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Abstract

A computer program written on the basis of the
Cagniard-de Hoop's method to calculate the response
from flat layered media to a unit impulse source was
used to examine the upper mantle P-velocity structure
of the earth, in the southern part of the United States.

Two existing mosels relevant to our locality were
examined and found unsatisfactory on the basis of the
synthetic seismogram they generated.

S Several P-velocity models were constructed and
examined. A model which gives correct arrival times
and satisfactory synthetic seismograms has been found.
This model includes a low-velocity zone similar to that
of other models. A new feature of this model is a rapid
increase in velocity near a depth of 500 km.
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Notation

ci : P-Velocity in the ith layer

d : Density in the ith layer

: di/di+1

f(p) : Integrated Transmission-Reflection Coefficient

h : Vertical Distance to the Source from the Station

H : Step Function

K : Modified Bessel Function of the Second Kind,

of Order 0

L : dp/dt

p ; Sin(ic)/ci, where ic is the Angle of Incident

Po : Critical p at Reflection

P : Pressure

r,x : Horizontal Distance between the Source and the Station

R(p) : Reflection Coefficient

kr : ki+ kj

R : _____

si  : Shear Velocity in the ith .layer

t . : Time

t : Refraction Time

t : Reflection Time
o
T(p) : Transmission Coefficient

z : wDepthi

: Lame Parameters

f : Density.



I. INTRODUCTION

The best known property of the interior of the

earth is the seismic velocity profile as a function of

depth. Any theory of the earth's structure must, there-

fore, satisfactorily predict this velocity profile as

closely as possible. The usual method of determining

velocity is to use the Wiechert-Herglotz equation [See

Bullen (1965)] which involves the integration of the

dt/da curve obtained experimentally from the travel

time-distance information. The method cannotuse the

valuable information such as wave shape of the seismo-

gram or varying amplitude with time in a seismogram

and with the distance from the source. Also the method

fails to determine a low velocity structure which is

believed to exist at the depth of 100 km. Moreover,

obtaining travel time and dt/dA curve requires a great

deal of data - many stations - in order to approximate

a smooth dt/dA curve.

In spite of these difficulties, numerous attempts

have been made in the past to determine the velocity

structure, and there are widely varying models [See,

for example, Julian and Anderson (1968)] which give

approximately correct attival times. Of course, the

variety may be due to the lateral heterogeneity of the earth.

However, since Cagniard developed the revolutionary

technique for computing the response form flat layered

media, followed by de Hoop's (1960) modification, a

more sophisticated method to determine the velocity

structure has become possible.

In this thesis, the technique developed by those

mentioned above and by others [Strick (1959) and Helm-



berger (1965 & 1967)] is discussed and applied to the

spherical earth. The validity of the spherical approx-

imation has not yet been confirmed. However, this tech-

nique is known to work to the travel time computation,

and the relatively small curvature of the earth in the

upper mantle should not cause significant errors in

computing transmission coefficients and reflection co-

efficients. The advantage of this new method are that

it generates synthetic seismograms and that it enables

us to examine the models from many more standpoints -

the first and the following arrivals, amplitudes and

.wave forms.

The Cagniard-de Hoop technique and the theory for

the synthetic seismogram computations are presented in

Chapter II. The entire chpater is a summery of Dr.

Donald Helmberger's contributions and included in this

thesis for the sake of completeness in presentation.

In Chapter III, the computer program, originally

written by Dr. Helmberger, modified and improved in the

course of the research for this thesis by him and by

the author, is described.

Chapter IV presents the result of this study -

the P-velocity structure along an east-west profile

in the southern United States. To determine the velocity

structure, first we examine two existing models proposed

for this region. +One model is by Dowling and Nuttli

(1964), based on the travel time data from the underground

nuclear explosion BILBY (1963), which we use in our investi-

gation. The other model is by Johnson (1967), and was

obtained, using the dt/d& data from the Tonto Forest

Seismological Observatory in Arizona. After the exam-
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ination of these models, we construct some new models.

in so doing, we use a conventional method for -computing

travel times for a given model. [See Bullen (1965)]

Then, we compute the synthetic seismograms and compare

them with the records from the BILBY event. The criteria

for comparison are the travel times of various P-arrivals,

amplitudes and the wave forms of P-wave arrivals.



II. THEORY

In this chapter we present the theory which is the

basis of the technique of computing ,the synthetic seis-

mograms. Also shown in this chapter are several approx-

imations we make in our computation.

1. Response from an Infinite Medium

For an infinite fluid with a unit pulse source at

r 0= , z = 0, the Laplace-transformed pressure is:

Due to the symmetry of the integrand with respect to the

real p axis, (1) can be rewritten as:

I T

C is a constant with dimensions of pressure times length

and assumed unity from here on. Back-transforming (2),

we obtain:

where H(t) is a step function. Since the argument of

a step function must be real, we must have the path

such that:

T- (4)
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is real and positive. Due to de Hoop's modification of

Cagniard's method (1960), we solve (4) for p to obtain:

r pl
-W E: I , - L EL (5)

In order that Z"- be positive, we must have -Z4 P,

And this is the path of the contour j . 'Now, (3) is

equivalent to:

E (rAt) = A,- _ (6)

and differenciating (5), we get:

= q (7)

For F , the integrnad of (6) is real, and we rewrite
c,

(6) as:

(8)

Since H(t-c ) =0 for t(r , and forr<, the denome-

nator of the integrand in (8) becomes complex. We define

the reflection time t0 _ R/c 1 and simplify (8). Let

S arc sin L .- (9)

and with the transformation, (8) becomes:

A4-r F(O) d9 (10)2 cs~,tlIT



where f(e)
47(9) & ft to -( -Lt-+

re) t t- Lt-t) s',ve

In order to perform the integration (10), we must find

F( 8) numerically for each t. This costly procedure can

be avoided by the following approach. Define

We choose a set of PR's starting at p0 and increasing

on some small interval 4 , to pt PR(t). We find, for

each pR' PI such that Im(r) is zero. To clarify the

situation, the limits are:

As t . to, p r/Rcl = Po (The First Motion Approximation).

And also

C, )

,f



and

1(",zIt) ±y H (t- to) LDi-x (1953)] (11)

This is the exact solution to (10).

2. Response from a Two-layered Medium

For a problem involving two-layered media, let

suffixes I and 2 denote the upper and the lower layers,

respectively. We have, for the e uivalence of (6),

Note the quantity R(p) in the integrand, which is:

)= (13)

and

-r = Cy- t€),

Assuming cl < s2 c2 , p leaves the real axis at p = po
and 1/s2 < p0 < /c1 . We can obtain the S-refracted time,

the reflected time (tO) and the P-refracted time (tc)

by substituting p = 1/s2, P0, 1/c2 into (13), respective-

ly. For example, let p = 1/c2 and from (13) we get:

= K1 -h) . 1
rc - c



When we perform the numerical integration (12), we break

? into two parts - from to to t 0 where p is real, and

from t 0 onward where p is complex. Thus, (12) can be

rewritten as:

c r, ,t) ertt)+ e.(r, *) , (14)

' _where___ ,

I F(-L T-t, - rl- Qp r
and

~ Lr, ,
4 ..-r)(t---..2r)

By letting

ig arC Sin JF

we change variables in (14) to

where

FRO) J

(15)

(16)

4a

%0-- dz:7z

J/ I Z



The integration can be carried out by trapezoidal rule.

Thus, Pl(r,z,t) can be numerically evaluated, and P2(r,z,t)

is evaluated by the same method described in (10).

The pressure response to a delta function source is:

nowI dr (17)

3. High Frequency Approximation

When we deal with sources of high frequency or of

a short duration, the following approximation holds*

t.- r r a r a 1fr (18)

From (17) we get by substituting (18):

PT jr, i( at( t e7) (19)

Define

Thus (19) can be written as:

S-r,t,J r rt) t) (20)
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4. A Multi- layered Case

For a multi-layered case, we must consider multiple

reflections in addition to refractions. We have the

Laplace-transformed pressure:

'Pcr,,s)= -r) K.st3Y-4~s -t' 7

where

m I GPIZ

(21)

Or (21) can be written as:

tr, z,4)= - -r R,

a gur +hT.

Further:

+ T ,1r

1e.
a.,r I

(22)

(23)

whe re( c ) G(

APe~J

.~= ,-+h) + a Th q )-.



As before, P (r,z,s) can be transformed back to :

yIt-et) AN

_7 R(24)

where

If layeres have different thicknesses and if we change

the variables of integration to t , as before, we get

?"CY" z' (25)

where

d ''C

m is the last layer that the ray penetrates. Therefore,

the refracted wave begins at t which corresponds to

Pc = 1/cM+ and the reflection occurs at po correspond-

ing to to As before 1/c + < p O
< i/cX and as p increases

from po, it goes into the complex plane. At this point,

we again apply the high frequency approximation (18) to

(25) and obtain, for a delta function source:

Ither+e(26)
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The merit of employing the high frequency approximation

is, when we add rays (indexed m), from (23),

Stlt r .(27)

Since the sum of convolved quantities such as in (27)

is the convolved sum, i.e.,

?r t)ti L) (28)

Thus, we need not perform convolution for m times, but

only once.

5. Generalized Transmission Coefficient

f (p) in (26) is called the generalized transmission

coefficient. It can be written as the product of reflec-

tion coefficients Rij (p) and transmission coefficients

Ti (P)

R..(p) is the reflection coefficient when the ray is

reflected at the boundary of the ith and i+l=jth layers.

Its explicit form is:

A q3r (29)

where

A= O-4.+b , 11+i,
A "
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TI (p) is the transmission coefficient for the
case the ray is refracted from the ith to the i+l=jth
layers. Its explicit form is:

7 -(30)

where

-D 2(f VIYII;%94 Tif+ q Lc-V

6. First Motion Approximation

As t approaches to, the term dp/dt in (28) goes to

infinity, as

is not defined at t =t. In order to evaluate 4%

at t = to (which happens to be the most significant point

of the ray), we make use of the Simpson's rule.



Figure 2.1

Pressure near t = t
o

tV- t 3[

I 2. Ii T'. (31)

From (31) we obtain:

4 3p-(i) (32)

which is what we wish to calculate. is calculated

partly numerically (t -h 4t ( t o- 0 , t + t t t+h).

For t o -J < t< to + ', we can show that:

t.+ -

tO t
In order to show (33), we consider the Taylor expansion:

= o+ (34)
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And since dt/dp 'O at t = to, we have:

* I

S C:' *1 2t~. )A± (35)

From (25), we obtain by differentiating,

c~ti
- .

-a3 '?/j
(36)

Substituting

T,~,

(36) into (35) and then into (26), we get:

I) I tp (37)

Now let:

'P'jt I

It-'.A..

* t otO

b f.

f' I >f &
I-

2
(hi:;

ConsiderS t.
,J lfAt

tb.

Io 

r
Since Fl(t) varies slowly near t . tO, we get:

0%0 F (to

At

(39)

-I -)I

- , "

;- K P

r-

N~b J S-lw~i.

Fr I
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Similarly:
-t°+

Thus, we have shown for t 0o -< t'to 0 +, the part of

is

(40)

For the rest of , we use the trapezoidal rule to inte-

grate. We have values of ct) computed for these outer

regions and we divide t -h to to - to five parts (chosen

rather arbitrarily), interpolate ,~) for each p, and

do the same for t o+ to to+h. This result and (40)

are added to obtain finally $. Then f 2 can be computed

from (32).

