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ABSTRACT

Accelerometer derived thermospheric density data from

the LOGACS and SPADES satellites are processed to yield the

equivalent density variation at 150 and 160 km respectively.

Definite latitudinal and longitudinal variations are found

which conflict with Jacchia's 1971 model. Time-latitude

analyses are presented of density at a single altitude. The

density response to a great geomagnetic storm is nearly the

same from 250 S to 850 N except that a density trough forms

just equatorward of the auroral oval. Gravity waves are

observed during the storm. The structure and dynamics of

the lower thermosphere are far more complex than previous

studies indicate.
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I. INTRODUCTION

Artificial earth satellites have opened up an en-

tirely new area of the atmosphere to direct observation.

Satellites have proven to be a valuable platform from which

the weather and structure of the troposphere and stratos-

phere can be observed. A number of scientific satellites

have been designed and flown to gather information on the

charged particle population and the structure of the geo-

magnetic field as well as their interaction with the solar

wind. Satellite systems have been launched to provide com-

munication and navigation links, to investigate the shape

of the geoid and its gravitational field, to find and moni-

tor earth resources, and to put men himself as an observer

in a new environment. More recently scientific satellites

have been orbited to investigate the composition, ionization

levels, and atmospheric density of the satellite environ-

ment.

The fact that a portion of the atmosphere, however

tenuous, is present at the altitudes where satellites are

flown causes perturbations and decay of satellite orbits

which can be measured and used to infer the atmospheric den-

sity near the perigee altitudes of the satellites. By this

means a considerable amount of information has been gathered

from a large number of satellites on the density structure

and variation of the upper atmosphere.

Inferring density from orbital decay measurements



has several very important limitations. The first is that

the atmosphere perturbation drag force is not limited to a

single point in the atmosphere but extends over a 200 arc or

more of the satellite orbit, depending on the orbital eccen-

tricity. Further, the perturbation force is quite small

compared to the total orbit energy and due to tracking ac-

curacy limitations several revolutions around the orbit may

be required before the atmospheric density signal can be

adequately isolated. The number of revolutions required is

mainly dependent on the minimum altitude of the orbit and the

satellite area to mass ratio. A minimum of two revolutions

are required to determine the density. The number actually

used is almost always greater, ranging up to several days

duration. The resulting density value is thus derived from

the integrated atmospheric drag force on the satellite over

a range of altitudes down to the minimum altitude, along a

200 arc or more of the orbit for usually six or more revolu-

tions around the orbit. Thus the structure and time varia-

tions of the density are considerably smeared by the orbital

decay observation technique.

The orbital decay density observations are not uni-

formly distributed. Relatively few are available from low

altitudes due to the more rapid orbit decay rate which quick-

ly reduces orbital lifetime. Most satellites with long

design lifetimes are placed in orbits with minimum altitudes

above 200-250 km. A further deficiency in the distribution

of observations is the lack of high latitude observations.
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The reason for this is that lack of sufficient rocket

booster capability made it necessary to use a large portion

of the earth's angular momentum to put a payload into orbit,

thus resulting in relatively low orbital inclinations. More

recently more satellites have been launched into near polar

orbits but sampling of the high latitude region is still

relatively sparse, particularly at certain local times of

day at lower altitudes.

Orbital decay observations accumulated for over 10

years have revealed much about the structure and variation

of the density in the region of the atmosphere known as the

thermosphere. The density in this region is largely con-

trolled by solar extreme ultraviolet (EUV) and corpuscular

radiations. The density varies over the eleven year solar

cycle in concert with the variation of the mean background

solar EUV flux. Shorter term density variations are observ-

ed with the appearance and fluctuations of active areas on

the solar disk. These result in short-term variations in

the solar EUV output which in turn cause density changes

with a lag of about one day. The most prominent density

variation is that caused by direct solar heating. This

causes a density bulge to form which is thought to be at

the latitude of the solar subpoint with a maximum lagging

local noon by two hours. Minimum density lags the antisolar

point by about 3-4 hours. This subsolar density bulge is

believed to migrate with the sun. A rather unexpected semi-

annual density varitaion is observed with maxima in early



April and late Oct. and minima in mid-Jan. and late July.

The extrema in Oct. and July are larger than those in Jan.

and April. There is still considerable disagreement as to

the cause of this semi-annual variation. The last recog-

nized density variation is that due to corpuscular radia-

tion. This is usually associated with geomagnetic activity

and in general lags the variation in geomagnetic activity

by several hours. Due to the short-term nature of geomag-

netic storms the exact character of the atmospheric density

response is poorly known from orbital decay measurements.

Density increases of two orders of magnitude have been ob-

served at some altitudes in response to a strong geomagnetic

storm.

Because of the wide range in the altitude, latitude,

local time of day, solar EUV flux level, etc., a model con-

cept is used to incorporate the density observations. The

model is based on the static diffusion equilibrium equations

with a temperature profile specified by the angle from the

center of the modelled sub-solar bulge and the levels of

EUV flux and geomagentic activity. Lower boundary condi-

tions of temperature and composition are assumed at a level

near 100 km where static diffusion begins to become effect-

ive. These lower boundary conditions are based on the

results of various rocket flights. The shape of the temp-

erature profile is adjusted to match static diffusion den-

sities to those observed over the altitude range up to 1200

km (Echo balloon).



Considerable uncertainty still exists as to the

density structure at low altitudes. The nature of the very

dynamic response of the density level and distribution are

poorly known from orbital decay measurements. Recently

density observations have become available from very sensi-

tive satellite-borne accelerometers flown aboard two satel-

lites. These density observations have high resolution in

time and space. Their accuracy exceeds that from orbital

decay measurements. A few of these measurements have been

presented and discussed in the open literature (DeVries,

1972, 1972b; Forbes and Marcos, 1973; Marcos and Champion,

1972; Marcos et al, 1971). However, to date no thorough,

integrated investigation has been made using all or even a

large portion of this density data. Density observations

by accelerometers have been obtained on 36 different days.

The major portion of the data is for altitudes below 200 km.

During the days when accelerometer density measurements

were obtained, an extremely large geomagnetic storm occurred.

These data afford a unique opportunity to not only obtain

information on the low altitude density structure of the

thermosphere, but to also determine the nature of the den-

sity response to a large corpuscular heating event.



II. SOURCES OF DATA

The density data used in this study were obtained

from the direct measure of the atmospheric drag force by

satellite-borne accelerometers. The accelerometers were

capable of measuring atmospheric drag forces of less than

10-6g. This level of sensitivity was more than sufficient

to measure the drag force accurately on the satellites

below 250 km.

The drag force is related to the density by

maD = -1/2pV2CDA (1)

where

m = satellite mass

aD = atmospheric drag acceleration

p = atmospheric density

V = satellite velocity along the orbit

CD = drag coefficient

A = effective satellite cross-sectional area,

normal to the velocity vector.

The advantages of this method of density determination

over that of observing satellite orbit decay are very sig-

nificant. The accelerometer is capable of determining

drag on a nearly instantaneous basis, thus yielding density

information with a high degree of resolution in time and

space. This is far superior to the resolution obtained by

orbit decay measurements.



THE LOW-G ACCELEROMETER CALIBRATION SYSTEM

Data from two separate satellites are used in this

study. The first is the Low-G Accelerometer Calibration

System (LOGACS). LOGACS was flown on a United States Air

Force Agena satellite placed in near-polar orbit on 22 May

1967. The orbit inclination was 91.50. The initial peri-

gee, apogee, and latitude of perigee were 148 km, 357 km,

and 43.3 0 N. On revolution 18 an orbit adjustment was per-

formed which raised apogee to 407 km and reduced the lati-

tude of perigee to 40.7 0 N. During the portion of the

flight in which useful data was obtained these orbital

elements decayed to 141 km, 296 km, and 590 N respectively,

Minimum satellite altitude decayed from 145.1 km on rev 5

to 137.4 on rev 66. The Agena vehicle was attitude-

stabilized in the plane of the local horizon by intermit-

tent firing of gas jets in the attitude control system.

A single-axis, electrostatically pulse-rebalanced Bell

Miniature Electrostatic Accelerometer (MESA) was used. The

MESA was placed on a turntable which could rotate in the

plane of the local horizon at two precisely fixed rates or

be held fixed in either a fore or aft direction relative

to the vertical motion. This permitted in-orbit calibra-

tion and scaling of the instrument. Density data were

obtained by LOGACS up to 330 km but only that portion of

the entire data set below 210 km was used in this study.

Details on the orbits, times, and locations of the data are
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given in Table 1. A full description of the instrumenta-

tion, data processing methods, and other pertinent details

concerning LOGACS are given by Fotou (1968).

A major problem in processing the LOGACS data was

the elimination of "noise" from the thrusters of the

vehicle attitude control system. This prevented continuous

measurement of the drag force. Other data losses occurred

due to tape recorder saturation and to instrument shut-down

during the orbit adjustment period. The data sampling rate

was about one observation per second. Final data resolu-

tion time of 20 seconds was obtained from LOGACS. The

actual errors in the measured accelerations are estimated

to be less than one percent (Bruce, 1968). The absolute

density values deduced from the acceleration measurements

have a total uncertainty of ±10% due principally to a lack

of knowledge on the precise value of the drag coefficient

(Cook, 1965).

A possibly greater source of error is that caused

by winds. During the latter portion of the LOGACS flight

a major geomagnetic storm occurred. Side-force accelera-

tions, normal to the plane of the orbit, were fortuitously

obtained during the rotating modes of the MESA. Feess

(1968) made a thorough study of these side forces and the

attitude control jet firings necessary to correct for them.

The Agena center of mass was different from the sidewards

center of aerodynamic pressure. Feess was able to



TABLE 1

LOGACS EPHEMERIS DATA

Inclination, 91.50

Rev
No.

5
6
7
9

10
11
12
13
14
18
20
21
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Date GMT

23 May 0203
" 0332
" 0501
" 0759
" 0928

1057
1226
1355
1524
2122

24 May 0020
" 0150

0620
0750
0920
1050
1219

', 1349
1519
1648
1818
1947
2117
2246

25 May 0015
" 0145
t" 0314
f" 0444
f" 0'613

Minimum
Alt. (km)

145.1
145.1
145.1
145.0
144.8
144.7
144.5
144.2
144.2
144.7
144.9
144.8
144.7
144.7
144.6
144.5
144.3
144.2
144.0
144.1
144.0
144.3
144.2
143.9
143.7
143.5
143.5
143.5
143.3

Longitude of the
Descending Node(E)

Latitude of
Min. Alt.

31.0 0 N
31.9
32.4
32.7
33.1
33.5
33.8
34.1
34.4
31.1
31.4
31.8
33.2
33.6
33.8
34.0
34.2
34.4
34.6
34.9
35.1
35.3
35.6
35.9
36.2
36.5
36.7
37.0
37.2

Local Solar
Time Declination

126
104
81
37

352
330
307
285
262
195
150
128
60
38
16

354
331
309
286
264
241
219
197
174
151
129
106
84
61

1037
,1037
1037
1037
1037
1037
1037
1037
1037
1037
1035
1034
1034
1034
1034
1033
1033
1033
1033
1033
1032
1032
1032
1032
1031
1031
1031
1031
1031

20.3
If
11

1

U1

20.4
It

If

20.5
11

If
it

it

It

20.6
It

If

I

it
If

If

20.7
II

I

It1"

"1

"1



TABLE 1 Continued

Rev
No.

41
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
61
62
63
64
65
66

Date GMT

25 May 0742
" 1040

1210
1339
1508
1637
1806
1935
2105
2234

26 May 0003
" 0132
f" 0301

" 0430
0559
0728
0857
1026
1321 -
1552
1620
1849
1918

" 2146

Minimum
Alt. (km)

143.3
142.9
142.9
143.0
143.0
143.0
142.9
142.7
142.3
142.0
141.6
141.0
140.8
140.6
140.2
139.9
140.0
140.3
139.7
138.8
138.4
138.1
137.7
137.4

Longitude of the
Descending Node(OE)

Latitude of
Min. Alt.

37.5 0 N
38.0
38.3
38.6
38.9
39.1
39.4
39.6
39.9
40.1
40.3
40.5
40.8
41.1
41.3
41.6
41.9
42.2
42.4
42.5
42.3
42.2
42.4
42.4

Local Solar
Time Declination

39
354
332
310
287
265
243
220
198
176
153
130
108
86
64
41
19

357
335
313
291
268
246
224

1031
1030
1030
1030
1030
1030
1030
1029
1029
1029
1029
1029
1029
1029
1029
1029
1028
1028
1028
1028
1028
1028
1028
1028

20.7
I?

I!
'i

I!

'I

II

'I

11

U'

I'

lI

'I

II

20.8
I'

I'

'I

I'

'I11

I,

U'

'I"!

"l



calculate winds normal to the plane of the orbit. He

found wind speeds in excess of 1 km/sec in the polar re-

gions during the magnetic storm. Fedder and Banks (1972)

made theoretical calculations of polar thermospheric wind

generation by convection electric fields. They found that

neutral wind speeds approaching 800 m/sec in the antisolar

direction and 400 m/sec eastward could be generated within

4 to 5 hours by a steady electric field of 40 mV/m. Using

a somewhat different theoretical approach Cole (1971)

estimated that west to east wind speeds on the order of

2 km/sec could be generated by an auroral electric field

which had been observed to reach 100 mV/m. Wind observa-

tions have been made from rocket releases of trimethyl

aluminum trails and grenade clouds between 90 and 200 km

at high latitudes at twilight. Westward winds of 500 to

600 m/sec were observed following a strong positive magne-

tic bay. Between 120 and 150 km there was a strong cor-

relation between the E to W neutral wind and the perturba-

tion of the H component of the geomagnetic field during

the previous two hours (Rees, 1972).

Hayes and Roble (1971) have calculated north to

south winds in mid-latitudes of 400 m/sec at 400 km from

observations of the Doppler shift of the 6300A emission.

This observation was made at night during an auroral event.

Smith (1968) deduced eastward winds at Kauai, Hawaii of

227 m/sec at 147 km from a vapor trail experiment made



18 hours after the peak of geomagnetic storm. Theoretical

calculations of winds generated by the subsolar bulge as

specified in thermospheric density models, have been made

by several investigators using a variety of assumptions

regarding boundary conditions, subsolar density bulge amp-

litude and shape, and including ion drag but omitting or

including various other terms in the equations of motion

(Lindzen, 1966, 1967; Geisler, 1966, 1967; Kohl and King,

1967; Challinor, 1968, 1969 and 1970; Dickinson and Geisler,

1968; Rishbeth, 1972). All of these theoretical models

yield maximum winds on the order of 250 m/sec in the lower

thermosphere. Satellite velocity for a nearly circular

orbit at 200 km is almost 8 km/sec. From equation (1) a

wind component of 1 km/sec along or opposite the satellite

direction of motion could cause a deduced density error of

about ±27%. This error would be restricted to high lati-

tudes at times during geomagnetic storms. The observed

density variations from LOGACS during the storm period of

25-26 May 1967 were nearly an order of magnitude greater

than 27%. Winds of 250 m/sec in the direction of satellite

motion would result in a 6% error in the deduced density.

