
A Digital Answering Machine Using Analog

Caller ID

by

Fred D. Quintana

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1993

@ Fred D. Quintana, MCMXCIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute copies

of this thesis document in whole or in part, and to grant others the
right to do so.

Author
Department of Electrica, Engineering and Computer Science

May 17, 1993

Certified by....................

Gregory M. Papadopoulos
Assistant Professor

Thesis Supervisor

A ccepted by ...

Leonard A. Gould
Chairman, Departmental Committee on Undergraduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY ARCHIVES

'JUL 2 6 1993
LIBRARES

A Digital Answering Machine Using Analog Caller ID

by

Fred D. Quintana

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 1993, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Computer Science and Engineering

Abstract

The purpose of this thesis is to build an answering machine that combines the speed
and convenience of a digital answering machine with the advanced features of Caller
ID to provide the telephone user with a level of control never before found in the home.
On phone lines equipped with the Caller ID service, the phone number of the caller
is encoded and sent out by the phone company. This information is sent between
the first and second ring and can be retrieved to provide the callee with the caller's
phone number. The device described in this thesis contains an internal database of
phone number/name pairs which is scanned for a match as soon as the information
becomes available. If the number is found in the database, the corresponding name
is displayed on an LCD display; otherwise, the number is displayed. This feature
saves the user from having to remember the numbers of frequently calling parties.
This database can be updated using the telephone keypad. A log that contains all
incoming and outgoing calls is also maintained. As a result, the user will know who
called throughout the day, even if the caller does not leave a message on the answering
machine.

The other component of this device is the integration of a digital answering ma-
chine with the Caller ID decoder. This makes possible specialized outgoing messages,
depending on who is calling. For example, you can assign one greeting to your boss,
another to your parents, and yet another to your friend. This combination of a digital
answering machine and Caller ID makes possible new and discrete ways of screening
calls. There is no longer any need to wait for the answering machine to pick up in
order to determine who is calling. When the answering machine answers, the appro-
priate greeting will be sent. Since the device knows who is calling, it can also know
how to act on that call.

Thesis Supervisor: Gregory M. Papadopoulos
Title: Assistant Professor

-~ - ..IZ_

Contents

1 Introduction 6

1.1 M otivations . 6

1.2 G oal 7

1.3 Solution 8

1.3.1 The Motorola 68HC16 Evaluation Board 8

1.3.2 The Motorola Caller ID Receiver 9

1.3.3 The AT&T Telephone Answering Device (TAD) Chipset . . . 10

2 Development Environment 13

3 Functional Specification 15

3.1 Full Specification 15

3.1.1 Mode 1: W ait for Call 17

3.1.2 Mode 2: Display Incoming Number 17

3.1.3 Mode 3: Display Outgoing Number 18

3.1.4 Mode 4: Browse Log 18

3.1.5 Mode 5: Play Announcement/Record Message 19

3.1.6 Mode 6: Set Time 19

3.1.7 Mode 7: Modify Announcements 20

3.1.8 Mode 8: Playback Messages 21

3.1.9 Mode 9: Administer Announcement/Number Database 22

3.1.10 Mode 10: Administer Name/Number Database 22

3.1.11 Mode 11: Number Entry Mode 23

3.1.12 Mode 12: Name Entry Mode 24

3.2 Current Implementation 24

4 Hardware Specification 26

4.1 The 68HC16 Evaluation Board 26

4.2 The Motorola Caller ID Receiver 27

4.3 The DTMF Touch-Tone Decoder 27

4.4 The LCD Display 28

4.5 The Analog Phone-line Interface 29

5 Software Specification 30

5.1 GPIP pins 30

5.2 The DTMF Receiver 30

5.3 LCD Display 31

5.4 CID Receiver 32

5.5 Touch-Tone Data Input 33

5.6 Clock Maintenance 33

5.7 Main Dispatch Routine 34

5.8 Utility routines 34

6 Conclusion 35

6.1 Current Implementation 36

6.2 Future Directions 36

A Software 38

B Schematics 88

List of Figures

1-1 Typical Home Configuration 8

1-2 High Level View of Hardware 9

1-3 CID Single Message Format 11

1-4 CID Multiple Message Format 12

3-1 Faceplate of Product 16

3-2 Display for Mode 1 17

3-3 Display for Mode 2 18

3-4 Display for Mode 3 18

3-5 Display for Mode 4 18

3-6 Display for Mode 5 19

3-7 Display for M ode 6 19

3-8 Display for Mode 7 20

3-9 Display for Mode 8 21

3-10 Display for Mode 9 22

3-11 Display for Mode 10 23

3-12 Display for Mode 11 23

3-13 Display for Mode 12 24

4-1 DTMF Keypad Layout 28

B-1 Schematic of Hardware 89

_ _

Chapter 1

Introduction

1.1 Motivations

As the national phone network becomes more advanced, many new features are be-

coming available to the customer, including the ability to determine who is calling

and to act on that information in a variety of ways. This information is obtained by

way of a service called Caller ID (see [3]). Caller ID is a way for the phone company

to send information about who is calling, over the same analog phone lines that are

currently used for telephone calls. This information is sent out half a second after

the first ring, so the caller can be identified before the second ring even begins. With

this information in hand, a person has much more control over how incoming calls are

handled than ever before. Presently, the Caller ID service is available in roughly 30 of

the 50 states, and before long it will be offered everywhere. In addition to subscribing

to this service, the customer must also obtain a device that decodes this information

and displays it in a useful fashion. This thesis will address this need.

As the need for smaller and smaller computers grows, the chips that go into these

smaller computers are also becoming smaller, more powerful, and more inexpensive.

As a result, many of today's products are based on these powerful, inexpensive digital

circuits. However, the answering machine market is still slow to accept this solution,

and most of them have remained analog. That is, they still require a cassette tape

to record the incoming and outgoing messages. Besides the fact that moving parts

q

wear out much faster than solid-state components, the tape results in slow access

time to the messages and doesn't allow for selective deleting of messages. This lack

of selective deletion can result in saving seven unwanted messages just because the

eighth message is important, for example. It would be much more convenient if all the

messages were stored in digital memory, eliminating the need for tapes and making

message maintenance much easier.

1.2 Goal

The purpose of this thesis is to combine the flexibility given by Caller ID with the

convenience of a digital answering machine to deliver capabilities not available any-

where else today. It will consist of a device that goes between the phone and the

wall phone jack, in the same way that a typical answering machine is connected (see

Figure 1-1). When a call comes in and the device detects valid Caller ID information

on the line, it decodes the data and logs the call. It then consults a database of name

and number associations and displays the name and number on the LCD display. If

the number is not in the database, only the number is displayed. This same procedure

is followed for outgoing calls. As a result, the last 30 incoming and outgoing calls are

logged, allowing the user to browse them at any time. Even if the caller doesn't leave

a message, their call is logged as long as they let the phone ring at least once.

The device will also maintain a database of number and outgoing message as-

sociations, so that different callers can receive different greeting messages from the

answering machine. So, for example, your boss can receive one message, your friends

another, and everyone else yet another. This gives the user unprecedented control

over how their calls are handled. This is only possible using a digital answering

machine, since winding a tape to the desired greeting would be both slow and unreli-

able. And since the messages are stored in computer memory, message retrieval time

is instantaneous and it is possible to selectively delete any of the messages.

Power Jack
/

Phone Jack/'

Caller ID Answering Machine

Figure 1-1: Typical Home Configuration

1.3 Solution

This prototype is composed of three major components, the Motorola 68HC16 eval-

uation board, the Motorola Caller ID receiver, and the AT&T Telephone Answering

Device (TAD) chipset. Refer to Figure 1-2 for a high level view of how these pieces

fit together.

1.3.1 The Motorola 68HC16 Evaluation Board

The 68HC16 (see [4]) is a 16-bit microcontroller that runs at 16 MHz. It is an inex-

pensive microcontroller and was chosen for this project mainly because the evaluation

board allows development on any PC-compatible, eliminating the need for expensive

microprocessor emulators and dedicated development environments. The 68HC16

contains a serial input/output module as well as several timers and chip-selects. The

chip-selects are useful in that they allow the mapping of external devices onto the

68HC16 memory map without requiring external components to select the devices.

The integration of all these modules makes the 68HC16 microprocessor well suited

Figure 1-2: High Level View of Hardware

for a stand-alone application such as this one.

1.3.2 The Motorola Caller ID Receiver

As mentioned in section 1.1, analog Caller ID (see [3]) is a way for the phone company

to send information about who is calling, over the same analog lines that are currently

used for telephone calls. The information is frequency modulated using a technique

known as Frequency-Shift-Keying 1 (FSK) encoding, then sent between the first and

second rings. So, on the customer's end, there needs to be a device that can listen

during these two rings and decode the information into serial data. That is what the

Motorola Caller ID chip (the MC145447) does. There are two formats for the Caller

ID messages, single message and multiple message (see Figures 1-3 and 1-4). The

single message format includes only the phone number, date, and time. The multiple

'FSK is how most modems send data over the phone lines. They take a stream of ones and zeros,
and encode a one as a certain frequency, and a zero as another frequency.

message format can include various strings as well as the number, date and time.

Once the Caller ID chip recognizes actual data on the line, it demodulates it and

sends it out as serial data. It also has two output pins that can be checked to see if

the phone is ringing, and whether or not the chip detects a valid carrier on the line.

1.3.3 The AT&T Telephone Answering Device (TAD) Chipset

The TAD chipset is a collection of three AT&T chips that together provide the func-

tionality for an all-digital answering system. It offers high compression, storing up to

20 minutes of speech in 1 Mbyte of RAM, with up to 80 minutes of total storage. It

does all the message management itself, while its microprocessor interface gives the

microprocessor full control of all the functions of the chipset (see [5]).

