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ABSTRACT

A two-level, quasi-geostrophic, mid-latitude A -plane model with

surface friction is used to examine the heat transport and energetics

of winter stationary waves, which are forced by realistic topographic

and diabatic heating fields. It is found that the heat transport of

stt.ionary waves and its efficiency are underestimated. The energetics

show that the surface conversion terms due to topography and friction

are overestimated considerably, due to inadequate resolution of surface

phenomena. The results suggest stationary forcing alone is not sufficient

to account for the observed efficient heat transport of stationary

waves.

As a first step towards determining the effects of a basic state

wave on the baroclinic stability problem, the stability of the baroclinic

Rossby wave in a zonal shear flow is examined. Linearized theory is used

with an adiabatic and frictionless version of the earlier model. The

perturbations consist of truncated zonal Fourier harmonics. There are

two important zonal scales in the stability problem: the basic wave

scale and the radius of deformation. The former occurs as an explicit

scale while the latter is the natural response scale of perturbations

of a baroclinic zonal flow. The ratio of these two scales, together

with two non-dimensional parameters which describe the amplitudes of

the barotropic and baroclinic components of the basic wave, constitute

the three parameters in our parameter study of the stability problem.

Parameter space is partitioned according to the dominant energy source

for instability: the Lorenz and Kim regimes are characterized by

significant horizontal and vertical shears of the basic wave respectively,

while the Phillips regime is characterized by a strong zonal shear

flow. A fourth regime, the mixed wave regime, where the horizontal and

vertical shears of the basic wave are comparable and both large, is also

identified. Growth rates, vertical structures, kinetic energy and heat

transport spectra and energetics are examined for the most unstable

mode in each regime. When the basic wave scale is larger than the radius

of deformation, higher harmonics of the basic wavenumber are excited;
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when the two scales are comparable, only the perturbation zonal flow
and basic wave harmonic components have significant amplitude. Away
from the Phillips regime, the most unstable mode has a non-zero meridional
wavenumber. Approximate analytic expressions giving the parametric
dependence of the meridional wavenumber for the most unstable mode are
derived for each regime.

For the case of most interest for the atmosphere, the basic state

consists of a planetary scale (wavenumbers 1 and 2 ) baroclinic Rossby
wave in a zonal flow near the minimum critical shear of the two-level
model. The most unstable mode grows at the baroclinic time scale and
propagates with a phase velocity close to that of the basic wave. For
basic wavenumber 1, the kinetic energy and heat transport spectra peak
at wavenumber 3, much like the observed spectra in planetary scales.
The results for basic wavenumber 2 is similar. The baroclinic eddy-eddy
interaction is comparable to the baroclinic eddy-mean flow interaction.

Ther-s Supervisor: Peter H. Stone
Title: Professor of Meteorology
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I. INTRODUCTION

Examination of time mean weather maps reveals the existence of

perturbations(deviations from axial symmetry) of considerable amplitude.

The existence of disturbances after time averaging suggests excitation

by geographically fixed sources. The primary sources of such disturbances

are (i) deflecting effects of mountain ranges on zonal currents and

(ii) heating by a steady distribution of heat sources and sinks. The

forcing of stationary waves by either topography (e.g. Charney and

Eliassen, 1949) or diabatic heating (e.g. Smagorinsky, 1953) has fre-

quently been discussed in the literature. Investigations including both

forcing mechanisms have also been done (e.g. Derome and Wiin-Nielsen,

1971). Daily weather maps also show the existence of perturbations of

comparable amplitudes with much shorter time scales, typically of the

order of several days. These transient waves have conventionally been

attributed to baroclinic instability of the zonal current (Charney 1947.

Eady,1949).

In order to better understand the stationary and transient compo-

nents of atmospheric wave motions, the wind and temperature fields are

often decomposed into the mean, stationary and transient components

as follows: consider any field, such as meridional veolcity 4 .

Then

L It

where 3 X and " I are zonal and time means

respectively; asterisks and primes denote deviations from the zonal and
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time means respectively. The time and zonal mean of a quadratic quan-

tity such as meridional heat transport can be written in the following

form ( T denotes temperature).

[ T 1 [ [71 + Ij+ (ST

The terms on the right hand side are referred to as the zonal mean ( Z )

component; the stationary eddy (SE) component and the transient eddy

(TE) component respectively.

Holopainen (1970) examined the energetics of stationary waves by

evaluating the various terms in the equations of balance of kinetic

energy (KE) and available potential energy (APE) using observational

statistics. Only those processes which affect the energy of stationary

waves were considered. He found the dominant conversions in winter are

ZAPE --- SEAPE ---- SEKE, characteristic of atmospheric eddies

generated by baroclinic instability of the zonal flow. Dissipation

was found to be much more important than topographic forcing, SEAPE

was destroyed by diabatic heating and the primary energy source of the

stationary waves was ZAPE. Holopainen concluded that stationary dis-

turbances are essentially free standing or slowly moving baroclinic

waves, which need external forcing in order to occur on time-mean maps.

He suggested the simplest model which would approximately produce the

observed energetics of stationary waves was a baroclinic model with

diabatic forcing as the only forcing mechanism.

Stone (1977), from physical considerations and observational evi-

dence, classified atmospheric eddies into four major types: baroclinic

and non-baroclinic SE's; and planetary scale and synoptic scale TE's.
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The classification of SE's is based on the observation that summer SE's

do not transport heat poleward while winter SE's do, and that the winter

SE energy cycle is dominated by baroclinic conversions while that in the

summer is not. Figs. 1.1 and 1.2, taken from the results of Oort and

Peixoto (1974), show the distribution of TEKE and SEKE, and the conver-

sions of ZAPE to TEAPE and SEAPE by the dominant horizontal processes

for different months, respectively. In both winter and summer, SE's

account for about 20% of the total eddy KE, but the conversion ZAPE---

SEAPE is about 50% of the total conversion in winter and almost 0% in

summer. Also in winter the conversion SEAPE-----)SEKE is the main

source of SEKE (Holopainen, 1970). Since these conversions in winter

imply strong poleward and upward transports of sensible heat, we see

there is a strong baroclinic component in the SE's giving rise to

efficient heat transporting waves in winter, The summer SE's transport

almost no heat and are termed non-baroclinic. The non-baroclinic SE's

are likely due to topographic forcing, as topographically forced waves do

not transport heat (Derome and Wiin-Nielsen,1971).

Stone's classification of the TE's was based on spectral analysis.

Fig. 1.3 shows the eddy KE and the conversion ZAPE -EAPE as a func-

tion of the zonal wavenumber in January, taken from Tenenbaum (1976).

There are two peaks in both spectra: a primary peak at planetary scales

(wavenumber 1-3) and a secondary peak at synoptic scales (wavenumbers

5-8). The presence of two peaks indicates at least two different phy-

sical processes are at work generating eddies in January. The topo-

graphic and diabatic forcings have similar spectra as both are prima-

rily determined by the distribution of oceans and continents. Their
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Fig. 1.1 Distribution of kinetic energy of transient and stationary

eddies for different months. (from Oort and Peixoto, 1974)
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Fig. 1.2 Conversion of zonal available potential energy to transient
( C1 (PMPTE) ) and stationary ( C1 (PMPSE) ) eddy available

potential energy for different months. (from Oort and Peixoto,

1974)
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Fig. 1.3 Spectra of eddy kinetic energy ( K ) and conversion of zonal available
potential energy to eddy available potential energy ( C 1 ), (from
Tenenbaum, 1976)
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spectra, taken from Derome and Wiin-Nielsen(1
9 7 1), are shown in Fig. 1.4.

As planetary scales are dominant in these forcings, it is natural to

associate the planetary scale peak in the observed spectra of Fig. 1.3

with these forcings. One would expect these forcings to give rise to

SE's, but the planetary scale waves must also contain a substantial

TE component: if we attribute all of the KE and conversion in wave-

numbers four and higher to TE's, the partitioning of the total eddy

KE and of the total baroclinic conversion ZAPE )EAPE (see Figs. 1.1

and 1.2) still implies that at least half the KE and conversion in the

planetary scales (wavenumbers 1 to 3) are due to TE's. That there is

a lot of KE in planetary scale TE's is shown in Fig. 1.5, taken from

Julian et al (1970). We see that a significant portion of TEKE in winter

lies in the planetary scales. The synoptic scale TE's may be attributed

to baroclinic instability, since their scale and structure are close to

those of the dominant modes given by baroclinic instability theory.

Table 1.1 summarizes the four kinds of eddies classified by Stone

(1977) with their likely sources, and estimates of the partitioning

among them of the total KE and the total baroclinic conversion ZAPE--

EAPE on an annual basis. As we discussed earlier, the synoptic scale

TE's and non-baroclinic SE's are likely due to baroclinic instability

and topographic forcing respectively. The planetary scale TE's may

also be associated with baroclinic instability, as their properties are

similar to those of synoptic scale TE's, except for the different zonal

scale. Their scale may be determined by external forcing such as dia-

batic heating.

The source of baroclinic SE's is unclear. Stone (1977) observed

that planetary scale TE's and baroclinic SE's may be different mani-
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Fig. 1.4 Spectra of standard pressure amplitude due to surface

topography ( solid line) and diabatic heating ( dashed

line). (from Derome and Wiin-Nielsen, 1971)
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Fig. 1.5 Normalized spectrum of transient eddy kinetic energy at 50N, 500 mb, in winter.
( from Julian et al, 1970)
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Table 1.1 The four major kinds of atmospheric eddies and their likely sources, and the amounts of

kinetic energy ( K ) and conversion of zonal available potential energy to eddy available

potential energy ( C1 ), on an annual basis. (from Stone, 1977)

EDDY TYPE K E  C1  SOURCE

Synoptic-scale TE's 45% 40% Baroclinic instability

Baroclinic instability

Planetary-scale TE's 35% 30% initiated by external

forcing ?

Non-baroclinic SE's 10% 0% Topographic forcing

Baroclinic SE's 10% 30% Baroclinic instability

in favored locations ?
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festations of a single phenomenon - eddies generated by a cooperation

between diabatic heating and baroclinic instability. Such eddies would

be of planetary scale and baroclinic in nature, and could contain both

TE and SE components. A relation between baroclinicity and diabatic

forcing is also suggested by the work of van Loon and Williams (1976).

They examined records of temperature and sea level pressure from 1900 -

1972 and found that the period 1900 - 1941 was a warming period, during

which the average temperature of the Northern Hemisphere increased, while

the period 1942 - 1972 was a cooling period. They also found poleward

transport of sensible heat by SE's took place in preferred longitude

intervals on the front and rear sides of the Icelandic and Aleutian

lows. A larger poleward flux in high latitudes during the warming period

was found to be connected with a stronger meridional circulation, hence

stronger baroclinicity, around the Icelandic low and on the east side

of the Siberian high than during the cooling period. The lows and highs

are in part diabatically forced, thus their results suggest that stronger

baroclinicity coupled with diabatic heating gave rise to a larger SE

heat transport.

Yao (1977) examined the maintenance of quasi-stationary waves by

using a 2-level quasi-geostrophic spectral model on a A -plane.

Diabatic heating was in the form of Newtonian cooling with an imposed

thermal equilibrium temperature profile which varied only with latitude.

Surface friction and topography were present at the bottom boundary.

Topography of wavenumber n in the zonal direction and first mode

in the meridional direction was used to force the quasi-stationary waves.

The model's motion allowed for zonal wavenumbers 0, n, 2n and the first
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three modes in the meridional direction. The cases n = 2,3 were con-

sidered. The stationary solution was perturbed to find the quasi-

equilibrium state. If the flow is not highly irregular, APE of the

quasi-stationary waves was maintained by the conversion ZAPE-----SEAPE.

For n = 3 and moderate values of the imposed thermal equilibrium

temperature gradient ( ~Te ) and the internal frictional dissipative

time scale ( k1  ) , KE of these waves was maintained by the

conversion SEAPE---- SEKE. For smaller values of AT or ,

KE was supplied to the quasi-stationary waves by the conversion ZKE---4

SEKE through the topographic forcing. The former case, characterized

by the baroclinic conversions ZAPE --- SEAPE---- SEKE, is like the

atmospheric winter regime when strong baroclinicity results due to the

large pole-to-equator temperature gradient. Yao's results suggest that,

in this case, the quasi-stationary waves are generated by baroclinic

instability together with external forcing (topography); the latter is

required to generate zonal thermal variations and hence SEAPE. Thus

baroclinic instability and external forcing may work together to generate

the baroclinic, efficient heating transporting SE's observed in winter.

Consideration of Holopainen's (1970), Stone's (1977) and Yao's

(1979) works suggests tha hypothesis that the efficient heat transport

by SE's in winter is due to instability of a baroclinic flow with exter-

nal forcing. The external forcing will force SE's and the resulting

zonal flow and SE field will be unstable to small wavelike perturbations.

As the basic flow is non-axisymmetric, interaction between the basic

wave and the perturbation will generate further waves, i.e. a spectrum

of waves. These waves will in general transport heat. For planetary
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scale waves, such eddy-eddy interactions are in fact observed. Fig. 1.6,

taken from the results of Tenenbaum (1976), shows the winter conversion

of KE from wavenumber m to n , summed from m = 1 to 30, as a

function of n . We see there are two peaks in the spectrum, in the

planetary and synoptic scales. For the planetary scale peak at n = 3,

the magnitude of this conversion is about 25% that of the conversion

ZAPE-----EAPE (Fig. 1.3). Thus eddy-eddy interaction is by no means

negligible compared to eddy-mean flow interaction for these waves.

For our hypothesis, the heat transport spectrum obtained as a result

of eddy-eddy interaction will be of particular interest.

As a first step in examining our hypothesis, we will evaluate the

heat transport and energetics of stationary waves forced by realistic

topography and diabatic forcing in winter. The model used is similar

to that of Derome and Wiin-Nielsen(1971). They examined forced sta-

tionary waves in mid-latitudes in winter but did not calculate their

heat transports. We will find that the efficient heat transporting

winter stationary eddies are not adequately modelled, and this will

lead us to our next step, the study of the stability of a baroclinic

Rossby wave in a zonal flow with shear. This problem will be the main

subject of this thesis. The Rossby wave is a free wave and must satisfy

a dispersion relation. For realistic profiles of the zonal flow, this

constraint means that the waves are generally propagating relative to

tht earth. Thus the free Rossby wave connot be identified with a forced

stationary wave. However, the scale selection mechanism discussed above

still operates. In particular, if realistic kinetic energy and heat

transport spectra in the planetary scales are obtained with a planetary

scale Rossby wave in the basic flow, studies of the stability of forced
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Fig. 1.6 Magnitude of conversion of kinetic energy from wavenumber
m to n, summed from m=l to 30 in winter, C [K(m/n)l
(from Tenenbaum, 1.976)
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planetary scale waves will be justified.

