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Abstract

A computer program written on the basis of the
Cagniard-de Hoop's method to calculate the response
from flat layered media to a unit impulse source was
- used to examine the upper mantle P-velocity structure
of the earth, in the southern part of the United States.

Two existing mosels relevant to eour locality were
examined and found unsatisfactory on the basis of the
synthetic seismogram they generated.

Several P-velocity models were constructed and
examined. A model which gives correct arrival times
and satisfactory synthetic seismograms has been found.
This model includes a low-velocity zone similar to that
of other models, A new feature of this model is a rapid
increase in velocity near a depth of 500 km.
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I. JINTRODUCTION

The best known property of the interior ef the
earth is the seismic velecity profile as a functien of
depth. Any theory of the earth's structure must, there-
fore, satisfactorily predict this velecity profile as
clesely as pessible. The usual methoed of determining
velocity is te use the Wiechert-Hergleti equation [See
Bullen (1965)] which involves the integration ef the
dt/dA curve obtained experimentally from the travel
time-distance information. The method cannoctuse the
valuable informatien such as wave shape of the seismo-
gram or varying amplitude with time in a seismogram |
and with the distance from the source. Alse the method
fails te determiné a lew velecity structure which is
believed to exist at the depth of 100 km. Moreover,
obtaining travel time and dt/dA curve requires a great
deal of data - many statiens - in erder to approximate
a smooth dt/d\ curve. _

In spite of these difficulties, numerous attempts
have been made in the past to determine the velocity
structure, and there are widely varying models [See,
for example, Julian and Anderson (1968)] which give
approximately correct attival times. Of course, the
variety may be due to the lateral heterogeneity eof the earth.
However, since Cagniard developed the revolutionary
technique for computing(the response form flat layered
media, fellowed by de Hoop's (1960) modification, a
more Sephisticatéd methed te determine the velecity
structure has become pessible.

In this thesis, the technique developed by those
mentioned above and by others [?trick (1959) and Helm-



berger (1965 & 1967)] is discussed and applied te the
spherical earth. The validity of the spherical approx-
imation has net yet been confirmed. However, this tech-
nique is known te work to the travel time computatien,
and the relatively small curvature of the earth in the
_upper mantle should not cause significant errors in
compdting transmission coefficients and ref‘lection co-
efficients. The advantage of this new method are that
it generates synthetic seismégrams and that it enables
us to exémiﬁé the models from many more standpoints -
the‘firét and the following arrivals, amplitudes and
wave forms. ' o '

The Cagniard-de Hoop technique and the theory for -
the synthetic seismogram computationé are presented in
Chapter II. The entire chpater is a summery of Dr. |
" Donald Helmberger's contributions and included in this
‘thesis for the sake of completeness in presentation.

In Chapter III, the computer progran, originaliy
written by Dr. Helmberger, modified and improved in the
course of the research for this thesis by him and by
the author, is described. -

Chapter IV presents the result of this study -
the P-velocity structure along an east-west profile
in the southern United States. To deternine the velocity
structure, first we examine two existing models proposed
for this region. .One model is by Dowling and Nuttli
(1964), based on the travel time data from the underground
nuclear'explosién BILBY (1963), which we use in our investi-
gation. The other model is by Johnson (1967), and was
obtained, using the dt/dA data from the Tonto Forest

Seismological Observatery in Arizona. After the exam-



ination of tﬁese models, we construct some new models.

in se doing, we use a conventional method for :computing
travel times for a given model. [See Bullen (1965)]

Then, we compute the synthetic seismograms and cempare
them with the records from the BILBY event. The criteria
for comparison are the travel times of various P-afrivals,

amplitudes and the wave forms of P-wave arrivals.



II. THEORY

In this chapter we present the theory which is the .
~ basis of the technique of computing\the synthetic seis-
-nograms. Also shewn in this chapter are several approx-
imations we make in our éomputation.

1. Response from an Infinite Medium
For an infinite fluid with a unit pulse seurce at

‘'r =0, z =0, the Laplace-transformed pressure is:
| i) |
E(Y‘i S)»-- S K (SPT)C sf), _’g_ AP (1)
. | | o

Due to the symmetry of the integrand with respect to the

real p axis, (1) can be rewritten as:

— v
Pz = %‘gmg K.(Sfr)e-sq‘ E’—f—AP @

Co is a constant with dimensions of pressure times length
and assumed unity from here on. Back-transforming (2),

we obtain:

N
| 1 H(t-7r- 1. 1) 4
Pnzb)- %4,,[ 1, [Enmy= 7 f

where H(t) is a step function. Since the ar gument of

(3)

a step functlon must be real we nust have the path:
such that:

T= 'Pr"'qslil | (4)



'i{s real and positive. Due to de Hoop's modification of
Cagniard's method (1960), we solve (4) for p to obtain:

' r N F- | .
= — T 4+ ¢ — 2 Ri

)

In order that T-— _@_ be positive, we must have —g;(t<0°.
And this is the path of the contour |7 . ‘Now, (3) is

equ:.va lent to:

> frad) = __ _{;H(-L-rr-"?.lzl) dp
E(ni,t) 7 e tum 7= 4T,

and differencmting (5), we get:
éf = i‘?l

dz N

C, .

For f‘k , the integrnad of (6) is real, and we rewrite
l

(6) as:

(6)

(7)

t
. T
EU‘Z'H = 5 Re g fe), d 21 (8
+o Jfﬁ—wct-zu;or)(ti g; )

Since H(t-T ) = 0 for ¢<{t , and for ‘l.'(-é—'1 the denome-
. - ()

nator of the integrand in (8) becomes complex. We define
the reflection time £ R/c and simplify (8). Let

6 = arcsin |2-T 9)
tf‘tp ; )

and with the trans formation, (8) becomes:

Ruzt)= 2 R S Fte) d8 -0



where ’ fw)
F(O) = )
1B +t.)-(t- TB) +2P (O 1)

ro = -E;{(t-(t—t,) sin*0 + & %’—J{-};- (t- t,)sin"e.st"'t-u

T®) = t- i-to) S8

In order to zperformj the integration (10), we must find
F(®) numerically for each t. This costly procedure can
be avoided by the following approach. Define

fR = ?eC'P)
1’1 = Im (_f)

P X
RC: -

We choose a set of pR's starting at Py and increasing
on some small interval & , to p, = Pp(t). We find, for
each PR> Pp such that Im(t) is zero. To clarify the

situation, the limits are:
fo < fr < Pr
7o < T <t

o0 & O < T .

As t »t,, p > r/Rcl = Py (The First Motion Approximation).
And also ‘ F

T(6) = =X
- to C' b

r !
o L

]
ke, {at, 2t 28

Rc’

Fe) =



and
T (.2 ‘t) = —= H(t to) [Di:x (1953)] (11)
This is the exact solutien to (10).

2. Response from a Two-layered Me;lium
For a problem involving two-layered media, let
suffixes 1 and 2 denote the uﬁper and the lower layers,
respectively. We have, for the .e%uivalence of (6),

(PR (- '
P tnz) - gmj 7 RpHi-z) ji_ dt a2
'l,[(:t TXt- 1:1-9.91')
Note the quantity R(p) in the integrand, which is:
afO-asiy Ve sl - §. |
?Lf) = - ~ (13)
| U-asirYeastogn 50,

and

T=y¢r+ (Zth) 1],
R= Jrs zen)

Assuming C;<8,%¢,, P ledves the real axis at p = p,

and 1/s < py< 1/c We can obtain the S-refracted time,
the reflected time (to) and the P-refracted time (tc)
by substituting p = 1/32, Pg> 1/c2 into (13), respective-
ly. For example, let p = 1/c2 and from (13) we get:

to= L4 zth) [Lg L'
T a? o




When we perform the numerical integration (12), we break
A P into two parts - from tc to to where p is real, and

from t, onward where p is complex. Thus, (12) can be
rewritten as:

Perz ) = B,nzt)+ Batnz ) | (14)

_where . |
‘ ° ﬁ( )
fl(rlz,t,“ %\g\ns ‘f‘ 4 3—9_29 o[ZZ
o . ’Il Jz-t—t)(t-'l:-r .er)
- and .
W)
Eg(_r,i,t)= %jmxl . @P , %o‘z
| + t -ﬁt—z)(t—'[-r:z/r) .
éy letting °
) ) . — ‘ /
we change variables in (14) to
. yz |
B,
where

Fi6) _ 4., S’A’cf)_ﬁ_ﬁ

b

3
3
s



The integration can be carried out by trapezoidal rule.
Thus, Pl(r,z,t:) can be numerically evaluated, and Pz(r,z,t)
is evaluated by the same method described in (10).

The pressure response to a delta function source is:

R, t 33;_9_.4“ E_d’o dt | (17)
2t) =53¢ St 6?(09) R

3. High Frequency Approximation
When we deal with sources of high frequency or of

a short duration, the following approximation holds:

t-T+apr =xpr7 (18)

From (17) we get by substituting (18):

Im%ﬂ-* %-59—5(7—:;‘ | {@qo) f—f ——-} ) (19)

Define

bty = Jm{?([’); "I dzg

Thus (19) can be written as:

Plnz,t) = 3 7 (37 * $10) o)
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4, A Multi- layered Case
For a multi-layered case, we must consider multiple
reflections in addition to refractions. We have the

Laplace-transformed pressure: _ :
- . ) =N, (Z
'E(T.i,s)‘-: - %] K.,LS]r)?lﬂS)e S? { +h)’£" df - (21)
p . -

where

~2mTh S7],

AN ) r 5. "R @”" & o
. - K,

Or (21) can be written as: : )
- N, T+
'E'Lr,z $)=-L S (,(srr)-ﬁ R.lp)e 1 de
r

"% p S.» Ka(slvr)?;:l-')m ‘Ra - 62.23% .

. x e-s{q'(1,|.1+1m"rh 1.} gf | -
Further: .

?(nz,s)= 57—,(".2;3)* %me(r,z,s) , (23)
where

. wu(P)
1)”(,,2 <) =—-—S ,(sa)r)'f (‘r)—~ 53 T&f)

£ (9 - =R KL G-Ra )™
én(f) = N;(zth) +t 2nTh'],
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As before, ? (r,z,s) can be transforméd back to :

? (fﬁ't) - -ng' H(t-Tw) JC
' 7; J&-t,.,)(t—z:,.-rzfr

3. (24)

where

= pr q (z+h)+ 2 Thmflz :

If layeres have different thicknesses and if we change

the variablés of integration to T , as before, we get

Thz,t)= 5 f‘i(f‘?(f;”“ ) 25)
rt . EJ(;; -z)(t- z-r:sz) - '

where

taf'*aZQJT” )
‘W ¥- ag Z,I'_‘)_.)

n is the last layer that the ray penetrates. Therefore,
the refractcd wave begins at tc which corresponds to

P, = l/cm_)1 and the reflection occurs at P, correspond-~
ing to t . As bef(?re 1lcm+1<po< llcn and as p increases
from P,> it goes into the complex plane. At this point,
we again apply the high frequency approximation (18) to

(25) and obtain, for a delta function source:

Pn(nzt) = [“" * P V‘)] (26)

where

— 4
b lt) = Jm{ﬁf-(f)-ffr—% "{%75 .
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The merit of employing the high frequenéy approximation
is, when we add rays (indexed m), from (23),

Pngt) = 3 Pw(02,t)

.S 22 (L
| % 2 :t({E % “P.,(-b)),. o

Since the sum of convolved quantities such as in‘(27)

is the convolved sum, i.e,,

Parzt) = ————(r_‘X'Z!)’ﬁ)) (28)

Thus, we need not perform convolution for m times, but

only once.