S2s

20 Hz Ring

30 Bytes/600 Hz MARKS DATA
0101010101 1

8 8
SBits Bits 144 Bits Max

Message Type

Length
Mo - Day - Hour - Minute - Number

04 - 15 - 16 - 21 -5125551212

0.5 s 575 msS I

2s 1

lAVYV

Checksum

~J~C_

8
Bits

f

- - -- --- ;--------- i~- --------

2sHz Ring

20 Hz Ring

+3-
0.5s 718msII

2s

-MWVVAVVVVVVVV

30 Bytes/600 Hz MARKS DATA
010101011 1

Message Type

Bits Bits its itsitstsitsts Bits its Max Bits
/I I .

Message Length

Mother-in-Law

Parameter Parameter
Type Length

I

Parameter

Type

Mo - Day - Hour - Minute - Number

04 - 15 - 16 - 21 -5125551212

Parameter

Length

I

_

-i- -- ---- -- r- ------ --- ;- -Y ~.i. ---- ---";-- i .- ;I;"'~--~rr--~~---" ~~ --

Chapter 2

Development Environment

The hardware for this project was developed using the 68HC16 evaluation board

(see [4]). This board is a printed-circuit board that contains the 68HC16, sockets for

RAM and ROM, a wire-wrap area, a parallel port, and a serial port. The serial port is

connected to the serial input/output pins of the 68HC16 whereas; the parallel port is

used to download programs into the "emulation ROM" on the board. This emulation

ROM is actually RAM that sits in the ROM sockets, for developement purposes. A

program that runs on a PC takes in Motorola S-19 hex-format code and downloads

it through the parallel port into this RAM. After the code is finalized it can be burnt

into ROMs, which then replace the emulation ROMs.

The software was developed on an IBM-compatible PC and was written in C. The

compiler (see [6]) was supplied, free of charge, by Eric Schneider of Eris Systems in

Minnesota. This compiler supports C code, assembly, and Isil, a language designed

specifically for developing embedded-processor applications. This compiler can gen-

erate code for various microprocessors from several different manufacturers. Since

the software was written entirely in C, it would not be a difficult matter to port the

code to another processor (the 68HC11, for example) in the future. This compiler

can generate the S-19 hex-format code required by the 68HC16 download program.

One problem in testing the Caller ID portion of the project is that the local

telephone company in Boston does not currently provide the Caller ID service. As

a result it was necessary to obtain a Caller ID line simulator, which was purchased

4

from Rochelle Communications in Texas. This simulator is an 8-bit board that fits

inside an IBM-compatible computer. It has a jack into which a phone can be plugged,

and sends the caller ID information out to the phone in the same way that the phone

company sends it. The Caller ID simulator can simulate both the single and multiple

message types, allowing for full and convenient testing of the Caller ID receiver. Since

the Caller ID simulator board software needed to be running at the same time as the

68HC16 download program, a second PC was needed to run the board (see [1]).

Chapter 3

Functional Specification

This chapter contains the high-level functional specification of the product. In other

words, it describes what the user sees, what modes are available, and what the various

buttons do. The first part of the specification will cover the long-term goals for the

product, while the latter part will describe any differences found between the current

prototype and the final product.

3.1 Full Specification

This section uses a finite state machine model to characterize all the different possible

modes in which the device can be, and to describe what events cause different actions

to be taken. When reading through these modes, please refer to Figure 3-1 to see a

layout of the faceplate and to see what buttons are available. The different modes of

operation are as follows:

1. Wait for call: This is the default mode. It displays the number of calls for the

day and the number of messages.

2. Display Incoming Number: This mode displays the incoming phone number

and corresponding name, if available.

3. Display Outgoing Number: This mode displays the outgoing phone number and

corresponding name, if available.

Figure 3-1: Faceplate of Product

4. Browse Log: This mode allows the user to browse the log of the last 30 incoming

and outgoing calls.

5. Play Announcement/Record Message: This is the answering machine mode.

Control comes here after three rings and the caller's message is recorded.

6. Set Time: This mode allows the user to set the time of the internal clock.

7. Modify Announcements: This mode is for announcement maintenance.

8. Play Messages: This mode is for playing back the recorded messages.

9. Administer Name/Number Database: This mode is for name/number database

management.

10. Administer Announcement/Number Database: This mode is for announce-

ment/number database management.

123456789012345678901234

123456789012345678901234

Play Browse Clock Annc

SDelet

7:23pm June 4 4 calls

5 messages 3 new

Figure 3-2: Display for Mode 1

11. Number Entry Mode: This is a generic mode to enter a number using the phone

keypad.

12. Name Entry Mode: This a generic mode to enter a string using the phone

keypad.

3.1.1 Mode 1: Wait for Call

This is the default mode and the mode that comes up on power-up. In this mode,

the device waits for incoming and outgoing calls. Its behavior is as follows:

* PLAY pressed: Go to mode 8.

* BROWSE pressed: Go to mode 4.

* CLOCK pressed: Go to mode 6.

* ANNC pressed: Go to mode 7.

* Incoming Call: Go to mode 2.

* Outgoing Call: Go to mode 3.

* LEFT arrow pressed: Go to mode 9.

* RIGHT arrow pressed: Go to mode 10.

3.1.2 Mode 2: Display Incoming Number

This mode displays the incoming number, time, and date. The name is also

displayed if the number is in the name/number database. No buttons are active in

George Washington IN

617-225-7366 15:13 11/23

Figure 3-3: Display for Mode 2

George Washington OUT

617-225-7366 15:13 11/23

Figure 3-4: Display for Mode 3

this mode. As soon as the phone is hung up it returns to mode 1. As soon as the

fourth ring starts it goes to mode 5.

3.1.3 Mode 3: Display Outgoing Number

This mode displays the outgoing number, time and date. The name is also dis-

played if the number is in the name/number database. No buttons are active in this

mode. As soon as the phone is hung up it returns to mode 1.

3.1.4 Mode 4: Browse Log

This mode allows the user to browse the call log. As soon as this mode is entered,

the last call is displayed. If any incoming calls or outgoing calls are made while in

browse mode, they are ignored. The behavior is as follows:

* BROWSE pressed: Go to mode 1.

George Washington OUT

617-225-7366 15:13 11/23

Figure 3-5: Display for Mode 4

George Washington #5

617-225-7366 15:13 11/23

Figure 3-6: Display for Mode 5

Set Time: 15:13 11/23

CLOCK:save DELETE:abort

Figure 3-7: Display for Mode 6

* LEFT arrow pressed: Go back in log.

* RIGHT arrow pressed: Go forward in log.

* All other events ignored.

3.1.5 Mode 5: Play Announcement/Record Message

This mode plays the announcement associated with the incoming call. If no an-

nouncement is associated with the number in the number/announcement database,

then announcement 0, the default announcement, is played. If the phone is hung up

or answered before the beep, the device goes to mode 3 without recording a message.

Otherwise,the device will record a message and go to mode 3 as soon as the phone is

hung up or answered, whichever comes first.

3.1.6 Mode 6: Set Time

This mode allows the user to change the internal clock on the device. This time

is used for tagging only the outgoing messages and is displayed in mode 1. Incoming

messages use the time encoded in the Caller ID information; they don't use this clock.

As soon as this mode is entered, the hour flashes. The following sequence is then used

to set the time:

Slot 4 is full.

Hold down ANNC to record

Figure 3-8: Display for Mode 7

1. Left Arrow: decrease hour

2. Right Arrow: increase hour

3. CLOCK: flash minute

4. Left Arrow: decrease minute

5. Right Arrow: increase minute

6. CLOCK: flash month

7. Left Arrow: decrease month

8. Right Arrow: increase month

9. CLOCK: flash day

10. Left Arrow: decrease day

11. Right Arrow: increase day

12. CLOCK: set time and go to mode 1.

If at any time DELETE is pressed, this mode is aborted and it goes back to mode

1, leaving the time as it was before entering the mode. All other buttons and events

are ignored.

3.1.7 Mode 7: Modify Announcements

This mode allows the user to record an outgoing message, or an announcement.

There are 10 slots available to store into, with slot 0 being the default announcement.

303-538-2826 1 of 5

Daniel Day Lewis I 12:43

Figure 3-9: Display for Mode 8

Any number not associated with an announcement will be played announcement 0.

The behavior while in this mode is as follows:

* Left Shift: decrement slot number

* Right Shift: increment slot number

* DELETE: free current slot

* PLAY: listen to current slot, if full

* ANNC: go to mode 1

* ANNC: if held down, record until released, and replace current message if slot

is full

All other buttons and events are ignored.

3.1.8 Mode 8: Playback Messages

This mode allows the user to play back the messages. As soon as the mode

is entered it begins playing, starting with the oldest message. The behavior is as

follows:

* Left Shift: rewind one message with each press

* Right Shift: advance one message with each press

* DELETE: delete current message

* PLAY: go to mode 3

All other buttons and events are ignored.

21

505-576-7255 entry #1

Slot #4 is empty

Figure 3-10: Display for Mode 9

3.1.9 Mode 9: Administer Announcement/Number Database

This mode allows the user to modify the announcement/number database, which

contains associations between outgoing messages and a phone number. The behaviour

while in this mode is as follows:

* Left Shift: go back in database

* Right Shift: go forward in database

* DELETE: delete entry

* ANNC: listen to current slot, if full

S* (on phone): switch cursor between number and announcement

* # (on phone): if cursor on number, go to mode 10.

* # (on phone): if cursor on announcement, go to mode 11.

* PLAY: go back to mode 1

All other buttons and events are ignored.