The study of the stability of free planetary scale Rossby waves

is of great interest aside from any insight it may give for the problem

of the stability of stationary waves. In Chapter II, we will show

that the neutral baroclinic Rossby wave in the 2-level model can be

identified with slowly growing longwave modes, first discovered by

Green (1960). Although these modes have small growth rates, they can

attain large amplitudes. Gall (1976), in a numerical study using a

general circulation model, examined the baroclinic instability of realis-

tic zonal wind profiles. He found that long, deep baroclinid waves do

attain much greater amplitudes than short, shallow waves. This is

because the stabilizing effect of nonlinear wave-mean flow interaction

occurs most rapidly in low levels and thus the short, shallow waves are

affected more by non-linear effects. The "Green modes", being long,

deep waves, can thus grow to finite amplitude. This is one possible

source for the kinetic energy observed in planetary scale TE's.

Whatever their source, these finite amplitude waves will affect the

nature of the baroclinic stability problem. Thus from the point of view

of having as realistic a basic state as possible, the stability of

planetary scale Rossby wave is of interest in its own right.

The stability analysis of a non-axisymmetric basic state is also of

importance because it provides a mechanism for selecting meridional scales.

Simple models of baroclinic instability of a zonal flow (Charney 1947,

Eady 1949, Phillips 1954) do not have any selection mechanism for the

meridional scale of unstable baroclinic waves, as the most unstable mode

has an infinite meridional scale. This difficulty is usually avoided
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by placing walls at fixed latitudes so that the meridional scale is

equal to this forced geometric scale. This artifice is unrealistic

as there are no walls in the atmosphere. The meridional scale is also

of crucial importance in finite amplitude dynamics of baroclinic waves.

In Pedlosky's (1971) analysis of finite amplitude baroclinic instability

is a 2-layer system with small dissipation, the meridional scale appears

explicitly in the steady state wave amplitude. Studies by Kim (1975)

and Pedlosky (1975a)have illustrated in two particular cases that the

presence of a basic state wave leads to the selection of a finite meri-

dional scale, in both cases of the order of the radius of deformation.

Thus we will be particularly interested in examining the meridional

scales selected in our stability analysis.

The stability of our basic flow to small perturbations will be

examined using linear theory. The stability of non-axisymmetric flows

has frequently been discussed in the literature. Lorenz (1972) examined

the stability of the barotropic Rossby wave and applied the results to

atmospheric predictability. Gill (1974) examined the same problem and

identified Rayleigh instability and resonant triad regimes depending

on the ratio of interial to A -effects. Kim (1975) investigated

the stability of the baroclinic Rossby wave as a means of generating ener-

getic eddies in the ocean. These studies have no vertical shear in the

zonal flow. For the investigation of our hypothesis, this is an

unrealistic approximation as the zonal shear represents an important

energy source for instabilities. Pedlosky (1975a)considered the stability

of a baroclinic wave and a zonal flow at neutral stability as a mechanism

for selection of meridional scale of motion. Merkine and Israeli (1978)
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examined the stability of a stationary Rossby wave in a baroclinic

zonal flow and applied the results to mountain induced cyclogenesis.

Pedlosky's (1975a)basic wave is of synoptic scale and small amplitude.

In Merkine and Israeli's (1977) study, the basic wave is of synoptic

scale and the meridional wavenumber of the perturbation is fixed at one

value. In our parameter study of the stability of Rossby waves in a

baroclinic zonal flow, the basic wave will be of arbitrary scale with

arbitrary amplitude; the meridional wavenumber will also be allowed to

vary.

Chapter II presents the basic formulations of a 2-level quasi-

geostrophic, mid-latitude P -plane model together with some exact,

free solutions. The energetics and heat transport of SE's forced by

realistic topography and diabatic heating are examined in Chapter III.

Chapters IV and V present a parameter study of the stability of a Rossby

wave in a baroclinic zonal flow. We present in Chapter VI some appli-

cations to the atmosphere, and the conclusions in Chapter VII.
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II. BASIC FORMULATION

II-1. Basic equations in a two layer atmosphere

The synoptic and planetary scale waves of mid-latitudes can be

described by the quasi-geostrophic system of equations. We assume the

motion takes place in a cyclic zonal channel of width Yo in the y-

direction and of length X0 in the x-direction. The Coriolis

parameter is assumed to have a constant meridional gradient, ,

to take into account sphericity of the earth (Fig. 2.l.a). The governing

equations in pressure co-ordinates are:

P (2.1)

7p (2.2)

+ RT
TP f-"

J(Js~

(2.3)

(2.4)

In the above, t is time, p pressure, T(, 9 ) -

the horizontal Jacobian, 4Z o + where 1o is the Coriolis

parameter at 45*N, * the geostrophic streamfunction for the

horizontal flow, ()= the vertical velocity, T the temperature,

1 the specific heat capacity at constant pressure, . the gas

constant, -( - the static stability, S the

horizontal divergence and H the diabatic heating due to ocean-land

contrast.
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Fig. 2.1 ( a ) Horizontal geometry of -plane model.

( b ) Vertical geometry of P -plane model.
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The horizontal velocity field is geostrophic: V " X

where is a unit vector in the vertical direction. The static

stability is assumed to be constant. Equations (2.1)-(2.4) are the

quasi-geostrophic vorticity equation, the thermodynamic equation, the

hydrostatic equation and the continuity equation respectively. The boun-

dary conditions are:

4= 0O at l+

0=0 at p0 , the top of the model atmosphere

'j- at Ps , the bottom of the model atmosphere

is the geostrophic vorticity and quantities with subscript

denote values at the bottom of the atmosphere. The first contribution

to the surface vertical velocity is due to flow of air over surface topo-

graphy where the standard pressure is ? . The second contribution

is due to viscosity in the Ekman layer which is taken into account by

the use of a friction coefficient F , forcing a surface vertical

velocity which balances Ekman convergence (Charney and Eliassen, 1949).

In the vertical direction, the atmosphere is divided into tow layers

of equal mass. As shown in Fig. 2.1b, we carry , 8 at levels 1

and 3; T , C) at level 2 and () at the top and bottom of the

atmosphere. Applying Eqs. (2.1) and (2.4) at levels 1 and 3, Eqs. (2.2)

and (2.3) at level 2 and using linear interpolation for , we have
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(2.5)

T (2.6)

'31 T (2.7)

The boundary conditions become

4 ,o 1' . 0 9at yoi

oA3 o  at pMo

p, -P. - PF at

Linear extrapolation is used to give -g 4L(k" ,) in

the frictional component of the surface vertical velocity. It can be

shown that V , rather than an extrapolated \ , must be used

in the topography component so that topography does not make a net con-

tribution to the time rate of change of total energy.

We introduce the mean and thermal streamfunctions = 2j I ,

44 z *A " 3 . Adding and subtracting Eqs. (2.5) and (2.6) and

rewriting in terms of and '1 , we get

atv14 3(++", '4f T +V) , '- L , ,-o
(2.8)

, ,, (, ) + j(4I .f)2- ),- ,). o
al-,(2.9)
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Eliminate W. between Eqs. (2.9) and (2.7) and let

( ,' is the radius of deformation). We then obtain

%2t s

3(k -F')+ +J(4 ( -t i ) J((,itf) f 'L, +D +L -+ + o (2.10)

.Equations (2.8) and (2.10), together with the appropriate boundary condi-

tions, are the equations of interest.

In order to derive an energy equation for an adiabatic and friction-

less atmosphere, it is more convenient to write Eqs. (2.8) and (2.10) in

the following form:

i.)O •(2.11)

I J+ J )4 11 ') JT.F4S)- i ?1)- (2.12)

The above equations express

each layer, with the effect

Multiplying Eq. (2.11)

adding, we get

the conservation of potential vorticity for

of surface topography in the lower layer.

by ' and Eq. (2.12) by ' and

it-~ (KE, + PC,) - (Kel PEI) + I~t~ t,-, ,$np
+~ 1

ZL 

. -

where + J( ; ) is the material derivative, Ej = ( s+ C ,

is the kinetic energy and PE,- ," L " P E is the potential

energy for each layer ( -1,1 ) . For a bounded atmosphere with zero

(2.13)
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normal velocity on the boundary, integration of Eq. (2.13) shows that the

total energy of the bounded atmosphere is conserved:

.j ( +E, IKE + P, + ?E, ) 4Y = 0

11-2. Free solutions of the basic equations

In the absence of friction, topography and diabatic forcing ( Wq.O= )

solutions to Eqs. (2.8) and (2.10) exist of the form

f -UI + 8iY k(Y-ct) (2.14)

(2.15)

This solution describes zonally propagating Rossby waves in a zonal flow.

Because of its simple structure, it is an exact solution to the governing

nonlinear equations. The resulting diapersion relation is

al (e+ I)  (2.16)

The ratio of wave amplitudes is also determined:

- (- -)) -2 17)

EL (2.17)
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For the Rossby waves to be non-growing, C must be real. This in

turn requires the zonal shear not to exceed the "critical shear" for

the 2-level model:

-P AhI{&CAI (2.18)

This is shown in Fig. 2.2. The short waves ( I4 K ) do not have

a critical shear and are always stable. However, the 2-level model is

not really valid at such short wavelengths. Analysis of continuous

analog of the 2-level model (Green, 1960) shows that the critical shear

expres:-d by Eq. (2.18) actually represents a transition between condi-

tions where the dominant unstable waves are long, deep waves and conditions

where the dominant unstable waves are short, shallow waves. The 2-level

model is capable of resolving only the former unstable modes. Held (1978),

using scaling arguments, has shown that the vertically integrated kinetic

energy and eddy sensible heat flux of a baroclinic wave are proportional

to the cube of the wave height. Thus the long, deep waves, which are

resolved by the 2-level model, are much more efficient at transporting

heat poleward than the short, shallow waves.

Eqs. (2.16) and (2.17) provide two equations for the four quantities

(U-) , K and . The first two describe the zonal

flow while the last two describe the Rossby wave. Specifying any two of

these four quantities determine the other two, with an overall wave

amplitude being arbitrary. In Figs. 2.3 and 2.4, we show the variation

of the zonal flow for different wave properties, i.e., variation of

(U-C) and as a function of b/ for
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Fig. 2.3 The barotropic zonal flow ( (U-c)) as a function of
/e for Rossby waves of wavenumbers 2,4,6. The dashed

curve represents critical conditions for different
wavenumbers.
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Fig. 2.4 The zonal shear ( ~ ) as a function of /6 for Rossby

waves of wavenumbers 2,4,6. The dashed curve represents
critical conditions for different wavenumbers.



-39-

different values of K . The three values of K shown corre-

spond to wavenumbers 2,4,6 at midlatitudes. The value of the ordinate

at the critical condition given by Eq. (2.18) for each wavenumber is

shown by the dashed lines. Note for our choice of 86 and K as

independent variables, the ordinate is a single-valued function of the

abcissa. We see that for each wavenumber, the zonal shear is bounded by

the corresponding critical shear, in order that the wave be stable to

small perturbations. In the limits 0and --

( ) and (U- ) respectively, while

S-- for both limits. These are the limiting pure barotropic

and pure baroclinic Rossby waves respectively. Dimensionally, they are

described by R ,o , U- = c- I and 0 , U-c(- c I',

respectively, and both have VI = . For non-zero values of the

zonal shear, the wave consists of both barotropic and baroclinic components.

Condition (2.18) is identical to the condition for convergence of

the expansion of the radical in Eq. (2.16). Thus for stable waves, we

have from Eq. (2.16) for the negative and positive roots:

I %, .

j 1u- ) -- ) (2.19)
- K0-0

while Eq. (2.17) gives

( *)(2.20)
K O-K
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With no zonal shear, the negative and positive roots correspond to

the pure baroclinic and barotropic Rossby waves respectively. Thus in

general, we may term the negative root as the baroclinic mode and the

positive root as the barotropic mode . Eqs. (2.19) and (.2.20) give the

corrections to the pure baroclinic and barotropic modes due to zonal

shear, to lowest order in zonal shear.

Fig. 2.5 shows the variation of t(UJ-) with K according

to Eq. (2.16), for fixed values of the zonal shear. The heavy curve

labelled "critical" corresponds to the zonal shear being the critical

shear. This curve separates the baroclinic mode (negative root) and the

barotropic mode (positive root). The two modes for 1 0 and

- I are also shown, together with the lowest order approxi-

mation given by Eq. (2.19) for the case " . The case

I= corresponds to the zonal shear being the minimum criti-

cal shear. It is of special interest as the atmosphere has a zonal shear

close to this value (Moura and Stone, 1976). Fig. 2.6 shows BT/6 versus

K for the baroclinic and barotropic modes of , I

together with the critical curve which separates the two modes. The lowest

order approximations given by Eq. (2.20) are also shown. Note that

except for short wavelengths K I , the baroclinic and baro-

tropic modes have and ( respectively, thus

justifying the classifications "baroclinic" and "barotropic". The lowest

order approximations work well, especially for low wavenumbers. Thus

Eqs. (2.19) and (2.20) may be regarded as longwave expansions.

Lindzen et al (1968) studied the effects of the upper boundary condi-

tion W.)O at some finite height in continuous and finite difference
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Fig. 2.5 P-c) J as a function of zonal wavenumber ( K ) of
Rossby wave, for zonal shears "/ 0O0 (dashed) and to 5=t

(solid). Both baroclinic and barotropic modes are shown.

Crosses denote lowest order approximation for the case
PUr -MI . Heavy curve corresponds to critical conditions

and separates baroclinic and barotropic modes.
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Fig. 2.6 /8 as a function of zonal wavenumber ( K ) of Rossby wave,
for zonal shear P I . Crosses denote lowest order
approximation. Heavy curve corresponds to critical conditions.
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models of free and forced linear oscillations. Their basic atmosphere

was rotating, isothermal and quiescent. Comparisons with results obtained

from an unbounded atmosphere with the radiation condition or boundedness

as upper boundary condition indicated spurious oscillations were generated

due to reflection at the upper boundary. In particular, for the 2-level

model, the only non-spurious free oscillation was found to be the pure

barotropic Rossby wave. However, Charney and Drazin (1961) showed that

stationary, small amplitude, adiabatic and quasi-geostrophic waves in

a uniform zonal flow can propagate energy vertically only when the zonal

flow is westerly and less than some critical velocity. Thus the use of

realistic atmospheric zonal winds, instead of the resting basic state

used by Lindzen et al (1968) may prevent forced waves from reaching the

upper boundary. Kirkwood and Derome (1977) investigated this problem

by examining the forced wavenumber 1 response in a high resolution reference

model (200 vertical levels) with radiation condition at a finite height

as upper boundary condition, and a layer model (101 to 6 levels) with the

upper boundary condition W)=O at pa O (the P model). Realistic

vertical zonal wind profiled for different seasons, together with New-

tonian cooling which varied with height and which had a maximum at 50 km,

were used. For winter, it was found that the strong upper level westerlies

acted as a reflecting medium and results of the sufficiently high resolu-

tion P model agreed well with those of the reference model. In other

words, as long as the upper level westerlies were resolved, the rigid lid

upper boundary condition did not have much effect as little energy was

able to penetrate up to that level anyway. For spring, the week, westerly

zonal winds did not inhibit the vertical propagation of energy, but the

damping effect of Newtonian cooling prevented the wave from reaching the
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top boundary with significant amplitude. Thus the P model with adequate

resolution again minimized the effects of the upper rigid lid.

Our model has only two vertical levels and is not able to model the

stratospheric westerlies or the Newtonian cooling maximum. However, the

use of a rigid lid as an upper boundary condition may be thought of as

a strongly reflecting or dissipative winter stratosphere. Indeed, more

refined calculations than the 2-level model have shown the existence of

the counterpart of the baroclinic Rossby wave of the 2-level model.

