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Abstract

Vestibular Evoked Myogenic Potentials (VEMPs) are electrical signals recorded from the skin

overlying skeletal muscles of the head and neck in response to high-intensity acoustic stimuli.

VEMPs have been observed in stimulus locked averages of the electromyogram in a majority of

human subjects, and are thought to originate in the otolith organs of the inner ear, which are balance

organs responsible for sensing acceleration and orientation with respect to gravity. Otolith reflexes

interact with the motor drive to a contracted muscle to give rise to the VEMP signal. In the last few

years these signals have been used in the clinic as an indicator of peripheral vestibular function and a

test based on VEMP from neck muscles (cervical, or cVEMP) is currently the only clinically feasible

means of assessing the functioning of the saccule and its innervation. However, the usefulness of the

test is limited by the inter-subject and test-retest variability of the response, and the unclear

relationship between specific response features and vestibular pathophysiology.

In this thesis, our goal is to measure VEMP variability, assess the influence of non-vestibular factors

on the VEMP, and to develop a signal processing strategy to estimate response parameters that are

both statistically stable, and physiologically meaningful.

In the first part of the thesis, we systematically measure VEMPs from a small clinically normal

population, and quantify the variability of the response, particularly the dependence on contraction

effort. We also assess approaches to normalizing the response by estimates of the effort.

In the second part of the thesis, we develop a computational model of VEMP physiology, and use

the model to separate external sources of variability from internal noise. The model outputs are also

used to define a statistical measure, the inverse coefficient of variation (iCOV), which correlates with

altered vestibular sensitivity, but is relatively robust to other changes.

When applied to the experimental data, the iCOV is found to yield estimates of vestibular sensitivity

that are more stable than the conventional VEMP amplitude. This measure also reveals a diversity of

response threshold and growth characteristics within the clinically normal population. These

findings suggest that the proposed approach could lead to the development of an improved clinical

tool, but could also yield new insights into the physiological mechanisms of vestibular pathology.

Thesis Supervisor: Steven D. Rauch, M.D.

Professor of Otology and Laryngology, Harvard Medical School
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Chapter 1. Outline

There are some enterprises in which a careful disorderliness is the true method
- Hermann Melville

Vestibular Evoked Myogenic Potentials (VEMPs) are electrical signals recorded from the skin

overlying skeletal muscles of the head and neck in response to high-intensity acoustic stimuli. These

have been observed in a majority of human subjects, and are thought to originate in the otolith

organs of the inner ear, which are vestibular (balance) organs responsible for sensing acceleration

and orientation with respect to gravity. Otolith reflexes interact with the motor drive to a contracted

muscle to give rise to the VEMP signal. In the last few years these signals have been used in the

clinic as an indicator of peripheral vestibular function and a test based on VEMP from neck muscles

(cervical, or cVEMP) is currently the only clinically feasible means of assessing the functioning of

the saccule and its innervation. In the rest of this thesis, we will use the term VEMP to refer to

cervical VEMP only.

1.1 The problem

The usefulness of the VEMP test is limited by two factors. First, the response waveform and its

amplitude are highly variable, even within the normal population, and even from session to session

within the same subject. Second, the relationship between specific response features and peripheral

vestibular mechanisms are poorly understood. As a result, despite numerous studies measuring

various response features (e.g. amplitude or latency) in normal and pathological populations, there is

no corresponding improvement in the understanding of peripheral pathophysiological processes

that could produce changes in those features.

1.2 Goals and scope of the study

Our research had two inter-related goals:

(i) To experimentally study the nature and causes of variability in VEMP responses within a normal

population and to critically examine approaches to reducing this variability.

(ii) To incorporate the current knowledge of the physiology underlying VEMP into a model that can

be studied using computational and analytical methods. We could use this model to identify a

statistic that can be computed from the surface measurements which reflects a clinically significant



aspect of the peripheral vestibular response. To the extent that this statistic is independent of other
(non-vestibular) influences, we can expect improved inter-subject and inter-session variability

Our knowledge of the vestibular reflex mechanisms underlying VEMP is by no means complete.
There remain many open questions, particularly relating to signal transmission to the saccule,
transduction processes within the saccule, neural coding of the response at the periphery and neural
transformations in the vestibular nuclei. While many of these questions are of great clinical
significance, they were not the subject of this study. Instead, we focused at the other end of the
signal chain, where the vestibular response interacts with the motor system. This emphasis was
appropriate because the clinical problems motivating this study relate to the wide variability of the
response among normal subjects. In this population, it is reasonable to assume that every ear
responds to identical stimuli in a similar manner, and examine potential sources of variability outside
the vestibular system.

We also note that this study, with its small sample size and focus on the physiological basis of
VEMP and VEMP variability in normals, is complementary to conventional clinical studies where
measurements from large populations of identified normal and pathological subjects are studied,
correlations between pathology and measured parameters are evaluated, and the range of expected
parameter values for each population is established. We hope that our results help guide the design
of future clinical studies and help in the interpretation of the results of those studies.

1.3 Approaches

In the experimental phase of the study, we recorded VEMPs from a small, clinically normal
population using a recording and storage setup that allowed us to manipulate individual responses
(traces) and compute different statistical measures on the recorded data. By sorting and scaling the
measured data based on different attributes, we could create new ensembles of traces and compare
the VEMP derived from each ensemble with the conventional VEMP average of consecutive traces.

In the modeling phase, we summarized the physiology of the vestibular reflex, the cortico-motor
drive, the muscle and the measurement system in a simplified conceptual model. We translated this
conceptual model into a computational model using Matlab routines to generate ensembles of
synthetic signals which we could manipulate in the same manner as recorded data. We also translated
the concepts into a mathematical model, from which we could predict the behavior of VEMP under
different conditions. Unlike experimental data, the model outputs allowed us to examine the
influence of specific changes in the vestibular periphery on the statistics of the VEMP.

Finally, we will applied the statistical measures developed from the modeling study to the
experimental data and looked for similarities and systematic differences within our normal subject

pool.
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1.4 Key findings of the study

Our experimental data confirmed the problem with VEMP: the average VEMP waveform shows

large differences between subjects and between measurement sessions. Our simulation studies

suggested that a significant proportion of these differences arise from inter-subject and inter-session

differences in the electrical response of the muscle, its surrounding tissues, and the electrode

geometry, as opposed to arising from differences in the vestibular response.

Our experiments also confirmed the dependence of the magnitude of the VEMP average on

contraction effort, but we found that data obtained even with relatively weak contraction have a

measurable signal component, suggesting a potential benefit of normalization by an effort estimate.

We were able to use the simulation studies to develop the appropriate filter for extracting the

contraction effort estimate to drive a normalization scheme. However, we found that variations in

contraction effort make a relatively small contribution to the intra-session variability of VEMP,
compared with the variability intrinsic to the stochastic nature of the signal. Therefore, even an

ideal normalization scheme should be expected to yield only minimal improvements in test-retest

variability. Nevertheless, normalization allows us to relax the requirement of sustaining an intense

contraction effort that makes VEMP a demanding test for many patients.

In the simulation study, we examined the outputs of a computational model of the muscle, its motor

drive, and the acoustic inhibition. We sought a statistical measure of the amount of inhibition

produced by a given stimulus, which would be relatively immune to differences in inter-subject and

inter-session characteristics. We found that the mean amplitude of an ensemble of measurements

scaled by the standard deviation of the ensemble of measurements is less vulnerable than the

amplitude alone to changes in subject- and session-specific characteristics. When this statistic (which

we term inverse coefficient of variation, or iCOV) was applied to experimental data, it was found

once again that the mean-to-standard deviation ratio measured across sessions, across different

degrees of contraction effort and across repeated measurements within a session, shows much

smaller variability than the raw amplitude of the VEMP average. As a result, when the iCOV is used

as a metric of the size of the inhibitory response, different stimulus intensities are more clearly
distinguished compared with conventional amplitude growth functions. We conclude that the iCOV

is a superior metric for identifying pathologies characterized by altered sensitivity of the vestibular

periphery.

From a practical standpoint, the outcome of this study is a simple algorithm for processing the

VEMP responses that has been shown to yield improved performance in our experimental and

simulated data. We propose a real-time implementation of this algorithm and its application on a

larger clinical population to clarify its potential for identifying pathophysiological changes in the

vestibular system.



From a conceptual standpoint, the success of the computational model in replicating features of the
experimental VEMP strengthens our understanding of the physiological mechanisms of VEMP. At
the same time, we have a deeper understanding of how a breakdown of the conventional additive

Gaussian noise model can affect the processing and interpretation of the signals. These lessons may

be applicable to a wider class of physiological signals whose underlying statistical models are similar

to VEMP and the electromyogram.

