

Gould, Schmitz and Wunsch (1974) have suggested from

estimates of vertical coherence of currents that the low

frequency currents are usually dominated by the barotropic

and first few baroclinic modes. The vertical profile of cur-

rent in Fig. 1.7 from Sanford (1975) shows a very strong

shear in the main thermocline which tends to justify the

use of a simplified vertical structure in the present

theory (two-layer ocean).

Bernstein and White (1974) reported oceanic subsurface

perturbations in the central North Pacific and argued that

these fluctuations are the manifestation of non-dispersive

baroclinic planetary waves.

In summary, the last two decades' observations in the

mid-ocean have consistently revealed the presence of

energetic eddies with time scales of tens of days, length

scales of tens to hundreds of kilometers and a strong

vertical variation, irrespective of where and when the

data were taken. The description of eddies is very sub-

jective and indefinite because most experiments were in-
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sufficiently extensive in time and space to resolve the

significant variations of eddies themselves. Also the des-

cription of eddies requires data in space and time simul-

taneously so that the Panulirus data are useful, for

example, but their implication is very limited.

Previous theoretical models

What are the theoretical models for the observed eddies

concerning their generation and evolution in the mid-ocean?

There are two extreme lines of synthesizing the observations:

the eddies may be a collection of unique events, each one

from a different origin and in a different dynamic balance,

or they are all from the same origin and in the same dynamic

balance except for the fact that they happened to be obser-

ved at a different place and time. Neither of these ideas

has been justified and it is believed to be premature to

draw any conclusion regarding this subtle question at

present because the available data are very limited com-

pared with the complexity of dynamics involving the eddies.

However, in theory eddies can be represented by a few

important parameters and possible eddy dynamics can be ex-

plored by investigating the nonlinear interactions in a

parameter space, as done in this study. Some of previous

theoretical models are examined here, first linear then

nonlinear models, in order to show where the present



theory stands.

Considering the scales involved, it is apparent that

the basic momentum balance is geostrophic, which is sub-

stantiated by Swallow (1971), Koshlyakov and Grachev (1973)

and Bryden (1975). Veronis and Stommel (1956) have found

two kinds of geostrophically-balanced waves in their study

on the response of a two-layer ocean to a transient wind

system. One of these is a barotropic Rossby wave for which

fluid moves as a column, as if homogeneous, and the other

is a baroclinic Rossby wave for which the two layers move

in opposite directions. It is important to understand

that the perturbations in the density field are attributed

solely to the baroclinic mode. The dispersion relations of

these waves in Fig. 1.8 show that the wavelengths and

periods of the waves are not compatible with the observed

scales. Nevertheless, these kinds of waves have been used

extensively in interpreting short-term data by various

authors. Notably Longuet-Higgins (1965a, b) and Phillips

(1966) suggested that the Aries observation may be a sort

of wind-generated barotropic and/or baroclinic Rossby wave.

McWilliams and Flierl (1975) have succeeded in some rough

aspects, in appr6ximating a fit of MODE data. These kinds

of simple description of the eddies as a superposition of

linear, quasi-geostrophic waves seem to be successful over

short times, but tend to produce a dynamically inconsis-
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tent model, in which neglected nonlinear terms are large.

Rhines (1971) took a different dynamic balance where

the stratification plays a major role in a vortex stretch-

ing over a sloping bottom, but pointed out the fact that

nonlinearity is of order unity.

An estimate of nonlinearity for a thermocline eddy

is typically

UT _ 10 cm/sec x 40 days % 6.9
L 50 km

where U is the characteristic velocity scale, T the

time scale and L the length scale (scale being one

cycle/2). This may be smaller, but greater than unity,

in the deep water, and gives a primary objection against

applying linear models to eddies.

Recognizing the huge available potential energy em-

bedded in the deep thermocline in the North Atlantic Ocean

(Stommel, 1966) most of nonlinear models have been concerned

with the baroclinic instability. The idea was tested by

Schulman (1967), who found that a- slow meridional current

is baroclinically unstable in a manner similar to its at-

mospheric counterpart examined by Eady (1949). The

e-folding time-scale is of the order of one year with a

vertical shear of 1 cm/sec across the thermocline, which is

a reasonable estimate of the basin-wide shear as can be seen

in Fuglister's (1960) sections.
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Recently more refined theories are suggested by

Robinson and McWilliams (1974), and Gill, Green and Simmons

(1974), in both cases a steady, zonal and horizontally uni-

form current being assumed as an unperturbed state.

Robinson and McWilliams (1974) include the beta-effect,

bottom topography and mean vertical shear in a two-layer

model and obtain an e-folding time of two months for

5 cm/sec vertical shear. In a continuously stratified

model Gill, Green and Simmons (1974) conclude that the

energy conversion confined in the upper 400 m may be very

important in eddy-generation.

In short, the baroclinic instability process has been

referred to frequently as a generating mechanism of eddies

in the mid-ocean, and within the boundary currents, because

the theory predicts the scale of the most unstable pertur-

bation consistent with the observations. The e-folding

time scale can be as short as 60 to 80 days if the vertical

shear across the main thermocline is as large as 5 cm/sec

uniformly over a scale larger than the radius of deformation

by an order of magnitude. If the shear is reduced by half,

then the e-folding time scale is doubled. In reality, the

uniform vertical shear in the mid-ocean may be a few cm/sec,

substantially smaller than 5 cm/sec, which means an e-fold-

ing time scale close to one year as from Schulman (1967).

Therefore it is doubtful that this process is a major
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generating process of eddies. On the other hand it is

clearly possible that the eddies themselves are more un-

stable than the weak mean circulation, since the growth

rates are proportional to the baroclinic velocities. The

stability of currents in which there is horizontal shear

as well as vertical shear has been a controversy and in

limited cases some numerical experiments (Brown 1969,

Song 1971) and theoretical works (Stone, 1969; McIntyre,

1970; Simmons, 1974) have been carried out for a zonal cur-

rent. These models are useful, but not enough, to access

the properties of instabilities for a wide range of length

and time scales.

Other shortcomings in the previous models are that

the current in the basic state is strictly steady and zonal,

which may be quite suitable in the atmosphere, but rather

remote from an oceanic state.

Rhines (1975L took the other interesting limit of non-

linear interaction in which the stratification is neglected.

Here the migration of two-dimensional turbulence in a

homogeneous fluid to larger scales ceases at a particular

wavenumber k8 = 8/21 1 , where 8 is the northward

gradient of the Coriolis parameter. The inferred scale for

the ocean is 70 km. This model does reproduce some of the

properties of observed eddies, that is, the dual nature of

nonlinear eddies, where both turbulent migration and wave

.- ~^~.~---ra-~----u~-_---_..
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propagation are active. A more complete picture comes

from stratified turbulence models (e.g., Rhines, 1975a).

Having discussed linear and nonlinear models, some

specific questions are raised:

(1) Are the linear, quasi-geostrophic waves stable?

Lorentz (1972) and Gill (1974) found that the baro-

tropic Rossby wave is unstable, but the stability

of the baroclinic Rossby wave remains to be answered.

(2) What are the instability characteristics of a baro-

clinic current with a finite horizontal length- and

time-scale? More specifically, suppose that there

are present two dominant length scales. Their energy

transfer may involve two length scales around the

radius of deformation, or involve one scale around the

radius of deformation and another scale much larger

than the radius of deformation, such as the scale of

the mean circulation. Which of these will be stronger

and dominate signals during an experiment over a

limited period?

(3) Is it possible to generate larger eddies from smaller,

in a stratified fluid as it is in a homogeneous fluid?

It is very interesting that the stability analysis of

the baroclinic Rossby wave does provide a unique opportun-

ity to answer these questions simultaneously. It is par-

ticularly relevant because the duality of oceanic eddies



can be kept naturally in the analysis. In Chapter II,

basic equations are derived and their properties are dis-

cussed. Linearized perturbation equations are derived in

Chapter III and the perturbation energy equation is used

to examine how the perturbations interact with the unper-

turbed field specified as the baroclinic Rossby wave. In

Chapter IV the perturbation equations are analysed in

Fourier series and characteristics are found in truncated

series. The mathematical results are interpreted phy-

sically in detail and compared with the previous theo-

retical results in Chapter V. The applications of this

model in the ocean are also discussed. Finally conclusions

are made in Chapter VI.
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II. BASIC FORMULATION

II-1 Basic Equations in a Two-layer Ocean

The stratification of the ocean is idealized by the

two homogeneous layers of slightly different densities and

the fluid of each layer is assumed to be incompressible and

inviscid. In addition the ocean is assumed to extend in-

finite horizontally.

The dimensional equations of motion relative to the

rotating earth are

a 1 ++ (u*V)u + xu = --- - g. (2.1)
at a a a p

The continuity equation is

Vou = 0. (2.2)

The subscripts a = (1,2) denote upper and lower layers

respectively (see Fig. 2.1). The velocity vector u has

components (u,v,w) corresponding to positive eastward (x),

northward (y) and upward (z) directions. The rotation vec-

tor I is parallel to the axis of earth rotation and its

magnitude is twice the earth's angular velocity. The den-

sity in the upper layer (p ) is slightly lighter than that
1

in the lower layer (p ) and g = (0,0,g) is the effective
2

_ ^ -Y--LIII-~ -.--IUV-I~^-VPX~Yrm~X-YI--~-~YIII~- 4~L ~II-_ilX^L)IIII s -slh-



36

f/

1 +
..,.

u D h

2

2 D2 h2 (x,y)
P2 u2

SCHEMATIC CONFIGURATION OF A TWO-
LAYER OCEAN

Fig. 2.1 The stratification of the ocean is idealized by
two homogeneous layers of densities, pl and p2where p1 < p2. Thickness of the upper layer
is h1  and h2 is a height of the interface.1 2
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gravitational acceleration.

The boundary conditions are

ah +
S+ (u *V)h = w

at 1

ah
t 2 +

ah
2 +

at

(u .V)h = w

(u -V)h = w
2 2

(u *V)B = w
2 2

where h (x,y), h (x,y)

ness of the upper layer,

at z = h (h = h + h )
1 2

at z = h

at z =h

at z=B

and

the

(2.3a)

(2.3b)

(2.3c)

(2.3d)

B(x,y) represent the thick-

height of the interface and

the bottom configuration respectively. And there are two

matching conditions at the interface: the vertical velocity

and the pressure should be continuous.

Let the scales of the variables be

(x,y) = L(x',y')

z = Dz"

(u,v) = U(u',v')

w = U6R w'
0

t = t
U

S P= f UL

h = D(l + R F h*)o e

^L-LI*--- ~L~Y^-I- ~-llii I__ I_..I_~LI-_Y.^-*s~i-~-~.~1~ 1~ ~111-



h = D (1 + RF h ')
1 1 0 1 1

h = D (1 + R F h ')
2 2 0 2 2

with the relevant non-dimensional parameters

D
6= -L

U
R =
o fL0

f 2L2

F =g
e gD

F.

F
1

f 2L2
- 0

g' D

f 2L2
0

g 10

f 
2 L2

F = 0
2 g-D2

aspect ratio

Rossby number

external Froude number

internal Froude number

internal Froude number for the
upper layer.

internal Froude number for the
lower layer

where D and D are the mean thickness of layers,
1

D = D + D
1 2

, g

eration and f

2

2 P - P1S2 g reduced gravitational accel-
2

is the magnitude of the vertical component

of at mid-latitude.

For the range of scales of interest the following can

be shown.

(i) The dynamic balance in the vertical direction is

hydrostatic: 6 << 1.

(ii) The horizontal motion is quasi-geostrophic: R < i.
0

;^_141_(__ ~ ~ 1____^11______1__11 _
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(iii) The beta-plane approximation is valid: the effect

of the earth curvature is neglected except in the

meridional variation of * 0(R ) where aa o

is the mean radius of the earth.

(iv) The horizontal component of the rotation vector

is neglected. This is the "traditional" approx-

imation appropriate to large horizontal scales,

with strong stratification.

(v) The displacement of the free surface is neglected

compared with that of the interface.

From (iii) and (iv) the Coriolis parameter f can be

written

f = f (1 + 8* Ly).
o a

For the upper layer the nondimensional forms of eqs.

(2.1),(2.2), (2.3a) and (2.3b) with no primes on the non-

dimensional variables hereafter become

au au au au ap
R(-- u1u 1+v aL+R w D)-(1+ *Ly)v = - 9 (2.4a)

o 0 at 1ax 1ay o 1 az a 1 ax

av av av av p
R (--+u .av -- + R w )+(1+ y) = (2.4b)R t Iax 1 y o 1az a 1 ay

0

aw aw aw aw ap
R 62 (1 u - 1 I v ~ R w 1) (2.4c)

0 at ax 1ay o 1az - z

with the hydrostatic pressure (Ps), which balances g

1 aPs
such as 0 = g.

_Il_____( L___I____1_Y__~~ -*~ --*ll-~*l-i 1-~-1li~nrll1l~------- -~e-~



x + ay + R - a z= 0

ax ay 0Bz
R h h ahRF (-+u -v -) = Rw atoe at 1 ax 1ay 0 1

ah ah ah
R F.(--+u 2--+v 2) = R w

0 i at 1ax lay 0 1

z= 1 + RFh0 oe

at z = (1+R F h ) 2
0 2 2 D

The nondimensional variables are formally expanded in

a power series of R as p =
1 713=0

n (n)
R p0 1

The equations

of the zeroth order are

(0)

-v(o) ap(O)
1 ax

(0)
u(o) a 1)

1 ay

(0)
aap

0 = 1

au(O) av(O)

x + ay

(2.7a)

(2.7b)

(2.7c)

(2.8)

Eqs. (2.7a,b,c) show that the zeroth order flow is non-

divergent and the pressure is the stream function of the

flow, independent of z by eq. (2.7c).

The first order equations become

(0) u(0) (o) (1)
a (0 ) 1ax (0 u (i) (a) Pv -v - yv  =(2.9a)at 1 x ay 1 1 ax

(2.5)

(2.6a)

(2.6b)



av (0) ()
(0) +U (1)+yu (0) I1

ay 1 ay

(2.9b)
ap(1)

0 =- L1
az
(2.9c)

(2.10)
8x ay + z 0

(o) ah(o)
ay

2 1
ax 1

ah(o)
(o) 2

BY

at z = 1+R F ho
0 oe

(2.lla)
D

at z = (l+R Fh) h--2
0 2 2 D

(2. llb)

where 8* , which
R a

0
the assumption (iii).

(2.9a,b)

is assumed to be of order unity by

The cross-differentiation of eqs.

yeilds

S(o) ~ (0) a
at 1 ax 1 ay

av (0)av (0) au (i) av (1)

ax y ax ay

gv (o) = 0. (2.12)

Substituting eq. (2.10) for the horizontal divergence in

eq. (2.12) and integrating eq. (2.12) vertically through

the layer and applying the boundary conditions we obtain

(0)
1 u
at 1

(0)
a() xSx + v

(1) av (1) (o01)

(o) ah(o)
ax

ah(o)
e at u

ah (0)
i 2at

,ah (0)
k0 )

IW___XIIIQI________11- _-11-1.--~1 .I-IYYI I~ ---- .-X IIP~1
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(0 (0)
(3t+ u (0)X v (0) D) ( 1 ' 1 au IF h ()+By) = 0

at 1 ax 1 ay ax ay 1 2

(2.13)

In this derivation the vertical velocity at the free sur-

face is put to zero because Fe << Fi by assumption (v).