Fullmer (1979) examined the baroclinic instability of one dimensional

basic states using a s-plane quasi-geostrophic model. His model had

48 levels in the vertical with the troposphere extending from 1000 to

250 mb and the stratosphere from 250 to 0 mb. The upper boundary condi-

tion used is vanishing perturbation streamfunction amplitude at the top

of the model atmosphere. Slowly growing, long wave modes, first dis-

covered by Green (1960), were found using a basic state with the static

stability of the stratosphere fifty times of the troposphere and a linear

shear zonal wind which vanished at the ground and reached 24 m/sec at

250 mb, The ratio of static stabilities of the stratosphere and tropo-

sphere is realistic for mid-latitude winter conditions; the zonal wind

profile is also realistic in the troposphere. The doubling time of the .

"Green modes" is over 10 days. Fig. 2.7 shows the phase speed of these

modes as a function of zonal wavenumber, together with the phase speed of

the baroclinic Rossby wave in the 2-level model with the corresponding

values of tropospheric static stability and barotropic and baroclinic

zonal flow components. We see that the phase speeds agree well for long

wavelengths. The vertical structure of the streamfunction phase for

the fastest growing Green mode is shown in Fig. 2.8. There is an abrupt
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stability fifty times that of the troposphere ( o ; from Fullmer,

1979), and phase speeds of the neutral baroclinic Rossby wave
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Fig. 2.8 Vertical structure of streamfunction phase for the fastest growing

Green mode. Basic flow parameters as in Fig. 2.7. (from Fullmer,
1979 )
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phase shift of approximately 1T radians at 650 mb, much like the

baroclinic Rossby wave which has the upper and lower level streamfunctions

out of phase with each other by 180*.

The 2-level model is not able to model the stratosphere but as we

discussed earlier, the use of a rigid lid as an upper boundary condition

is analogous to a strongly reflecting or dissipative winter stratosphere.

The good agreement of the phase speed and vertical structure of the Green

mode in a high vertical resolution model and the baroclinic Rossby wave

in a 2-level model suggests that the latter can be identified with a

Green mode.
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III. HEAT TRANSPORT BY STATIONARY WAVES

In this section, we examine the energetics and heat transport pro-

perties of stationary waves forced by realistic topography and diabatic

forcing in winter. The latter are taken from Derome and Wiin-Nielsen

(1971), hereafter referred to as DWN, who Fourier analyzed Berkofsky

and Bertoni's (1955) topographic field and Brown's (1964) heating field.

These were shown in Fig. 1.4. DWN found topographically forced waves

do not transport heat, while diabatically forced waves transport heat

only when friction is present. Quasi-resonance resulted when the zonal

scale of the topographic forcing was close to the wavelength of sta-

tionary Rossby waves, which are a solution to the unforced problem.

Taking winter conditions, the calculated perturbation heights of the

250, 500 and 750 mb surfaces agreed well with observations. Following

DWN, we represent the forced stationary waves by Fourier series in the

zonal direction with a sinusoidal meridional structure. The heating

( H ) , standard pressure due to surface topography ( , ) , mean

and thermal streamfunctions ( ' ,4 T ) which consist of a zonal

flow and forced waves, are expressed as:

NH ti -I ( 1 -, top a , 1L (Ak' (3.la)

flu

Sl i(3.1c)

.Tas (3.id)
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k% I COAo is the zonal wavenumber, OL and Yo being the

radius of the earth and 45'N respectively; X is the meridional

wavenumber, I and I represent linear distance to the east

and north respectively. The meridional wavelength is taken to be

60Q latitude. Wavenumbers 1 through 18 are kept in the summation,

i.e. N = 18 . Substituting eqs. (3.1) into eqs. (2.8) and (2.10),

we obtain upon linearization about the zonal flow a system of algebraic

equations for the amplitudes A S Ai and Tvr . It may for-

mally be written as:

S= (3.2)

where IA -

(L4' M J. and to- kl"T, are the amplitude andphase

of each wavenumber of the diabatic forcing; similarly, .rm,. I~( T

and e, . (j' - are the amplitude and phase of theand O-Tj% '8 'ISO. are the amplitude and phase of the
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topographic forcing; 9 - (U-J) CL _ T is a measure

of the vertical velocity forced by topography alone; Rtp6
(u-u,) kW t%

is a measure of the ratio of vertical velocities forced by diabatic

heating and topography. Eqs. (3.2) are identical to those solved by

DWN, except we have used an energy-conserving extrapolation for the

topographic surface vertical velocity; DWN used an extrapolation obtained

from the hydrostatic equation. DWN did not evaluate the heat transport

and energetics of the forced stationary waves.

If we assume the determinant of M. does not vanish, i.e.

free frictionless Rossby waves are suppressed, then solutions to Eqs.

(3.2) can be written as

(3.3b)

where )N M . Note has dimension of f/Ui

which is dimensionless. Let Alt= hill VVh-4 "I-- (d .n)tln (M')

Then-eqs. (3.3) become

- T (3.4a)

V. (3.4b)



-51-

where

A". MIk e-o,)BT~. -
Uke, f(.L4LC)4 t6 1h. )

In the above too, i/k. i A

and a diabatic component ( I , k'. ) . They are additive because

eqs. (3.2) are linear. Aside from the factor U , all

even in the limit --- , i.e. resonance is not achieved.

Changing the phase of the forcing for a particular wavenumber rotates

the vectors Tr ,_. , YT. and H and leaves their amplitude

unchanged.
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The meridional heat transport by the stationary waves is

R n.. (3.5)

We see that there is non-zero heat transport only if the streamlines

tilt with height. For a single wavenumber k, the magnitude

of the transport depends on the quantity

where Yr is the angle between JI- and _ . Note A r l

is the absolute value of the correlation coefficient for meridional

heat transport; its sign depends on the direction of r. ( _V

it is positive if 14, 1 3J is along the positive z-direction.

As T_, is always parallel to T, , Trl. X T vanishes

and thus topographic waves transport no heat. For diabatic waves, I-0

(no friction) gives T_ . parallel to 8 , i.e. no

heat transport. Thus heat transport by diabatic waves is frictionally

induced. The phase of the forcing does not affect this heat transport,

as it depends only on rl , _- and the angle between NV.

and .

In Figs. 3.1 and 3.2, we show the effect of friction on -ave ampli-

tude vectors for topographic and diabatic waves for zonal wavenumber 2

and realistic winter values for the other parameters. The phase of the

forcing is 0* and non-dimensional amplitudes are shown. For topographic waves,

_LYPCI___1__~_LIIJ1_.IP~II.PI^ ~L~LI. II~)Y-IY~1~ -I 2~-X--
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Irs is parallel to Is. , as noted earlier. Increasing friction

decreases the wave amplitude. This is because topographic forcing,

like friction, is a surface forcing; thus a large friction implies

topography is negligible and it acts as a purely dissipative mechanism.

For diabatic waves, increasing friction actually increases the wave

amplitude until an asymptotic value is reached. This is due to the

non-surface nature of the diabatic forcing in the 2-level model. A

particular value of the friction maximizes I r V I , i.e.

the heat transport; for the values of parameters chosen, this occurs

when FI Uk, ~ . However, this may not be realistic in view

of the wave amplitude behavior at large friction.

In Fig. 3.3, we show heat flux as a function of longitude of sta-

tionary waves forced by realistic topographic and winter diabatic

fields (shown in Fig. 1.4). For comparison, the observed stationary

wave heat flux distribution for the troposphere, averaged over Janu-

ary 1973, 1974 and 1975 is shown in Fig. 3.4. The latter was calculated

from National Meteorological Center (NMC) data at the Goddard Institute

of Space Studies. The observed distribution is characterized by three

zones of strong northward heat transport: eastern Asia (900 E - 150*E),

central and eastern Pacific (175*E - 135*W) and eastern North America

and the Atlantic (900 W - 10*W). The positions of the first two zones

are reproduced well, but the third is displaced about 10* latitude

to the south. The intensity of each zone is modelled poorly: the first

zone is much stronger than observed while the other two are weaker;

agreement is better for the third zone. Areas of large negative (south-

ward) heat flux present in themodel calculation are not present in the
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Fig. 3.4 Observed stationary eddy heat flux as a function of longitude and latitude, averaged over
January 1973, 1974 and 1975. Units are 1017 cal/day/grid point. ( NMC data )
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observed distribution. The latitudes of maximum heat transport agree

only for the Asian and Pacific zones. The NMC data are for January

only and may not be representative of a typical winter. Haines and

Winston (1963) examined the spatial distribution of monthly mean

meridional sensible heat flux for a period of 3 1/2 years. They

found the poleward heat flux across latitude 450N (wherethe zonally

averaged flux is maximum) in winter is dominated by the above zones

also. However, for each of the four winters examined, they found the

eastern Asia zone to be the most intense, which agrees with our results.

The theoretical and observed zonally averaged heat transport are shown

in Fig. 3.5. The latter is taken from Oort and Rasmusson (1971). The

transport is underestimated at all latitudes especially poleward of

45"N. The maximum heat transport is about a factor of two smaller than

tha observed value and is located about 80 too far south.

The spectra of the northward heat transport ( [Ei T ] ) and

the correlation coefficient ( ) [ ] IJ' " Jj--] ) are

shown in Fig. 3.6. For ease of visualisation, absolute values of

negative values are shown. The calculated transport is dominated by

wavenumber 2. This is not surprising as the forcing is strongest at

that scale. The agreement with the observations at 850 mb, 400N is

good for wavenumber 1, fair for wavenumber 2 and poor fcr wavenumber 3.

The correlation coefficient is generally small ( . 0.5), except for

wavenumbers 8 and 13, which transport almost no heat. The overall corre-

lation of the 18 wavenumbers is 0.17. The observed value is 0.59 at

50*N and is above 0.50 in mid-latitudes in winter (Oort and Rasmusson,

1971). Thus the model stationary waves are much less efficient at

IYIILL1- 1UY- -LI*rPYrrul ~ s~ lli--L~_ __ C1.- -^(
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Fig. 3.5 Calculated and observed ( from Oort and Rasmusson, 1971 )

zonally averaged stationary eddy heat transport v* T*

for winter, as a function of latitude.
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Fig. 3.6 Calculated spectra of northward stationary eddy heat transport ( v T I, solid)
and correlation coefficient ( e , dashed). Dots indicate negative values. Open
circles are from observations at 850 mb, 40 N (from Kao and Sagendorf, 1970).
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transporting heat than the atmospheric waves.

From eqs. (2.8) and (2.10), we may derive the energy equation

for stationary waves:

= CB(ZKE,SEKE) + D(SEKE) + C2 (SEAPE,SEKE) (3.6)

CtrP. 9

- (:(ZAPE,SEAPE) + G(SEAPE) - C2 (SEAP E,SEKE) (3.7)

Recall ar , , '1 are the barotropic, baroclinic and level 3

components of the stationary wave field. Eqs. (3.6) and (3.7) are

the steady state eddy kinetic energy and eddy available potential energy

equations respectively for stationary waves. CB(ZKE, SEKE) is a con-

version from ZKE to SEKE due to the mountain torque arising from the

pressure difference between the western and eastern sides of the moun-

tain; D(SEKE) is the dissipation of SEKE by surface friction; C2 (SEAPE,

SEKE) is a conversion of SEAPE to SEKE due to rising of aarm air and

sinking of cold air at the same latitude; C1 (ZAPE, SEAPE) is a conversion

of ZAPE to SEAPE by the northward transport of heat by SE's; G (SEAPE)

is the generation of SEAPE by diabatic heating. The energy diagram is

sketched below (directions of energy flow are for positive values of

the conversions):

__ ~_P_1_ IIIIC-.-I LL~--^I~-^~^ _I- .I- _I- _- -------~-Y~- i~.~ -LIC~~-~C _
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ZAPE ZKE

C1  1CB

SEAPE -) SEKE

The sum of eqs. (3.6) and (3.7) gives the total SEKE and SEAPE equation.

The conversion C2 drops out because it is a conversion between the two

forms of eddy energy.

The generation, dissipation and conversions of the various forms

of eddy energy are snown as a function of wavenumber in Fig, 3.7. As

before, absolute values of negative conversions are shown. We see

that wavenumber 2 dominates all the conversions (note the ordinate is

a logarithmic scale). Surface frictional dissipation ( I ) is always

negative, and is almost entirely balanced by the conversion CB. For the

dominant planetary scale wavenumbers 1-2, SEAPE is destroyed by diabatic

processes (G ( 0); SEAPE is thus maintained by conversion C1, resulting

in a northward transport of heat. Since the waves are steady, the ap-

proximate balance between CB and D, C1 and G for the planetary scale

wavenumbers means that the conversion C2 between SEAPE and SEKE is

small. The energy diagram for all 18 wavenumbers, averaged over 30*N

-5 2 /sec2/sec
to 60*N, is shown below (conversions are in units of 10 m /sec fsec ):



-63-

inG D
I'

CB

0I

O I II
u I \

Cl I

, I ll
1o G1-

x I.- ,..-1

I

in \

II \ o

\ \ IIl \I I

0.1 ' ' I

1 3 5 7 9
ZONAL WAVENUMfBER

Fig. 3.7 Calculated spectra of energy conversions of stationary waves
in winter. Dots indicate negative values.
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ZAPE ZKE

5.4 14.1

2.0
SEAPE ) SEKE

3.3 16.1

Holopainen (1970) examined the energetics of stationary waves using

observational data. The energy diagram, for winter averaged over 15
0N

to 90*N and 100 to 1000 mb, he found was (conversions in units of

10- 5 m 2/sec2 /sec ) :

ZAPE ZKE

12.0 0.2

1 5.2
SEAPE ) SEKE

6.2 \2.6

The above is not an exact steady state because Holopainen included the

effects of transient waves, but their effects were not large. We see

the model gives the correct directions of energy conversions, but the

magnitudes of the transfer are not reproduced well. The destruction

of SEAPE and the baroclinic conversion ZAPE---4SEAPE are underestimated
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by about a factor of 2. The effects of surface friction and topography

are overestimated drastically. A linear extrapolation for the surface

variables has also been tried, instead of the energy-conserving extrapo-

lation used in the above results. The linear extrapolation gives weaker

surface winds and thus should reduce the surface energy conversions.

This is indeed the case: the conversions CB and D are reduced by a

factor of 3, which are still larger than the observed values. However,

the generation and baroclinic conversions (G, C1, C2) are also reduced

by a factor of 2. Thus the overall energetics is not improved.

We have shown that the 2-level model reproduces qualitatively the

main features of heat transport and energetics of atmospheric stationary

waves, The most severe defect is in the estimate of the surface energy

terms, due probably to inadequate vertical resolution of surface pheno-

mena. The heat transport, correlation coefficient and baroclinic conversion

KAPE---+SEAPE---+SEKE are underestimated systematically. However, in our

simple model, several of the specified parameters are not known accurately.

The most uncertain are probably the friction coefficient ( F ) , the

meridional wavenumber of the stationary waves ( X) and the amplitude

of the diabatic forcing. Table 3.1 shows the sensitivity of the results

to variations of these parameters by a factor of two. This table shows

the maximum zonally averaged heat transport ([t r1 ) , the

correlation coefficient for heat transport ( ) , the root-mean-

square meridional eddy velocity ( < *J' ; ( ) denotes an

area average) and the various energy conversions.