1.5 Organization of the thesis

In the following chapters, we discuss the study and its outcomes in detail. Chapter 2 describes the

physiology of vestibular reflexes and the physiology of skeletal muscle necessary to understand the

experiment and model development. In Chapter 3, we describe our systematic survey of the

variability of cVEMP measurements among normal subjects, and a qualitative and quantitative

examination of the factors that influence the VEMIP response. Chapter 4 develops a computational

model of the VEMP reflex, examines the statistics of the simulated VEMP signals as a function of

the magnitude of the vestibular response, and develops a signal processing algorithm that yields

stable magnitude estimates. We conclude in Chapter 5 by looking at the implications of the study on

the vestibular and muscle physiology, clinical applications, and describe the directions of future work

suggested by this study.
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Chapter 2. Background

In this chapter we will briefly describe some of the physiological systems that are involved in the

generation of the VEMP response. Rather than an exhaustive description of the vestibular and

motor systems, the chapter provides a brief outline of these systems at the level of complexity

necessary for the understanding and modeling of the physiology of VEMP. The reader is referred to

texts such as Baloh and Honrubia [1] for the vestibular system, or the Handbook of Physiology [2]

sections on nerve and muscle physiology for additional background if needed.

2.1 The Vestibular system

The vestibular system provides the principal sensory input that enables the human body to control

its posture, orientation and gaze direction and to plan coordinated muscle actions such as

locomotion. At various centers in the brainstem and the mid-brain, inputs from the vestibular

system are integrated with inputs from the visual and somatosensory systems, such that a consistent

percept of position, motion and orientation is created in higher cortical centers. At the same time,

descending projections from these brainstem and mid-brain centers to muscles of the eye, neck,

torso and limbs help control the position of the eyes and the body in face of voluntary movements

and external perturbations. It is these mechanisms of fast motion compensation that allow us to

perform complex tasks such as reading a signboard from within a moving train.

The peripheral vestibular system consists of the vestibular labyrinth in the inner ear, five sensory

organs within each labyrinth and the associated nerve bundles. Three of the sensory organs are

arranged in the semi-circular canals that respond to rotational motion. Two of the sensors are in the

"otolith" organs, the saccule and the utricle, which respond to linear acceleration and orientation

with respect to gravity. A comprehensive review of the functional anatomy and neurophysiology of

the vestibular system may be found in [3].

2.1.1 Clinical issues of vestibular testing

When a patient presents with vertigo or dizziness, the disorder, in majority of cases, is found to be

in the peripheral vestibular system [4]. In order to guide the treatment, the physician is usually

interested in answers to the "where" and "what" (i.e., the site of lesion and the pathophysiological

mechanism) of the disorder. The patient's subjective percepts and the neurological signs combine

sensory inputs from both ears and from the visual and somatosensory systems and it is often

difficult to disambiguate these influences. Therefore, although considerable information can be

obtained from the patient history and clinical examination by a skilled physician, there is a need for



quantitative functional testing of the vestibular system [5]. A fairly current review of quantitative

tests of vestibular function [6] points out the difficulties of assessing otolith function compared

with canal organ function. Since translational acceleration is difficult to apply in a confined setting

and cannot be applied unilaterally, tests of the utricle involve complex stimuli combining rotational

and translational motion. Because the saccule responds to acceleration in the vertical plane and to

the gravity vector, it is even more difficult to test. The only feasible means of testing the saccule and

the branch of the vestibular nerve that serves the saccule (the inferior vestibular nerve) is the VEMP

test.

2.1.2 Stimulation of the saccule

Like the caloric test applied to the horizontal semicircular canal, the VEMP test involves a stimulus

that is unrelated to the motion-sensing function of the saccule. It relies on the "leakage" into the

vestibular system, of part of the energy of an acoustical signal transmitted through the external and

middle ear. It is a matter of considerable debate whether the acoustic response of the saccule has

functional significance; a hearing role for the saccule has long been posited for some reptiles and

amphibia (see references in [7]) and some authors have speculated that this role persists in humans

[8]. For the purposes of the VEMP test, it is sufficient to note that the saccule has been directly

observed to respond consistently to acoustic stimulation in different species (guinea pig [9], cat [10],
and squirrel monkey [11]), and can therefore be presumed to have an acoustic response in humans

as well.

The mechanical details of the acoustic coupling are also not very well understood, although the

elevation of VEMP amplitude (i.e. elevation of saccular response) in instances where the

semicircular canal wall has a dehiscence (a hole or a soft spot) suggests that motion of the stapes

initiates fluid movement across the saccule into the rest of the vestibular labyrinth. Since there are

no direct measurements of the saccular response in humans, we do not know the normal magnitude

of the response to a given stimulus. We also do not know how much this response magnitude varies

across the normal population. The use of VEMP as an assay of vestibular sensitivity is premised on

the idea that different ears couple roughly the same proportion of the acoustic energy of the

stimulus to the saccule, and inter-subject differences in the size of the VEMP response arise from

differences in the saccule's sensitivity to linear acceleration.

2.1.3 The vestibulocollic reflex

As our example of reading a signboard from a train illustrates, control of the body involves two

separate components: the voluntary motor drive (to neck and eye muscles in order to track the

moving signboard) and reflex signals (that move the muscles of the eye and the body to compensate
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for the non-smooth motion of the train). The net activity of a muscle arises from the interaction of

these voluntary and reflex components.

These 2- and 3-synapse reflex loops from the vestibular system include the vestibulo-ocular reflex to

the muscles of the eye, vestibulocollic reflexes to the neck muscles, and vestibulospinal reflexes to

the lower body. The VEMP arises as a consequence of the effect of vestibulocollic reflexes on the

surface electrical activity produced by muscles responsible for neck rotation, particularly the

sternocleidomastoid (SCM) muscle. Specifically, it is believed that when the ear is excited by a brief

acoustic stimulus, the response of the saccule is carried on vestibulocollic reflex pathways, causes a brief inhibition of

the motor neurons of the ipsilateral SCM, and results in a stimulus-locked modulation of the surface electrical

potential that we call VEMP.

The pathways connecting the saccule with the neck muscles have been studied in detail by different

investigators (see [12, 13] for a comprehensive review). In Figure 2.1, we briefly outline three key

studies that support our current understanding of the physiology of vestibulocollic reflexes and

VEMP.

2.2 VEMP

The introduction of the stimulus-triggered signal averaging in the 1950s [14, 15] made it possible to

extract weak physiological responses despite contamination by large amounts of both physiological

and instrument noise. This led to an explosion of interest in the physiology, pathophysiology and

clinical application of surface potentials evoked by sensory stimuli (e.g. [16], and other papers in

those Annals). Sound-evoked potentials, in particular, were studied over a variety of scalp electrode

montages and stimulus paradigms, yielding responses over a wide range of latencies and amplitudes.

Stable and reproducible responses over the 0-5 ms post-stimulus period were soon recognized as

neurogenic far-field potentials from the auditory nerve and brainstem [17], and now constitute the

auditory brainstem response (ABR) used in clinical audiology [18]. Meanwhile, potentials with peaks

in the 7-50ms range recorded over the mastoid and over the inion [19] were found to include

components which changed in amplitude depending on changes in head position, posture and

muscle tone [20], leading to the conclusion that these responses originated in the activity of head

and neck muscles [21]. Such myogenic components recorded over the temporal bone (the post-

auricular muscle potential) were found to be cochlear in origin [22], while the inion response was

evoked by stimulation of the vestibular system [23].

Over the following few decades, electrophysiological studies of the vestibular periphery [10, 11],

brainstem nuclei [24], and neck muscle units [21, 25], as discussed in Section 2.1.3, helped delineate

the sources and the pathways responsible for the vestibular components of the auditory evoked

response which are now referred to as the vestibular evoked myogenic potential. In recent years,

vestibular evoked myogenic responses have been recorded from other muscle groups, in particular



those involved in eye movement. These are generally referred to as the ocular VEMP, or oVEMP.
The mechanisms of these responses are not the focus of this study, and the term VEMP in this
thesis will refer to cervical VEMPs or cVEMPs. Figure 2.1 summarizes the key pieces of evidence
supporting the current understanding of the origin of the clinical VEMP response. Briefly,

* The saccule has a phasic response to a punctate acoustic stimulus

* The saccule response activates an inhibitory reflex from the vestibular nuclei to the

sternocleidomastoid (SCM) motoneurons.

* This inhibition modulates the ongoing activity of motor units of the SCM muscle under
voluntary contraction

* The modulation results in changes of the statistics of the surface electromyogram (EMG).

* Changes in the mean of the EMG estimated using stimulus-locked averages of the EMG,
constitute the VEMP response.

This relationship between the VEMP and the vestibular periphery has led to the use of VEMP as a

clinical test of the functioning of the saccule and its afferent innervation. The history of VEMP is

extensively reviewed in [26], [27] and [28], while the physiology and clinical application are reviewed

in [29].

2.2.1 VEMP in the clinic

Since the mid-1990s, the VEMP test has been developed along the methods outlined in [21], and is

now an established part of the vestibular test battery at a number of clinics. Despite differences in

the details, all VEMP tests follow the same basic procedure:

* Surface electrodes are placed on the skin over the sternocleidomastoid (SCM) muscle on one
side of the neck.

* The subject tenses the muscle under test either by turning the head or by lifting the head
from a supine position.

* The subject maintains maximum voluntary tension on the muscle, and is assisted by direct or

indirect feedback of the ongoing EMG level.

* Brief acoustic stimuli (tonebursts or clicks) are applied to the ear ipsilateral to the muscle

being recorded at a rate between 5 and 15 stimuli/sec.