5. Generalized Transmission Coefficient

ﬁ;(p) in (26) is called the generalized transmission
coefficient. It can be written as the product of reflec-
tion coefficients Rij(P) and transmission coefficients
Ti.(p)

R (p) is the reflection coefficient when the ray is
reflected at the boundary of the ith and i+l=jth layers.
Its explicit form is: | '

K (p) = A-1.B o (29)
A—n, 8

where

A
A= —o’+b’ , B'= a’-rb')

-a+b B= a+b

]
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a=plhy—P)*

b= (k- ¢)- £, 8,00

o’ <107

=1 =P 1 ik

T, (p) 1s the transmission coefficient for the

case the ray is refracted from the ith to the i+l=jth

layers. 1Its explicit form is: ‘
a1/ Chi- 1)~ 1 G5 - )}
D

- T;3(7)= (30)

where

= PR ? )+'1.Q,')'l,f 0.0 B5-7)
M Che =T G iRy~ 105 R

‘ 3
6. First Motion Approximation

As t approaches t , the term dp/dt in (28) goes to
infinity, as

d Th;
o (r-2p 5, Thi
dt § ;5 |

is not defined at t = to. In order to evaluate "t‘m LE)
at t = t_ (which happens to be the most significant point

of the ray), we make use of the Simpson's rule,
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>t

I
|
s

To-h
Figure 2.1

° 'tlo"’ h

Pressure near t = t
toth
f Swrdt = 4 [-f(t. h) 14{’&.) +fiet ]

to-h
B [§aabie s ¢ o
I"rom (31) we obta:m
= 2 {3¢-d fﬁ @)
which 1s what we wish to calculate. @ is calculsted

partly numerically (to-h <t to- S, to-i-& te to+h).
For t -f( t¢et +§', we can show that:

.+S‘ |
f {w) dt = 2?&)1— (33)

In order to show (33), we consider the Taylor expansion:

t= to (f ‘fo)"' &? (r PO JT (34)
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And since dﬁ/dp x0at t =t o’ Ve have:

cU:

L2t
alt-te 35
S prevy 3
From (25), we obtain by differentiating,
A"c‘ Th; .
- Z 3 (36)
ap 5 TG |

Substituting (36) into (35) and then into (26), we get:

Tatzt)=t 3| -f,: F"y (f) = 1 (37)

b= 15

4;“,:. SM o tet,

b, m=ﬂ’e’§3 LN‘T‘ fo bt

F 1) = dm f‘“‘?’er} | for t et

F;Lb)i@e{fnte)l-;—ﬁ fw t>t.
Consider |

zo $od r’ F. i) y
[Het = t
to’s . *D's -J-to"t

Since Fl(t) varies slowly near t = t,, we get:

= aF, k)3 | (39)



Similarly:

totd '
| L bidt = F, ) [T .

Thus, we have shown for t°-$< t<t0+5, the part of
is

2 Rt R ]T ,

(40)

For the rest of é ,» Wwe use the trapezoidal rule to inte-
grate. We have values of " (t) computed for these outer
regions and we divide t, -h to t- J to five parts (chosen
rather arbitrarlly), mterpolate ;l;,, () for each p, and
do the same for t°+f to t°+h. This result and (40)
are added to obtain finally é . Then f2 can be cbmputed
from (32).

We now consider the case in which tc approaches to.
We can show that

fop = g Izt

de . NI

= = hp)

dt _ P {t,,-‘l: )

where g(p) and h(p) are smooth functions of p.. Hence,

we may delete the pressure from our consideration since

it does not vary in any extraordinary way. Consider:

to t»
s ® l_“'—l_ 1, A g -,
J@- tCXta"t)

tc {1.—T

Now let

dz (41)

te
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a=- tto A)
bEtD-r.tb h)
CE"‘i )

X = atbT+CT* .

Thus, -tf-t =9~C‘%"t) -

Therefore, (41) can be written as:

t | =1 . d -b’al
S °1:-t T _ _k’_, et -’t‘ at

—dr = = ac x
te E © t, te Ff te

LA
- Tk

Thus we have shown that when ‘k,(-l:) is integrated, if
behaves linearly with interval to—tc‘* The justi{-ication
for integrating \k.. it} is that since the source func-
tion is very flat and when it is convolved with \l'“u,-) s
‘l’ul'c) is virtually integrated over time. We see now
that as t_-t_ becomes arbitrarily small, the contribu-

tion of \h\\%) from this part is essentially negligible.

7. Directivity Function
Instead of solving for pressure in the preceding
discussion, we may replace it by the displacement poten-
tial &Lﬁ Z,t) assuming a step function source. And we
use the same equations.

However when we measure body wave amplitude on the
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surface of ‘the earth, we must be concerned with the
conversion of the measured amplitude to the actual am-
plitude because of the P-SV interaction at the reflecting
surface. The conversion factor is given by L. Knopoff,
et. al. (1960) as:

For the P-wave, .
-2 -
Dyepy = Pl CAT)
3.
| W (p)
For the S-wave, “2)
. -
D Cp) = ~4p T, Tss p |
® (p) -

where P , 1s the shear velocity in the surface layer,

J-
o= de-¢ 5 = -

@‘P) @¢ ﬁz)""‘f 7/’,75

8. Spherical Layer Approximation
The method described above is valid for flat hori-
zontal layers. We know that equations for distance and
travel time [Grant and West (1965)]:

h viz) dz |
] ,{i’_ ’zyz‘z)j (43)

A= 2p

f Viz ),]7-— ‘y’lz)
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where-p = sin(i) / V(z) (ray parameter),
h : thickness of the layer, .
for horizontal layers. And for spherical layers [ﬁullen

(1965)] = _
A= 21'5 _.Jéf:__n '
e g2 ‘ (44)
.t.':l 'Idr . ' . :
Te Y1 71.—‘521

where 118 r/v, p=r sin(i) /.V, r.: radius of the

earth, rp;~radius of the deepest point of penétratioq.

We see immediately that the equations (43) will be equiv-
alent to (44) if the quantities p and V are multiplied
by 1/r.

In ouf computation, the compressional velocities,
the shear velocities, the layer thicknesses and the
densities are multipied by ro/r, where r = 6371 km
(the radius of the earth), the justification being the
compatibifity of the assumption with the equations (43)
and (44), and the additional factor of r, (a constant)
is simply to normalize the quantities to the proper
dimensions. Thus,

t = *
c; = ¢y Q

s! =8, Q
i 1 i=1,2,3,.... - (45)
oL = £, Q
Thi = Thi Q,
vhere Q = ro/ r.
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The operation above is performed at the very beginning
ef the computation scheme and hence all the following

computation is done with the normalized quantities (45).

9. Traasfér Function

In order to generate synthefic seismograms from
theoretical responses, we must devise a system function
“that takes the theoretical re3ponse as the input and
generates the synthetic seismogram as the output. Such
a transfer function is defined as a convelutien ef the
source function with the instruéentatien response,
However, we knew that at large ranges, 3000 km for
example, the earth returns a step function if the input
is a step function omitting the Q effects. That is,
if we treat the mantle as a simple velocity gradient,
then the dlsplacement looks like the input. E?ee Figure 2. é}
Let R(t) be the output at the range 3376 km. Then,

Rit) = %‘E [TCH * qﬁu,)]

where QSH;) is approximately a step function. In such
a case R(t) = T(t). R(t) " is used as the transfer function
throughout this study. In-Chapter IV, we will see the
actual wave form ef the transfer functien. A synthetic
~seismogram is complete when we convolve the pressure

(or displacement) [See Eqn. (282] with the transfer
function. In our method using the high frequency approx-
imétien however, we convolve the transfer function
with 1/t te ebtain the medified transfer functienm.

[éee Figures 4.2 and 4. 3]



Figure 2.2

Theoretical TResponse fi’mo. ’nearlg
Linear Gradient

.aofs-

Sel.

This response was obtained from the Nuttli's
model at 3376 km. The peak at 1.4 seconds
was caused by a slight decrease in gradient
at the depth 850 km.
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Since we convolve 1/ [T with the transfer function which
is nearly flat at t = 0, we are essentially integrating
i/ Jt in the neighbourhood of t = 0. Let f£(t) = 1/47;.
And let h denote some small number. Using the Simpson's

rule of integration, we obtain

ih
(o 2= e - o aafore fos]

= l%’[{hp)'#'é%f -+ iﬁ%ﬁ.] ‘

But analytically, it is equal to 2.{531 Thus,
- -4 | 9.5 ¢
-F(O) = . i = —V_‘T |
In the digital computation, we let h be the digitization
interval and thus, £(0) is obtained. ‘
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II. METHOD OF COMPUTATION

The procedure for computing the theoretical response

" to a unit impulse source is described below. The érogram
~ was originally written for the Control Data 3600 computer
at the University of California at San Diego by Dr. Helm-
berger. It has been converted so that it is compatible
with the M,I,T. IBM 360-65/40 computer syséem in the
course of the research for this thesis by Dr. Helmberger
and by the author. It will be instructive to refer to
Chapter II and the Appendix for the theory and the pro-
gram listing, as the reader follows this chaptei.

In computing the response, we must specify the
characteristics of rays we are interested in. Wé, there-
fore, specify the layer k to which the ray reaches without
reflection and the manner that the ray reflects in the
layers beneath k., The number of layers involved in
internal reflections can be at most four (neighbouring
ones). If more than four layers are involved, the reflec-
tion coefficients become exceedingly small and negligible.
We name various configurations of internal reflections
for the purposé of computation. There . are two subroutines
that define various constants for each configuration. o
One (CON) is used for configurations involving only two
léyers (This is the more usual case than the latter).

The other (CONN) is for cases involving four layers.
Cases for one and three layers are special cases of two-
layer and four-iayer cases, respectively. These sub-
routines define MT(J), the number of transmissions from
the Jth to the J+lth layers; LTP(J), the number of times



the ray travels through the Jth.layer; NN(J), the number
of reflections en the J+lth layer frem the Jth layer;
MM(J), the number of reflections en the J-1th layer from
the Jth layer; and NF, the number of possible ways the ray
can travel with the same set of constants above. N is
used to describe the rays. For CON, the varieus N's
cerreslaond te the following figures EFigurEs 3. 1]
And alse fer CONN, aneother set of figures are drawn.
Though there are infinitely more configurations, they
are not considered here because the intensity ef the
ray becomes negligible, as the values of the censtants
go up. The choeice of using CON or CONN is made hy the
parameter MF. That is, '

MF 1 for CON,

MF 1 for CONN.