Eq. (2.13) is a vorticity equation for the upper layer,

which states that the rate of change of relative plus

planetary vorticity is due to the stretching of the column

of the fluid via the vertical displacement of the inter-

face.

For the lower layer the same procedure with boundary

conditions at the interface and the bottom yields another

vorticity equation.

(v (0) au (0)

+u (0) + (0) 2 2y F h (0)+By+ b)=0
at 2 ax 2 y x ay 2 2 DR

0

(2.14)

where B is the scale of amplitude of topographic vari-

ation and it is assumed that DR <0(1).
DR -

0
The continuity of pressure at the interface requires

p h (0) = p (0) p 1(0).
Ph =p p -p
22 2 2 11

Because p - p << p , we may approximate
2 1 2

(0) p (0) (0) (2.15)
h P P

2 2 1

Eq. (2.15) satisfies the matching condition of vertical

velocity automatically. Utilizing the pressure as a stream

function, we may rewrite eqs. (2.13) and (2.14) with (2.15).

~YI1I/^__1 __1___ I~ I
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at 1 1 1 2 1

[ J( I )(V2 +F + )+ y+ = 0 (2.17)at 2 2 2 1 2 RD
0

where = p (), = p . And the Jacobian operators
1 1 2 2

are used in the advection terms such as J( )u .
I X 1 ly

Large-scale dynamics controlled by the bottom have

been investigated by many authors (Rhines (1970), McCartney

(1975), Freeland, Rhines and Rossby (1975))and its effect

in the nonlinear processes may be very significant (Rhines,

private communication), if typical values of B/R D approach
0

or exceed unity. However, in this study the efforts will

be concentrated on understanding the dynamics which are con-

trolled internally, neglecting the bottom effect.

II-2 Energy Conservation

For a flat bottom ocean the basic equations (2.16) and

(2.17) are written in a tensor notation for convenience in

deriving energy equations.

[--t+ ]a{ ----x +F (] -{ )+By} = 0 (2.18a)at a88xa x axi ax 1 1 2 1

a - a +F ( -)+By = 0 (2.18b)a t ax ax x X Fy2 2 1 2

l ~ P1"C~llrYI~P~-- -- ~-13irmi u-(l~y Irr~ rr r~.-,~- ~,~ l~l -~--L*
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where eaB is the permutation tensor of the second order

and i = (1,2). With an identity

a 8x 3x i x i  ax i  x ax axi 1

multiplying eq. ( 2.18a) by i , we obtain

d i _ D* d a~ +j 2 1

dt 2F x. x i  
(  dt 3x. 2 1 'F 21 2F1 1 1 1

(2.19a)
d a

where -t t + u v (i = 1,2).
dt at iax iay

Similarly the equation for the lower layer takes the form of

2 1 2 2) + 2 2 2dt 2F ax. x i 2 (t 2. d2 . +

2 i 1 1 2 i

121
J( 2 1 2

2
(2.19b)

The sum of eqs. (2.19a,b) yields the energy equation:

d d * d d
d(KE +PE ~)+ (KE +PE )=V*{( -Vi +-- ) -
dt 1 I dt 2 2 F I 1 F dt 2

1 2

2F 1 F 2
S1 2

(2.20)

---r ----. *----Lu.~-i-"iil-LLF..r~.-~----~-P



with the definitions of energy densities

1 (0) (0)2
KE (V + ):kinetic energy density

2F i 1 1 1 in the upper layer,

11 (0)2 (0)2

KE 2F (V ( (0 +v 2 ):kinetic energy density
2 2F 2 2 2 2 in the lower layer,

_ 1 (0)

PE =E ($ -9 )2=(h ):potential energy density, which
I 24 2 1 2 is formally divided into two

layers.

It is possible to show that the terms in the right hand

side of eq. (2.20) represents the pressure work.

For a closed basin with zero normal velocity on the

boundary, the integration of eq. (2.20) gives

af{ 2  4 2 21 2) dxdy = 0
1 2

(2.21)

Therefore the total energy of the closed basin is conserved.

II-3 Exact Solutions of the Basic Equations and Their
Stability

It is well-known that the eqs. (2.16, 17) have exact

solutions, holding for arbitrarily large amplitude.

---- rcr~ --rrx~i*-~-rr~r-~.~ -*_.r..~~~~tl-ir~--) _yr-nll-r~---~---r-LI1..



(i) Barotropic Rossby wave: The stream functions are

=(i sin (kx + £y-wTt)
9 1

2

- k
with the dispersion relation T = 2

k + £2

Correspondingly, h() 0 and the horizontal motions
2

in two layers are in phase vertically.

(ii) Baroclinic Rossby wave: The solutions are

= 0 sin (kx + ky - wct)

2 2

with -k The motions are out of
k2 + + F + F

1 2

phase by 1800.

(iii) Steady zonal current: In the limit k + 0, the

frequencies of both waves go to zero. Therefore

steady zonal currents exist as particular cases of

barotropic and baroclinic Rossby waves. The cur-

rent can be either barotropic or baroclinic.

In fact, the same dispersion relations have been de-

rived in a linearized model by Veronis and Stommel (1956

), which are shown in Fig. 1.8 ; the dispersion re-

lations are the same, because the wave-like solutions of

the basic nonlinear equations are exact,

I~_ 1 ~_1_1_ __ _~I_~~_CI ____ -IIPI~_II.~I ..~L ~li---~---~
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the advection terms cancelling each other identically. It

is obvious that the superposition of many different waves

does not satisfy the nonlinear equations.

The stability of the current configurations described

by these exact solutions have been investigated extensively

by various authors, except for the baroclinic Rossby wave.

Some of these earlier studies are relevant here, for

example:

(i) Instability of the zonal current in a barotropic

fluid: The existence of the absolute vorticity ex-

treme is necessary for instability (Kuo, 1949).