3.1.10 Mode 10: Administer Name/Number Database

This mode allows the user to modify the name/number database, which contains

associations between names and phone numbers. As soon as this mode is entered, the

phone is disconnected from the phone line to allow the keypad to be used to input

names and numbers. The device's behavior while in this mode is as follows:

* Left Shift: go back one entry in database

505-576-7255 entry #16

Cesar Chavez

Figure 3-11: Display for Mode 10

Figure 3-12: Display for Mode 11

* Right Shift: go forward one entry in database

* DELETE: delete entry

S* (on phone): switch cursor between number and name

* # (on phone): if cursor is on number, go to mode 10.

* # (on phone): if cursor is on name, go to mode 11.

* PLAY: go back to mode 1

All other buttons and events are ignored.

3.1.11 Mode 11: Number Entry Mode

This mode allows the user to enter a number using the telephone keypad. The

buttons on the keypad take on the following meaning:

* 2-9: Put number at current cursor position

* 1: Loop through 0 and 1

* 0: Accept number and return to previous mode

* *: backspace

Figure 3-13: Display for Mode 12

* #: Accept digit and move cursor forward one position

All other buttons and events are ignored.

3.1.12 Mode 12: Name Entry Mode

This mode allows the user to enter a name using the telephone keypad. The

buttons on the keypad take on the following meaning:

* Letters: loop through possible letters for that key

* 0: Accept name and return to previous mode

* *: backspace

* #: Accept letter and move cursor forward one position

All other buttons and events are ignored.

3.2 Current Implementation

This section describes the current implementation's deviation from the full specifi-

cation. Because of time constraints and difficulties dealing with the local AT&T

distributor, I was not able to acquire the AT&T TAD chipset. Consequently the

answering machine functionality is not available in the current implementation. As a

result, the functions which require the answering machine will not work. For exam-

ple, in the Display Incoming Number mode, the device would normally go to the Play

Announcement/Record Message mode. Rather than going there it goes immediately

back to the default mode, mode 1. Similarly, the modes Record Message, Modify An-

nouncements, and Play Messages are all disabled. Everything else works as described

in the previous section.

Chapter 4

Hardware Specification

This chapter will decribe the hardware in the current implementation. Since I didn't

actually get my hands on the data sheets for the TAD chipset I am not able to

include it here. There are 5 major parts to the hardware: the 68HC16 evaluation

board, the Motorola Caller ID Receiver, the Dual-Tone Multiple-Frequency (DTMF)

Touch-Tone decoder, the LCD display, and the analog interface to the phone line.

4.1 The 68HC16 Evaluation Board

The 68HC16 is a 16-bit microprocessor from Motorola that can run at 16 MHz. This

processor is particularly well-suited for this application because it does not require a

lot of support chips. It has a serial input/output interface built in, as well as several

general purpose input/output port (GPIP) pins. It also has 10 user-configurable

chip-selects so that external devices can be mapped into the 68HC16's memory map,

eliminating the need for external PALs to perform this function. Eight timers are

also built-in to the 68HC16. It also includes other useful features such as an eight

channel analog-to-digital converter and support for multiple serial devices, both of

which I am currently not using.

The 68HC16 has a 16 bit data bus and a 16 bit address bus which, along with

the GPIP pins and serial I/O pins, are used to connect the 68HC16 to the other

chips in the system. Sockets for RAM and ROM are already built onto the 68HC16

Evaluation Board so descriptions of the RAM and ROM connections are not included

here.

4.2 The Motorola Caller ID Receiver

The Motorola Caller ID receiver has three outputs: the Caller ID serial data output,

the ring detection line, and the carrier detection line. The serial data output is

connected directly to the serial I/O input (RXD) on the 68HC16. As soon as valid

Caller ID information is detected, the resulting data is driven on this line. The carrier

and ring detect lines are connected to GPIP pins on the 68HC16. As long as a valid

carrier is detected on the phone line the carrier detect line is pulled low. As long as

a ring is detected, the ring detect line is pulled low. The schematics for this can be

found in Appendix B.

4.3 The DTMF Touch-Tone Decoder

According to the Touch-Tone standard, each button on a phone keypad sends a sound

that is actually a combination of two tones. The buttons are separated into columns

and rows (see Figure 4-1). Each row and column is associated with a different audible

frequency. When a button is pressed two tones are produced: one for the row and

one for the column. The combination of these two tones is what is sent out on the

phone line. (See [2]).

The DTMF decoder has an input pin, which is connected to the phone line, one

status output pin (DV), and 4 data output pins. The DV pin is connected to a GPIP

pin on the 68HC16, and the 4 data output pins are connected to lines 8-11 of the

68HC16 data bus. The DTMF chip also has a R/W pin and an active high register

enable pin. The R/W pin is connected directly to the 68HC16 R/W pin. Since the

chip selects on the 68HC16 are active low, I needed to place an inverter between

the chip select on the 68HC16 and the register enable pin on the DTMF receiver.

Whenever the DTMF receiver detects a valid Touch-Tone at its input, it asserts DV

Col 1 Col 2 Col 3 Co14

697 Row 1

STD 770 L 11 Row 2
DTMF

(Hz) 852 1Row 3

941 il[Row 4

1209 1336 1477 1633

STD DTMF (Hz)

Figure 4-1: DTMF Keypad Layout

and places a byte corresponding to that tone onto its 4 data output pins. In order

to read the data from the chip one needs to wait for the DV pin to be asserted, then

read from the address for which the chip select is configured. The schematics for this

circuit can be found in Appendix B.

4.4 The LCD Display

The LCD display has two lines of 24 characters. It contains an ASCII character

generator and offers several display options. The LCD display has eight input/output

data pins which are connected to lines 8-15 of the 68HC16 data bus. It also contains

a register enable (RE) pin, a R/W pin, and a register select (RS) pin. The R/W

pin is connected to the R/W pin of the 68HC16 and the RE pin is connected to the

68HC16 chip select corresponding to the LCD display. The RS pin tells the LCD

display if the data to be transferred on the data pins is to be data or instructions.

This pin is connected to the low bit of the 68HC16 address bus.

After being mapped into the 68HC16 memory map, the LCD can be accessed as

two different addresses. One address is for data, and the other for instructions. The

method for writing characters on the LCD is described in section 5.3. The schematics

for the LCD can be found in Appendix B.

4.5 The Analog Phone-line Interface

Because the telephone line carries voltages up to 50 volts, and because the telephone

ground voltage is floating relative to the 68HC16 ground, the device needs a reliable

analog front-end between the phone-line and the digital circuitry. This front end

is implemented using capacitors to isolate the circuitry from the line and also to

remove the DC component of the telephone line. Another difficulty I run into is that

I need the phone keypad for data entry. However, if I take the phone off-hook so

I can send the touch tones to the DTMF receiver, I need some way to keep those

tones from also going out onto the line, while still providing power to the phone so

that it can generate the tones. This isolation is accomplished by a low-pass filter

that can be actuated using a double-pole, double-throw relay. This relay is activated

automatically whenever data needs to be entered using the keypad. At all other times

the phone is connected to the line as usual.

Chapter 5

Software Specification

The software can be broken down into several major sections. These are the DTMF

receiver, the input/output pins (GPIP pins), the LCD display, the Caller ID (CID)

receiver, the touch tone data input interface, the main dispatch routine, the clock

routines, and other miscellaneous routines.

5.1 GPIP pins

The 68HC16 has several pins that can be configured as general purpose input/output

pins. These will be referred to as GPIP pins. This section contains the routines and

macros that initialize the GPIP pins and provide a simple and consistent interface

to access these pins. Definitions for the various pins are included in gpip.h which

is included in each file that uses the pins. In order to check the state of a pin, the

macro GPIP(pin) in defined. For example, if switch 2 is pressed, GPIP(SWITCH2) will

be true.

5.2 The DTMF Receiver

As described in section 4.3, the DTMF receiver listens for valid Touch-Tones on the

phone line and returns a code corresponding to the tone it recognizes. Two main

functions are defined to deal with setting up the DTMF decoder and receiving data

from it.

* DTMFInit: This routine takes and returns no arguments. It maps the DTMF

decoder's data output pins into address 0x40001 of the 68HC16s address space.

After this mapping is done, the address 0x40001 holds the incoming touch-tone

code whenever pin DV of the DTMF receiver is high. The pin DV is connected

to a GPIP pin on the 68HC16 and is referred to as the DTMFBIT.

* DTMF_Get: This routine takes one argument, type, which specifies the format

of the output. If type is RAW then it returns the number (from 0 to 12) that

it gets from the DTMF decoder. If type is COOKED then it returns the ASCII

character corresponding to the touch-tone that was pressed.

In order to determine if a valid tone is detected, it is necessary to monitor the

DTMF_BIT, which is defined in gpip.h, using the expression GPIP(DTMFBIT). If

a tone is detected, this expression becomes true, and the DTMF character can be

read from the address 0x40001.

5.3 LCD Display

There are several functions defined to intialize LCD and send various characters to

the LCD display. They are as follows:

* LCD_Init: This routine takes and returns no arguments. It maps the LCD's

instruction (LCDIR) register into address 0x50000 of the 68HC16's memory map

and the LCD's data (LCDDR) register into address 0x50001 of the 68HC16's

memory map.

* LCDSendChar: This routine takes two arguments, data and type. The type can

be either LCD_INST or LCD_DATA, depending on whether the data is an intruction

to the LCD display, such as turn on cursor, or if the data is an ASCII character.

If type is LCD_INST, data is written into the LCDIR register, if type is LCDDATA,

data is written into the LCDDR register.

* LCDSendString: This routine takes two arguments, a string pointed to by data

and type. The type can be either LCDINST or LCD_DATA. The string pointed

to by data must end in a null character (OxO).