The program first computes the modified velocities,
densities and layer thicknesses according to the spherical
layer. approx1matlon with SUBROUTINE CURAY [See (43)- (452]
The yg;g program gives the control te SUBROUTINE SETUP

after defining constants and executing CURAY. For each

call ef SETUP, a response of a particular ray is computed
and later all the responses are added. On the argument
list of SETUP are:

K ¢ First Layer Invelved in Internal Reflectien
NS ¢ Starting Ray
NO : Ending Ray Range °£ N
MO : 0 for Finding the First Arrival Time
2 for Subsequent Calls
MPLOT : 0 for Ne Plot of Theoretical Response

2 for Plot

24
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Figures 3.1 (cont;) Ray Configurations

Using the notation, the generalized transmission coef-

MM(E+)  MM(Er) NN (k+3)

cient fm(p) is:
MM (1)

@Rﬁ.,‘&, .K"l"t ‘ 'R&.,&., . eﬁ.i x

MK(L) MK(&+0)

X Twﬁ ) sz,i 2 , _ (46)
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MPUNCH : 0 No Punched Output of Theoretical Response
2 Punch Wanted.
SUBROUTINE SETUP first finds the first arrival of any ray
among all the poésible rays considered - either reflection
of refraction. This is done by FUNCTION TS, which finds
| i's for 1¢1i¢n, KST§ng KEND. For each n
SUBROUT INE FINDZ is called to compute refléction time t
and corresponding p_ by letting dp/dt go to e~ or in the
actual case, minimizing ldt/dp| [See (25)]. TS also
finds the refraction time t, using FUNCTION PTIM. t.
= 1/c

the largest c

is simply t that corresponds to p = sini /cn+1 n+l

[See (25)1.' t, and t, for each n' are stored ~iﬂ"]?(ﬂ).

TS is set to the minimum of all T(n) and returned to
SETUP. Upon returning, TT(l) is set equal to TS, which is
the first arrival counting from t = 0, when the source
explodes. Then, the array TT is defined by incrementing
by DEL, which is defined in MAIN. TS is called only once
in a series of calls of SETUP.

The reflection and refraction constants described above
are defined by calling either CONN,- or CONSTN and CON.
Then, SUBROUTINE HIGH is called. First, by examining the
transmission constant LTP, the deepest layer of pene-
tration is determined and stored in KM. That is, if
'LT_P(J) = 0 for some J, them KM = J - 1, after LTP(J)
have taken non-zero values for all I<J. Again FIND2

computes the reflection time to for the particular ray.
This time, '




and Py is the value of p that makes dt/dp = 0 as before.

Consequently,

= pit Z Th; Lip, /c,

RG is the d].fference between t and t . SUBROUTINE HELP
1is then called to find t_ and dp/dt for p, = l/c

KM+1,

. corresponding to refraction at the KM+lth layer bound-
ary. TG = t. -'to' To determine how the problem of
evaluating k,(f) near t_ should be dealt with, a series

of tests are performed on the magnitude and the sign of
TG with four constants defined in MAIN - TN's. If P< P>
then we only evaluate ‘k(-bj for complex p. Also if TG

is large, then we do mot want to divide the interval
t_-t_ too closely. Thus, SUBROUTINE DELPS is called

to set the interval (DELP) so that the divisions are

closer as p approaches P, and P> and wider in the mlddle.
DELPS performs this operation with the trigonometric

sine function. NO is the dimension of DELP, or the
number of partitions on the real p axis. However, if

TG is not very large, then DELP is defined with equal
intervals. After the real p's (DELP) are defined, HIGH
calls PLN1l and PLN2 to compute i’.,u(:&) . [See(l4)] PLN1
computes \}'M l#) for t ¢ttt , and in this interval p only

takes real values. In case of toé t.» PLN1 is not called

- gince t is fictitious.

The procedure of computing %‘[ﬁ) as described in (26)
is as follows:

i) Take P, = 1/c and increment it by DELP for

KM+1

29
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each p; HELP is called to find corresponding time t,
(TT(I)) and dp/dt (DIP). ,

- 1i) For each p, call ROC to compute part of fm(p)
[see (46)] using the constants defined in either CON or,
CONN and CONSTN. (RPR)

iii) GENCC computes the product of transmission coef-
fients through layers 1 to K, in which the ray simply
travels forth once and back one. (TOT) ‘
1+ ;CRSTPP computes the transmission coefficient [See(30)]3

RET computes the reflection coefficient [See (29)]3
and fn(p) is the product of RPR.and TOT above, which is
set equal to TQ, and PLNl stores the imaginary part of
TQ in RP. ’

iv) 1, (EA) is computed.

v) If the directivity function is desired [See(42)],
then NDIRT > 1 and (42) is computed.

vi) \P.u lt) as described in (19) and (20) are then com-
puted and stored in PHI(I).

vii) Above six steps are repeated for increasing p
till DELP(NO) is exhausted, and.if ‘the time corresponding
to.the last p used is reasonably far from to(criterion
is DLTP) then the procedure is repeated for p incremented
by some small real number till t reaches t,-

viii) At the end of PLN1, TT(1) = t_ and PHI(1) = 0
are set. This is to save computation tiwe, since obvi-
ously the starting time is the refraction time and o lt)=0
if PLN1 is ever called. |

After PLN1 computes ‘l’m(p) for tc(. t< to’ PLN2 computes
\},. ) for t<t including lll,,(fo) [see the first motion
approximation]. As PLNl1l returns to HIGH, HIGH computes
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the complex path of p such that, as in (25), the imag-
inary part of t is zero. To accomplish it, CONTOR is
called, It takes Py and increment it by DELP, and for
‘each p, TIME2 is called to find the corresponding imag-
inary part of p such that Im(t) ¢ § . 1If so, complex

p and dp/dt and real t are stored in arrays PP, DDPT

and TT, respectively, to be used in PLN2, . After p reaches
~ the end specified by DELP, CONTOR repeats the operation
till t reaches to + TMX or tc + TMX wl?ichever is the small-
est., TMX is defined in MAIN. Upon CONTOR's return to
'HIGH, PLN2 computes "fm(f) . It is very similar to

PLN1, but the starting point of PHI(I) is now MO énd the
ending point is M, both of which are defined in CONTOR, .
After \P,,,(P) is computed for t°4 t <t° + T™X, PLNZ deals
with the problem of Y, (f\) as described in the section,

the first motion approximation.

FUNCTION SF2 computes Equation (37). To perform
the integration by the trapezoidal rele; we utilize the
value of 4’,.(;7) already obtained for t -h{tt +h; SUB-
ROUTINE INTERP is called to obtain ¢gLf)at five points
between t-h and t-§ , and t+ § and t+h. In the program
t, = TIT(NOH), t - J = TTI(NO), t°+)' = TTT(MO) and
h = DP. DELL is the partition. t is increased by DELL
starting from to-h,%(‘ol is obtained (interpolated) for
each t by INTERP, and finally (39) is used to obtain f.
At the very end of PLN2, (31) is applied to get dw,tt)
at t = t:o. As PLN2 returns to HIGH, the maximum indices
of the computed time and pressure, TD and PHI in COMMON
/EXACT/, are set equal to M, defined in PLN2, When
HIGH returns to SETUP, SUBROUTINE ADJUST is called to




iocate the index I of the array T in CO&MOM /THY/ defined
in SETUP to be equidistance apart, which corresponds to
TD(1) in COMMON /EXACT/. NFIX = I and returned to SETUP.
Then, TD is shifted in such a way that to lands on somg'
T. (&Mlt;) is the most important point of all) Since
TD is so closely spaced near t = t° that spifting makes
little difference in actual response time, Then, INTERP
is used/again to interpolate PHI for each T (equispaced)
and the values are stored in PP after being multiplied
by NF - symmetry constant defined in CONN or in CONSTN
and CON. In other words, if there are more than two

rays that can be specified by the same values of parame-
ters, then the response must be multiplied by the number
of such rays. '

After PP is filled, if there are no more rays to
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- consider (that is, if KO » 1) then SUBROUTINE SETT is called

to perform the last operation [See (27iL SETT reads
the transfer function SS(KO), FUNCTION CONVS convolves
SS and PP .point by point and the result is stored in

CC. Then, the derivative is taken ahd the result is
plotted and printed (P).

This is the end of the program.



IV. DISCUSSION AND RESULTS
In this chapter some of the yesults obtained are dis-

cussed, the main object being to examine two of the exist-
ing models of the upper mantle [bowling & Nuttli (1964)
and Johnson (1967)] and to find a better model for the
southern United States using the synthetic seismogram
discussed in the previous chapters. )

The upper mantle P-models by Nuttli and Johnson are
shown on Figure 4.1. Both have a-low velocity zone under
the Mohorovicic discontinuity, but in the Nuttlifs model,
the velocity increases almost linearly with depth after
the low velocity zone, whereas in the Johnson's model,
there are two pronounced changes in the gradient - one
at around 450 km and the other at around 700 km. We
shall examine sYnthetic seismograms generated by these
models, and compare them with actual records obtained in
the Bilby underground explosion (1963).

But, first it may be interesting to look at some
sample output of the computer program. fSee Figures 4.2~
4.7] In Chapter II we referred to the high frequency
approximation [éeé Eqn. (1821. Another computer program
had been written without the approximation. Clearly,
this program is more exact, but slower. Figure 4.2 is
the transfer function that each response is to be con-
volved with. Figure 4.3 shows the transfer function
convolved with lll—Eﬂ which we use in our approximate
method. Figure 4.4 is the theoretical response to a
unit pulse. Figure 4.5 is the response from the approx-
jmate method. Note that, in effect, the exact response

is the convolution of the approximate response with
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1/ €. Figure 4.6 shows the approximate synthetic seis-

mogram, whereas Figure 4.7 shows the exact synthetic

seismogram. In terms of amplitude, phase and frequency,

the two synthetic seismograms look nearly the same,

and provide somevidence to the validity of the approxi-

mation.

I .the following figures (4.8-4.12), records of the

Bilby event are shown.

The time scale is the same in

all these fugures and in all the others .that will follow.

But the amplitude is not absolute and only significant

-in one record.

The relative amplitudes and the arrival

times of these records are tabulated in Table 4.1.7

STATION

Source

Raton
NQM.

Shamrock

Texas

Durant
Okl.

Liddie-
ville
La.

Orlando
Fla.

.Table 4.1 Bilby Event (1963)

RANGE
") (km)

LATTITUDE

(o' )

37 03 38
36 43 46

35 04 58

34 02 11

32 08 10

28 28 01

LONGITUDE
( °!
116 01 18
104 21 37
100 21 50

96 13 04

91 52 30

81 13 17

1039

1426

1831 .

2274

3376

TIME MAGNITUDE
(sec.) (A/T)

136.7 11
187.7 165

231.8 374
280.7 915

375.0 265

(all locations are in the Northern and the Western Hemis-

pherej

Date: 13 Sept. 1963 ; Time: 17:00:00.13 oz

Magnitude: m=5.8
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Figure 4.8 Bilby Event
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Note that these amplitudes are determined for the first
arrivals, not the maximum amplitude in general. Thus,

in the short ranges - 1039 km and 1426 km - the amplitudes
are small because they are of Pn not of P, which arrives
later. Notice that the amplitude reaches the maximum at
the range of 2274 km. We will be much concerned with this
fact when we derive a suitable model. 7

In examining the models by Nuttli and by Johnson
for this region of the North America, the followiﬁg procedure
was used, First we ran a simple program which only com-
puted the arrival times - refraction and reflection -
from each léyer by the method described in the previous
chapters., We found the earliest arrival time at a certain
range and found which layer it came from, Then, we ex-
amined the arrivals from the surrounding layers, and the
responses that came in within so many seconds (usually
6 .seconds for>the sake of economy) after the first ar-
rival vere noted. We, then, ran the synthetic seismogram
program to compute the'synthetic seismogram considering
only those responses found earlier.