* The electrical signal from the electrodes is amplified, band-pass filtered, and recorded in

synchrony with the stimulus. A waveform of running average of the EMG signal over an

approximately 50 ms post-stimulus interval is computed and displayed.
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* When sufficient averaging has been performed that a stable response waveform is obtained -

or no such response is found - the recording is terminated.

The typical output of a VEMP test is a set of waveforms stacked by stimulus intensity (Figure 2.2).

Each VEMP waveform represents the averaged EMG at different time points relative to the

stimulus, and is computed by averaging the individual post-stimulus EMG signals. Normal VEMPs

generally show a characteristic biphasic pattern with an initial latency of 11-15 ms, and duration of

15-30 ms, and peak-peak amplitudes between 20 jV and >200 1pV depending on the stimulus level

and contraction effort.

Reviews of clinical applications of VEMP, including measures of variability of various response

parameters may be found in [29-32] and [33].

The processing and interpretation of VEMP in the clinic is often done along the lines similar to

neurogenic potentials such as ABR. In evaluating a typical evoked potential,

- The responses are recorded using a standard clinical protocol developed for the test.

- The responses are averaged until a section of the response emerges above the surrounding

noise.

Features of the averaged response are identified based on comparison with the "canonical"

shape of the response waveform.

The resulting waveform features, is examined for salient parameters such as peak amplitudes,

peak latencies, response threshold, etc.

These parameters are compared against normative ranges established from clinical studies

that compare normal and pathological populations.

The departures from normal values are interpreted using pathophysiological models that

relate the response features such as identified peaks to generator sites, and specific types of

changes to pathological processes at those sites.

For auditory evoked potentials, this process is well established and described in clinical textbooks

[18, 34]. When applied to VEMP, however, the process is much less successful for three reasons: the

variability of the response waveform, its dependence on extraneous factors such as contraction

effort, and the lack of well-established pathophysiological models. These difficulties of using

VEMP have not been systematically described, but are a common feature of the experience with

VEMP in the clinic at the Massachusetts Eye and Ear Infirmary. In a published report on VEMP

variability, Ochi, Ohashi and Nishino [32] describe this problem:

Latency of pI and nIl were stable, whereas pInlI amplitude was varied. The input-output

function of pI latency and nlI latency were not stable. Although the muscle tonus affects
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pInlI amplitude significantly, no statistically significant improvement was observed in

test-retest investigation after adjustment using muscle tonus.

Thus the response parameter that responds most reliably to stimulus level (i.e. whose input-output

function was stable) is also the parameter that shows the greatest variability and sensitivity to

contraction strength.

The fact that the VEMP is a fundamentally different response from neurogenic evoked potentials

has been recognized only peripherally in most clinical reports. A notable exception is the work by

Wit and IKingma [35] who explicitly model VEMPs along lines similar to those we have explored in

this thesis. However, they do not use the model to understand the statistical properties off VEMP,
and to address the underlying clinical questions; its usefulness is therefore limited.

2.3 Physiology of muscle

An important part of the model of VEMP in this study is the structure of the muscle whose activity

generates the EMG as well as the VEMP. This muscle, the SCM, is a large skeletal muscle primarily

responsible for the rotation of the head in the horizontal plane. The muscle is anchored at the

cranial end to the temporal bone and at the caudal end to the sternum and clavicle, so that

contraction of the muscle results in rotation of the head toward the contralateral shoulder. The

muscle is primarily innervated by a branch of the accessory nerve (CN XI) whose (x-motor neurons

originate in the spinal root at segments C1-C3 of the cervical spine [36]. The innervation zone of

the SCM is found to be midway between the insertion points on the belly of the muscle [37]. The

gross anatomy of the SCM in humans has been reviewed in [38] and the microarchitecture of

primate neck muscles has been described in [39]. EMG studies of the function of neck muscles

have been reported in humans [40], and in other primates [41]. These studies have been used in our

investigation as the basis for defining the muscle size parameters of the computational model of

VEMP, and to guide the placement of electrodes in the experimental study.

The mechanical action of a muscle is due to the contraction of individual muscle fibers initiated by

an action potential on the a-motor neuron that innervates it. Each fiber is served by a single motor

neuron, but a motor neuron usually projects onto a number of muscle fibers which contract in

unison. The motor neuron and the set of fibers it innervates, collectively called a motor unit,

constitute a key functional building block of the muscle. The wave of electrical activity propagating

along the length of the muscle as the fibers of a motor unit depolarize in response to an action

potential on the motor neuron is called a motor unit action potential. The fibers of the motor unit may

be distributed across the cross-section of the muscle and interspersed with the fibers of up to

dozens of other motor units. The basic architecture and physiology of mammalian muscle are

described in most standard neurophysiology texts [42]. There are few detailed studies on the
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number, the size and depth distribution of human motor units specifically for neck muscles, and the

parameters we used were extrapolated from broader studies such as the one by Buchthal and

Schmalbruch [43].

Since the interest in this study was on electrical activity induced by the muscle contraction at the skin

surface, we examined the large body of literature on the modeling and analysis of electromyograms.

A detailed review of these studies is outside the scope of this thesis; a comprehensive survey may be

found in [44]. The EMG modeling studies largely fall into three broad categories: (i) Idealized signal

models that treat the EMG as a filtered Gaussian noise process with a noise variance parameter

representing contraction effort (e.g. [45]), (ii) Models that include motor unit spiking and treat the

EMG as a filtered point process (e.g. [46]), where the effort is translated into spike statistics using

models of motor unit recruitment , and (iii) Extended signal models, which replace the generic filter

with a detailed volume conductor model incorporating factors such as motor unit distribution, tissue

geometry, electrical properties of tissue (e.g. [47]). Our study uses a detailed statistical model of the

motor unit pool and the spiking process but for computational simplicity, it subsumes details of the

motor unit action potential and the volume conductor into a single filter transfer function. Thus it

includes features of models of type (ii) and (iii) above.



2.4 Figures
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Figure 2.1 Key studies of vestibulocollic reflex physiology

Figures from three different studies that examined the pathways linking acoustic stimulation of the
saccule to surface electric potentials from neck muscle. (i) McCue and Guinan [10] showed that

saccule afferents in the cat demonstrate graded excitation in response to acoustic clicks of increasing
intensity, (ii) Kushiro et al. [24] showed that stimulation of cat saccule afferents evoked inhibitory
post-synaptic potentials in motor neurons of cranial nerve XI, and (iii) Colebatch and Rothwell [25]
showed that motor units of the SCM in the human showed stereotyped changes in firing rate
following a click stimulus, and that these firing rate changes were associated with changes in
stimulus-locked averages of the surface potential measured over the SCM.
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Figure 2.2 Output of a typical clinical VEMP test

This figure shows the result of a typical VEMP test conducted at the Audiology Department of

Massachusetts Eye and Ear Infirmary. The curves represent the averages of different numbers of

traces (determined by the audiologist making the measurement) from one ear at four different

stimulus intensities of a 500 Hz, 8 ms toneburst.
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Chapter 3. Phenomenology

What is not surrounded by uncertainty cannot be the truth
- Richard Feynman

The purpose of the experimental study of EMG and VEMP is to characterize the basic properties

of the response, its dependence on stimulus parameters, the dependence on non-stimulus

physiological variables, and the statistical variability inherent in the signal. In keeping with the focus

of the study on normative data, we studied a population of clinically normal subjects, and in order

to study the test-retest variability, each subject was measured under identical conditions multiple

times over the course of the study and multiple times during each recording session.

A unique feature of our measurement system is the capability to record the response to each

stimulus presentation (each trace), and store the traces so that they can be retrieved in any order.

Using this capability, we can form new ensembles of traces and study the properties of the resulting

average waveforms. For example, using ensembles selected on the basis of estimated contraction

effort, we can compare various schemes for trace rejection and normalization.

3.1 Experimental methods

The goal of each experimental recording session was to form an ensemble of stimulus response

waveforms (traces) which could be manipulated off-line in different ways. The test consisted of

recording toneburst-evoked cVEMP responses from the sternocleidomastoid (SCM) muscle under a

set of different stimulus level and muscle contraction conditions. The experimental procedure was

designed to be similar to that currently used for diagnostic purposes at the Massachusetts Eye and

Ear Infirmary (MEEI).

In this procedure, the subject provides sustained tension of the SCM by turning the head away from

the side under test, while seated upright in a chair. Tone-burst stimuli are applied to the ear ipsilateral

to the test muscle at the rate of 13 per second, and the stimulus locked EMG is averaged over a

number (usually 100-200) of stimulus presentations. The actual number is determined by the tester,
who controls the start and end of each measurement. The running average of the EMG waveforms

is displayed along with the root-mean-squared (rms) value of the EMG. The tester monitors the rms

EMG level and provides verbal feedback to the subject about the amount of contraction desired to

maintain a level close to maximum.

By monitoring the running average of the EMG, the tester determines whether a discernible

response exists, and based on the stability of the waveform decides when a sufficient number of

traces have been averaged. This averaged waveform, as well as sub-averages formed by selecting
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responses at different ranges of rms EMG level are stored and can be displayed to assist in

determining the quality of the recorded response. In a typical clinical VEMP test, this process is

repeated for tonebursts of different frequencies between 250 Hz and 1 kHz.