* LCDClearScreen: This routine takes no arguments. It uses LCDSendChar to

send a clear instruction to the LCD display.

* LCDMoveCursor: This routine takes two arguments, row and column. It uses

LCDSendChar to position the cursor at the specified row and column. row must

be 0 or 1. column must be between 0 and 23.

5.4 CID Receiver

I wrote three routines to receive and process data from the Caller ID receiver.

* CID-get: This routine takes one arguments, a pointer to string cid_buffer.

This routine listens to the CID chip and receives the serial CID data coming

from the CID chip. If no recognizable message arrives before either the next ring

or when the phone is picked up, or when the ringing stops, then 0 is returned as

the length of cid_buffer. If a message is received and placed into cidbuffer,

then the size of cidbuffer is returned.

* CIDdate: This routine takes three arguments; length, a pointer to a string,

ciddata, and another pointer to a string, date. This routine extracts the date

from a buffer containing CID data and puts it into date. If cid_data does not

contain a valid date, the first byte of date will be a null (OxO).

* CID-number: This routine takes three arguments, length, a pointer to a string,

ciddata, and another pointer to a string, number. This routine extracts the

phone number from a buffer containing CID data and puts it into number. If

ciddata does not contain a valid number, the first byte of number will be a

null (OxO).

5.5 Touch-Tone Data Input

In order to use the keypad to enter names and numbers I wrote two routines: TT_GetName

and TT_GetNumber.

* TTGetName: This routine takes two arguments; size, and a pointer to a string

string. The keypad of the phone is mapped so that for the buttons 2-9, each

button loops through the letters for that button; first in lowercase, then in

uppercase, followed by the digit for that button. Button 1 loops between space,

0, and 1. # moves the cursor to the next position, * backspaces, and 0 accepts

the string as entered. After size characters have been entered, the string is

terminated with a null character (OxO) and the routine returns. If 0 was pressed

before the size is reached, the entered string is terminated by a null (OxO) and

the routine returns.

* TTGetNumber: This routine takes two arguments; size, and a pointer to a

string string. The keypad of the phone is mapped so that for the buttons 2-9,

each button enters the digit for that button. Button 1 loops between 0 and 1.

moves the cursor to the next position, * backspaces, and 0 accepts the string

as entered. After size characters have been entered, the string is terminated

with a null character (OxO) and the routine returns. If 0 was pressed before the

size is reached, the entered string is terminated by a null (OxO) and the routine

returns.

5.6 Clock Maintenance

I wrote several routines to set up and maintain a clock. They are:

* CLOCK_Init: This routine initializes a global array of four bytes beginning at

clock_ticks. It also sets up a timer that calls the interrupt handler CLOCKadvance

every tenth of a second.

* CLOCKadvance: This routine is an interrupt handler that advances clockticks

by one.

* CLOCK_todate: This routine takes one argument, a pointer to a string date.

This routine reads the current value of clockticks, converts it to the CID

date format, and stores that in date.

* CLOCKfromdate: This routine takes one argument, a pointer to a string date.

This routine sets the value of clockticks, taking the current time and date

from date which is in the CID date format.

* CLOCKresettime: This routine calls TTGetNumber to get the current date, and

uses that info to set the time using CLOCKfIromdate.

5.7 Main Dispatch Routine

This routine contains the main event loop that controls all processing in the pro-

gram. This routine contains the structure for the finite-state machine described in

the Functional Specification (section 3).

5.8 Utility routines

These routines include miscellaneous routines that are necessary but don't fit in any

of the other major sections.

* SCIInit: This routine initializes the serial I/O module in the 68HC16 to 1200

baud, 8 data bits, no parity, 1 stop bit. It also enables the receiver.

* completenumber: This routine takes one argument, a pointer to a string

number. It attempts to complete the phone number stored in number into a

full 10-digit phone number. If it can't do this, it returns FAIL and puts a null

(OxO) into the first character of number. If it succeeds, it returns SUCCESS and

places the number into number.

Chapter 6

Conclusion

The purpose of this thesis is to build an answering machine that combines the speed

and convenience of a digital answering machine with the advanced features of Caller

ID to provide the telephone user with a level of control never before found in the home.

On phone lines equipped with the Caller ID service, the phone number of the caller

is encoded and sent out by the phone company. This information is sent between

the first and second ring and can be retrieved to provide the callee with the caller's

phone number. The device described in this thesis contains an internal database of

phone number/name pairs which is scanned for a match as soon as the information

becomes available. If the number is found in the database, the corresponding name is

displayed on an LCD display; otherwise, the number is displayed. This feature saves

the user from having to remember the numbers of frequently calling parties. This

database can be updated using the telephone keypad. A log is also maintained that

contains all incoming and outgoing calls. As a result, the user will know who called

throughout the day, even if the caller does not leave a message on the answering

machine.

The other component of this device is the integration of a digital answering ma-

chine. This makes possible specialized outgoing messages, depending on who is call-

ing. For example, you can assign one greeting to your boss, another to your parents,

and yet another to your friend. This combination of a digital answering machine and

Caller ID makes possible new and discrete ways of screening calls. There is no longer

any need to wait for the answering machine to pick up in order to determine who is

calling. When the answering machine answers, the appropriate greeting will be sent.

Since the device knows who is calling, it can also know how to act on that call.

6.1 Current Implementation

The current prototype implements everything described in section 3 except for the

digital answering machine. Whenever a call is made, whether outgoing or incoming,

the prototype displays the number and name (if it is in the database) of the person

being called or the person that is calling. It also keeps a running log of the last

thirty calls made, whether incoming or outgoing. The database is modified using an

input method based on using the phone's keypad to input names and numbers. The

elimination of a separate keypad lessens the cost and complexity involved in building

the product. Also, the fewer buttons there are, the less intimidating it will be to the

consumer.

6.2 Future Directions

The current prototype is essentially a Caller ID decoder, with the next logical step

being extending it to include the integrated digital answering machine. The devel-

opment doesn't have to stop there. One very useful addition would be an RS-232

connection to a PC. The device could be programmed to send the Caller ID data

out the RS-232 port as soon as it gets it. Then, if there is a specialized Personal

Information Manager (PIM) running on the PC and it understands this Caller ID

data, this feature could be integrated in with no extra hardware. A PC interface to

the database would also be helpful. This would eliminate the admittedly awkward

telephone keypad method for inputting data.

Another variation on this same theme would be to have a Caller ID on a PC

expansion card. Then programs on the PC would have direct access to the Caller

ID information and there would be no more need for the 68HC16 microprocessor or

the RAM and ROM. The digital answering machine could also be integrated into

the PC expansion board. Then, the messages could be accessed on the computer as

if they were audio electronic mail. A graphical interface to access all the features

of the Caller ID digital answering machine would greatly increase the ease of use

and flexibility of the product. It could provide a nice, consistent interface to all the

features.

The increased control and flexibility provided by both Caller ID and digital an-

swering machines hold great promise in terms of increasing the control that the tele-

phone users have over their telephones. All it takes is for someone to do it!

Appendix A

Software

/* main.c */

#include <hc6_sup.h>

#include "main. h"

#include "lcd.h"

#include "dtmf .h"

#include "database.h"

#include "strings .h"

#include "tt .h"

#include "cid.h" o10

#include "pins .h"

isil static STRINGS, airam;

static uchar STR waitmsgl="Waiting for message";

static uchar STRoutgoing= "OUT";

static uchar STR_incomingo="IN";

static uchar STR initl={ Ox3f, Oxc, 0x2, OxO};

static uchar pref 250="61725";

static uchar pref220="61722";

static uchar area codeD="617"; 20

void MAIN(void)

{

uchar temp;

uchar ciddata[20];

uchar count;

uchar number[NUMBERSZ];

uchar date[DATE_SZ];

uchar name[NAMESZ];

uchar curdigit; 30

LCD Init();

DTMFInit();

SCI init();

PINSinit();

initdatabase();

cur_digit=0;

LCD_SendString(STR init, LCDINST); 40

LCD_ClearScreen();

/*
LCDPrNumeric(45);

while(1)

cur digit=0;

*/

LCD_SendString(STR waitmsg, LCD DATA);

while (1) {

if (GPIP(RING_BIT) == RINGING) { 5o

count=CIDget((uchar fp*)ciddata);

CIDnumber((uchar fp*)cid_data, (uchar fp*)number, count);

CID date((uchar fp*)cid data, (uchar fp*)date, count);

DB_GetByNumber(NAME_NUM, (uchar fp*)name, (uchar fp*)number);

LOG Add(name, number, date, INCOMING);

LCDClearScreen();

LCD MoveCursor(0,0);

LCD SendString(name, LCD_DATA);

LCD MoveCursor(0x0,0x15);

LCD_SendString(STR incoming, LCD DATA); 60

LCD MoveCursor(1,0);

LCD_PrPhoneNumber(number);

LCD_MoveCursor(1,13);

LCD_PrDate(date);

if (SWITCH}(SWITCH1) UP)

while (SWITCH(SWITCH1) != UP)

LOG_Browse();

LCD_ClearScreen(); 70

LCD MoveCursor(0,0);

LCDSendString(STRwaitmsg, LCD_DATA);

if (SWITCH(SWITCH2) != UP) { /* Admin Name/Number Database */

while (SWITCH(SWITCH2) != UP) {}

RELAY ON;

DB AdminNameNum();

LCD_ClearScreen();

LCD_MoveCursor(0,0); 80

LCD_SendString(STR_waitmsg, LCD_DATA);

RELAY OFF;

if (GPIP(DTMF BIT)) {

temp=DTMFGet(COOKED);

if (temp != 0) {

number[curdigit]=temp;

curdigit++;

if (cur_digit==5) { so

number[cur_digit]=0x0;

complete_number((uchar fp*)number);