We first applied our method to the Nuttli's model.
Table 4.2 shows the first arrivals and magnitudes computed
by our program, The synthetic response from the first
arrival to six seconds later is shown in Figure 4.13.

. The synthetic seismogram, Figure 4.13 convolved with'4.3,
is Figure 4.14. Compare the record (Fig. 4.8) with this
figure, The difficulty is that at this range, the ray
travels at very shallow depth so that the subsurface

" structure, which we expect to be extremely non-uniform,
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Table 4.2
First Arrival Times and Magnitudes for the Nuttli's Model

Range (km) Time (sec.) Magnitude
1039 136.0 15
1426 184.0 ---%
1831 232.6 _ 180
2274 . 278.0 140
3376 373.0 34

(* As shown in Figure 4.15, the magnitude for this range

was very small)

gfeétly affécts the ray paths. [see S. W. Smith (1962)]
Our assumption is a lateral homogeneity, which may be
violated here, ther reasons may be that the model has

a negative discontinuity at about 75 km deep which caused
the negative peak in the theoretical résponse and that
we neglected all the rays with weak response (Nz 5); if
more rays had been added, the response would have been
smoother. Similarly, synthetic seismograms were generat-
ed for the other ranges (Figures 4.15-4.18). The author
reminds the reader that the amplitude between any two
seismograms - real or synthetic - may not be compared.

We expected a gradual decay in the amplitude with in-
creasing range, since the Nuttli's model has no gradient
variations. At the range of 2274 km, therefore, the model
does not give a large amplitude and does not give a small
first arrival that the record shows. On this ground, we
concluded that this model does not fit the actual record

in this range, though travel times do fit.
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Next we examined the Johnson's model [See Table 4.5].

Table 4.3
First Arrivals and Amplitudes for the Johnson's Model

Range (km) - Time (sec.) Magnitude
1039 137.0 . ---
1426 : 186.9 : 80
2274 279.2 50

Again a difficulty -qrises at the short ranges. Thé
refracted arrivals are much too early and last too long
in the record, perhaps due to destructive interference
caused by complex subsurface structure. We ran his model
only at three ranges (Figures 4.19-4.21), the most impor-
tant oné.being at 2274 km. The Johnson's medel generated
a small first arrival, but the time between the arrivals
of the first ray and the large second ray is much too
long, and though the largest amplitude in this synthetic
seismogram (Fig. 4.21) is very large, there is little
resemblance to the actual record at the range.

We, then, constructed some models with the effort
concentrated on the seismbgram at 2274 km. The models,
along with the Nuttli's, are shown on Figure 4.22,

We took the negative discontinuity at 75 km deep. The
first model (Model I) has very small change in the slope
from the Nuttli's model. The seismogram and the theo-
retical response at 2274 km are shown on Figures 4.23
and 4.24.  Note that the period of the transfer function
(Figure 4.3) is 1.15 seconds, and the distribution of

49



Sgnthetio Response  Johnson 1039 km

l

B L% 3.0 AL% 6.0 1.5
sec.
Figure 4.19
SSnfhetib 'k’es?onse Johnsen 1426 km
)

\/
r T T v i ! '
0 I.5 3.0 45 1.5

Figure 4.20

60
L

Q.0

50



Figure 4.21 sénthefic T\)%FOY\S& Johmsonn 2274 km

T
(0.5

o,

139



1

10

(o)

P- VG'OCftg (K"m/Sec)
~ .

(O}

o oo
'. .‘/ 3 -
Figure 4,22
Medels I,II and III
W
N
] | ] 1 L { | ] J
loo 200 300 400 500 600 700 900 1000

Depth (hkm)



0,032

Qo4

synthetic Response

%)

~.0017

o
pwee”

Model I

53
2274 kwm

(o]
Q) ~j—c——

Figure 4,23
0 1.5 3.0 4a's 6.0
Sec.
Theoretica| Response Mode! 1 2274 km
Figure 4,24

4 ."5— 6.0



the.peaks in Figure 4.24 seemed to interfere destructive-
ly with each other to generate a poor seismogram. (The
synthetic seismograms for all these models are similar
to the Nuttli’s at other ranges, with the exception of
the one at 1039 km without the negative peak., The ampli-
tude at 1831 km is 0.001).

Model II has a more pronounced gradiént change at
510 km. This gradient gave a more prominent second -
arrival starting at 1.1 seconds after the first arrival
[See figures 4.25 and 4.26]. Note that the significant
factor is the area under the theoretical response, not
simply the height of the peaks. 1In this model the sepa-
ration of the peaks helped to generate a better synthe-
tic seismogram, but the fit with the record, especially
in the first second is not satisfactory. |

Model III has another high gradient region at 430
km in addition to the one at 510 km. The first arrival
is much smaller and the amplitude in the synthetic seis-
mogram improved [See Figures 4.27 and 4.28]; The wave
shape improved as well as the amplitude, somewhat. But
a close examination of the actual record indicates that
we need a small peak for the first arrival then a much
larger peak at 1.5 seconds later. 1In order to obtain
a responserlike this, Model II is the best of all we have
tried, the difficulty being that the first and the second
arrivals were too close. To attdn a wider separation,
further models were studied. Models IV and V are shown
on Figure 4.29. The theoretical responses and the syn-

thetic seismograms are on Figures 4.30-4.33." The con-

54

tinued high gradient at 300 km and flat gradient follo&nnz
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in Model IV gave too late second arrival as shown in
Figure 4.31.

On the other hand Model V gave 'a better fit., For
some reason the first arrival in this model is too large,
and when experimentally the interfering phases were
eliminated - Model V' - [See Figures 4.34-4.35] the
synthetic f;sponée looks much better.

We conclude that Model V gives the best correlation
to the éctual record. Perhaps thé first arrival can be'
made smaller by less velocity contrast at around 260 km
where the gradient chaﬁges. Because of the sensitivity
of the program to any minor change, an adjustment of an
order of a few thousands of the total velocity made a
significant difference in the shape of the synthetic
seismogram. The author believed that making adjust=-.
ments of such an order to achieve a better fit was only
tedious and achieved little. Therefore, the author
claims that Model V or a model extremely similar to it
‘can generate satisfactory synthetic seismograms. [?ee
Table 4.4 for the P-velocity] Thouzh Model V has been
claimed satisfactory, we have yet no way to prove the
uniq@?ess or otherwise. However, beside the conventional
method of determining the P-velocity structure usiﬁg
only the travel time information, we now have a much
powerful method - Synthetic seismogram - to determine
more delicate structure variations.

For the completeness of the study, the synthetic
seismograms of Model V at ranges 1831 km and 3376 km
are shown on Figures 4.37-4.40. As mentioned earlier,

since the gradient is nearly flat near the depth where
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Table 4.4 Model V P-Velocity

Depth (km) Velocity (km/sec)

0o ~6.59
40 6.61
40 ' . 7.93
60 7.93
80 7,80
110 | 7.80
150 7.93
260 | 8.64
400 - 9.10
508 - 9.41
525 , 9.80
650 10.55
850 10.98

1000 _ 11.29
[See also Figure 4.36] V

the first ray bottoms, the theoretical response take a
similar form to a step function, and hence the synthetic
seismogram is very similar to the transfer function.

The reason why the record does not resemble the corres-
ponding synthetic seismogram after a few seconds may be
that there is a complex interaction due to the Moho or

due to very shallow structure of the earth.



V. CONCLUSION

. In this thesis, we attempted to investigate the
P-velocity structure in the upper mantle of the earth
in the southern part of the United States, using a new-
ly developed technique.of synthetic seismograms, instead
of the ponventional Wiechert-Herglotz method.

Although the validity of this new method is yet teo
be proven for the case of spherical layers, the method
is known te give correct travel times. The method com-
putes synthetic seismograms which can contain all the
compressional response from all tﬁe depths - not enly
the the travel times and d?t/d 82, which were the only
information obtained from the conventional method.

Due to the increased amount of information, we were able
to examine models more accurately with added criteria
such as amplitute as functions of time and of range,

or the period and the phase of seismograms, which had
seldom been considered before in the study of velocity
structures.

Among two existing models we examined, the model
by Dowling and Nuttli (1964) reached from the same data
EﬁILBY Report (1963)] as we used, did not give satis-
factory results. Due to the linear increase of the P-
velocity with depth, the seismogram generated by this
model were decreasing in amplitude with range. On the
other hand the record from the Bilby event showed clearly
that, at the range of 2274 km, there was a small first
arrival about 1.5 seconds befere a very large major
P-arrival. The other model we tested was the Johnsoﬁ's

(1967) calculated from the data obtained at the Tonto
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Forest Seismological Observatory in Arisona. Due to
its two prominent steps in velocity, the synthetic seis-
mogram at the range 2274 km showed a small first arrival
followed too late by a major P-arrival. Therefore, it
showed little resemblance to the record at this range.
We then constructed some models with the gorrect arrival
times, and tested them,xwith the main emphasis on the
range 2274 km, - Among the five models tested, one shewed
a satisfactory fit to the record. This model, Model V,
has a pronounced step in velocity at the depth of 500 km
| and gi#es a strong arrival at the range 2274 ka from
this step. ,

Though there are more improvements to be made and -
approximations to be sheown valid rigerously, we believe
that this method of computing synthetic seismograms is
extremely useful and convincing because of the remark-
able resemblance between the synthetic seismograms and
the records which we demonstrated in this thesis, at
least for the upper mantle vwhere the curvature is small.

The uniqueness of the solution cannot be proven
at this stage, and therefore, the structure proposed as
Model V in this.thesis may not be the only representation
of the upper mantle. There may be other models that
give similarly geod seismograms. Nonetheless, by adding
more criteria to these provided by the conventional
method of computing velocity as a function of depth,
we may be able to limit the pcssibilities.
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APPENDIX
On the following pages, the computer program discussed
in the thesis in Chapter III is listed,



C ose

MAIN PROGRAM
COMMON/TINP/DELTMsDLTMsyMTDsDLTP s JOSNDIRT
COMMON/STUFF/C(100)sS(100)sD(100)sTH(100)sX
COMMON/TFIX/TN1sTN2sTN3 s TN&4 s IN1sIN29sIN3y NG
COMMON/CONFIX/DELsNNsNDPsTMX s XDIMs YDIM4DP »KO
COMMON/THY/TT(8000)sPP(8000)
COMMON/SYTH/XD11sYD11+sXD22sYD22+sXD33,YD33
COMMON /FOURCT /MF s NMF s KMF s KNMF

COMMON/PLOTC/CONoNNF o NPT
CC AMON/LPRINT/PRNT s PRNTSsKST s KEND
LCGICAL PRNTsPRNTS
PENT = FALSE.

PRNTS = «TRUE.

JN1=12

JN2=10 .
JN3=8

JN4=100

TN1=.8

TN2=e2

TN3=,1

TN4=,01

NDIRT=0

NNF=1

NP =2 .

X = 227440

CO=(2e/X)%%45/(3e1416)

CON=CO

MTH=3

DLTM=.5

DELTM=1.E=5

JO = 45

CALL CURAY(JO)

DLTP=.04

XD11=2.
¥D11=2.
xD22 =
xD33
XDIM
YyD22
YD33
YDIM=2,
DP=,04

monwonon

EaE R A
e o o o o
[oNoNoNs Ne)

. DEL=DP

NOP=15

TMX = 600

NN = 150

MF=0

CAML NEWPLT ('M52071416267"'s'"WHITE 14 'BLACK!)
KC = 0

KET = 17

KEND = 20

CALL CLOK1

CALL SETUP (185091323s09250)
CALL CLOK?2

CALL CLOK1

CALL SETUP (24503191929250)
CALL CLOK?2

CALL SETUP (2730919292520}
KO = 75

CALL CLOK1

CALL SETUP (29903519232s092)
CALL CLOK?2

CA.L ENDPLT

A-2



CALL EXIT A-3
END :

* Subreutines CLOKLl and .CLOK2 are te find the time spent between
the twoe calls; they are not listed in the Appendix.