The density variations observed with LOGACS during geomag-

netically quiescent periods were considerably in excess of

6%. All LOGACS data were obtained at nearly the same local

time in the sunlit hemisphere. The theoretical estimates

of winds resulting from the subsolar pressure bulge show
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them to depend mostly on local time and to a lesser extent

on latitude and season. Thus on each revolution LOGACS

would experience nearly the same variation of wind due to

a subsolar density bulge if the models of its size and

shape are accurate. The absolute density values would

therefore be in error by an amount no more than 6% but the

relative density variation from one revolution to the next

would be much less subject to this source of error. The

same argument can be made regarding the error due to the

uncertainty of CD . In conclusion, the relative density

variations observed with LOGACS are the result of true

thermospheric density variations.

SPADES

The second source of data used in this study is

from the USAF/Aerospace Corp./AFCRL satellite OV1-15 (1968-

59A) also known as the Solar Perturbation of Atmospheric

Density Experiments Satellite (SPADES). SPADES was launched

on 11 July 1968 into a 89.80 inclination orbit with an

initial perigee and apogee of 158 km and 1850 km. A more

complete description of SPADES payload and orbital data is

given by Champion and Marcos (1969) and by Morse (1970).

Times and locations of the SPADES accelerometer data used

in this study are given in Table 2. SPADES was spin stab-

ilized with three Bell MESA's mounted as near as possible

to the vehicle center of mass, aligned normal to each



TABLE 2

SPADES EPHEMERIS DATA

Inclination, 89.80

Date GMT Minimum
Alt. (kn)

21
25
29
33
37
41
45
49
53
57

157
160
163
166
172
175
178
181
187
190
199
202
205
208
253
256
259
262

13 July
it

If

14 July
It

Is

23 July
If

It

24 July
It

It

25 July
It

26 July

I

'I

30 July
It

If

It

0828
1527
2226
0525
1224
1922
0220
0918
1617
2315
0450
1002
1513
2024
0646
1157
1708
2219
0841
1352
0523
1033
1543
2053
0219
0728
1238
1747

Latitude
of Perigee

159.0
158.7
158.6
157.9
157.8
157.7
157.6
157.3
157.6
157.3
150.4
151.4
151.4
152.3
152.6
152.7
152.7
152.8
1,52.7
152.7
152.8
152.9
153.0
153.3
155.6
156.2
156.3
156.4

Longitude of
Perigee (E)

12.3 0S
11.4
10.5
9.7
8.9
7.9
7.1
6.3
5.3
4.50 S

17.2 0 N
17.7
18.4
19.0
20.3
20.9
21.6
22.2
23.5
24.2
26.1
26.8
27.5
28.2
38.1
38.8
39.5
40.3

Rev
No.

Solar
Declination

Local
Time

1117
1116
1115
1113
1112
1111
1110
1109
1108
1106
1037
1036
1036
1035
1033
1032
1031
1030
1029
1028
1025
1024
1023
1022
1010
1009
1008
1007

42.3
297.3
192.4
87.4

342.5
237.6
132.7
27.9

283.0
178.2
86.9
8.8

290.8
212 .8
56.8

338.8
260.9
182.9
27.1

309.2
75.7

357.9
280.0
202.3
117.6
40.0

332.5
245.1

21.70
21.7
21.7
21.6
21.6
21.5
21.5
21.5
21.4
21.4
20.0
19.9
19.9
19.8
19.8
19.7
19.7
19.6
19.5
19.5
19.3
19.2
19.2
19.1
18.3
18.3
18.2
18.2



TABLE 2 Continued

Rev Date GMT Minimum
No. Alt. (km)

Latitude
of Perigee

Longitude of
Perigee (oE)

Local
Time

Solar
Declination

265
268
271
274
277
280
283
286
289
292
344
352
355
358
361
364
367
370
373
376
379
382
385
388
391

30 July
31 July

If
I

1 Aug.
It

I"

"I

5 Aug.
6 Aug.

It

7 Aug.

oI

If

8 Aug.
If

It

I

2256
0405
0914
1422
1931
0040
0549
1057
1606
2115
1553
0349
0857
1404
1911
0018
0525
1032
1538
2044
0151
0558
1204
1711
2217

155.9
155.2
155.8
155.4
155.3
155.8
155.9
155.9
156.2
156.6
157.7
157.8
157.9
158.0
158.3
158.0
158.4
158.8
158.9
159.4
159.3
160.3
159.8
159.5
159.6

40.8
41.4
42.1
42.8
43.4
44.2
44.8
45.5
46.1
46.9
59.1
60.7
61.4
62.1
62.8
63.4
64.1
64.9
65.6
66.4
67.1
67.'8
68.5
69.2
69.9

167.6
90.1
12.7

295.2
217.8
140.5
63.1

345.7
268.3
191.0
267.5
87.8
10.8

293.8
216.8
139.9
63.0

346.1
269.2
192.3
115.5
38.6

321.8
245.0
168.2

1006
1005
1004
1003
1002
1001
1000
0958 
0958
0958
0938-0943
0935-0941
0932-0940
0927-0939
0923-0939
0918-0938
0824-0937
0627-0936
0222-0935
2219-0934
0341-0933
2128-0932
2128-0932
2035-0931
2116-0930

18.1
18.1
18.0
18.0
18.0
17.9
17.9
17.8
17.8
17.7
16.9
16.8
16.7
16.6
16.6
16.5
16.4
16.4
16.3
16.2
16.2
16.1
16.0
16.0
15.9
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other, and along and normal to the nominal vehicle spin

axis. The SPADES spin axis was fixed normal to the orbit-

al plane. The spin rate was initially 10 rpm. Superim-

posed upon this was a precession of the spin axis with a

period of 23 secs. One of the two MESAs aligned normal to

the spin axis failed on launch. In spite of the spin axis

precession, the MESA aligned along the spin axis yielded

density data of doubtful value. The remaining MESA perfor-

med excellently. Above 250 km the accelerometer signal had

a constant component due to the centrifugal acceleration

resulting from the vehicle spin. This signal was modulated

by the precession of the spin axis. As the satellite alti-

tude decreased to below 250 km a second modulation due to

atmospheric drag began. This modulation occurred at the

satellite spin period and increased in amplitude with in-

creasing density. Density values were derived by coupling

the accelerometer output to separate information on the

vehicle attitude. Numerical filtering techniques were em-

ployed to eliminate the accelerometer signal due to vehicle

dynamics (spin rate and spin axis precession rate) and

yield density values for those times when the MESA was

aligned most nearly into and away from the satellite direc-

tion of motion. Marcos et al (1972) gives a more complete

description of the experiment and data processing. The

resulting density values have a time resolution of less

than one second and are available approximately every three



seconds. The location of the density measurement is with-

in 0.10 latitude and 0.1 km altitude. These limits are

within the range of the satellite ephemeris errors. Due

to power limitations the accelerometer experiment on SPADES

was operated only every three or four revolutions around

the orbit. Additionally,power supply problems frequently

resulted in the loss of data for periods of several days

at a time. Data were available for various periods in the

interval between 13 July and 28 Sept. 1968. A complete

gap occurred in the data between 8 and 28 Aug. During this

time the perigee latitude moved over the pole from the sun-

lit to the dark hemisphere. Only the data collected

through 8 Aug. was included in this study in order to limit

the amount of processing to tractable proportions and also

since the geographical area and local times covered were

similar to that of LOGACS.

The statistical errors in the density values de-

rived from the accelerometer output are estimated to be:

numerical filtering technique, varies from negligible at

perigee to ±2% at 250 km, attitude, ±2%, satellite area,

±2%, and overall, ±4% at perigee to ±6% at 250 km (Marcos

et al, 1972). Only data below 210 km was used in this

study. Even with this limitation, some errors in the den-

sity data due to filtering with slightly inaccurate values

for the spin and spin axis precession rates are evident in

the final data. These will be pointed out later. An
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additional source of absolute density error of up to ±10%

may exist due to uncertainty about the assumed value of

2.2 for CD (Cook, 1965). As with LOGACS, the accelerometer

derived densities from SPADES are subject to errors due to

thermospheric winds. During the period covered by data

from SPADES there were no large geomagnetic storms. Thus

wind speeds of the order of 1 km/sec would not be expected.

The comments made regarding the LOGACS data about wind and

drag coefficient errors not affecting the measured relative

density variations apply equally to the SPADES data.



III. DATA PROCESSING

The density data from the two sources covered the

entire altitude range from 210 km to below 138 km. The

variation of density with altitude almost completely dom-

inates the density relationships with other parameters.

There are several ways of overcoming this difficulty. One

is to compare the density values with those specified by

some standard model of thermospheric density for the same

time, location, altitude, and solar/geomagnetic conditions.

Ratios of measured to model (Jacchia, 1971) densities have

been calculated for the SPADES data at 5 km altitude inter-

vals (Marcos et al, 1972). Such a procedure normalizes

out any of the density variations specified (perhaps in-

correctly) by the model used. The density ratios obtained

are not representative of a single altitude but the entire

range of altitudes covered by the data. This method re-

quires considerable computational effort to obtain the

model densities corresponding to the measured values. In

his analysis of the LOGACS data obtained during the geomag-

netic storm period on 25-26 May 1967, DeVries (1972) chose

the data from rev 41 which occurred at the end of a geomag-

netically quiet interval as the basis for the normalization

of the subsequent data obtained during the geomagnetic

storm. The normalization was accomplished by computing the

ratios of density values at discrete altitudes to those

observed during rev 41. This method was undoubtedly chosen



by DeVries for reasons of expediency in order to obtain a

quick, rough picture of the density variation associated

with the great geomagnetic storm immediately following

rev 41. The primary drawback of this technique is the

"representativeness" of the rev 41 data. The density var-

iation on a particular revolution may be a significant

function of the geographic or geomagnetic coordinates

sampled. The altitude profile may also contain variations

of this sort. Subsequent revolutions do not sample the

density at the same location with respect to the earth and

even should the ground track of the satellite be the same

24 hours later, the decay of the orbit and the movement of

the perigee location would alter the altitude profile of

density sampling and change the location of the profile

with respect to surface coordinates.

The procedure finally adopted in this study was to

use model density profiles to normalize all density values

to the nearest of a set of fixed altitudes as was done by

DeVries (1966). In this manner the relative density vari-

ation could be more easily seen. The density profiles in

the most complete, up-to-date model of thermospheric densi-

ty available (Jacchia, 1971) were chosen for this purpose.

In the altitude range covered by the data, the

density scale height varies from about 14 km at 138 km to

40 km at 210 km. In order to avoid errors from normaliza-

tion over too large a range of altitude, the "standard"



altitudes were more closely spaced at the lower heights

where the density scale height was smaller. All data below

150 km were normalized to the standard altitude of 145 km.

The only data in this height range were from LOGACS. The

major fraction of the densities below 150 km were normal-

ized over an altitude range of 5 km or less. It was not

until revs 62 through 66 that the minimum vehicle altitude

for LOGACS decayed below 140 km to the lowest sampled alti-

tude of 137.7 km on rev 66. Densities for altitudes be-

tween 145 and 155 km were normalized to 150 km. A 160 km

standard altitude was chosen for data in the 155 to 170 km

height range. Densities obtained between 170 and 190 km

and between 190 and 210 km were normalized to 180 and 200

km respectively. Between revs 157 and 208 some density

values were obtained from the SPADES accelerometer data at

altitudes ranging down to 150.4 km. Since the proportion

of such data below 155 km was very small and since the

scale height at those altitudes was almost 20 km, all such

data were normalized up to the 160 km standard altitude.

In all only 14 density values were normalized to a standard

altitude over an interval of more than one half the local

density scale height. This minimized the effect of any

errors in the model density scale heights on the normalized

density values.

The thermospheric density model (Jacchia, 1971),

hereafter referred to as J71, was derived by using the



static diffusion equations to match the composition at

150 km as observed from various rocket flights and the ob-

served density as derived from satellite orbital decay

measurements at greater altitudes. Static diffusion is

assumed to begin at 100 km. The temperature profile for

the static diffusion equations assumes a constant lower

boundary temperature of 183 0 K at 90 km. The temperature

increases from 90 km to an inflection point at 125 km and

then approaches an exospheric temperature value, TO ,

asymptotically. A detailed mathematical description of the

temperature profile and the derived density profile is

given by Jacchia (1971). The principal variable in J71 is

T.* T is calculated from a knowledge of the solar declin-

ation, local time, latitude, the geomagnetic index Kp, and

the solar radio flux at 10.7 cm (2800 MHz). These factors

account for the T. changes and thus density scale height

changes with season, time of day, solar corpuscular energy

flux, and solar EUV energy flux. The 2800 MHz solar radio

flux is an indicator of the amount of solar EUV radiation

absorbed by the thermosphere (Nicolet, 1963; Neupert et al,

1964). This index is very successful in helping to specify

T. and thus thermospheric density (Bourdeau et al, 1964;

Knight et al, 1973). Use of J71 as a model for the To

variation does not eliminate the modeled density variations

from the normalized density values. The change in the

amplitude of the model density variations over the height



interval of normalization is introduced into the normalized

density values. This effect is very small and well below

the "natural" variation of the observed density values.

For example, the total change in the amplitude of the

diurnal bulge model of J71 between 200 and 210 km over the

range of latitudes and local times sampled by LOGACS is

less than 0.5%.

T. was calculated exactly by the method given in

J71. The values of the three-hour planetary geomagnetic

index, Kp, and the 2800 MHz solar radio flux, F1 0.7, used

in the calculations are given in Table 3 for the LOGACS

data and in Table 4 for the SPADES data. A one day lag

was used in applying the F10.7 data. The Kp data were used

with a 6.7 hr. lag. These lag times approximate the atmos-

pheric response time to changes in these indices and are

the ones recommended in J71. There is no variation of

response time with altitude (Roemer, 1971a). The response

time of the thermosphere to K enhancements has been found

to be significantly less than 6.7 hours at high latitudes

(DeVries, 1972; DeVries et al, 1967; Taeusch et al, 1971a,

1971b; Waldteufel et al, 1972). In a situation of rapidly

changing magnetic activity the difference between real and

model thermospheric density response could introduce some

error in the normalization procedure. Observations of

F1 0.7 are made daily and Kp values are derived every three

hours. These values were plotted against time with the



TABLE 3

Planetary Geomagnetic Indices and 2800 MHz Solar Radio Flux

Observed During the Flight of LOGACS, May 1967

81
F1 0 .7 10.7 K p

00-03 03-06 06-09 09-12 12-15 15-18 18-21 21-24

QQ 20 143

Q 21 156

QQ 22 178

23 189

24 196

D 25 205

D 26 213

27 208

139

139

139

139

139

139

139

139

2+ 1+ 1+ 10 1- 10 1+ 2+

10 10 0+ 10 1- 10 3+ 2+

2+ 10 1+ 1- 0+ 0+ 0+ 00

1- 2- 10 1+ 10 2- 40 3+

2- 1+ 2- 2- 2+ 3+ 4+ 2+

2- 20 10 5+ 8+ 7+ 8- 90

90 9- 7+ 7- 7- 4- 40 5-

40 3+ 3+ 2+ 30 2- 4+ 4+

11+ 6

11- 6

6+ 3

15- 9

19- 11

42+ 130

51- 146

26+ 20

1Monthly five quiet days (QQ), ten quiet days (Q), and five disturbed days (D).