We now consider the case in which tc approaches to
We can show that

where g(p) and h(p) are smooth functions of p. Hence,

we may delete the pressure from our consideration since

it does not vary in any extraordinary way. Consider:

Pt It t,- € -) I (41)
" t o " t v T -i d
te

Now let



a - o to

b to tc.

" =-- .-

Therefore, (41) can be written as:

to to+t )

Thus we have shown that when j(t) is integrated, it

behaves linearly with interval t -tc . The justification

for integrating 4mLkt) is that since the source func-

tion is very flat and when it is convolved with .,[+t) ,

4,yL) is virtually integrated over time. We see now

that as t -t becomes arbitrarily small, the contribu-

tion of OIt4) from this part is essentially negligible.

7. Directivity Function

Instead of solving for pressure in the preceding

discussion, we may replace it by the displacement poten-

tial (,jZ,) assuming a step function source. And we

use the same equations.

However when we measure body wave amplitude on the
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surface of the earth, we must be concerned with the

conversion of the measured amplitude to the actual am-

plitude because of the P-SV interaction at the reflecting

surface. The conversion factor is given by L. Knopoff,

et. al. (1960) as:

For the P-wave,

For the S-wave, (42)

where is the shear velocity in the surface layer,

8. Spherical Layer Approximation

The method described above is valid for flat hori-

zontal layers. We know that equations for distance and

travel time [Grant and West (1965) :

. pc om (43)

b /L - 'IZ



where p = sin(i) / V(z) (ray parameter),

h : thickness of the layer,

for horizontal layers. And for spherical layers Bullen

(1965)3 :

,v--I12 ctr (44)

where 2= r/v, p = r sin(i) / V, ro: radius of the

earth, rp; radius of the deepest point of penetration.
p

We see immediately that the equations (43) will be equiv-

alent to (44) if the quantities p and V are multiplied

by l/r.

In our computation, the compressional velocities,

the shear velocities, the layer thicknesses and the

densities are multiplied by r /r, where ro = 6371 km

(the radius of the earth), the justification being the

compatibigity of the assumption- with the equations (43)

and (44), and the additional factor of r0 (a constant)

is simply to vormalize the quantities to the proper

dimensions. Thus,

e' C: Qi i

Si i - 1, 2, 3,.... (45)

Th' = Th. Q
where Q = ro/ r.
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The operation above is performed at the very beginning

of the computation scheme and hence all the following

computation is done with the normalized quantities (45).

9. Transfer Function

In order to generate synthetic seismograms from

theoretical responses, we must devise a system function

that takes the theoretical response as the input and

generates the synthetic seismogram as the output. Such

a transfer function is defined as a convolution of the

source function with the instrumentation response.

However, we know that at large ranges, 3000 km for

example, the earth returns a step function if the input

is a step function omitting the Q effects. That is,

if we treat the mantle as a simple velocity gradient,

then the displacement looks like the input. LSee Figure 2.2]

Let R(t) be the output at the range 3376 km. Then,

where Lt) is approximately a step function. In such

a case R(t) = T(t). R(t) is used as the transfer function

throughout this study. In Chapter IV, we will see the

actual wave form of the transfer function. A synthetic

seismogram is complete when we convolve the pressure

(or displacement) [See Eqn. (28)3 with the transfer

function. In our method using the high frequency approx-

imation, however, we convolve the transfer function

with 1/-t to obtain the modified transfer function.

[See Figures 4.2 and 4.31
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Figure 2.2

Theoretical Respovse fvmo. TearlS

Li-near CGraJient

Set.

This response was obtained from the Nuttli's

model at 3376 km. The peak at 1.4 seconds

was caused by a slight decrease in gradient

at the depth 850 km.
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Since we convolve 1/ tE with the transfer function which

is nearly flat at t = 0, we are essentially integrating

i/ rt in the neighbourhood of t = 0. Let f(t) = 1/It.

And let h denote some small number. Using the Simpson's

rule of integration, we obtain

Iko_t 4 1

But analytically, it is equal to 2 fTi. Thus,

r11.-4 q.

In the digital computation, we let h be the digitization

interval and thus, f(0) is obtained.



II. METHOD OF COMPUTATION

The procedure for computing the theoretical response

to a unit impulse source is described below. The program

was originally written for the Control Data 3600 computer

at the University of California at San Diego by Dr. Helm-

berger. It has been converted so that it is compatible

with the M.I.T. IBM 360-65/40 computer system in the

course of the research for this thesis by Dr. Helmberger

and by the author. It will be instructive to refer to

Chapter II and the Appendix for the theory and the pro-

gram listing, as the reader follows this chapter.

In computing the response, we must specify the

characteristics of rays we are interested in. We, there-

fore, specify the layer k to which the ray reaches without

reflection and the manner that the ray reflects in the

layers beneath k. The number of layers involved in

internal reflections can be at most four (neighbouring

ones). If more than four layers are involved, the reflec-

tion coefficients become exceedingly small and negligible.

We name various configurations of internal reflections

for the purpose of computation. There.are two subroutines

that define various constants for each configuration.

One (CON) is used for configurations involving only two

layers (This is the more usual case than the latter).

The other (CONN) is for cases involving four layers.

Cases for one and three layers are special cases of two-

layer and four-layer cases, respectively. These sub-

routines define MT(J), the number of transmissions from

the Jth to the J+lth layers; LTP(J), the number of times

23
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the ray travels through the Jth layer; NN(J), the number

of reflections on the J+lth layer from the Jth layer;

MM(J), the number of reflections on the J-1th layer from

the Jth layer; and NF, the number of possible ways the ray

can travel with the same set of constants above. N is

used to describe the rays. For CON, the various N's

cerrespond to the following figures EFigures 3.1.

And also for CONN, another set of figures are drawn.

Though there are infinitely more configurations, they

are not considered here because the intensity of the

ray becomes negligible, as the values of the constants

go up. The choice of using CON or CONN is made by the

parameter MF. That is,

MF 1 for CON,

MF 1 for CONN.

The program first computes the modified velocities,

densities and layer thicknesses according to the spherical

layer approximation with SUBROUTINE CURAY [See (43)-(45)].

The MAIN program gives the control to SUBROUTINE SETUP

after defining constants and executing CURAY. For each

call of SETUP, a response of a particular ray is computed

and later all the responses are added. On the argument

list of SETUP are:

K : First Layer Involved in Internal Reflection

NS : Starting Ray

NO : Ending Ray Range of N

MO : 0 for Finding the First Arrival Time

2 for Subsequent Calls

MPLOT : 0 for No Plot of Theoretical Response

.2 for Plot



t4 j

IrJ 3

~t ~ja

KtA

K+ 2.

9+56
r42m'

= q r4J-z 1

= 12*--11

N~= 14.

Figures 3.1 Ray Cofigurations

for Two-layered Cases

~a~i~z

j~ZPitT



N=Is

fr- zo

N= 2A

N= A4

Figures 3.1 (cont.) Ray Configurations

Using the notation, the generalized transmission coef-

cient f (p) is:

MMLJ' HMlCt+a) NIf'Rl • d?1 .. ,. I pJeta)
RL'if

26

(46)
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N=3 N1=3

-A I
N=5L_ N=l

Figures 3.2

Ray Configurations for Four-layered Cases

J I I I I
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MPUNCH : 0 No Punched Output of Theoretical Response

2 Punch Wanted.

SUBROUTINE SETUP first finds the first arrival of any ray

among all the possible rays considered - either reflection

of refraction. This is done by FUNCTION TS, which finds

the largest ci's for lf in, KSTn KEND. For each n

SUBROUTINE FIND2 is called to compute refl ction time t

and corresponding po by letting dp/dt go to c' or in the

actual case, minimizing jdt/dpl L.ee (25)]. TS also

finds the refraction time t using FUNCTION PTIM. t
c 4 -c

is simply t that corresponds to p = sinI /c 1/cn+

[See (25) . t and t for each n are stored in T(n).

TS is set to the minimum of all T(n) and returned to

SETUP. Upon returning, TT(1) is set equal to TS, which is

the first arrival counting from t = 0, when the source

explodes. Then, the array TT is defined by incrementing

by DEL, which is defined in MAIN. TS is called only once

in- a series of calls of SETUP.

The reflection and refraction constants described above

are defined by calling either CONN, or CONSTN and CON.

Then, SUBROUTINE HIGH is called. First, by examining the

transmission constant LTP, the deepest layer of pene-

tration is determined and stored in KM. That is, if

LTP(J) = 0 for some J, them KM = J - 1, after LTP(J)

have taken non-zero values for all I< J. Again FIND2

computes the reflection time to for the particular ray.

This time,

04 ThjLTPjJ-C Z
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and po is the value of p that makes dt/dp = 0 as before.

Consequent ly,

RG is the difference between t and t . SUBROUTINE HELP

is then called to find tc and dp/dt for pC M1i/c K+1,

corresponding to refraction at the KM+lth layer bound-

ary. TG = t - t o To determine how the problem of

evaluating ~(t) near to should be dealt with, a series

of tests are performed on the magnitude and the sign of

TG with four constants defined in MAIN - TN's. If p < PC

then we only evaluate i(J() for complex p. Also if TG

is large, then we do not want to divide the interval

t -t too closely. Thus, SUBROUTINE DELPS is called
c o

to set the interval (DELP) so that the divisions are

closer as p approaches po and pc, and wider in the middle.

DELPS performs this operation with the trigonometric

sine function. NO is the dimension of DELP, or the

number of partitions on the real p axis. However, if

TG is not very large, then DELP is defined with equal

intervals. After the real p's (DELP) are defined, HIGH

calls PLN1 and PLN2 to compute Pf4). [See(14)3 PLNI

computes ) for t c e tc t o , and in this interval p only

takes real values. In case of to t c , PLNI is not called

since t is fictitious.

The procedure of computing 41 ) as described in (26)

is as follows:

i) Take pc = 1/CK+1 and increment it by DELP for
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each p; HELP is called to find corresponding time t
c

(TT(I)) and dp/dt (DTP).

ii) For each p, call ROC to compute part of f (p)m
[See (46)] using the constants defined in either CON or,

CONN and CONSTN. (RPR)

iii) GENCC computes the product of transmission coef-

fients through layers I to K, in which the ray simply

travels forth once and back one. (TOT)

CRSTPP computes the transmission coefficient rsee(30) ;
RET computes the reflection coefficient [See (29) ;

and f (p) is the product of RPRand TOT above, which is

set equal to TQ, and PLN1 stores the imaginary part of

TQ in RP.

iv) % (EA) is computed.

v) If the directivity function is desired fSee(42)],

then NDIRT>1 and (42) is computed.

vi) +,R) as described in (19) and (20) are then com-

puted and stored in PHI(I).

vii) Above six steps are repeated for increasing p

till DELP(NO) is exhausted, and if the time corresponding

to the last p used is reasonably far from t (criterion

is DLTP) then the procedure is repeated for p incremented

by some small real number till t reaches to

viii) At the end of PLNI, TT(1) = t and PHI(l) = 0

are set. This is to save computation the, since obvi-

ously the starting time is the refraction time and q.1)=O

if PLNI is ever called.