BLIJOCK DATA
Coeone TEST NOe«5 : A-4

COMMON/STUFF/C(100)sS(100)s0(100)sTH(100)sX

DATA TH/0e0340609204092%10603300920%¥20e02%1060922%2040/

DATA C/0e0001 362576939 7e¢8897 6843783 7e8497e¢8838¢0038413
ABe2598e¢3838450598¢6138e57798e¢74398e8138e87738494399401
BOe063961299e1799¢23994289943799¢58994799949910402»
Cl0al1491062591063731044%99106589106639510.€8910672910477510a82>
D1048791C692310696911e019511e¢06911el11311e1631162911625511e2/

/ DATA S/0e6000193e¢7 3404998 e4294e¢3694e33446369Leb29LebtbsbGaDs
AL e5594659 046643806994 670940894 4859406994e¢9535400
B5¢0435¢0935¢13355018356229563195e429545395e6435e73
C5e8335e9235¢029601196¢1696629662436628965e3396437
06041 ,6045 96.499605396(379606196066’65796074’6.78/

DATA D/06000132e¢8493e4493444293 044403 44E 9.3.44593.47593.495’30529
A36¢5433e57930593366936629346393e6593665924689367
B3e7193e7253¢7433e7593ea769347833e829348693¢8993492
C3095934698344019440494405944069440794e0836440%904410
0401194012y4.1394.1434.1594.1694.l7s4.1894ol994o2/

END



e e g

® _ SUBROUTINE ABJUSTINFIX).

COMMON/THY/T(8CCO),PH(8000) ,FF(600)
. COMNMON/EXACT/PHI{500),TD(500)NEND,NM
M=NM&1
_ TR=TD(M) _ e e

1=0

80  I=Y8Y
IF(T(I).GT.TR) GO TO 81

 _eoTO 80 o . o
81 ONE=TR-T(I-1)
_DPL=T(I)-TR _ e
IF(ABS(DNE).GT.ABS(DPL)) GO TO 83

. DELTA=-DNE
NFIX=1-1
GO TO 85

83 DELTA=DPL
"85 T DO 84 J=1,NEND  TToTTTTTTTTITOO
TO(J)=TD(J)EDELTA

T END
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A-6
__SUBROUTINE CON(N,K1,K2) e e
COMMON/CFIX/NT4KT4M 4N 4LT4LTP(100),4NF
~_COMMON/CN/NNT(100),¥MT(100),#MB(100),NNB(100),LUC1CC),LB(100),

2LL(100),NNF(100)

00 5 J=1,100C

5 LTPLJ) = 0.0
NT=NNTUN DY e
KT=MMT(N)
_______dB=MMB(N) o o
NB=NNB(N)
LT=LL(N) e

LTP(K1)=LU(N)
LTP(K2)=LB(NY e
NF=NNF(N) .

. RETURN _ ’

“TTEND : R

e e - e — e e e et e e o e e e e e S e | 4 o o o e et oo e tn o et 3 R e o et e o o e o m et o ot et ot e o e it e e e e e
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" SUBROUTINE CCONN(NsK,KN) i
COMMON/CFIX/NT4KTo¥B, NB’LT'LTP(IOO)'NF
___COMMON/NFIX/MM(100),NN(100),MT(100)
Do 25 J=1,1C0
MMNLJ)=0
NNUJ)=0
RTINS0
LTP(J)=0
.25 CONTINUVE ___ -
K1=K&1l
- K2=K&2
K3=K&3
- K4=K&4 i i ) L e
MT{K1)=1 , N
GO T0 (142935%49516+7+8+9+10) »N
1 MM{K1)=1
L RMIKAY =Y e
NN(K1)=1
o LTPUKYY=A e
LTP{K2)=2
_LTPIK3)=2
LTP{K4)=2
UNFE 2 e
MT(K2)= -1
RT3 S e e e
MT(K4)=1 -
GO0 YO 30
2 MM({K1)=1
MM(K3)=1
AN{K1)=1
LTP(K1)=4
LTP({K2)=2
LIPUIK3)Y=2 . .
NF=2 '
MT(K2)=1
MT(K3)=1
. GO T0 30
3 MM(K2)=1
MM{K4)=1 e
AN(K1)=1
LTPIKY)=4
LTP(K2)=4
LTP(K3)=2
LTP(K4)=2
NE=2 o
MT(K2)=2
_MTIK3)=1 .
MT(K4)=1
_ . _. GO Y0 30______
4 MMIK2)=1
o PMIKRe)=L . . S
AN(K2)=1
o LTP(KYLY=2
LTP(K2)=4
LTP(K3)=2
LTP(K4)=2

NF=2 - . - —




LMT(K2)=1
. MT(K3)=1
_MTUKG)=1

GO TO 30
5 NMMUK2) =Y
MM(K3)=1
i NN Y=Y
LTP(K1)=4
__LTPIK2)=4
LTP({K3)=2
. CONFE 2
MT(K2)=2
~ M TR L
GO 1O 30 , .
6 MMIK3)=2
NN(K1)=1
___________ LYPUKY Y =4
LTP(K2)=4
___________ LY PR3 Y= e
NF=1
. MT{K2)=2
MT(K3)=2
G0 TO 30 e
7 MM(K3)=1
D 2 . LD
NN(K1)=1
LTPIK1)=4
LTP(K2)=4
LTP{K3)=4 .
LTP(K&)=2
CONF R e
MT(K2)=2
MTY(K3Y=2 . e
MTI{K&)=1
GO0 TO 30 o i
8 MMIK3)=1
MM{K&)=1 i S o o o o
NN(K2)=1
LTPtKNY=2 )
LTP(K2)=4
LTPIK3)=4 B - e -
LTP(K&)=2
NS
MT(K2)=1
 MTU(K3)=2 e o ~
MT(K4)=1
B0 N0 30
9 MM(K&)=2
NN =Y

LTP(K1)=4
__LTP(K2)=4 o ] o
LTP(K3)=4
__LTP{K4)=4

NF=1
MT(K2)=2 o L e -
MT(K3)=2

L MTIRA)=2 S



I GO T0 30 _
10 MM(K4)=2
NN(K2)=1
LTP(K1)=2
LTP(K2)=4
LTP(K3)=4
LTP(K&4)=4

NF=1 - o
o kTtk2)=1 - .

MT(K3)=2

MY KA ) =2

30 CONTINUE
oo END T




SUBROUTINE CONSTN(NGC) amey
COMMON/CN/NNT (1C0) sMMT (10C) sMMB(100) sNNB (100) sLU(100) sLB(100)
ILL(10C) sNNF(100)
DO 5 J=1sNO
NNT (J)=0 .
MMT (J)=0
MMB(J)=0
NNB(J)=0
LU(J)=0
LB(J)=0
NNF(J)=1
LL(J)=0
“ONTINUE
N=1
MMT (N)=1
LULN)=2
N=2
NNB(N)=1
LUINY=2
LBIN)=2
LL(N)=1
N=3
MMT (N)=2
NNT (N)=1
LUIN)=4
N=ft
NN 3(N)=2
MMB(N)=1
LU(N)=2
LBIN) =4
LLIN)=1
N=5
NNB(N)=2
NNT(N)=1
LUIN) =4
LB(N)=4
LLIN)=2
N=6
NNB(N)=1
MMT (N) =1
NNT(N)=1
LUINY=4
LB(N)=2
NNF(N)=2
LLIN)=1
N=7
NNB(N)=3
MMBI(N)=2
LUIN)=2
LBIN)=6
LLIN)=1
N=3
MMT(N)=3
NNTIN)=2
LUIN) =6

NNB(N) =2



MMT (N)=
LLIN)=1
MMB(N)=1
NNT(N)=1
- LUIN) =4
LB(N)=4
NNF (N) =2
N=11
NNB(N)=2
MMT(N)=1
LLEN)=2
NNT(N)=2
LUIN)I=6
LB(N)=4
NNF(N)=3
N=12
NNB(N)=3
MMB(N)=1
NNT(N)=1
LU(N)=4
LB(N)=6
NNF(N)=2
LL(N)=2
N=13
NNB(N)=1
MMT (N)=2
NNT (N)=2
LUIN)I=6
LBEN)=2
NNE(N)=3
LLIN)=1
N=14
MMT (N) =4
NNT(N)=3
LU(N)=8
N=15
MMT (N)=3
NNS(NY=1
NNT(N)Y=3
LUIN)=8
LB(N)=2
LL(N)=1
NNF(N) =4
N=16
NNB(N)=2
MMT (N) =2
NNT(N)=3
LU(N)=8
LB(N)=4
NNFIN)=6
LL(N)=2
N=17
MMB(N)=1
NNTIN)=2
NNB(N)=2
MMT(N)=2
LUIN) =6
LBIN)=4
NNF(N)=3
LLIN)=1
N=18
MMT (N)=1
NNS(N)=3

1 .
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MMB(N)=2
NNT (N)=1
LUON) =4
LB(N)=6
NNF(N)=2
LLIN)=1
N=19
MMT(N)=1
NN3(N)=3
LL(N)=2
MMB(N)=1
NN (N)=2
LU(N)=6
LB(N)=6
NNF(N)=8
N=20

MMT (N)=1
NNB(N)=3
NNT(N)=3
LL{N)=3
LUIN)=8
LB(N)=6
NNF(N) =4
N=21
NNB(N) =4
MMB(N)=3
LUIN)=2
LB(N)=8
LL(N)=1
N=22
NNB(N) =4
MMB(N)=2
NNT(N)=1
LL(N)=2
LUIN) =4
LB(N)=8
NNT(N)=13
N=23
NN3(N)=4
MMBIN)=1
NNT(N)=2
LLyN)=3
LUIN)=6
LBi{N)=8
NNF(N)=3
N=24
NNB(N) =4
NNT (N)=3
LL{N)=4
LUIN)=8
LBIN)=8

END

A-12



e  FUNCTION CCNVS(FA,FP,DEL,NF,N) A-13
' CIMENSION FP(1),FA(1)

: COMPUTES CCNVOLUTICN OF FP AND FA T=DEL*2N
C o NF MUST BE 00C
NN=N

NP=22NN __
EVEN=FP(IP)*FA(NP)

IF{NDO.LT.2) GO TO 11
DO 10 I=2,NCO

ODD=0CDEFP(IP)*FA(NP)
1P=1PE1

10 CONTINUE
11 CONTINUE
ENDS=FP(1)#FA(2=NNEL)&FP(IPE1)*FA(NP-1)
_________ CONVS=DN=(ENDSE4.#EVENE2.20CDY/3.

RETURN
2 CONVS=0.

TELRETTTT EN_[') ''''' ST T T T T LTI T T T T T T T T ST T T T T e T e m e e




TTUTTTTCOMPLEX FUNCTTION CRUP,CY D ) o A-14
COMPLEX P,4CZ

U=REAL(CZ)

TTUTX=AIMAGICZY T T

R=SQRT(X=XEU=U)
T W1I=ABS(REU) /2.