From Table 3.1, we see that increasing friction reduces the maxi-

mum heat transport. A realistic value of the maximum transport is

obtained by halving the friction coefficient, but F remains small.
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Increasing friction also reduces the eddy velocity; it remain- smaller

than the amplitude of the zonal flow ( U = I I AAL... ) . Thus

the linearization assumption is satisfactory. The dependence on

is expected to be sensitive, as this parameter is important in deter-

mining which zonal wavenumber attains resonance. DWN showed that

quasi-resonance resulted when the nondivergent Rossby wave is excited.

This is consistent with the fact that wavenumber 4 has the largest

eddy amplitude for the case of O0- X , while it is wavenumber 2

for the case of X . The maximum heat transport is negative

(southward) for the 0"' case while the transport and eddy velocity

are all small for the X case Increasing the amplitude of the

diabatic heating increases the maximum heat transport and eddy ampli-

tude, but the correlation coefficient remains small. The signs of all

energy conversions remain the same when F is varied; however, the

dissipation decreases as F is increased. This unrealistic

behavior is due to the use of an interpolated surface velocity in order

to compute the surface velocity. In fact, an increase of F by a

factor of 5 results in D> 0, i.e. a positive dissipation, which is

clearly unrealistic. The conversions due to topography and friction

are large compared to Holopainen's (1970) results. The energetics are

sensitive to the value of . For the case of 0-5 ,

C1 4 0 (southward heat transport) and G> 0 (positive generation by

diabatic processes) are opposite to observational results. The magnitudes

of all conversion terms are reduced for the 2 case compared to

the case. Increasing the amplitude of the diabatic heating

increases the magnitudes of all conversions; the topographic and fric-



para-CG C2  CB D
meter T

F, ,Q 5.6 Km 0.17 5.6 m 54 -33 20 141 -161
sec sec

0.5F 9.8 0.14 8.5 94 -56 36 181 -217

2F 2.8 0.16 3.7 27 -17 10 100 -110

0.5k -4.6 -. 07 8.7 -44 56 14 69 -83

2h 0.3 0.46 0.7 3 9 13 19 -31

0.5Q 2.5 0.11 5.0 24 -15 9 129 -138

2Q 13.8 0.20 7.0 133 -79 51 165 -216

Table 3.1 Sensitivity to variations of the parameters F (friction coefficient), ) (meridional wavenumber) and

Q (diabatic heating). First row indicates values with parameters of DWN. Second to fourth columns

show the maximum heat transport, correlation coefficient and meridional eddy velocity amplitude

respectively; last five columns show the energy conversions in units of 10-6 m2/sec2/sec "
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tional conversions are still much larger than observed.

We see from Table 3.1 that the results are most sensitive to the

parameter k , because of the quasi-resonance phenomenon. The

linearization assumption is found to be satisfactory. A value of the

maximum zonally averaged heat transport close to the observed value

of 10.8*K m/sec can be obtained by reducing F by a factor of two

or by doubling the diabatic heating amplitude. In both cases. the

correlation coefficient remains small compared to the observed value

of 0.59. For the most "realistic" choices of the parameters F , X

and diabatic heating amplitude, we have seen that the efficient heat

transport of winter SE's is not well reproduced. The underestimation

of the 'eat transport by SE's also occurs in much more sophisticated

models: in a simulation of January conditions, the general circulation

model of the Goddard Institute of Space Studies underestimated the

SE sensible heat flux by about 45%, while the TE flux was simulated

relatively accurately (Stone et al, 1975). The deficit occurred almost

entirely in wavenumbers 1-3, as shown by the calculations of baroclinic

conversion (Tenenbaum, 1976). Our results lend support to the idea

that stationary forcing .lan n,, g,,Lsivnt.. vP A tk 'ffi_

cient heat transporting long stationary waves of the atmosphere in winter.
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IV. LINEAR STABILITY PROBLEM OF ROSSBY WAVES IN BAROCLINIC ZONAL FLOW

VI-1. Preliminary considerations

In the Introduction, we formulated a hypothesis where baroclinic

instability of stationary waves may lead to efficient heat transport-

ing planetary scale waves. In Chapter III, we found with a simple

model that heat transport of stationary waves forced by realistic topo-

graphy and diabatic heating and the efficiency of the transport were

smaller than observed. In this chapter and the next, we present the

next step in the examination of our hypothesis: a parameter study of

the stability of the baroclinic Rossby wave in a zonal shear flow.

This model includes a scale selection mechanism via eddy-eddy interaction

which may lead to realistic kinetic energy and heat transport spectra

in the planetary scales. As we discussed in the Introduction, this

model can provide insight into the problem of the stability of forced

stationary waves, and is also of interest because the basic wave may

be identified with Green modes. These modes will affect the baroclinic

stability problem once they reach finite amplitude. Thus our stability

study is of direct interest for the atmosphere.

In Chapter II, we found a dispersion relation for the baroclinic

Rossby wave which relates the following four quantities: the ratio

of radius of deformation to wave scale ( = tl ) ; the ratio of

baroclinic wave component to barotropic wave component( 8 IT/ )

the barotropic zonal flow component ( (UJ-c ) ; and the baroclinic

zonal flow component ( ) . In our stability analysis, we

will specify the parameters K and BT/- which describe the



-70-

basic wave and let the zonal flow parameters ( (U) ) be

specified by the dispersion relation. As we discussed in Chapter II,

the limits '/ -- O and BT/ --- c correspond to the

barotropic and baroclinic Rossby waves respectively. Both exist with

no shear in the zonal flow. The stability of these waves have been

examined by Lorenz (1972) and Kim (1975) respectively. More generally,

the zonal shear will not be zero and the wave will consist of a baro-

tropic and baroclinic part ( T(#0 , T O, 6 O ) . Another

limit of interest is 8 T ~- 0  , 8 ---0 with 8T/3 fixed.

For values of 81/6 which give an unstable zonal flow, this

limit corresponds to the baroclini instability of a two-level atmo-

sphere first investigated by Phillips (1954). Our study will unify

the studies of Phillips (1954), Lorenz (1972) and Kim (1975) and their

results will be recovered in appropriate regions of parameter space.

IV-2. Linearized perturbation equations

The basic flow whose stability we wish to study is described by

eqs. (2.14) and (2.15). We note that the basic streamfunctions are

independent of time in a co-ordinate system moving with the basic wave.

Thus we let Yo = . -C and treat t, o and I as

the independent variables. We impose small perturbations on this flow

by linearizing the adiabatic and frictionless governing equations

(eqs. (2.8) and (2.10) with (0= N = O ). We let P--jo

and = - U It is iw o denote the barotropic and baro-

clinic components of the basic flow respectively; and ,

will denote the barotropic and baroclinic components of the perturbation.
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The linearized equations are

(4.1)

(4.2)

_, v TI L - J ( - # )
VLT) - jV21 iT OV J<J; ,or

- J(r 3VI') (+I, Iti t ~

Eqs. (4.1) and (4.2) are two linear, coupled partial differential equa-

tions with x -dependent coefficients. Solutions exist of the form:O

; Vtx. i(l*-t t)

II T V(13 dQ tt

(4.3a)

(4.3b)

Substituting the above into eqs. (4.1) and (4.2) and letting ~ 6 Ai t o ,

' Pi o denote the stationary wave of the basic flow,

we get

i (t W-+ UrL f in*I1016 - U-r '1ilL.L. ~ (4.4)

(4.5)

i 

t -

W 

It's

* 6

I I - I

(ir + W_ ((U- C.) (et r) - ) U, - ( i L j .+ is) "X'
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Eqs. (4.4) and (4.5) constitute the system to be solved for the eigen-

value S . If 6 has a negative imaginary part, the basic flow

is unstable. Periodic boundary conditions in 1o will be imposed

for the perturbations. This requires and to be

unchanged if o is increased by a multiple of a certain distance,

which will be taken to be the basic wavelength /k . A similar

condition applied in the y direction will result in discrete values

of the meridional wavenumber C . However, we will not impose

this condition and thus allow for a continuous spectrum of L values.

The simplest solutions of eqs. (4.4) and (4.5) satisfying the boundary

condition in o assume the form

(4.6b)

Note T denotes the order of the harmonic of basic wavenumber.

We substitute eqs. (4.6) in (4.4) and (4.5), and express trigonometric

quantities in terms of complex exponents. Putting the resulting equa-

tions in non-dimensional form, we obtain

()*.. 1V&,, +c,,.,,, ,' s,,iY 4-., , , L,. o
(4.7a)

(V"e ) Y ,1-,I t%,-%, ) tt,+ I, tL, t 0 (4.7b)
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where

U-c

I"+ L

YIL f L -IC = - ,+ L
C, k4 

4 = p t n -a + L

U-C

Sn= t -_ L -

Z u-c, (n-lt + L

Lr~'I;

U-c n'+ L- M

t - §k L O- MI
%. 2. U C. L _+2 L . t M ,

The physical interpretations of the various non-dimensional parameters

are as follows:

zonal scale of basic wave

radius of deformation

(4.7c)

k

n'+ LM

I s k n'+ 1 + M - I-L
Isb n+L'+M L I

3 1 3 E u-j L (-L,' L.+ M
SU-C (,%~- ItM.

M-e-
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BT k velocity amplitude of baroclinic basic wave

U - c barotropic component of zonal flow relative to basic wave

B k velocity amplitude of barotropic basic wave

U - c barotropic component of zonal flow relative to basic wave

UT baroclinic component of zonal flow

U - c barotropic component of zonal flow relative to basic wave

/ k2  barotropic Rossby phase speed

U - c barotropic component of zonal flow relative to basic wave

zonal scale of basic wave

L = meridional scale of perturbation

kc meridional scale of perturbation

x / k phase speed of perturbation

U - c barotropic component of zonal flow relative to basic wave

Note the above non-dimensionalization is equivalent to measuring dis-

tance and velocity in units of k- and V-C respectively.

We will specify the first three parameters ( /k L .. e ~Iku- )

independently. This determineL the other parameters describing the basic

flow UrI/ U-C PlA '(-C) using the dispersion relation, eqs. (2.16)
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and (2.17). The non-dimensional eigenvalue X is then solved as

a function of the nondimensional meridional wavenumber LIk .

This is done by restricting the integral values of tL in eqs.

(4.7) to I.I - N , thus obtaining a sequence of finite, linear,

homogeneous algebraic equations. Eqs. (4.7) truncated to It\ N

involve the 4 + 1 unknowns %o,, ..----- .... N o Y, I .-. Y.

The set of 4N 1 linear, homogeneous equations involving these

unknowns is shown below:

0 0 C.- 1  -, 4 \,0%
WWI

14.1

1442.
9%

9%

a-,

o (.,., (3-wi, ~9%\ 9%
9% ~ N

I ~ 9% 9%
9% 9% 9% 9% 9%~

I 9% 9% 9%
9% 9% 9%

9% 9% 9%
9% 9% 9%

I 9% 9% ~
9% 9%9%

9% 9%
9% 9%

I 9%
I 9%

9%
9%
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0-------------
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I
I
I
I
I
I

-I
I
I
I

I
I
I

0

O4

&01
(,

o (..-, f. ke+-

Yx-t

-II!

1b-M4B

I

I

II
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,&N
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0
9%

11 ,

% 
0

0 9% 0 % 9%N- d 9%9% 9 \Lw 9% l 9%9L

(4.8)

D
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In order for non-trivial solutions to exist the ( 4N+2 ) X ( 4N+2 )

coefficient matrix has to have vanishing determinant. For the lowest

truncation ( N=l ) , the 6x6 determinant can be calculated

analytically. Setting it equal to zero, we obtain a sixth order

polynomial equation for the eignevalue X . There is a pair

of zeros and the remaining four roots are of the form k±aI . ki t~

of i t and ±t LL . The

unstable mode will be termed propagating or non-propagating,relative

to the basic wave, according to whether XA O or X,=0

respectively. Henceforth, propagation of unstable modes will be rela-

tive to the basic wave. For N Z 2 , eqs. (4.8) are solved numeri-

cally by a FORTRAN version of the ALGOL routines developed by Wilkin-

son et al (1971). At each stage of truncation, there are N +t

eigenvalues, not all of which correspond to instability generally.

For a particular unstable mode, 14 is solved for as a function

of L . When N is so large that M(L) has

converged, a good approximation to the "true" solution will have been

obtained. Physically, this truncation process corresponds to retaining

more and more modes, with progressively decreasing zonal scales with

wavenumbers consisting of multiples of the basic wavenumber. Convergence

is attained when the smallest significant scale has been resolved. We

anticipate two important scales: the scale of the basic wave and the

radius of deformation. The former is important because it is present

as an explicit scale while the latter is the natural response scale

of a perturbation in a baroclinic zonal flow. Thus we expect the behav-

ior of the perturbation to depend significantly on their ratio, //
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The zonal structure of our perturbations consists of harmonics

of the basic wavenumber (eqs. 4.6). For a perturbation with all possi-

ble integral wavenumbers, eqs. (4.7) decouple into two sets: the first

set has perturbations consisting of only zonal harmonics of the basic

wavenumber, while perturbations of the second set has all other wave-

numbers. For our hypothesis,,the basic wave will be of planetary scale.

For basic wavenumber 1, harmonics of the basic wavenumber give all

integral wavenumbers, thus the decoupling does not occur. For basic

wavenumber 2, the decoupling gives perturbations consisting of even

and odd wavenumbers. In Chapter VI, where we apply the stability analy-

sis to the atmosphere, we show that the growth rate of the most unstable

mode of the latter perturbation is smaller than the former. Thus the

most unstable mode has a zonal structure given by harmonics of the

basic wavenumber. This zonal structure of the perturbation streamfunction

is the only one which will generate a zonally symmetric perturbation

component ( n = 0 component) via interaction between the basic wave

and the perturbation. For the other perturbations, all components are

zonally asymmetric. This means that these perturbations possess a larger

meridional velocity component. As this velocity component is always

subject to the stabilizing s-effect, it is reasonable to expect these

perturbations to have smaller growth rates than the one consisting of

harmonics of the basic wavenumber.
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IV-3. Some properties of unstable modes.

We note that the coefficients C ,C, 9 ',L ~ ,1,I , ,t, La

all vanish if L 0 . This in turn means that modes with different

values of W- are decoupled (see eqs. 4,7), i.e. modes with different

zonal scales do not interact. Closer examination of eqs, (4,7) shows

that this corresponds to the stability problem of a baroclinic zonal

flow to perturbations with no variation. All basic wave

effects vanish for this perturbation. Physically, this is because

this perturbation has no y structure and since the basic wave has

only x structure, there is no advection of perturbation vorticity

by the basic wave nor advection of basic wave vorticity by the perturba-

tion. The only advection that remains is that of perturbation vorticity

by the zonal flow. A non-zero value of L allows for interaction

between the perturbation and the basic wave. Since the basic wave is

zonally asymmetric, this interaction generates further harmonics, i.e.

modes with different zonal scales are now coupled, Thus with the

presence of a basic wave, if the corresponding zonal flow by itself is

unstable to the L = O  perturbation, the most unstable mode has a

growth rate greater than or equal to that of this mode.