After PLN1 computes aff for t t to, PLN2 computes

40) for to< t including P) [See the first motion

approximation . As PLNl returns to HIGH, HIGH computes
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the complex path of p such that, as in (25), the imag-

inary part of t is zero. To accomplish it, CONTOR is

called. It takes po and increment it by DELP, and for

each p, TIME2 is called to find the corresponding imag-

inary part of p such that Im(t)_ f . If so, complex

p and dp/dt and real t are Stored in arrays PP, DDPT

and TT, respectively, to be used in PLN2. After p reaches

the end specified by DELP, CONTOR repeats the operation

till t reaches t + TMK or t + TMX whichever is the small-
o c

est. TMK is defined in MAIN. Upon CONTOR's return to

HIGH, PLN2 computes 4Slp) . It is very similar to

PLN1, but the starting point of PHI(I) is now MO and the

ending point is M, both of which are defined in CONTOR.

After (Imte) is computed for to t <to + TMX, PLN2 deals

with the problem of ,(j,)as described in the section,

the first motion approximation.

FUNCTION SF2 computes Equation (37). To perform

the integration by the trapezoidal rele, we utilize the

value of Vte) already obtained for t -h4 t( t +h; SUB-

ROUTINE INTERP is called to obtain LAf) at five points

between t-h and t-J, and t+ and t+h. In the program

t 0 TTT(NO+I), t - 1 i TTT(NO), t +; = TTT(MO) and

h f DP. DELL is the partition. t is increased by DELL

starting from to-h, 4P)is obtained (interpolated) for

each t by INTERP, and finally (39) is used to obtain g.

At the very end of PLN2, (31) is applied to get \4jt)

at t = t . As PLN2 returns to HIGH, the maximum indices

of the computed time and pressure, TD and PHI in COMMON

/EXACT/, are set equal to M, defined in PLN2. When

HIGH returns to SETUP, SUBROUTINE ADJUST is called to
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locate the index I of the array T in COMMOM /THY/ defined

in SETUP to be equidistance apart, which corresponds to

TD(i) in COMMON /EXACT/. NFIX = I and returned to SETUP.

Then, TD is shifted in such a way that to lands on some

T. (4'mtt.) is the most important point of all) Since

TD is so closely spaced near t = to that shifting makes

little difference in actual response time. Then, INTERP

is used again to interpolate PHI for each T (equispaced)

and the values are stored in PP after being multiplied

by NF - symmetry constant defined in CONN or in CONSTN

and CON. In other words, if there are more than two

rays that can be specified by the same values of parame-

ters, then the response must be multiplied by the number

of such rays.

After PP is filled, if there are no more rays to

consider (that is, if KO>1) then SUBROUTINE SETT is called

to perform the last operation CSee (27)1. SETT reads

the transfer function SS(KO), FUNCTION CONVS convolves

SS and PP point by point and the result is stored in

CC. Then, the derivative is taken and the result is

plotted and printed (P).

This is the end of the program.



IV. DISCUSSION AND RESULTS

In this chapter some of the results obtained are dis-

cussed, the main object being to examine two of the exist-

ing models of the upper mantle [Dowling & Nuttli (1964)

and Johnson (1967)] and to find a better model for the

southern United States using the synthetic seismogram

discussed in the previous chapters.

The upper mantle P-models by Nuttli and Johnson are

shown on Figure 4.1. Both have a-low velocity zone under

the Mohorovicic discontinuity, but in the Nuttli's model,

the velocity increases almost linearly with depth after

the low velocity zone, whereas in the Johnson's model,

there are two pronounced changes in the gradient - one

at around 450 km and the other at around 700 km. We

shall examine synthetic seismograms generated by these

models, and compare them with actual records obtained in

the Bilby underground explosion (1963).

But, first it may be interesting to look at some

sample output of the computer program. [See Figures 4.2-

4.7] In Chapter II we referred to the high frequency

approximation [See Eqn. (18)]. Another computer program

had been written without the approximation. Clearly,

this program is more exact, but slower. Figure 4.2 is

the transfer function that each response is to be con-

volved with. Figure 4.3 shows the transfer function

convolved with 1/fT?, which we use in our approximate

method. Figure 4.4 is the theoretical response to a

unit pulse. Figure 4.5 is the response from the approx-

imate method. Note that, in effect, the exact response

is the convolution of the approximate response with
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1/.-T. Figure 4.6 shows the approximate synthetic seis-

mogram, whereas Figure 4.7 shows the exact synthetic

seismogram. In terms of amplitude, phase and frequency,

the two synthetic seismograms look nearly the same,

and provide s~ntevidence to the validity of the approxi-

mation.

Iri.the following figures (4.8-4.12), records of the

Bilby event are shown. The time scale is the same in

all these fugures and in all the others,that will follow.

But the amplitude is not absolute and only significant

in one record. The relative amplitudes and the arrival

times of these records are tabulated in Table 4.1.

STATION

Source

Raton
N.M.

Shamrock
Texas

Durant
Okl.

Liddie -
ville
La.

Orlando
Fla.

-Table 4.1

LATTITUDE
( o ' )

37 03 38

36 43 46

35 04 58

34 02 11

32 08 10

28 28 01

Bilby Event

LONGITUDE

116 01 18

104 21 37

100 21 50

96 13 04

91 52 30

81 13 17

(1963)

RANGE

(km)

1039

TIME
(sec.)

136.7

MAGNITUDE
(A/T)

ii

1426 187.7 165

1831- 231.8 374

2274 280.7 915

3376 375.0 265

(all locations are in

phere)

Date: 13 Sept. 1963 ;

Magnitude: m=5.8

the Northern and the Western Hemis-

Time: 17:00:00.13 oz
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Note that these amplitudes are determined for the first

arrivals, not the maximum amplitude in general. Thus,

in the short ranges - 1039 km and 1426 km - the amplitudes

are small because they are of Pn not of P, which arrives

later. Notice that the amplitude reaches the maximum at

the range of 2274 km. We will be much concerned with this

fact when we derive a suitable model.

In examining the models by Nuttli and by Johnson

for this region of the North Amerita, the following procedure

was used. First we ran a simple program which only com-

puted the arrival times - refraction and reflection -

from each layer by the method described in the previous

chapters. We found the earliest arrival time at a certain

range and found which layer it came from. Then, we ex-

amined the arrivals from the surrounding layers, and the

responses that came in within so many seconds (usually

6 .seconds for the sake of economy) after the first ar-

rival were noted. We, then, ran the synthetic seismogram

program to compute the synthetic seismogram considering

only those responses found earlier.

We first applied our method to the Nuttli's model.

Table 4.2 shows the first arrivals and magnitudes computed

by our program. The synthetic response from the first

arrival to six seconds later is shown in Figure 4.13.

The synthetic seismogram, Figure 4.13 convolved with 4.3,

is Figure 4.14. Compare the record (Fig. 4.8) with this

figure. The difficulty is that at this range, the ray

travels at very shallow depth so that the subsurface

structure, which we expect to be extremely non-uniform,
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Table 4.2

First Arrival Times and Magnitudes for the Nuttli's Model

Range (kin) Time (sec.) Magnitude

1039 136.0 15

1426 184.0 --- *

1831 232.6 180

2274 278.0 140

3376 373.0 34

(* As shown in Figure 4.15, the magnitude for this range

was very small)

greatly affects the ray paths. [See S. W. Smith (1962)3

Our assumption is a lateral homogeneity, which may be

violated here. Other reasons may be that the model has

a negative discontinuity at about 75 km deep which caused

the negative peak in the theoretical response and that

we neglected all the rays with weak response (NZ 5); if

more rays had been added, the response would have been

smoother. Similarly, synthetic seismograms were generat-

ed for the other ranges (Figures 4.15-4.18). The author

reminds the reader that the amplitude between any two

seismograms - real or synthetic - may not be compared.

We expected a gradual decay in the amplitude with in-

creasing range, since the Nuttli's model has no gradient

variations. At the range of 2274 kin, therefore, the model

does not give a large amptitude and does not give a small

first arrival that the record shows. On this ground, we

concluded that this model does not fit the actual record

in this range, though travel times do fit.
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Next we examined the Johnson's model [See Table 4.3].

Table 4.3

First Arrivals and Amplitudes for the Johnson's Model

Range (km) Time (sec.) Magnitude

1039 137.0

1426 186.9 1 80

2274 279.2 50

Again a difficulty *-rises at the short- ranges. The

refracted arrivals are much too early and last too long

in the record, perhaps due to destructive interference

caused by complex subsurface structure. We ran his model

only at three ranges (Figures 4.19-4.21), the most impor-

tant one being at 2274 km. The Johnson's model generated

a small first arrival, but the time between the arrivals

of the first ray and the large second ray is 'much too

long, and though the largest amplitude in this synthetic

seismogram (Fig. 4.21) is very large, there is little

resemblance to the actual record at the range.

We, then, constructed some models with the effort

concentrated on the seismogram at 2274 km. The models,

along with the Nuttli's, are shown on Figure 4.22.

We took the negative discontinuity at 75 km deep. The

first model (Model I) has very small change in the slope

from the Nuttli's model. The seismogram and the theo-

retical response at 2274 km are shown on Figures 4.23

and 4.24. Note that the period of the transfer function

(Figure 4.3) is 1.15 seconds, and the distribution of
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the peaks in Figure 4.24 seemed to interfere destructive-

ly with each other to generate a poor seismogram. (The

synthetic seismograms for all these models are similar

to the Nuttli's at other ranges, with the exception of

the one at 1039 km without the negative peak. The ampli-

tude at 1831 km is 0.001).

Model II has a more pronounced gradient change at

510 km. This gradient gave a more prominent second

arrival starting at 1.1 seconds after the first arrival

[See figures 4.25 and 4.26]. Note that the significant

factor is the area under the theoretical response, not

simply the height of the peaks. In this model the sepa-

ration of the peaks helped to generate a better synthe-

tic seismogram, but the fit with the record, especially

in the first second is not satisfactory.

Model III has another high gradient region at 430

km in addition to the one at 510 km. The first arrival

is much smaller and the amplitude in the synthetic seis-

mogram improved [See Figures 4.27 and 4.28J. The wave

shape improved as well as the amplitude, somewhat. But

a close examination of the actual record indicates that

we need a small peak for the first arrival then a much

larger peak at 1.5 seconds later. In order to obtain

a response like this, Model II is the best of all we have

tried, the difficulty being that the first and the second

arrivals were too close. To attcin a wider separation,

further models were studied. Models IV and V are shown

on Figure 4.29. The theoretical responses and the syn-

thetic seismograms are on Figures 4.30-4.33.' The con-

tinued high gradient at 300 km and flat gradient followin
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in Model IV gave too late second arrival as shown in

Figure 4.31.

On the other hand Model V gave a better fit. For

some reason the first arrival in this model is too large,

and when experimentally the interfering phases were

eliminated - Model V' - [See Figures 4.34-4.353 the

synthetic response looks much better.

We conclude that Model V gives the best correlation

to the actual record. Perhaps the first arrival can be

made smaller by less velocity contrast at around 260 km

where the gradient changes. Because of the sensitivity

of the program to any'minor change, an adjustment of an

order of a few thousands of the total velocity made a

significant difference in the shape of the synthetic

seismogram. The author believed that making adjust-

ments of such an order to achieve a better fit was only

tedious and achieved little. Therefore, the author

claims that Model V or a model extremely similar to it

can generate satisfactory synthetic seismograms. [See

Table 4.4 for the P-velocity] Though Model V has been

claimed satisfactory, we have yet no way to prove the

uniquness or otherwise. However, beside the conventional

method of determining the P-velocity structure using

only the travel time information, we now have a much

powerful method - synthetic seismogram - to determine

more delicate structure variations.