W2=ABSIR=UN/2e
"""""" RI=SCRT(WI)

R2=SQRT (W2) _ —

T CR=RI-R2=(0.y1.)




COMPLEX FUNCTION CRSTPP(PsV13S1sRHOL1sV2sS2sRHO2) A-15
COMPLEX CRsPsE1PsE2P
COMPLEX E19E2sC19C29C39C43sC5sCHsT
COMPLEX AsBsAP,BP
REAL K1sK2sK3sK4
K4eRHO2%S2%%2/ (RHO1#S1%%2)
Bl=e5/(1-K&)
B2=e5%K4/{K4-1)
K1=B1/S1%%2
K2=B2/S52%%2
K3=K1+K?2
E1=CR(PsV1) .
E2=CR(P4V2)
- E2P=CR(P»sS2)
E1P=CR(PsS1)
Cl=(P*#2 )% (K3—P*%x2)%%x2
C2=P%%#2%E1%E1P*E2P
C3=(E1*#E1P)#(K2~-P%*2)%%2
C4=E2P* (K1—-P*%P) %¥¥%2
"C5=K1%¥K2%E1*E2P
C6=K1%K2*E1P
AP=C1+C3-C5
BP=C2+C4~Cb
T=2e ¥K1#E 1% (E2P*(K1-P¥%2)-E1P* (K2=P*%2}))
B=AP+E2%BP
CRSTPP=T/B
RETURN
END



COMMON /SENSE/ CRCSGQ(100)
DIMENSION CEPTH(100)

T2 FORMAT (IHIy10XVCURAYT/TI1X*RANGE'F1C.0/16X ' THICKNESS'9X"DEPTH!SX'P
E-VELOCITY*5X"S—-VELOCITY*8X*DENSITY"')

REAL*8 DRCSC
PRINT 2, X

710 DEPTH(J) = DEPTF(J-1) & (TH(JIETH(J-1))/2.0

DEPTH(1) = THI1) /7 2.0
00 10 J = 2,40

Q@ = 6371.0 /7 (6371.0-DEPTH(J))
C(J) = C(J) = Q

D(J) = @

i TH{J) = TH(J) = Q

_________ DRCSQ(J) = 1.0 / DBLE(C(J))#e2
RCSC(JY = CRCSQ(J)

______ 5 RSSC(J) = 1.0 / S(J) =« 2
PRINT 1, (JyTH{J)4CEPTH{J),C(J),S(J),D(J),Jd=1,J40)

1 FORMAT (15,5X35G15.4)

RETURN

] ENRO e



SUBROUTINE FIND2 (Q,K,DEL,DET,PQyTQsKNy,N) -~ = A-17
__COMMON/STUFF/C(100),5(100),D(100),TH{100),X

COMMON /SENSE/ RCSQ(100)
__COMMON/CFIX/NTsKToyMByNByLT»LTP(100),NF ) . e

COMMON / LPRINT/ PRNT,PRNTS
LOGICAL PRANT,PRNTS

Jl K&l

KCUNT = KOUNT & 1

R PPl
BLTEM = 0.0
DO 10 J = 1,K
E(J) = DSQRT(DABS(RCSQ(J)I-PSQ)).

DO 30 J = J1,J2
E(J) = DSQRT(DABS(RCSQ{J])I-PSQ))
30 BLTEM = BLTEM-TH{(J)=LTP(J)/ELtJ)
o BL =X & BLTEMsp
IF(ABS (DEL).LF.1.E-18) GO 10 1
______ 6.1F (DABS(BLY.LE.X/DET) 60 YO X ...
2 IF(BL)3,1,4
3 DEL=-ABS (CEL#.5)
GO T0 5

4 DEL=ABS{DEL=%,.5)

IF (KOUNT.GE.5) GO T0O 7
Q8 =_Q/10.0 _

DEL = TDE
GO T0 8

7P0=7P

11 _TOTEM = TOTEM & E(J) = TH(J)
TOTEM = TCTEM = 2.0
D0 31 J=J1,J2

31 TOTEM = TOTEM & E(J)=TH{JI=LTP(H
T0O = P#X & TOTEM

TIF (DABS(BL).LT.1.CE-6) RETURN

........... IF _(.NOT.PRNT) REVURN
PRINT 17, PCy TC, BL

_ 17 FORMAT (1H0,4X'PO = 'G18,6,10X'TQO = 'G18.6,10X*BL = *'G18.6)
RETURN

T ___END - I R




e e A L1 §

SUBROUTINE CELPS_ (NNN,RG,NNsN)
CIVENSION PP(50)
COMMON/SPE/CELP(4060),001,0D2,C03,004,N0

" RG=RG-1.E-08 o
~ PI=3,141593 o
AN=P1/(NNN#*#2.)
e dENN
A=AN
. DELP(J)=RG*{SIN (A)x=N) — )
TO=DELP(J)
L AEABAN
PP(1)=DELP(1)
B S £ S
PP({J)=RG*SIN(A)==N .
. DELP(J)=PP(J)-PP(J-1) :
DELP(J)=ABS (DELP{J))
e YO=TO0EDELP )
A=AEAN
. IFUTIG.LT.RG) GO YO Y
2 NO=J-1
- __END = — N
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e _COMPLEX FUNCTION GENCC(P,N)
COMPLEX P,CRSTPP4GCD,GCU,TO
__ . DIMENSION CCD(1CO),GCU(100) o
COMMON/STUFF/C(100), $(100),0(100), TH(IOO)yX
 KK=N-1 e
IF(KK.LT.2) GO TO 40
DO 34 J=2,KK_ e
VV1=C{J)
. S§S1=sty) .
RR1=D(J)
o vv2=CtJyel)
§S2=S(J&1l)

_RR2=D(JE&1)

CCD(J)=CRSTPP(P,VV1,SS14RR1,VV2,552,RR2)
 GCU(J)=CRSTPP(P,VV2,5S2,RR2,VV1,SS1,RR1)
35 CONTINUE
40 V0=
IF(KK.LT.2) GO TO 3¢
D@35 J=24KK
"TO =TO*GCO(J)*GCU(I)
35  CONTINUE
36 GENCC=TO
L END



TSUBROUTINE HELP(KyN,P,TTP,DTP,KN) 7 A-20
COMMON/STUFF/C(100),S(100),C(100},TH(100)4X,RCSQ{100),RSSQ(100)

COMMON/CFIX/NT 4KToyMBoNByLT,LTP(100),NF
J1=K&1

J2=J1EKN

_________ P S = PR
BLTEM = 0.0

_________ YOTVEM = 0.0
DO 11 J = 1,K

_ E = SQRT(ABS(RCSQ(J)-PSQ)) e _
TOTEM = TOTEM & ExTH(J)

11 LTEM = LYEM-TH(J)/E
TOTEM = TOTEM = 2.0,

__________ BLYEM = BLYEM * 2.0
DO 31 J = J1,42 .
E = SQRT(ABS(RCSQ(J)=PSQ))
BLTEM = BLTEM - TH{J)=LTP(J)/E

.31 TOTEM = TOTEM & E = THUM)=LTP(SY
BL = X. & P*BLTEM

_________ T0 = PeX & TOTEM
DTP=1./8L
TTP=TO
RETURN

T ENO T e



TTSUBROUTINE FIGH(NDP,TMX,K.KI,N) ALY T
- COMMON/TFIX/TN1,TN2,TN3,TN4,JN1,JIN2,JIN3,UN4 e
T COMMON/CFIX/NT KTy MByNB, LT, LTP(100) 4NF T
__COMMON/STUFF/C(100),5(100),0(100),TH(100),X o B

" COMMON/EXACT/PHI(500),TD(500) NENDyNM
COVMMON/MAGIC/PP(300),0DPT(300),TT(3C0)

o covvoﬁISPE/oELP(400).001.002.003.004,N0 """""
COMMCN/PATHC/POs O, KK

TTTTTTTTCOMMON/TINP/DELTM,DLTMyMTD,DLTPyJOyNDIRT o
COMMON / LPRINT/ PRNT,PRNTS L o B A
LOGICAL PRNT,PRNTS o
BIMENSION E(100)

"""""" COMPLEX PP,COPT T

_________ KKK .
KM=K "
J=K

17 J=JE1

o YRLLTPUS).LY.1) GO YO X6

- KM=J

_________ GO YO T

16 CONTINUE

333 FORMATI(6110)
' IF{.NGT.PRNT) GO TO 4
PRINT 1

PRINT 3 -
3 FORMAT (9X*K'OX'N'8X'KM')

WRITE (64233) KyNyKM
4 V2=C(KME&1)

T XM=AMAX1 (XM ,C(J))
98 _ CONTINUE e
DEL=1./XM
B PE= LB
DET=1.E612
o KN=RM=K _ o
KP=KN-1

CALL FIND2 (P,KK,DEL,DET,PO,TO,KP,N)
RG=A S(PO-1./V2)

CALL HELP(K4NyP,TTP,DTP,KP)

—Ye=tvp T
e XGEYO P

IF(PO.LE.1./V2) GO TO 6
IF{(TG.GT.TN1) GC _TO 6

IF(TG.GT.TN2) GC TO 8
IN=JN2
. IFITG.GT.TN3) GC T0 8
JN=JN3
~...8.CZ = RG/UJNEL)
DO 15 J = 1,JN




““““““““ BECP(TI = Q7 T T e A2
15 CONTINUE

__IF(TG.LT.TN4) GG TQ 2
GO T0O 19

7 EORVAT (1HO,4XTV2Z = TGL3.6,5X'XM = 1G13.6,5X'P0 = 'G13.6/5X'RG = *
£G13.6,5X'TC = 'G13.6,5X*'T0 = *G13.6/5X'DELP'/(G15.6))

19 IF(PO.LE.1./V2) GO TO 2
_________ CALL PLN1(PG,TO,KyN,TCyKN,V2Y
2 MO=NOE2

IF(TG.LTL.TN4) MO=2

CALL CONTOR{TMX4MsKNyN,MO)
IF (.NOT.PRNT) GO TO 620

__________ NEND=M
NM=NO
__________ IF(PO LT 1/ V2) NM=0
IF(TG.LT.TN4)NM=0 -
IF(PRNTS) PRINT 9, (TD{LLM),PHI(LLM),LLM=1,NEND)
9 FORMAT (1HO,14X'TD'23X'PHI'/(2625.7))
__________ RETURN
==""END " -



TTGUBROUTINE INTERP (XP,YPeN,X,Y) 77 7 a3
*  DIMENSION XP(N),YPIN)

REAL DIF1,CIF2,CIFY,DR
1 TF (X GT.XPIN)IGO TO 6 o o L

IF (X .LT. XP(1)) GO TO 6
2 DO 10 I=1,N

DIFl=XP(I)} -XP(K})

DIF2=XP(1) -X
RATIO = DIF2/DIF1

IF (YP(I) .€T. YP(K)) GO TO 4 .
5 Y = YP(I) & DR
RETURN
_____ 4 Y= YPUI) = DR
RETURN-
CA02 YEY P
RETURN
6 Y = 0.
RETURN




TTSUBROUTINE PLNI(PO,TO, Ky Ny TC, KN, V2) 77 o A2 e

COMMON/TINP/DELTM,OLTM,MTD,0LTP,JO,NDIRT

CONNUN/STUFF/C(100)75(100),0(100)1TH(IOO)yX

T COMMON/EXACT/PHI(S5C0),TT(500),NENDsNM - T
COMMON / LPRINT/ PRNT,PRNTS ,
TTTTTTTLOGICAL PRNTLPRNTS T T T T e
COMPLEX RPR,ROC,Q,TOT,GENCC,YQ .
- %«i=x&ry ey
K2=K1&1
KP=KN-1 T . B - B
________ P=la /N2 e
B DO 80 I=2,NC o T
J=1-r
"""""" P=PEDELP(J)Y T Ty e

Q=P&0.#(0.y1.)