We noted earlier that there are three independent non-dimensional

parameters in the stability problem: A, U-C "/-C.

The limit of small wave amplitude, - o 0 ,~/. -- 0 with

/6 fixed at values for which the zonal flow is baroclinic,

gives Phillips (1954) problem. In this case, C,~, ,I,,

all vanish and modes with different values of M decouple, as

before. Thus the perturbation consists of a single zonal scale and is
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stable or unstable depending on its wavelength and the zonal shear.

We shall term this regime, where the zonal flow dominates, the Phillips

regime. For values of g/(S which give a stable zonal flow,

instabilities at the small wave amplitude limit correspond to a reso-

nantly interacting triad, consisting of the basic wave and two per-

turbation waves (Gill, 1974; Pedlosky, 1975a; Yamagata, 1977). The

limit _---0 , /U C >O gives a barotropic wave with no

shear in the zonal flow as the basic flow. The unstable modes decouple

into pure barotropic or pure baroclinic modes (Yamagata, 1976), with the

former modes always growing faster than the latter. The former insta-

bility was first investigated by Lorenz (1972). Accordingly, we term

this region of parameter space where the barotropic basic wave dominates,

the Lorenz regime. Similarly, the limit NB/-C _90 _ > 0

gives a baroclinic wave with no zonal shear as the basic flow. The

unstable perturbations decouple into two sets of mixed barotropic-

baroclinic modes (Kim, 1975). This regime, where the baroclinic basic

wave dominates, will be termed the Kim regime. The three regimes may

be sketched in two-dimensional parameter space ( 8T/U-C , 8k/U-0  )

for fixed L/k , as follows:
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0

jf1

.o
cr D

BTk/U-c---

1

An energy equation for the perturbation may be derived by multi-

plying eqs. (4.1) and (4.2) by and respectively

and adding. Integrating the resulting equation over one wavelength

in the x and y directions yields

0 f

(4.9)
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The first two terms on the left hand side represent the rate of change

of perturbation KE while the third is the rate of change of perturbation

APE. The right hand side describes the baroclinic and barotropic con-

versions. The first two terms consist of the product of the vertical

shear of the zonal flow and the perturbation meridional heat transport,

and the product of the vertical shear of the basic wave and the pertur-

bation zonal heat transport respectively. These represent conversions

of APE of the basic flow to perturbation APE and are termed baroclinic

conversions. The third and fourth terms are barotropic conversions

and are written in terms of levels 1 and 3 quantities. They consist

of the product of horizontal shear of the basic wave meridional velocity

and the Reynolds stress at each level. They represent conversions of

basic wave KE to perturbation KE. A sketch of the energy diagram is

as follows:

ZAPE WAPE

EAPE

In the above, quantities denoted Z, W,

wave and eddy quantities respeLtively;

levels 1 and 3 quantities respectively.

(WKE)
. 1 (WKE) 3

EKE

E represent zonal flow, basic

( )1 and ( )3 are

Square brackets denote an area
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average. For all the unstable modes we examined, there is a conversion

from perturbation APE to perturbation KE.

The perturbation energy equation may be put in non-dimensional form

by defining non-dimensional variables Io , ', as koe, j , kL

respectively. If at the same time we substitute for the basic wave

quantities, we get: ( overbar denotes area average )

.k L- 13-k L j ,
SU-e k *(4.10P

The perturbation streamfunctions are also non-dimensionalized in the

above. For a basic wave with large zonal scale -kY I , the

baroclinic conversions dominate. This is because for a large scale

wave, vertical shears are more important than horizontal shears. Also,

the last threeconversion terms involving the basic wave on the right

hand side of eq. (4.10) vanish when Lk =0 , i.e. the perturba-

tion with -0 does not feel the presence of the basic wave,

as we discussed earlier. The three conversions are also proportional

to the scaled velocity amplitude of the appropriate basic wave component.
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V. RESULTS OF STABILITY ANALYSIS

V-I. Stability of a planetary scale basic wave.

In this chapter, we analyze the stability of three basic flows con-

sisting of a basic wave of planetary scale ( ) >1 ) , very large

scale ( ) and synoptic scale ( ) . In each

case, both wave amplitudes ( U C ' -- - ) are specified independently

within the range (0,1, 10) and the corresponding zonal flow is given by

the Rossby wave dispersion relation. The growth rates, structures and

energetics of the unstable modes will be examined.

We take as a typical planetary scale wave, wavenumber 2 at mid-

latitudes. This gives 4--.- for a typical value of the radius of

deformation in winter. The growth rate of the most unstable mode is

shown as a function of basic wave amplitudes ( -L 8Ik for the
U-C. ' U-C

lowest truncation N-= in Fig. 5.1. We see the presence of the

Phillips, Lorenz and Kim regimes of instability. The wave regimes

(Lorenz, Kim) are marked by increasing growth rates with increasing

basic wave amplitude, for values of the latter larger than order unity.

In the Phillips regime, the wave amplitudes are smaller than order unity

and the contours are distorted by the zonal shear. For comparable wave

amplitudes, the growth rates are larger in the Kim regime than in the

Lorenz regime. This is because the large horizontal extent of the basic

wave makes vertical shear more important than horizontal shear. Propa-

gating modes (elative the basic wave) exist for a band of wave amplitudes

where the baroclinic wave component is comparable to the barotropic

component ( . . A. ) . Away from this band, the most unstable
U-c U-c
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Fig. 5.1 Contours of constant growth rate U-C of most unstable mode for

planetary scale basic wave ( . =3.9 ) and lowest truncation,
N=1. The coordinates are the non-dimensional amplitudes of the basic
wave on a logarithmic scale. Dotted lines enclose region of pro-

pagating unstable modes, relative to basic wave.
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modes are non-propagating. This agrees with the results of Lorenz (1972)

and Kim (1975), who found unstable modes are stationary relative to the

basic wave. This provides a means of classifying the Lorenz and Kim wave

regimes: an unstable mode belongs to these wave regimes if it does not

propagate relative to the basic wave and if the basic wave amplitude is

larger than order unity. For the latter smaller than order unity, the

zonal shear dominates (Phillips regime) and the unstable modes are propa-

gating. The wave regimes may also be classified as regions in parameter

space where basic wave amplitudes exceed order unity and the zonal shear

is less than the minimum critical shear. In that case, absence of the

basic wave leads to stability. These two classifications of the Lorenz

and Kim wave regimes are similar.

We can identify the dominant instability mechanism in each regime

more clearly by scanning the parameter space along the baroclinic wave path

a--<= 0*I 0.1 . MC 10 ) , barotropic wave path ( _ = 0 . 1 , 1. - Io)

and the mixed baroclinic-barotropic wave path ( 0| !,k 8 -- 6 10 )
U-c - U-c-

The growth rates for each of these paths are compared with the corresponding

non-dimensional zonal shear U/IU- in Fig. 5.2. The abcissa is either

U-k or Y- depending on the path taken. For values of the

abcissa less than unity the growth rate curves for the three paths have

slopes similar to those of the zonal shear curves, i.e. in the Phillips

regime where wave amplitudes are smaller than order unity, the zonal shear

is dominant. For values of the abcissaarger than unity, wave effects

become more important and the growth rate increases monotonically with

wave amplitudes. The growth rates for the mixed case lie in between

those of the baroclinic and barotropic cases, closer to the former. The
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growth rates for N = truncation, when convergence has been obtained,

are also shown for several values of the abcissa. We see the WO

results are a good approximation, especially in the wave regimes. In the

Phillips regime where the zonal shear is dominant, the lowest truncation

results are not expected to be accurate, because the radius of deformation

is an important scale. To resolve this scale, N must be at least

three.

The rate of convergence of an unstable mode reflects the extent to

which harmonics of the basic wavenumber are excited. This can be examined

by considering the barotropic and baroclinic perturbation amplitudes as

a function of L , i.e. the spectra I , . They are

SAk Bk 0
shown in Fig. 5.3 for the most unstable mode for N=6 and -,- 01, 1,10

together with the meridional wavenumber of the most unstable mode, L' /k

The spectra are normalized by taking Io(= I . We refer to the

nine cases by the ordered pair ( ~C jL ) .For (0.1,0.1) and (1,1),

the spectra consist of a spike at K =3 , which corresponds to a zonal

scale of the radius of deformation, and L o =O . This is because

the zonal shear is the dominant instability mechanism and the most unstable

mode is identical to that of the corresponding baroclinic zonal flow only -

recall the L=-0 perturbation does not feel the presence of the basic

wave. This mode is poorly approximated until the radius of deformation

is resolved. No other harmonics are generated because interaction between

the basic wave and the perturbation is absent. This is not the case for

(0.1,1) and (1,0.1) even though these represent weaker wave amplitudes

than (1,1). This is beacuse q ' for (1,1) while -

and 1*-9 for (0.1,1) and (1.0.1) respectively. The larger magnitude
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Fig. 5.3 Spectra of barotropic and baroclinic pertur-

bation wave amplitude (IXn ,I Y ) for the most

unstable mode; LO is the merilional wavenumber.

n denotes order of harmonic of basic wavenumber. I/k =3.9
N=6.
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of the zonal shear for (1,1) means zonal shear effects are more important

there. However, we can see effects of the zonal shear in (1,0.1): the

t=Z mode has significant amplitude in and Y .

This perturbation feels the presence of the zonal shear and has signifi-

cant response in a scale close to the radius of deformation, smaller than

the basic wave scale. The spectra for (0.1,1), (0.1,10) and (1,10) have

significant amplitudes only in '0O and K =.l modes. The baroclinic

amplitudes IYI are much smaller than the barotropic amplitudes IXw

especially for the second case. This is expected as this mode is in the

Lorenz regime. The convergence for (1,0.1), (10,0.1) and (10,1) is slower -

the spectra are fairly broad. For strong basic wave amplitudes (10,10),

several harmonics of the basic wavenumber are exicted. The spectrum is

also slightly skewed. For non-propagating modes in the Lorenz and Kim

regimes, the spectra are symmetrical about Vi=O because the stationary

mode consists of two waves of equal amplitudes travelling in opposite

directions. For the propagating modes in the Phillips and mixed barotropic-

baroclinic wave regime, the spectra are skewed. We have shown the spectra

for these cases for l < 0 , which corresponds to an eastward propa-

gating wave for positive L . For the XA > O mode, the spectra

are ref leted about vL=O . For (0.1,1), (0.1,10) and (1,10), we

have Loo 5 . Here, the barotropic basic wave dominates

r i , and as a result of the quasi-twou-C V-C. U-C. V- C.

dimensional nature of the basic flow, 4 I for kinetic energy

and enstrophy transfer to take place (Fjo rtoft, 1953; Lorenz, 1972). The

Phillips regime is characterized by LO = 0 unstable modes, as we

discussed earlier. For the remaining cases, Li2-5 , which means
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the meridional scale is slightly larger than the radius of deformation.

The kinetic energy and meridional heat transport spectra of the

perturbation for the nine cases examined are shown in Fig. 5.4. Each

spectrum is normalized by the component with the largest amplitude. The

two spectra are similar, except there is no heat transport by the t= O

component. Except for (0.1,0.1), (1,0.1) and (1,1) all the spectra peak

at either Ku O or nrt 4i . For (0.1,0.1) and (1,1), only

the perturbation with zonal scale the radius of deformation is excited.

For (1,0.1), the maximum response is in a scale smaller than the basic

wave scale, close to the radius of deformation. This reflects the influence

of the zonal shear. Southward heat transport is found for (0.1,10), indi-

cating a conversion of eddy APE to zonal APE. However, this case lies

in the Lorenz regime and the baroclinic component of the perturbation is

much smaller than the barotropic component (Fig. 5.3), i.e, the temperature

perturbation is small. Thus this conversion is not expected to be signi-

ficant in the overall energetics. This can be seen from the energetics

of the unstable modes, shown in Fig. 5.5. The barotropic conversions

( (WKE),, (WKE)s -~ EKE ) dominate in (0.1,10) and to a lesser extent

in (0.1,1) and (1,10). We let AL denote the ratio of basic wave APE

to KE, this parameter depends on the scale of the basic wave and the

relative amplitudes of the baroclinic and barotropic basic wave components.

For (0.1,10), (0.1,1) and (1,10), ItL,1 , thus the importance of

baroti:opic conversion is to be expected. For (10,0.1), (10,1) and (10,10),

1A.P>I and the baroclinic interaction with the basic wave WAPE-- EAPE

dominates. In the Phillips regime (0.1,0.1) and (1,1), only one conversion

JAPE -- EAPE exists. For (1,0.1), the baroclinic interactions

with both zonal flow and basic wave are equally significant.
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Fig. 5.4 Kinetic energy and heat transport spectra
( K(n), v'T'(n) ) for the most unstable
mode. Dashed lines indicate southward trans-
port. n denotes order of harmonic of basic wavenumber.

t'1 =3.9, N=6.
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Fig. 5.5 Energetics of the most unstable mode. tIf =3.9, N=6.
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We conclude this section by presenting a brief summary. The Phillips,

Lorenz and Kim regimes of instability are identified, depending on the

amplitude of the basic wave and the zonal shear. A fourth regime, where

barotropic and baroclinic basic wave amplitudes are both larger than order

unity and are comparable, is also identified. As a result of the presence

of two different zonal scales, the radius of deformation and the larger

basic wave scale, higher harmonics of the latter can be excited depending

on the type of instability. Even though the basic wave lacks meridional

structure, the most unstable modes have in general a non-zero meridional

wavenumber which maximizes advections between the basic wave and the per-

turbation. The perturbation may be propagating or non-propagating relative

to the basic wave.

V-2. Stability of a very large scale basic wave

In this section, we consider the stability of a basic wave with t=10

This means the basic wave scale is much larger than the radius of deforma-

tion. Thus we expect significant harmonics of the basic wave to be

excited away from the Lorenz regime, and results from the lowest truncation

may not be accurate. The Lorenz regime is quasi-barotropic and should be

largely independent of vertical stratification. In Fig. 5.6, we show

the growth rate as a function of basic wave amplitudes for the lowest

- truncation. They are generally larger than those of the =20 case

examined earlier. The Phillips, Lcrenz and Kim regimes are discernible.

The Kim regime has much larger growth rates than the Lorenz regime for

comparable wave amplitudes due to the large basic wave scale: vertical

shears are much more important than horizontal shears. Most of the unstable

1XIIC-~..~IIIII^-LI - IIIII~-III.X ~~LI~ --- ~ ~.II l^l--lBI------1- ~ lli sl
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Fig. 5.6 As in Fig. 5.1 but for Ifk =10. Propagating modes are to the
right of dashed line.
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modes are propagating. The dominant instability mechanism can be identified

by scanning along the baroclinic, barotropic and mixed baroclinic-barotropic

wave paths as before. This is shown in Fig. 5.7. For wave amplitudes

less than order unity, the zonal shear is dominant; for larger wave ampli-

tudes, the growth rate increases monotonically. The results for N-I3

when convergence is attained, is also shown. As we expected, the lowest

order approximation does not work as well as before except in the Lorenz

regime.