For the completeness of the study, the synthetic

seismograms of Model V at ranges 1831 km and 3376 km

are shown on Figures 4.37-4.40. As mentioned earlier,

since the gradient is nearly flat near the depth where
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Table 4.4 Model V P-Velocity

Depth (km)

0
40

40

60
80

110

150

260

400

508

525

650

850

1000

[See also Figure 4.361

Velocity (km/sec)

6.59

6.61

7.93

7.93

7.80

7.80

7.93

8.64

9.10

9.41

9.80

10.55

10.98

11.29

the first ray bottoms, the theoretical response take a

similar form to a step function, and hence the synthetic

seismogram is very similar to the transfer function.

The reason why the record does not resemble the corres-

ponding synthetic seismogram after a few seconds may be

that there is a complex interaction due to the Moho or

due to very shallow structure of the earth.
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V. CONCLUSION

In this thesis, we attempted to investigate the

P-velocity structure in the upper mantle of the earth

in the southern part of the United States, using a new-

ly developed technique.of synthetic seismograms, instead

of the conventional Wiechert-Herglotz method.

Although the validity of this new method is yet to

be proven for the case of spherical layers, the method

is known to give correct travel times. The method com-

putes synthetic seismograms which can contain all the

compressional response from all the depths - not only

the the travel times and d 2t/d&2 , which were the only

information obtained from the conventional method.

Due to the increased amount of information, we were able

to examine models more accurately with added criteria

such as amplitute as functions of time and of range,

or the period and the phase of seismograms, which had

seldom been considered before in the study of velocity

structures.

Among two existing models we examined, the model

by Dowling and Nuttli (1964) reached from the same data

[BILBY Report (1963)3 as we used, did not give satis-

factory results. Due to the linear increase of the P-

velocity with depth, the seismogram generated by this

model were decreasing in amplitude with range. On the

other hand the record from the Bilby event showed clearly

that, at the range of 2274 km, there was a small first

arrival about 1.5 seconds before a very large major

P-arrival. The other model we tested was the Johnson's

(1967) calculated from the data obtained at the Tonto
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Forest Seismological Observatory in Arisona. Due to

its two prominent steps in velocity, the synthetic seis-

mogram at the range 2274 km showed a small first arrival

followed too late by a major P-arrival. Therefore, it

showed little resemblance to the record at this range.

We then constructed some models with the Correct arrival

times, and tested them, with the main emphasis on the

range 2274 km. Among the five models tested, one showed

a satisfactory fit to the record. This model, Model V,

has a pronounced step in velocity at the depth of 500 km

and gives a strong arrival at the range 2274 km from

this step.

Though there are more improvements to be made and

approximations to be shown valid rigorously, we believe

that this method of computing synthetic seismograms is

extremely useful and convincing because of the remark-

able resemblance between the synthetic seismograms and

the records which we demonstrated in this thesis, at

least for the upper mantle where the curvature is small.

The uniqueness of the solution cannot be proven

at this stage, and therefore, the structure proposed as

Model V in this thesis may not be the only representation

of the upper mantle. There may be other models that

give similarly good seismograms. Nonetheless, by adding

more criteria to these provided by the conventional

method of computing velocity as a function of depth,

we may be able to limit the possibilities.
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APPENDIX

On the following pages, the computer program discussed

in the thesis in Chapter III is listed.
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C ... MAIN PROGRAM A-2
COMMON/TINP/DELTMDLTMMTDDLTPJO,NDIRT
COMMON/STUFF/C(100)5S(100),D(100) TH(100),X
COMMON/TFIX/TN1,TN2,TN3,TN4,JN1,JN2,JN3,JN4
COMMON/CONFIX/DEL,NNNDPTMXXDIMYDIM,DPKO
COMMON/THY/TT (8000) PP (8000)
COMMON/SYTH/XD11,YD11,XD22,YD229XD33,YD33
COMMON/FOURCT/MF NMF, KMFKNMF
C)MMON/PLOTC/CONNNF NPT

CC 4MON/LPRINT/PRNT,PRNTS,KSTKEND

LCGICAL PRNT,PRNTS
PRNT = .FALSE.
PRNTS = .TRUE.
JN1=12
JN2=10
JN3=8
JN4=100
TN1=.8
TN2=.2
TN3=. 1
TN4=.01
NDIRT=O
NNP=1
NP =2
X = 2274.0
CO=(2./X ) ** 5/(3.1416)
CON=CO
MT-)=3
DLTM=.5
DELTM=1.E-6
JO = 45
CALL CURAY(JO)
DLTP=.04
XD11=2#
YD11=2*
XD22 = 4.0
XD33 = 4.0
XDIM = 4.0
YD22 = 4.0
YD33 = 4.0
YDIM=2.
DP=.04
DEL=DP
NDP=15
TMX = 6.0
NN = 150
MF=O
CA'L NEWPLT ('M5207',,6267','WHITE ','BLACK')
KC = 0
KSr = 17
KE'4D = 20
CALL CLOK1
CALL SETUP (18,0,1,2,0,2,0)
CALL CLOK2
CALL CLOKI
CALL SETUP (24,0,1,1,2,2,0)

1 CALL CLOK2
CALL SETUP (27,0912,2,2,90)
KO = 75
CALL CLOK1
CALL SETUP (29,0,1,2,2,0,2)
CALL CLOK2
CAL ENDPLT



CALL EXIT A-3
END

* Subroutines CLOK1 and :CLOK2 are to find the time spent between
the two calls; they are not listed in the Appendix.



BL)CK DATA
C....* TEST NO.5

COMMON/STUFF/C(100),S
DATA TH/0O0,40.0,20.0
DATA'C/0.0001%6.2,7.9

A8.25,8
B9.069

C10.14,
D10 .87
DATA S

A4.55,4
B5.04,5
C5.83,5
D6.41,6
DATA D

A3.54,3
83.71,3

.38,8.

.12,9.
10.25,
10.92,
/0.000
.59,4.
.09,5.
.92)6.
.45,6.
/0.000
.57,3.
.72 ,3

A-4
(100),D(100),TH(100),X
,2*10.0,30.0,20*20.02*10.0 ,22*20.0/
3,7.88,7.84,7.8,7.84,7.88,8.00,8.13,

505,8.61,8.677,8.743,8.81,8.877,8.943,9.019
17,9.23,9.28,9.37,9.58,9.79,9.9910.02,
10.37,10.49,10.58,10.63,10.68,10.72,10.77,1082,
10.96,11.01,1106,11.11i,11.16,11.2,11.25,11.3/
1,3.7,4.49,4.42,4.36,4.3,4.36,4.42, .46,4.5,
6494.69,4.7a,4.8)4.85,4.994.95,5.0,
13,5.18,5.22,5.31,5.42,5.53,5.64,5.73,
02,6.11,6.16,6.2,6.24,6.28,6.33,6.37,
49,6.53,6.57,6.61,6.66,6.7,6.74,6.78/
1,2.84,3.44,3.442,3.444,3.4%45,34453.475,3.495,3.52,
59,3.6,3.62,3.633.65,3.66,3.68,3.7,
74,3.75,3.768,3 .82,3.86,3.8993.92,

C3.95,3.98,4.01,4.04,4.05,4.06,4.07,4.08
D4.11,4.12,4.13,4.14,4.15,4.1694.17,4.18
END

,4.09,4.1,

,4.19,4.2/



- -- -- ~-~ -~--- 1~--~-'~-- - -- A-5 --

" SUBROUTINE ADJUST(NFIX)
COVVON/THY/T(8CCO),PH(8000),FF(600)
SCOt FON/EXACT/I PHI (500) ,TD(500),NEND,NM
P=NM1I
TR=TD(M)
I=0

80 I=I1
IF(T(I).GT.TR) GO TO 81
GO TO 80

81 DNE=TR-T(I-1)
DPL=T( I )-TR
IF(ABS(DNE).GT.ABS(DPL)) GO TO 83

DELTA=-DNE
NFIX=I-1
GO TO 85 __

83 DELTA=OPL
NFIX=

85 DO 84 J=1,NEND
TD(J)=TD(J ) ELTA

84 CONTINUE
... _ END

.....................- I- -------- 1---------- -- -------- CI---- -- I--

_ _1_1 --- - 1-- - --- - ...... ... ........ ..... . .... ...... .. ....... .... .. . .. ........ o- . ....-I -~---



SUBROUTJINE CON(N,KlK2) 
A--------~ -6

COPPON/CF IX/NT,KTMw fN ,LTLTP( 100) ,NF
COMI'ON/CN/NNT( 100) _P MT( 100) ,MMB( 100)tNNB( 100) ,LU( lCO) ,LB( 100)l

21L( 100) ,NNF( 100)
-D0 5 __J=1 , 1C0

5 LTP(J = 0,0
NT=KNT(N),
KT=PMT(N)
PMB=P.MB( N)__ _ _ _ _ ____ _ _

NB=NNI3(N)
LT= LL (N)
LTP(Kl )=LUCN)
LTP(K2)=LB(N) ..--

NF=NNF(N)
__ _RETURN__ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

END



,---SUBROUTINE CONN(N.KPK-N) - -

COMMON/CF TX/NT, KT MB NBILTP( 100) ,NF
_COPMON/NFIX/PMC 1O9) ,NN(,100,) MTJ 100L _ _ -_____

DO 25 J=19LCO
1'MJ( J) =0
NN(J)=0
PT( J) =0 -- - ---- ----- --

LTP(J)0O
__25 CONTINUE~ __

K1=K&1
K2=K&2
K3=K&3

PT(Kl)1l
GO TO (1,2,34, 15,_6,7,-89J10.) ,N ________

t'(Kl)=l

_LTP(Kl)=4
LTP(K2 )=2

LTP(K4)=2

MT(K2)=l

PT(K4V=l

2 PM(KI)1l
PM(K3hd - - - - ---.------.-------------

KN(Kl)=l
LT (Kl) 4 . - - - - - - - - - -- - - - - - - - - ------

LTP(K2)=2

NF=2
POT(K2)=l - - ---- *-- - - - - --- -

MTCK3)=1
GO TO 30 - -- - - - -- - - - - -

3 PM(K2)1l
PM ( K 4)
IN(K1 )=l
LTPC(K1) =4 -.-- - - - - - - - -

LTP(K2)=4

LTP(K4)=2

PT(K2h=2
__ _PT (K3)= - - - - - - - --- - - - - --

MTtK4)=1

4 tPM(K2)1l
PM ( K-4) =1 -- ~ - - - - - - -- - - - - - - - -__

NN(K2)=l
L TP(Klh 1 ) * = 2 -.- - .-

LTP(CK2)=
ITP(K3)=2 - - - - - - - - - - -

LTPCK4)=2
NF=2 - -- --- - - -- - -- -- _ __ _



A-8

MT(K2)=1
PT(K3)=1
PT(K4)=1
GO TO 30

5 PM(K2)=1
.M(K3)=1
I-N(Kl)=1
LTP(Kl)=4
LTP(K2)=4
LTP(K3)=2
N F=2
PT(K2)=2
-T(K3)=1

GO TO 30
6 PM(K3)=2

NN(K1)=1

LTP(K2)=4
LTP(K3)=4
NF=1
PT(K2)=2
PT(K3)=2
GO TO 30

7 PM(K3)=1
P M(K4) =1

NN(KI)=l
LTP(Kl)=4
LTP(K2)=4
LTP(K3)=4
LTP(K4)=2
NF= 2
PT(K2)=2
MT(K3)=2
VT(K4)=1
GO TO 30

8 PM(K3)=1
PM(K4)=l
NN(K2)=1
LTP(K1)=2
LTP(K2)=4
LTP(K3)=4
LTP(K4)=2

NF=2 _--- ---------------- -- -
PT(K2)=1
PT(K3)=2
IVT(K4)=1
GO TO 30

9 PM(K4)=2
IN(K1)=1 -
LTP(Kl)=4
LTP(K2)=4
LTP(K3)=4
LTP(K4)=4
NF=1
MT(K2)=2
MT(K3)=2
F T(_K4)=2 - --



A-9
GO TO 30

10 VM(K4)=2
NN(K2)=1
LTP(K1)=2
LTP(K2)=4
LTP(K3)=4
LTP(K4)=4
NF=1
PT(K2)=1
PT(K3)=2
MT(K4)=2

30 CONTINUE
END

S-.----------.--- - - - - - - - ---.-- - - - - --- -----

- --- -- -- ~----~ ----.--. ----------------~-----.----~.- - -_____________------------~- ________________ --- __________ ---------------- --------- -- - .