(ii) Instability of the baroclinic zonal current in a

two-layer system: The potential vorticity gradient

must be somewhere positive and somewhere negative

for instability to occur. For a horizontally uni-

form current this condition requires a minimum ver-

tical shear to overcome a stabilizing beta-effect

(Pedlosky,1964a). There exists a short wavelength

limit of unstable perturbations and the constant

phase lines of growing perturbation tilt opposite to

the vertical shear (Bretherton, 1966). The Reynolds

stresses incorporated with the weak horizontal shear

intensify the shear (Simmons, 1974). Physical ex-

planations of (i) and (ii) in terms of vorticity-

induction have been given by Lin (1955, p. 57) and

Bretherton (1966), respectively.

~~~I,- -ru.~l-~-l-~. -------~ ~.~Y-- ~~~^~'~clsUa;
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(iii) Instability of a barotropic Rossby wave: Lorenz

(1972) and Gill (1974) have shown that a single

wave can break down via a generalized kind of shear

instability, either with large or small amplitude

of the primary wave.
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III. PERTURBATION EQUATIONS

III-1 Linearized Perturbation Equations

The subject of this study is the stability of the baro-

clinic Rossby wave. For a convenience of analysis it is

assumed that the two layers are of equal depth H and the

effect of different depth will be discussed in Chapter V.

The wave considered propagates due west with a wavenumber

vector (k, 0). Therefore the unperturbed state is described

by

- sin(k(x - Ct)) (3.1)

2

where the phase velocity C is determined by

C = (3.2)
k 2 + 2F

f 2 L2

with F -4---. The corresponding velocities are

(0, U cosk(x-Ct)) and (0, -U cosk(x-Ct)) in the upper

and lower layers,respectively. Fig. 3.1 shows schematically

the velocity field, which is characterized by the sinusoid-

ally varying horizontal structure and the vertical shear

concentrated at the interface.

Assuming infinitesimal perturbation stream function

a (a = 1,2) such that fill << I~al superposed on the
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VELOCITY STRUCTURE OF A BAROCLINIC
ROSSBY WAVE

The velocity structure of the basic wave is
characterized by the presence of horizontal
shear as well as vertical shear, associated with
kinetic and potential energies respectively,
which are partitioned by 2 , where L is

the internal radius of p deformation.V1 L (x)-U s(k-C)
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unperturbed state, we obtain the following linearized per-

turbation equations

-{V2t +F(4 - )}+U cosk(x-Ct) fV24 +(F+k 2 )4 +F I + o
at 1 2 1 ay 1 1 2 ax

(3.3a)

t{V2 +F( -2 ))-U cosk(x-Ct)- {V 24 +(F+k 2 )4 +F }+--x=0.
at .2 1 2 DY 2 2 1 ax

(3.3b)

Here the quadratic terms in (a from eq. (2.16, 2.17) are

neglected, while the advections of the unperturbed potential

vorticity by the perturbation velocity and of the pertur-

bation potential vorticity by the unperturbed are included.

Since the unperturbed state is propagating, it is conven-

ient to analyze the stability in the coordinate frame

moving with the phase speed C. The necessary transfor-

mations are

x = x - Ct
0

Y0 =Y

t = t.
0

In the new frame eqs. (3.3a,b) become

t{V2+F( - ) } _[ - )lCa U coskx a ] { V2) +(F+k) +F } = 0
at 1 2 1 ax 1 1 2

(3.4a)

_



S{V +F(q - )}-[Ca Ucoskx 3]{V2 +(F+k 2) +F 1 = Oat 2 1 2 aX aY 2 2 1

(3.4b)

where the subscripts on the new coordinates are omitted

and the substitution 8 = -C(k2+2F) from eq. (3.2) is

made for the last terms in eqs. (3.3a,b).

III-2 Energy Equation for the Perturbation

From eqs. (3.4a,b) it is possible to derive the

equation of perturbation energy, which will serve as an

important guideline in the perturbation analysis and its

physical interpretation. After a similar manipulation

done in deriving the energy equation in Section II-2 we

get

a1 1 2 la-{-1(v -V +V2 ) t -V ) 2}=V-( ( V )+V-(2 ¢-V2
t 2F 1 1 2 2  2 2 1  at 1 2at 2

(3.5)

S[C - V (x) ]{V 2  + + +- 2
1 ax 1 ay F 1 1 2 F 1

-2 - V (x) +
2 x 2 3Y 2 2 1 F 2

where V (x) = U cos kx and V (x) = -V (x). It is assumed
1 2 1

that the perturbation stream functions are periodic in

space, i.e.

2(( 2
,(x,y) = (x + -k', y) c(x, y + -)
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where 2_ is the wavelength of the unperturbed wave andk
2__ an undetermined meridional wavelength of the pertur-

bation. Integration of eq. (3.5) over a cycle in space

yields

(V .V +V' ( -  )) ] dxdy

1 1 2 2 2 y =

cycle

(V (x)-V W(x)) -- dxdy +

cycle fc l dV 8 94 dV a4 8
d 1 2 2 21 dxdy.

F dx Dx 3y dx Dx Dy

cycle (3.6)

The integration of the terms multiplied by C in eq. (3.5)

vanishes, because the perturbation is assumed to be periodic.

The definition of perturbation energies is very ap-

1 1
parent in eq. (3.6): -2F V and 2V 2V2 are the

kinetic energy densities in each layer and 2-4 )2 the

potential energy density. The rate of change of the total

perturbation energy is determined by the energy transfer

via the interaction between the perturbation and the un-

perturbed flow specified on the right hand side of eq. (3.6).

The interaction associated with the vertical shear of the

unperturbed state representing an available potential

energy, (the first RHS term) will be called the baroclinic

interaction and that involving the horizontal shear (the

I__ ~_^ I~~C-~l-II-~Y~~I _I_1^.~~*-----1III~-~-C~~I ~- IC~L_
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second RHS term) representing an available kinetic energy,

is the barotropic interaction. The first term is the

familiar product of the perturbation heat flux and the

temperature gradient, while the second is the product of

Reynolds stress and mean horizontal shear. For the scales

under consideration the Richardson number is much greater

1
than unity, Ri - FR 2, that the effect of the kinetic

0
energy with the vertical shear is negligible.

The intensity of the two interactions is scaled by

1/F: the baroclinic interaction dominates the barotropic

if F >> 1 and vice versa if F << 1. Because of its

critical role in determining the instability characteristics

of the current it is very important to have a good under-

standing regarding the nondimensional parameter F: it

is a measure of the vortex stretching against the relative

vorticity in eqs. (2.16,17) and the potential energy com-

pared with the kinetic energy in eq. (2.21). The para-

meter F can be understood as a ratio of two length

scales, F = L2/L 2 with the radius of deformation defined
H

as L 2 g'H The radius of deformation is fixed in-
p f2

ternally by0the stratification, rotation and depth.

III-3 Integral Properties of Perturbation

Some important instability characteristics can be

found by specifying the perturbation stream functions even

~____ ~_~_ ~_ ) ~1~ (_lll~___li___l__yq/



before detailed analysis. The perturbations take the form

of

= R ei(y + t) (3.7)

where X and X are complex in general and assumed to
1 2

be periodic. Substituting eq. (3.7) into eqs. (2.16,

17) and multiplying by X * and X2 *, complex conjugates

of X and X respectively, and adding two equations we

get

{{x I * X I X * X 2  2(X, I 2 +X 2)-F(X 2-X )2

-C[X *{XI +(F+k 2 2 )X +FX2 +X 2*{X +(F+k 2 - 2 )X +FX I
(3.8)

+iLU coskx[XI *{X (F+k 2 - 2 )X +FX 2-

X *{X2 %(F+k 2 -£ 2 )X2+FX ] 0

where the notation q2 q*q and q dq are used.dx

Under the condition that the derivatives of x are also

27
periodic, the integration of eq. (3.8) over (0, 2f) yields

-aE + CR + £UI = 0 (3.9)

where E = X 2 +X 2+2(X 2+X 2 )+F(X-X ) 2 } d x

w 2 1 2 1 2

-rrc-- -.. .- ~LrlY--~.I~ --I1~UW-II--^- I--L-r~-~--- ---l-y~-ll~ ~P-l~;ll^IIUS*L-"LII .
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R = 21m{X *' X '+X * X '+(F+k 2- 2 ) (XI *X +X2 * X
1 1 2 2 1 1 2 2

FX2*X }dx

I = [coskx{-X +'2 2 +(F+k2-2)(X 2 -X 2J 1 2 1 2

F coskx(X *X -X *X 
1 2 2 1

+k sinkx(X *X I-X *X ")]dx.
1 1 2 2

The integral E is positive definite, representing the

total perturbation energy as in eq. (3.6) and R is real.

The imaginary part of eq. (3.9) gives

a. E = £UfIm{2F(coskx)X *X +k sinkx(X I*X X*X 2)}dx

(3.10)

where a. is the imaginary part of a. It can be shown

easily that eq. (3.10) is essentially the same pertur-

bation energy equation as eq. (3.6). The perturbation with

a positive value of a.i will damp out and that with a

negative value will amplify its magnitude exponentially in

time. If we write

i ( a(x)
Xa(x) Ix(x)le

eq. (3.10) takes the form of

-...I,~~.~ -- - ~--~------- ~I--- --~- -- ---IY--'-~~ rer-,



= U[JX IXX2 Isin((D- ))coskx dx+i - ( I 2 2 )sinkx dx]

J { (X2+ 2 +X2 22+ 22())+ ×X-X ) 2 } dx

(3.11)

It is trivial that a. = 0 if t = 0 and t is assumed

to be positive. The sign of a. is determined by the

numerator in eq. (3.11), in which the first integral cor-

responds to the baroclinic interaction defined in the pre-

vious section and the last the barotropic interaction. The

structures of the integrals are revealing some consequences

of the interactions and are worth examining in detail here.

(1) Baroclinic Interaction

The contribution of this interaction depends upon the

correlation between the vertical phase difference in the

perturbation (®D - ) and the vertical shear represen-
2 1

ted by cos kx.

If, (a), ®2 - =0 or w,
2 1

the perturbation stream functions in eq. (3.7) are ver-

tically in phase on the plane x = const. if ) - ( = 0
2 1

or out of phase if a 2 - 1 = w, which means that the

perturbation is either pure barotropic or baroclinic. In

either case there is no baroclinic interaction.

If, (b), 0 < - ( < w with cos kx < 0 or
2 1

-iT <( - 1 < 0 with cos kx>0,

the interaction yields a negative value in ai and the per-

turbation is unstable baroclinically. It can be seen that

IYYe__~_____;L__II___ .i I^_. .~I- LII~-l-~-LL l~i~.iYInl ~ t--~l



the common feature is that the lines of constant phase are

tilted opposite to the vertical shear. This is the same

characteristic vertical structure as found in the unstable

perturbations in zonal currents (Bretherton 1966).

If, (c), -r < - () < 0 with cos kx > 0 or
2 1

0 < 0 2 - < 7 with cos kx > 0,

the relation between the phase lines and the vertical shear

is opposite to that in (b) and the corresponding per-

turbation is stable.

(2) Barotropic Interaction

This interaction is determined in each layer separately,

hence the name barotropic interaction. As far as this inter-

action is concerned, what is important is the horizontal

shear, not vertical shear.

From these classifications two important features

emerge. Firstly, the baroclinic process is concentrated

around the maximum vertical shear, while the barotropic

process is concentrated around the maximum horizontal shear.

Secondly, each process requires a unique relation between

the perturbation and the unperturbed flows. Generally the

two maxima do not coincide and an unstable perturbation in

one interaction may not have a right phase to be unstable

in the other interaction. Therefore it may be possible

that one interaction transfers energy from the unperturbed

to the perturbation flow, -and the other does the reverse.

._c~-- ..,~XI---~-CLI -^lt-LII~--1~LLL llsIL1-LI~IIYIIIIIIIIYY ly
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The balance between the two interactions varies with L/L

as discussed and is expected to be very subtle around

L 1, because the vertical and horizontal shears are
L

comparable.

.. _^- yyyg s*_--- lir---ll(~Laa



IV. PERTURBATION ANALYSIS

IV-1 Solutions in Fourier Series

Having found some important characteristics of the

stability, we are going to look at the stability criteria

in terms of the parameters and the structures of growing

perturbations in detail, by solving the perturbation

equations in Fourier series.

The perturbation stream functions are decomposed into

the Fourier Series in space, discrete in x.

= Re ei(nkx + ky + at) (4.1)

2 - n

where the amplitudes ( n ,n) and the frequency a are

complex in general and n will be called mode number.

This solution, periodic in x with the periodicity of the

unperturbed flow, is probably not the most general solution:

as in Floquet's theorem for Mathieu's equation, we expect

ivkx
the general solution to contain an additional e

factor where 0 < v < 1. But the solutions sought here,

analagous to the Mathieu functions, are likely to be re-

presentative of the total set. Substituting the Fourier

series into eq. (3.4a,b) and making use of the orthogonality

of the series we obtain the following equations relating the

amplitudes of three consecutive modes centered at n.

_I~s __
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2A SK 1I< 2
{ (nK+P+1)+ }-2n(SK -(n K+P--K)

2n n P n n

(4.2a)

-{(n-1) 2 K+P-l-K}}n -{ (n+l) 2K+P-l-K} n+ln+1 = 0

2-(n2K+P+1) +C }-2n()SK P-(n2K+P-1-K) n+S)
p2 n n n n

(4.2b)

+{(n-l) 2K+P-1-K}nl-c n-1+{(n+l) 2K+P-l-K} n+l-n+1 
= 0

a k 2  2  C 2

where A= , K - ,P- and S - These
UF F' U2

nondimensional parameters can be better understood in terms

of dimensional quantities, bracketed whenever necessary

not to be confused with the nondimensional.

A = [U/L : frequency and/or growth rate of pertur-
[U/L P

bation normalized by [U/L ].

[C] 2
S = [U] : square of the ratio between the phase

speed of the unperturbed and the maximum

particle speed.

K = : square of the ratio between the radius of

deformation and the scale of the unper-

turbed field L = 1/k.

p : square of the ratio between the radius of

deformation and the meridional scale of

the perturbation L = 1/£.p

~1~~11 _LI_ __^XI___ __1lnml__l_~X11_ _ ~~rl~~_ I^_ I _ CO~llll*
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Any length scale here is meant to be equal to the corres-

ponding wavelength divided by 2f.

A set of particular combinations of amplitudes

(n ln) is very useful in the analysis.

+
n = n + Cn

on =n - n

The definitions of

transformation as

1
Si=(a nn 2 n

: barotropic part at n.

: baroclinic part at n.

(a + , an ) are clear in the inversen n

+ 0 ),n (4.3a)

(4.3b)1 + -
n 2 (n - n

The sum of eqs. (4.2a,b) and the difference between them

yield equations in terms of the barotropic and baroclinic

parts as follows:

{2A(n 2 K+P)-2(SK) n(n 2 K+P-2-K) }o n% n

(4.4a)

+{(n-) 2K+P-K}P an1 +{ (n+l) 2K+P-K}P = 0

--rrrrr-rar-~-rr-- -i- ----r~--^-~---r_- ( -- --li-ari-iil --P~--
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{2A(n 2 K+P+2)-2(SK) 2n(n 2 K+P-K) }on

(4.4b)

+{(n-l)2'K+P-2-K}P l+{(n+1)2K+P-2-KP n+= 0.

These equations form homogeneous equations of infinite

number, imposing an eigenvalue problem for A with

eigenvectors (an+ ,n ). It is very interesting to find

selective coupling among the modes in their interactions.

The barotropic part of mode n interacts with the baro-

clinic parts of neighboring modes (n-l) and (n+l) exclu-

sively in eq. (4.4a). On the other hand, the baroclinic

part of mode n interacts only with the barotropic parts

of modes (n-l) and (n+l) in eq. (4.4b). The consequence

of this selection is that the entire nonlinear interaction

is divided into two chains of interaction, which are com-

pletely independent of each other as shown below.

+ +a-3  -2\ \ /AN

-3  a-2 -1
-lO

V
a2

+
03

/

03

The interactions connected by

.. ;,-~rrrr~i --*L-I--~?-^ -LIII~Ir~ -U L I~-L t~-)~ -m~~i I~UC

dotted linessolid and
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are called Branch I and Branch II, respectively.

Because there is no overlap between two branches, the

homogeneous equations from eqs. (4.3a,b) divide into two

subsets of infinite equations, yielding two eigenvalue

problems. In tensor form they are

Ai j Xj = -AIXj

Bij..Y =-AII Y
LJJ Iii

where x. and

+
a 20-2

e-1

+CT

aW
2

* v

for Branch I

for Branch II

Y • areJ

and Y =

The corresponding matrices A.. and B are made of the
13 ij

coefficients in eqs. (4.4a,b), shown on the following

pages.

(4.5a)

(4.5b)

-2

0
+
a 1
1

°7
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4 4

(3K+P-2)2(SK) (4K+P)
(4K+P)

(3K+P-2) P
2(K+P+2)

A. .
13 . . .

0

0

p3/2

2(4K+P)

(SK) P
K+P+2

IP-2-K)P
2 (K+P+2)

1
2 2

(P-2-K)P2  P
0 0 2(K+P+2) K+P+ 2 )
L------------j

p3/2
2 (4K+P)

(3K+P-2)P
2

2(K+P+2)

-2(SK) (3KP-2)
(4K+P)

(4.6a)



(SK) (3K+P)
(4K+P+2)

(P-2) P
2 (4K+P+2)

t- - - - -- - - - - - - - -----
(3K+P) P

2 (K+P)
(SK) P-2(K+P)

Iii

(P-K) P2

2 (K+P)

(P-2) P
2 (P+2)

P-2
- (SK) (K+P)

(K+P)

(P-2) P 2

2 (4K+P+2)

(P-K) P 2

2 (K+P)

0

0

(3K+P) P 2

2 (K+P)

-2 (SK) 2 (3K+P
(4K+P+

)
2)

(4.6b)

e *

(P-2) P 2

2 (P+2)
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It is worthwhile to explore the possible solutions.

For given values of parameters S, K and P the eigen-

values AI and AII will be different in general. Hence

the eigenvector of Branch II corresponsing to the eigen-

value of Branch I will be trivial and vice versa. However

even the trivial solution in a +or a is necessary
n n

to determine (E nn) in eqs. (4.3a,b). Suppose Branch II

has a trivial solution, that is

0  + +
"= 1 2 : 3 = "' 0,

equivalently

0 = 0 ±l' +2 +2 2 , ....

Therefore the components with even mode number are baro-

tropic and those with odd are baroclinic. This structure

will be opposite for a trivial solution of Branch I.

Now let us examine the existence of a convergent series

as a solution. For a sufficiently large n > 0 a possible

balance in eq. (4.4a) should be either

+
(a)or (b) nn +1 2(SK n, and in

n-l 2(SK) n a+n
+

eq. (4.4b) either (c) I- 1 . or (d) n+1
anl 2(SK) n an-1 n

2(SK) 2 n with n > K- .
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If an eigenvector satisfies (a) and (c), then the series

converges absolutely by a ratio test (Whittaker and Watson,

1965). Otherwise the series may not converge.

IV-2 Characteristics in 3-mode truncation

It is assumed that the perturbation is dominated by

three modes n = (-, 0, 1) neglecting the rest of modes

compared with these three and the results from this trun-

cation will be carefully re-examined in higher-mode

analyses. In this approximation the matrices A.. and
13

B.. become finite 3 x 3 square matrices, enclosed by a13

dotted line in eqs. (4.6a,b), and the eigenvalues are

found easily by solving the determinants from eqs. (4.5a,b).

2  S KP2  P P-(K+2) for Branch I (4.7a)
I (K+P+2)2 2 {P+(K+2)}

A sK(P-2) 2  P(P-K) (P-2) for Branch II (4.7b)
II (P+K)2 2(P+K)(P+2)

IV-2-1 Marginal stability curves

It will be interesting to find out the regimes of

different stability characteristics. Figure 4.1 shows two
L

families of marginal stability curves in (--L ) for dif-
P P

ferent values of U/C. Note that Lp is the meridional