The distributions of , A , K(n) and V'T'(l) are shown

in Figs. 5.8 and 5.9 together with the meridional wavenumber .o of

the most unstable mode. As before, we identify each case by the pair

( , ) . The t= 0 mode is the most unstable mode for

(0.1,0.1), (1,0.1),(1.1), and the spectra consist of a spike at the radius

of deformation h=6 . (0.1,1) has fairly broad spectra, peaked at a

scale intermediate between the radius of deformation and the basic wave

scale. Its spectra are strongly asymmetric about n=O indicating

the perturbation propagates. As a matter of fact, all modes propagate

except for the ones in the Lorenz regime. For the latter cases, (0.1,10),

(1,10) the modes are almost barotropic, with little amplitudes outside

the WeO and -S:4I harmonics. (10,0.1),(10,1) and (10,10) all

have broad spectra, showing the importance of the radius of deformation,

expecially in (10,1). The kinetic energy and heat transport spectra are

similar except for V-O component. The modes in the Lorenz regime

have meridional wavenumber less than unity due to the constraint of quasi-

two dimensionality. The two-dimersionality is not sufficiently strong

for (0.1,1) and the mode there has LO- =-I . For (10,0.), (10,1)

and (10,10), Lox; , which means the meridional scale is slightly larger
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than the radius of deformation.

The energetics of the unstable modes is shown in Fig. 5.10. There

is only one conversion for the modes in the Phillips regime (0.1,0.1),

(1,0.1) and (1,1). The baroclinic interaction with the basic wave domi-

nates in (10,0.1),(10,1) and (10,10); there, the ratio of basic wave APE

to KE is larger than 50. For (10,1), the baroclinic interaction with the

zonal flow is also significant; I 5.0o is largest there among

all three cases. This is consistent with the fact that the spectra for

this case peaks at a scale closer to the radius of deformation than the

other two cases. Baroclinic interaction with the zonal flow is dominant

in (0.1,1), again consistent with the peak of the spectra of that mode

near the radius of deformation. The barotropic conversions dominate in

(0.1,10) in the Lorenz regime while the baroclinic and barotropic wave

interactions are comparable for (1,10),

V-3. Stability of synoptic scale basic wave

We now consider the stability of a synoptic scale basic wave and

take t .J . This value corresponds to the wavelength of maximum

instability of a baroclinic zonal flow according to linear theory. From

earlier analyses, we do not expect many harmonics of the basic wave scale

to be excited as the lowest truncation resolved both the radius of defor-

mation and the basic wave scale. Also, the zonal shear cannot exceed the

minimum critical shear I , in order that the basic wave be stable.

In Fig. 5.11, we see the growth rate as a function of basic wave

amplitudes for the most unstable mode, for N UI . The Lorenz and

Kim regimes are present as before, but now the growth rates in the two

regimes are comparable, i.e. horizontal and vertical shears of the basic
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waves are comparable due to the smaller scale of the basic wave. The

Phillips regime is not as prominent as before. The value of L /U-C does

not exceed unity appreciably and all modes are non-propagating, unlike

the earlier cases. This reflects the weaker effect of the zonal shear.

This fact is also shown in Fig. 5.12, where we proceed along the baro-

clinic, barotropic and mixed baroclinic-barotropic wave paths. The growth

rates increase with wave amplitudes monotonically, even when the latter are

less than order unity. The increase is slow in the Phillips regime and

much faster in the wave regimes, as expected. The W= I results are

good approximations to the -A6 results, where convergence has been

obtained.

Figs. 5.13 and 5.14 show the spectra I , 3YJ, K(% and 4'T'(Y).

In all cases, convergence has taken place by the second truncation, i.e.

there is significant amplitude only in the L-=O and vi= 41 modes.

The spectra are all symmetrical as the modes are non-propagating. Except

for (0.1,0.1), the meridional wavenumber of the most unstable mode is

less than and of order unity, i.e. the meridional scale is of the order of

the radius of deformation. The case (0.1,0.1) corresponds to the small

basic wave amplitude limit. For the pure barotropic -- =O and baro-

clinic =-< basic Rossby wave with no shear in the zonal flow,

instability for small basic wave amplitudes corresponds to a resonantly

interacting triad consisting of the basic wave and two perturbation waves

(Gill, 1974; Yamagata, 1977). Pealosky (19 7 5a) using a 2-level model,

examined the small amplitude limit of a marginally stable synoptic scale

baroclinic wave in a zonal flow at minimum critical shear. He found the

instability is again in the form of a triad resonance and the meridional
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scale of the most unstable mode is of the order of the radius of deforma-

tion. However,these studies allowed for a more general perturbation

zonal wavenumber: instead of multiples of the basic wavenumber, it was

taken to be a constant wavenumber plus multiples of the basic wavenumber,

i.e. o+ ~k ; k,, which was constrained to satisfy a resonant

condition, was chosen to maximize the growth rate. In our case, k,=O

and due to a lack of meridional structure in the basic wave, the resonance

condition requires the meridional wavenumber of the perturbation to

vanish. This means the basic wavevector and the perturbation wavevector

are parallel, which leads to no instability. However, near resonance, L

can be small and non-zero and instability is possible. Thus for the most

unstable mode of (0.1,0.1), LO C 0o-i is smaller than the other cases.

Pedlosky (1975a)found that for the most unstable mode, the resonant condition

required L/iL=O.O6 <(I . We will be interested primarily in a

basic wave of planetary scale when we apply our results to the atmosphere.

For such a basic wave, the small value of I~kflI means that the pertur-

bation consists of a very large scale component ( n = 0 component).

This component will have a zonal scale many times the basic wave scale, which

is unrealistic for our applications to the atmosphere. Thus for our purposes,

the restriction o =O is not a serious one.

The energetics for the nine cases examined are shown in Fig. 5.15.

- For (0.1,1), (0.1,10) and (1,10), the barotropic conversions dominate as

these belong to the Lorenz regime; the ratio of wave APE to KE here is no

larger than 0.01. For (1,0.1),(10,0.1) and (10,1) in the Kim regime,

the baroclinic interaction with the wave is most important, but the baro-

tropic interactions are significant too. This was not the case for the

larger scale basic waves examined earlier where the latter were negligible.
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This is because here, the basic wavqscale is sufficiently small so that

the ratio of wave APE to KE is only slightly larger than unity for these

cases. Thus barotropic effects are still significant. For (0.1,0.1),

the barotropic interaction with the zonal flow is small. This is because

the zonal shear is less than the minimum critical shear and the instability

corresponds to a resonant triad, as we discussed eariler. Thus wave conver-

sions dominate. This was not the case for the larger scale basic waves

examined earlier because there, the zonal shear by itself was unstable

and was the dominant mechanism for instability. In the (1,1) case, zonal

flow and wave effects are comparable while for (10,10), the wave inter-

actions dominate, as expected.

V.4 Meridional scale of most unstable mode.

The stability analysis of a non-axisymmetric basic state provides

a mechanism for selecting meridional scales. In his study of the instability

of the baroclinic Rossby wave, Kim (1975) found the meridional scale of the

most unstable mode to be close to the radius of deformation; there is energy

transfer from both large and small scales towards this scale. Pedlosky

(1975a) considered the stability of a baroclinic wave and a zonal flow at

neutral stability as a mechanism for selection of meridional scales of

motion in the ocean. The basic wave was of synoptic scale and the limit

of small basic wave amplitude was examined. The meridional scale of the

most unstable mode was again found to be close to the radius of aeformation.

In our analysis, the basic wave will be of planetary scale with arbitrary

amplitude.

Knowledge of the meridional scale is crucial to finite amplitude
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dynamics of baroclinic waves. Pedlosky (1975b) showed that the ratio

of that scale to the radius of deformation is important in the equili-

bration of finite amplitude waves. The eastward velocity ( k' ) and

northward velocity ( 15' ), obtained from an earlier analysis (Pedlosky,

1970), of the finite amplitude wave field in the two-level model are

=U - (uR- L ' (t) k ( -Ct) CwL

!,r' = -(u'- u a) l rt) - t) Alt

In ',.e above, ) is the velocity difference between the two layers,

LI is the critical velocity required for instability, OLt) is an

oscillatory function of time determined by non-linear theory and is order

unity, k and t are the zonal and meridional wavenumbers

respectively. We see that the ratio of the magnitudes of fluctuating

meridional to zonal velocities is given by kiL . For the most unstable

mode from linear theory, l= a I L  ,where LA. is the radius

of deformation (Pedlosky, 1970); thus

The ratio of fluctuating meridional to mean velocities in Pedlosky's

model thus depends on the ratio of the meridional scale of the disturbance
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to the radius of deformation. For modes with >> I , i.e. / <(LA ,

the fluctuating meridional velocity can greatly exceed the mean velocity,

thus such modes are characterized by weak non-linear self-interaction.

The meridional scale also appears explicitly in the expression for the

steady equilibrium wave amplitude. Pedlosky ( 1971 ) examined the finite

amplitude baroclinic instability problem with small dissipation and found

the streamfunction amplitude ( IAI ) reached a steady equilibrium

value, independent of the dissipation parameter. This equilibrium value is

In the above, a(tu.) is an order unity constant.The ratio also plays an

important role in parameterizations of heat flux by large scale eddies

(Green, 1970; Stone, 1972; Held, 1978). The closure assumptions used in

these parameterizations depend on the value of this ratio.

In our stability analysis, the basic wave has no meridional variation.

The most unstable perturbation has however a non-zero meridional wavenumber

in general; its meridional scale being such that interaction between the

basic state and the perturbation is most efficient at extracting energy

of the basic flow. We show in the table below the non-dimensional meridional

wavenumber ( Lo ) of the most unstable mode for (0.1,0.1) £ ( C U-

U- ) • (10, 10); for each pair ( 8 /Ul y/- ), Lo is

shown for the three basic wave scales examined: 0 = 10, 3.9, 1.2

respectively.
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The perturbation has no unique zonal scale as it consists of a super-

position of harmonics of the basic wave. Its dominant zonal scale

may be estimated by the scale which contains the maximum perturbation

KE. Most of the perturbation KE spectra examined peak at L =0

indicating the perturbation zonal flow has most KE. This suggests the

meridional scale is a good estimate of the scale of the perturbation.

From the above table, we see that for sufficiently small basic wave

scale, we have L, 4 , i.e. small scale currents generate per-

turbations with scales larger than the basic wave scale. This is simi-

lar to two dimensional or quasi-geostrophic turbulence where an energy

cascade must move preferentially toward small wavenumbers. Also, the

value of Le varies considerably in parameter space. In this section,

we examine the parameter dependence of L, by using results of the

_I_ 11 ___^i ~s*_l____ I Y ̂_ ~L-~U-L~ _II-.U- ~l LLY^i~ll-- ---̂~
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lowest truncation. In this case, the dispersion relation can be

obtained analytically. However, results of the lowest truncation are

accurate when the basic wave scale and the radius of deformation are not

widely separated. This is true for the case 1&/ = 1., , and to

a lesser extent, for the case when the basic wave corresponds to

wavenumber two ( r/k = 1.- ).

For the lowest truncation, the dispersion relation for the eigen-

value X U-' can be written asV- C.

f1fj 48P-tC)=O f0x (5.1)

81 -0 .+,, e) -a (sot-, 1 c.c 1 o_1 + os)
c le. p ,,,- ,,+ 4C -s ,l) (c.O o.-so) + ~ (5t, .c)(G,,e,)

.. (,jd, + .o, _,)({,,( E.: -M. , (lot., + t._,)( ,+ -+to(s_, -, C.s.(,,)

The variables ,, e, etc. are defined in eq. (4.7c). We see non-

trivial values of are given by a quadratic equation in .

The coefficients 8 and C are complicated functions of the

three independent parameters 1 , 8~ 8 L/-. and the meridional

wavenumber L L/k . The algebra proves too cumbersome for an

exact analytic solution - XC(L) valid throughout parameter

space, but appropriate expressions may be derived for the various regimes.

The meridional wavenumber L. may then be found by maximizing

the imaginary part of with respect to L . To do this,
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we need a quantitative classification of the different regimes. We

will do this for - =z 1.1 , the case where the basic wave cor-

responds to wavenumber 2. We sketch below the zonal shear as a

function of 6 for a wavenumber 2 basic Rossby wave (see Fig.

2.4).

0.1 1 10

AT/8

We have classified the Lorenz and Kim regimes as the regimes where

the barotropic and baroclinic component of the basic wave dominates

respectively. The Phillips regime is characterized by an unstable

zonal flow and a weak basic wave. A fourth regime, where the barotro-

pie and baroclinic components of the basic wave are about equal and both

large, will be referred to as the mixed wave regime. With reference

to the above sketch, we classify the four regimes quantitatively as

follows:
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(I) (-I 4 - (< : Lorenz regime

(III) * >) ( 9 (I : Kim regime

k BA
(a) Phillips regime if wave amplitude is small:. U- U-

(b) Mixed wave regime if wave amplitude is large:- S U-C

Due to the dominance of different basic flow components in the different

regimes, we rescale the dimensional equations to obtain expressions for

the growth rate that are valid locally in each regime. We do this by

scaling the dimensional growth rate by the dominant destabilizing mecha-

nism in each regime, so that the non-dimensional growth rate remains

order unity. The appropriate non-dimensional equations for the Lorenz,

Kim, Phillips and mixed wave regimes are given in eqs. (4.7a,b). The

coefficients in eq. (4.7c) are multiplied by U-c/ 6 k U-c/ , and V-C/8

for the Lorenz, Kim and mixed wave regimes while they remain unchanged

for the Phillips regime. The various scalings are illustrated sche-

matically below:
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BTk/U-c )

0 T1o

(IIa) Phillips

V-c. - 'c

ry-c.

(I) Lorenz

U-c.

Gr 

k2

6r

_____________________________________________________________ a

(III) Kim

U-c
- k( I

Brk

(hib) Mixed wave

(IIb) Mixed wave

U-c. U- 67

- (6~k)

We will examine each of the four regimes separately. In each case,

approximations to the solution of eq. (5.1) will be derived analytically.

(i) Lorenz regime

This regime is characterized by a strong barotropic basic wave.

Accordingly, we take %= /-5 <T 1 and calculate

1= (O. for small x and y. In other words, we do a

two-variable Taylor expansion of .(f_) w , ) about the

origin _ 0 
= (0, 0) . This is done by differentiating eq. (5.1)

implicitly to find the derivative of f , which is then evaluated

at Yo . Two unstable modes exist at _o ; they consist of

8
((I
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pure barotropic and baroclinic perturbations respectively, The former

is the mode investigated by Lorenz (1972) and is more unstable than

the latter. For the former mode, we find 4(1_) , f ~oX) and f,(.)

all vanish while f (1o) > O and 4, (1o) (O . Thus K.

is a critical point and from the behavior of the second deriviatives,

we see that it does not represent an extremum. For the latter mode,

1) , i() and 1(AI*) again vanish, but

xx(>o) 0 and l( 0) - O . Thus the critical

point 10 gives a relative minimum for this mode. This minimum

at 4( ) represents a growth rate maximum because I X)< O

for instability. The expansion up to second order for the more unstable

mode is shown below:

( - I L

I Lrk 1 (.2)

We see that is real, i.e. any possible instabilities are non-

propagating. To find the meridional wavenumber of the most unstable

mode Lo , we differentiate eq. (5.2) with respect to LL  and

set the derivative equal to zero. The resulting equation is still difficult

to solve analytically and we thus make another approximation. In the

problem examined by Lorenz (1972), the two dimensional hature of the

motion constrained L ( I for any instability to occur. This

can be seen in eq. (5.2) by setting S -0 . In our

problem, the Lorenz regime may be expected to be quais-two dimensional,

thus we may still expect L' I . Thus we carry terms up to
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order L and neglect higher order terms in evaluating L. . The

result is

Le (5,3)

The most unstable meridional wavenumber Lo as given by eq. (5.3)

and the corresponding growth rate are shown for tl/k rj1 in Table 5.1.