SUBROUTINE CONSTN(NO)
COMMON/CN/NNT(100) ,MMT(100) ,MMB(100),NN (100),LU 00),LB(100
ILL(100),NNF(100)
DO 5 J=1,NO
NNT(J)=0
MMT(J)=O
MMB(J)=O
NNB(J)=O
LU(J)=O
LB(J)=O
NNF(J)=1
LL(J)=O

5 :ONTINUE
N=L
MT (N) =
LUN)=2
N=2
NNB(N)=1
LU(N)=2
LB(N)=2
LL(N)=1
N=3
MMT(N)=2
NNT(N)=1
LU(N)=4

NN 3(N)=2
MMB(N)=1
LU(N)=2
LB(N)=4
LL(N)=1
N=5
NNB(N)=2
NNT(N)=1
LU(N)=4
LB(N)=4
LL(N)=2
N=6
NNB(N)=1
MMT(N)=1
NNT(N)=1
LU( N)=4
LB(N)=2
NNF(N)=2
LL(N)=1
N=7
NNB(N)=3
MMB(N)=2
LU(N)=2

LB(N)=6
LL(N)=1
N= 3
M r(N)= 3
N T(N)=2
LUtN)=6
N=9
NNB(N)=3
NN ( N)= 2
LU(N)=6

LB(N)=6
LL(N)=3
N=10
NNB(N)=2



MMT(N)=1 A-11
LL(N)=1
MMB(N)=1
NNT(N)=1
LU(N)=4
LB(N)=4
NNF(N)=2
N=11
NNB(N)=2
MMT(N)=1
LL(N)=2
NNT(N)=2
LU(N)=6
LB(N)=4
NNF(N)=3
N=12
NNB(N),=3
MMB(N)=1
NNT(N)=1
LU(N)=4
LB(N)=6
NNF(N)=2
LL(N)=2
N=13
NNB (N)= 1
MMT (N)=2
NNNT (N)=2
LUtN)=6
LB(N)-2
NNF(N)=3
LL N)=1
N=14
MMT(N)=4
NNT(N)=3
LU( N)=8
N=15
MMT(N)=3
NNB(N) = 1
NN r(N)=3
LU( N)=8
LB(N)=2
LL(N)=1
NN'(N)=4
N=16
NNB(N)=2
MMT(N)=2
NNT(N)=3
LU(N)=8
LB(N)=4
NNF(N)=6
LL(N)=2
N=17
MMB(N)=I
NNT(N)=2
NNB(N)=2
MMT(N)=2
LU(N)=6
LB (N)=4
NNF(N)=3
LL(N)=1
N=18
MMT(N)=1
NN9(N)=3



MMB(N)=2
NNT(N)=1 A-12
LUN)=4
LB(N)=6
NNF(N)=2
LL(N)=1
N=19
MMT(N)=1
NN3(N)=3
LL(N)=2
MMB(N)=1
NN '(N)=2
LU(N)=6
LB(N)=6
NNF(N)=8

N=20
MMT(N)=1
NNB(N)=3
NNT(N)=3
LL(N)=3
LU(N)=8
LB(N)=6
NNF(N)=4
N=21
NNB(N)=4
MMB(N)=3
LU( N)=2
LB(N)=8
LL(N)=1
N=22
NNB(N)=4
MMB(N)=2
NNT(N)=1
LL( N)=2
LU(N)=4
LB (N)=8
NN (N)=3
N= ?)3
Nr3(N)=4
MVB(N)=1
NNT(N)=2
LLN)=3
LU: N)=6
LB(N)=8
NNF(N)=3
N=24
NNB(N)=4
NNT(N)=3
LL(N)=4
LU( N)=8
LB(N)=8
END



. FUNCTION CCNVS(FA,FP, DELNFN) A-13
CIMENSION FP(1),FA(1)

C COMPUTES CONVOLUTION OF FP AND FA T=DEL*2N
C NF MUST BE ODC

NIN=N
ON=DEL

IF(KN.LT.1) GO TO 2
NDO=MINO hN,(NF-1)/2)
IP=2
NP=2*NN
EVEN=FP(IP)*FA(NP)
OcD=O

------ f ---bd-- - --- T 0---fl--------------------------------------------------------------------------------- ---IF(NDO.LT.2) GO TO 11
DO 10 I=2,NCO
IP=IP&1
NP=NP-1
ODD=ODDFP(IP)*FA(NP)
IP=IP&l
NP=NP-1
EVEN=EVEN&FP(IP)*FA(NP)

10 CONTINUE
11 CONTINUE

ENDS=FP(1)*FA(2*NN&I)EFP(IP&I)*FA(NP-1)
CONVS=DN*(ENDSE4.*EVEN2.*OCD) 13.
R ETUR--------------------------------------------------------------------------------
RETURN

2 CONVS=O.
END

----------------------------------------------------------------------------------------------------

---------------------------------------------------------- - --------------------------

--------------------------------------------------------------- - ------

---------------------------------------------------------------------------------------



COMPL EX FUNCTION CR(P C) -- ------ A-14

COMPLEX PCZ
CZ= I /C * -P*P
U=REAL(CZ).
x = AI AG ( CZ )
R=SQRT(X*XSU*U)

= ABS(R&U )/2.
W2=ABS( R-U ) / 2._ ..------------------------ -- -- - -------t-- --- ------- ------

R2=SQRT(W2)
R2=SQR-T.(W-2 -) --------- ____ _~_ ___~__~__ _. __ __ _ -- II.
CR=Rl-R2*(.,p.)
END .....

-----------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------

----------------------------------------------

----------------

__ _ _ _ _ _ _ _ _ __---~------ - -.- - - - - - - - -. - - - - - - --- - - - - -

------------------------------------. -------

------------------------------------- ---------.-------------------------------------------------------- -------

--------------------------------------- -
------ -------- ------ --- ---------------------------- .----------------- ---- - -

---------------------. -- - ---------------- ---------

- - - - - -- - - - - - -- - - - - - - - - - - - - - - - - - - -- -- - - - - - - - - -
-------------------------------------------------------------------------------------------------



COMPLEX FUNCTION CRSTPP(PV1qS1,PRHO1V2,S2,RHO2) A-15
COMPLEX CRPE1PsE2P
COMPLEX E1,E2,C1 C2sC3,C4,C5iC6,T
COMPLEX ABAPBP
REAL K1,K2qK3,K4

K4uRH02*S2**2/(RHO1*S1**2)
B=. 5/ ( 1-K4)
B2=. 5*K4/ (K4-1)
K1= B1/S142
K2= B 2/S2**2
K3=K1+K2
E1=CR(P,V1)

E2=CR(PV2)
E2P=CR(PS2)

E1P=CR( PS1)
C1=(P*2)*(K3-P**2 )**2
C2=P**2*E1*E1P*E2P
C3=(E1*E1P)*(K2-P**2)**2
C4=E2P ( K1-PP) **2
C5= K l*K2E1*E2P
C6=K l*K2*E1P
AP=C1+C3-C5
BP=C2+C4-C6
T=2.*K1*E1*(E2P*(K1-P**2)-E1P.(K2-P**2))
B=AP+E2*BP
CRSTPP=T/B
RETURN
END



SUROUTINE CURAY (J CJC ) A
COMMON/STUFF/C( 100),S(100), 100),TH( 100),X,RCSQ(100),RSSQ(100
COMON /SENSE/ CRCSQ(100)
DIMENSION CEPTH(100)
REAL*8 DRCSC
PRINT 2, X -

---- ----- -----

2 FORAT (IH1,iOX'CURAY'/I1X'RANGE'FiC.Ol6X 'THICKNESS'9X'DEPTH'5X'P
E-VELOCITY'5X'S-VELOCITY' 8X' DENSITY' )
00=-- 10?---------------DEPTH(1) = TH(1) / 2.0
DO 10 J = 2,JO

10 DEPTH(J) = DEPTF(J-1) C (TH(J)CTH(J-1))/2.0
00 5 J = 1, JO
Q = 6371.0 / (6371.0-DEPTH(J))
C(J) = C(J) QQ - --- - -- -- - - - - - - - -- -- -- - -- -- - - - -- --- -- - - -- -- --- - - -- - - - -- - --- -- ---
S(J) = StJ) * Q
D(J) = D(J) Q
TH(J) = TH(J) * Q
DRCSQ(J) = 1.0 / DBLE(C(J))**2
RCS C(Ji - CRCSQ(J)

5 RSSC(J) = 1.0 / S(J) ** 2---------------------------------- ---- - - - - - - - -- - - - - - - - - - - -- - - --- - - - - - -- - - - - - - - - - -
PRINT 1, (JTH(J),CEPTH(J),C(J),S(J),D(J),J=1,JO)

1 FORMAT (IS,5Xt5G15.4)
RETURN
END ------------------------------------------------------------- --------------

----------------------------------- --- ------------- I

-------------------------------------- ----------------------------------------------------

-- - - - - - - - - - - - - - - - - -- - -- - - - - - - -- - -- - - -- - --- - ---- ---- ------ ---- ----- ----'- -------------



SUBROUTINE FINO2 (QK,DEDELDETPQ,TQ,KN,N) A-7
COMON/STUFF/C( 100 S_(100))S(__,D(_100) TH( 100),,X
COMMON /SENSE/ RCSQ(100)
COMMON/CFIX/NT,KTMBNBLTLTP(100),NF
COMMON / LPRINT/ PRNT,PRNTS
LOGICAL PR _TPRNTS
REAL*8 E(100),BLTEM,TOTEM,PG,TOtBLPPSQRCSQ
KOUNT = 0
TDE = DEL
JI=K1
J2=J1IKN

8 P= Q
KCUNT = KOUNT £ 1

5 P=PEDEL
PSQ = P ** 2
BLTEM = 0.0
DO 10 J = 1,K
E(J) = DSQRT(DABS(RCSQ(J)-PSQ))

10 BLTEM = BLTEM - TH(J) / E(J)
BLTEM = 2.0 * BLTEM
DO 30 J = J1,J2
E(J) = DSQRT(DABS(RCSQ(J)-PSQ))

30 BLTEM = BLTEM-TH(J)*LTP(J)/E(J)
8L = X C BLTEM*P
IF(ABS (DEL).LE.1.E-18) GO TO 1

6 IF (DABS(BL).LE.X/DET) GO TO 1
2 IF(BL)3,1,4
3 DEL=-ABS (CEL*.5)

GO TO 5
4 DEL=ABS(DEL*.5)

GO TO 5
I IF (DABS(BL).LT.0.O) GO TO 7

IF (KOUNT.GE.5) GO TO 7
Q = Q/10.0
DEL = TDE
GO TO B

7 PO = P
TOTEM = 0.0
00 11 J = 1,K

11 TOTEM = TOTEM C E(J) * TH(J)
TOTEM = TCTEM * 2.0
D00 31 J=J1,J2

31 TOTEM = TOTEM E(J)*TH(J)*LTP(J)
TO = P*X - TOTEM
PQ = PO
TQ = TO
IF I(OABS(BL).LT.1.-E-6) RETURN
IF (.NOT.PRNT) RETURN
PRINT 17, PO, TO, BL

17 FORMAT (1HO,4X'PO = G18.6,1OX'TO = 'G18.6,10X'BL = 'G18.6)
RETURN
END

--- -~-- --~ --- ---- ----- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - -



A-18 .. .