CALL HELP(K,NyP,TTP,DTP,KP)
TT(I)=TTP

RPR=ROC(QsKyKN)
TOT=GENCC{CyK)

TQ=TOT#RPR
RP=AIMAG(TQ)

EA=(1.7C(2)%=22-P2P) 2= .5
IF(NDIRT GT.1) GO 70 1

R1=EB##2-Pxp

R2=R1#*%264 ,#P=xPuEA=EB
R3=R1/(R25S(2)%x2)

TF (PRNT) PRINT 10, EA, EB, R1l, R2 .
FORMAT (1HO,'EA ='G13.635X'EB ='G13.6,5X'R]1 ='G13,645X'R2 ='G13.6)

9

80 _

4

PHT(1)=(RP2DTP2R32Pex.5)

_IF_(PRNT) PRINT 9,P,DELP(I),TTP,DTP,TOT,RPR,R3,PHI(I),RP
FORMAT (IR0, P =¢GI5.6,5X DELP =1G15.6,5X TTP =1G15.6,5X OTF =G
_£15.6/1 TOT =12620.6,5X'RPR = '2G20.6/' R3 ='615.6,5X'PHI ='G15.6

T§45X'RP  ='G15.6)
CONTINUE

CIF(TO-TTP.LT.DLTP) GG J0 3
PP = PO - P :

P=P & PP/2.0

IV =TTP

CALL HELP{(KyNyP,TTP,DTP,KP)

RPR=ROC(QsKyKN)
TOT=GENCC{G,K)

TQ=TOT=RPR
RP=ATMAGI(TC)

__IF(NDIRT.GT.1) 6O TO 5

~_ R1=EB=*#2-Pxp

EA={1./C(2)%22-P=P)xx,5

R3=1./EA

EB={1./S(2)=22-PxP)*%,5

R2=R1##2864.5P»PsEA®ER



e __IF (PRNT) PRINT 10, EA, E , Rly R2
6  PHI{(I)=(RPaDTP=R3=Pu#%,5)
IF_(PRNT) PRINT 9,P,DELP(I)4TTP,DTP,TOT,RPR,R3,PHI(I)sRP

TG0 T0 4
3 ° TT(1)=TC




SUBROUTINE PLN2(POsTOsKsMOsMsKN)
COMMON/TINP/DELTMsDLTMsMTDsDLTP s JOSNDIRT
COMMON/MAGIC/PP(300)sDDPT(300)sTT(300)
COMMON/EXACT/PHR(500) s TTT(500) sNENDsNM
COMMON/STUFF/C(100)s5(1C00)sD(100)sTH(106) sX
DIMENSION FF(50)
COMMON / LPRINT/ PRNTsPRNTS
LOGICAL PRNTsPRNTS
COMPLEX PsROC sFMsEL
COMPLEX PPsBTsDDPTsRPsRPPsGC
COMPLEX RBTsTLsCRsRD»GENCC
COMPLEX EAsEBsR1sR2sR3sPH
KP=KN—-1
K1=K+1
K2=K1+1
pC 5 I=MOsM
TIM(I)=TT(I)
P=PP(I)
RP :ROC(PsKsKN)
GC =GENCC(PsK)
EA :CR(PsC(2))
IF{NDIRT.GTs1) GO TO 32
R3=1./EA :
GO TO 38
EB=CR(PsS(2))
R1=EB*%*2~-P*pP
R2=R1¥%¥2+4 ¢ P *P*EAXEB
R3=R1/(R2%S(2)%#2)
BT=CSQRT(P)
PH :R3%DDPT(I)*GC*RP*BT
PHR(I)=AIMAG(PH)
IF(PRNT) PRINT 9s Ps GCs RPs R1s R2s R3,ZAs EBs PH
9 FORMAT (1HOs4X'P = 12G1846/5X1GC = 12G1846/5X'RP = 12G18e6/
+5X1R1 = '2G18¢6/5X1R2 12G18e6/5X'R3 = 12G18456/5X1EA = 12G1846/
+5X'EB = 12G18+46/5X'PH 12G1846)
CONTINUE :
P=PO*( 1-90.)“"00"(‘(00’1‘)
I=M0~-1
R=PO
SF=SF2{QsKsKPsN)
TTT(I)=TO
GC=GENCCI(PsK)
RP=ROC(PsKsKN)
IF(NDIRTSLTel) GO TO 2
EA=CR(PsC(2))
EB=CR(PsS(2))
R1=EB#**2-P#*P
R2=R1%¥%2+4 ¢ #P*PXEA*EB
R3=(R1*¥EA)/(R2%S(2)%x%2)
ROP3RPP%R3
PRE=REAL(RPP)
PIMRAIMAG(RPP)
IF(«NOT.PRNT) GO TO 3
PRINT 1s Qs SFs PREs PIM
PRINT 9s Ps GCs RPs R1s R2s R3sEAs EBs PH
1 FCRMAT (5X'Q = 'G18.6310X'SF = tGl846/
+5XIPRE =1G18e6:10XPIM =1C18e6)
3 NC :MO-2
DP DL TP
F]. :Oo
SUM'-:OQ
IF(MO«LE«3) GO TO 46

A-26
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41
46

42

43

44

TNN3TO-DP
CALL INTERP(TTTsPHRsMsTNNsY)

F1:0 .

FF(1)=Y )
SUM3SUM+2 ¢ #¥PIM®* (TO-TTTINO) }#%,5
IF (PRNT) PRINT 4, SUM

FORMAT (5X'SUM = 1G1l846)
DELL=(TTT(NO)-=TNN )/5.4
TT(1)=TNN

DO 41 J=2+6

TT(I)=TT(J-1) +DELL

- CALL INTERP(TTTsPHRsMsTT(J)»Y)

FF(J)=Y
SUM=SUM+(FF(J-1)+FF(J))/2.*DELL
IF (PRNT) PRINT &4, SUM

" CONTINUE :
TPPRTTTI(MO) ¢ & TT({)=TPP

IF(TTT(MO)~TO.GT.DP) GO TO 43

SUM=SUM+2 « ¥PRE¥ (TTT(MO)~TO) *%,5

CALL INTERP(TTTsPHRsMsTPPsY)

FF(1)=Y

DELL=(TO+DP=TTT(MO)) /5.

DO 42 J=246

TT(I)=TT(J-1) +DELL

CALL INTERP(TTTsPHRsMsTT(J)»Y)

FF(J)=Y

SUM3SUM+(FF(J=-1)+FF(J))/2.%DELL

IF (PRNT) PRINT 45 SUM

CIOINTINUE

F2=FF(6)

PRI =(3,%SUM/DF=F1~F3) /4.

GC TO 44

T!T(MO)=TO+DP

PHR(MO)=PRE/(DP*¥45)

F3=PHR(MO)

SUM=SUM+2 ¢ ¥PRE* (DP ) %% 45

PHRT)=(3¢#SUM/DP-F1-F3)/4,
CONT INUE

END

-
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COMPLEX FUNCTION RET(PsV1s51sD1sV2s52sD2)
COMPLEX E1PsPsAsBsAPsBPsBTsCR
COMPLEX E13sE29E2P9C19C29C3sC45C545CH
REAL K1la:K2sK3sK4

D=D1/D2

Ka=S2%%2/(S1%#2%D)

Bl=e5/(1~-K&)

B2=e5%K&4/ (K4=1)

K1=B1/S1%%2

K2:B2/S52%%2

K2 :=K1+K2

EI=CR(PsV1)

E2 :CR(PsV2)

£23>=CR(P,4S2)

E12>=CR(PsS1)

Cl=(P#%2)#(K3-P*#2)%x%2

C2=P*%2%E1*E1P*E2P

C3=(E1¥E1P)#(K2~-Px%2)#*2

C4=E2P*(K]1=P¥*P)*¥*2

C5=K1*K2*E1*E2P

C6=K1%*K2*E1P

AP=C1+C3~-C5

BP=C2+C4~Ch

A=-+C1+C3-C5

B=—-C2+C4-C6

BT=AP+BP*E?2

RET=(A~-B*E2)/BT

RETURN
END
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COMPLEX FUNCTION ROC(P,K,KN)} o
COMMON/STUFF/C{100),S(100),C{100),TH(100),X
COMMON/CFIX/NTyKT4MByNB,LT,LTP(100) 4NF
COMMON/NFIX/MM(100) ,KN{100) ,MT(1CO)
COMPLEX QoRFyRNTyRMT4RNByTD,TU,T1, T2, TOU,RET,P,RMB,CRSTPP

Q=(1.,0.)EC.%{0.y1.)

_IF{KN.GT.2) GO 10O 90
K1=KE1

_ K2=K&2
V1=C(K1-1)

CUSIESIKL=1)
D1=D(K1-1)
v2=C(KL) e
$2=5(K1) .

D2=0(K1) _
v3 C(K2)

03 D(KZ)
CVA=CK281)
$4=S(K2&1)
_____C4=CtK2&1)
IF(K.LT.2) GO TC 51
T1=CR STPP{P,V1,S1,01,V2,52,D2)

T2=CR STPP(P,VZ:SZ,DZtVI’SI'DI)

R €18 N 1 O BT

51 T1=Q -

o T2=¢

52 CONTINUE
TOU=T1«T2
IF{(NT.GT.0) GO 10 1

2 RNT R
GO 70 10

1  RNT=RET(P,V2,S2,02,V1,S1,D1) _  _

10 RMT=RET(P,V2,52,C2,V3,53,C3)

IF(LT.LT.1) GO TO 4

3 TC=CR STPP(P, V2,52,02,V3,53,D3)
TU=CR STPP(P,VvV3,53,D3,V2,52,02) -
IF(MB.GT.0) GO TO 5
.6 RMB=Q R - ) o

GO TO 20
5 RMB=RET(P,V3, S39D3;V2 $2,C2) .
20 RNB=RET(P4V34S3,03,V4,54,:C4)
. GO IO 30
4 TC=Q
TU=Q

RMB=Q
. ____RN_=Q_ S
ROC RNT**NT*RMT**KT
B0 YO0 A0
30 CONTINUE
. ROC=RNT*=NT#RMB##MB# RMT#xKT*#RNB=#z#NBx(TC»TU)=*LT —
40 ROC=ROC*TCU
GO T O

390 TDU=Q
RNT=Q PR
RMT=Q

. J2=K&KN .