DB_GetByNumber(NAMENUM, (uchar fp*)name, (uchar fp*)numbe

LOGAdd(name, number, date, OUTGOING);

LCD_ClearScreen();

LCD MoveCursor(OxO,OxO);

LCD_SendString(name, LCD DATA);

LCD MoveCursor(OxO,0x15);

LCD_SendString(STR outgoing, LCD_DATA);

LCD_MoveCursor(Ox1,OxO); 100

LCD_PrPhoneNumber(number);

curdigit=0;

void SCI init(void) {

uchar temp2; 110

uint fp* sccr0;

uint fp* sccrl;

uint fp* scsr;

uchar fp* scdr;

sccr0=(uint fp*)SCCRO;

sccrl=(uint fp*)SCCR1;

scsr=(uint fp*)SCSR;

scdr=(uchar fp*)SCDR+1; / * only read lower bit of RXD buffer */

sccr0=0xlB5; / Set to 1200 baud */ 120

sccrl=0x0004; / enable the receiver */

if ((*scsr&0x40) != 0) temp2=*scdr;/* clear any waiting data "/

uchar completenumber(uchar fp *number)

{
uchar size, count;

uchar temp[NUMBERSZ];

for (size=0; size < NUMBER_SZ; size++) 130

if (number[size]==OxO) break;

switch(size) {

case 10:

return(SUCCESS);

case 7:

for (count=0; count < size; count++)

temp[count] =number[count];

for (count=0; count < 3; count++)

number [count] =area code [count]; 140

for (count=0; count < 7; count ++)

number [count+3] =temp [count];

number[10]=OxO;

return(SUCCESS);

case 5:

switch (number[O]) {

case '3':

case '8':

for (count=O; count < size; count++)

temp [count] =number [count]; 150

for (count=0; count < 5; count++)

number[count] =pref 25 [count];

for (count=0; count < 5; count++)

number [count +5]=temp [count];

number[10]=OxO;

return(SUCCESS);

case '5':

for (count=0; count < size; count++)

temp [count] =number [count];

for (count=0; count < 5; count++) 160

number [count] =pref 22 [count];

for (count=0; count < 5; count++)

number [count+ 5] =temp[count];

number[10]=Ox0;

return(SUCCESS);

default:

return(FAIL);

default:

return(FAIL);

main(int argc, char *argv[) { MAIN(); }

/ * main.h */

typedef unsigned short ushort;

typedef unsigned int uint;

typedef unsigned char uchar;

#define FAIL 1

#define SUCCESS 0

#define TRUE 1

#define FALSE 0 10

#define NULL (void *) OxO

extern void SCI init(void);

extern main(int, char *[);

extern void MAIN(void);

extern uchar complete number(uchar fp *);

#define SIMMCR OxFFA00

#define SIMTR OxFFA02

#define SYNCR OxFFA04 20

#define RSR OxFFA07

#define SIMTRE OxFFA08

#define PORTEO OxFFAll

#define PORTE1 OxFFA13

#define DDRE OxFFA15

#define PEPAR OxFFA17

#define PORTFO OxFFA19

#define PORTF1 OxFFA1B

#define DDRF OxFFA1D

#define PFPAR OxFFA1F 30

#define SYPCR OxFFA21

#define PICR OxFFA22

#define PITR OxFFA24

#define SWSR OxFFA27

#define TSTMSRA OxFFA30

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

TSTMSRB

TSTSC

TSTRC

CREG

DREG

CSPDR

CSPARO

CSPAR1

CSBARBT

CSORBT

CSBARO

CSORO

CSBAR1

CSOR1

CSBAR2

CSOR2

CSBAR3

CSOR3

CSBAR4

CSOR4

CSBAR5

CSOR5

CSBAR6

CSOR6

CSBAR7

CSOR7

CSBAR8

CSOR8

CSBAR9

CSOR9

CSBAR10

CSOR10

RAMMCR

RAMTST

RAMBAH

RAMBAL

OxFFA32

OxFFA34

OxFFA36

OxFFA38

OxFFA3A

OxFFA41

OxFFA44

OxFFA46

OxFFA48

OxFFA4A

OxFFA4C

OxFFA4E

OxFFA50

OxFFA52

OxFFA54

OxFFA56

OxFFA58

OxFFA5A

OxFFA5C

OxFFA5E

OxFFA60

OxFFA62

OxFFA64

OxFFA66

OxFFA68

OxFFA6A

OxFFA6C

OxFFA6E

OxFFA70

OxFFA72

OxFFA74

OxFFA76

OxFFB00

OxFFBO2

OxFFBO4

OxFFBO6

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

QMCR

QTEST

QILR

QIVR

SCCRO

SCCR1

SCSR

SCDR

QPDR

QPAR

QDDR

SPCRO

SPCR1

SPCR2

SPCR3

SPSR

RRO

RR1

RR2

RR3

RR4

RR5

RR6

RR7

RR8

RR9

RRA

RRB

RRC

RRD

RRE

RRF

TRO

TR

TR2

TR3

OxFFC00

OxFFC02

OxFFC04

OxFFC05

OxFFC08

OxFFCOA

OxFFCOC

OxFFCOE

OxFFC15

OxFFC16

OxFFC17

OxFFC18

OxFFC1A

OxFFC1C

OxFFC1E

OxFFC1F

OxFFD00

OxFFDO2

OxFFDO4

OxFFDO6

OxFFD08

OxFFDOA

OxFFDOC

OxFFDOE

OxFFD00

OxFFDO2

OxFFDO4

OxFFD06

OxFFD08

OxFFDOA

OxFFDOC

OxFFDOE

OxFFD20

OxFFD22

OxFFD24

OxFFD26

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

TR4

TR5

TR6

TR7

TR8

TR9

TRA

TRB

TRC

TRD

TRE

TRF

CRO

CR1

CR2

CR3

CR4

CR5

CR6

CR7

CR8

CR9

CRA

CRB

CRC

CRD

CRE

CRF

GPTMCR

GPTMTR

ICR

PDDR

GPTPDR

OC1M

OC1D

TCNT

OxFFD28

OxFFD2A

OxFFD2C

OxFFD2E

OxFFD30

OxFFD32

OxFFD34

OxFFD36

OxFFD38

OxFFD3A

OxFFD3C

OxFFD3E

OxFFD40

OxFFD41

OxFFD42

OxFFD43

OxFFD44

OxFFD45

OxFFD46

OxFFD47

OxFFD48

OxFFD49

OxFFD4A

OxFFD4B

OxFFD4C

OxFFD4D

OxFFD4E

OxFFD4F

OxFF900

OxFF902

OxFF904

OxFF906

OxFF907

OxFF908

OxFF909

OxFF90A

#define PACTL OxFF90C

#define PACNT OxFF90D

#define TIC1 OxFF90E

#define TIC2 OxFF910

#define TIC3 OxFF912

#define TOC1 OxFF914

#define TOC2 OxFF916 150

#define TOC3 OxFF918

#define TOC4 OxFF91A

#define TI405 OxFF91C

#define TCTL1 OxFF91E

#define TCTL2 OxFF91F

#define TMSK2 OxFF921

#define TFLG1 OxFF922

#define TFLG2 OxFF923

#define CFORC OxFF924

#define PWMC OxFF924 160

#define PWMA OxFF926

#define PWMB OxFF927

#define PWMCNT OxFF928

#define PWMBUFA OxFF92A

#define PWMBUFB OxFF92B

#define PRESCL OxFF92C

#define ADCMCR OxFF700

#define ADTEST OxFF702

#define ADCPDR OxFF706

#define ADCTLO OxFF70A 170

#define ADCTL1 OxFF70C

#define ADSTAT OxFF70E

#define RJURRO OxFF710

#define RJURR1 OxFF712

#define RJURR2 OxFF714

#define RJURR3 OxFF716

#define RJURR4 OxFF718

#define RJURR5 OxFF71A

#define RJURR6 OxFF71C

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

RJURR7

LJSRRO

LJSRR1

LJSRR2

LJSRR3

LJSRR4

LJSRR5

LJSRR6

LJSRR7

LJURRO

LJURR1

LJURR2

LJURR3

LJURR4

LJURR5

LJURR6

LJURR7

OxFF71E

OxFF720

OxFF722

OxFF724

OxFF726

OxFF728

OxFF72A

OxFF72C

OxFF72E

OxFF730

OxFF732

OxFF734

OxFF736

OxFF738

OxFF73A

OxFF73C

OxFF73E

/ * cid.c */;

<hc6_sup.h>

"main.h"

"cid.h"

"pins .h"

uchar CID_get(uchar fp *cid_buffer)

{
uint templ;

uchar temp2;

uchar count;

uchar Uflag;

uchar length;

uchar overflow;

/ * Stores incoming characters */

/* Stores status flag */

/* cid buffer counter */

/* says if char is an initial U */

uint fp* scsr;

uchar fp* scdr;

scsr=(uint fp*)SCSR;

scdr=(uchar fp*)SCDR+1; /* only read lower bit of RXD buffer */

if ((*scsr&Ox40) != 0) temp2=*scdr;/* clear any waiting data */

count=0;

Uflag=l;

overflow=0;

/ * reset cid buffer counter */

/* Set Uflag */

while (1) { /* Look for message type */

while(((templ=*scsr)&0x40) == OxO) {}

if ((templ&Ox8) != 0) overflow=l;

temp2=*scdr;

if ((templ & 0x2) == 0)

if (temp2==0x4)

break;