In our experiment, we used a limited version of this clinical test, where only 500 Hz toneburst

stimuli were used. Thus, the only stimulus parameter that was varied was the stimulus intensity.

Further, while the clinical test generally estimates the threshold of VEMP onset at each stimulus

frequency, we do not directly seek to estimate the threshold; our goal is to collect the response

waveforms at fixed stimulus levels, and to analyze the response growth characteristics offline. This

may lead to threshold estimates in cases where the stimulus range covers the threshold, but more

important, the data may help obtain new insights into the physiology of the response threshold.

We will now look at various components of the experimental system in detail.

3.1.1 Subject selection and study design

The goal of the experiment was to collect repeated measurements from a pool of normal subjects.

A pool of five subjects, with 5 separate recording sessions on each subject was determined to be the

appropriate size for the scope of this study. Each subject was to be recorded over 5 identical

sessions spaced approximately 1 week apart, and the same test ear and electrode montage used each

time.

The subjects were recruited from among the students and faculty at MEEI, and were clinically

normal in that they had no history of otologic, balance or neuromuscular disorders, and had normal

hearing as measured by an initial audiogram and screening distortion product otoacoustic emission

(DPOAE) test. Since the stimulus intensity in our experimental protocol was limited to 90 dB HL,
we also required that the subject have a detectable cVEMP response at 90 dB HL using the standard

clinical VEMP procedure. Subjects numbered 1, 2, 6, 7 and 8 qualified for inclusion under these

criteria and completed the entire series of measurements; the rest of the analysis in this study was

based on data recorded from these five subjects. The cohort included 2 male and 3 female subjects,
between the ages of 20 and 60 years.

Five separate sessions were recorded from subjects 1, 2, 6 and 7, and four sessions were recorded

from subject 8. The final recording session of the experiment, session 5 of Subject 8 could not be

conducted due to a flood that destroyed a major portion of the experimental setup. All data from

session 5 of each subject was omitted from further analysis and the rest of the study was conducted

using a 5x4 matrix of subjects and sessions.

All measurements were made on the right ear of each subject (and correspondingly, the right SCM

was the muscle used for EMG measurements). No inter-ear comparisons were conducted in this

study.
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We conducted a DPOAE screening test on both ears at the beginning and end of each session to

ensure there were no large auditory changes as a result of the acoustic stimulation.

At the start of each session, signals were recorded for brief (-20-30 second) periods without stimuli

being presented, under various control conditions: (i) without electrodes, (ii) with a 10 KQ dummy

load resistor across the leads, (iii) with electrodes attached to the subject, but no head turning, (iv)

with half, three-quarter, and maximum head turns, as well as (v) a single maximum-effort

contraction with no stimulus. We also made recordings with a portable signal generator across the

leads of the head-stage amplifier. The aim of collecting these reference signals was to help detect

and correct anomalies that might be discovered during off-line processing of the stimulus responses.

The main use of these initial recordings during the post processing was in estimating the noise level

on each channel, and measuring the DC offset in the measurements.

Each session consisted of 15 head-turning maneuvers (contractions) each lasting about 40 seconds,

corresponding to roughly 500 toneburst presentations at a fixed stimulus level. A set of 5

contractions was recorded at stimulus intensities of 90, 85, 80, 75 and 70 dB HL presented in

random order. This was repeated for two more sets to yield a total of 15 contractions. During the

first and third set of contractions, the subject was instructed to exert maximum voluntary effort, and

was given feedback to maintain the EMG at a correspondingly high level (> -1 mV rms, as

monitored on the clinical VEMP system). During the second set of contractions, the subject was

instructed to maintain "moderate" effort, and the rms EMG was maintained (again via verbal

feedback to the subject) in a broad range between 100 and 500 pV. Between contractions, the

subject was allowed to relax the neck and rest, but at no time during a session were the electrodes

disconnected and reattached.

Prior to each contraction, a new acquisition was started on the trace-by-trace recording system (see

Section 3.1.3). This streamed the sampled stimulus and response waveforms onto the disk as a single

array of numbers, stored as a file tagged by the subject, session and file number. A paper record of

each session associated each file number with the corresponding recording conditions (e.g. stimulus

intensity and set number).

After at least 500 traces have been acquired, the trace recording system was stopped, the clinical

VEMP system was halted, and the subject was then allowed to relax the contraction.

The data files from each session were saved and processed offline as described in Section 3.1.4.

3.1.2 Stimulus characteristics

The stimulus for each contraction consisted of a series of tonebursts of alternating polarity

presented at a rate of 13/sec. The 500 Hz tonebursts were generated using a Blackman window with

a two-cycle rise and fall and no plateau. The stimulus intensity delivered by the system was

calibrated prior to the study and not separately monitored during the recording.
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3.1.3 Signal output and acquisition

Figure 3.1 outlines the experimental setup used in this phase of the study. A major portion of the
equipment, including (i) the stimulus generation, amplification and delivery, (ii) the surface EMG
electrodes and amplifiers, and (iii) the computer and software controlling the generation of stimulus
and acquisition of the conventional VEMP average, was identical to the VEMP recording system
used in the clinic. This portion (the "clinical VEMP system") is shown in the figure as the grey
shaded box, and is largely described in [28]. The acquisition system developed specifically for this
study (the "trace recording system") tapped the analog stimulus and response signals just prior to
their conversion from and to digital signals in the clinical system. These signals were separately
digitized and stored using the system outlined in the blue shaded box, which includes a separate
computer running a LabView virtual instrument (VI) that controls the acquisition of the stimulus
and EMG signals.

The stimulus waveform was generated by the clinical VEMP system using National Instruments
6052-E boards. The analog signal at a fixed level was amplified by a Virtual Model 320 audiometer
power amplifier, whose gain and attenuation were set to yield the specified stimulus intensity. The
stimulus was delivered over Telephonics TDH-49 circumaural headphones.

The surface EMG of the SCM muscle was measured using adhesive surface electrodes (Ultratrace
Adult ECG electrodes). The skin surface was cleaned with alcohol, and gently abraded to improve
the electrical contact. A single-differential electrode montage was used: active electrode on the
muscle belly, reference electrode on the sternal insertion of the muscle and ground on the forehead
(Figure 3.1).

The electrode outputs were amplified by a Tucker-Davis Bioamp system (TDT-HS4 head stage &
TDT-DB4 amplifier). This analog signal was sent to both the clinical VEMP system and the trace
recording system.

In the trace recording system, the stimulus waveform as well as the amplified EMG were
simultaneously sampled at 25kHz and streamed to disk using two National Instruments NI6052-E
boards and the custom LabView VI. The two acquisition boards operated on a common sampling
clock to avoid offsets in the stimulus and EMG sampling instants. This clock was free-running, and
independent of the clock used in the clinical VEMP system. During the initial testing of the
acquisition system, two problems were discovered in the equipment: Board 1 had a noise floor that
was larger than the Board 2, while Board 2 had a fixed DC offset that was present in all
measurements regardless of the signal source. We continued the study using these boards, taking
care to use Board 1 only for the stimulus, where the amplitude of the signal made the noise
insignificant, and used Board 2 only for the EMG, where the fixed offset could be subtracted from
all the measured samples.

_ _ -II I_ -~ -f



When a trace recording VI was halted, a Matlab script converted the streamed samples into an array

of numbers and saved the array. Figure 3.2 shows a segment of such a recorded array (from

Subject1, Session3, Filel6), and illustrates details of the stimulus described in Section 3.1.2.

The gains on the signal pathway from the head-stage to the EMG array were fixed for all sessions.

To calibrate the scale for the recorded samples, we measured this gain by recording from a signal

generator whose output was monitored using an oscilloscope. The gain, which translated a 400V

input into a sampled value of 1.0, was found to be flat from 100Hz to 1kHz.

3.1.4 Signal processing

Each recording session produced a series of data files containing stimulus and EMG waveforms.

These files were processed off-line using a series of Matlab scripts, and all results reported in this

chapter are the product of this analysis.

The stimulus recording was parsed into individual stimuli by detecting the zero-crossing at the

center of the each toneburst. The identified stimulus positions were used to segment the EMG

recording (since the samples of the stimulus and EMG were acquired synchronously) into individual

traces each trace being roughly 70ms (approx. 1700 samples) long. Each contraction at a given

stimulus intensity and effort level yielded an array of about 500 EMG traces. The DC offset was

subtracted from the EMG signal prior to parsing it, making the signal zero-mean. The resulting 2-

dimensional array of EMG traces from each recording was saved into a file that identified the

subject number, session number, set number (of the two maximal and one moderate effort

contractions), and the stimulus intensity.

Figure 3.3 illustrates the result of a typical recording (for Subject2, Session1, Set1, 90dB stimulus).

The figure shows 5 EMG traces as well as the average waveform of all 622 traces in the recording.

Note the large difference in the amplitudes of individual EMG waveforms and the amplitude of the

average EMG.