DAY EKp Ap



TABLE 4

Planetary Geomagnetic Indices and 2800 MHz Solar Radio Flux

F F10.7 10.7

Observed During the Flight of
81

Day

Q 12
D 13
D 14
Q 15

16
Q 17

18
19

QQ2 0
21

D 22
23

QQ2 4
25
26
27
28

QQ2 9
30

QQ3 1
QQ 1
QQ 2

3
4
5
6
7
8

161
151
151
143
145
139
131
131
130
129
135
142
148
153
150
142
139
140
134
131
130
130
137
132
132
144
136
138

144
144
144
145
145
145
145
146
146
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
144
144

SPADES, July-August 1968

K
p

00-03
30
2-
6-
2+
20
1-
2+
1+
3-
2-
40
20
1-
1-
1+
3+
2-
2-
1+
20
1-
1-
2-
30
1+
3+
3+
4+

03-06
2+
3-
5-
20
20
1.0
30
20
1+
1-
3-
2+
1-
10
2+
3+
20
2-
1+
1+
1-
10
40
20
3-
40
30
3+

06-09
1-
2-
2+
1+
20
10
2-
2+
0+
10
4-
4-
10
1+
20
30
1-
2-
10
20
1+
10
3+
2-
1-
30
30
4-

09-12
10
1-
2+
20
10
1+
1+
2+
0+
1+
40
3-
1-
1+
4-
3-
1+
10
10
20
1+
1+
20
10
30
30
3+
1+

12-15
1+
0+
30
10
2-
20
3+
1+
1-
2+
4+
3+
1-
30
30
3-
2-
1+
20
10
10
1-
2+
0+
30
20
30
3-

KP

15-18
2+
50
2+
1+
40
1+
3+
2+
10
30
3-
3-
10
30
30
1+
3-
1+
2+
1+
1-
10
3+
0+
3+
2+
20
2-

iet days (Q), and five disturbed days

18-21
1+
60
3+
2+
3-
2+
10
1+
1+
30
3-
1+
1-
2-
3+
1+
30
10
30
10
1-
1-
20
0+
3-
4-
2-
2-

21-24
10
4-
2+
2-
1+
20
10
30
10
3-
20
2-
1-
2-
40
1+
2-
10
20
10
1-
1+
1+
2-
3+
3-
2+
3-

13
22-
26
14
17-
12-
17
16

9-
16-
26
20-

6
14-
23-
19
15-
11-
14
12-

7
8-
20
10+
20
24
22-
21+

A
p

7
22
22

6
9
6
10

8
5
9

19
11

3
7
15
11

8
5
7
5
4
4
12

6
12
16
13

Monthly five quiet days (QQ), ten qu (D) .



recommended time lags after first converting Kp values to

exospheric temperature increment by use of Table 2b in

Jacchia (1971). Linearly interpolated values were read

off for the times of the satellite accelerometer readings.

To obtain the T. variation due to location with respect to

Jacchia's model of the subsolar heating bulge, values of

the solar declination and of the latitude and local time

of the density observation were used to linearly interpo-

late the ratio of the local temperature to the global min-

imum temperature as found in Table 1 of Jacchia (1971).

The global minimum temperature is calculated from a know-

ledge of F10.7 and F1 0.7 where F10.7 is a three solar

rotation or 81-day average of F1 0 .7* The exospheric temp-

erature increment due to Kp is added to the local tempera-

ture to obtain the value of T . To was calculated for all

density observations.

The next problem was the calculation of the coef-

ficients for normalization of the observed density values.

These coefficients varied with the standard altitude,

height difference of the density observation from the stan-

dard altitude, and exospheric temperature. The basic

relation for the normalization of density is

Po = Pexp (Z - Zo (2)



where

p = density

z = altitude of the density value

H = local density scale height

The subscript "o" refers to values for the standard alti-

tude. The principal difficulty in this facet of the nor-

malization procedure is the variation of H with altitude.

Over the height range of the observed density data, values

for H are given for every 5 km below 160 km and every 10 km

above 160 km in Table 6 of J71. A separate set of values

is given for each 100 0 K increment of TC. For a given value

of TO (10000 K for example) the values of H were plotted

against height, a smooth curve was drawn through the plot-

ted points, and values of H were read off at one kilometer

intervals. Additional values of H were then linearly in-

terpolated from these at 0.2 km intervals. An example of

the resulting interpolated H variation with altitude is

given in the first two columns of Table 5. A factor of

02
exp(+ ) was calculated for each value of H. Whether the

altitude of the value of H was above or below the standard

altitude determined the choice of the sign. For the value

0.1
of H at the standard altitude the factor exp(+ 0 ) was

computed for both signs. These values are shown in the

third column of Table 5. The values in the third column

represent the normalization factor for density over a 0.2

km interval (0.1 km either side of the standard altitude)



TABLE 5

Extract from the Normalization Table for the 150 km Standard Altitude

Alt. (km)

148.6

148.8

149.0

.2

.4

.6

.8

150.0

.2

.4

.6

.8

151.0

.2

.4

H1 0000 (km)

17.47

17.54

17.61

17.68

17.75

17.82

17.89

17.96

18.03

18.10

18.17

18.24

18.31

18.38

18.45

±0.2
exp H

0.98862

0.98866

0.98871

0.98875

0.98880

0.98884

0.98888

0.99445

1.00558

1.01115

1.01111

1.01107

1.01103

1.01098

1.01094

1.01090

Fact.

0.91873

0.92931

0.93997

0.95071

0.96152

0.97242

0.98339

0.99445

1.00558

1.01680

1.02810

1.03948

1.05094

1.06248

1.07410

1.08581

H1 0 00 (km)

17.80

17.87

17.94

18.01

18.08

18.16

18.23

18.30

18.37

18.44

18.52

18.59

18.66

18.73

18.80

±0.2
exp H

0.98883

0.98887

0.98891

0.98896

0.98900

0.98905

0.98909

0.99455

1.00548

1.01095

1.01091

1.01086

1.01082

1.01078

1.01074

1.01070

Fact.

0.92017

0.93057

0.94105

0.95160

0.96222

0.97292

0.98370

0.99455

1.00548

1.01649

1.02757

1.03873

1.04996

1.06128

1.07267

1.08414

Alt. (km)

148.5

148.7

148.9

149.1

.3

.5

.7

.5

150.1

.3

.5

.7

.9

151.1

151.3

151.5



centered on height values on the left hand column of Table

5. The successive product of these factors to a given al-

titude from the standard altitude is given in the fourth

column of Table 5. These are the normalization factors

for converting density values at heights given in the

right-hand column to the standard altitude of 150 km for

an exospheric temperature of 10000 K. Similar results for

1100 0K are also given in Table 5. A complete set of such

tables was constructed for each standard altitude covering

the height range of densities to be normalized to that al-

titude. Normalization factors were calculated for each

100 0K increment between 10000K and 1400 0K (the T range of

density data). Normalization factors for the even tenths

of a kilometer of altitude were linearly interpolated from

those calculated at the odd tenths (see Table 5). Linear

interpolation was used to obtain the normalization factor

at a T intermediate to the calculated values. A density

value of 2.52 x 10-12gm/cm 3 measured at 148.5 km and with

T = 1056 0K would be converted as follows:

From Table 5 1000 0K 1100 0K

148.5 Fact = 0.91873 0.92017

Difference = 0.00144

Interpolating for 1056 0K = x 0.56

Interpolation increment = 0.00081

Add back 1000 0K factor = +0.91873

Final normalization factor = 0.91954

Times the density at 148.5 km = x 2.52

Density value normalized to 150 km = 2.32 x 10-12gm/cm 3



Use of the normalization tables derived in the same

manner as the portion shown in Table 5 does not introduce

any error into the normalization data other than that in-

herent in J71. The Tc calculations are accurate to within

±20 K. The error introduced by an inaccurate T, depends

upon the size of the normalization interval. For a 1000 K

error in To the maximum resulting error in the normaliza-

tion factor in the entire set of normalization tables is

1.3 percent for a 10 km interval. The normalization fac-

tors were checked against the density values in Table 6

of J71. Density values are given in Table 6 of J71 for

the same intervals as the scale height. Hence the normal-

ization factor for any 5 or 10 km interval of the table

could be multiplied by the density at that level and the

resulting "normalized" density could then be checked again-

st the table density value. For example the density value

at 210 km for TC = 10000 in Table 6 of J71 could be nor-

malized to 200 km and compared with the 200 km density

value for To = 1000 0K given in the same table. Such a

check was made for all the tables of normalization factors

at each standard altitude for all the To values used, and

over all possible 5 or 10 km intervals where density values

for confirmation were available. The density values in

Table 6 of J71 were given to four significant figures and

in no case was a "normalized" density different from the

value at the standard altitude by more than one in the
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fourth significant figure. This confirms the complete

accuracy of the tables of factors constructed for the nor-

malization of density values.

The largest uncertainty in the normalization pro-

cess is the model used for calculating exospheric tempera-

ture, To , at high latitudes and particularly during geo-

magnetically disturbed conditions. Orbital decay derived

densities from high inclination satellites have shown that

the atmospheric response to changes in Kp is enhanced at

high latitudes. Jacchia et al (1967) report a 15-20%

greater density response to AKp for latitudes above 550N

as compared to lower latitudes. At 650 the density re-

sponse has been found to be 20% higher than at the equator

(Jacchia, 1970). Marcos et al (1971) also found the

density response to geomagnetic activity to increase from

the equator to high latitudes. In a very comprehensive

analysis of orbital decay measurements in the 250-800 km

altitude range for over 210 geomagnetic storms the follow-

ing relation was obtained by Roemer (1971a):

ATO = R (21.4 sin jIq + 17.9)+ 0.03 exp(Kp )±83 0 K (3)

where

ATO = exospheric heating increment due to Kp

Kp = the 0.4 day average of K
p p

= geographic latitude

This result yields an.increase from 119 0K to 2260 K between

00 and 900 latitude for a K of 5. Roemer (1971b) laterP
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reported that the maximum response was at 600 to 700 but

few data were available at latitudes above 700 to confirm

this. Density gauge measurements from Explorer 32 made

between 300 and 400 km showed that high latitude density

was 20% higher than at low latitudes even on quiet days

and that during geomagnetic disturbances the density be-

tween 550 and 650 exceeded that at the equator by a factor

of three (Newton and Pelz, 1969). Composition measurements

from OGO-6 made at 500 km during a magnetic storm showed

a 4000 difference in T at the equator and between 600 and

800 geomagnetic latitude (Taeusch et al, 1971b). Doppler

temperatures from the 6300A line of OI observed from OGO-6

before and during a 3 day geomagnetic storm have revealed

large irregular temperature increases of 350 0K at 275 km

in the auroral zone (Blamont and Luton, 1972). Equatorial

changes were smooth and much smaller (500K) and mid-lati-

tude changes were intermediate (110-1250K). After the

storm there was little latitudinal temperature gradient.

Even during extended quiet periods before the storm the

temperatures observed at high latitudes were always great-

est. The temperature maximum was found at the geomagnetic

poles during a storm and not at the auroral zone (Blamont

and Luton, 1972). A 400 0K underestimate in T. at a To

value of 1300 0K (geomagnetic storm condition during the

latter portion of LOGACS) would result in a density normal-

ization error of 2.4% over the interval from 210 to 200 km.
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Over the same height interval at lower altitudes the error

would be less. Thus the normalization process is relative-

ly unaffected even by a severe underestimate of To at high

latitudes during geomagnetic storm conditions.

The above calculation assumed the static diffusion

profile of J71. During an intense geomagnetic storm the

assumption of a state of static diffusion equilibrium

would not be valid. Further, the altitude profile of

auroral heating might not be the same as that which gave

the shape of temperature profile used in J71. However,

even with these limitations the maximum error in the nor-

malized densities is estimated to be less than 4 percent.

Such an error would occur only in those densities normal-

ized over a 10 km interval during the peak of the geomag-

netic storm that occurred during the latter day and a half

of the LOGACS flight. The maximum anticipated error due

to the normalization procedure would be considerably less

for the major portion of the density data.

The normalized density values for LOGACS are shown

in Figures 1, 2, and 3 plotted against geographic latitude.

Densities normalized to 200, 180, 160, and 150 km obtained

while the LOGACS vehicle was approaching perigee are dis-

played in Figure 1. In Figure 1 circles are used for den-

sity normalized to 150 km, triangles for 160 km, upside

down triangles for 180 km, and squares for 200 km. The

densities around perigee, normalized to 145 km, are
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displayed in Figure 2. Densities obtained as LOGACS was

leaving perigee are shown in Figure 3. Here again the cir-

cles, triangles, upside down triangles, and squares are

used to indicate densities normalized to 150, 160, 180,

and 200 km respectively. The revolution numbers in the

figures were grouped according to similarity of satellite

ground track. For example revs 5, 21, 37, and 53 in Fig-

ure la had longitudes of the descending node at 126 0 E,

128 0E, 129 0E, and 130 0 E. All the LOGACS revolutions for

which density observations were obtained are grouped in a

similar fashion. This grouping is maintained throughout

Figures 1, 2, and 3. Thus on any,single figure the only

density variations are due to latitude and time for a given

standard altitude. In Figures 1 and 3 some overlap freq-

uently occurs in the density curves for the same revolution

between adjacent standard altitudes (revs 10 and 26 in Fig.

If for example). The overlap was caused by normalizing

those density values at heights within a kilometer of the

division levels (i.e., 155, 170, and 190 km) to the stan-

.dard altitudes above and below those heights. This was

done to show the relative difference between the successive

standard altitude plots and thus indicate the relative

density variation over the entire latitude span covered in

the figures. The separate density scales for 150, 160,

180, and 200 km were adjusted as closely as possible to

give the same amplitude of relative variation and the same



level of the plotted density values. Maintenance of a con-

venient scale for plotting and keeping the density varia-

tion within reasonable bounds on the figures without smoth-

ering the significant density variations were additional

factors in the choice of scale. Even so, the density var-

iation occasionally exceeded the limits of the figure and

the data had to be plotted against an auxiliary scale in-

sert (rev 53, Fig. la and 2a; rev 62, Fig. lj). The fre-

quency of data from LOGACS varied considerably. Changes

in the turntable spin rate, data recording rate, low

vehicle-to-ground data transmission quality, control jet

firings, and instrument anomalies-all contributed to a

reduction in data frequency at various times throughout the

LOGACS flight. Large stretches of no data are indicated

by a dashed line for rev 18 in Fig. 2n, rev 62 in Fig. 2j,

and rev 65 in Fig. 2m. In general the normalized densities

vary in a fairly smooth manner. Occasional density spikes

due to interference from control jet firings or other

vehicle dynamical effects are noted. Rev 14 in Fig. lj at

780 N, rev 52 in Fig. 3a at 240 S, rev 5 in Fig. 3b at 50N,

rev 13 in Fig. 3j at 80S, and rev 32 in Fig. 3m at 80N are

clear examples of such induced data noise.

The normalized density data derived from the SPADES

accelerometer readings are shown in Figures 4 - 7. In all

cases the circles, triangles, and upside down triangles

represent densities normalized to 160, 180, and 200 km
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respectively. The same considerations as for LOGACS were

used in the choice of the density scales for the three

standard altitudes. In this case the problem was consid-

erably simplified by the smaller range of variation in the

normalized densities (no intense geomagnetic storm) and the

fact that only three scales required adjustment to each

other. Data availability dictated the groupings into four

figures for four distinct, separate time periods. Within

the separate time periods only one case occurred where the

data was obtained over nearly the same geographical loca-

tions, revs 344 and 373 in Fig. 7, but for consistency

these data were plotted separately even though the density

levels and latitudinal variation are remarkably similar.