~J1=K&1l

D0 63 J=J1,J2
__N=J S ) L L B N
M=Jg1
IF(MMUJ)GTL0) GO TO 61
GO T0 62
61  T1=RET(P,C(N)yS{(N),C(N),C(M),S(M),DI(M)) o e
CRMT=RMT*T1#%MM(J)
62  CONTINUE S ) L o N L
63 CONTINUE
= B0 T3 =2
N=J-1
M=J e
IF(NN(J).GT.0) GO TO 71 .
_....Go 10 72 __ -
71 T1=RET(P,C(M),S(M),D(M),CIN),SIN),C(N))
. RNT=RNT=Tl=«NN(J)
T2 CONTINUE
73  CONTINUE e
DO 83 J=J1,J2
~ N=J-1 L ; L
M=J
IR INGEQa L) MU IS0
IF(MT(J).GT.0) GO TO 81
GO T0 82 e
81 1D= CRSTPP(P:C(N),S(N)fD(N),C(M) S{M),D(M))
__ TU=CRSTPP(P,C{M),S({M),DI{M),CIN),SIN)sDIN))_
Ti=(T0=TU)*=MT(J)
TOU=TDU=T1 e e o
82 CONTINUE
- 83 CONTINUE e ——
ROC=RMT#RNT*TDU
91" __ENC . —_— e



COMPON/THY/T(B000Y, PP (80001 sRP(600)
CIMENSIGN P(1000) B
CONMMCN/PLCTC/CON,NNF,NPT

__COMMON_ / LPRINT/ PRNT,PRNTS

" LOGICAL PRNT,PRNTS

DINENSION C(1000),TD(1000)
DIMENSTON XL(2),YL1(4),YL2(4),YL3(4)

DATA XL/'TIME SEC'/ B
 DATA YL2/' TREQRETICAL PO */

CATA YL3/*' SYTHETIC RESP '/
CATA YL1/*' TRANSFER FIN %/

300 FORMAT(2E15.4) ; _
READ(5,300). (SS(J),J=1,K0) _
IF (PRNT) PRINT 1, (SS(J),J=1,K0)

...} FORMAT (1HO,'SOURCE FUNCTION'/(26G15.4))
TT(1)=0.

__________ D0 16 J=2,KC _____
TT(JI=TT(J-1)&DP

16 CONTINUE

IF(NPT.LT.1) GG TO 31

CALL PICTUR(XD11,YC11,XLy-8,YL1,-16,
2 TV eSSaKCy 0w g LS )
31 CONTINUE
DO 10 J=2,LN
___________ Y=Y d=- 80P
10 CONTINUE
o CALL PICTURI(XD22,YD224XL y=84YL2y=16,y .
2 Ts+PPsLNyO.yLS])
k=0
NK=LN/2-1
B0 20 N=LaNK G NNF
‘L=LE&Y
_ C{L)=CONVS(PP4SS,DP,KOyN-1)
T TD(LY=2.#DP%(N-1)
20 CONTINUE
OC 30 J=2,L
Ptar=tc(yy-Cly-1)1/(0P=2.y
P(J)Y=P(J)=CCN
______ 30 CONTINUE
P{1)=0. -
____“NWQALL PICTURf§Q§3,YC331XL’—8gYL3,—16,. s

2 TDsPyLs0eygLSL)
IF(PRNTS) PRINT 2, (TD(J);P(J) J=1,L1)




T USUBROUTINE SETUP (K, MM,NS,NO,MO,MPLOT,MPUNCH) =~ TA=33
COMMON/CONFIX/DEL s NN,NDP y TMX 4 XDIM, YDIM,DP,KO

COMMON/CFIX/NT KT ,NBy,NB,LT,LTP(100),NF
_ COMMON/FOURCT/MF4NMF,KMF,KNMF

T COMMON/THY/TT(8CCO),PP{8CCO),FF(600)
COMMON/EXACT/PHI(500),TD(500) yNEND4NM

COMMON/LPRINT/PRNT,PRNTS
LOGICAL PRNT,PRNTS

DATA XL/'TIME SECY'/
IF(MO.GT.1) GO TO 11

DO 10 J=2,NN
TT(J)=TT(J-1) &CEL
10 CONTINUE
Al CONTINUE
IF(MF.LT.1) GO TO 30
CALL CONN(NMF,KMF,KNMF)
CALL HIGH(NTP,TMX,KMF,KNMF4NMF)

CALL ADJUST(NFIX)

N1=NFIX-1
IF(N1.LE.2) GO TQ 41

CO 35 J=1,N1
CALL INTERP(TDyPHIZNENDyTT{J),Y)

PP{J)=PP(J)EY=NF
35 CONTINUE

41 CCNTINUE
PPINFIX)=PP(NFIX) ENFzPHI{M)

© DO 36 J=N2,NN T e
_CALL INTERP(TD+PHIZNEND,TT(J),Y)_

CPP(JI=PP(J)EY=NF
.36 CONTINUE

GO T0 7
30 CONTINUE - : R . — -
CALL CONSTN(NOD)
CRY=REY e

K2=K&2

__________ DO 32 N=NSeNO__
CALL CON(NyK14K2)
_ CALL HIGHINCPyTMXyKyKIgN)

" CALL ADJUST(NFIX)

N2=NFIXg1
e NSRRI e
IF(N1.LE.2) GO TO 42
_00_31 J=1,N1_ e
CALL INTERP(TDyPHI,NEND,TT(J),Y)
___________ PP =P () Y aNF
31 CONTINUE
42 CONTINUE

PPINFIX)=PP(NFIX) ENF#PHI(M)



00 33 J= NZ:NN
CALL INTERP(TD’PHI;NENDaTT(J)IY)

) PP{J)=PP(J)EY*NF
33 _ _CONTINUE __ R
32 CONTINUE

T IFLGNOT.PRNT)Y GO YO 12 e

PRINT 13, (TC(J)sPHI(J)sJ=1,NEND)
13 FORMAT (1HO,15X*TD'15X*PHI'/(2G18.6)) _ e

PRINT 14, (TT(J)4PP(J)yJ=1,NN)
14 FORMAT {(1HO,15X'TT'15X*PP'/(2G18.6)) e

12 IF(MPLOT.LT.1) GO T0O 1

 CALL PICTUR(XDIM,YDIMyXLs=8,YL2,-16y _ e

2 TT,PP,NNy0.40)
) S CONTINUE

IF{MPUNCH.LT. 1) GO T0 2 .
LN=NN
NK=LN

__________ DL =D P

WRITE(7,100) TT(1),CP,DEL
_________ WRITE(T7y200) NNoUNyNK e

WRITE(7,100) (PP(J)yJ=1,LN)

200 FORMAT(3110) -

100 FORMAT (5E15.6)
2 IF(KO.LT.1) RETURN

CALL SETT (KCyDPyNN)
RETURN




STTTTUEUNCTTION SF2(PeKyKN NY T T T T T e T rAS3s
__ COMMON/CFIX/NTaKT4VM 4N s LT LTP{1C0)4NF o
COMMON/STUFF/C(100),5(100), ‘C({100),TH{100),X,RCSQ(100),RSSQ(100)
PSQ = P =% 2 ~

TE = 0.0

E = SQRT(ESQ) *
10 TE = TE & TH(J) = LTP(J) = RCSQ(J) / (ESQxE)

SF2 = SQRT(P/(X*TE=ABS(RCSQ(2)-PSQ)))

RETURN




SUBROUTINE TIME2(P,PC,DPT,T,KNyN) A-36

__° _COMMON/PATHC/POsT0,K

T COMPLEX EsPsToPCyCRyBL,DPT ,F
DIMENSION E(100),F(1CO)
T COMNON/STUFF/C(100),S(100),C(100),TH(100),X
COMMON/CFIX/NToKT4MByNB,LT,LTP{100),NF

COMMON / LPRINT/ PRNT,PRNTS

DL=P0%*.5
KO=K
DET = 1.0E-10
Kl KG&1

DO 1 J=1,K0
E(J)=CR(P,C(J))

E(J)= CR(PvC(J))

I= TGTH(J)*(E(J)*LTP(J))
11 CONTINUE
' CT=AIMAG(T)

3 TFICTY 4,2,5
4 DL=ABS(DL)#*.5 e .
GO 10 6

- S DL=—=ABS O Y % a5 e
GO TO 6

2 CONTYINUE
PC=P

[ s T

DO 10 J=1,KC
 BL=BL-2.#*PxTH{J)/E(J)
10 CCNTINUE
DO 12 J=K1,K2
BL=BL- PeTH(J)I*{LTP(JI/ELI))

12  CONTINUE I . e
DPT=1./BL
. IF_(CT.LT.1.0E-5) RETURN

IF (.NOT.PRNT) RETURN
___PRINT 110, P, Ef1), T, DPT ___
110 FORMAT (1HC,4X'P = 1'2G18.6/S5X*E(1l) -'2617 6/5%X'T = 12G18.6/
' _E5X'CPT _='2CG18.6)

9 END




TTTTRUNCTION TSH(KY T A—37
® " COMMON/CFIX/NTKToMByNBsLT,LTP(100),NF S
TTCOMMON/STUFF/C{100),5(100),0(100),TH(100),X,RCSQ(100),RSSQ(100)
- COMMON/LPRINT/PRNT,PRNTS sKST,KEND
LOGICAL PRNT,PRNTS

DIVENSION T(200)

7 D0 98 M = 1,KST . e . _
TTX1=AMAX1(XI,CTM))
98 CONTINUE

CO 102 J=KST,KEND
X1 = AMAX1(X1,C(J))

DEL=1./X1
LTP(J)=2

TIN)=T0
102 CONTINUE B
DG 103 J=KST,KEND

PX=1./C{J&1)
TX=PTIM(PXyJ)

TIN)=TX
103 CONTINUE

TS=1.E&6
DO 106 J=1,N

TS=AMINL(T(J),TS)
106 CONTINUE

IF (PRNT) PRINT 1, (T(J),J=14N)
1 FORMAT (5X*'T(J)J=1,N*/{4G18.4))

RETURN
ENC




TTTTTTT0.0 T T T T 0.1876E 00 T A-38
_0e3446E 00 0.5343E CO e o
T 0.7517E 00 " 0.9965E 00
- 0.1268E 01 = 0.1562E 01 3 e
0.1878F 01 "0.2150E 01
... 0.2117€ O1  O.16l9E 0} - (Transfer Function) - .
0.8531E 00  -0.1217€ 00
....—0.1227E 01 = -0.2247E O1 S
-0.3C050E 01 -0.3771E 01
=0.4445E 01  -0.5041€ OY
-0.5364F 01 -0.5289E 01
_______ -0.5003E 01 = -0.4526E O) e
-0.3913E Q1 -0.3260E 01
________ -0.2629€ 01  -0.1970€ O _ ol
-0.1274E 01 -0.5426E 00 .
0.2053E 00 0.9577E 00
0.1729FE 01 0.2522€E 01
__________ 0.3290E 01 0.3835€ O
0.4036E 01 0.4042E 01
__________ 0.39C1E 01 0.3627E O
0.3193E 01 0.2587E 01
0.1849E 01 0.9941E 00 -
0.6724E-01 -0.7881E 00
________ -0.1483E 01  -0.2114E O)
-0.2708E 01 -0.3255E 01
________ -0.3658E 01 ~ -0.3860E O
-0+3944E 01 -0.3933E 01
-0.3847E 01 -0.370€6E 01 L _
-0.3524F 01 -0.3298E 01
_ =0.3029E 01 = =0.2720E_OY . e
" =0.2367E 01 -0.1968E 01
________ -0.1529E 01  -0.1053E Ol
-0.5685€E 00 -0.1882E 00
_0.1828E-01 0.134CE 00__ o B L e
0.1832E 00" 0.1820€ 00
 0.1525E 00  0Ol.l088E 0O oL ~ - o B
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