3.2 Results

We now survey the results of our experiment. We have already seen, in Figure 3.3, that the EMG

traces average out to a waveform that is much smaller in amplitude than the individual traces. Since

the EMG is a zero-mean signal, this behavior is not surprising, and the average waveform could be

interpreted as the residual noise. However, repeated measurements of the average indicate that there

are systematic variations in the post-stimulus mean of the EMG. These variations constitute the

VEMP response, which we examine in Figure 3.4.
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3.2.1 Diversity of response waveforms

The average of the ensemble of traces from one recording at 90 dB stimulus level is shown for each
subject and session in Figure 3.4. We see that there is considerable inter-subject variation in the
morphology and the salient features (amplitude, peak latencies, etc.) of VEMP average, even though
it was obtained under the conditions most favorable to a robust response (viz., maximum stimulus
level and contraction effort). We also observe inter-session differences of different sizes - some

subjects (e.g. Subj. 2) have very repeatable average, whereas others (e.g. Subj. 6) show large inter-

session differences in all waveform features. Part of the difference between sessions could be due to

the inherent noise of the VEMP average. We are interested in the relationship of this noise to the

inter-session variability and to inter-subject differences in this variability.

We examine this question by looking at differences between averages of sub-ensembles of the EMG

in Figure 3.5. The two subjects chosen for the comparison are ones whose inter-session behavior

was seen to be different in Figure 3.4. A comparison between the two sides of Figure 3.5 suggests

that the subject with larger inter-session variability also shows larger intra-session variability.

However, the sub-averages from each session show consistent features that are different from other

sessions; i.e. the intra-session variability contributes to only a part of the observed inter-session

variability. In turn, the inter-session variability contributes to the difference in the VEMP waveform

seen between subjects.

A closer look at the intra-session variability (or noise) is offered in Figure 3.6, which shows the

VEMP average as well as a 95% confidence interval band. Again, we see large inter-subject

differences and systematic inter-session differences, both in mean response and in the size of the
noise component.

3.2.2 Growth of response with stimulus intensity

The clinical utility of VEMP lies in the growth of the response with stimulus intensity. Later in the
study, we examine the growth characteristic quantitatively. In Figure 3.7 we look qualitatively at the

VEMP response (averaged over all the traces of a single recording) for each of 5 stimulus intensities
between 70 and 90 dB HL for all subjects and sessions.

We found that with increasing stimulus intensity, the amplitude of the response waveform became

larger, and the response was more easily delineated from the noise in the EMG. We found that the

growth of the response was different for different subjects: Subject 2, for example had a detectable

response at 80 dB in all sessions, whereas Subject 7 appeared to have a response only to 85 and 90

dB stimuli. In all subjects, we saw different degrees of variation among sessions in the level

corresponding to response onset. Thus, even within a normal population, the relationship between

stimulus level and the response size was far from uniform, when the response metric was the

amplitude of the VEMP average waveform.
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3.2.3 Dependence of response on contraction effort

It is well known that the VEMP response amplitude is influenced by the voluntary contraction effort

[29]: the stronger the contraction, the larger the VEMP amplitude. We can examine how this

relationship holds across subjects and sessions by using a conventional metric of motor effort, the

root-mean-square (rms) level of the surface EMG. With each trace in an ensemble, we can associate

a value of the rms EMG, which is computed from the samples of the trace. This method includes

the VEMP response in each trace as well in the computation of rms EMG, but as we have seen in

Figure 3.3, the amplitude of the VEMP component is much smaller than the EMG traces, so the

error is negligible. We show the resulting rms EMG sequence superposed on the original EMG

signal in Figure 3.8 A. In Figure 3.8 B, we show the rms EMG sequence for two "maximum

contraction" and one "moderate contraction" recording.

In order to understand the influence of contraction effort on the VEMP, we collected all the traces

at a given stimulus intensity (here, we choose 90 dB) for a given subject and session, sorted the

traces according to their rms EMG level, and formed groups of traces with similar EMG values. By

comparing the VEMP averages from these groups, we could assess how the VEMP changed with

the average EMG level (and hence, presumably, the motor effort) corresponding to the signals in the

ensemble. Figure 3.9 and Figure 3.10 show such a comparison for all the sessions of two subjects,

#2 and #7. Here, we collected traces from all contractions, maximum effort as well as moderate

effort, sorted the EMGs, and divided the traces into 5 equal bins, and plotted the average of each

bin at a height equal to the mean rms EMG level of the traces in that bin.

From the data for Subject 2, we see that (i) the VEMP amplitude grew steadily with the EMG level,

(ii) this growth was similar for all the sessions, and (iii) the basic shape of the response was present

at all EMG bins, including the lowest effort bin. In contrast the, data for subject 7 show non-

uniform growth of the response with EMG level, large inter-session differences in the growth

behavior, and some bins that do not appear to have a VEMP waveform component. The bottom

panels of Figure 3.9 and Figure 3.10 show the dependence of peak-to-peak amplitude on EMG

level for these two subjects aggregated across sessions and sets.

If (i) the effort variability makes a significant contribution to the VEMP variability, and (ii) if the

VEMP average were linearly related to the effort, then normalizing the traces by a measure of the

effort should yield more stable (less variable) response waveforms. We have seen some evidence of

(ii) in Subject 2, but to assess (i), we needed to compare the variability of rms EMG over the

contraction, and the variability of the VEMP average.

3.2.4 Variability of contraction effort

Figure 3.11 shows the variation of rms EMG over a recording for different subjects and sessions.

(For clarity, we smooth each rms EMG sequence over a 1 second sliding window). We found that



from subject to subject, there are wide differences in the ability to maintain the rms EMG (and

therefore the motor effort) at a constant level. This is consistent with our observations in Figure 3.9

and 3.10 where we found that the range of rms EMG values for Subject 2 was much smaller (69 mV

to 183 mV), compared with the range for Subject 7 (50 mV to 287 mV). While a comparison of the

right and left panels of Figure 3.11 indicates that the subject with the smallest rms EMG variations

also has the smallest inter-session and intra-session variability of the VEMP, there is no evidence of

a broader rule relating EMG variability and VEMP variability across subjects.

3.2.5 Comparison of normalization schemes

Based on the known dependence of VEMP amplitude on contraction effort, many current VEMP

implementations employ a form of normalization using the rms value of the EMG from the

contracted muscle prior to the stimulus being applied. Since we have found that the dependence on

rms EMG exists among the traces of each recording, we could test a trace-by-trace normalization

scheme. Figure 3.12 shows a comparison of the normalization on different EMG bins within a

single subject/session, and Figure 3.13 compares the effect of normalization on inter-subject and

inter-session variability. We see that the inter-subject and inter-session differences are largely

unaffected by normalization. However, does normalization produce a significant improvement in the

within-session variability? We examined this question in Figure 3.14, and found little difference as a

result of the normalization. The key metric for comparison is the relative sizes of the VEMP

average and the confidence interval. Although the amplitudes of the average response have been

changed in some instances, the confidence interval, particularly for the problematic case of Subject 6

was not greatly reduced.

3.3 Discussion

The experimental results show us the extent of inter-subject differences in the VEMP waveform

within a clinically normal pool of subjects. We also see that the growth of the response with

stimulus level is different for different subjects. Where do these differences come from? Various

sources suggest themselves, and are summarized in the table below:
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Intrinsic noise that remains after averaging

Variation in muscle contraction effort.

Differences in head-turing aneuver between contractions

Differences in electrode placement, impedance, etc.

0)

As we see, intra-session variations contribute to inter-session and inter-subject differences, and inter-

session differences contribute to the differences in response between subjects.

We found that there were systematic differences between subjects that could not be attributed

simply to inter-session and intra-session sources; subjects differ not only in the VEMP waveform,
but also in how variable the waveform is from session to session and within sessions. When two

subjects were compared, the subject whose VEMP average waveform was less reliable (as measured

by comparing sub-averages of the traces) in one session, generally yielded less reliable waveforms on

other sessions; and for such a subject the VEMP average also showed larger differences from

session to session.

We identified one subject (#1) who had reliable VEMP averages, but whose VEMP waveforms

showed systematic differences between sessions. This was one instance where differences in

electrode placement may have been a significant factor. The subject, a 562in tall female, had the

shortest neck length in the subject pool, and could be expected to have a larger sensitivity to

variations in electrode placement. We also identified one instance (Subject 6, session 1), where all the

measured data, VEMP as well as rms EMG, appeared to be smaller in magnitude than in the other

sessions. This could have been due to a poor electrode contact.

In this chapter, we have tried to qualitatively assess the three classes of difference and in particular,
to assess the effects of variation in contraction effort. We can conceive of other tests to further

clarify the sources of variability; for example, one could systematically study the effect of changes in

the precise placement of electrodes, or one could survey a large diverse subject pool and examine

correlations between VEMP response and parameters of neck anatomy. However, this study

focused on the sources of intra-session variability, namely the intrinsic noise in each measurement,
and the variation in contraction effort.

M



3.3.1 A metric for response strength

In analyzing the results thus far, we have looked at the waveforms of the VEMP averages and sub-

averages. In the few instances where we needed a quantitative measure of response strength, the

metric we used was the peak-to-peak amplitude of the average. We now define a new metric which is

more suitable for cases where the measurement is dominated by noise; this metric will be used in the

rest of this study.