As with LOGACS there is intended overlap in the data plots

for the different standard altitudes.

For SPADES the data frequency ranged between three

and four seconds. Initially only one data point was used

in every ten seconds. After these data were normalized

and plotted the figures were checked for irregularities

where use of some of the omitted intermedia-te data might be

useful in confirming their validity. This was only done

for the data normalized to 160 and 180 km. All the avail-

able data for revs 157 through 181 (Fig. 5a-h) were norm-

alized and plotted in this procedure. During this period

a combination of factors produced unreal scatter in the

normalized data. These include apparent systematic



differences in the deduced densities when the accelerometer

pointed into and away from the direction of motion as ex-

hibited in Fig. 5a-d. Additional errors are apparent in

Fig. 5e-h and Fig. 6e where it seems that improper periods

and/or phases for the satellite spin rate and spin axis

precession rate were input to the numerical filtering

scheme used to process the accelerometer output. Similar

filtering problems also appear to have affected the results

for revs 33, 37, 49, 53, and 57 (Fig. 4d, e, h, i, and j).

Atmospheric drag caused a decrease in the vehicle spin rate

during the flight and magnetic torques from the operation

of on-board electrical equipment also affected the spin

axis orientation and precession rate. These effects were

apparently not taken into account sufficiently in the in-

puts to the filtering scheme. The densities normalized to

200 km were generally more erratic due to the lower level

of density and instrument sensitivity limits. Data for

the 200 km altitude were frequently unavailable as in Fig.

4f-j for revs 41-57. Outside of these problems the density

plots are remarkably smooth and completely justify the

omission of over one-half the available intermediate data

points. Even at 160 km there are occasional spikes due to

vehicle or instrumental anomalies such as at 7*S on rev 37

in Fig. 4e and 150 S on rev 41 in Fig. 4f.

With the exception of high latitudes, the latitude

scale is the same throughout Figs. 1-7. Latitude scale
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differences occur only above 850 in Fig. 1 and above 870

in Fig. 7. These differences were brought about by the

difference in the orbital inclination between LOGACS and

SPADES and the fact that in neither case was the inclina-

tion exactly 900 . The latitude scales were stretched at

high latitudes so that the horizontal spacing in the fig-

ures correspond to the actual distance covered by the

satellite subpoint.

Much of the density variation shown in Figs. 1-7

is due to geomagnetic activity. The geographic coordinates

of each observation point were converted to corrected geo-

magnetic coordinates to test whether the density variation

might be more ordered in a coordinate system related to

geomagnetic heating. The corrected geomagnetic coordinate

system was chosen because it has been the most successful

in organizing auroral and related phenomena (Whalen, 1970).

The transformation from geographic to corrected geomagnetic

coordinates was made using the method described by Hakura

(1965). The spherical harmonic displacements from the

dipole lines (Hultqvist, 1958) were used to correct the

geomagnetic coordinates. A FORTRAN program for computing

the coordinate transformation was written and thoroughly

checked. The program was run on M.I.T.'s IBM 360 computer

system. Correction terms were not available between ±300

geomagnetic latitude (Hultqvist, 1958). A linear inter-

polation was made between geomagnetic coordinates at the
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geomagnetic equator and fully corrected geomagnetic coord-

inates at ±300 geomagnetic latitude. All the normalized

densities shown in Figs. 1-7 were replotted against the

corrected geomagnetic latitude. Due to space limitations

these figures are not included here.

The density variation with latitude is readily seen

in Figs. 1-7 for each individual satellite revolution.

However, it is difficult to observe any longitude/time

variation from the density data presented in this manner.

The most natural solution to this difficulty is to enter

the density values on a latitude-time cross-section chart

and analyze isolines of constant density. Drawbacks to

this approach are the regression of perigee around the

satellite orbit and the latitudinal separation of the two

sections of the normalized densities for all but the lowest

standard altitudes. The perigee regression rate ranged

from 30 to 3 1/20 per day for LOGACS and SPADES. This

severely reduces the amount of latitudinal overlap in the

normalized density plots over the period of observation.

An additional difficulty is the interpretation of the den-

sity variation at the breakpoint between two standard al-

titudes. To overcome these problems all densities were

normalized to 150 km for LOGACS and 160 km for SPADES.

The respective altitudes were chosen to minimize any poss-

ibile additional normalization error for the greatest bulk

of the density data. Only those observations obtained on



the day-side of the maximum latitude of each revolution

were converted to 150 or 160 km.

The factors used to convert the normalized densit-

ies at the various standard altitudes to a single altitude

are given in Table 6. These factors were derived by taking

appropriate ratios of the densities listed in Table 6 of

J71 (Jacchia, 1971). For example the densities for To of

10000 K at 150 and 180 km are listed as 2.064E-12 and

5.443E-13 gm/cm 3 in J71. The ratio p150 is 3.7920. Thisp180

is the conversion factor listed in Table 6 for 10000 K and

180 km. Assuming the density profile in J71 is valid, the

multiplication by this factor of any normalized density

value at 180 km and a To of 1000 0 K yields the equivalent

density at 150 km. The listed differences between the fac-

tors at a given altitude in Table 6 for the successive

100 0K increments of To are used for linear interpolation

of intermediate values of T . For LOGACS the maximum nor-

malization interval is 60 km (210 km to the 200 km stand-

ard altitude and then to 150 km via Table 6). A 100 0K

error in T. at 1000 0 K would result in a 7%-error in the

density reduced to 150 km over the 60 km interval. This

would be the maximum possible error during undisturbed

geomagnetic conditions. During the great storm of May

25-26, an error of 400 0K at high latitudes is possible. A

400 0 K underestimation of T. at 1300 0 K gives a 5.5% over-

estimation of the density converted from 180 km to 150 km.



TABLE 6

Conversion Factors for Reducing Standard Altitude Densities

to a Single Altitude

Alt. (km) 10000

145 0.7459

160 1.6645

180 3.7920

200 7.4325

A

0.0041

-0.0169

-0.1242

-0.4263

11000

0.7500

1.6476

3.6679

7.0062

NORMALIZATION TO

A 12000

0.0029 0.7529

-0.0140 1.6336

-0.0956 3.5722

-0.3206 6.6885

150 km

A

0.0025

-0.0111

0.0738

-0.2458

NORMALIZATION TO 160 km

10000 A 11000

2.2782 -0.0520 2.2262

4.4652 -0.2129 4.2524

13000

0.7555

1.6226

3.4984

6.4397

A

0.0026

-0.0085

-0.0588

-0.1940

14000

0.7580

1.6141

3.4396

6.2457

180

200

9000

2.3484

4.7537

-0.0702

-0.2884

A

-0.0395

-0.1600

12000

2.1866

4.0924



The use of 180 km in this comparison is due to the fact

that by the time of the geomagnetic storm, the northward

shift of perigee and the orbital decay had combined to re-

duce the altitude of the satellite to 180 km by the time

it reached the maximum latitude point and began travelling

southward. Thus during the storm no densities were reduc-

ed to 150 km from altitudes greater than 180 km at high

latitudes where such large errors in the T. computed from

J71 would be expected to occur. Including errors due to

differences in the shape of the temperature profile and

the assumption of static equilibrium, the latitude-time

plots of density from LOGACS converted to 150 km have a

worst possible error of 10% at the lowest latitudes where

the vehicle is passing upward above 200 km. For over 80%

of the converted densities the worst possible error is at

most 5%. A 100 0 K error at 10000 K would cause a 6.5% error

in the density converted from 210 km to 160 km. Since no

major geomagnetic storms occurred during the period of

accelerometer-derived density observations from SPADES,

6.5% would be the worst possible error in the densities

converted to 160 km.

The latitude-time analysis of the LOGACS densities

converted to 150 km is shown in Fig. 8. The nearly vert-

ical straight lines represent those portions of the lati-

tude/time track of the satellite revolutions over which

density observations were obtained. The figures at the



ends of the lines indicate the revolution numbers. All

the density data below 850N in Figs. 1-3 were read off at

10 latitude increments from Figs. 1-3, converted from their

standard altitudes to 150 km (if necessary), and plotted

for analysis. Obviously bad data points were smoothed out

and linear interpolation was used to fill in gaps of up to

60 latitude in the LOGACS data. The solid isolines are

drawn at intervals of 0.5 x 10 gm/cm 3 . The centers of

highest and lowest density are delineated by shading. A

unique and most useful feature of Figure 8 is that the

time of all the density values is between 1020 and 1145 LT.

Below 800 N all density values are before 1106 LT. Thus

there is a minimal effect of any diurnal variation in den-

sity thoughout range of Fig. 8. The same density data are

shown in corrected geomagnetic latitude-time coordinates

in Fig. 9. The location of the auroral oval is shown by

the hatched area near 750. Due to the offset of the cor-

rected geomagnetic pole from the north pole the maximum

latitude of density observations varies from one revolu-

tion to another.

Similar analysis of the densities from the SPADES

accelerometer converted to 160 km are shown in Figs. 10-13

for geographic latitude and Figs. 14-17 for corrected geo-

magnetic latitude. As beforethe nearly vertical straight

lines represent the loci of the density observations and

the figures at the ends the rev numbers. The solid



isolines of density are drawn at intervals of 0.1 x 1012

gm/cm 3 . Density values were obtained over 10 increments

from Figs. 4-7. For those revs where there was scatter in

the density values normalized to the standard altitudes a

smooth curve was drawn by eye through the points for pick-

off of the 10 density values. No values were taken from

the 200 km standard altitude plots where the scatter was

judged to be too large. Fig. 4h below 270 S, Fig. 5i below

20N and above 440 N, and Fig. 5m above 490N are more prom-

inent examples of such scatter. The factors in the lower

portion of Table 6 were used to convert the 180 and 200 km

density values to 160 km. In Figs. 10-13 and also Figs.

14-17 the local time ranges of the data were 1106 to 1117

LT, 1022 to 1037 LT, 0957 to 1010 LT, and 0923 to 0943 LT

respectively. The hatched area in Figs. 16 and 17 indi-

cates the location of the auroral oval.

The auroral oval location in Figs. 9, 16, and 17

was determined with the aid of the Auroral Oval Plotter

(Whalen, 1970). The requisite geomagnetic local Q-indices

were not available for either period of density observa-

tions. Q-indices are derived individually by geomagnetic

observatories located at high latitudes. Basically the Q-

index is a logarithmically scaled indicator of the total

variation in the strength of the horizontal component of

the geomagnetic field from that observed on a "quiet" day

over a 15 minute interval. In Fig. 9 the K index wasp
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used as a substitute for Q. The K index is a logarith-

mically scaled indicator derived from an average of the

observations of the most disturbed component of the geo-

magnetic field at 12 subauroral (mid-latitude) stations

over a 3 hour period. This gives a less accurate estima-

tion of the auroral oval location but is an acceptable

substitute (Feldstein and Starkov, 1967). For Figs. 16

and 17 a "planetary" 0 index, Qp, was derived from the

auroral electrojet AU and AL indices given by Allen et al

(1973). AU and AL represent the maximum upper and lower

variation of the horizontal component of the geomagnetic

field during a one hour period from the quiet day level as

observed by geomagnetic observations located around the

auroral oval. The extremes are not averages but the maxi-

mum or minimum value observed at any of the reporting

stations. Both extremes may occur at the same station

during a one hour period but more commonly one station re-

cords the largest excursion in the positive direction while

another station supplies the extreme value in the negative

direction. The hourly auroral electrojet index, AE, is the

difference between the extreme values of AU and AL. Like

Q, Qp is a logarithmically scaled index of this total var-

iation in the strength of the horizontal component of the

geomagnetic field from that observation on a quiet day,

but over a one hour interval. Although less acceptable

than Q, Qp is a far more acceptable substitute than Kp
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(Feldstein and Starkov, 1967). The derived Qp indices are

given in Table 7.



TABLE 7

Qp INDICES FOR SPADES

DATE

GMT Hour July 1968

30 31

01

02

03

04

05

06

07

08

09

10

11

12

5 6 7 8

4 4 6 7

4 5 7 7

4 6 7 7

4 7 5 4

7 7 5 7

4 5 6 6

3 6 6 6

3 4 5 7

4 4 6 6

6 5 5 3

7 4 5 3

5 4 7 3

6 5 7 3

7 5 6 5

6 4 6 4

6 4 6 3

6 2 6 3

4 5 4 4

3 6 4 3

3 6 4 3

4 6 4 5

5 5 4 5

5 3

5 3

4 3

4 3

4 4

4 4

4 3

5 4

4 6

3 6

5 5

6 3

4 3

4 3

4 4

4 5

3 5

3 4

3 3

4 3

4 4

4 4

4 4

3 3

5 6

6 5 5 6

Aug. 1968

5 4

15

16

24 5
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IV. RESULTS

LOGACS

Perhaps the most obvious feature in Figs. 1-3 is

the higher level of density at all standard altitudes

following rev 47. This increase in density is in response

to the great geomagnetic storm which began with strong sud-

den commencements at 1019 and 1236 UT on 25 May 1967. The

density response to this storm is far from uniform. The

density profile of rev 53 (Fig. la, 2a, 3b) is a prime

example of the variation of density response with latitude.

The minimum and near maximum normalized densities for the

data sample both occur during this revolution. The most

notable feature of rev 53 is the relative density maximum

at about 100 N and the minimum at 660 N. This is completely

contrary to what has been found at higher altitudes from

orbital decay measurements. The maximum observed relative

density occurred near the geographic pole on rev 62 (Fig.

lj) over 12 hours after the peak of the geomagnetic dis-

turbance. The complicated nature of the density response

can be seen more clearly in Figs. 8 and 9. The planetary

geomagnetic range index, ap, is shown at the bottom of the

figures. Storm effects become apparent beginning with rev

45, about 1300 UT on 25 May. Peaks in the 150 km convert-

ed density appear at the highest latitudes, at mid-lati-

tudes near 450N, at low latitudes near the equator, and in

the southern hemisphere near 300S. Exact locations will
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Figure 8. Time-geographic latitude analysis of LOGACSdensities

converted to 150km. The density isolines are in units of gm/cm 3

scaled by 1012
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differ in Fig. 9 due to the differences in the coordinate

systems. A deep low center appears initially at 650N or

720 Corrected Geomagnetic (C.G.) latitude. During the

course of the storm this low density region deepens to a

minimum near 670 N (+610 C.G.) at about 0000 UT on 26 May,

the peak of the geomagnetic storm. In the C.G. coordinate

system this low density region occurs initially in the

auroral oval but later moves equatorward of the auroral

oval location even though the oval location itself expands

and moves equatorward with increasing storm intensity. In

Fig. 9 the center of the density trough reaches its south-

ernmost position at about 0600 GMT on 26 May and then re-

cedes poleward as it continues to fill. Prior to the

storm, for revs 5-43, the average of the density converted

to 150 km was 2.70 x 10- 12 gm/cm 3 . During the storm period,

-12revs 45-66, the average converted density was 3.40 x 10

gm/cm 3 . The density given by J71 for the pre-storm condi-

tions is about 2.3 x 10-1 2 gm/cm3

Less dramatic, but equally significant, variations

of density occur during the non-storm period of LOGACS

observations. The density varies with latitude in a most

unexpected manner. A very frequent feature of the density

plots in Fig. 2 is the occurrence of a relative density

minimum between 250N and 400N. There is also a tendency

for a similarly located minimum in the southern hemisphere

data (Fig. 3). A relative maximum in density occurs near
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the equator as can be seen in Fig. 3. In Fig. 1 there is

an obvious trend toward an increase of density with an

increase in latitude. A careful examination of Fig. 8

reveals a series of high density centers near 700N, and

generally low density at 300 N, and higher density near the

equator.