Spin until receive buffer is full */

store incoming char */

only keep char if no errors */

If messagetype O4 */

then move on */

#include

#include

#include

#include

while (1) { /* This is the message length */

while(((templ=*scsr)&Ox40) == OxO) {}

if ((templ&0x8) != 0) overflow=1; 40

temp2=*scdr; /

if ((templ & Ox2) == 0) { /

length=temp2; /

break; /

}

while (1){ /

if (count==length) break; /

while(((temp l=*scsr)&0x40) ==

if ((templ&Ox8) != 0) overflow=1;

temp2=*scdr;

if ((templ & Ox2) == 0) {

cid buffer[count]=temp2;/

count++;

cid_buffer [count] =OxO;

return(count);

* Spin until receive buffer is full */

* store incoming char */

* only keep char if no errors */

* This is the length */

* then move on */

* this is the data */

* break if received length chars */

OxO) {}

/ * Spin until receive buffer is full */

/* store incoming char */

/* only keep char if no errors */

* put char in cid buffer */

/ * increment cid buffer counter */

/* return length of cid buffer */

void CIDdate(uchar fp* cid_data, uchar fp* date, uchar length)

{
uchar count;

if (length==O) {

date[O]=OxO;

} else {

for (count=O; count < 8; count ++)

date[count]=ciddata[count];

date[count]=OxO;

void CID number(uchar fp* cid_data, uchar fp* number, uchar length)

{
uchar count;

length-=8;

switch (length) {

case 10: 80

for (count=O; count < 10; count ++)

number [count] =cid_data[count+8];

number [count]= OxO;

break;

case 7:

number[O]= '6';

number[1]=' 1';

number[2]= '7 ';

for (count=O; count < 7; count ++)

number [count+3]= cid_data[count+8]; 90

number [count+3]=OxO;

break;

default:

number[O]= OxO;

break;

}

/ * cid.h */

#define CID ERROR 0

#define CID_NORM 1

#define CID_EXT 2

extern uchar CIDget(uchar fp *);

extern void CID date(uchar fp*, uchar fp*, uchar);

extern void CID_number(uchar fp*, uchar fp*, uchar);

10

/ * database.c */

#include <hc6_sup.h>

#include "main.h"

#include "lcd.h"

#include "database.h"

#include "dtmf .h"

#include "strings .h"

#include "tt .h"

#include "pins .h" o10

isil static STRINGS, a_iram;

static uchar browse ="Browser";

static uchar logemptyD="The log is empty.";

static uchar in[="IN";

static uchar out[]="OUT";

static uchar STRemptyfl="empty";

static uchar STR_entry[]="entry #";

static uchar enternumber[]="Enter Valid Phone Number";

static uchar entername="Enter Name"; 20

isilstatic DBASE, a full;

NAMENUM FLD name numdb[NAME_NUMBER SZ];

NUM MSG_FLD num msgdb[NUMMSGSZ];

LOG-ENTRY phonelogdb[PHONELOGSZ];

uchar phonelog_cur;

uchar phonelog_full;

uchar DB Init(uchar db)

{ 30

uchar i;

switch (db) {

case NAME NUM:

for (i=O; i < NAME_NUMBER SZ; i++)

namenum_db[i].valid=FALSE;

return(SUCCESS);

case NUM MSG:

for (i=O; i < NUMMSG_SZ; i++)

nummsg_db[i] .valid=FALSE;

return(SUCCESS);

default:

return(FAIL);

uchar DBDelete(uchar db, uchar entry)

{
switch (db) {

case NAME NUM:

if ((entry >= 0) && (entry < NAME_NUMBERSZ)) {

namenum_db [entry] .valid=FALSE;

return(SUCCESS);

return(FAIL);

case NUM MSG:

if ((entry >= 0) && (entry < NUM_MSG_SZ)) {

num msgdb[entry] .valid=FALSE;

return(SUCCESS);

}
return(FAIL);

default:

return(FAIL);

uchar DB_GetByEntry(uchar db, uchar entry, uchar fp *datal, uchar fp *data2)

{
switch (db) {

case NAME NUM:

if (name num_db[entry].valid== FALSE) return(FAIL);

if ((entry >= 0) && (entry < NAMENUMBER_SZ)) {
strcpy(datal, name num db[entry] .name);

strcpy(data2, name num db[entry].number);

return(SUCCESS);

} else {

return(FAIL);

case NUMMSG: 80

if (num_msg db[entry].valid==FALSE) return(FAIL);

if ((entry >= 0) && (entry < NUM_MSG SZ)) {
strcpy(datal, nummsgdb[entry].number);

data2 [0]=nummsg db[entry] .message;

return(SUCCESS);

} else {

return(FAIL);

so90

uchar DB_GetByNumber(uchar db, uchar fp *datal, uchar fp *data2)

{
uchar count;

switch (db) {

case NAME NUM:

for (count=0; count < NAME_NUMBER SZ; count++) {
if (name_num_db[count].valid==TRUE) {

if (strcmp(data2, name_numdb[count].number)==i-- {

strcpy(datal, name_num_db[count].name);

return(SUCCESS);

}
}

datal[0]=0xO;

return(FAIL);

case NUM MSG:

for (count=O; count < NUMMSG_SZ; count++) {

if (nummsg_db[count] .valid==TRUE) { 110

if (strcmp(datal, nummsgdb[count]. number)==0) {

data2[0]=num msg db[count] .message;

return(SUCCESS);

data2[0]=0x0;

return(FAIL);

120

uchar DB_Add(uchar db, uchar entry, uchar fp *datal, uchar fp *data2)

switch (db) {

case NAME NUM:

if ((entry >= 0) && (entry < NAME_NUMBER_SZ)) {

strcpy(namenum db[entry].name, datal);

strcpy(namenum db[entry].number, data2);

namenum_db [entry]. valid=TRUE;

return(SUCCESS); 1o

}else {

return(FAIL);

}
case NUM MSG:

if ((entry >= 0) && (entry < NUM_MSG_SZ)) {

strcpy(num msg_db[entry].number, datal);

num_msg_db[entry].message=data2 [0];

num_msg_db[entry] .valid=TRUE;

return(SUCCESS);

} else { 140

return(FAIL);

}

void LOG Init(void)

{
int i;

for (i=O; i < PHONELOG_SZ; i++) phonelog db[i].valid=FALSE;

phonelogcur=0; 150

phonelog_full=FALSE;

void initdatabase(void)

DBInit(NAME_NUM);

DB_Init(NUMMSG);

LOG Init();

160

void LOGAdd(uchar fp*name, uchar fp*number, uchar fp*date, uchar type)

strcpy(phonelog_db[phonelog_cur] .name, name);

strcpy(phonelog db[phonelog_cur] .number, number);

/*

strcpy(phonelog db[phonelog_ cur]. date, cur dateO);

*/

if (type==INCOMING)

strcpy(phonelog_db[phonelog_cur] .date, date);

else 170

phonelog db[phonelog cur] .date [0]= OxO;

phonelog db[phonelog_cur].type= type;

phonelogdb[phonelog-cur] .valid=TRUE;

phonelogcur++;

if (phonelog cur==PHONELOG SZ) {
phonelogcur=0;

phonelog full=TRUE;

180

void LOG Browse(void)

{
uchar cur, start, stop;

LCD ClearScreen();

LCD_MoveCursor(0,0);

LCD_SendString(browse, LCD DATA);

start=phonelog_cur; 190

stop=phonelog_cur- 1;

if (start==O)

stop=PHONELOG_SZ;

if (phonelog_full==FALSE) {
if (phonelog-cur==O) {

LCD SendString(logempty, LCD_DATA);

while (SWITCH(SWITCH1) == UP) {}

while (SWITCH(SWITCH1) != UP) {}

return; 200

}
start=O;

stop=phonelog_cur- 1;

cur=stop;

LCDClearScreen();

LCD_MoveCursor(O,O);

LCD SendString((uchar fp*) phonelog_db[cur] .name, LCD DATA);

LCD_MoveCursor(0,20);

if (phonelog_db[cur] .type==INCOMING) 210

LCD SendString((uchar fp*) in, LCD DATA);

else

LCD_SendString((uchar fp*) out, LCD_DATA);

LCD_MoveCursor(1,0);

LCDPrPhoneNumber(phonelogdb[cur] .number);

LCDMoveCursor(1,13);

LCD PrDate(phonelogdb[cur].date);

while (SWITCH(SWITCH1) == UP) {

if (SWITCH(SWITCH2) != UP) { 220

if (cur!=start)

if (cur==O) cur=PHONELOG SZ;

else cur--;

LCD ClearScreen();

LCD MoveCursor(0,0);

LCD SendString((uchar fp*) phonelogdb[cur].name, LCD DATA);

LCD_MoveCursor(0,20);

if (phonelogdb[cur].type==INCOMING)

LCD_SendString((uchar fp*) in, LCD_DATA);

else 230

LCD_SendString((uchar fp*) out, LCD_DATA);

LCD MoveCursor(1,0);

LCDPrPhoneNumber(phonelog_db[cur].number);

LCD MoveCursor(1,13);

LCDPrDate(phonelog_db[cur] .date);

while (SWITCH(SWITCH2) != UP) {}

}
if (SWITCH(SWITCH3) != UP) {

if (cur!=stop)

if (cur==PHONELOG_SZ) cur=0; 240

else cur++;

LCD ClearScreen();

LCD MoveCursor(0,0);

LCDSendString((uchar fp*) phonelog_db[cur].name, LCD DATA);

LCDMoveCursor(0,20);

if (phonelog db[cur].type==INCOMING)

LCD SendString((uchar fp*) in, LCDDATA);

else

LCDSendString((uchar fp*) out, LCDDATA);

LCD_MoveCursor(1,0); 250

LCD_PrPhoneNumber(phonelog_db[cur].number);

LCD MoveCursor(1,13);