Also shown for comparison are the exact values found numerically. We

see that the approximate expression works well in the Lorenz regime.

As a matter of fact, the almost constant value of Lo= 0.65 for -_- >4 _ l I
U-C. - P U-C.-

in this regime suggests an even simpler approximation. Setting U-c/ 0= 81/6

in eq. (5.3), we get for the most unstable mode Lo i 0-71

An even better approximation can be obtained for this simple case by

setting - = O = 1 in eq. (5.2) and finding Lo without

assuming it is small compared to unity. This gives L = J - - 0. .

Of course, this approximation does not work in as large a region in

parameter space as eq.(5.3), but as we can see from the exact values,

it works well in the Lorenz regime. The Lorenz regime is quasi-barotropic

and is not sensitive to vertical stratification, thus the results are

largely independent of ILf.



Bk
-=0.1 0.4 0.7 1 4 7 10

U-c

Bk (0.01,.07) (0.04,.21) (0.14,.41) (0.36,.71) ---

U-c = 0 .1 (0.77,1.5) (1.29,2.0) (1.19,2.5) (1.34,2.5) (4.66,2.5) (8.17,2.5) (11.7,2.5)

0.4 (0.04,.20) (0.08,.28) (0.18,.44) (0.38,.71) --- ---

04 (0.19,2.0) (0.82,1.5) (1.26,1.5) (1.57,2.0) (4.39,2.0) (7.88,2.5) (11.5,2.5)

0.7 (0.11,.32) (0.15,.37) (0.24,.50) (0.43,.71) ---

07 (0.12,2.5) (0.56,2.0) (0.97,2.0) (1.34,2.0) (4.36,2.5) (7.47,2.5) (10.7,2.0)

(0.21,.41) (0.24,.45) (0.33,.55) (0.50,.71)- --- ---

(0.20,.40) (0.49,2.5) (0.86,2.5) (1.22,2.5) (4.41,2.5) (7.51,2.5) (10.7,2.5)

(1.34,.67) (1.35,.67) (1.39,.69) (1.46,.71) (8.30,2.9) --- ---

(1.13,.65) (1.14,.65) (1.16,.65) (1.19,.65) (4.30,2.5) (7.52,2.5) (10.7,2.5)

(2.43,.69) (2.44,.70) (2.46,.70) (2.50,.71) (3.89,.97) (27.7,5.6)

(2.03,.65) (2.03,.65) (2.05,.65) (2.07,.65) (4.24,2.5) (7.48,2.5) (10.7,2.5)

(3.50,.70) (3.51,.70) (3.53,.70) (3.55,.71) (4.43,.82) (7.27,1.2) (67.1,9.5)

10 (2.91,.65) (2.92,.65) (2.93,.65) (2.94,.65) (4.18,2.5) (7.44,2.5) (10.7,2.5)

Table 5.1 Non-dimensional growth rate and meridional wavenumber , L ) for most unstable mode calculated

from a second order expansion valid for the Lorenz regime; --- :indicates the expansion is not

valid there. The exact values are shown below the approximate values. r /k =3.9, N=1.
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(ii) Kim regime

This regime is characterized by a strong baroclinic wave. We

proceed as in the Lorenz regime by expanding (4)= { U-C/k 18/ )

about the origin X o(0,0O) . There are two unstable modes

at %e with different vertical structure, and one grows faster

than the other. )o is again a critical point for both modes, but

the second derivatives are not of one sign, thus Xo is not an

extremum. However, for most values of M= = k and L=Z , the

faster growing mode does represent a growth rate maximum in parameter

space. The Taylor expansion up to second order for this mode is

S W(L- M- i) 4 ((-c )L LM

-(j' i (L'+ M'L~L~- O(M- I)(L4 M') 4 (L- )I) (L'- L'- M')( L '4M'+ (5.4)

6k M1(M t I)

The numerical results indicate that L < I does not hold in general,

but it is true that o . I for all cases examined. Thus

we expand in L/'I and keep only first order terms. The value of

found this way is

L:= -M (M 41) a (5.5)
M'(M't 1) +am (-) +(M M' - )

The value of Lo and the corresponding growth rate and their exact

values for q S = .4 are shown in Table 5.2. We see they agree

_il.-~. -_-l-L- -LI- ..



4 4

BTk
T-0.1 0.4 0.7 1 4 7 10U-c

Bk (0.05,.78) (0.36,1.8) (0.81,2.3) (1.27,2.5) (5.61,2.8) (9.87,2.8) (14.1,2.8)
U-c (0.77,1.5) (1.29,2.0) (1.19,2.5) (1.34,2.5) (4.66,2.5) (8.17,2.5) (11.7,2.5)

0.4 (0.15,.78) (0.27,1.0) (0.53,1.4) (0.87,1.7) (5.31,2.7) (9.69,2.8) (14.0,2.8)
(0.19,2.0) (0.82,1.5) (1.26,1.5) (1.57,2.0) (4.39,2.0) (7.88,2.0) (11.5,2.5)

0.7 (0.26,.78) (0.33,.88) (0.49,1.1) (0.72,1.3) (4.81,2.4) (9.31,2.7) (13.7,2.7)
(0.12,2.5) (0.56,2.0) (0.97,2.0) (1.34,2.0) (4.37,2.5) (7.47,2.5) (10.7,2.0)

1 (0.36,.78) (0.42,.83) (0.53,.93) (0.70,1.1) (4.30,2.2) (8.83,2.5) (13.3,2.7)
(0.20,.40) (0.49,2.5) (0.86,2.5) (1.22,2.5) (4.41,2.5) (7.51,2.5) (10.7,2.5)

(1.45,.78) (1.46,.78) (1.49,.79) (1.53,.80) (2.80,1.1) (5.37,1.4) (8.85,1.7)
(1.13,.65) (1.14,.65) (1.16,.65) (1.19,.65) (4.30,2.5) (7.52,2.5) (10.7,2.5)

(2.53,.78) (2.54,.78) (2.55,.78) (2.58,.79) (3.32,.89) (4.91,1.1) (7.24,1.3)
(2.03,.65) (2.03,.65) (2.05,.65) (2.07,.65) (4.24,2.5) (7.48,2.5) (10.7,2.5)

10 (3.62,.78) (3.62,.78) (3.63,.78) (3.65,.78) (4.17,.84) (5.30,.94) (7.01,1.1)
(2.91-,.65) (2.92,.65) (2.93,.65) (2.94,.65) (4.18,2.5) (7.44,2.5) (10.7,2.5)

As in Table 5.1 but the second order expansion is valid for the Kim regime.Table 5.2
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well in the Kim regime. As in the Lorenz regime, the Kim regime is

characterized by an almost constant value of L. "  '5 . Pro-

ceeding as before by taking U- / , / in eq. (5.4),

we find Lo- j- (M~2')4 = 04 (M )I . For the three values

of f examined ( MI S100,1S , ' ) , this gives . = 6.4,2.6 and 1.0

respectively; the exact values are 6, 2.5 and 1.0 respectively.

(iii) Phillips regime

In this regime, we have X , B (( I , , i.e.

the wave amplitudes are small so that the zonal shear dominates. We

treat B/ 6  as a fixed order unity parameter and expand f)

around X=0 . We find '(e) =0 , i.e. o is a cri-

tical point. However, the algebra proved too complex to obtain the

second order correction "(vo) analytically. The lowest order

approximation is thus

\( (Qe.Jc 1-e3 ... (5.6)

Note that unstable modes can be propagating as 4 can be complex.

Differentiating eq. (5.6) with respect to L- and setting the deri-

vative equal to zero, we obtain an equation of the fourth degree. An

asymptotic solution can be obtained in the limit I I- / & u ;

IV' is the minimum critical shear of the 2-level model divided by

the zonal shear. The value of Lo valid in this limit is

_~I_~CI ^_________ lll_~il___-I--LII~ X~ -^- -( ~;-I~Y-I~XI~---~
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I+ LO= Y'% M (5.7)

For M 1' I, , eq. (5.7) gives LO = 1.2, 1.2, 1.7 and 1.8

for( .~ > U-rc) = (0.1, 0.1), (0.4, 0.4), (0.1, 0.4) and (0.4,

0.1) respectively in the Phillips regime. The exact values are

Le = 1.5, 1.5, 2.0, 2.0 respectively. Equation (5.7) is not

valid in as large a region in parameter space as eqs. (5.3) and (5.5),

as the latter contain higher order corrections. However, for small

wave amplitudes, eq. (5.7) does give satisfactory results.

(iv) Mixed wave regime

In this regime, the barotropic and baroclinic basic wave amplitudes

SU-C -C B
are larger and of comparable magnitude, i.e. 1 --( , zI

Proceeding as before, we expand I() around %asO , with

8T/S a fixed parameter of order unity. As before, X0 is a

critical point, but the algebra is again too cumbersome to progress

beyond the lowest order. The lowest order approximation is

€(. = (So . Cc+ ., + 3 .-, *ts-)

S(Vt-, cOc- -3 -t.S-) 4 (C- Is. , I ... Y (5.8)

Even for the lowest order solution, it was not possible to fird LO

analytically due to the rather involved algebra. However, an estimate

I---~-YPPLn~ ir*illr~I_~ ~Lllls~ ~ -L~-
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of Lo may be obtained as follows. Numerical calculations show

that the most unstable modes are propagating and the corresponding

meridional wavenumber does not vary very much in this regime. It can

be shown from eq. (5.8) that a necessary condition for a propagating

unstable mode with 8 =I1 is

( L-1)(L'- L- M) < o

We obtain an estimate of Lo by simply minimizing the left hand side

of the above. This gives

(5.9)

.Eq. (5.9) gives Lo = 7.6, 3.0, 1.2 for the three cases

M = 10, 3.9 and 1.2 respectively; the numerical calculations show

that Lo for this regime are 6, 2.5, 0.7 respectively.

V.5 Parametric dependence of meridional scale

In the previous section, we have obtained analytical expressions

for the meridional wavenumber of the most unstable perturbation in the

Lorenz, Kim, Phillips and mixed wave regimes. The expressions are

obtained by expanding in appropriate parameters which are small com-

pared to unity. For the Lorenz and Kim regimes, second order cor-

rections are included in the approximations. In the Phillips and

mixed-wave regimes, only the lowest order solutions are obtained. By

comparing with numerical results, the approximations have been found

ru -- I-.-LCllx~.m~---~.*r -.-~---.I* -X;_-__-. ~~IILI *LIli-9--BP^
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to be valid locally in each regime. We present in this section the

parametric dependence of the meridional scale of the most unstable

mode for each regime. The simplest approximations will be used. We

let L ' '/k be the zonal scale of the basic wave; L 'L , L.' /.

be the meridional scale of the most unstable mode and the radius of

the deformation respectively. We also let = L I 

this scale is approximately equal to the meridional scale if k

(i) Lorenz regime: Lo f i-i o. i> Ll= ISSiL

(ii) Kim regime: Lo- Jr- (ML') '> = L.si .L/J.

M I ' => L= ea 55 L&

L L-

(iii) Phillips regime: I =%>" Ll' M":

(iv) Mixed-wave regime: L: " f t II3

W I -= Ll - L,

In the Lorenz regime, vertical stratification is not important and the

meidional scale is of the order of the zonal scale. In the Kim regime,

the meridional scale involves both the zonal scale and the radius of

deformation. For weak stratification, it is of the order of the

radius of deformation while for strong stratification, it is close to

-Il~p~
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the zonal scale. In the Phillips regime, the horizontal scale depends

on the radius of deformation, vertical shear and P . In the

mixed wave regime, weak stratification gives the radius of deformation

as the meridional scale while for strong stratification, it is of the

order of the zonal scale.

Pedlosky (1975a)analyzed the stability of a baroclinic Rossby wave

in a neutral zonal shear flow. He found that in the limit of small

wave amplitude, the instability took the form of a resonant triad con-

sisting of the basic wave and two perturbation waves. The most unstable

mode had a meridional scale of the order of the radius of deformation.

His analysis lies in the Phillips regime of parameter space, with the

basic wave scale close to the radius of deformation so that the zonal

flow is neutral ( = I ) . Our approximation in the Phillips

regime requires the zonal flow by itself to be unstable ( > 'I )I)

to small perturbations, thus we do not recover Pedlosky's results.

For a basic wave scale larger than the radius of deformation, the cor-

responding zonal flow is generally unstable and our analysis of the

Phillips regime applies.

In this chapter, we have examined the stability of a basic flow

consisting of a Rossby wave in a zonal shear flow. The Rossby wave is

taken to be of synoptic, planetary and very long scale. Unstable per-

turbations are examined for different values of basic wave amplitudes.

In appropriate regions of parameter space, we recover the Phillips,

Lorenz and Kim regimes, characterized by weak basic wave amplitudes,

large barotropic wave amplitude and large baroclinic wave amplitude

respectively. A fourth regime, the mixed wave regime where the baro-

_~-- I



-126-

tropic and baroclinic wave amplitudes are comparable and both large ,

is also identified. Two important length scales are present: the

basic wave scale and the radius of deformation. When the former is

much larger than the latter, higher harmonics of the basic wave scale

are exicted. The energy and heat transport spectra, energetics and

meridional scale of the most unstable modes have also been examined.

We found a spectrum of waves is generated by eddy-eddy interaction

between the basic wave and the perturbation. In the next chapter, we

will apply our stability analysis to the atmosphere by considering

realistic atmospheric values of the various parameters.

Y__U1__IYr___lUIII__.I~_XIC~III~ ~-UL L--l.~il-- ^-Y -~IC
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VI. APPLICATION TO THE ATMOSPHERE

In the previous two chapters, we have presented a parameter study

of the stability of a non-axisymmetric flow, namely, a Rossby wave in

a zonal shear flow. In the Introduction, it was suggested that when

the basic wave is of planetary scale, the scale selection mechanism

due to eddy-eddy interaction may generate realistic kinetic energy and

heat transport spectra in the planetary scales. To examine this, we

take wavenumbers 1 and 2 as the basic wave and realistic winter values

of the other parameters of the stability problem.

Two layer models of baroclinic instability of a zonal flow pre-

dict that there is a minimum criticalkonal shear separating conditions

which are stable from those which are baroclinically unstable. This

minimum critical shear may be translated to a critical meridional

temperature gradient with the aid of the thermal wind equation. Stone

(1978) has shown that the observed mean tropospheric temperature gra-

dients coincide closely with this critical temperature gradient in

mid and high latitudes in all seasons. His results suggest the zonal

shear should be taken to be close to its critical value: .