For each revolution, 50 latitude averages were

calculated from the 10 latitude values of density convert-

ed to 150 km (used to make the analysis of Fig. 8). For

each 50 latitude band these averages were then averaged

over all revolutions. Separate averages were also made

for the storm and non-storm periods. This process was re-

peated for the data converted into C.G. coordinates.

Periods when data were unavailable resulted in a data set

that was not fully homogeneous with respect to sampling

frequency. The results are summarized in Table 8. The

data in the bottom row of Table 8 are the columnar averag-

es of the mean density in each 50 latitude band and the

standard deviations of the latitudinal means from the col-

umnar averages. In all cases, geographic or C.G. latitude,

storm or non-storm, there is a definite minimum in the den-

sity structure between 250 and 400. During undisturbed

conditions the minimum appears to be better defined in geo-

graphic latitude. The minimum is relatively deeper and the

standard deviations about the means between 300 and 400

are smaller in geographic coordinates. There is some



TABLE 8

Zonal Means of LOGACS Density Data Converted to 150 km

Geographic Latitude Corrected Geomagnetic Latitude

Lat. Band Total Non-storm Storm Total Non-storm

a N X

Insufficient
Insufficient
.51
.53
.60
.62
.59
.56
.53
.51
.48
.49
.54
.60
.56
.44
.31
.31
.30
.38
.45

43
43
43
44
45
44
40
42
42
41
40
40
42
43
43
42
42
41
42

2.70
2.71
2.68
2.69
2.68
2.64
2.59
2.52
2.46
2.46
2.49
2.53
2.60
2.67
2.78
2.84
2.89
2.94
3.03

-25
-20
-15
-10
-5

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

2.96 .14 22 2.70 .16 22 3.40 .21 22 2.94 .12 19 2.68 .16 19 3.37 .24 19

X, a, and N are the mean, standard deviation, and number of cases in the

X a N a N X a N X

Storm

a N X

-20
-15
-10
-5

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

a N

2.90
2.92
2.98
3.02
3.06
3.05
3.02
3.03
3.00
2.91
2.81
2.74
2.76
2.84
2.89
2.90
2.88
2.90
2.99
3.10
3.23
3.31

.42

.45

.47

.50

.53

.51

.57

.60

.57

.54

.53

.50

.54

.55

.56

.50

.38

.33

.43

.43

.63

.63

43
43
43
43
42
43
43
44
43
42
41
42
41
43
43
42
40
43
41
42
43
43

2.65
2.65
2.71
2.72
2.74
2.76
2.70
2.68
2.64
2.57
2.48
2.43
2.43
2.51
2.57
2.65
2.74
2.89
2.98
2.95
2.92
2.95

.23

.21

.22

.20

.19

.20

.21

.19

.19

.18

.16

.13

.17

.21

.24

.21

.20

.18

.27

.19

.15

.15

27
27
27
27
27
27
27
27
26
26
25
26
26
27
27
27
26
28
26
25
25
25

3.32
3.36
3.46
3.52
3.60
3.55
3.56
3.59
3.55
3.46
3.31
3.26
3.33
3.39
3.42
3.35
3.15
2.92
3.01
3.32
3.66
3.81

.33

.37

.41

.44

.48

.49

.58

.61

.51

.46

.51

.43

.47

.49

.54

.57

.50

.51

.63

.59

.79

.71

16
16
16
16
16
16
16
17
17
16
16
16
15
16
16
15
14
15
15
17
18
18 Insufficient

2.99
3.00
3.02
3.05
3.04
3.00
2.94
2.85
2.78
2.81
2.83
2.88
2.91
2.89
2.82
2.83
2.92
3.06
3.25

Data
Data
.19 26
.20 27
.19 27
.19 27
.20 27
.21 27
.23 25
.19 27
.16 27
.17 25
.21 25
.23 25
.23 27
.22 27
.21 28
.18 27
.16 26
.15 25
.23 25
Data

3.47
3.50
3.59
3.63
3.58
3.56
3.52
3.43
3.34
3.34
3.38
3.47
3.48
3.31
2.90
2.80
2.96
3.25
3.59

.51

.54

.63

.64

.56

.49

.35

.36

.31

.32

.45

.58

.54

.45

.44

.47

.45

.53

.48

16
16
16
17
18
17
15
15
15
16
*15
15
15
15
15
15
16
16
17

latitude band.
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indication in both coordinate systems that the latitude of

the minimum shifts equatorward during the storm. As ex-

pected, the variation is less random in C.G. latitude dur-

ing the storm. This is evidenced in Table 8 by the marked-

ly lower variation about the latitudinal means poleward of

150.

The equatorial maximum and the trend toward a min-

imum poleward of 200 S are evident at all times in geogra-

phic coordinates. The density fall-off with latitude in

the southern hemisphere is absent in C.G. coordinates

during the non-storm period. For storm conditions the

variation about the latitudinal means is 20 to 30% larger

for C.G. latitude between -150 and +50.

During the non-storm period there is a 20% increase

of the density from the mid-latitude minimum to about 800.

In geographic coordinates this increase occurs between 400

and 70N with nearly level density above 700N. For C.G.

latitude this increase continues to 800, the highest lati-

tude with an adequate data sample. During the storm period

this poleward increase of density from the mid-latitude

minimum is interrupted by an even deeper minimum between

600 and 650 in both coordinate systems. The maximum storm

density occurs above 800 N geographic latitude. Insuffic-

ient data were available to determine whether a similar

polar maximum occurs in C.G. latitude. Between -250 and

550 there is a density increase of 25 to 37% between quiet



and storm conditions. In the 60-65* band the density is

substantially unchanged. Above 800 N the density increase

was nearly 30%.

Intense density gradients are important features

of Figs. 1 and 2. These strong gradients are associated

with the geomagnetic storm. They form first at high lat-

itudes on rev 51 (Fig. lo) and increase in intensity on

either side of the 600to 650N storm density trough (revs

53-55 in Fig. la-c, 53-59 in Fig. 2a-g, and revs 61-64 in

Figs. 1 and 2i-1). Strong gradients also occur at low

latitudes on revs 53 and 63 (Figs. 2a, 3a, and 2k). In-

tense gradients are also created in time/longitude as can

be seen in Figs. 8 and 9. Most notable are the strong

gradients at about 0100 UT and 100N and at 1600 UT at 280 N

and 820N on Fig. 8.

SPADES

For convenience the four data intervals from SPADES

will be discussed separately. The first interval includes

10 revolutions of data spaced 4 revolutions apart beginning

with rev 21 on July 13 and ending with rev 57 on July 15,

1968. During this period the perigee latitude moved from

120 S to 40S. The latitudinal coverage of the density data

was between 330S and 130N. Amoderate geomagnetic distur-

bance began with a sudden commencement at 1612 UT on July

13 and lasted till about 0600 UTon July 14. At first glance

the density profiles at the standard altitudes of160, 180, and
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200 km in Fig. 4 show no strong response associated with

the geomagnetic activity. With a six hour delay time the

densities on revs 29, 33 and 37 would be expected to ex-

hibit some response to the geomagnetic storm. Examination

of the profiles of revs 25, 41, and 45 before and after the

storm shows that the density is indeed enhanced on revs

29, 33, and 37, particularly between 300 S and 100 S during

the latter two revolutions. This effect can be seen clear-

ly in Fig. 10 where a high density region forms between -300

and -100 and 0000 UTand 1500 UT on July 14. This high in-

terrupts the general trend of lower density near 250 S.

The indices at the bottom of Fig. 10 are the planetary

geomagnetic range index, ap, with the scale given on the

right and the auroral electrojet index, AE, with the scale

given on the left. ap is a scaled antilog of the Kp, 3

hour geomagnetic index. AE and a are plotted without any

time lag. The same data are displayed against C.G. lati-

tude in Fig. 14. There does not appear to be any partic-

ular advantage to the use of C.G. coordinates at these low

latitudes.

With the exception of revs 33 and 37 during the

geomagnetic disturbance and revs 49, 53, and 57 where ex-

cessive noise appears in the data there is a decided trend

toward an increase in density from 300S to the equator in

Fig. 4. This trend can also be seen in Fig. 10. Density

values were read off each plot in Fig. 4 over 10 latitude
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Figure 10. Time-geographic latitude analysis of SPADES densities
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increments and where necessary converted to 160 km. These

values were used to make the analysis in Fig. 10. As with

LOGACS, 50 latitude averages were calculated from these 10

values for each revolution over the latitude span of the

data and then averaged over all revolutions for each 50

latitude band. The results are given in Table 9. They

include the storm period as well as a smoothed profile for

revs 49, 53, 57. Even so, there is a clear, significant

density increase of 12% between 25-300S and the equator.

The data set for Table 9 is completely homogeneous except

for incomplete coverage in three of the 25-300S averages.

The results using C.G. latitude are shown in Table 10.

The same trend exists with C.G. latitude but is less def-

inite and there is more scatter about the latitude band

means. The average 160 km density for the 13-15 July per-

iod is 1.17 x 10- 1 2 gm/cm3 vs. 1.26 x 10-12gm/cm 3 given by

J71.

The second data span from SPADES encompasses the

period of July 23-26, 1968 and includes 14 revolutions dur-

ing which density data were obtained. The nominal data

frequency was one revolution out of every three but the

data gathering revolutions were occasionally canceled due

to an insufficient power supply. The density data is dis-

played in Fig. 5. The perigee latitude increased from 170N

on rev 157 to 280N on rev 208. Data were obtained between

60 S and 520 N. This period was free of any significant



TABLE 9

Zonal Means of SPADES Density Data Converted to 160

Geographic Latitude

Lat. Band Revs 21-57

a N

Revs 157-208

X a N

Revs 253-292

X ~ N

Revs 344-391

X a N

1.13 .07 14
1.19 .13 14
1.13 .07 14
1.07 .08 14
1.06 .09 14
1.08 .07 14
1.09 .06 14
1.09 .05 14

1.17 0.05 7 1.10 .04 8 1.04 .03 9 1.15 .03 8

, a, and N are the mean, standard deviation, and number of cases in the latitude band.

km

1.09
1.12
1.18
1.22
1.16
1.22
1.23

.09 10

.12 10
.11 10
.09 10
.11 10
.11 10
.13 10

-30 -
-25 -
-20 -
-15 -
-10 -
-5

0 -
5 -

10 -
15 -
20 -
25 -
30 -
35 -
40 -
45 -
50 -
55 -
60 -
65 -
70 -
75 -
80 -
85 -

-25
-20
-15
-10
-5
0

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
89

1.10
1.06
1.01
1.01
1.03
1.05
1.05
1.04
1.04

.08

.06

.07

.07

.06

.05

.05

.05

.06

14
14
14
14
14
14
14
14
14

1.08
1.13
1.15
1.17
1.18
1.17
1.18
1.16

(1.06

.06

.07

.08

.08

.15

.17

.15

.11

.09

15
15
15
15
15
15
15
15
11)



TABLE 10

Zonal Means of SPADES Density Data Converted to 160 km

Corrected Geomagnetic (C.G.) Latitude

Lat. Band

-25 -
-20 -
-15 -
-10 -
-5

0 -
5 -
10 -
15 -
20 -
25 -
30 -
35 -
40 -
45 -
50 -
55 -
60 -
65 -
70 -
75 -

-20
-15
-10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60

Revs 21-57

X

1.18
1.17
1.15
1.19
1.22
1.19

a N

.11 8

.12 9

.14 10

.14 10

.13 10

.11 9

Revs 157-208

a N

1.10 .06 11
1.13 .10 13
1.10 .08 14
1.11 .10 14
1.09 .09 14
1.08 .06 14
1.07 .08 14

Revs 253-292

X a N

1.03 .07 12
1.03 .09 14
1.03 .08 14
1.05 .03 14
1.04 .05 14
1.03 .05 14
1.04 .06 14

70
75
80

1.18 .02 6 1.10 .02 7 1.04 .01 7

Revs 344-391

X a N

1.11 .07 15
1.12 .09 15
1.17 .10 15
1.21 .08 15
1.23 .12 15
1.14 .15 15

1.16 .05 6

X, a, and N are the mean, standard deviation, and number of cases in the latitude band.
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geomagnetic activity. There were mild disturbances on

July 23 and 26. Data filtering problems, previously dis-

cussed, affected the derived densities on the first eight

data revolutions. A number of the revolutions exhibit

some smaller scale wave structure that could either be

natural or a result of incomplete filtering of the accel-

erometer output.

There is a general trend in Fig. 5 for density

maximum near 100N and minima near 300N. This is readily

seen in Fig. 11. The density appears to increase poleward

of 300N. The same data is analyzed in C.G. coordinates in

Fig. 15. The latitudinal structure is less ordered in

Fig. 15. Five degrees latitude averages of the 160 km

densities were calculated as before. The results are given

in Tables 9 and 10. The latitude variation observed be-

tween revs 157 and 208 was obtained from a homogeneous data

sample except that data were not obtained as scheduled on

revs 169, 184, 193, and 196. Table 9 indicates a definite

density maximum at 10-15'N, a minimum at 25-300 N, and a

slight density increase poleward of 300 N. The data obtain-

ed equatorward of 50N indicates a further decrease of den-

sity from the 5-100 N average. Similar results are seen in

Table 10 but as before the latitudinal variation is less

definite with C.G. latitude. The density for revs 157-208

averaged 1.10 x 10-12gm/cm3 . For the same average location

and condition a value of 1.21 x 10-12gm/cm3 is given byJ71.
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The third SPADES data period occurs during a quiet

geomagnetic period, July 30 to August 1 (see Table 4). The

density data were obtained every three revolutions in this

period. Fig. 6 contains the plots of these data. The den-

sity structure and variation is much less definite in Fig.

6. Perigee ranges from 380 N to 470N on revs 253 and 292.

The latitude span of the data is 170N to 710 N. Time-

latitude analyses of the density are given in Figs. 12 and

16 for geographic and corrected geomagnetic (C.G.) coordi-

nates. In Fig. 12 there is a predominance of low density

near 320N and a slight trend toward increasing density

above and below that latitude. The results of 50 latitude

averaging are given in Tables 9 and 10. A minimum in den-

sity occurs between 300 and 400N. Equatorward of 300 N the

average density increases significantly while only a slight

rise is observed poleward of 400N. Conversion to C.G. co-

ordinates smears out any significant latitudinal variation

(Table 10). The average observed density converted to

160 km is 1.04 x 10-12gm/cm 3 vs a value of 1.17 x 10- 12

gm/cm 3 from J71.

The fourth data period from SPADES runs from rev

344 to rev 391 on Aug. 5-8, 1968. Data were obtained on

revs 344, 352, and every 3 revolutions after rev 352.