LCD PrDate(phonelogdb[cur].date);

while (SWITCH(SWITCH3) != UP) {}

}
}
while (SWITCH(SWITCH1) != UP) {}

void DB_AdminNameNum(void) 260

{
uchar cur_item;

uchar cur, done;

uchar name[NAMESZ];

uchar number[NUMBERSZ];

uchar key;

uchar valid;

uchar temp;

uchar reset;

270

reset=1;

cur item=0;

done=0;

cur=O; /* Start at beginning of database

while (done != 1) {

if (reset==1) {

reset=0;

if ((valid=DB GetByEntry(NAME_NUM, cur, name, number))==SUQCESS) {

LCD ClearScreen();

LCD MoveCursor(cur item,0);

LCD SendChar('>', LCD_DATA);

LCD_MoveCursor(O,1);

LCD_PrPhoneNumber(number);

LCD MoveCursor(0,15);

LCD_SendString(STRentry, LCDDATA);

LCDMoveCursor(0,22);

LCD_PrNumeric(cur);

LCD MoveCursor(1,1); 290

LCDSendString(name, LCDDATA);

} else {

LCD_ClearScreen();

LCD_MoveCursor(0,0);

LCD_SendString(STR_empty, LCDDATA);

LCD_MoveCursor(0,15);

LCD_SendString(STRentry, LCDDATA);

LCD_MoveCursor(0,22);

LCD_PrNumeric(cur);

so00

if (SWITCH(SWITCH2) != UP) { /* Left Arrow */

if (cur==0O) {

cur=NAME NUMBER_SZ-1;

} else {

cur--;

}
if ((valid=DB_GetByEntry(NAME_NUM, cur, name, number))==SUCCESS) {

LCDClearScreen(); 310

LCD MoveCursor(cur_item,0);

LCD SendChar('>', LCDDATA);

LCD MoveCursor(0,1);

LCD PrPhoneNumber(number);

LCD MoveCursor(0,15);

LCD SendString(STRentry, LCD DATA);

LCD MoveCursor(0,22);

LCD PrNumeric(cur);

LCD MoveCursor(1,1);

LCDSendString(name, LCD_DATA); 320

} else {

LCD ClearScreen();

LCD MoveCursor(O,O);

LCD SendString(STR empty, LCD_DATA);

LCDMoveCursor(0,15);

LCDSendString(STR entry, LCD_DATA);

LCD_MoveCursor(0,22);

LCD_PrNumeric(cur);

while (SWITCH(SWITCH2) != UP) {} 330

if (SWITCH(SWITCH3) != UP) { /* Right Arrow */

while (SWITCH(SWITCH3) != UP) {}

if (cur==NAME NUMBERSZ-1) {
cur=O;

} else {

cur++;

if ((valid=DB GetByEntry(NAME_NUM, cur, name, number))==SUCCESS)3{o

LCD ClearScreen();

LCDMoveCursor(curitem,0);

LCD_SendChar('>', LCD_DATA);

LCD_MoveCursor(0,1);

LCD_PrPhoneNumber(number);

LCD_MoveCursor(O,15);

LCD_SendString(STRentry, LCDDATA);

LCD_MoveCursor(0,22);

LCD_PrNumeric(cur);

LCD_MoveCursor(1,1); 350

LCD_SendString(name, LCD_DATA);

} else {

LCD_ClearScreen();

LCDMoveCursor(O0,0);

LCDSendString(STR empty, LCD DATA);

LCD_MoveCursor(0,15);

LCDSendString(STR entry, LCDDATA);

LCD_MoveCursor(0,22);

LCD_PrNumeric(cur);

360

if (GPIP(DTMF_BIT)) {

key=DTMF Get (COOKED);

switch (key) {

case '*':

if (valid==SUCCESS) {

if (cur item==O) cur item=l;

else cur item=0;

} 370

break;

case '#':

if ((cur_item==O) && (valid==SUCCESS)) {

do {

LCD_ClearScreen();

LCD_MoveCursor(0,0);

LCD_SendString(enternumber, LCD_DATA);

temp=TTGetNumber((uchar fp*)number,NUMBER SZ);

if (temp==O) break;

} while (complete_number(number)==FAIL); 3so0

if (temp != 0)

DB_Add(NAME_NUM, cur, name, number);

if ((curitem==1) && (valid==SUCCESS)) {

LCD ClearScreen();

LCD_MoveCursor(0,0);

LCD_SendString(entername, LCD DATA);

temp=TTGetName((uchar fp*)name,NAME_SZ);

if (temp!=0)

DB_Add(NAME_NUM, cur, name, numbq

if (valid==FAIL) {

LCD_ClearScreen();

LCD_MoveCursor(0,0);

LCD_SendString(entername, LCD DATA);

temp=TT_GetName((uchar fp*)name,NAME_SZ);

if (temp!=O) {

do {

LCD_ClearScreen(); 400

LCD_MoveCursor(0,0);

LCD SendString(enternumber, LCD DATA);

temp=TTGetNumber(number,NUMBERSZ);

if (temp==O) break;

} while (complete_number(number)==FAIL);

if (temp!=O)

DB_Add(NAME NUM, cur, name, number);

410

reset=1;

if (SWITCH(SWITCH4) != UP) {

while(SWITCH(SWITCH4) != UP) {}

done=1;

}

420

NAME SZ 20

NUMBER SZ 11

DATE SZ 11

NAME NUMBER SZ 30

NUM MSG SZ 30

PHONELOG SZ 30

INCOMING 0

OUTGOING 1 o10

typedef struct {

uchar name[NAMESZ];

uchar number[NUMBER_SZ];

uchar valid;

} NAMENUM FLD;

typedef struct {

uchar number[NUMBERSZ];

uchar message;

uchar valid;

} NUMMSGFLD;

typedef struct {

uchar name[NAMESZ];

uchar number[NUMBER SZ];

uchar date[DATE SZ];

uchar type;

uchar valid;

} LOG ENTRY;

/ * valid Database values */

#define NAME_NUM 1

#define NUM_MSG 2

/* TRUE or FALSE */

/ * Which outgoing message? */

/* TRUE or FALSE */

/* INCOMING or OUTGOING */

/ * TRUE or FALSE */

/ * database.h */

#define

#define

#define

#define

#define

#define

#define

#define

/ * Prototypes */

extern uchar DB_Add(uchar, uchar, uchar fp *, uchar fp *);

extern uchar DB_GetByNumber(uchar, uchar fp *, uchar fp *);

extern uchar DB_GetByEntry(uchar, uchar, uchar fp *, uchar fp *);

extern uchar DB_Delete(uchar, uchar); 40

extern uchar DB_Init(uchar);

extern void initdatabase(void);

extern void LOG_Add(uchar fp*, uchar fp*, uchar fp*, uchar);

extern void LOGBrowse(void);

extern void DB AdminNameNum(void);

/* dtmf.c */

#include <hc6_sup.h>

#include "main.h"

#include "lcd.h"

#include "dtmf .h"

#include "pins .h"

isil_static STRINGS, a iram;

static uchar DTMF_PHONE[=" 1234567890#"; 10o

void DTMF_Init(void)

{
uint fp* esparl;

uint fp* csor6;

uint fp* csbar6;

csparl=(uint fp*)CSPAR1;

csor6=(uint fp*)CSOR6;

csbar6=(uint fp*)CSBAR6; 20

*csparl=(*csparl & Oxfffec) I 0x2;

*csbar6=0x400;

*csor6=0xb820;

uchar DTMF_Get(uchar type)

{
uchar fp* dtmfr;

uchar temp; 30

dtmfr=(uchar fp*)DTMFR;

if (GPIP(DTMFBIT)) {

if (type==COOKED) temp=DTMF_PHONE[*dtmfr & Oxf];

else temp=*dtmfr & Oxf;

while(GPIP(DTMF_BIT)) {}

return(temp);

} else {

return (0); 40

}

1

/ * dtmf.h */

#define DTMF_BASE

#define DTMFR

#define RAW

#define COOKED

0x40000

DTMF BASE+1

0

1

extern void DTMF_Init(void);

extern uchar DTMF Get(uchar);

/ * Icd.c */

#include

#include

#include

#include

void

{

<hc6_sup.h>

"main. h"

"lcd.h"

"database.h"

LCD Init(void)

uint

uint

uint

uint

fp* csparl;

fp* csor7;

fp* csbar7;

temp;

csparl=(uint fp*)CSPAR1;

csor7-=(uint fp*)CSOR7;

csbar7=(uint fp*)CSBAR7;

*csparl=(*csparl & Oxfff3) I 0x8;

*csbar7=0x500;

*csor7=0x3f60;

void LCD ClearScreen(void)

{
LCD SendChar((uchar) Oxl, LCD_INST);

}

void LCD MoveCursor(uchar column, uchar row)

I

LCDSendChar(0x80 + row + column*0x40, LCDINST);

uchar LCD_SendChar(uchar data, uchar type)

I

uchar fp* Icdir;

uchar fp* Icddr;

int i;

lcdir=(uchar fp*)LCDIR; 40

lcddr=(uchar fp*)LCDDR;

for(i=O; i < 100; i++) {} /* Give LCD time to get ready */

while((*lcdir & Ox80) != O) {} /* Loop until LCD is ready */

switch (type) {

case LCD DATA:

*Icddr=data;

break; 50

case LCD INST:

*Icdir=data;

break;

default:

return FAIL;

}
return SUCCESS;

uchar LCDSendString(uchar fp*data, uchar type) 60

{
uchar counter, temp;

if (!((type == LCD DATA) II (type == LCD_INST)))

return FAIL; / * If the data isn't a valid type */

/* then return with a FAIL*/

for(counter=0; data[counter] != OxO; counter++) {
temp=data[counter];