For typical winter conditions, this corresponds to U. = 5' "M'/,e.., and

a realistic value of the barotropic component of the zonal flow is

U = IS ~'/4 t . Non-dimensionally, this gives / 7.

The dispersion relation for the baroclinic Rossby mode then requires

wavenumbers 1 and 2 to propagate eastward at 9.5 mlsec. This phase

velocity is typical of Green modes. Having specified the basic wave-

number and the zonal flow components, there remains an additional
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parameter - the amplitude of the basic wave. Wavenumber spectra of

travelling planetary scale waves indicate that peak power is at

wavenumbers 1 - 2 with period of about 15 - 30 days (Arai, 1973;

Deland, 1973). This does indeed give a typical phase velocity of

around 10 m sec. The geopotential amplitude at such scales is about

60 m (Arai, 1973). We will take as the basic wave amplitude - "

For wavenumber 1i, this corresponds to a geopotential amplitude of 140 m,

and 70 m for wavenumber 2. The amplitude for wavenumber 1 is large,

but time series of geopotential amplitude do show instances when

wavenumber 1 attains an amplitude close to 140 m in winter (Arai, 1970).

For comparison, typical geopotential amplitudes for planetary scale

stationary waves in winter are about 50 - 150 m in the troposphere

(Muench, 1965; van Loon et al , 1973). For basic wavenumbers 1 and

2, the parameter values UT and 8g'~=uO.

are located in the Kim regime of parameter space.

In Fig. 6.1, we show the growth rate !6kI of the most

unstable mode for basic wavenumber 1 as a function of wave amplitude

U-c and meridional wavenumber k , for N = 10, when conver-

gence has been obtained. The meridional wavelength of maximum insta-

bility corresponds to l/k -- , i.e. a meridional scale close to

the radius of deformation. Modes with small values of Lk are

non-propagating relative to the basic wave, while those with larger

values are propagating. Thus waves with small scales, close to the

radius of deformation, feel the zonal shear more.

For the wave amplitude AU_ = 0. , the structures and

energetics of all the unstable modes with = 5 , the meridional
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wavenumber of maximum instability, are shown in Fig. 6.2. The fastest

growing mode is of planetary scale, with kinetic energy maximum at rfL=3.

It propagates relative to the basic wave as the spectra are not symme-

tric about k= 0 . The dimensional phase speed of the perturbation

relative to the earth, C k( ) is

1 -(6.1)

In equation (6.1), C is the phase speed of the basic wave while

61. is the real part of the dimensional eigenvalue (see eq. 4.3).

Thus -y#i is the dimensional phase speed of component M.

of the perturbation, relative to the basic wave. For the unstable modes

shown in Fig. 6.2, 6, can be positive or negative, corresponding

to westward and eastward propagation relative to the basic wave

respectively, for positive K . For the dominant unstable com-

ponent r=o for the four perturbations of Fig. 6.2, we find

C = 0.22, 0.0026, 0.010, 0 respectively. Thus the domi-

nant unstable component has a phase speed close to that of the basic

wave for each case. Relative to the basic wave, the unstable modes have

decreasing phase speeds with decreasing growth rates; the dominant zonal

scale shifts toward the radius of deformation as the growth rate decreases.

For the least unstable mode, there is little amplitude in the spectra

outside of lti -6 . The efficiency of heat transport as measured

by the correlation coefficient decreases with growth rate.

For the most unstable mode, the non-dimensional eigenvalue

= + 0.4186 + 1.9382i translates into an C -folding time
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of 4.8 days and as remarked earlier, a phase velocity of the dominant

component close to that of the basic wave. This represents a distur-

bance which grows at the baroclinic time scale and propagates eastward

at around 10 m sec. Fig. 6.3 shows the wavenumber spectra of meridional

sensible heat flux for stationary and transient eddies, at 850 mb,

60*N in winter. The data are taken from Kao and Sagendorf (1970).

Planetary scales dominate both spectra, with peaks at wavenumber 3 for

both cases. We see that the agreement between the observed heat trans-

port spectra and the spectra of the most unstable mode we obtained is

fairly good, given the 2-level approximation of the model. The

energetics of the most unstable mode shows that baroclinic eddy-eddy

interaction is comparable to baroclinic eddy-mean flow interaction, while

the barotropic interactions are small.

When the basic wave is wavenumber 2, the perturbation consisting

of harmonics of the basic wave is made up of wavenumbers 0,2,4,6,.....

It can be shown that if the perturbation is taken to consist of all

wavenumbers, i.e. wavenumbers 0,1,2,3,...., the stability problem

decouples into two sub-problems, which correspond to perturbations of

even and odd wavenumbers. These perturbations will be referred to as

even and odd perturbations respectively. Note this does not happen

for wavenumber 1 basic wave as taking harmonics of the basic wavenum-

ber results in all possible wavenumbers. For wavenumber 2 basic wave,

the eigenvalues corresponding to the even and odd perturbations are not

equal in general, thus odd wavenumbers will not grow at the same rate

as even wavenumbers. To avoid ambiguity, subsequent results will be

scaled using wavenumber 2 as length scale ( I -LTo.) . For wave
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amplitude kIU-C = 0. , the most unstable mode is an even per-

turbation. The growth rate of the corrresponding odd perturbation is

smaller. Fig. 6.4 shows the kinetic energy and heat transport spectra,

the energetics and correlation coefficient for heat transport, for

the most unstable even and odd perturbations. Ten wavenumbers are

retained in each case. The growth rates for the even and odd pertur-

bations are 5.5 and 5.9 days respectively, at almost the same meridional

wavenumber. Their meridional scales are close to the radius of defor-

mation. Relative to the basic wave, the even perturbation is stationary.

The odd perturbation propagates at close to the basic wave speed

relative to the earth. The kinetic energy and heat transport spectra

peak at wavenumbers 4 and 3 for the even and odd perturbations respectively.

Most of the amplitude is in the planetary scales in both cases. The

energetics show that baroclinic interactions dominate, with eddy-eddy

interaction comparable to eddy-mean flow interaction. The correlation

coefficients for meridional heat transport are relatively large for both

cases. As in the case when the basic wave is wavenumber 2, the kinetic

energy and heat transport spectra obtained are fairly realistic compared

to observed spectra for planetary scale waves.
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VII. CONCLUSIONS

In this thesis, we have taken the first steps in the investigation

of the hypothesis presented in the Introduction: efficient heat trans-

porting winter eddies are generated by instability of a baroclinic

flow with external forcing. This hypothesis was formulated based on

physical considerations and observational evidence of the planetary

scale waves of the atmosphere. We showed with a simple model of forced

stationary waves that the efficient heat transport of winter SE's is

not well reproduced. We then presented a parameter study of the

stability of the baroclinic Rossby wave in a zonal shear flow. Linear-

ized theory was used in the stability study; the perturbations consist

of truncated zonal Fourier harmonics. This study is relevant to our

hypothesis because it provides a scale selection mechanism via eddy-

eddy interactions.

There are two important zonal scales in the stability problem:

the basic wave scale and the radius of deformation. The former occurs

as an explicit scale while the latter is the natural response scale of

a perturbed baroclinic zonal flow. The properties of unstable modes

thus depend on the ratio of these two scales. Three values of this

ratio were considered: Ik = 10 3-* and I' . They correspond

to a very large scale, planetary scale and synoptic scale basic wave

respectively. The possible energy sources for instability are the APE

associated with the vertical shear of the zonal flow, and the KE and

APE associated with the horizontal and vertical shears of the basic wave

respectively. We partitioned parameter space according to the dominant
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energy source of instability: the Lorenz and Kim regimes are character-

ized by significant horizontal and vertical shears of the basic wave

respectively, while the Phillips regime is characterized by a strong

zonal shear flow. A fourth regime, the mixed wave regime, where the

horizontal and vertical shears of the basic wave are comparable and

both large, is also identified. Growth rates, vertical structure,

kinetic energy and heat transport spectra and energetics were examined

for the most unstable mode in each regime.

The unstable modes consist of harmonics of the basic wavenumber

and thus do not have a unique zonal scale. A measure of its zonal

scale is the perturbation component which has the maximum kinetic energy.

Non-dimensionally, this scale is lVL. . i, , where the kine-

tic energy spectrum K(n) peaks at n 1=f, . The following

table shows this scale in parameter space, for the three values of

k = 10 , -9 and 14.

BTk
- 0.1 1 10

U-c

Bk
U-c = 0.1 0.6 .77 .85 0.6 .52 0 0.1 0 0

1 0.5 .26 .85 0.6 .77 .85 0.3 0 0

10 0 0 0 0 0 0 0.1 .26 0

In the Phillips regime, where ( BV.8I.c) (1,1) , k/, . is

order unity, which means the most unstable mode has a zonal scale close

to the radius of deformation. This is expected as the theory of baro-

clinic instability of a zonal flow with vertical shear predicts the
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fastest growing mode to have the radius of deformation as zonal scale.

In the Lorenz and Kim regimes, where ark I , u> I and

Iu
8-c 1  / , U-' > C.> respectively, tm, k44 is close to

zero. Thus the perturbation zonal component contains most of the ampli-

tude. Kim (1978) has shown that this modal structure is related to the

fact that meridional currents are unstable irrespective of their strength.

Our basic Rossby wave has only x-structure in the streamfunction and thus

represents a meridional current. Stability analysis of zonal currents

have shown that a strong B-effect stabalizes the current (Kuo, 1949;

Charney and Stern, 1962; Pedlosky, 1964). Thus in the Lorenz and Kim

regimes, when the B-effect is strong, this perturbation modal structure

minimizes the meridional component of perturbation veolcity, which is

always subject to the B-effect. Thus perturbations can overcome the sta-

bilizing B-effect by orienting themselves in the zonal direction. In

the mixed wave regime where ( U. . ,L/U.) (1 , 1) , there is

a tendency toward this perturbation modal structure also.

In addition to selecting zonal scales, eddy-eddy interaction also

selects a finite meridional scale in the Lorenz, Kim and mixed wave

regimes. To examine the nature of this selection mechanism, we consider

more closely the instability mechanisms. As we discussed earlier,

unstable modes result because of baroclinic instability of the zonal

shear flow, baroclinic or barotropic instability of the wave field.

Baroclinic instability describes the release of APE of horizontal

temperature gradients associated with the vertical shear of horizontal

~~ILYPILI~~-- _ --L-_llli LII*- ~LP_ -_-L~1__~,
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currents. The energy release is accomplished by motion in the direction

parallel to the horizontal temperature gradient. In the case of a zonal

flow with vertical shear, the associated meridional temperature gradient

means that APE of the zonal flow is released by motion in the meridional

direction. For a meridional current with vertical shear, the associated

temperature gradient is in the zonal direction, and release of APE of

the meridional current is accomplished by motion in the zonal direction.

Thus in both cases, conversion of zonal APE to eddy APE is accompanied

by a transport of heat down the temperature gradient. Phillips'(1954) and

Kim's (1975) analyses are examples of these two cases respectively. In

Phillips' case, the most unstable mode has the radius of deformation ( LA )

as the zonal scale and has infinite meridional extent. Barotropic instability

is also present in Kim's analysis, but if we consider a planetary scale

basic wave, barotropic interactions are unimportant. In this case, the most

unstable mode has a meridional scale close to L, and in the zonal direction,

the perturbation zonal component has the largest amplitude. Thus in both

cases, the horizontal wavevector of the most unstable mode aligns itself

with the basic current. This is summarized in the table below:

regime U VT energy releas

mechanism -

Phillips (u(z) , 0 ) (0 Ty ) v'T' (I , 0 )

Kim (0, v(x,z) ) ( T, 0 ) u'T' (u'v') (-0 , La )

Lorenz ( 0 , v(x) ) ( 0 , ) ' (-0 , L;')
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In the above, U and VT denote the two-dimensional basic

current and its associated temperature gradient respectively; TL .',1T'

denote perturbation zonal velocity, meridional velocity and temperature

respectively; an overbar denotes zonal average; K= (k i) is

the wavevector of the most unstable mode; L = 'k is the zonal

scale of the basic wave. The motion is barotropic in the Lorenz

regime and energy release is accomplished by transport of momentum down

the velocity gradient; and K aligns itself parallel to the

basic current. In both the Kim

and Lorenz regimes, the most unstable perturbation does not have a

unique zonal scale but the component with the largest amplitude is the

zonal component.

In the case of interest to the atmosphere, the basic wave is a

planetary scale baroclinic Rossby wave with the zonal flow near minimum

critical shear. Thus instability mechanisms of the Phillips and Kim

regimes are both present while barotropic interactions are small. We

found realistic kinetic energy and heat transport spectra which peak

at wavenumber 3 for the most unstable mode; the response is thus

maximum at a zonal scale intermediate between those of the Phillips

and Kim regimes. The meridional scale remains at LA. . The per-

turbation wavevector is no longer along the x or y directions, but

is now oriented at approximately 60* to the horizontal for the dominant

perturbation component. This is because the basic flow now consists

of zonal and meridional currents of comparable magnitudes. This orien-

tation of the perturbation wavevector optimizes release of APE of the

basic flow. Our result that the most unstable mode has a zonal and meri-
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dional scale both close to the radius of deformation is important for

closure assumptions used in parameterizations of heat transport by

large scale eddies (Green, 1970; Stone, 1972; Held, 1978). Green (1970)

assumed a parametric dependence for the ratio of meridional to zonal

scale to be the planetary scale divided by the radius of deformation.

Stone (1972) and Held (1978) implicitly assumed this ratio to be order

unity. If the scale selection mechanism in our study is appropriate,

our results suggest that Stone and Held's assumption is more valid.

The good agreement obtained between the observed and calculated

heat transport spectra in the planetary scales for the most unstable

mode lends support to our hypothesis about the generation of efficient

heat transporting winter SE's, formulated in the Introduction. We

discussed earlier that our basic wave is a propagating Rossby wave and

cannot be identified with a true forced stationary wave. However, the

vertical structure of stationary wavenumber 1 has considerable tilt

with height: the results of Muench (1965) and van Loon et al (1973)

show that stationary wavenumber 1 has a phase shift of almost 180* in

the troposphere. Thus its vertical structure is similar to that of the

baroclinic Rossby wave. We anticipate destabalizing and scale selection

mechanisms similar to those present in our study will operate, when

the basic wave is a forced wave. Our results thus motivate further study

of the stability of forced winter stationary waves.

In addition to the insight it may give to the problem of the sta-

bility of forced stationary waves, our results are of interest to plane-

tary scale TE's. These eddies are one of the four major types of

atmospheric eddies classified in Chapter 1, They account for a substan-
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tial portion of the total eddy KE and heat transport (Table 1.1). Our

study may shed some light on the source of these eddies. We discussed

in Chapter II that the baroclinic Rossby wave may be identified with a

Green mode. These longwave modes, being slowly growing, are inefficient

at transporting heat; in our model, the baroclinic Rossby wave trans-

ports no heat at all. These Green modes can grow to finite amplitude

because of the weak stabilizing nonlinear wave-mean flow interaction.

If they reach finite amplitude, these modes will affect the baroclinic

stability problem. Our study shows that the resulting most unstable

mode has KE and heat transport spectra in the planetary scales, and is

also efficient at transporting heat. This is a plausible source for the

planetary scale TE's that transport heat.

4
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