scale of the growing instability; the zonal scale is

fixed by that of the unperturbed flow which varies over the

--̂ ---u- ----*- -~ --r; X--LLC--ru~-r~-.rri~Irrt~-~-l~----~~~-_^ UI_
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MARGINAL STABILITY CURVES (3-.MODE)

U BRANCH I

= 10.0

Lp

.1.0

. .** ' 0.2
.........,. ..... ..... ,...,. -..' ..... ............. "....... "........................... .. .* .. .. ...

1 2 L 3 4 5

LP
Fig. 4.1 Branch I: The region above marginal stability curves is unstable and

one below the curves is stable. Note short wavelength limit of un-
stable perturbations in the meridional scale of perturbation for
large scale basic flow, L > L . There exist unstable modes irrespec-
tive of the current strength. Branch II: The unstable region is
both upper and lower bounded in L /L. As in Branch I, unstable per- a
turbation exists for U <C. p p
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entire range (0, w).

(1) Branch I: The curve is defined by

P+ SK(S 2 K2 + (K + 2)2)2 = 0,

which divides the parameter space into unstable and stable
L r2

regions. For L < 2 the value of L /L increases

p p p

monotonically with L/L . Near the origin L is pro-
p p

portional to L by (S + /S2 + 1) and the presence of

L 1L is not relevant. For > 1 L /L approaches to

L P pU

2 asymptotically either from above if C < 1 or from

below if > 1. In any case the regime above the marginal

stability curve is unstable and one below the curve is

stable. The unstable regime widens towards smaller values

of L /L as U/C increases. The short wavelength limit

Lof unstable perturbation for L > 1 is very similar

to the usual characteristics of the pure baroclinic in-

stability in a two-layer model (Bretherton, 1966).

It is most important to note that there are always

some unstable perturbations for any current U/C and any

U
unperturbed scale L/L . Even a weak current with < 1

is unstable with respect to some infinitesimal perturbations.

This indicates that the beta-effect represented by C in

eq. (3.2) may never be strong enough to stabilize the cur-

rent in this study. With the parametrically increasing

beta-effect the perturbation at certain scales no longer

fall within the unstable regime. However, the perturbations

with a sufficiently large scale arc still unstable.

_I___D__IP)WYPYII_~__.- _Ll-1~ LII~li1~i I t~- .--- --l~



(2) Branch II: There are two equations defining the mar-

ginal stability curve of this branch;

P - 2 = 0,

P3 + 2SKP2 - K 2P - 8SK = 0.

The unstable regime is both upper and lower bounded in

L /L with a band whose width increases with U/C. As in

Branch I, unstable perturbation exists for C < 1.

IV-2-2 Growth rate for unstable perturbation

From eqs. (4.7a,b) it is found that the growth rate of

Branch I is always larger than that of Branch II for given

U/C and L/L . Therefore only the results of Branch I

U
are presented here. For a weak current with C = 0.2 the

L L
L ¥2) plane formcontours of constant growth rate in ( - L plane form
P P L

two hills in Fig. 4.2a, one rising towards large L > 1
P

with L p/Lp approaching to unity and the other contin-

uously rising towards a smaller and smaller L /L as

L/L decreases from unity. As a current becomes stronger

as = 1.0 and 1.8 in Fig. 4.2b and 4.2c, the hill at
C

large L/L tends to disappear and the growth rate changes

very little with L/L ; the maximum growth rate approaches
L

0.4 around _2 = 1.2. The restoring effect of B clearly
L

acts to stabilize modes near the center of the figures,

pushing the dominant instability toward small and large

L/L ; with a strong B-effect the baroclinic and barotropicP



5-= 0.2

0.16 0.16

4
Lp

L 0.21 0.21

/ . 0.26

2 0.31 .0.31

, ,0' .. 34
/ / .0.3

/ '/ . STABLE " "

I I I i t I I I I I I 1

0.1 1.0 10.0

L

Fig. 4.2a The beta-effect(B) is relatively strong and the
baroclinic and barotropic instability regimes
are distinct for very large and small value of
L/L , respectively. The restoring effect of B

clearly acts to stabilize modes near the center
of the figure.
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0.35

. .fo STABL E

0.1 1.0 10.0
L

L1

Fig. 4.2b As the basic flow strengthens (or with a weak
beta-effect), the baroclinic and barotropic
instability regimes merge into a smooth growth-
surface. Short wavelength limit in the
baroclinic regime is shown clearly,



Lp

L1

0.1

Fig. 4.2c

10.0

L0

Same as Fig. 4.2b except for a stronger current
case. The meridional scale of the fastest
growing perturbation is fixed at a scale
slightly larger than the radius of deformation
in the baroclinic regime and decreases in pro-
portional to the zonal scale of the basic flow
in the barotropic regime.

1 I I"' 1 II I I I I I I

GROWTH RATE - (3-MODE)
U/Lp

U
1.8

C

0.410.51

% 0.35
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instability regimes are distinct, while with a weak B-effect,

the regimes merge into a smooth growth-surface.

It should be recognized in Fig. (4.2b,c) that the

presence of horizontal shear removes the short-wave cut-off

of simple baroclinic instability, allowing a smooth tran-

L
sition to barotropic instability as one crosses = 1.

L P
In - < 1 the normalization of a growth rate by

P
U/L is not appropriate, because the barotropic interac-

tion is stronger than the baroclinic, and L is not a

dynamically important scale. By renormalizing eq. (4.7a)

it is possible to obtain

1-( )

( = S + (4.8)
U/L K 2 K +K 2

( +1+ ) 2 1+ -+

Figure 4.3 shows the renormalized growth rate U/Las a

L U
function of L /L in the range < 1 and 0.1 < - < 0 .

p L - C

The important results are recapitulated in Fig. 4.4, where

the maximum growth rate is plotted. For a strong current

U a
with U > 1 the growth rate depends very weakly on

C U/L

U/C; the growth rate for = 2 is slightly smaller than

that for U + 0. However it decreases in proportion with
C

U/C in the range < 1. It is most remarkable to find

that the renormalized growth rate increases rapidly with

L/L . This phenomena may be explained in terms of avail-

able energies. As shown in section III-2 only the kinetic

I -.1YII--~-UI~-IILi--II ~--X_.t--_-~..
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L
energy is available for L << 1, but the potential energy

P L
is as available as the kinetic energy with L~ 1.

p
Therefore this increase of the growth rate is most likely

due to a positively accumulating effect of the barotropic

and baroclinic interactions.

It is instructive to examine the growth rate for a

U
very strong current. Taking R _+ in eq. (4.7a) we find

the maximum growth rate

[(max (3 - 2/2) [(U] + 12
1 max L2 2L2

with the scale

/2 +1
Lp = ( L2 ) L .P L 2  Lp

L
In a limit -- >> 1L

p

[ai] ma x  0.4142 [E with L p 1.1 L, (4.9)

while << 1L

[ai] max 0.29 U with L + 1.55 L. (4.10)

It is interesting to see, here and in Fig. 4.2c and 4.3,

that whereas any large-scale currents with L >> Lp



generate the perturbation with the radius of deformation,

small-scale currents generate the perturbation with scale

larger than L.

The latter is reminiscent of the canonical result of

two-dimensional turbulence, where it is proved that a spread-

ing energy-wavenumber spectrum must move preferentially

toward small wavenumber (in that the center-of-mass of the

spectrum does so). It is enticing to imagine these in-

stability calculations as models of the energy-transfer

occurring in fields of geostrophic turbulence.

In these extreme limits it is expected physically that

the growth rate be comparable with the values from simpler

models. In fact, Simmons (1974, see Fig. 4) found the

growth rate of 0.45 in the instability of a parabolic zonal

current in a 10,000 km wide channel with the radius of de-

formation 1225 km, which may correspond to the case

L >> 1.L-P L
The growth rate and the scale for L << 1 are iden-

tical with that which Gill (1974) found in the stability of

Lbarotropic Rossby waves. When - << 1 the two layers

are dynamically independent (and the interface is effectively

rigid), so that the barotropic instability problem is

subsumed as a special case of the present theory.
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IV-3 Higher-mode analyses

Although the results from the truncated series with

three modes n = (-i, 0, 1) look physically consistent

in determining the stability criteria, the growth rate

and the scale of the most unstable perturbation, it is

necessary to investigate the stability characteristics

using higher modes in order to check the reliability of

the 3-mode results by estimating the possible truncation

error. Therefore analyses have been carried out with five,

seven and nine modes.

In each truncation first a pclynomial in A is con-

structed by solving the determinant made from eqs.

(4.5a,b), then the polynomial is solved for A analytically.

By doing so, it is possible to get rid of an inevitable

computation error in solving the determinant for A

directly. The direct numerical computation of eigenvalue

A from the determinant is found to be very unstable

around the perturbation scale with the maximum growth rate.

In any case it is found that the growth rate from

Branch I is always larger than that from Branch II as in

the 3-mode truncation and the following analysis will be

mostly concerned with the results from Branch I. The

analysis in 5 modes does not show any significant depar-

ture from the 3-mode results and its results are included

in the following section dealing with the 7-mode analysis.



IV-3-1 Analysis with 7 modes

U L L
For given values of parameters (, -, y) there are

p P
seven eigenvalues and the current is classified to be

unstable if any of them is complex with negative imaginary

part. If there are more than one growth rate, the largest

one is assigned as the growth rate. Figure 4.5 shows how

U
the growth rate changes with L /L when = 1. For

p P C

L > 1, the behavior of the growth rate is the same as
L
p

with the 3 modes, as far as the short wavelength limit of

unstable perturbations and the maximum growth rate at
L
-E = 1 are concerned (compare Fig. 4.2b. Fig. 4.5 cor-
L

responds to vertical cuts in Fig. 4.2b).

For < 1 the renormalized growth rate a has
L U/L

the maximum at a certain scale, L /L shown in the

following table:

U 0.5 1.0 2.5 10.0

L

.4 3.3(3.2) 1.75(1.9) 2.5(1.4) 1.75(1.4)

.7 2.1(2.2) 1.4(1.4) 1.4(1.2) 1.0(1.1)

1.0 1.5(1.5) 1.0(1.1) 1.0(1.0) 1.0(1.0)

Table: The perturbation scale normalized by the unperturbed

scale, L /L, at the maximum growth rate. For
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Fig. 4.5 These curves correspond to vertical cuts in
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basically the same behavior as found from the
3-mode analysis; short wavelength limit and
maximum growth rate at L - L in baroclinically
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controlled flows, and generation of larger scale
in a barotropically controlled flow.
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comparison the scales predicted from the 3-mode

truncation are also presented in parentheses.

The most unstable scale is determined by comparing growth

rates calculated for discrete values of - so that
L

there may be some uncertainty in pinpointing the scale and

the growth rate. Nevertheless it is quite clear that the

7-mode results are over all in very good agreement with

the 3-mode. It is very significant that the nonlinear

interactions generate the perturbation with a scale

larger than the unperturbed one for L < L and the ratio

Lbetween the two scales enlarges as L decreases.
P

Figure 4.6 shows the variation of the maximum growth

rate with respect to the perturbation scale as a function

of L In the range L < 1, the behavior is strikingly
ofL In the range

P P
similar to the 3-mode variation (see Fig. 4.2b and 4.4);

the series converges quickly in this range as shown in a

U
later section.The extremum in the growth rate at C = 1,

is not satisfactorily understood. Compared with the

3-mode analysis in Fig. 4.4, the 7-mode analysis shows

about 15% increase in the growth rate.

In the range L > 1 there is very little change

in the most unstable scale, but greater departure in the

growth rate from the 3-mode results exists. The growth

rate U/L increases continuously with L/L and appears
U/La p
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to a feedback of energy into the basic wave via
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to approach an extreme value. A similar tendency has been

found by Simmons (1974) from the stability analysis of a

parabolic zonal current, which is reproduced in Fig. 4.7.

In both cases the introduction of a weak horizontal shear

(non-zero 6 in Simmons' case, > 1 in our case),
-P

into the baroclinic current reduces the growth rate. The

growth rate for the widest channel in Fig. 4.7 is 0.45

and just the same value is predicted in this study for a

U L
corresponding case with = 1 and L 2.6, the channel

C L

width being approximated as a half wavelength. However,

the characteristics of the two models become widely dif-

ferent as L/L approaches unity and decreases further:

Simmons' current is stable, while the meridional current

in this study is still unstable. The horizontal structure

in this study is closer to another zonal current from

Simmons (1974), which is made of two sinusoidally varying

currents (see eq. 5.1, Simmons) and found to be also un-

stable in a narrower channel.

To examine truncation error, the growth rates from

the 3-mode and 5-mode analyses are plotted together in

Fig. 4.6 for U 1, which represents the rest as far asC

the comparison of the growth rate is concerned. There is

no sign that the growth rate increases with L/L from the

L
3-mode analysis; the truncation error depends upon L-

The error reaches about 20% at L - 10 based upon theL

LII
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7-mode growth rate. 'The 5-mode growth rate differs from

the 7-mode one, but in fact a calculation with 9 modes

shows very little further change. The growth rate from the

L9-mode analysis is 0.5125 at L- = 10, compared with
U P

0.5114 from the 7-mode when C = 1 and 0.5428 compared

U
with 0.5304 when C = 5. At this stage it was decided

that the 7-mode analysis is accurate enough within the

range of parameters considered here.

Figure 4.8a shows the distribution of relative mag-

nitudes of amplitude at the maximum growth rate. Clearly

the series converge very fast for small value of U/C and

L/L and slower and slower as U/C and L/L become

U L
large. In four cases (C' L) = (1.0, 1.5),(1.0, 1.),

-(2.5,2) and (10.0, 10.0) the amplitudes at n = ±2 are

larger than those at n = ±1. This is believed to be some

manifestation of the structure of the unstable pertur-

bation when L > 1, which has larger barotropic com-
P

ponents than baroclinic, recalling that all the even modes

are barotropic in Branch I. The same kind of perturbation

structures have been found in Branch II, now odd modes

being barotropic, whose examples are shown in Fig. 4.8b.

In all three cases the largest amplitudes are at n = +1

and the amplitude at n = 0 takes the next. In one of

them n = ±3 have larger amplitudes than n = ±2. It is

speculated that this preferential partition, particularly

---I LI I~LIIIEI(LI~~-~ --CI~-IX--~IIXTCII-.* *I II_-L-~--9 L-. III~~~X--- I~MC



AMPLITUDE DISTRIBUTION
AT MODES (-3,-2,-1,0,1,2,3)

BRANCH I
,Ii I ,

,il Ii12.5 - ,lIll, .I I1 .

- . i ..

. 1 I ..

0.1 0.4 1.0 1.5

,III

. 1 I .

2.0 10.0
L

Fig. 4.8a Fast convergence of series for U < C and L < L shows why the
results from the 3-mode analysis are so close to those from
the 7-mode one. Convergence becomes slower as L increases from
L and U from C. However, a calculation with 9 modes shows

very little further change in the growth rate.

III I,,10.0 -

-1.0 S11111I

-

0.5 1



89

AMPLITUDE DISTRIBUTION
AT MODES (-3,-2,-1,0,1,2,3)

BRANCH II

I11 11 1I1
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Fig. 4.8b A tendency to generate a strong barotropic
component of growing perturbation can be
more easily seen in Branch II. Odd modes,
n = +i, +3, .-...... , are barotropic vertically.

U- L LPC , L p, L p,
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at n = 0, which represents a pure zonal component in the

perturbation, may cause the growth rate of Branch II smaller

than that of Branch I.

The fastest growing perturbation hasa unique meri-

dional scale and is comprised of four zonal scales in the

7-mode analysis; it is natural, therefore, to plot the

perturbation kinetic energy as a developing (scalar) wave-

number spectrum, Fig. 4.9. Irrespective of U/C and

L/Lp, mode n = 0, the lowest wavenumber representing the

zonal component of the perturbation, contributes the highest

peak, as suggested in Fig. 4.8a. Therefore the meridional

scale serves as a good measure of the perturbation scale.

The spectrum is relatively wide-spread for small L/Lp and

declines toward high wavenumber very quickly as L/Lp in-

creases from unity. The pattern of major energy transfer,

to a larger scale if L < L and to a smaller scale (the

radius of deformation) if L > Lp, is basically the same

as discussed already regarding Fig. 4.3 and 4.5. Thus we

are able to produce with a single instability mode a quasi-

continuous Fourier wavenumber spectrum. This constrasts

the recent geostrophic turbulent theories, which describe

observed sloping spectra as being a part of a turbulent

cascade.
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Fig. 4.9 Relative perturbation kinetic energy plotted
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unity corresponds to the deformation radius and
the wavenumber of the basic wave is underlined.
Irrespective of U/C and L/Lp , mode n = 0, the

lowest wavenumber representing the zonal
component of the perturbation, contributes the
highest peak. It is interesting to produce a
quasi-continuous spectrum from a single mode.
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IV-3-2 Baroclinic interaction vs. barotropic interaction

The growing perturbation draws its energy from the un-

perturbed field and two energy transfer processes called

barotropic and baroclinic interactions are discussed in

section III-2. Since these interactions occur at the same

time and each interaction requires a unique relation be-

tween the perturbation configuration and the unperturbed

field, the exact contribution of each process in the in-

stability has been left to be answered until the structure

of the perturbation is found in detail. From eq. (3.6) it