SUBROUTINE CELPS (NNNRG ,N,N) . .
DIFENSION PP(50)
COMPON/SPE/CELP(4C)00),DD100,D02003,D4,NO
RG=RG-1., E-08
PI=3. 141593
AN=PI/(NNN*2.)
J=NN
A=AN
DELP(J)=RG*(SIN (A)**N)
TO=DELP(J)
A=AAN
PP(1)=DELP(1)

1 J=JC1
PP(J)=RG*SIN(A)**N
DELP(J)=PP(J)-PP(J-1)
DELP(J)=ABS (DELP(J))
TO=TOEDELP(J )
A=AGAN
IF(TO.LT.RG) GO TO I

2 NO=J-1
END



A-19
. COMPLEX FUNCTION GENCC(P,N) 

COMPLEX PtCRSTPPtGCD,GCU,TO
.DIMENSION GCD(CO),GCU(100)
COMPON/STUFF/C(100),S(100),D(100),TH(100),X
KK=N-1
IF(KK.LT.2) GO TO -40
DO 34 J=2,KK
VVL=C(J)
SSl=S(J)
RRI=D(J)
VV2=C(J&1)
SS2=S(J&1)
RR2=D(JG1)
GCOD(J)=CRSTPP(P VV1ISS1,RRIVV2,SS2,RR2) .
GCU(J)=CRSTPP(P,VV2,SS2,RR2,VVtSSL,RR1)

34 CONTINUE
40 TO=1.

IF(KK.LT.2) GO TO 36
00 35 J=2,KK
TO =TO*GCD(J)*GCU(J)

35 CONTINUE
36 GENCC=TO
- END



---------- ~Re~lEtiL~~NP-~-~ ~-~ -~~~----~~-A2SUBROUTINE HELP(K,NPTTP,DTP,KN) 20
COtVON/STUFF/C(100),S(100),C(100),TH(100),X,RCSQ(100) RSSQ(100)
COPMON/CFIX/NT,KTMBNBLTLTP(100),NF
J1=K& 1
J2=JI&KN
PSQ = P**2
BLTEM = 0.0
TOTEM = 0.0----------- - - -- ~ - " - - -- - - - - - - I I - -D00 11 J = 1,K
E = SQRT(ABS(RCSQ(J)-PSQ))
TOTEM = TOTEM & E*TH(J)

11 LTEM = LTEM-TH(J)/E------------ - ------ ~ - -" ----- -- ----------- - - - - - - - - -- -- - - - -- - - - -- - - - - -- - - -- - - - --- --
TOTEM = TOTEM * 2.0
BLTEM = BLTEM * 2.0

----------~-- -f -Y -J -=-- -J-Ji t J-2 --- - %-- --- ~--------- ~ - - - -- - I~- - - ~ I------ - --- ~
DO 31 J = J1,J2
E = SQRT(ABS(RCSQ(J)-PSQ))
BLTEM = BLTEM - TH(J)*LTP(J)/E

31 TOTEM = TOTEM C E * TH(J)*LTP(J)------------ --------- I-----
BL = X- P*BLTEM
TO = P*X C TOTEM-- - - - - -6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---------------------------------------
DTP=1./BL
TTP=TO
RETURN
END--------------------------------------

-------------------------------------- --- - - - - - - - - - - - - - - - - -- - - --- - - - - - - - - - - - - - - - -

-- -- -- -- -- -- -- -- -- -- -- -- -- -- ---- -- -- -- ------ ---- -- ---- -- -- --------"---- -----------

- - - ---------- ----I---- ----- --------------- ----- -------- ----~- ---------- ---- -------------------- --------------------

----------------------------
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SUBROUTINE F-IGH(NDP,TMX, K,KI,N) -21
COMMON/TFIX/TNI1TN2,TN3,TN4,JN1,JN2,JN3,JN4
COtM-ON/CFIX/NT,KTMB,NB,LTLTP(100),NF
COPMON/STUFF/C( 100),S(100), D ( 100)TH(100)X
COMONf EXACTPHI( 5 TO(500) 500),NEND,NM
COMMON/MAGIC/PP(300) 00PT(300),TT(3C0)
COM ON/SPE/DELP (400),D, D2 ,DD3,DD4,NO

COMMCN/PATIC/PO,T0, KK
CO VON/TINPfD-ELTNDELTM,-DLTM, MTD,DLTP JONDIRT
COMMON / LPRINT/ PRNT,PRNTS
LOGICAL PRNT,PRNTS
DIMENSION E(100)

KK=K
KM=K
J=K

17 J=J&l
IF(LTP(J).LT.1) GO TO 16
KM=J
GO TO 17

16 CONTINUE
333 FORMAT(6110)

IF(.NOT.PRNT) GO TO 4
PRINT 1

I FORMAT (5X'(LTP(J),J=1,KM)')
WRITE(6,333) (LTP(J),J=1,KM)
PRINT 3

3 FORMAT (9X'K'9X'N'8X'KM')
WRITE (6t333) K,NKM

4 V2=C(KM&1) ----------------------------------
XM=0.
DO 98 J=1,KM
XM=AMAX1 (X,C(J))

98 CONTINUE
DEL=1./XM

81 P=-1.E-9
DET=I.E&12
KN=KM-K
KP=KN-1
CALL FIND2 (PKKDELDETPOTOKPN)
RG=A S(PO-1./V2)
NK=2
hNN=NDP
KP=KN-1
P=1./V2
CALL HELP(KN, PTTPDTPKP)
TC=TTP
TG=TO-TTP
IF(PO.LE.1./V2) GO TO 6
IF(TG.GT.TN1) GO TO 6------------------
JN=JNI
IF(TG.GT.TN2) GO TO 8
JN=JN2
IF(TG.GT.TN3) GO TO 8
JN=JN3

8 e = RG/(JN1)-
00 15 J = lJN

-------------------------------------------------



.D-E-(J- Z .- A-22 --

15 CONTINUE-- ------ -------------------------------------------------------------------------- ------------

NO=JN
IF(TG.LT.TN4) GO TO 2
GO TO 19

6 CALL DELPS(NNNRG1,NK)
IF (.NOT.PRNT GO TO 19
PRINT 7, V2, XM, POt RG, TC, TO, (DELP(J),J=1,NO)

7 FORMAT (1HO,4XlV2 = I'G136t5X'XM = I G136,5X'PO = 'G13.6/5X'RG

&G13.6,5X'TC = 'G13.6,5X'TO = 'G13.6/5X'DELP'I(Gl5.6))

19 IF(PO.LE.1./V2) GO TO 2

CALL PLN1(PO,TOK,NTCKNV2)- -
2 MO=NOg2

IF(TG.LT.TN4) MO=2
IF(PO.LT.1./V2) MO=2
CALL CONTOR(TMXM,KNNMO)_
IF (.NOT.PRNT) GO TO 620
PRINT 5

5 FORMAT (LHO,13X'PP'27X'DDPT'24X'TT')
JJ=PO
WRITE(6, 200) (PP(J) ,DDPT(J) TT(J) ,J=JJ M)

200 FORMAT(5E15.4)
620 CALL PLN2(PCTOKMOM,KN)

NEND=M
NIV=NO
IF(PO.LT.1./V2) NM=O
IF(TG.LT.TN4)NM=O
IF(PRNTS) PRINT 9t (TD(LLM),PHI(LLM),LLM=LNEND)

9 FORMAT (1HO,14X 'TDO 23X'PHI /(2G25.7))

RETURN

END

---------------------- --------------------- --------

1---------------------------------------------------------------------------
----------------------------------------------------------------------------------

------------------------------------------------------------------------------------

----------------------------------------------- -----------------------------------
. . . . . .. .. . . .. . . . . . . . . . . . .. . . .. .. .. . . . . . . . . .. . . . . . . . .. .. . . . . . . . . . . . . .. . . . .



SUBROUTINE INTERP(XPYP,NXY) A-23
DIMENSION XP(N),YP(N)
REAL DIFltCIF2,CIFYDR

1 IF (X .GT.XP(N))GO TO 6
IF (X .LT. XP(1)) GO TO 6

2 D00 10 I=lN. . . . . . . . . . . . .
IF (XP() -X) 10,102,3

10 CONTINUE -

3 K= I-i
DIFl=XP(I) -XP(K)
DIF2=XP(I) -X
RATIO = DIF2/DIF1------------------
DIFY = ABS (YP(I) - .YP(K))
DR = DIFY*RATIO
IF (YP(I) .GT. YP(K)) GO TO 4

5 Y = YP(I) , DR
RETURN

4 Y= YP(I) - DR
RETURN-

102 Y=YP(I)
RETURN

6 Y = 0._ _ _ _ _ _ __

RETURN
END

--------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------

-----------------------------------------------------------------------------------

------------------------------------------------------------------------------------

----------------------------------------------- ------------- I ----------------------------

------------------------------------------------------- -----------------------------



SUBROUTINE PLNI (POTTOK N TC,KN,V21 -- - A-24
COMMON/TINP/DELTMCLTMMTD ,LTP,JO,NDIRT
COMMON/SPE/CELP (400), 1,DD2, D3,DD04, NO
COMMON/STUF-F/C(100) ,S(100),( 100) ,TH(100),X
COMON/ E XACT/PHI(500),TT (500- ,NEND, NM
COMMON / LPRINT/ PRNT,PRNTS
LOGICAL PRNT,PRNTS------------ jr: Ai ~ dF~~ P \~
COMPLEX RPR,ROC,QTOT,GENCC,TQ
K1=KS1
K2=K&11
KP=KN-1
P=1./V2
DO 80 I=2,NC
J=I-1
P=PCDELP( J)
Q=PCO.*(O.,1.)
CALL HELP(K,N,P,TTP,DTP,KP)
TT(I)=TTP
RPR=ROC CQ,K,KN)
TOT=GENCC(Q,K)
TQ=TOT*RPR
RP=AIMAG(TQ)
EA=(1./C(2)*2-P*P )**.5
IF(NDIRT.GT.1) GO TO 1
R3=1./EA
GO TO 2

R1=EB**2-P*P
R2=RL**2&4 . P*P*EA*EB
R3=R1/(R2*S(2)**2)
IF (PRNT) PRINT 10, EA, EB, RI, R2

10 FORMAT (IHO,'EA ='G13.6,5X'EB ='G13.6,5X'Rl ='Gl3.6,5X'R2 ='G13.6)
2 PHI(I)(RPnDTP*R3P'*.5)

IF (PRNT) PRINT 9,P,DELP(I),TTP,DTP,TOTRPRR3,PHI(I),RP
9 FORMAT I(HO,'P ='G15.6,5X'DELP ='G15.6,5X'TTP ='G15.6,5X'DTP ='G
&15.6/' TOT ='2G20.6,5X'RPR = '2G20.6/' R3 ='G15.6,5X'PHI ='G15.6
&,5X'RP ='G15.6)