LCD_SendChar(data[counter], type); 70

}

return SUCCESS;

uchar LCD PrDate(uchar fp*data)

{
uchar size;

uchar counter;

for (size=0; size < NUMBER SZ; size++) 80

if (data[size]==OxO) break;

if (size != 8) return (FAIL);

for(counter=0; counter < 10; counter++) {

if (counter==2) LCD SendChar('/', LCDDATA);

if (counter==4) LCD_SendChar(' ', LCD DATA);

if (counter==6) LCD_SendChar(': ', LCD_DATA);

LCD_SendChar(data[counter], LCD_DATA);

)
return SUCCESS; 9so

uchar LCD PrPhoneNumber(uchar fp*data)

{
uchar size;

uchar counter;

for (size=0; size < NUMBER SZ; size++)

if (data[size]==OxO) break;

if (size != 10) return (FAIL); 100

for(counter=0; counter < 10; counter++) {

if ((counter==3) 11 (counter==--6))

LCD_SendChar('-', LCD_DATA);

LCD_SendChar(data[counter], LCD_DATA);

return SUCCESS;

}

uchar LCD_PrNumeric(uchar data) 11o

{
uchar counter;

uchar place0;

uchar placel;

uchar place2;

placeO=0;

placel=0;

place2=0;

120

while (data != 0) {

if (data >= 100) {

data-=100;

place2++;

} else {

if (data >= 10) {

data-=10;

placel++;

} else {

if (data > 0) { 130

data-=1;

place0++;

place2+= '0 ';

placel+= '0 ';

place0+= '0 '; 140

if (place2==' 0') {

place2=placel;

placel=placeO;

place0=Ox0;

if (place2=='0') {

place2=placel;

placel=0x0;

150

LCD SendChar(place2, LCDDATA);

if (placel != OxO) LCD_SendChar(placel, LCD_DATA);

if (placeO != OxO) LCD_SendChar(placeO, LCD_DATA);

/ * Icd.h */

#define LCD_BASE

#define LCDIR

#define LCDDR

#define LCD INST

#define LCD DATA

0x50000

LCD BASE+O

LCD BASE+1

0

1

extern void LCD_Init(void);

extern void LCD ClearScreen(void);

extern void LCD MoveCursor(uchar, uchar);

extern uchar LCD_SendChar(uchar, uchar);

extern uchar LCD SendString(uchar fp*, uchar);

extern uchar LCD_PrPhoneNumber(uchar fp*);

extern uchar LCD PrNumeric(uchar);

extern uchar LCD_PrDate(uchar fp*);

#include

#include

#include

<hc6_sup.h>

"main. h"

"pins .h"

uchar fp* gptpdr;

uchar fp* qpdr;

void PINSinit(void) {

uchar fp* tctll;

uchar fp* tctl2;

uchar fp* pddr;

uchar

uchar

qpar;

qddr;

tctll=(uchar fp*)TCTL1;

tctl2=(uchar fp*)TCTL2;

pddr=(uchar fp*)PDDR;

qpar=(uchar fp*)QPAR;

qddr=(uchar fp*)QDDR;

*tctll=0;

*tctl2=0;

*pddr=0x8;

*qpar=O;

*qddr=O;

/ * All pins configured as inputs */

gptpdr=OxFF907;

qpdr=OxFFC15;

/* pins.c */

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

GPIP(x)

SWITCH(x)

RELAY ON

RELAY OFF

DTMF BIT

RING BIT

CARRIER BIT

RELAY

RELAY MASK

SWITCH1

SWITCH2

SWITCH3

SWITCH4

UP

RINGING

/*

isil_static STRINGS, a_iram;

static uchar fp* gptpdr=0zFF907;

static uchar fp* qpdr=OzFFC15;

extern uchar fp

extern uchar fp* gptpdr;

extern uchar fp* qpdr;

extern void PINS init(void);

/* pins.h */

(*gptpdr&x)

(*qpdr&x)

*gptpdr=*gptpdr RELAY

*gptpdr=*gptpdr&RELAY_MASK

Ox1

0x2

0x4

0x8

OxF7

Ox1

0x2

0x4

0x8

0

#include

#include

#include

<hc6_sup.h>

"main.h"

"strings .h"

uchar strcpy(uchar fp*a, uchar fp*b)

{
while ((*a = *b) != '\0') {

a++;

b++;

uchar strcmp(uchar fp*a, uchar fp*b)

for(; *a==*b; a++, b++)

if (*a==' \0') return 0;

return (*a-*b);

/* strings.c */

/ * strings.h */

extern uchar strcpy(uchar fp*, uchar fp*);

extern uchar strcmp(uchar fp*, uchar fp*);

/ * tt.c */

#include <hc6_sup.h>

#include "main.h"

#include "lcd.h"

#include "dtmf .h"

#include "database.h"

#include "strings .h"

#include "tt .h"

isil_static STRINGS, airam; 10

static uchar name_keypad[10][9]={

{'a',b' ,) C , 'A''B ,'C ,'2) ,7), d',

{'m','n','o','M','N','O','6'' '' '}, {'p'6 ,,q',,r','s','P','Q','R''S','7'}

static uchar name infoo={0, 3, 7, 7, 7, 7, 7, 9, 7, 9};

static uchar number_keypad[10][9]={

{ ,, , , ,,,, ,,,, ,, ', , {'O','', ' ', ' ' ,' ' ,' ',' ', ' ', ' ',{ '2 , , , ,,)))))) ,)) , '3, 3,1)) , , , , , ,2

{, ,, ,, ,) , , ,,, 3, , ,},{ 5,3 , 3,, , ,, , ,) , , }

static uchar number_infof={0, 2, 1, 1, 1, 1, 1, 1, 1, 1};

uchar TT_GetName(uchar fp *string, uchar size)

uchar cur_key;

uchar cur letter;

uchar cur char; so

uchar lastkey;

uchar done;

uchar temp;

uchar foo;

LCD SendChar(Oxe,LCD_INST); /* Turn cursor on */

LCD MoveCursor(Ox,0x0O);

cur_letter=0;

cur_key=0;

last_key=0; 40

done=0;

while(done==0) (

temp=DTMF_Get(RAW);

if (temp != 0) {
switch (temp) {

case 1:

case 2:

case 3:

case 4:

case 5: 50

case 6:

case 7:

case 8:

case 9:

if (last_key!=temp) cur_key=0;

last_key=temp;

curchar=name_keypad[temp] [cur_key];

LCD SendChar(cur_char, LCD_DATA);

LCDMoveCursor(Oxl, cur_letter);

cur key++; 60

if (cur_key==name_info[temp]) curkey=0;

break;

case 10:

string [cur letter] =OxO;

done=1;

break;

case 11:

LCD SendChar(' ', LCD_DATA);

if (cur letter != 0) cur_letter--;

curchar=string [cur_letter]; 70

LCD_MoveCursor(0xl, cur_letter);

break;

case 12:

LCD_SendChar(cur_char, LCD_DATA);

string [curletter] =cur_ char;

cur letter++;

curkey=0;

if (cur_letter==size) {

string [size]= OxO;

done=1; so

}
break;

default:

break;

LCD_SendChar(OxC,LCD_INST); /* Turn cursor off */

return(cur letter);

} 90

uchar TT_GetNumber(uchar fp *string, uchar size)

{
uchar curkey;

uchar cur letter;

uchar cur char;

uchar lastkey;

uchar done;

uchar temp;

uchar foo; 100

LCD_SendChar(Oxe,LCDINST); /* Turn cursor on */

LCDMoveCursor(Oxl ,OxO);

cur letter=0;

cur key=0;

last key=0;

done=0;

while(done==0) {

temp=DTMF_Get(RAW);

if (temp != 0) { 110

switch (temp) {

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

case 8:

case 9: 120

if (last_key!=temp) cur_key=0;

last_key=temp;

cur_char=number keypad[temp] [cur_key];

LCD_SendChar(cur_char, LCD_DATA);

LCD_MoveCursor(Oxl, cur letter);

cur_key++;

if (cur_key==number_info[temp]) cur_key=0;

break;

case 10:

string[cur_letter] =0x0; 130

done=1;

break;

case 11:

LCD_SendChar(' ', LCD_DATA);

if (cur letter != 0) cur_letter--;

curchar =string [cur letter];

LCD_MoveCursor(Oxl, cur_letter);

break;

case 12:

LCD SendChar(cur char, LCD_DATA); 140

string [cur_letter] =cur_ char;

cur_letter++;

curkey=0;

1

if (curletter==size) {
string [size]= OxO;

done=1;

}
break;

default:

break;

}
}

}
LCD SendChar(OxC,LCD_INST); /* Turn cursor off */

return(cur letter);

4 -

/* tt.h */

extern uchar TT GetName(uchar fp*, uchar);

extern uchar TT GetNumber(uchar fp*, uchar);

Appendix B

Schematics

Figure B
-1:

Schem
atic of H

ardw
are

Bibliography

[1] Rochelle Communications. Caller id telephone line simulator. Rochelle Commu-

nications Product Literature, 1991.

[2] Motorola Inc. Dual tone multiple frequency receiver. Motorola Semiconductor

Technical Data, 1989.

[3] Motorola Inc. Calling line identification receiver with ring detector. Motorola

Semiconductor Technical Data, 1991.

[4] Motorola Inc. M68hcl6zlevb user's manual. Motorola Semiconductor Technical

Data, 1992.

[5] AT&T Microelectronics. At&t telephone answering device (tad) chipset datasheet.

AT&T Microelectronics Product Note, 1991.

[6] Eric Schneider. Isil 4.0 compiler. Eris Systems Product Literature, 1991.