During this period data were obtained from 350N up to

89.5 0N, the maximum latitude, and back down to 860 N. Plots

of the normalized density observations are shown in Fig. 7.
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The perigee point ranged from 590 to 700 N. In the Aug.

5-8 time period the geomagnetic activity level was neither

excessively quiet nor were any significant disturbances

indicated by the K index. Throughout the period the ac-

tivity level was somewhat enhanced above normal levels,

particularly the auroral electrojet index, AE.

The individual density plots of Fig. 7 exhibit a

variety of latitudinal variations. Equatorward of 550N

the density is generally lower. At about 700 or 750N there

is considerable fluctuation between high and low density.

Latitude-time analyses of the density field are shown in

Figs. 13 and 17. In Fig. 13 there is generally lower den-

sity at the lower latitudes. Between 650 and 800N the

variation is manifested in a series of alternating high

and low centers. These high and low centers do not appear

to have any consistent relation to the AE index level. In

Fig. 17 these high and low centers are more nearly aligned

along 750 to 80, the auroral oval location (shown by the

hatched area). Here the high centers appear to occur with

or immediately follow enhancements of the AE index while

lows are associated with intervals of low AE index. An

alternating pattern of highs and lows appears between 450

and 550 in Fig. 17 but with the phase shifted somewhat from

the 750-800 pattern. Several areas exist in both Fig. 13

and 17 where strong density gradients occur in both space

and time. The density decreases 45% at 760 between revs
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358 and 361 in Fig. 17 and a 42% decrease occurs at 710N

between revs 370 and 373 in Fig. 13.

The 50 latitude band averages of the density con-

verted to 160 km are given in Tables 9 and 10. In geo-

graphic coordinates the density increases from the 450 -

500N band to the 650 -700 N band. Above 800 the density be-

gins to decrease. Data obtained poleward of 850 N (not in-

cluded in the columnar summation) indicates a steep decline

to a polar density minimum. In C.G. coordinates (Table 10)

the maximum density occurs at the latitude of the auroral

oval, 700-750. Between 650 and 750 the variance of the

density from the zonal means is much smaller in C.G. co-

ordinates. Data obtained equatorward of 500 C.G. indicates

a further decrease of density in that direction. The av-

erage 160 km density over the rev 344-391 period was

1.15 x 10- 12gm/cm3 . J71 gives a value of 1.22 x 10-12

gm/cm 3 for the same average location and level of solar

and geomagnetic activity.

The mean densities in each period of data from

SPADES differ. This difference is due in part to the lat-

itude, local time, and solar and geomagnetic activity

differences. Using the inverse of the normalization factor

for T of 1125 0K from Table 6, the non-storm (revs 5-43)

average density from LOGACS was converted to 160 km. This

160 km average density is compared with the observed aver-

age densities at 160 km from SPADES in Table 11 along with

the densities given by J71 for the same average locations



TABLE 11

Seasonal Density Variation at 160 km

Rev Span

5-43

21-57

157-208

253-292

344-391

Period

23-25 May

13-15 July

23-26 July

30 July-1 Aug.

5-8 Aug.

Observes Density
(gm/cm x 1012)

1.64

1.17

1.10

1.04

1.15

Model Densit (J71)
(gm/cm3 x 1012)

1.39

1.26

1.21

1.17

1.22

Vehicle

LOGACS

SPADES

SPADES

SPADES

SPADES
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and solar and geomagnetic activity levels. The SPADES

average densities are consistently lower than those from

J71 but they do vary in a very similar manner. The LOGACS

non-storm average density is considerably higher than that

specified by J71 but in comparison with the SPADES results

still indicates a seasonal/semiannual variation in the same

sense as given by J71. The real amplitude of the seasonal/

semiannual variation appears to be larger than that speci-

fied by J71 at 160 km for the data considered here.

LONGITUDINAL VARIATION

Even in the absence of geomagnetic activity there

is a considerable variation of the density level with time

at a given latitude. During a 24 hour period the earth

makes almost one complete rotation underneath the satellite

orbit. Thus, although the density observations are made at

the same local time for a polar orbiting satellite, the

longitude of the observations varies systematically through

a 3600 longitude cycle every 24 hours. At a given latitude

density variations with time may also be treated as density

variations with longitude. With density data available

from one satellite at a time it is not completely clear

whether to attribute density changes along a latitude circle

to time variations or to longitude dependence. The only

known short-term dependence of density is associated with

either geomagnetic activity or, to a much smaller extent,
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solar EUV flux changes. Given a relatively steady state

of solar and geomagnetic activity, any 24 hour periodic

variation would be due to a longitudinal density variation.

Figs. 8 and 10-13 give the geographic latitude-

time variation of density for LOGACS and SPADES. Due to

the intense geomagnetic storm, LOGACS density data on and

after rev 45 will be excluded from analysis. Above 400N

in Fig. 8 there are high density centers on revs 14 and 30,

16 revolutions or 24 hours apart. Between 250 and 450 N

low density regions are found on revs 11, 27, and 43, each

24 hours apart. The relatively strong high density center

on rev 18 lacks an exact counterpart on rev 34 but high

density is found on revs 31 and 35. Near 200 N high density

areas are located on revs 20 and 34-35 and also revs 14,

30,and 46 (the latter is more enhanced, probably due to

the storm). Near 151S high centers are found on revs 7,

26, and 39 (data were missing on rev 23). Numerous other

minor centers exist, most of which are not significant in

terms of the relative density variation which they indicate.

In Fig. 10 the effects of the geomagnetic disturbance on

the rev 33 and 37 densities make it difficult to find "un-

contaminated" longitudinal variations. Near the equator

high centers are located at 0000 UT and low centers at

1200 UT. The exact locations of these centers are uncer-

tain due to the low time resolution of the data. Low time

resolution and missing data revolutions hinder analysis of
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Fig. 11. Near 0600 UT low density is found on revs 157,

172, 187, and 199. For SPADES there are 13.7 revolutions

each 24 hours. High density regions are located near

2000 UT from revs 166, 178, and 208. Data from revs 193

and 196 would have aided considerably in confirming the

high density location. For the 30 July-I Aug. period

(Fig. 12) the generally small amplitude of the density var-

iation made determination of any regular longitudinal var-

iation rather difficult. Below about 400N low density is

generally at about 0600 UT from revs 256, 268, and 283.

Low density on rev 277 interrupts the pattern of high den-

sity at about 2100 UT on revs 265 and 292. Poleward of

450 the phase of the longitudinal pattern is changed. Low

density is located near 2000 UT by revs 262, 265, 277,

280, and 289. High centers are located near 1100 UT from

revs 256, 259, 271, 274, and 286. At the higher latitudes

in Fig. 13 a strong periodic density variation is readily

apparent. This variation may be due in part to a forced

response to auroral electrojet activity. High density

regions are found near 0900 UT on Aug. 6-8.and low density

near 1800 UT on Aug. 5-8. From the SPADES data there is

a general trend at low latitudes for low density centers to

occur near 0600 UT and highs near 2000 UT. At latitudes

above 450N highs occur near 1000 UT and lows near 1900 UT.

To confirm the above qualitative observations,

averages were calculated from the 10 latitude values of
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the densities converted to 150 km for LOGACS and 160 km

for SPADES for each individual revolution. For LOGACS,

three separate averages were calculated for the latitude

ranges 250 S - 100N, 100 N - 450N, and 450N - 850N. The

SPADES data from revs 253-292 were broken into two sections

at 450 N. In order to compare the longitudinal density var-

iation observed by the two satellites, the seasonal varia-

tion and the effects of differences in the general solar/

geomagnetic activity levels had to be eliminated from the

density averages for each revolution. This was done by

dividing the revolution averages by the mean density for

the period of the observations, i.e., the averages for revs

"-g12 3
157-208 were divided by 1.10 x 10 gm/cm (see Table 11).

These normalized values for each revolution are plotted

against their respective longitudes in Figs. 18-20. The

values from the non-storm portion of LOGACS (revs 5-43)

are plotted on the figures with the SPADES data. The plot-

ted data show considerable scatter. Much of this scatter

is attributable to changes in the level of geomagnetic

activity. For the LOGACS results, a strong increase in

the level of solar EUV flux as indicated by the 2800 MHz

index (Table 3) occurred over the rev 5-43 period used to

calculate the time density average for the normalization

process. This results in all normalized values for revs

5-14 being less than 1.0 and almost all the values from

revs 29-43 being greater than 1.0 due to the general
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density increase over the rev 5-43 period caused by the

increase in solar EUV flux. Even so, the general sense of

the longitudinal variation should be maintained. In Figs.

18-20, averages of the plotted points in each 300 longi-

tude sector are indicated by squares connected by a solid

line.

The results for the 250 S - 100 N latitude band are

given in Fig. 18. There does not appear to be any signi-

ficant difference between patterns of variation of LOGACS

and SPADES. The geomagnetic storm enhanced values for

revs 33 and 37 of SPADES are located at 870 and 342 0E re-

spectively. High density prevails from 120 0E to 290 0E and

low density from 290 0 E to 700E. Maximum and minimum den-

sity occurred in the 1800 - 2100 E and 3000 - 330 0 E sectors.

However few data points occurred in these sectors (2 and 3)

compared with those available for calculating the averages

in the other sectors. Six points define both the second-

ary minimum between 300 and 600E and the secondary maximum

at 1200 - 150 0 E. With SPADES data from two separate obser-

vational periods there are more points available to define

the average curve for 100 N - 450N in Fig. 19. A clear

high density area lies between 150 0 E and 320 0E. Low dens-

ity predominates from 330 0E to 900 E. Again only two values

are available to define the maximum at 1500 - 180 0E. The

scatter of points about the mean seems to be somewhat less.

The minimum density average occurs in the 600 - 900 E
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sector and is defined by eight values. Between 450 and

850N (Fig. 20) there is a marked change in the longitud-

inal variation pattern. From about 340 0E forward to 2000 E

the excursion of the means is rather small. A deep mini-

mum occurs between 2100 and 270 0 E and a less pronounced

maximum lies between 2700 and 330 0E. Even without the

very low value at 217 0E the 2100 - 2400E sector would still

be near the low average at 2400 - 2700. A weak maximum

extends from 00 to 100 0E and a secondary minimum lies be-

tween 1100 and 160 0E. The statistical significance of

these latter features is rather low. In general the long-

itudinal density variation at 250S to 100 N (Fig. 18) and

100N to 450 N (Fig. 19) is the same with respect to the

location of high and low density areas. The density vari-

ation with longitude above 45°N (Fig. 20) differs signifi-

cantly in that the general location of high and low dens-

ity regions is 1800 out of phase with the variation at

lower latitudes. It appears that the high and low density

distribution is skewed and the extremes are less than 1800

apart in Figs. 18-20. This is in agreement with the qual-

itative conclusions arrived at from examination of Figs.

8 and 10-13.
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V. DISCUSSION

LATITUDE VARIATION

The latitudinal density variation given by J71 for

the local time, solar declination, altitude, and To exper-

ienced during the flights of LOGACS and SPADES is less than

2.5%. According to J71 a very flat density maximum occurs

near 300N to 450N for LOGACS and SPADES with a steady de-

cline on either side of the maximum. The latitudinal

density variation observed by LOGACS and SPADES is summar-

ized in Tables 8-10. A density minimum is observed near

300 N in all observation periods covering that latitude. A

density maximum occurs near the equator and the largest

densities occur at high latitudes. The non-storm minimum

density value for LOGACS of 2.43 x 10-12gm/cm 3 occurs be-

tween 300 N and 400N (Table 8). For convenience all further

density values will be understood to have the units of

gm/cm and scaled by 10-1 2  The standard deviations about

the zonal means in these two latitude bands are 0.13 and

0.17. The standard deviation of the zonal means from their

average of 2.70 is 0.16. The minimum value is thus deemed

to be a significant, real feature of the latitudinal density

structure. Similarly, the maximum density plateau poleward

of 650N is also a real feature of the 150 km density struc-

ture. The secondary maximum of 2.76 in the 0*-5 0 N band and

the density fall-off in the southern hemisphere are of

lesser significance. Never-the-less, the smooth variation
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of the zonal averages from one band to the next lends con-

siderable credence to the validity of the latitudinal var-

iation.

The geographic SPADES density variation in Table 9

independently confirms the LOGACS results. The local times

of nearly all observations are within ±40 minutes of

1040LT. Although observations from SPADES range from mid-

July to early August and LOGACS observations are in late

May a year earlier, the solar declination angle during

these periods only varies from 160 to 20.7 0 N. Thus the two

satellites obtained their density observations under very

similar conditions. In Table 9 the 1.06 minimum at 250-

300 N in the rev 157-208 period, the 1.01 minimum between

300N and 400N in the rev 253-292 period, and the sharp

fall-off to 1.08 at 450 -500N from larger values at higher

latitudes in the rev 344-391 period are all confirmations

of a density minimum in or very near the 300 -350 N latitude

band. All three aforementioned density values are at least

one full standard deviation below the respective means of

their zonal averages. The larger density values between

650 and 800N in the rev 344-391 period confirm the findings

of LOGACS. Both, with density values more than one stan-

dard deviation above the mean of the latitudinal averages,

indicate that a density plateau in that latitude region is

a real part of the density structure. One dark spot in

this high-latitude aspect of the density structure is the
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absence of any increase of density above 500 N during the

rev 253-292 period. However this time period was noted

for its lack of geomagnetic activity. High-latitude heat-

ing associated with geomagnetic activity is apparently the

cause of the high-latitude density "bulge".

The increased density at the equator found by

LOGACS seems to be confirmed by the SPADES data. The rev

21-57 results in Table 9 show a maximum of 1.23 between 00

and 50 N. This value and the 1.22 average for 00 to 50S

are both a full standard deviation above the mean of the

zonal averages. Data from the rev 157-208 period also

yield significantly higher density equatorward of 20ON to

50N. However the fall-off at 50 -10°N is not consistent

with the pattern established by the LOGACS data. Poleward

of 150 S the density decreases as shown by the rev 5-43

LOGACS data (Table 8) and the rev 21-57 period of SPADES

(Table 9), particularly the latter. This steeper drop-off

found by SPADES is probably associated with the higher

geomagnetic activity during the rev 21-57 time period. The

storm period LOGACS data (revs 45-66) also.indicate a more

rapid decline of density away from the equator into the

southern hemisphere.

Overall, with the exception of latitudes poleward

of 650, the density variation with latitude appears to be

more sharply defined in geographic rather than C.G. coor-

dinates. Comparison of Tables 9 and 10 show that for the



129

first three periods of SPADES data the latitudinal varia-

tion about the mean densities for these periods is much

larger with geographic latitude, 0.05, 0.04, and 0.03 vs

0.02, 0.02 and 0.01 (standard deviations at the bottom of

Tables 9 and 10). For these same periods the individual

variations from the zonal means are slightly greater over-

all for C.G. coordinates. The difference between the

equatorial maximum and the near 300 minimum is greater in

geographic latitude for LOGACS. Up to about 650 the indi-

vidual variations from the zonal means are somewhat less

for the data referred to geographic latitude. Above 650

the data from LOGACS and the fourth SPADES period show a

marked changeover in the relation of the latitudinal den-

sity variation to the coordinate system. For the non-

storm portion of LOGACS there is a nearly flat density

variation with geographic latitude while in C.G. coordin-

ates the density continues to increase significantly to

the poleward limit of the data (800). The rev 344-391

SPADES data behaves similarly except that there is a den-

sity drop in the 750-800 band in C.G. coordinates. This

drop is also indicated in geographic coordinates. Most

notable is the improved fit between 650 and 750 when re-

ferred to C.G. coordinates. The density standard deviation

from the zonal mean for C.G. coordinates in the 650-700

band is less than 60% of that for geographic latitude for

both LOGACS and SPADES. In the 700-750 band the deviations
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are less than 80% of those for geographic latitude. For

LOGACS in the 750-800 band the deviation is more than 50%

greater in C.G. latitude while it is unchanged for SPADES.