80 CONTINUE
4 IF(TO-TTP.LT.LTP) GO TO 3

PP = PO - P
P = P & PP/2.0
I = NO & 1
NO INQ = I

CALL HELP(K,NP,TTP,DTP,KP)
TT(I)=TTP
RPR=ROC(QK,KN)
TOT=GENCC (Q,K)
TQ=TOT*RPR
RP=AIMAG(TQ)
EA=(1./C(2) *2-P*P)**.5
IF(NDIRT.GT.1) GO TO 5
R3=1./EA
GO TO 6

5 EB=(1./S(2)2-P*P)**.5
R 1=EB**2-P*P
R2=Rl**2&4.*P*P*EA*EB



R3=Rl/(R2*S(2).*2)
•* - IF (PRNT) PRINT 10, EA, E , R1, R2
6-- - PH i (i-)=-(RPD TP*R3*P**.5 )

IF (PRNT) PRINT 9tPDELP(I),TTP,DTP,TOTRPR,R3,PH(I) ,RP
GO TO 4

3 TT( 1 )=TC
PHI (1 )=0.-
RETURN

------------------------------------------------------------------------------------- -----------------

----------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------

------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------

------------------------------------------------------------------ ---------------- -----------

-------------------- -- - - - - - - - - - - - - - - - - - -

------------------------------------------------ -----------------------------

---------------------------------------------------------------------- ----------------

------------------------------------------------------------------------------------

---------------------------------------------------------------------- ----------------

--------------------------------------------------------------------------------------



SUBROUTINE PLN2(PO,TO,K,MO
COMMON/TINP/DELTM, DLTM, MTD

COMMON/MAGIC/PP(300) ,DDPT(3

COMMON/EXACT/PHR(500) ,TTT(5
COMMON/STUFF/C(100) ,S(100)

DIMENSION FF(50)
COMMON / LPRINT/ PRNTPRNTS

LOGICAL PRNTPRNTS
COMPLEX P,ROC sFME1

COMPLEX PPBTDDPTRP9
COMPLEX RBTTLCRRD,G

COMPLEX EAEBsRIR2,R3PH
KP=KN-1

K1=K+I
K2=Kl+1
DC 5 I MOM
TT (I)=TT(I)
P=PP(I)
RP :ROC(P,KKN)
GC =GENCC(PK)
EA :CR(PC(2))
IFtNDIRT.GT.1) GO TO 32
R3=1./EA
GO TO 38

32 EB=CR(P,S(2))
R1=EB**2-P*P
R2=R1**2+4.*P*P*EA*EB
R3=R1/(R2S (2)**2)

38 BT=CSQRT(P)
PH=R3*DDPT( I )*GCRPBT
PHR(I)=AIMAG(PH)
IF(PRNT) PRINT 9, P, GC, RP,

9 FORMAT (1HO,4X'P = '2G18.6/

+5X'R1 = ,2G18.6/5X'R2 = '2G1

+5X'EB = '2G18.6/5X'PH = '2G1

5 CONTINUE
P=PO.(1.,O .)+O. --(o.91 )
I=UO-1
o=PO
SF=SF2(QKKPN)
TTT(I)=TO
GC=GENCC( PK)
RP=ROC(P,KKN)
RPP=SF*GC*RP*(X/2. )-.5
IF(NDIRT.LT.1) GO TO 2
EA=CR(PC(2))
EB=CR(P,S(2))
R1=EB**2-P*P
R2=R1**2+4.*P*P*EA*EB
R3=(R1*EA)/(R2*S(2)**2)
RPP'.RPP*R3

2 PRE=REAL(RPP)
PIMeAIMAG(RPP)
IF(.NOT.PRNT) GO TO 3

PRINT 1, 0, SF, PRE, PIM
PRINT 9, P, GC, RP,

1 FCRMAT (5X'Q = 'G18.6,10X'S
+5X)PRE ='G18.6iOX'PIM ='G18

3 NC :MO-2

DP ,DLTP
Fl =0.
SUM=0.
IF(MO.LE.3)

MKN)
DLTPJOsNDIRT
00),TT(300)
00),NEND,NM
D(100) ,TH(10 ) ,X

A-26

RPPGC
ENCC

R1, R2, R3,EA, EB, PH

5X'GC = 12G18.6/5X'RP = t2G18.6/
8.6/5X'R3 = '2G18.6/5X'EA = '2G18.6/

8.6)

R2, R3,EA,
'G18.6/

EB, PH

GO TO 46



TNN3TO-DP
CALL INTERP(TTTPHRMTNNY)

FF(1)=Y
SUM3SUM+2.*PIM*(TO-TTT(NO))**.5
IF (PRNT) PRINT 4, SUM

4 FORMAT (5X'SUM = 'G18.6)
DELL=(TTT(NO)-TNN )/5.
TT(1)=TNN
DO 41 J=296
TT(J)=TT(J-1) +DELL
CALL INTERP(TTTPHRsMTT(J),Y)
FF(J)=Y
SUM=SUM+(FF(J-1)+FF(J))/2.*DELL
IF (PRNT) PRINT 4, SUM

41 'CONTINUE
46 TPP4TTT(MO) (o i I ()= TPP

IF(TTT(MO)- *GT.DP) GO TO 43
SUM=SUM+2.*PRE* (TTT(MO)-TO) **5
CALL INTERP(TTTPHRMTPPY)
FF(1)=Y
DELL=(TO+DP-TTT(MO))/5*
DO 42 J=2,6
TT(J)=TT(J-1) +DELL
CALL INTERP(TT1,PHRsMTT(J),Y)
FF(J)=Y
SUM3SUM+(FF(J-1)+FF(J))/2.*DELL
IF (PRNT) PRINT 4, SUM

42 .C)NTINUE
F3: FF (6)

PH' 4I)=(3.*SUM/DP-F-F3)/4*
GC TO 44

43 T 'T(MO)=TO+DP
PH (MO)=PRE/(DP**.5)
F3=PHR (MO)
SUM=SUM+2.*PRE*(DP)*.5
PHR(I)=(3.*SUM/DP-F1-F3)/4.

44 CONTINUE
END

A-27
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COMPLEX FUNCTION RET(PV1,S1DV2S2D2) A-29
COMPLEX E1PiPA BAPBPBT CR
COMPLEX E1,E2E2PsClC2 ,C3,C4,C5,C6

REAL Kl9K2,K3,K4
D=D1/D2
K4=S2**2/ (S1**2*D)
B1=.5/( 1-K4)
B2=. 5K4/(K4-1)
K-l=1/S1**2
K2 =B2/S2**2
K3 =Kl+K2
E3=CR(P,Vl)
E2 ,CR(P,V2.)
E2 )=CR(P,S2)
El )=CR(PS1)
Cl (P**2)*(K3--P**2 )**2

C2=P**2*El*ElP*E2P
C3=(El*ElP) *( K2-P**2)**2

C4=E2P*( K1-P*P) **2
C5=K1~*K2*E1*E2P
C6=K1*K2-E1P
AP=Cl+C3-C5
BP=C2+C4-C6
A= -C1+C3-C5
B=-C2+C4-C6
BT=AP+BP*E2
RET= (A-B*E2)/BT
RETURN
END



COPPLEX FUNCTION ROC(P,KKN)
COMPON/STUFF/C(100),S(100),C(100),TH(100),X
COVMON/CFIX/NTT,KT,B,NB,LT,LTP(100),NF
COMON/NFIX/MM(100) ,N(100) ,MT( CO)

COMPLEX Q,RF,RNTRMT,RNB,TD,TUT,,T2,TDU,RET,P,RMB,CRSTPP
Q=(1.,0.)&C.*( .,1.)
!F(KN.GT.2). GO _TO 90
Kl=K~1
K2=K&2
VI=C(Ki-1)
S1=S(Kl-1)
DO1=(Kl-1)
V2=C(K )
S2=S(K1)
02=O(K1)
V3=C(K2)
S3=S(K2)__
D3=D(K2)
V4=C(K2&1)
S4=S(K2&1)
C4=D(K2&1)
IF(K.LT.2) GC TC 51
T1=CR STPP(P,V1,S1, D,V2,S2,02)
T2=CR STPP (PV2, S2,02,VVlS1,D1)
GO 0TO 52

51 TL=Q
T2= C

52 CONTINUE
TDU=TL*T2
IF(NT.GT.0) GO TO 1

__. 2 .. RNT=Q __

GO TO 10
1 RNT=RET(P,V2,S2,02,Vl,S,D1) ---
10 RMT=RET(P,V2, S22,2,V3,S3,C3)

IF(LT.LT.1) GO TO 4
3 TC=CR STPP(P, V2,S2,02,V3,S3,D3)

TU=CR STPP(PV3,S3,D3,V2,S2,02)
IF(MB.GT.0) GO TO 5

6 ._ R? B=Q . . ---........ _........ .
GO TO 20

5 RMB=RET(P,V3,S3,C3,V2,S2,C2)
20 RNB=RET(PV3,S3,03,V4,S4,C4)

GO TO 30 ..

4 TC=Q
TU=Q

RN =Q
ROC=RNT**NT*RMT**KT
GO TO 40

30 CONTINUE
.. ROC=RNTNTNT *RM B**M B*. RM Tt*K( RNB ** N B (TO TU ).*LT

40 ROC=ROC*TDU

GO TO 91

90 TDU=Q
RNT=Q
RMT=Q
J2=K&KN



A-31
J1=K&1
00 63 J=J1,J2
N=J
M=J&1
IF (PM(J).GT.O) GO TO 61
GO TO 62

61 T1=RET(P,C(N),S(N),C(N),C(M),S(M),D(M))
RMT=RMT*TL**PM(J)

62 CONTINUE
63 CONTINUE

00 73 J=J1,J2
N=J-1
P=J

IF( N(J).GT.0) GO TO 71
GO TO 72

71 Tl=RET(P,C(M),S(M),0(M),C(N),S(N),D(N))
RNT=RNT*T1**NN(J)

72 CONTINUE
73 CONTINUE

00 83 J=J1,J2
N=J-1
M=J

SIF(N.EQ. 1) MT( J)=0O--
IF(MT(J).GT.0) GO TO 81
GO TO 82

81 TD=CRSTPP(PC(N) S(N),D(N),C(M),S(M),D(M))
TU=CRSTPP(P,C (MJ),S(M),D(M),C(N),S(N) ,D(N)) ._N _

T1=(TD*TU)**MT(J)
TDU=TDU*Tl

82 CONTINUE
83 CONTINUE

ROC=RMT*RNT TDU
91- ENC



SUBROUTINE SETT(KO,PLN) ---------- -
COMMON/SYTH/XD11Y11,XD22,YD22,XD33,YD33
COMMON/THY/T(8000),PP(8000),RP(600)
CIMENSION P(1000)
COMPCN/PLCTC/CON,NNF,NPT

CO ON / LPRINT/ PRNT,PRNTS
LOGICAL PRNTPRNTS
DIVENSION SS(200),TT(200)
DIMENSION C (1000),TD1000)
DIMENSION XL(2),YLI(4) Y L2(4),YL3(4)
DATA XL/ITIME SEC'/
DATA YL2/' THEORETICAL PO '/
CATA YL3/' SYTHETIC RESP '/-
CATA YL1/' TRANSFER FTN I/

300 FORMAT(2E15.4)
READ(5t300) (SS(J) ,J=1,KO)

IF (PRNT) PRINT 1, (SS(J),J=1,KO)
1 FORMAT (IHO,'SOURCE FUNCTION'/(2G15.4))