is possible to derive the interaccions in terms of eigen-

vectors.

Baroclinic Interaction = 2irUF{A A sin(8 - ) -A A
01 1 0 1 2

sin(0 - ) + A A sin(0 - 0 ) -A A sin(0 - ) +...}
2 1 2 3 3 2 3 4 4 3

(4.11)

Barotropic Interaction = -7TkU{A A sin(8 - 0 ) + 3A A
01 1 0 12

sin(0 - 0 ) + 5A A sin(e - ) + ... } (4.12)
2 1 2 3 3 2

where A = IO  I A = I
q 2q 2q-1 2q-l

(q = 1, 2 ...)

0 = phase(a2 ), = phase (a )
22 q 2-1 2q-1

with the reference A = 1 and 0 = 0.
0 0

_ICI_
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L L
In the extreme limits when -- >> 1 or -- << 1, theL L

p p
energy transfer is dominated by the baroclinic or barotro-

L
pic interaction respectively. The instability near - = 1

is of a mixed type, however, and the contributions to the

energy transfer are of great interest. The interactions

L
are calculated in three cases around L = 1 and shown in

Fig. 4.10. A strong current case with U = 2.5 will be

considered first. The baroclinic process always releases

available potential energy towards the perturbation, but

Lthe barotropic process does not. When L- = 1.0 and 2.0,
p

the flow is unstable baroclinically and a part of the per-

turbation energy feeds back to the unperturbed kinetic

energy through the barotropic interactions, which are 14%

and 4% of the baroclinic energy transfer, respectively.

The direction of the energy transfers resembles the

results of classical baroclinic instability problem with

a weak horizontal shear (Stone, 1969; McIntyre, 1970), but

the horizontal shear in this case is not weak at all. For

a reduced horizontal scale as - 0.4, the barotropicL

interaction not only works in the opposite direction con-

verting the available kinetic energy towards the pertur-

bation, but overrides the baroclinic interaction by 0.63

to 0.37. This augmentation of the instability accounts for

the rise in a near = 1, in Fig. 4.4. A similar
U/L L

reversal in the kinetic energy transfer was also found in

a channel flow by Simmons (1974). These two examples
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illustrate a dramatic change in the energy transfer for a

relatively small change of length scale around the radius

of deformation; from a baroclinically controlled flow into

a barotropically controlled flow and from intensifying the

horizontal shear into releasing the same shear.

For a two-layer cosine jet in the atmosphere Brown

(1969) has found numerically a potential energy transfer

to the jet, in ratio 1 to 0.06, at the largest growth

rate (See Table 1, Brown).

U
In a weak current as - = 0.5 the effect of baroclinicC

interactions are similar to a strong current case, but the re-

storing 8-effect.stops the feedback of the kinetic energy

Lto the unperturbed field at L - 1.0 and 2.0, in contrastP L
with a strong current case. When L- = 1.0 the baroclinic

P
interaction accounts for 29% of the total energy transfer

to the growing perturbation. For -- = 2.0 it becomes 91%.
P

This is a new result which has not been known until now

and could be significant in a geophysical situation where

the current is not strong.

_I----^L1 l-I~^l~--~ ^--~I~L C-XU1I~---_-_I^_I-I ---- ~- I~.--P~1^-1PI-
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V. DISCUSSIONS AND GEOPHYSICAL APPLICATIONS

The prime object of this study was to find the fastest-

growing perturbation and its energetics in a wide variety

of velocity and length scales, appropriate to the geo-

physical situation. Before going into the discussion of

the properties of nonlinear interactions it may be worth-

while to seek the justification of the method employed

in the analysis and its accuracy. The parameter ranges

U L
considered in this study are 0.1 < - < 10 and 0.1 < < 10.C L

It was decided that the Fourier analysis is most

suitable for the object of this study, because it is uni-

formly valid for a wide range of parameters as long as a

convergent series exists. There are other methods such

as WKBJ analysis (Stone, 1969; Gent, 1974) and perturbation

formalism (McIntyre, 1970), but their usage is limited in

a current with a weak horizontal shear, corresponding to

L- >> I. The accuracy of the truncation analysis depends

upon how fast a series converges. The distribution of

streamfunction amplitudes in Fig. 4.8a shows a very fast

convergence for - < 1 and -< 1 and a rather slow

C Lconvergence for C > 1 and L > 1. But no significant

change in the characteristics is expected by including more

modes than analyzed here because the amplitudes at n = +3

which are the highest modes in 7-mode analysis, drop to

20% of the amplitude at n = 0 already and the 9-mode

~II"~ ----- L~--- --L- --*CYIIIYWLI~ - II



growth rate is found to be different from the 7-mode one

by only 2% at most. It is also encouraging to find that

the growth rate from this study is almost identical with

the value for the same parameters from Simmons (1974) which

is claimed to be accurate to one part in a thousand.

Beta-effect

The most interesting result of this study is that the

meridional current is apparently unstable irrespective of

its strength and horizontal scale. The instability of a

weak current will be discussed first. The existence of

[U]growing perturbations in a current with [U] < 1, [U][C]

being the amplitude of a meridional current and [C] the

phase speed of the baroclinic Rossby wave, is shown anal-

ytically in eqs. 4.7a) and 1.7b) from the 3-mode analysis

and the same conclusion is drawn from the higher mode anal-

yses. In other words, the beta-effect represented by the

phase speed [C] is not capable of stabilizing certain

perturbations in the meridional current, however strong

it may be. We must, however, admit an incompleteness in

the analysis in the limit C - 0. There, the choice of

Fourier components will have the added constraint that the

perturbations satisfy the free-wave dispersion relation.

Such a resonant-wave instability requires special analysis.

All indications are that the instability will continue to
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be effective, while selecting from a narrower set of waves

than in the present case.

This instability with a relatively strong beta-effect

is in contrast with what is found in the instability of

a zonal current. For a barotropic current Kuo (1949)

found that an extremum of absolute vorticity is necessary

for instability. For a baroclinic current with a hori-

zontal shear in a two-layer model Pedlosky (1964a) showed

that for the instability it is necessary

2 ia a

dy Hdy a ay I UCj2 0
aal a

with the potential vorticity gradient defined as

aq gq
S 8 - u + F(u -u ) and 2 - u + F(u -u ).

ay iyy 1 2 ay 2YY 2 1

Thir is a special case of the instability criteria derived

by Charney and Stern (1962) for a continuously stratified

fluid and includes Kuo's (1949) criteria naturally if

u = u . In either case whether the current is barotropic
1 2

or baroclinic, it is very clear that a sufficiently strong

beta-effect compared with the horizontal and vertical

shears will always stabilize the zonal current.

Then what happens in a meridional current? The role

of the beta-effect is to propagate disturbance by restoring

a meridional component of the disturbance velocity. An

(~C ~Lil~ll^---^~ ~X~I1~~ 111~--- I~ Il-^--LL--P ~~ll^ . -^~-l----~-----L_~



incipient perturbation motion in a zonal current is oriented

meridionally and the motion feels the beta-effect as soon

as fluid starts to move. Therefore the perturbation will

simply propagate unless it has a sufficient momentum to

overcome the restoring mechanism by the beta-effect. How-

ever the zonally oriented particle motion associated with

perturbations in a meridional current is fully adjusted to

the beta-effect already and this effect has no apparent

control on such perturbations. It should be remembered

that the basic state is propagating and the perturbations

are analyzed in a moving frame with the phase speed of the

basic wave.

The same kind of a dynamical consequence was once found

by Schulman (1967) who concluded in an investigation of the

instability of steady, uniform meridional current that the

fact that the perturbation motion is on the beta-plane is

irrelevant in so far as locating the absolute maximum grow-

ing wave. Recently Robinson and McWilliams (1974) have

stated that the influences of both the beta-effect and

topography diminish as their gradient directions become

parallel to the shear direction, suggesting a similar

dynamical situation without any specific consideration.

It may be pointed out that most of basic flows considered

by Robinson and McWilliams (1974) are not, themselves,

steady solutions of the equations of motion, for they

__lj~___r__ _IX1*__ _I_11__L
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cross geostrophic contours. The instability results for

such flows should be reexamined. The present work is

meant to improve upon the situation, for the basic (oscilla-

ting) state is a solution.

Instability of Current with L < L
P

The current in this study is characterized by the

presence of a horizontal shear as well as vertical shear.

The relative strength of the shears is measured by the

parameter L/L and the stability analysis for various

values of L/L makes it possible to examine the changing

role of each shear in energy transfers. First we will con-

sider the range L < L . In a limit L/Lp - 0 the coupling

between the two layers is negligible and each layer behaves

more or less independently. In terms of energy there is

very little available potential energy associated with the

vertical shear compared with the available kinetic energy

with the horizontal shear. Therefore it is expected the

characteristics are close to those of barotropic instability.

Indeed the growth rate in eq. (4.8) is found to be identical

with what Gill (1974),found in a barotropic Rossby wave.

The vertical structure of the growing perturbations, a

mixture of barotropic and baroclinic parts, in this limit

merely assures that two independent instabilities will

occur simultaneously in the two layers.
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It is interesting to compare the scales involved.

The fastest-growing perturbation has a scale larger than

the scale of the unperturbed state by about 50%. The dif-

ference is not very large, but it is persistent. As the

unperturbed scale L approaches the radius of deformation

L , the perturbation scale also approaches the radius

of deformation. What distinguishes the perturbation from

the unperturbed field is their vertical structures. The

pure baroclinic field transforms into a mixture of baro-

clinic and barotropic. There is also a very significant

change in the growth rate. The normalized growth rate

bT increases almost linearly with L as shown in Fig.
U/L

4.6. This must be due to the increasing importance of the

vertical shear as L -* L : more potential energy is avail-

able for the perturbation and it can be released without

interfering with the barotropic interaction. For = 0.4
P

the baroclinic generation accounts for 25% of the total

U U
energy transfer when C 0.5 and 37% when = 2.5. This

enhanced instability by the vertical shear is believed to

be a novel result.

Instability of current with L > L

Compared with a wide range of possible unperturbed

scales it is rather remarkable to find that the meridional

scale of the most unstable perturbation is fixed at the
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radius of deformation. Zonally the perturbation is expressed

as a superposition of many modes and it is found that the

purely zonal component with n = 0 has the largest amplitude.

It should be pointed out that the higher mode with I(n > 0

does not introduce a scale larger than the meridional scale

as can bd seen in eq. 4.1). Therefore the meridional scale

is the largest possible scale in the perturbation. The

perturbation amplitudes at n = ±i, ±2 in Fig. 4.8a are

substantial for L >> L, with scales equal to

L2

L /(1 + n ) . However, these do not change the scale

very much because L L and L >> L . In summary we
P P P

conclude that any current with a scale larger than the

radius of deformation is most unstable with respect to the

perturbation with the radius of deformation.

The reduction in the growth rate a with a de-
U/L

creasing L/Lp is a most interesting feature in this range.

It can be noticed that the rate of reduction increases as

L + L . In fact, this can be explained in terms of the

individual energy transfers. From the scale it is obvious

that the available potential energy is the main source of

the growing perturbation. The question is what the baro-

tropic interaction with the horizontal shear does during

U
the instability process. In a strong current with 1 = 2.5

it is found in Fig. 4.10 that the barotropic interaction

counteracts the baroclinic interaction and transfers
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energy back to the unperturbed field. The stronger the

horizontal shear is, the more feedback of energy. Therefore

the effect of the horizontal shear, which is negligible

when L >> L , is to cause a reduction in the growth rate

as L - L . In fact this is not an entirely new finding

and there have been numerous studies where the same ten-

dency is found either analytically or numerically. But no

systematic approach has been carried out so far because of

the difficulty in mathematical analyses.

A new finding may be that the feedback does not occur

in a weak current. As explained already the current with

< 1 is unstable and the barotropic interaction also ex-

L
tracts energy from the unperturbed flow for -L = 1.0

U P
and 2.0 when - = 0.5, as shown in Fig. 4.10 This indicates

that the kinetic energy transfer in baroclinic flow depends

not only on the scale, but on the current strength too.

The reduction in the growth rate for a weak current may be

an extension of the increasing growth rate in the range

L < L , but the physical explanation requires further in-

vestigations.

Rhines' Numerical Experiments

Some of the numerical experiments carried out by

Dr. Rhines at the Woods Hole Oceanographic Institution are

closely related to this study. Two experiments are dis-

cussed here with Dr. Rhines' permission. In Rhines' model
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the lower layer is thicker than the upper layer by a factor

of 3.5 and fluid is viscous. The vorticity equations iden-

tical to eqs. (2.16,17) are solved first in a wavenumber

space and the solutions are transformed into a physical

space. The wavenumber corresponding to the radius of de-

formation is k = 8. Experiment I which originally

motivated this study, is concerned with the instability of

a large-scale baroclinic Rossby wave and Experiment II is

useful in comparing instabilities associated with two very

different length scales.

Experiment I: Instability of a baroclinic Rossby wave

U L= 3.2, L 4.
C L

Figure 5.1 shows the development of the instability

in a series. The stream lines run in a meridional direc-

tion initially with very weak perturbations. At t = 1.0

(t = 1 is equivalent to about 23 days) the growing pertur-

bations are easily visible and further amplification is

very clear at t = 1.5. The slow westward propagation of

the stream lines can be seen along the left and right edges.

The wavenumber of the fastest-growing perturbation is

k = 6, which suggests a scale larger than a predicted

scale from the theory by 30%. This discrepancy may be due

to the different vertical structure and initial noise at

wavenumber 6 and 7. The variation of energies at k = 6

in time is shown in Fig. 5.2. The growing rate of the

total energy is indeed almost exponential, which is 14%

__I ~--- II1~ -1_ .Ily~-- I~--rr~FI~~~*I--XII~-* .. -~L-I ~L.--..- .-XI-III.~- -C^ ~-~~XIl---Y-L-LI~-II~IIIIllllll~~y-_ ll~
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K1 UPPER LAYER KINETIC ENERGY

K2 LOWER LAYER KINETIC ENERGY

0.6 0.9 1.2 1.5

7"TIME

INSTABILITY OF BAROCLINIC ROSSBY WAVE

Fig. 5.2 Perturbation energy grows exponentially as
predicted in the theory during the instability
shown in Fig. 5.1.

100

-1
10

-2
10

0.3
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smaller than the predicted rate from the theory for the

U Lcase 2.5 (3.2 in the numerical experiment) and L 4.C L

In Fig. 5.3 the energy transfer is dominated by the

potential energy transfer from k = 2 to k = 5, 6 and 7,

which is consistent with the theory. There is a loss of

the kinetic energy at k = 6, but the net kinetic energy

increases via the conversion from the potential energy at

the same wavenumber supplied by the instability. It is be-

lieved that the dissipation is so small it does not affect

the energy transfer. This experiment occupies only one

point in the parameter space, but it verifies the nature

of the theoretical results.

Experiment II: Instability with Two Scales

At the beginning the lower layer is at rest and the

energy spectrum has two peaks, one at k = 1 and the other

at k = 5, 6 and 7. The energies are prescribed as follows:

k kinetic energy potential energy
-2

1 2.2512 x 102 1.1256

5 3.7538 x 10-1 7.0384 x 10-1

6 6.5691 x 10-1 9.3845 x 10-1

The subsequent development is presented in terms of the

energy transfers in Fig. 5.4. It is obvious that the inter-

actions around k = 6 are of order of magnitude stronger

_-LIUIIIIPI-(-- III i--~*--- *--~I~EtYII_~^~---LI-i-^Xs~ l__. _~i^ll^~- l~-W~I. -..lil--*-_ ~--- LU
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INSTABILITY OF BAROCLINIC ROSSBY WAVE

~)L Id-=C N\ A
t=0.6

I
I1

0.5

0

-0.5

5.0

0

-5.0

20

0

1 2 3 4 5 6 7 8 9 10
WAVE NUMBER

t= 1.50

* TOTAL ENERGY TRANSFER

+ KINETIC ENERGY TRANSFER

o POTENTIAL ENERGY TRANSFER

A CONVERSION FROM POTENTIAL TO
KINETIC ENERGY

D DISSIPATION

Fig. 5.3 Energy transfer during the instability shown
in Fig. 5.1 is dominated by the baroclinic
process. Barotropic interaction removes
kinetic energy from wavenumber 6, but the net
kinetic energy increases via the conversion
from the potential energy at the same wavenumber
supplied from wavenumber 2 by che instability.

t= 1.05

-20L

--
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INSTABILITY WITH TWO SCALES

S= 0.16

2 3 4 5 7 8 9 0 11 12
WAVE NUMBER

1= 0.8

t= 1.6

t= 3.2

0

-0.4

Fig. 5.4

* TOTAL ENERGY TRANSFER

+ KINETIC ENERGY TRANSFER

o POTENTIAL ENERGY TRANSFER

A CONVERSION FROM POTENTIAL TO
KINETIC ENERGY

O DISSIPATION

Initially energy spectrum has two peaks, one
at k = 1 and the other around k = 6.
Subsequent energy transfers toward higher