This change in behavior between 650 and 750 is expected

since these are the latitudes where the auroral oval is

located. This further confirms the role of auroral heat-

ing during geomagnetically undisturbed periods in deter-

mining the density structure.

Latitudinal density variations not in conformity

with density smoothly decreasing from the subsolar bulge

maximum have been suspected for some time. Jacchia (1970)

states that the subsolar bulge is small in the region of

maximum EUV absorption but should be above the noise at

heights above 150 km. From an analysis of the density

from a number of low altitude satellites DeVries (1966)

found a negative correlation between density and the sub-

solar bulge below 220 km. May (1972) found that the sub-

solar bulge pattern was not clear at 240 km for orbital

decay derived densities obtained between Apr. and Nov.

1967. Ching (1971a, 1972a, b) analyzed 219 orbital decay

derived densities obtained below 200 km from three satel-

lites (including SPADES) between July and Nov. 1968. A

poor, statistically non-significant fit was obtained with

a subsolar density bulge,including that given in J71.

A density bulge centered over the North Pole gave the

best and only statistically significant improvement in
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fitting the observed density pattern. Explorer 32 was

equipped with gauges which obtained density measurements

from 300 to 700 km between May and Oct. 1966. From these

measurements Newton and Pelz (1969, 1973) found that the

densities obtained above 550N were 30% higher than at the

equator during the day. Even on quiet days densities

obtained over the auroral zone were three times equatorial

densities. The ratio of density obtained between 350 and

450N to that at the equator was the same as that given by

a model of the subsolar density bulge. During the day

T , deduced from N2 density profiles, between 360 and 590

was less than at the equator. Newton and Pelz inferred

that auroral heating was a permanent feature of the summer

hemisphere and amounted to a significant fraction of the

EUV heating, even during geomagnetically quiet periods.

Blamont and Luton (1972) always found higher temperatures

at high latitudes than at the equator from their observa-
0

tions of the 6300A OI line made from OGO-6. Their obser-

vations correspond to an altitude of about 260 km. In the

analysis of some accelerometer density results from SPADES

and OVI-16 (Cannonball), Marcos et al (1971) also found

increased density in the auroral region with a trough near

the North Pole. Philbrick and McIsaac (1972) observed a

density bulge over the auroral oval and a trough between

the oval and the magnetic pole. Irregular density profiles

were frequently observed in the polar region. A trough was
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detected at the magnetic equator on 50% of the data passes.

Their observations were obtained by satellite-borne mass-

spectrometers at 400 km between Dec. 1967 and Mar. 1968.

The bulk of the above-cited results of other in-

vestigators were obtained at altitudes considerably above

those examined in this study. Many were obtained by meth-

ods which have a small time and space resolution relative

to orbital decay derived densities. The latitudinal feat-

ures found from the LOGACS and SPADES densities are not in

conflict with the cited results but rather substantiate

them except for the following. In contrast to the obser-

vations of Philbrick and McIsaac (1972) a density maximum

is found at the C.G. equator on the average. This dis-

crepancy is doubtless a result of season, altitude, and

local time differences in the observations, the latter

probably being the most important. The LOGACS and SPADES

results indicate that the structure found by Newton and

Pelz (1969) has its roots well down in the lower thermo-

sphere.
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LONGITUDE VARIATION

The longitudinal density variation is given in

Figs. 18-20. As discussed earlier,much of the scatter of

the individual data points shown in these figures is the

result of uncompensated density changes associated with

time variations of solar EUV and geomagnetic heating. The

solar EUV flux increase, indicated by the solar 2800 MHz

flux, over the rev 5-43 period of LOGACS (and the few pre-

ceding days as well) contributed particularly to the scat-

ter of the LOGACS data points but does not alter the

general sense of the longitudinal variation. The signifi-

cance of the individual 300 longitude averages is not very

high due to lack of sufficient data. Still, the data do

indicate a clear higher density between 1500 and 290 0E in

Figs. 18 and 19. Lower density predominates from 3300 to

800E in the same figures. Between 800 and 1500 E the pat-

tern is rather mixed though there is a tendency for higher

density in this region at low latitudes (Fig. 18) and lower

density in low to middle latitudes (Fig. 19). The pattern

in Fig. 20 is much less clear due possibly to the influence

of varying levels of geomagnetic and auroral electrojet

activity (Forbes and Marcos, 1973). Lower density clearly

exists from 2100 to 270 0E and higher density between 2700

and 330 0E. At the remaining longitudes there is no pro-

nounced trend.

The existence of longitudinal density variations
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was reported by Jacobs (1967) from an analysis of orbital

decay densities from eleven satellites flown in 1964-5

with perigees between 165 and 215 km and inclinations

ranging from 750 to 850. Jacobs attributed the variation

to an earth-fixed eccentric "density bulge" at high lati-

tudes. In a subsequent study Jacchia and Slowey (1968)

were unable to detect any such density bulges from orbital

decay data at higher altitudes. In a separate study of

orbital decay data from 11 low eccentricity satellites

flown in 1963-4 with perigees between 160 and 210 km, in-

clinations of 70-850, and perigee latitudes from 400 to

600N, DeVries et al (1967) found a density maximum near

00-300 E and a minimum at 150 0 -1800 W. Using higher reso-

lution orbital decay densities obtained from ten days of

very precise tracking data on each of three satellites,

DeVries et al (1972) found periodic daily density varia-

tions of 10% at 140 km. The phase of the 24 hour varia-

tion was reported to change with time. This could be due

to the movement of perigee latitude toward higher latitudes.

All of these results were obtained from orbital decay ob-

servations of satellites with low altitude, low eccentri-

city orbits.

Mass spectrometer observations of N2 density in the

southern hemisphere at 430 km were made from OGO-6 during

a quiet period between Aug. 28-Sept. 4, 1969 (Hedin and

Reber, 1972). The N2 density was found to be cyclic over
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a 24 hour period. The N2 density was averaged over 300

longitude and 50 latitude and plotted for analysis. A

strong, well-defined maximum was found at 700S, 1600 W and

a minimum at 800 S, 0-300 W. The observations were made

between 2000-2400LT. Similar effects were found in an

initial examination of North Polar data. Hedin and Reber

attribute this pattern to asymmetrical electron precipita-

tion resulting in increased ionization, joule heating, en-

hanced N2 densities, and an induced circulation pattern

similar to that caused by a geomagnetic storm. Taeusch et

al (1971b) found 12 and 24 hour periodicities in N2 con-

centration during the geomagnetically disturbed period of

Sept. 27-Oct. 3, 1969. Their observations were obtained

from OGO-6 in the northern hemisphere near 1600LT between

400 and 500 km. An examination of their time-geomagnetic

latitude plot of N2 density (their Fig. 4) reveals a 1800

change in the phase of their 24-hour variation above 450

geomagnetic latitude. This corresponds very closely to

the findings from the LOGACS and SPADES densities at 150

and 160 km.
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GEOMAGNETIC ACTIVITY EFFECTS

Two geomagnetic storms occurred during the periods

of density observations used in this study. A moderate

geomagnetic storm on July 13, 1968 occurred during the rev

21-57 period of SPADES when perigee was near the equator.

Only the low latitude effects of this storm were observed.

The density response to the "great" geomagnetic storm of

May 25-26, 1967 was observed by LOGACS from 300 S up to

88.5 0N on the dayside of the orbit and back down on the

nightside as far as 300 N. Only the dayside characteristics

were studied. The storm of May 25-26, 1967 was one of the

most intense geomagnetic disturbances recorded over the

last 40 years. In this sense the density observations of

LOGACS are rather unique in that the storm may have excited

thermospheric response mechanisms that are not brought into

play by the more common, lesser intensity disturbances.

During the storm period (revs 45-66) the average

LOGACS density at 150 km increased over the rev 5-43 period

by 26%. This increase was far from uniform (Table 8). The

maximum increase of 37% occurred in the 350--400 N latitude

band. A negligible 1% increase occurred between 600 and

700 N. A 37% increase also occurred in the 350-400 band in

C.G. coordinates. At 600-650 C.G. just south of the aur-

oral oval position a density increase of 1.4% was recorded.

Between 100 and 500N the increase averaged 35%, tending to

fill the mid-latitude density minimum slightly. Significantly
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higher density is still found at the equator as compared to

300-35ON, 3.60 vs. 3.26 against a latitudinal mean and

standard deviation of 3.40 and 0.21 (see Table 8). The

effect of the moderate geomagnetic storm on the SPADES

revs 29-37 density is quite modest by comparison (see Fig.

10). The average density on revs 33 and 37 were only in-

creased by 4.4% and 9.3% from the average of revs 21-57,

both below the level of significance. In fact, the highest

density area occurs on revs 41 and 45, well after the end

of the storm (see the bottom of Fig. 10).

Considerable orbital decay density data has been ob-

tained and analyzed for geomagnetically disturbed periods.

The most thorough analysis was made by Roemer (1971b). From

observations of 210 storms from 6 satellites over the

250-800 km height range during 1961-6 Roemer found the den-

sity response to be 30% greater at night and to increase

with latitude. The lag time of the density response was

5.5 ± 0.3 hrs., independent of geographic latitude, local

time, storm intensity, and altitude. DeVries et al (1967)

found shorter delay times at high latitudes and longer

times at low latitudes from an analysis of 11 low eccentri-

city satellites with perigees between 160 and 215 km. Or-

bital decay density measurements from low eccentricity

satellites with perigees below 140 km have indicated that

the level of heating during geomagnetic disturbances is

below 140 km (Ching, 1971b; DeVries et al, 1972). High-
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resolution measurements from OGO-6 of the thermospheric

temperature (Blamont and Luton, 1972) and composition

(Taeusch et al, 1971a, b) confirm that greatly enhanced

changes occur above 50* geomagnetic latitude as a result of

a geomagnetic storm. A local time dependence of the storm

effect is also observed. In sharp contrast to Roemer's

findings, the response time of the atmosphere is almost

immediate (less than one hour) in the vicinity of the aur-

oral zone. Low latitudes are found to be relatively un-

affected.

The density response observed by LOGACS to the

great storm beginning at 1236 UT on May 25 is shown in

Figs. 8 and 9. At high latitudes there is an immediate in-

crease of density to a high center on rev 46 corresponding

to the first peak in the 3 hour planetary range index, ap,

plotted along the bottom of Figs. 8 and 9. The high center

is located well inside the auroral oval (indicated by the

hatched area on Fig. 9). What follows on rev 48 is very un-

expected, a deep low density center forms at high latitudes,

right in the auroral oval, while a high appears near the

equator. The center density in the low is 29% less than the

average density of 2.70 observed on revs 5-43. The rev 48

equatorial high is 39% above the quiet-time average and lags

the first ap peak by about 4 1/2 hours. On rev 53 high den-

sity occurs at high latitudes in response to the highest

geomagnetic activity peak. Lack of high latitude data on
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rev 52 prevents an accurate determination of the response

time lag. Simultaneously, the lowest observed density (33%

below the non-storm average) occurs near 670N or about 60

south of the expected auroral oval location. Near the

equator on rev 53 the density level is slightly more than

double the quiet-time average. A lag of about 3 hours

occurs between the time of the initial peaking of the a

index and the high density on rev 53. On rev 55 a high

density region occurs near 500 N while the equatorial peak

is considerably reduced, even though high geomagnetic acti-

vity still persists. By rev 57 all but the highest lati-

tudes have experienced a considerable relative decline in

density levels to an extent far greater than anticipated

by the reduction of geomagnetic activity. The longitude on

rev 57 is about 450E where a longitudinal variation of den-

sity indicates lower density at equatorial and low to mid-

dle latitudes (Figs. 18 and 19). Generally higher density

occurs at low and middle latitudes on revs 59-61. The

peak observed density on the dayside occurs at 820N on rev

62. The peak value is 104% greater than the non-storm

average. Curiously, this high density level is reached a

full 12 hours after the end of the geomagnetic activity

peak. The longitude of rev 62 is about 298 0E, the location

of the longitudinal density maximum for high latitudes in

Fig. 20. Except for scattered small-scale features the

density generally declines following rev 62.
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In general, high density centers form in response

to the storm at 350 - 550 C.G. and -150 to +150 C.G. between

revs 47 and 62. Throughout the entire period beginning with

rev 47 a persistent density trough exists between 550 and

750 C.G. (Fig. 9). This trough forms shortly after the be-

ginning of the storm. It moves south of its initial loca-

tion in the auroral oval to its southernmost position at

610 C.G. on rev 56, coincident with the end of peak storm

intensity. The trough then fills and moves northward in

the same manner as the auroral oval but somewhat more rap-

idly. Density minima occur in the trough coincident with

or immediately following the two peaks in the storm inten-

sity. The auroral oval may coinciade more closely with the

density trough. Its position was determined by using the

relatively crude Kp indices. Further, at the extremely high

geomagnetic activity levels, which occurred during this

storm, the relation of the oval position to geomagnetic ac-

tivity (auroral electrojet) level is very poorly known (due

to a lack of occurrences of such high levels of activity).

Even so, the indicated oval position is probably in error

by three or four degrees of latitude at most.

Joule heating associated with the auroral electro-

jet can produce local heating in the 110-180 km region

(Banks, 1972). This heating may peak near 150 km (Cole,

1971). In the density trough it appears that with the in-

tense geomagnetic storm, sufficient local heating occurs
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near the 150 km level to overcome any density increase from

the lifting of the atmosphere due to heating at lower lev-

els. Dynamical effects may also play a role in the crea-

tion of the density trough. For the local time of the

LOGACS dayside density observations Cole (1971) and Fedder

and Banks (1972) have shown that ion motion induced by aur-

oral electric fields is from W to E equatorward of the aur-

oral oval and oppositely directed poleward of the oval. The

ion motions accelerate the neutral atmosphere through col-

lisions to velocities of as much as 2 km/sec (Cole, 1971).

Such motions, oppositely directed, on either side of the

auroral oval, could contribute to the formation and main-

tenance of the observed density trough. Winds derived by

Feess (1968) from observed side forces on the LOGACS

vehicle show exactly such a direction reversal of the wind

across the auroral latitudes for revs 51-59. High density

gradients are formed on either side of the trough implying

strong pressure gradients existed as well. These facts are

in conformity with the predictions of Cole (1971) as pointed

out by DeVries (1972b).