In the conventional VEMP test, the tester examines the running average of the waveforms to

determine whether a VEMP response is present, and to assess the stability of the response. This is

done, not simply on the basis of the peak-to-peak amplitude, but the entire pattern of activity over

the region of expected response. We have seen that, unlike the auditory brainstem response (where a

"canonical" normal response can be described), a robust VEMP response from two different

subjects or sessions can be very different in shape. The tester takes this into account by implicitly

using a template of the "expected" response shape and matching the running average against the

template. In a threshold determination, for example, the judgment of whether the response is

present or absent in the measurement is based on the similarity of the current average to the ones

obtained during the same session at greater stimulus intensities.

Following the same approach, we define the response level associated with a waveform as the inner

product (or equivalently, the correlation at lag 0) of the waveform with a prototype waveform. This

prototype waveform is the response recorded in the same subject and session at the largest stimulus

intensity under maximal voluntary contraction. In signal processing terms, this is seen to be the

output of a matched filter at a single time instant.

A great advantage of this metric is that it is linear, and therefore can be applied to individual traces,
to sub-averages of traces and entire ensembles very simply, without computing the waveform

averages at each stage. When the measured waveforms consist of a fixed signal component that is

identical in shape to the prototype but with unknown magnitude, and additive white Gaussian noise,
this metric gives the optimum estimate of the signal magnitude. When the noise is not additive, for

example, if the measurements consist of a fixed signal component with variable delay (i.e. timing

jitter) from trace to trace, this metric may underestimate the size of the signal.

3.3.2 Limitations of normalization

We have seen earlier that trace-by-trace normalization by rms EMG does not greatly improve the

inter-session or intra-session variability despite the known dependence of the signal level on

contraction effort. We will use the response level metric to understand why this happens.

The top panel of Figure 3.15 shows a scatter-plot of the response level of each trace with the EMG

level of the trace. As the error bars show, the mean response level increases with EMG level, as
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expected from our observations and from prior studies of the VEMP. In light of this figure, the

argument in favor of normalization can be stated as follows: (i) The conventional VEMP average

combines the responses from traces with different EMG levels. (ii) Traces in different EMG ranges

have different means. (iii) The set of responses that is being averaged is thus drawn from a mixture

of probability distributions (iv) The standard error of the mean of this mixture is larger than if the

responses were drawn from a single distribution (v) By normalizing the traces with the EMG level,

we can get the distributions to line up with the same mean and the resulting average will be less

variable. This is illustrated in the bottom panel of the figure, where the response means for the

normalized data are seen to be similar.

We also see that the variance of the response changes with EMG level. This is not necessarily a bad

thing: if the mean and variance co-vary, then the normalized data will have the same variance and

mean regardless of the EMG level, and a simple average is the best estimate of the response level.

The reason normalization does little to improve the reliability of the average response is that the

mean response level is dwarfed by the variance in the responses. In the limit of very large numbers

of traces, the standard error of the mean may be small enough that the improvement due to

normalization becomes apparent, but in the ensemble sizes being considered, this improvement is

small. In the particular case of the subject and session shown in Figure 3.15, even if we use all 1500

traces from the three contractions, the standard error of the mean is 5.2% of the mean before

normalization, and is reduced to 4.8% of the mean after normalization.



3.4 Figures
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Figure 3.1 Recording system used in this study including the clinical VEMP setup (grey box) and the added trace-by-trace recording system (blue box).
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Figure 3.2 Example of stimulus and EMG signals recorded by the trace recording system

This figure on left shows an 18-second segment of the two signals recorded by the trace recording system at the start of a recording. A
detail of the signals illustrates the periodic nature of the stimulus waveform, and the low-pass character of the EMG signal. A closer
inspection of two adjacent tone-bursts reveals the stimulus details (2 cycles on, no plateau, 2 cycles off, alternating polarity).
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Figure 3.3 Five individual EMG traces (red) and the VEMP average (black) of 620 traces

This figure shows the first 5 traces of the EMG record for Subject 2, Session 1, Set1

(maximum contraction), at a 90dB stimulus level. The red traces do not show any obvious

common stimulus-locked. In contrast, the bottom trace (black) shows the average of all 620

traces in the recording. Note that the amplitude of the average response is much smaller

compared with the size of individual traces. The x- axis refers to post-stimulus time in ms.
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Figure 3.4 Comparison of VEMP averages across subjects and sessions

Each curve shows the average of all EMG traces from one maximum-effort recording (Set 1) at a 90 dB stimulus intensity. The figure
illustrates the diversity of VEMP responses from subject to subject as well as the inter-session variability of each subject. The grey shaded
region from 15 to 35 ms post-stimulus time is the range of the response typically reported in VEMP literature.
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Figure 3.5 Comparison of 100-trace sub-averages for 2 subjects

This figure examines intra-session variability by computing averages of groups of 100 traces within ensembles recorded at a 90

level for two subjects with different degrees of inter-session variability.
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Figure 3.6 Comparison of the mean and error in mean across sessions: Subject 2 and Subject 6

This figure demonstrates the intra- and inter-session variability for the two subjects seen in

Figure 3.5. Each solid line is the average of all traces in the ensemble (90dB stimulus); the

shaded area is the 95% confidence interval in the estimated mean waveform. We see that

the subject with larger inter-session variability also has noisier data. The amount of noise is

also not constant across sessions. The standard error band also helps identify the regions of

the waveform that constitute a reliable stimulus-evoked response.
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Figure 3.7 VEMP averages as a function of stimulus intensity
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Figure 3.8 Raw EMG and the rms EMG over one contraction

A: The raw EMG signal over the course of one recording (40 s), along with the rms EMG
of the sequence of traces. B: The trace rms EMG for two "maximum effort" and one
"moderate effort" contraction, for the same subject and session. (Note: The scale for the



ordinate in the top panel is the instrument voltage: In order to convert to actual signal level

in mV as used in the bottom panel, the values should be multiplied by 0.4)
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Figure 3.9 Variation of VEMP averages with the rms EMG level of the ensemble (Subject 2)

The top panel shows VEMP averages from 5 ensembles of traces each with a different

average value of the rms EMG level (shown in red). The position of each curve indicates

the EMG level of the ensemble. The bottom panel summarizes the data showing the peak-

to-peak value of each curve as a function of rms EMG (The red symbols are the "moderate

effort" contractions, while the rest correspond to "maximum effort".
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Figure 3.10 Variation of VEMP averages with the rms EMG level of the ensemble (Subject 7)

This is the same data as the previous figure, but for Subject 7.
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Figure 3.11 Relationship between rms EMG variability and VEMP variability for different subjects

The left panel shows the rms EMG as a function of time into the contraction for each of 8 recordings at 90dB stimulus intensity for each

subject. The right panel shows the VEMP averages produced by these recordings.
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Figure 3.12 VEMP averages for different EMG bins: comparison of normalization

The -1500 traces from a single session of Subject 7 recorded at 90 dB are divided into 10
bins by the rms EMG level. We compute the average for each bin, and obtain the curves on
the left, illustrating the growth of the response with rms EMG. If each of the three
recordings is scaled by the rms value of a 100ms segment of the EMG prior to the stimulus
being applied (conventional normalization), we obtain the middle column. Note that the
units are no longer mV, since normalization makes the data dimensionless. If we normalize
each trace by its rms value, and then compute the average in each bin, we obtain the curves
on the right (trace-by-trace normalization).
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Figure 3.13 Effect of normalization on inter-subject and intra-session variability.

We get slightly different VEMP averages when we apply conventional and trace-by-trace
normalization schemes. The averages for all subjects and sessions are compared with and
without normalization. The effect of the normalization on inter-session and inter-subject
variability is seen to be negligible.
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Figure 3.14 Effect of normalization on the confidence intervals of VEMP average (Cf. Figure 3.6)
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Figure 3.15 Distribution of response levels with rms EMG, and effect of normalization

The top panel shows a scatter plot of the response level in each trace as a function of the

rms EMG level. The solid line shows the mean and variance of the response level in 5 bins

of traces with increasing EMG level. The non-zero mean of the distribution indicates the
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presence of a VEMP response. The difference among the mean values of different bins
contributes to the dispersion of the response level in the ensemble average due to variation
in contraction effort. Note the increase in variance along with the increase in the mean
response level as the EMG level increases.

The bottom panel shows the effect of normalization on the response level in each trace.
The mean of the responses no longer depends on the EMG level of the trace, but the
dispersion is larger in every bin.
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Chapter 4. A Computational Model of VEMP

No more fiction for us: we calculate; but that we may calculate, we had to make fiction first.
'Friedrich Nietzsche

The surface EMG, like most physiological signals, is a random process. By this we mean

that successive measurements, even when made under identical conditions, yield different

waveforms. Of course, ensuring identical conditions is not a trivial task, especially in

physiological systems; if differences in measurement conditions are not controlled or

compensated for, they can result in significant differences between measurements. As we

have seen, the conventional VEMP waveform is the result of averaging an ensemble of

surface EMG traces, and is therefore a random process subject to the same influences as

the EMG.