wavenumbers( k = 8 corresponds to the radius
of deformation ) are concentrated around k = 6
with very little change at k = 1. This
development is consistent with the theoretical
prediction.

0.4

-0.4
1

0.4

0

-0.4

0.4 r
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than those at k = 1, although the potential energy at

k = 1 is the largest initially. The high kinetic energy

level at k = 6 makes the wavenumber six most unstable as

predicted from the theory. It should be noted in the com-

parison that the current for k = 1 flows zonally in

Rhines' experiment and it may be dynamically stable since

C is slightly smaller than U. It is speculated that the

strong dissipation of energy throughout the wavenumbers

may tend to drain energy from the low wavenumber to high

wavenumber as energies at high wavenumber increase.

Experiments I and II are also repeated when a realistic

bottom topography is present. The results can be stated

that the bottom does affect the lower layer motion by

-scattering energies toward the high wavenumbers, but it

does not totally inhibit the instability process in any

case.

Geophysical Application

What does this model imply in the ocean? Applying the

theoretical results it is now possible to examine the

stability of various currents of different strengths. So

far the instability theories concerned with the oceanic

process have been limited for a steady current with such a

large scale that the current can be considered to be hori-

zontally uniform (Robinson- and McWilliams, 1974; Gill,
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Green and Simmons, 1974). Although the predicted scale of

the most unstable perturbation is similar to the scales of

the observed eddies, the artificial assumption of steadiness

and uniformity requires an artificially large vertical shear

across the main thermocline greater than or equal to 5 cm/

sec, as it is steady and uniform, to give an e-folding time

scale of 60-80 days.

In reality the large vertical shear does exist, but it

is associated with a finite scale, as found in the eddies

themselves, and intermediate scales of Katz (1973), which

means that the assumption of uniformity cannot be justified

in reality. Nevertheless this argument does not exclude

a possibility that the very large-scale density field is

unstable. Its shear is weak in reality so that it will take

such a long time as one year for its perturbation to grow.

Measurement of this slow process is very doubtful. However,

the geostrophic shear associated with Katz's (1973) profile

is 2 cm/sec/100 m, which gives a shear of 4-5 cm/sec at

least across the thermocline. The e-folding time scale

from this model is

L
T =1 -p

e r U

where F is the nondimensional growth rate iL-. As shown

in Fig. 4.6, F varies about 20% as the scale of the unper-

turbed field changes from L to ten times L , but itsp
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effect in Te is minor compared with the change due to U.

Taking F = 0.45, L = 50 km, U = 5 cm, we have T = 30

days. Larger shears than this one are often seen, and im-

ply even faster growth of the instability.

This example shows clearly that nonlinear interactions

between scales around the radius of deformation are much

stronger than any other interaction in the geophysical

situation. It should be emphasized that there is no unique

mean current as far as the energetic eddies at the radius

of deformation are concerned, since they receive energy

from any scale. Upon separating currents into eddies and

a time-mean flow, the present analysis may be described as

a model of eddy-eddy interaction, which shows its vigor,

compared with eddy-mean flow interactions in mid-ocean.

The instability of currents with scales smaller than

the radius of deformation generates a scale which is closer

to the radius of deformation. This suggests that all the

energies will be eventually transferred to the radius of

deformation through a series of similar instability if the

system is left to interact freely. This feature is similar

to what Rhines (1975b) found in a homogeneous fluid; expan-

sion of scale is ceased at the radius of deformation in a

stratified fluid here, whereas the beta-effect stops the

migration of energy at a particular wavenumber (8/2U)0 in

Rhines' case.

-....,-rx-- - ~~sr\llD-srs~i ll----~--~-- II~---Urr)LXI---X-I^- ~-* ~.1~__11.1 .iilll~p~l-
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Another aspect of interest is the change in vertical

structure accompanying these instabilities; a purely baro-

clinic field generates a mixture of barotrophic and baro-

clinic modes, and reduces its vertical shear. This is a

theoretical indication of the strong changes of vertical

structure found in geostrophic turbulence.

Some assumptions and simplification are made at the

beginning of the analysis and deserve discussion in the

application of this model. Hart (1974) shows a reduction

of the growth rate for a two-layer ocean with an upper

layer thinner than the lower layer by a ratio of 6- < 1.

The growth rate decreases in proportion to 62 approxi-

mately; it changes very gradually for 0.3 < 6 < 1 and

.drops significantly for 6 , 0.1. To be realistic, it is

necessary to take into account this change. The neglect

of the bottom topography may be justified, based upon the

Rhines' numerical experiments, which show that the realistic

bottom does not interfere with the instability process

until the perturbation reaches a finite magnitude. This

model is not applicable for finite amplitude perturbations,

because they are assumed to be infinitesimal.

Finally, it should be mentioned that there is a need

to explore a further general solution, including subhar-

monic components, aperiodic part, and weak interaction

U
limit as - 0.C

_~~~..rrr~----r ---- ur-~r-ili.~r.~- I-^---- --il-.II)I^CI--(IY- lir- ~-LiiYY_
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VI. CONCLUSIONS

The stability analysis in a truncated Fourier series

shows that any baroclinic Rossby wave propagating westward

in a two-layer ocean with currents oriented meridionally

is unstable with respect to an infinitesimal perturbation

and barotropic and baroclinic perturbation currents are

generated. This is consistent with the dual nature of non-

linear eddies that currents propagate while changing their

vertical and horizontal structures simultaneously, which

has been found in observations as well as numerical experi-

ments.

The beta-effect has no apparent stabilizing effect in

the meridional current in contrast with its decisive role

in the stability of a barotropic or baroclinic zonal current.

The velocity field described by a baroclinic Rossby

wave contains both vertical and horizontal shears with po-

tential and kinetic energies available for growing pertur-

bations, which are partitioned by L2/L2 , L being a

wavelength/2a and L the radius of deformation. This

study provides an opportunity to examine the variation of

instability characteristics with L/L especially around

L =L , which covers the most neglected part in the clas-

sical theory.

For L- > 2 the source of growing perturbation energy
L

is a potential energy associated with the vertical shear

LI-~C~-I~___-PI-~.-. ~-Y -IIII~IYI-IIl*I~~YI .il -XI_,II._.I ..I
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and the fastest-growing perturbation has the scale of L
p

There exists a short wavelength limit of unstable pertur-

bations in a meridional direction. It is found that the

nondimensional growth rate increases gradually and approa-

ches an asymptotic value as L/L increases.

LFor L- ~ 0.4 it is found that growing perturbations
p

extract their energy from both kinetic and potential ener-

gies. In a region L << L , the functional relationship

between the growth rate and the length scale is found to be

the same as that in the instability of a barotropic Rossby

wave shown by Gill (1974).

In the region 0.4 < L < 2, this study shows a smooth

transition in the growth rate, but an abrupt change in a

kinetic energy transfer. The nondimensional growth rate,

a L < 1 or if L > 1, increases with L/L
U/L if - U/L L p

P P P
Although no specific criteria are established, it is argued

that the change in the direction of a kinetic energy trans-

fer is responsible for the asymmetry in the instability

characteristics, that is, the horizontal shear in a baro-

clinic current reduces the growth rate, while an introduc-

tion of a vertical shear in a strong barotropic current en-

hances the instability substantially.

The results of this study are particularly relevant in

looking at the nonlinear interactions in the mid-ocean which

may be characterized by a continuous spectrum of length

--~-LX-I -L - ~--rrr~ ---~__)-_~l~prriyl(-Wc_~__L,,., _*p)~ll~..r~l-~------ r~n--~l
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scales and no preference in the current direction. A zonal

vertical shear of a few cm/sec across the main thermocline

is stable, but a meridional shear of the same magnitude is

dynamically unstable according to this model. Furthermore

the scale of a current is not necessarily much larger than

the radius of deformation for instability to occur. Instead

the current with a scale close to the radius of deformation

is more unstable in a sense that it has a shorter e-folding

time. It is believed that this kind of intense instability

around the radius of deformation is observable in a time-

scale of a few months in an eddy-rich region such as the

Sargasso Sea.

This model also suggests an influx of energy toward a

particular scale, the radius of deformation, from scales

both larger and smaller than the radius of deformation

which in turn explains why the most energetic eddies found

in the ocean have scales close to the radius of deformation.

The vast difference between the size of the ocean basin

and the radius of deformation makes a direct nonlinear inter-

action between the two scales less efficient than any other

interaction around the radius of deformation, which suggests

that the understanding of nonlinear interactions around the

radius of deformation and the collective properties of eddies

is crucial in constructing a model of the general circulation

in the ocean which may possibly'cohtain hundreds of eddies.

~II_~; __~I_ _~i~llVi ...-LPI~YIIII~
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I. INTRODUCTION

The role of potential energy in the dynamics of ocean

currents was not fully recognized until it was realized

that it can be converted to kinetic energy via baroclinic

instability. In Part I of this thesis the transfer of

energy between scales has been further investigated, show-

ing that potential energy is always available for a growing

perturbation and the instability characteristics change

significantly with the availability of potential energy.

Also the results of recent large-scale experiments suggest

that the meso-scale dynamics are highly nonlinear as dis-

cussed in the introduction of Part I.

One way to grasp the dynamics of a nonlinear system is

to look at the flow of energy. The understanding of ener-

getics in the ocean will not tell us the exact dynamics,

but it will show us how the ocean works as a mechanical

system. This is a classical approach which has been suc-

cessfully applied in understanding the general circulation

in the atmosphere. In discussing energetics in the ocean

it is natural to ask what is meant by potential energy and

how big it is and how it changes, yet there is surprisingly

little relevant information in the literature.

It is familiar that eddies of scales near the deforma-

tion radius, L , have roughly equal potential and kinetic

_ I_ I~
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energies, but the exact amounts are crucial to the dynamics,

and do not seem to have been evaluated. In part, this may

be due to the difficulty in defining 'available potential

energy.' The objects of Part II lie here. Firstly, so-

called available potential energy will be defined analytic-

ally. Secondly, this definition will be applied in the

MODE-I and the Panulirus density data in order to gauge

the strength of the potential energy present in mid-ocean

in comparison with the kinetic energy.

The primitive definition of potential energy for a

fluid particle with density p in a stratified, rotating

system may be written

PE : pg(z - z ) (1.1)

where g is the effective gravitational acceleration and

(z - z ) the vertical distance from a reference level z .r r

It should be pointed out that all particles have the common

reference level z . Imagine now a state where the surfacesr

of constant density are level, which could be reached by

redistributing the whole mass adiabatically. Then it is

obvious that the potential energy at this particular state

can not be converted into kinetic energy internally.

This led Lorenz (1955) to introduce the concept of

available potential energy (APE) and to derive an analytic

expression of the APE from the primitive definition by mak-

ing use of the property of the potential temperature
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conservation. The exact formula of the APE defined on the

potential temperature-coordinate system is not practical

and an approximate form of the formula has been used ex-

tensively in the estimate of the energetics in the atmos-

phere, notably by Oort (1964). For clarity, Lorenz's

(1955) conceptual definition is quoted here, "The avail-

able potential energy of the atmosphere may be defined as

the difference between the total potential energy and the

minimum total potential energy which could result from any

adiabatic redistribution of mass. It vanishes if the den-

sity stratification is horizontal and statically stable

everywhere, and is positive otherwise."

A definition close to the concept of the APE has been

used by Fofonoff (1962a), which is called the anomaly of

potential energy X,

X(P) = 1 P6dP (1.2)
0

where P is pressure and 6 the anomaly of specific volume.

The anomaly 6 is defined conventionally as

6 ct(S,T,P) - a (35 oo, 0o C, P)

where a is a specific volume, equal to l/p, at salinity S,

temperature T and pressure P and ao is a reference value.

Table 1 shows examples of X calculated from the data taken

at an ocean station known as site D on three occasions. It

Il~*r~-^---~.. ..._ .I~ l--~rr~ur~



Table 1.

Pressure

1

50

100

150

200

300

400

500

600

700

800

900

1000

1200

1400

1600

1200

2000

2200

2400

Anomaly of potential energy

Unit is 108 ergs/cm 2 .

18-VI-67 9-VIII-67

.000 .000

.201 .226

.722 .799

1.527 1.616

2.617 2.661

5.311 5.158

8.398 7.864

11.618 10.663

14.856 13.650

18.233 16.926

21.840 20.533

25.787 24.504

30.162 28.902

40.189 38.978

51.971 50.885

65.399 64.804

80.402 80.478

97.226 97.720

116.713

137.529

121

X.

3-X-67

.000

.301

.930

1.689

2.623

4.800

7.148

9.695

12.267

15.243

18.572

22.294

26.430

36.052

47.694

61.095

76.386

93.334

111.737

131.463

lyl ~ __~C^_~_ _)_~(_____Lll~_(__i___
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is noticed immediately that the anomaly X increases mono-

tonically with depth. Over the depth, most part of X does

not change in time and the amplitude of its fluctuating

part also increases with depth. This tendency contradicts

our anticipation of the APE distribution.

Suppose that the r.m.s. vertical excursion of a fluid

particle is roughly uniform, vertically. Then we expect

that the APE should be largest in the thermocline and de-

creases downward because the stratification does. The APE

defined in the present study indeed reveals the expected

vertical distribution and it is smaller than the fluctuating

part of X by an order of magnitude for all depth.

The exact formula of the APE in the ocean should be

-derived from the primitive definition utilizing the conser-

vation laws of salinity and entropy in principle. However,

the empirical equation of state of sea water is nonlinear

with respect to thermodynamic variables (Fofonoff, 1962b)

and there is no one-to-one correspondence among the density

and salinity and entropy, because thermodynamic coefficients

are again functions of state. Therefore the procedure which

was taken by Lorenz (1955) in defining the exact formula in

the atmosphere does not hold at all in the ocean. Never-

theless it is possible to derive an approximate expression

of the APE in the ocean in terms of the potential density,

which is equivalent to its counterpart in the atmosphere in

terms of the potential temperature.

- -
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To summarize, below the APE will be formally separated

into two parts, mean APE and eddy APE, and two energy equa-

tions are derived for them. The definitions vary with the

type of data available (for instance, a time-series at a

point or an instantaneous spatial map), and our notion of

eddy and mean APE also depends on the constraints put on the

fluid motion: the definitions are process-dependent.

Locally the energies are changed by advection, transfer be-

tween the mean APE and the eddy APE and buoyancy fields.

Available data will be used to estimate the eddy APE. The

eddy APE per unit volume averaged over the MODE area ranges

from 100 ergs/cm3 at 300 m to 20 ergs/cm3 at 2000 m, which

are comparable with the kinetic energy density. The compar-

ison of the eddy APE levels in the MODE area and at the

Panulirus station shows a geographical difference below the

main thermocline, which has not been seen before.
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II. DEFINITION OF AVAILABLE POTENTIAL ENERGY

Potential energy is part of total energy of a fluid

parcel and here we want to relate the available potential

energy (APE) to kinetic energey (KE) without going into de-

tailed discussions regarding the total energy and its

variation. An energy equation can be written in the form of

[ + u * V] (KE + APE) = -u * Vp + source terms,

where u is a velocity vector. In an ocean which is iso-

lated energetically (in such a time-scale that source

terms are not important), the total energy of the system is

conserved so that internal conversion and redistribution of

energies are very important. Now the scalar product of u

and the Boussinesq momentum equation (Veronis, 1973) gives

[ + u V] (KE) = -V * (P u) + gpw

where P is the local deviation of the potential density and

w a vertical component of u. The conversion from the APE is

gpw, as we shall see later.

Following a fluid particle in sea water, the potential