The matter of the time delay of the atmospheric

density response is more complex than described by DeVries

(1972) who found time delays increasing from 0 hours above

600 to 6 hours equatorward of 300 . The high density max-

imum near the equator on rev 53 lagged the beginning of

peak ap by about 3 hours. The equatorial high on rev 48



142

lagged the first ap peak by about 4 1/2 hours. The equator-

ial high on rev 59 occurred 7 1/2 hours after the a index

began to decline from its peak value of 400 units. The

large density peak at about 450 C.G. near rev 60 follows

the end of the ap peak by 9 hours and the peak density at

820N on rev 62 was 12 hours after the end of the a maximum.

The average density in the 150 S-150 N latitude band reached

maxima on revs 48, 53 (main maximum), 59 (secondary peak),

and 63. In the 150N-450 N latitude band, average density

maxima occurred on revs 47, 50, 54 (secondary peak), and 59

(main maximum). The first maximum in the 150-450 N band on

rev 47 occurs 1 1/2 hours before the equatorial band maxi-

mum but is not nearly as strong or distinct. The mid-

latitude average peak on rev 50 has no apparent equatorial

counterpart. Equatorial observations were not available

on rev 54. Thus it is impossible to determine whether the

equatorial main maximum occurred on rev 54 at the same time

as the mid-latitude secondary maximum or 1 1/2 hours earlier

on rev 53 where it was observed. The main mid-latitude

average density maximum on rev 59 coincides with equatorial

average secondary maximum. In both cases, missing data on

revs 58, 60, and 61 prevents any conclusive determination

of a difference in the response time in the two latitude

bands.

Mayr and Volland (1973) conducted a theoretical

study on the density and composition changes in the
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thermosphere in response to simulated auroral heating

symmetrical about the equator with maximum input at mid-

night at about 680 latitude. They show contours of the

density response with time and latitude at 200 km. The

maximum density increase occurs above 650 latitude lagging

the maximum heat input by about 3 hours. At the equator

the density increase is roughly one-half that at polar

latitudes. The equatorial maximum lags the peak heating

by about ten hours. The isolines of constant density in-

crease shift smoothly to later times as they approach the

equator from latitudes above 650 thus giving a 6-7 hour

longer response time at the equator. This time-shifting of

the density contours as they extend to lower latitudes does

not appear in Figs. 8 or 9. The observed latitudinal den-

sity response for subauroral latitudes at 150 km appears

to be nearly independent of time. This discrepancy between

the LOGACS density response and that predicted by Mayr and

Volland is probably due to some of the simplifications they

made in deriving their model. These include auroral heat-

ing symmetric about the equator, omission of the advection

terms in the equations of motion, and no provision for

momentum generation induced by electric fields. The dif-

ferences between 150 and 200 km may also be very important.

In summary, the amplitude of the density response

near 150 km is nearly independent of latitude between 50 S

and 500 N. There is almost no density response in the 100
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latitude band south of the auroral oval on the average

during a great geomagnetic storm. The average amplitude

of the density response inside the polar cap is the same

as at low and middle latitudes. There appears to be some-

what less response in the Southern Hemisphere probably due

to seasonal differences. The quiet-time minimum density

found near 300 -350N is maintained during the storm. The

latitudinal density variation is more consistent in C.G.

coordinates during the storm, especially poleward of 100

C.G. The general response to the storm at 150 km is not

the general build-up of density at high latitudes and the

gradual cascading of increased density equatorward with

time decribed by Mayr and Volland (1973), but the creation

of a number of individual high and low centers which are

frequently located at the same latitudes and longitudes as

during undisturbed conditions but with enhanced amplitudes.

Determination of the delay in the density response to geo-

magnetic activity is complicated by the 1 1/2 hour time

resolution of the density observations and the 3-hour span

of the a geomagnetic index. It appears that the response

delay to increases in ap is of the order of 4-6 hours,

nearly independent of latitude below about 550 N. The den-

sity response is immediate in and poleward of the auroral

oval.
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GRAVITY WAVES

Gravity wave effects in the lower thermosphere have

been observed by various techniques. Newton et al (1969)

observed waves in the density of amplitudes up to 50% which

they interpreted as free internal gravity waves with wave-

lengths between 130 and 520 km traveling N to S. Their ob-

servations were obtained by density gauges on Explorer 32

in the Northern Hemisphere near the auroral zone between

286 and 510 km. Large-scale traveling ionospheric distur-

bances (TIDs), a manifestation of gravity waves, have been

observed by ionospheric sounders (Hunsucker and Tveten,

1967), radar backscatter (Testud, 1970; Thome, 1968), and

changes in the Faraday rotation (Davis and daRosa, 1969;

Davis, 1971). In all cases the general direction of travel

is from N to S (in the Northern Hemisphere). They are

generated by auroral events or high geomagnetic activity

(Chimonas and Hines, 1970; Testud, 1970; Davis, 1971) pre-

dominantly with an apparent source in the evening sector

of the auroral oval. The observed phase velocity of large-

scale TIDs varies from 400 to 725 m/sec (Davis and daRosa,

1969; Davis, 1971; Thome, 1968) and the period is in excess

of one hour. TID's carry auroral energy toward the equator

(Blumen and Hendl, 1969; Chimonas and Hines, 1970; Testud,

1970).

With high resolution density observations from

LOGACS during the great magnetic storm it is only natural
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to examine the data for gravity waves. Several excellent

examples are seen in Figs. Ic (rev 55), 2k (rev 63), and

2m (rev 65). Other cases appear on rev 53 in Fig. 2a, rev

55 in Fig. 2c, rev 45 in Fig. 2i, rev 47 in Fig. 2k, and

rev 50 in Fig. 2n. Indications of gravity waves are found

on other revolutions but lack of sufficient data resolut-

ion prevents unambiguous identification. The wavelengths

range from 450 to 1000 km and the amplitudes are less than

1%. Gravity waves are found from 301N to over the North

Pole (mostly 45o-600) and down to 140 km. All the observed

gravity waves occurred during the period of high geomag-

netic activity.

Gravity waves appear in the SPADES data also. Re-

liable identification of the waves is somewhat difficult

because of possible errors in the data filtering technique

discussed previously. Possible gravity waves exist on revs

277, 286, 289, and 291 in Fig. 6i, 1, m, and n. However

only mild auroral electrojet activity occurred during this

period (see Figs. 12 or 16). Clearer gravity wave displays

occur on revs 358, 385, 388 and 391 in Figs. 7d, m, n, and

o. These have the same general characteristics as those

found by LOGACS. The amplitudes are greater, especially at

higher altitudes. Marcos and Champion (1972) found that

the amplitude of these waves decreased toward the equator

and that the amplitude was longitude dependent, being

largest at 245 0-290 0E. This latter manifestation may be
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due to the periodicity of the auroral electrojet index,

AE, shown at the bottom of Figs. 13 and 17.

An excellent theoretical study of thermospheric

gravity wave modes has been made by Francis (1973). In his

analysis he included the dissipative effects of viscosity

and thermal conductivity as well as a realistic sound

speed profile of the atmosphere. The long period gravity

waves found by LOGACS and SPADES correspond very closely

to the characteristics of his thermospheric "F" mode, an

imperfectly ducted mode propagating along the steep tem-

perature gradient at the base of the thermosphere. From

the observed wavelengths a phase velocity of 650-700 m/sec

and a period of 60-150 min. are derived from the results of

Francis' analysis. The attenuation distances of these

waves (reduction of amplitude by l/e) are specified to be

about 5000 km from Francis' results, in agreement with the

observations.

CIRCULATION IMPLICATIONS

Theoretical treatments of thermospheric circulation

have considered the effects of viscosity, ion drag, advec-

tion terms, coriolis acceleration, inertia, and pressure

gradient forces. A Jacchia-type model of the subsolar

density bulge and corresponding night-time density minimum

is chosen for the determination of the pressure gradient

terms. The resulting wind distribution patterns are



148

generally diverging from the high density region and

converging into the low density region, the amount of

cross-gradient drift being determined by the ionization

model (ion drag) and viscous effects. The existence of a

heat source in the eccentric auroral oval and momentum

generation by auroral electrojet fields are neglected.

Comparison of incoherent scatter observations of the merid-

ional neutral wind component on geomagnetically quiet days

with the winds calculated from theoretical considerations

using a Jacchia-type subsolar bulge has shown that an im-

posed electric field is required in the summer to match the

theoretical winds with the observed winds (Amayenc and

Vasseur, 1972). Heating rates in the auroral oval are 50

-2 -1 -2 -1ergs cm sec during the day and 500-5000 ergs cm sec

at night during very active periods (Banks, 1972). Auroral

Joule heating is on the order of EUV heating over the en-

tire globe (Cole, 1971). The energy release through auroral

electric fields, even during quiet periods, has been calcu-

lated to be on the order of the global EUV heating rate of

1-5 ergs cm-2 sec -1 (Banks, 1972). The density response to

geomagnetic activity is due to auroral heating and heat

transport to lower latitudes (Volland, 1969). The auroral

electric fields not only produce W to E winds through ion

drag but the Joule heating should also produce an equator-

ward wind component due to the build-up of pressure grad-

ients at higher altitudes over the auroral oval and polar
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cap. Incoherent scatter measurements of the meridional

neutral wind component in the lower thermosphere at 450N

have shown that the normal daytime poleward drift of 25-35

m/sec is nearly stopped during geomagnetically active days

(Reddy and Vasseur, 1972). This effect was found to be

most pronounced at 150-165 km.

The theoretical electric field driven winds in the

auroral zone should cause divergence in the morning side

of the auroral oval and convergence on the evening side

below 200 km (Fedder and Banks, 1972). Cole (1971b) cal-

culates that the electric fields and Joule heating creates

sufficient energy in a very short time to lift the entire

auroral zone thermosphere above about 100 km,thus estab-

lishing a convection pattern on either side of the auroral

zone. This is apparently what is happening at 60o-700 in

Figs. 8 and 9 for the LOGACS density.

The density increase in the equatorial region is

less easily explained. Joule heating by the equatorial

electrojet does not appear to be sufficient to cause the

observed response. It has been calculated to be nearly an

order of magnitude less than auroral electrojet heating

(Knudsen, 1969). Low latitude heating by gravity waves does

not fit the observed storm-time, latitudinal density dis-

tribution. The influence of gravity wave energy transport

would be greater at higher latitudes and diminish as the

equator is approached. Only a fraction (l/e) of the gravity
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wave energy would be available equatorward of 200 (assuming

wave generation occurs at 650). This does not take into

account the divergence of the meridians toward the equator.

The effect of gravity waves would be to strongly increase

density in mid-latitudes and leave equatorial density rela-

tively unchanged. The observed results in Table 8 contra-

dict this hypothesis. A possible mechanism might be de-

scending motion at equatorial latitudes. A problem assoc-

iated with this is the rather impulsive nature of the

equatorial density response as exhibited near rev 53 in

Figs. 8 and 9. If indeed descending motion occurs at the

equator where does the air come from above 150 km? For the

preceding 12 hours the geomagnetic storm has been heating

the auroral oval. During this time density depletion has

occurred in and south of the auroral oval. West to east

winds are generated south of the auroral oval by the auroral

electric field. Velocities of up to 2 km/sec may be gener-

ated in this manner (Cole, 1971). Accompanying all this is

an increase in the ionization of the atmosphere particularly

at higher latitudes, increasing the ion drag term outside

the auroral region. In the auroral region enhanced ion

concentration contributes to the acceleration of the neutral

wind by the auroral electric field. At some altitude above

150 km this heating produces an increase in density as ob-

served by the OGO-6 mass spectrometer (Taeusch et al, 1971b)

at 4'50 km. This would produce an equatorward pressure
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gradient and result in equatorward winds. The cessation of

the normal poleward neutral wind drift below 225 km on geo-

magnetically active days as observed by Reddy and Vasseur

(1972) is a direct indication of this effect. This polar

region high pressure may drive the atmosphere at the upper

levels toward lower latitudes and possibly account in part

for the observed high density at the equator during the

storm through descending motion there. Initially, parcels

at 600 N with 1-2 km/sec eastward velocities would have suf-

ficient absolute angular momentum to overcome the coriolis

torque in moving toward the equator. Divergence accompany-

ing equatorward motion and dissipative effects from ion

drag and viscosity would tend to reduce the eastward angular

momentum. It may be that the impulsive nature of the storm

along with its great strength may have created a large-scale

horizontal eddy motion to produce the observed effect near

the equator on rev 53. A quantitative, numerical investi-

gation, taking into account all the relevant factors, is

required to answer this question. From the evidence of the

thermospheric density response in Figs. 8 and 9, the dynam-

ics associated with the auroral heating and momentum gener-

ation (all around the oval, but principally on the night-

side) must be quite complex.

One further point is the latitudinal density minimum

near 300 -350 N. This feature persisted throughout the entire

period of LOGACS observations. It appeared undiminished
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during the storm period. SPADES density observations also

showed that it was present then as well. The cause of this

feature is unknown. It may be due to local heating from

the sun. If so, its amplitude would decrease markedly with

altitude. Also it would not be present at 0600 LT. It is

curious that the longitudinal variation below and above

450N in Figs. 19 and 20 differ in phase. It may be that

the difference is associated with the occurrence of the

mid-latitude density minimum. The shaded high and low den-

sity regions in Figs. 10-17 are statistically significant

density departures from the average density level. They

tend to indicate that eddy motions occur in the 160 km

circulation in response to concomitant pressure differences.
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VI. CONCLUSIONS

The density data from LOGACS and SPADES have pro-

vided a somewhat unexpected picture of the density structure

near 150-160 km and its response to a very intense geomag-

netic storm. The results are limited in that they cover a

very short span of local time and season.

The density varies with latitude with high density

at the equator, low density at 300 -400 N, and the highest

density over or near the poles. In geomagnetically quiet

intervals density is best ordered in geographic coordinates

except near the auroral zone. During a great geomagnetic

storm this basic pattern is unaltered with the exception

that a density trough appears just equatorward of the auror-

al oval. During the storm the latitudinal density distri-

bution is better ordered in Corrected Geomagnetic coordin-

ates. A longitudinal density variation exists which changes

phase above about 450 N. The phase of the longitudinal

variation appears to be the same from about 250 S to 450 N.

Plots of the density distribution at a single altitude

reveal high and low density centers which suggest that large

scale eddy motions may result from the pressure differences

between these centers.

The density response at 150 km to the great geomag-

netic storm of 25-26 May 1967 is not at all like that pre-

dicted by the theoretical model of Mayr and Volland (1973)

for 200 km. A general enhancement of the density level
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occurs at all latitudes. The average density response at

the equator equals that over the polar cap. The mean

density just south of the auroral oval remains at pre-storm

levels. Large short-term variations in the density occur

at all latitudes. Just south of the auroral oval a density

decrease to 65% of the pre-storm level occurred in a span

of three hours. Short-term density increases of 100%

occurred at both equatorial and polar latitudes. Gravity

waves generated by the auroral oval heating accompanying

the storm are observed in the density structure down to

140 km. These waves have wavelengths ranging from 450 to

1000 km. They appear to conform to the long-period "F" mode

predicted by Francis (1973).

The thermospheric circulation near 150 km is not

adequately described by models which do not include perma-

nent auroral heating and momentum generation by auroral

electric fields particularly during geomagnetic storms.

Auroral heating cannot be adequately modeled as being sym-

metrical about the equator. The effects of the auroral

eccentricity must be taken into account. The 150-160 km

level is dynamically far more complex than has been indi-

cated by the simple density structure derived from orbital

decay observations.
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