Thus, two VEMP averages computed using independent ensembles of traces measured

from members of a normal population will necessarily be different. While some of this

difference is due to the noise inherent in the signal, there are also contributions from

differences in contraction effort, electrode placement, physiological differences between

subjects and other inter-session and intra-session variables. This study is concerned with

teasing apart the relative contributions of different factors to the response variability, with

the goal of reliably measuring those factors that are clinically meaningful.

In Chapter 3, we examined this question phenomenologically by studying the variation in

the experimentally measured EMG and VEMP in response to changes in factors such as

stimulus intensity and contraction effort. We found that although the population we studied

consisted of clinically normal subjects, there were differences in the VEMP response

between subjects, between sessions, and between groups of measurements with different

rms EMG levels. We also found that these differences were greater than could be explained

by the randomness of individual measurements. While some of the factors (e.g. stimulus

intensity) could be controlled, other factors such as contraction effort could not be

completely controlled, measured or compensated for. Thus the goal of identifying the

clinically relevant sources of differences in VEMP response could not be achieved by

experiment alone.

In this chapter, we seek to better understand the experimental results by constructing a

physiologically based model of the muscle, the voluntary motor drive, the measurement

system, and the vestibular reflex pathway. We will use the computational implementation of

this model to generate ensembles of simulated EMG traces similar to the experimental data.

In the computational model, random and systematic sources of variability can be controlled

and manipulated, and the effects of these changes on the output statistics can be studied.
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We are interested in the sensitivity of the response statistics to different simulation

parameters, and the values of the parameters that yield responses similar to those recorded

experimentally.

It should be emphasized that we seek to compare the statistical properties, and not exact

waveforms, of the model outputs and experimental data. This comparison corresponds to

testing the following sequence of hypotheses:

(i) With the appropriate choice of physiologically realistic parameters, the model can

produce synthetic EMGs with the same single-point statistics (i.e. distribution) and

time-series statistics (e.g. autocorrelation) as the experimental surface EMG from a

given subject/session.

(ii) With the model parameters chosen as above, modulating the motor unit spike rate on

every trace results in a surface EMG ensemble which, when averaged, yields a

recognizable VEMP-like waveform.

(iii) The synthetic VEMP trace ensemble is statistically similar to the experimental VEMP

from the same subject/session. Specifically, VEMP subaverages computed from both

experimental and synthetic ensembles of traces show a similar degree of variability. At

the same time, if experimental data from two subjects/sessions are statistically

dissimilar, the corresponding synthetic data ensembles are also statistically dissimilar.

(iv) The synthetic VEMP amplitude and latency parameters show a dependence on stimulus

intensity and contraction effort that is similar to experimental data.

Some of terms used in stating the above hypotheses need to be clarified. For example, what

do we mean by statistical similariy and degree of variability especially for high-dimensional data

such as waveforms? These are questions we will address as the model is developed.

Nevertheless, we aim to show that we can model the VEMP generation process in each

subject/session so that it captures the broad similarities and differences in VEMP statistics

observed within the small pool of normal subjects.

If we are successful in affirming the above hypotheses, we can use the computational model

as a tool to find VEMP statistics that are most informative of the model's internal

parameters. These same statistics can then be applied to experimental data to make useful

inferences about physiological parameters of the subject from whom the data was obtained.

Similar studies comparing experimental data with muscle simulations have been performed

in order to model the statistical properties of the force produced by muscle [30-33], and the

statistics of the EMG [34-37] (reviewed in [38]). In terms of methodology, these studies

largely follow the approach described by Agarwal and Gottlieb [39], and in forming the

physiological model, they follow the approach established by Fuglevand et al., [40]. The

studies differ in the level of detail used to model the volume conductor and tissue geometry,
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the physiological details of the muscle fiber organization, and in the statistical parameters

that are measured; these specifics are determined by the role of the model in each study.

Our study follows a similar path for EMG simulation, but our goal is to understand, not the

EMG itself, but the statistics of a response resulting from the modulation of the motor

activity underlying the EMG.

4.1 Physiological foundations of the model

In Figure 4.1, we detail the motor and vestibular pathways, and show a conceptual model of

the signal interactions that underlie the VEMP reflex. This conceptual model forms the

basis for a computational model (illustrated in Figure 4.2) that is at the core of this portion

of the study.

In going from the conceptual model to the computational model, we introduce a number

of simplifying assumptions. These arise in part from gaps in our knowledge of

physiological details and partly in order to make the computation tractable. In a later

section, we discuss the basis of some of these assumptions, and the impact of these

assumptions on the model outputs.

The interaction between the vestibular and motor pathways occurs at the pool of motor

neurons of the spinal nucleus of the accessory nerve (CN XI) located in segments C1-C3

of the cervical spinal cord. As we have seen, each motor neuron defines a collection of

muscle fibers that it innervates (the motor unit) and each action potential on the motor

neuron results in the coordinated firing of action potentials that propagates along each

muscle fiber from the innervation zone in the belly of the muscle towards the tendons

where the muscle inserts into the bone.

When no acoustic stimulus is applied and the subject performs a constant-tension isometric

contraction of the muscle, and there are no fatigue effects, the motor neuron pool is driven

by a constant net motor drive which is the resultant of the cortico-spinal drive and various

muscle reflexes [41]. The recruitment model maps this net drive into the firing of each

motor neuron in the pool.

In response to the firing of an action potential on a spinal accessory motor neuron, the

simultaneous depolarization of the muscle fibers of the corresponding motor unit causes a

stereotyped pattern of surface potential changes that are recorded with the two electrodes

over the belly and tendon of the muscle. We will call this unit surface response the motor

unit action potential response (MUAPr) of that motor unit. The MUAPr is a single

waveform that reflects the combined effect of the time-course of the transmembrane

current of the muscle fibers, the properties of the motor unit (number of fibers, the mean



distance of the fibers from the electrode, the fiber diameter and conduction velocity) and

the measurement system (electrode geometry, electrode position and amplifier bandwidth).

With the details of the action potential shape included within the MUAPr, the spiking

activity of each motor neuron can be represented simply as a sequence of impulses (Dirac

delta functions) at delays corresponding to the position of each motor unit spike [42]. The

contribution to the surface EMG from a given motor unit is therefore the convolution of

the MUAPr with the spike sequence of the motor neuron, and the surface EMG is the

summed contribution from all the units. Equivalently, the surface EMG can be treated as

the summed output of a set of filters driven by impulse trains, where the impulse response

of each filter is the MUAPr of a particular motor unit.

As we have seen in the Background sections, when an acoustic stimulus is applied, part of

the energy of the stimulus couples into the vestibular system (the saccule in particular), and

elicits a burst of activity on the afferent nerve fibers that project on the vestibular nucleus

[10]. This in turn activates reflex pathways that descend along the vestibulospinal tracts to

form inhibitory projections on the motor neurons of the accessory nerve ipsilateral to the

stimulated ear. As a result, if we examine the activity of a motor unit in a tonically

contracted SCM muscle, each punctate stimulus applied at the ear is followed by a brief

period of inhibition of the spiking activity of the unit. The time-course of this inhibition is

determined by the mechanics of the vestibular periphery and the fidelity of neural encoding

on the afferent and the descending pathways. The effect of inhibition on the motor unit

spike sequences, and the resulting changes in surface response are determined by the

neurophysiology of the motor neuron, and the MUAPr of the motor unit.

Our design of the computational model uses the following assumptions which are based, in

part on current understanding of the physiology, and partly on considerations of model

simplicity:

i. We assume that the inhibitory input seen by a motor unit has an invariant

deterministic waveform, i.e., that the neural encoding of the vestibular response

can be treated as noise-free relative to the other sources of noise in the system.

ii. We will assume that the inhibitory signal is only sensitive to the envelope of the

stimulus. Measurements by Murofushi and Curthoys [43] of single vestibular

afferent units in response to rarefaction and condensation click stimuli find two

populations of units based upon the type of stimulus that evokes the earliest

response. This was consistent with the findings of McCue and Guinan [10] on the

phase locking of acoustic-responsive saccular units to tone-burst stimuli. It is not

clear how these different populations of afferent units converge in the vestibular

nuclei to evoke activity on the descending pathways: none of the studies that

examined acoustic responses in the spinal accessory motor neurons or in SCM
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motor units appear to have examined the dependence of these responses on
stimulus polarity.