density p0 is cbnserved approximately as discussed by

Veronis (1973), who has shown the dynamical significance of

the potential density and the limitations to its use as well.

It should be pointed out that the potential density is
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referred to a reference pressure at one atmosphere, which

is conventional but dynamically important because it repre-

sents density after all the pressure effects are removed.

In terms of the exact equation of state it is debatable

whether the potential density is really conserved or not,

but for present purposes,where we follow water parcels for

times of order one year, and depth excursion of order 100 m,

the approximation should suffice. Therefore, neglecting

diffusion and source,

( + u V)p = 0. (2.1)

First, suppose that the potential density is separated

into three parts:

p6 (x,y,z,t) = p(z) + p(x,y,z,t) + p'(x,y,z,t)

(2.2)

where

P - <Po > - (p01

P' PO - <P >

Here the bracket <q> denotes an average of q over some suit-

able horizontal area (a few hundred kilometers squared) and

{q} an average over the entire horizontal space. Hence an

instantaneous density field is represented by the reference.

LIIIIPIP~""W"Aw" 1MM_~I11*_el . *I~~ L1~ b~Yi
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stratification p, slowly varying mean field p and 6' a devia-

tion from (p + p). This separation is appropriate to a data

set of spatial maps of the density field, covering at least

a few hundred kilometers squared. The idea is to make a

two-scale separation in which the basin-wide APE appears in

p, while the APE in energy-containing eddies appears in p'.

Substituting for p0 in eq. (2.1) yields

S+ u V)p+(-+u-V)p' = -w dP (2.3)at at dz

Multiply eq. (2.3) by p and take an average with < >, it is

possible to obtain after some manipulation:

( + u V) (p ) = V * [p <p'u'>]
(2.4)

+ <p'u'> * Vp - pw Pz

dpwhere P z dzz dz

Here, it is assumed approximately that

a I2 , 2=
<p p'> = <u' V(-p )> = <pu * Vp'> = 0

and V * u = 0 by Boussinesq approximation. Multiplying eq.

(2.3) by p' and taking an average < > again we obtain

+( 1 < 2 > = -<Pu'> VP - <pw'>pz
at 2 z

(2.5)

with <u' ip,2> = 0 approximately.
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Multiplied by -g/-z', eqs. (2.4) and (2.5) take the form

of

( +uat * V) P

-PZ
- av * (p

Pz

<p'u'>)

- - <p'u'> * Vp + gpw (2.6)

Sgp wr

+ gp wr

(L + u V) ( < ) = p'u'> *at 2
z z

Vp

+ g<p'w'> + gp' 2wr

(2.7)
pzz

where r =
2(Pz )2z

It is possible to show that term ( is relatively small

compared with © and O small compared with O as follows.

The ratios are

S ~ 0 2
- = pr, - r.

For a mean potential density profile obtained by averaging 19

Il---li-PisrrrrrrrrlIL1Y~i-*rui rrrir ~; ^-ir~~,~~~i-~ _y __~_II~Y --L *--LI-
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CTD and STD station data in a circle of 200 km in radius

in the MODE area, the value of r varies from 1.8 x 10 to

104 in c.g.s. units. The last ratio Q/ 0 is found to

be as large as 0.22 at 500 m depth at the Chain station 9

(see Table 2a and Fig. 3.5a), but it is typically less than

0.1 for the depth from 300 m to 2000 m if it is assumed

that 1w! < 1w'l. Similarly @/Q will be of the same

order as /(D if p is the same order of magnitude as p'.

If we estimate p and p' by p h where h is a maximum verti-

cal excursion of a fluid particle from the reference state,

then (( /(I , /~ ) ' h/H where H is the height scale of a

thermocline. A typical estimate of h/H may be 0.2 if

h = 200 m and H = 1000 m. Based upon the direct estimate

from data and the typical order of magnitude estimate we

may neglect the terms ( and ( in eqs. (2.6) and (2.7).

The definitions of the APE are apparent in ®D in

eq. (2.6) and G in eq. (2.7) and the physical meaning of

the APE can be best illustrated by an example. Suppose a

reference stratification shown as a solid line and an in-

stantaneous state as a broken line in Fig. 2.1. The APE

of a particle P is given by the formula in eq. (2.9) later,

which can be rewritten as gp'(z - zp) by approximating

p' --p(z - z ) locally where zp is the reference position

of the particle P. Now the APE can be interpreted as the

work done by a local mean buoyancy force 2gp' for a dis-

placement of z - z p. Accordingly each fluid particle has
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POTENT/AL DENSITY (po)

P

P Zp

p(XY, Zt) -P

APE gS,2Pz

DEFINITION OF AVAILABLE POTENTIAL ENERGY

Fig. 2.1 An available potential energy(APE) is defined
as work done by a local mean buoyancy force
1
2gp' for a displacement of z - z 2 , where p'
is approximated by - z(-z ). Note that the

APE is positive definite. Accordingly each
fluid particle has its own reference level in
the definition of the APE.
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its own reference level in the definition of the APE and the

APE measures the amount of work required to move a particle

away from its individual reference level. This definition

of potential energy is familiar in the study of internal

waves (Fofonoff, 1969; Garrett and Munk, 1972).

Why should we be denied an "exact" potential energy?

The answer lies in the need to relate the local density

anomaly (relative to the time-mean at the same level, say)

to the amount of work done, equal to - {(buoyancy) * dz,

in raising the fluid from its 'rest' level. This can be

done exactly if pz is linear, but curvature in the mean

profile makes the work done depend on the history of the

particle trajectory as well as its local value of p'. (Of

course, in a layered model the definition of the APE again

becomes exact, for the dependence on history disappears.)

Definition: The available potential energies per unit volume

are defined as:

~ 2

S= 1 p (2.8)

-PZ

A = 1 p 2  (2.9)

-PZ

where AM will be called the mean available potential energy

and AE the eddy available potential energy. The mean and

eddy APE represent part of the APE associated with p and p',

respectively.
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A second definition is appropriate to an ocean without

basin-wide variations (i.e., the potential density field is

statistically homogeneous). Then we divide the potential

density into two parts, p(z) and p*, and the available

potential energy will be defined as

A 1 p*2  (2.10)

-Pz

and the energy equation corresponding to this definition will

be

+ u V) p2) = gp*w[l + 0(h)]. (2.11)
-pzz

While this situation may not exist in practice, it is an

idealization that permits useful analysis of hydrographic

time series at a single geographical point.

With the definitions of the mean APE and the eddy APE

in eqs. (2.8) and (2.9) the meaning of the terms in eqs.

(2.6) and (2.7) become clear. In eq. (2.6) represents

the redistribution of AM by the eddy field, © the conver-

sion between AM and AE, ( the conversion between AM and

the mean kinetic energy, 1pu * u. Also in eq. (2.7)

represents the conversion, equal to -D , and a( the con-

1 I
version between AE and the eddy kinetic energy 1 u' u.

It should be remembered that not AE, but the horizontal

average of AE by < > is involved in eq. (2.7).

LmPYYI*CIIL~LlslllWCL-l^l-1~^4.- I^LIIILI1_1L----Z~i--sl~lll_~_Y.I~
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The definitions of AM and AE are equivalent to Lorenz's

(1955) expressions of the APE in the atmosphere in terms of

the potential temperature, which can be easily transformed

into the expressions in the potential density. However sea

water is a multi-component solution for which it is best to

define available potential energies directly in terms of

the potential density. It should be pointed out that the

APE in the atmosphere includes both the potential and in-

ternal energy (Lorenz, 1955), but it represents only the

potential energy in the ocean since sea water is assumed to

be incompressible in the Boussinesq approximation. Also it

should be mentioned that the definitions of the APE are com-

patible with the conservation of potential vorticity as

Charney and Stern (1962) have shown in a perturbation theory

of a quasi-geostrophic current.

The APE defined in eqs. (2.8) and (2.9) are positive

definite and vanish only when p = p' = 0. In other words

the reference state is the state of the minimum potential

energy and any deviation from the reference state will cause

an increase in the APE.

The anomaly of potential energy X defined by Fofonoff

(1962a) bears some consideration to make clear how close it

is to the concept of the APE in comparison with the defini-

tions in eqs. (2.8) and (2.9). Approximating P ' -pmgz in

eq. (1.2), where pm is a mean density, it follows
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x i (-p gz) (a - ao) pgdz
g o

Pm °

=--- (po - p) gzdz
0 Z

S (p - po)gzdz

The anomaly per unit volume is (p - po)gz. It is very clear

that the individual reference level, which is a key concept

in the APE, is not accounted for at all in this anomaly and

the density term (p - po) does not represent a dynamically

important density deviation but a simple departure from an

arbitrarily chosen value po0
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III. APPLICATION OF THE AVAILABLE POTENTIAL ENERGY

In order to demonstrate the dynamical significance of

the concept of the APE the definitions are applied in the

MODE-I and Panulirus data. The data base is not sufficient

to separate the APE into the mean and the eddy and the ap-

plication is limited in the eddy APE.

III-1 Available Potential Energy in the MODE area

In applying the definitions of the APE it is most im-

portant to define the reference stratification and the slow-

ly varying mean density field properly. This requires good

density data over a very large horizontal area and the

question is whether the spatial coverage of the MODE-I den-

sity data is sufficiently wide to resolve the slow variation

of the mean density field <p>. Regarding the reference

stratification, the exact definition of {p0 } cannot be kept

as is, because it requires data over the entire ocean.

Instead {p0 } is substituted by a potential density field

obtained by averaging 19-station data.

The streamline maps constructed by Freeland and Gould

(1976) show that a single synoptic eddy observed during the

MODE-I field experiment is typically as large as the size

of the entire MODE area, particularly in the upper ocean.

This indicates that the averaging to obtain <pe> should be
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taken over the entire MODE area if the estimate of the APE

associated with MODE eddies is of interest. Keeping in

mind the scales involved, let us examine what data are

available. During a four-month period 708 CTD and STD

stations were occupied in a circle of approximately 200 km

radius centered at (280 N, 690 40' W). According to the

density program there were 37 grid points in the area of

100 km in radius, the mean spacing between stations being

33 km, and 40 grid points in the outer region, spaced every

50 km approximately. Now there are 587 station data

available within 200 km in radius. Each grid point was

occupied 8.3 times within 100 km in radius (except 41

stations at the central grid point) and 6.5 times in the

outer region. However, the horizontal coverage becomes

somewhat poorer after 176 stations are abandoned, 136 of

them having no salinity or bad salinity values and no data

being available for 40 stations. The problem caused by the

loss of 176 stations is more serious than expected as far

as the estimate of the APE is concerned. Because the MODE

area was divided according to ships and most of the bad

data were taken from particular ships, the loss results in

very poor sampling locally and the coverage of good stations

is extremely variable in time. Fortunately, it is found

that at the beginning and the end of the field experiment

stations were occupied regularly in space over the entire

I~amrr~-ruiwrpuuLiiur~p mrum*a~r~~~. .EI ri~u . n ~-uiu*~r* ^-vs~-olI-r~ -31;*iu~i~-- ,
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area. Therefore it is decided the following is the best

procedure in using the MODE-I density data.

(1) The mean density field <p6> is determined by

averaging 19 station data. It should be pointed out that

the horizontal variation of <p > cannot be resolved from

the available data.

(2) The eddy available potential energy AE is calcu-

lated every 50 decibars from 300 to 2700 decibars for each

station.

III-1-1 Mean density field

Tables 2a and 2b show the list of stations used for the

calculation of the AE. For convenience the two periods will

be referred to as March and June, although some stations

were not occupied in these months. The source data are the

final form of the MODE-I density data available in computer

format (Scarlet, 1974).

Because there is no information about intercomparison

of data taken from different ships, a simple test is carried

out to find out whether they can be mixed in the analysis.

Five Chain stations and five Researcher stations in March

located on the circle of 200 km in radius are picked for the

test. The Chain stations were occupied about one month

ahead of the Researcher stations and this separation in

time should not be neglected, considering an apparent
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Table 2a. List of Stations in March

Station Number Date

C2 March 11

C4 March 12

C5 March 13

C6 March 14

C7 March 14

C8 March 15

C9 March 16

CI0 March 31

C11 April 1

C12 April 2

C17 April 12

C36 April 22

Discovery D25

D45

April

April

11

17

PositionShip

Chain 01.9'N

00.6'N

21.2'N

26.8'N

01.7'N

33.8'N

38.7'N

39.5'N

09.0'N

19.7'N

36.2'N

59.3'N

270 59

290 21

690 40.7'W

680

680

690

710

710

690

700

690

690

690

680

14,0'W

02.4'W

23.0'W

02.1'W

19.0'W

59.5'W

17.3'W

57.1'W

03.9'W

18.5'W

37.5'W

700 25.1'W

700 41.8'W

Researcher R62

R66

R71

R7 6

April

April

April

April

15

16

17

18

260

280

290

270

38.9'N

16.5'N

21.9'N

41.2'N

680

670

690

710

260 12.0'N 700 10.0'W

280

290

270

260

270

280

290

28.

270

280

280

270

06.9'W

29.9'W

07.9'W

42.1'W

__ .~IW..^II-Lllr~l. I-*~I-^l_-L-L~ *_I... .II1X ..-11~--..-.-- YI--U-L-- 1-*1I~_~
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Table 2b. List of Stations in June

Station Number Date

C136 June 26

C140 June 28

C141 June 29

C142 July 1

C143 July 1

C144 July 2

C148 July 4

Researcher R170

R173

R179

R190

R215

R218

R220

R223

R226

R228

R231

R233

June

June

June

June

June

June

June

June

June

June

June

June

1

2

3

6

13

14

14

15

16

16

17

18

PositionShip

Chain 280

270

270

290

280

260

280

270

270

280

280

290

290

280

280

270

260

260

260

680 38.5'W09.0'N

19.9'N

08.6'N

36.2'N

33.1'N

56.2'N

00.9'N

40.0'N

41.5'N

51.6'N

13.9'N

22.3'N

22.1'N

55.5'N

55.7'N

32.8'N

37.8'N

10.5'N

38.5'N

690

700

690

710

710

690

700

710

700

670

700

690

690

680

680

680

690

700

02.3'W

01.3'W

58.8'W

23.0'W

04.0'W

35.7'W

47.2'W

41.4'W

03.8'W

30.3'W

42.4'W

09.0'W

06.8'W

06.5'W

07.1'W

06.9'W

40.4'W

ll.1'W

I~lj L__1~~1~ 1_1 11~~ ____ _ ~~__ Illr_ ___lig_~
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westward propagation of temperature with the speed of 2.1

km/day or 2.6 km/day depending on the depth (Davis, 1975).

Figure 3.1 shows the difference in the mean of the poten-

tial density, salinity, and temperature with the standard

deviation of each data set.

The standard deviations of salinity and temperature

from the Researcher data are approximately twice of

those from the Chain data for most of the depth, indicat-

ing that the Researcher data are noisier than the Chain

data. From 300 decibars to 1500 decibars both salinity

and temperature from the Researcher data are lower than

from the Chain data. However, these differences will not

show any irregularity in the potential temperature-salinity

(6-S) space, since the discrepancies are not inconsistent

with the historical 6-S curve. A t-test shows that the

difference in the potential density at 300, 900, and 2100

decibars are not significant for a 95% confidence interval

and the same is true for salinity and temperature. There-

fore it will be assumed that there is no systematic bias

in the data.

111-1-2 Eddy available potential energy in the MODE area

Figure 3.2 shows some of the vertical profiles of AE

in March. It is immediately noticed that the energy level

changes very significantly in space, vertically and

-~----- --- lllllsl- IIIIIIIIYI~ ~I~X . _.__.,__g^lCypl__- ( ._C-~Ps~UI_
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POTENTIAL DENSITY (og)
-. 02 0 .02 .04 .06 .08 .1

S.- .......-DE A O

(CHAIN- RESERCHER)
------ STANDARD DEVIATION

S STANDARD DEVIATION

21 (RESEARCHER)

25

Fig. 3.1a Comparison of 5 Chain station data with 5
Researcher station data on the dircle of 200 km
in radius in March, 1973. Statistical test
shows that the difference in the average
potential density is not significant for a 95%
confidence interval.
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Fig. 3.1b Same as Fig. 3.1a, except that salinity and
temperature are intercompared. The results
of statistical tests are the same as that
for the potential density.
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horizontally as well. The average AE over 19 station is

shown in Fig. 3.3, whose profile resembles the profile of

the gradient of the reference stratification. It is in-

teresting to observe in Fig. 3.4 the estimate of vertical

excursion corresponding to the mean AE. The extrema in the

average AE do not appear any more and the r.m.s. excursion

is rather uniform except the increase around the depth of

1500 decibars. Also Fig. 3.5 shows the horizontal distribu-

tion of the AE for a column of water obtained by integrat-

ing the AE over the depth of consideration.

The strong horizontal gradient in AE implied in Fig.

3.2 and shown directly in Fig. 3.3 suggests that the process

involving AE is highly nonlinear and the advection term in

eq. (2.7) may be very important in the local balance of AE -

However, once AE is averaged, the profile is much simpler

and probably interpretable. Table 3 shows the average AE

at three different depths in comparison with the average

kinetic energy density estimated from Huppert and Rhines

(1975, see Fig. 4.3b). Although the estimate of the average

AE is not as confident as that of the kinetic energy, it

can be seen that the energies are very nearly equal within