TT(1)=0.
DO 16 J=2,KO
TT(J)=TT(J-1)&DP

16 CONTINUE
IF(NPT.LT.1) GO TO 31

LS1=0
CALL PICTUR(XD11,YDllXL,-8,YL1,-16t
2 TTtSStKO,0.,LS1)

31 CONTINUE
T(1)=0.
DO 10 J=2,LN
T(J)=T(J-1)0DP

10 CONTINUE
CALL PICTUR(XD22VYD22XL ,-8,YL2,-16

2 T,PPLN,O.,LS1)
L=0O
NK=LN/2-1
00 20 N=1,NK,NNF
L=LE&
C--C(L)=CONVS(PP,SS,DPKON-1)
TD(L)=2.*DP*(N-1)

20 CONTINUE
DO 30 J=2,L

P(J)=(C(J)-C(J-1))/(DP*2.)
P(J)=P(J)*CCN

30 CONTINUE
P(1)=0.
CALL PICTUR(XD33,YC33,XL,-8,YL3,-16,

2 TD,P,L,0.,LS1)
IF(PRNTS) PRINT 2, (TD(J),P(J),J=1,L)

2 FORMAT (LHO,1OXtTIME'1OX'PRESSURE'/(2G18.4))
ENDEND ------- - - - - -- -

-------------------------------------------------- ------------------------ - ---------



SUBROUTINE SETUP(KMP,NSNO,MOMPLOTMPUNCH)
COVMON/CONFIX/DELNN,NDPTMX,XDIM,YDIM,DPKO
COMON/CFIX/NTKT ,B,NB, LT, LTP( 100) ,NF
COtPON/FOURCT/MF,NMFKMFKNMF
CO1VMON/THY/TT(8C00), PP(8CO),FF(600)
COMIMON/EXACT/PHI(500),TD(500)NEND,NM
CONMON/LPRINT/PRNT,PRNTS
LOGICAL PRNT,PRNTS
DIMENSION XL(2 ),YL1(4),YL2(4),YL34)
DATA YL2/' THEORETICAL PO I
DATA XL/I'TIME SEC'/
IF(MO.GT.L) GO TO 11
I=K
TT(1)=TS( I)
PP(1)=0.
DO 10 J=2,NN
TT(J)=TT(J-1) &CEL
PP(J)=0.

10 CONTINUE
11 CONTINUE

IF(MF.LT.1) GO TO 30
CALL CONN(NMFKMF,KNMF)
CALL HIGH(NDP,TMXKMFKNMFNMF)
CALL ADJUST(NFIX)
V=NM&l
N2=NFIX&1
N1=NFIX-1
IF(NI.LE.2) GO TO 41

D00 35 J=t1,Nl
CALL INTERP(TD,PHI,NENDTT(J) Y)
PPCJ)=PP(J)SY*NF

35 CONTINUE
41 CONTINUE

PP(NFIX)=PP(NFIX) &NF*PHI (M)

DO 36 J=N2,NN
CALL INTERP(TD,IPHI,NEND,TT(J),Y) .
PP(J)=PP(J)&-Y NF

36 CONTINUE
GO TO 7

30 CONTINUE
CALL CONSTN(NO)

K2=K&2
00 32 N=NSNO
CALL CON(N,K1,K2)
CALL HIGH(NCP,TMX,K,KI,N)
CALL ADJUST(NFIX)
M=NM&1
N2=NFIX&I
N1=NFIX-1
IF(N1.LE.2) GO TO 42
CO 31 J=l,N1
CALL INTERP(TDtPHI NENDTT(J),Y)
PP(J)=PP(J) Y*NF

31 CONTINUE
42 CONTINUE

PP(NFIX)=PP(NFIX) SNF*PHI(M)



- ---- " .. .... .. ...... ...- ... .................... A -34 . . . .DO 33 J=N2,NN
CALL INTERP(TD, PHIN_!_ NENDTT (J),Y)
PP(J)=PP ( J) Y*NF

33 CONTINUE
32 CONTINUE

7 IF(.NOT.PRNT) GO TO 12
--- -TPRIN--- ic(J) ,PHI( J) , J=1 NEND)

13 FORMAT (1HOtl5X'TD'*15X'PHI'/(2Gl8.6)_). .
PRINT 14,(TT(J) tPP(J),J=1,NN)

14 FORMAT (1HO,15X'TT'15X'PP'./(2G18.6))
12 IF(MPLOT.LT.1) GO TO 1

CALL PI CTUR (_XDI , YDIMXL,-8 _X l,--8 ,YL 2_, - 16_,
2 TTPP,NN,0.,O)

CONTINUE - -- - - -

IF(MPUNCH.LT,.1) GO TO 2
LN=tAN
NK=LN
DEL=DP
WRITE(7,100) TT(1),CP,DEL
WR IT E(7,2_0_ NN N_ K ------------------------------------------------------------
WRITE(7,100) (PP(J),J=1,LN)

200 FORMAT(3I10C)
100 FORMAT (5E15.6)

2 IF(KO.LT.1) RETURN
CALL SETT (KOtDPNN)
RETURN
END

----------- ----------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------- -------------
--------------.....................................................................................................-----

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .



FUNCTION SF2( ,KN, N--) A-35
COMMON/CFIX/NTKTX ,N ,LT,LTP(100),NF

M--C ON/ TiUF/C(100) ,S( 100) -(100) ,TH ( 100 ),X, RCSQ ( 10 0),RSSQ( 1 00 )
PSQ = P ** 2
TE = 0.0
00 5 J = 1K
ESQ = ABS (RCSQ(J)-PSQ)
E = SQRT(ESQ)

5 TE = TE & TH(J) * RCSQ(J) / (ESQ*E)
TE = TE * 2.0
J1 = K & 1
J2 = J1 KN
CO 10 J = J1,J2
ESQ = ABS(RCSQ(J.)..PS$Q)
E = SQRT(ESQ)

10 TE = TE & TH(J) LTP(J RCSQ( / ES E) 
SF2 = SQRT(P/(X*TE*ABS(RCSQ(2)-PSQ)))
RETURN
END

----------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------- ---------------------------------

-------------------------------------------------------- ----------------------------------------------

K--------------------------------------- ------ ---_ _-_----_ _-_---_ _----- --------

--------------------------------------------------------------------------- - - -

-------------------- ~--------- ----------



S- SUB-RO-UTI-NE -TiME2( P PC,DPT T,TKN,N) - A- 6
COVPON/PATHC/POTOK

COMPLEX E,P,T,PCCRL,D PT ,F ..
DIMENSION E(100),F(1CO)
CO-JV-ON /STUFF/C( 100) ,S(100),I( 100 ),TH(1 00) X

COM ON/CFIX/NT,KT ,_MB,NB, LT, LTP()00,NF I--,-Nf

COMMON / LPRINT/ PRNT,PRNTS
LOGICAL PRNTPRNTS
D L= PO*. 5
K 0= K
DET = 1.OE-10
K1 KO---- - - - - - - ---- - - - - - - - ---

K 2= K 01 .K.
K2=KOCKN

6 P=P&DL*(0.1.)
T=P*X
DO 1 J=1,KO
E(J)=CR(PIC(J))

T=T&2.TH( )*E(J)

1 CONTINUE

DO 11 J K1( ,K2
E(J)=CR(PtC(J))
T=T T H(J)*(E(J)*LP(J_ _.. ) _ P_(J))

11 CONTINUE
CT=AIMAG(T)
IF (ABS(DL). LE.1.CE-9) GO TO 2

7 IF(ABS (CT).LE.DET) __GO TO __2
3 IF(CT) 4,2,5
4 DL= ARS(DL) .5

GO TO 6

-5 DL=-ABS(CL) .5
GO TO 6

2 CONTINUE2---------CONTINUE ------------------------------------ ~-----------------------------------
PC=P

L=X

DO 10 J=1,KO
BL=BL-2.*P*TH(J)/E (J) -

10 CCNTINUE
00 12 J=K1,K2
BL=BL- P*TH(J)*(LTP(J)/E(J))

12 CONTINUE
DPT=I./BL
IF (CT.LT.1.OE-5) RETURN
IF (.NOT.PRNT) RETURN
PRINT 110, P, E-(l) T, DPT ----------

110 F ORMAT (lHO,4X'P = '2G18.6/5XE(1) ='2G17.6/5X'T '2G18.6/

85X'CPT ='2G18.6)
9 END

F ------------------------------------------------

------------- - - - .--------------- -- - ----- - - - - -- - - - - -

-- - - - - - - - - - -- - - - - - - - - --------- ---- ---- ----- ---- - - -- --- -------- -------------- --- - ------ -- ----- - - - -----



FUNCTION TS(K) - -- --A-37
COMPON/CFIX/NT,KTB,NBLTLTP(100),NF .
OON/STUFF/C(100), S(100),D(100,TH ( 100),X,RCSQ( 10 ) ,RSSQ (100)
COWMON/LPRINT/PRNTtPRNTSKSTKEND
LOGICAL PRNTPRNTS
DIMENSION T(200)
DET=1.E&12
N=O
X1=0.
DO 98 M = 1,KST
X1=AMAX1(X1,C(M))

98 CONTINUE
DO 102 J=KST,KEND
Xl = AMAXI(X1,C(J))
P=-1.E-9
DEL=1./Xl
LTP(J)=2
M=J-1
CALL FI-ND2( PMtELDE TPO-TOO, .1
N=NC1
T(N )=TO

1.02 CONTINUE
DO 103 J=KST,KEND
N=NC1
PX=./C(Jt1)

TX=PTIM(PX,J)
T(N)=TX

103 CONTINUE
TS=1.E&6
DO 106 J=1,N
TS=AMIN1(T(J), TS)

106 CONTINUE
IF (PRNT) PRINT 1, (T(J),J=1,N)

1 FORMAT (5X'T(J),J=1,N'/(4G18.4))
RETURN
END
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0. .0.1876E 00 . A-38
0.3446E 00 0.5343E 00
0.7517E 00 0.9965E 00
0.1268E 01 0.1562E 01
0.1878E 01 0.2150E 01
0.2117E 01 0.1619E 01 .- -- (Transfer Function)
0.853E-- 00 -0.1217E 00

-0.1227E 01 -0.2247E 01
0.3 50E 0 1 -0.3 771E 01

-0.4445E 01 -0.5041E 01

-0.5364E 01 -0.5299E 01
-0.5003E 01 -0.4526E 01
-0.3913E 01 -0.3260E 01
-0.2629E 01 -0.1970E 01
-0.1274E 01 -0.5426E 00
0.2053E 00 0.9577E 00
0.1729E 01 0.2522E 01
0.3290E 01 0.3835E 01
0.4036E 01 0.4042E 01
0.3901E 01 0.3627E 01
0.3193E 01 0.2587E 01
0.1849E 01 0.9941E 00
0.6724E-01 -0.7881E 00

-0.1483E 01 -0.2114E 01
-0.2708E 01 -0.3255E 01
-0.3658E 01 -0.3860E 01
-0.3944E 01 -0.3933E 01
-0.3847E 01 -0.3706E 01
-0.3524E 01 -0.3298E 01
-0.3029E 01 -0.2720E 01
-0.2367E 01 -0.1968E 01
-0.1529E 01 -0.1053E 01
-0.5685E 00 -0.1882E 00
0.1828E-01 0.134CE 00
0.1832E 00 0.1820E 00
0.1525E 00 0.1088E 00
0.4464E-01 -0.3975E-01

-0.1481E 00
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