a factor of two. This is not inconsistent with the pre-

dicted properties of the geostrophic turbulence by Charney

(1971). It is interesting that some features of Charney's

(loc. cit) theory appear in the ocean even though the theory

-____1 -1- __ -M&*,
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Fig. 3.3 Profile of an average APE in space from
19 stations shows remarkably simple vertical.
structure, which resembles the profile of
vertical gradient of the reference stratifica-
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MEAN VERTICAL EXCURSION (m)
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Fig. 3.4 Estimates of r.m.s. vertical excursion reveal
large vertical movements below the thermocline,
suggesting a strong baroclinicity, which seems
to contradict the simplified picture sometimes
given, that the deep water is dominated by the
barotropic mode.
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Fig. 3.5a Variation of the APE over a scale of 100 km
suggests that an advection of the APE could be
very important in a local energetics.
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Fig. 3.5b Same as Fig. 3.5a, but in June.
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Table 3. Comparison of the available potential

energy(APE) with the kinetic energy(KE)**

in the MODE area.

Unit: ergs/cm3

Norminal Depth

March

39.4

8.3

8.5

500 m

1500 m

2700 m

3000 m

APE

June

51.0

14.8

KE

63.0

7.1

5.1

8.0

** Grand average of the kinetic energy density

estimated from Figure 4.3b of Huppert and

Rhines(1975).
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was derived for small-scale turbulence which does not feel

boundaries. The apparent equipartition of energies in the

deep water seem to contradict the simplified picture some-

times given, that the deep water is dominated by the baro-

tropic mode.

111-2 Available Potential Energy from the Panulirus Data

The Panulirus hydrographic stations have been occupied

about 20 km southeast of Bermuda approximately twice per

month since June 1954. In .early stages, stations were not

occupied regularly and often did not reach the deep water.

Therefore only the data taken from March 8, 1960 to June

27, 1967 are analyzed here. We will adopt the second parti-

tion of the potential density given earlier, p = p + p*,

based in time averaging. If the ocean were statistically

homogeneous in the horizontal space, the resulting APE would

be identical to the APE based on total spatial integration.

But the utility of doing this in an inhomogeneous ocean is

clear, because of the dominance of the energy-containing

eddies at the radius of deformation.

Schroeder and Strommel (1969) showed a strong seasonal

variation near the surface and a significant monthly mean

variation in the steric level referred to 2000 decibars.

Because an internal variation is of primary interest in

this work, the apparent seasonal response is not considered

~~*.r*qCIPPII"-~IY-~.YllslPmirri
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here. The monthly mean variation is taken into account in

the following analysis. The water column is divided into

two layers - layer I from 400 to 1160 decibars and layer II

from 1160 to 2040 decibars. For a quantitative comparison

potential energy is calculated in terms of X in eq. (1.2)

and AE in eq. (2.9).

III-2-1 Anomaly of potential energy X

Variation of X with a period longer than a year is

assumed to be negligible and X is divided into three parts

in each layer.

X=X + X '

where X is the average of X over the entire record, which is

therefore constant in time, X the deviation of an average

when the anomalies are grouped by the month from X. For

example X for January is the average of all the values of X

in January over the duration of the record minus X. And X'

is the deviation of X from (X + X). In the actual calcula-

tion of X the computer program at the Woods Hole Oceano-

graphic Institution is used. The average X and its standard

deviation is:

X(I) (63.60 + 3.98) x 10ergs/cm

X(II) = (67.84 _ 7.89) x 10 ergs/cm2
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Where I and II in the bracket ( ) denote the layers for

which X is calculated. Figure 3.6 shows the monthly varia-

tion of X; a significant seasonal variation exists in layer

II and the variation in layer I is obscured by a minimum in

April which is a reflection of the monthly variation of

mean density field. This relation is evident.in the defini-

tion of X, which is rewritten here for convenience.

X = J P6 dP.
Pressure P is constant in time and the temporal variation of

X is due to the variation of 6 or the variation of density

in situ equivalently. In Fig. 3.8 in Section III-2-2 there

is an indication of seasonal variation below 1151 m, but

the variation between 398 and 1151 m is dominated by three

peaks. It can be seen that the variation of X(I) is almost

a mirror image of the monthly variation of the potential

density at 775 m.

From a times series of X' in Fig. 3.7, the following

may be concluded:

(1) X'(I) and X'(II) change in phase, suggesting a

strong coupling between the two layers.

(2) In part of the series a regular pattern with a

period of 4-6 months exists, as can be seen in 1963-1964.
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(3) There is a significant variation in a peak-to-peak

amplitude from one year to another. For example, 1962 and

1963 are relatively quiet years compared with 1964 and 1965.

(4) Over all layer II has a smaller amplitude of vari-

ation than layer I, yet they are of the same order of 108

2
ergs/cm . It should be pointed out that this magnitude is

greater than the APE estimated from the MODE data by a fac-

tor of ten at least.

In both layers the fluctuating part of X is remarkably

smaller than its mean X by an order of magnitude.

III-2-2 Eddy available potential energy

In applying the definition of the AE in the Panulirus

data the following approximations are adopted:

(1) The reference stratification is substituted by

the 7-year average potential density.

(2) The monthly variation of mean density field is

taken into account by defining twelve mean potential density

fields obtained by averaging the potential density after be-

ing grouped by the month. The deviation of the twelve mean

fields from the 7-year average is shown in Fig. 3.8 whose

variations are barely significant over the year. The idea

of applying the twelve mean fields instead of the 7-year

average in defining p' is to distinguish the eddy APE from

the mean APE as far as it is possible. By definition the

_ _ _
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two energies are separable only in space and it is assumed

here that the long-term variation is associated with large-

scale variation. However, this assumption should be verified

from the real data in the future.

Figure 3.9 shows the time series of AE integrated over

the depth of each layer defined in the previous section.

The strong tendency that the variation of AE(I) is coupled

with AE(II) is the same as found in the time series of X'

and it is clearer in AE because the signal has been ampli-

fied by taking the variance of p'.

For most of the record the level of AE(I) is relatively

higher than that of AE(II). However, because of occasional

high peaks in AE (II), the averages of AE (I) and AE (II) over

the entire record are about the same. In the comparison it

should be remembered that layer II is deeper than layer I by

115 meters and AE(I) and AE(II) are the integrated value.

6 2AE(I) = 4.35 x 10 ergs/cm

- --- t t 6 2AE(II) '= 4.25 x 10 ergs/cm

(2.9 x 106 ergs/cm 2 )

where the superscript t denotes averaging in time. The

value in the parenthesis is the average when the abnormally

high AE's in October 1962 and September, October, and

November in 1965 are excluded from the averaging, because

I~-U~ ,~~_~~~ ~~_~_~~~~~__ ~IPI-~PYI-.
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salinity values are bad. It is very important to note the

remarkable difference in their magnitudesbetween X' and AE.

Instantaneously AE is less than one-tenth of X' in both

layers as expected from the definitions themselves. It is

also interesting to compare the average AE with AE from

MODE-I averaged in space for the same depth range.

s
March (MODE-I): AE (I) = 4.89

s

AE (II) = 1.29

s
June (MODE-I): AE (I) = 3.58

s

AE(II) = 1.63

where unit is 106 ergs/cm 2 and the superscript s denotes

averaging in space. The energy levels at the two locations

are close to each other in the upper layer, but notably

different in the lower layer. It appears that geographical

location does not matter for eddies in the main thermocline,

but it does in the deep water. The comparison of the ref-

erence stratifications at the two locations shows no differ-

ence in the deep water and it is possible that the difference

in the energy level may be a manifestation of some island

effect which has not been found before. Further discussion

will be carried out later at the end of this section.

It may be worth mentioning that the eddy APE calculated

with respect to the 7-year average potential density does

XL~__~_ _J_(WJ
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not show any significant departure from the previous values

of AE with the twelve mean potential densities, because p'

in either case is much larger than the amplitude of the

monthly variation of the twelve mean potential densities

shown in Fig. 3.6.

In the time series of AE it is most remarkable that a

burst of high energy occurs irregularly. Figure 3.10 shows

the frequency distribution of stations with respect to the

total AE integrated over the depth from 400 to 2040 deci-

bars. The mean over the entire record is 8.6 x 106 ergs/cm 2

and the median is 4.8 x 106 ergs/cm 2 , which is substantially

smaller than the mean. Out of 151 stations the total AE is

less than the mean for 71% of them and higher for 29%. The

oceanic state suggested by this distribution may be described

by two classes of eddies, one representing most of the

eddies of a relatively low energy level and the other stand-

ing above the first class with a prominent peak. Here it is

implicitly assumed that the variation of AE is due to hori-

zontal advection of some eddy field as suggested by

Wunsch (1972a).

In relation to this implied spatial variation it would

be appropriate to discuss the island effect further.

Wunsch (1972b) showed a steep deepening of isotherms of the

main thermocline in the immediate vicinity of Bermuda where

a strong jet passed the island temporarily. The 140 C
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isotherm goes from 525 m to 600 m in a distance of about

45 km and the 100 C isotherm changes in depth from 675 m to

800 m in the same distance at the northern side where the

jet passes, but there is no significant change of isotherm

depth at all at the southern side. The distance between

the Panulirus station and Bermuda is about 20 km, which

is approximately equal to one-half of the size of the

island if the bottom contour of 100 m is considered as a

measure, and a portion of the characteristic scale of an

eddy in mid-ocean. Therefore it is reasonable to expect

some island effect at the Panulirus station when mid-ocean

eddies approach Bermuda. An estimate of peak-to-peak

vertical excursion during 1964 is 190 m at the depth of

398 m, 90 m at 775 m, 130 m at 1101 m, 200 m at 1536 m and

500 m at 2019 m. The range of excursion increases both

upward and downward from the center of the main thermocline.

The excursion below 1151 m is larger than that at the MODE

area in Fig. 3.4 by a factor of two at least. Probably it

is necessary to qualify what phenomena is meant by an

island effect. Hogg (1972) presented a theoretical model

of a steady current interacting with an island. The eddy

APE is associated with p', which is a fluctuating part in

the potential density after the mean <p > is subtracted from

p,, and here the island effect refers to a large variance of

p', not a permanent effect in the density structure due to

the presence of Bermuda.
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IV. DISCUSSION AND CONCLUSIONS

Definition of the Available Potential Energy

The available potential energy (APE) in the ocean is

defined in terms of the potential density. This definition

is exact if sea water were single-component fluid like the

air and the reference stratification were linear. In the

upper 3000 m it is believed that this definition adequately

represents the dynamically important part in the primitive

potential energy pg(Z-Zr'), but some modification may be

necessary in the very deep water because of the thermo-

dynamic nonlinear effect in the density as discussed by

Veronis (1972). The effect of a curvature in the reference

density profile is locally neglected in the definition (it

can be included exactly if the APE is defined in an integral

form, which is not practical), accepting an error of the

order of h/H, where h is a maximum vertical excursion and H

a scale height of the thermocline.

It should be mentioned that this definition is equiva-

lent to its counterpart in the atmosphere defined in terms

of the potential temperature by Lorenz (1955). Essentially

the APE is equal to work done to move a fluid particle from

a reference state of the minimum total potential energy in

which isopycnal surface is level. Therefore the concept of

the APE involves the whole system, the atmosphere of the
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ocean, as pointed out by Lorenz (1955), because the ref-

erence state is conceptually reached by redistributing the

whole mass of the system, However, once the reference state

is defined the APE can be considered for individual fluid

particles.

Recognizing the two-scale nature of the density varia-

tion in the ocean, the density is separated into the grand

mean, regional, and the eddy part. It should be remarked

that this separation is to isolate the APE of a certain

scale process, for example MODE-I eddies, from the APE with

larger scales and it is not necessarily assumed that there

are only two scales in the ocean. In fact it is possible

to separate the APE into three or more scales as it is done

for kinetic energy in the turbulence (Mollo-Christensen,

1971).

The conversion between the mean APE and the eddy APE

is a product of separating the APE into two parts, which

would not appear otherwise. To compute this conversion

term in the energy equations it is necessary to know not

only p, but also its gradient which can be resolved only

from data over an extended area. For example an area of

400 km in radius should be covered in order to evaluate the

conversion in a circle of 200 km in radius equivalent to

the size of the MODE area. There are other processes in

the local balance of the APE, advection, redistribution,
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and conversion to kinetic energy. Thermal forcing and topo-

graphic effect are not considered in the energy equations.

Application of the Definition

The horizontal variation of the mean potential density

field <p0> cannot be resolved from the MODE-I data because

of the reason mentioned earlier, Some error is expected in

the estimate of p' away from the center of the MODE area.

The eddy APE is calculated at 19 stations and its instan-

taneous vertical profile shows an extremely complex struc-

ture, which varies from one station to another. It is

interesting to find that the average of the 19 vertical pro-

files is rather simple and resembles the profile of the

gradient of the reference stratification. At 500 m and

2600 m depth the average eddy APE is larger than the average

kinetic energy by a factor of 1.4 and 1.2 respectively.

Because the equipartition of the energies is one of the

properties of the geostrophic turbulence proposed by

Charney (1971) it is speculated that the dynamic character-

istics of MODE eddies may not be unrelated to the geo-

strophic turbulence.

For 71% of the 151 stations at the Panulirus station

the APE of the columnof water is below its mean over the

entire record. The concentrated temperature variance be-

tween 40 to 200 days in the spectrum constructed by Wunsch
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(1972a) may need qualified interpretation. The behavior of

the APE shows that the burst of high energy occurs inter-

mittently, not periodically. Further statistical test is

under way to verify the intermittency.

Compared with the energy level in the MODE area, the

mean APE at the Panulirus station is comparable in the main

thermocline and substantially large below the thermocline.

The cause of this geographical difference below the thermo-

cline is not known and it is suggested from the considera-

tion of the scales involved that some island effect should

be responsible.

In summary, the quantitative examples of the APE show

that the definition of the APE is valid and very meaningful.

The anomaly of potential energy X fluctuates with an ampli-

tude greater than the APE by an order of magnitude at least.

Density data from large-scale experiments have been

used primarily in recognizing a gross pattern of eddies, but

it is demonstrated that their value lies not only in a simple

pattern recognition, but in understanding the dynamics and

the structures of geostrophic eddies.

The vertical profile of the average eddy APE shows

substantial energy level below the main thermocline in con-

trast with a common notion that the deep current is dominated

by a barotropic mode. In fact, an r.m.s. vertical excursion

below the thermocline is estimated to be larger than that in

the thermocline by a factor of two approximately, indicating
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again a strong baroclinicity.

The study of the APE needs further investigation. How-

ever, it is shown clearly that local energetics in the ocean

cannot be budgeted properly without the APE. Therefore it

is very strongly recommended that any density program in

future field experiments be designed with a specific object

to estimate the APE and its variation. Any good estimate

of either the kinetic energy or the APE alone will be simply

insufficient and the understanding of eddy dynamics can be

achieved only when both energies are known simultaneously.

This point seems to be too familiar to be mentioned, but it

is emphasized here because the conservation of energy is so

fundamental.
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