As we have described earlier, our experimental data are gathered using tone-burst

stimuli with alternating polarity. A preliminary examination of the waveforms

resulting from averaging VEMP responses tone-bursts of either polarity revealed no

systematic differences between the two. Although the evidence is not conclusive, we

will assume that the inhibitory signal from the vestibulocollic reflex is derived from

both afferent populations, and does not show a preference for either polarity, and

does not phase lock at the stimulus frequencies we use.

iii. We also assume that the processes that transform the stimulus envelope into the

inhibitory signal are linear. Note that this does not refer to the nonlinearity involved

in the extracting the envelope, but the neural coding and transformations that occur

in the afferent signals on the vestibular nerve, the networks in the vestibular nuclei

and the descending vestibulospinal and vestibulocollic pathways. This assumption is

not based on measured properties of these systems, but from considerations of

simplicity. All departures from linearity found in experimental data are ascribed to

processes in the vestibular periphery.

iv. The spiking activity of a motor neuron can be described using a rate parameter: this

is the parameter that changes as the motor drive to the muscle is varied. Depending

on the statistical model of the motor unit firing (which we will describe in section

4.2.3), there may be additional parameters required to completely describe the

spiking activity. The manner in which the spike statistics are changed following

inhibition depends on the motor neuron membrane properties. For simplicity, we

will assume that the effect of the inhibition on the spiking activity of a motor

neuron is to modulate the rate parameter as a deterministic function of post-

stimulus time.

v. The inhibitory modulation of the spike rate can be further idealized as a rectangular

waveform defined by an inhibition duration and inhibition depth. Combined with

the linearity assumption (iii), this means that changes in the stimulus intensity are

reflected as changes in the inhibition depth only, while the inhibition duration

remains unchanged. This assumption is central to the interpretation of both the

computational and analytical model results.

vi. The duration of the inhibition can be estimated from measurements of extracellular

compound potentials in SCM motor neurons measured in cats in response to

galvanic and click stimuli [26, 44] . More directly, Colebatch and Rothwell [27]

showed inhibition of SCM motor neurons in humans with click stimuli. The stimuli

used in our study are not clicks but tone bursts, and there are no corresponding

studies of inhibition duration for these stimuli. However, the above studies help
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specify a lower bound on the duration.
Additional clues can be found from studies of VEMP averages in response to
tonebursts with different rise/fall times and stimulus durations [45, 46].

vii. Since the muscle is modeled as a collection of motor units, each of which produces
a surface response (MUAPr), we need to determine how the amplitude and duration
of the MUAPr relate to motor unit properties, e.g. the number of fibers in the unit
and the mean fiber-to-electrode distance of the unit. This question has been
examined in a number of studies, usually by modeling the propagation of electrical
signals in a volume conductor[25, 36, 38, 47, 48]. Rather than a detailed description
of the MUAPr, we are interested in how the shape and the amplitude of the
MUAPr vary with the depth and size of the motor unit. Based on a survey of
modeling studies, and from the studies by Fuglevand et al. [49] and Monster and
Chan [50] , we have made the following assumptions:

* The amplitude of the MUAPr is directly proportional to the number of
fibers in the unit.

* The amplitude is inversely proportional to the mean distance of the motor
unit fibers to the electrodes

viii. All units evoke the same response waveform across the surface electrodes (i.e. the
MUAPr shape is the same). We accommodate some differences in the response
shape between subpopulations of units in the manner in which the response shape
prototype is constructed. By allowing the MUAPr prototype to be described as a
sum of three basis functions with different widths and amplitudes, we implicitly
permit sub-populations of motor units which evoke different surface responses.
However, individual motor units are not assigned to these populations and the
proportion of units in these populations does not change with motor drive. This
invariance of the unit response waveform is supported by empirical data from
studies such as Hughes and Colebatch [51], albeit in smaller muscles.

The above assumptions represent a compromise between highly detailed electrical models
of the muscle [25], and highly idealized models where all the units in the muscle are treated
as a single entity [52]. Based on these assumptions, we assign a single MUAPr prototype
waveform to all the motor units. Each unit is assigned an amplitude value based on the size
and depth of the unit. The MUAPr prototype waveform is specific to each subject and
session, under the assumption that it is strongly influenced by the electrode and tissue
geometry. We describe the process of designing this waveform in Section 4.3

The spiking activity of each motor unit is described in our model by a quasi-periodic spike
train, where the inter-spike interval (ISI) is a renewal process with a Gaussian distribution
about a fixed mean value. Negative ISI values are dropped, although given the low
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coefficient of variation, the frequency of such censoring is small. The mean inter-spike

interval is the inverse of the spike-rate assigned to the unit by the recruitment model. The

Gaussian ISI is a fairly common assumption in many analyses of motor unit spiking [53],

although other distributions, such as Weibull [54] and Gamma [55] distribution have been

also been proposed.

The standard deviation of the ISI distribution is varied along with the mean ISI, so that the

coefficient of variation is maintained at a constant value. We have chosen a coefficient of

variation of 0.2 (i.e. standard deviation = mean/5) based on experimental data from

Clamann [53]. While a majority of modeling studies have used a constant coefficient of

variation (e.g. [56]), others have used more complicated relationships between the mean and

standard deviations (e.g.[39]).

We assume that the surface EMG can be treated as the output of a linear filter driven by

white noise. This allows us to design the MUAPr waveform as the impulse response of a

filter whose spectral characteristics match the experimental data. We justify the whiteness

assumption by treating the motor unit ensemble as a single filter driven by a spiking process

that is the superposition of the activity of all the individual motor units. In Sections 4.2.3

we discuss the validity of this assumption and its implications.

4.2 Components of the computational model

The above assumptions allow us to transform the physiological model of Figure 4.1 to the

computational block diagram of Figure 4.2. The computational model is a set of Matlab

routines that are called in sequence and simulate individual blocks in the figure. The output

of the model is an ensemble of waveforms representing synthetic surface EMG or VEMP

traces recorded over a period of about 40 seconds. The inputs to the model are (i) the

motor drive over the course of the recording period, (ii) the depth (D) and duration (T) of

the inhibitory response to the acoustic stimulus, and (iii) the motor unit action potential

response (MUAPr) waveform.

The MUAPr parameter may be an idealized waveform derived from theoretical

considerations alone, or it could be specific to the subject and session we wish to model. In

the latter case, we use the statistics of experimentally recorded surface EMG traces (not

VEMPs) of the subject/session to compute the MUAPr. This process is described in

Section Figure 4.3 The experimental data are used to compute the statistics of the EMG

from which to design the MUAPr waveform for the specific subject and session. The

process of designing the waveform is described in Section 4.3.

In the following sections, we outline the properties of each component of the

computational model.
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4.2.1 Muscle model

The muscle is an array of 250 motor units. This number is estimated from the EMG-based

motor unit number estimates of human skeletal muscles[57, 58], and counts of spinal

accessory motor neurons [14]. The units differ from each other in their size (number of

muscle fibers in the unit), and the distance to the electrodes of the electrical center of the

unit.

The total number of fibers is derived from the muscle dimensions and the average cross-

sectional area of a muscle fiber. The data on the dimensions of SCM differ widely, probably

reflecting the anatomical differences in the population, as well as differences in

methodology. Based on sectional anatomy [59] and dissection studies[16], we estimated the

effective cross sectional area of the SCM at 3.7 cm 2. We also assume that the proximal

margin of the muscle lies 4 mm below the skin surface. The average fiber diameter is

assumed to be 100 [Lm, yielding a count of approximately 50,000 fibers in the muscle.

These fibers are distributed among the 250 motor units in a non-uniform manner. The

number of fibers in each motor unit (the unit's innervation ratio) is known to be

proportional to the twitch force produce by the unit [60]. It is also known that the twitch

forces of the motor unit pool are exponentially distributed [40], with the largest twitch force

approximately 100 times larger than the force from the smallest units [2, 40]. From these

two findings, we define an exponential distribution of 250 twitch values between 1 and 100,
and allocate the muscle fibers based on each unit's twitch force. Figure 4.3 shows the

resulting innervation ratio distribution.

With some exceptions, the motor units of most muscles are distributed randomly over the

cross-sectional area of the muscle [21]. The cross sectional area covered by the fibers of

each unit (the motor unit territory) depends on the number of fibers in the muscle and on

the number of other units that share a given area (the "interdigitation factor" [2, 61]). We

assume an interdigitation of 25 in computing the motor unit territory, and assume that large

units cover the entire thickness of the muscle. This allows us to compute the depth of the

electrical center of each unit, as shown in Figure 4.4.

The number of fibers and the mean distance to of each unit electrodes contribute to the

relative size of the surface potential generated by the unit. The surface response amplitude

is assumed to be proportional to the number of units and inversely proportional to the unit

depth [62]. In order to account for the unequal contributions from the proximal and distal

fibers within a unit, we apply a correction of 1/ 3 rd of the motor unit size to its depth. The

resulting distribution of response amplitudes is shown in Figure 4.5.

The size and depth of the motor unit specifies the relative amplitude of the motor unit

response. The absolute amplitude (in IiV) depends on the amplitude A of the surface
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response of a single action potential. We have no direct measurements of A , and our choice

of this parameter will determine the amplitude of the resulting surface EMG.

4.2.2 Recruitment model

The recruitment model translates the motor drive parameter into the firing rate of each

unit. The motor drive K is a number between 0 and 100, representing the range of

voluntary contraction effort, i.e., it corresponds to the percentage of the maximum

voluntary contraction (%MVC). At K = 0, the firing rates of all units are zero, and at

K = 70, all the units have been recruited.

Motor unit recruitment follows Henneman's size principle [21]. At the start of the

simulation, each unit is assigned a threshold motor drive and the slope of the relationship

between rate and the motor drive. The resulting pattern of motor unit firing rates at

different motor drives is shown in Figure 4.6.

4.2.3 Motor unit spiking model

A recruited motor unit fires in a quasi-periodic fashion, where the inter-spike interval (ISI)

is Gaussian distributed about a mean value determined by the firing rate assigned to the

unit. In Figure 4.7, we show the distribution of all the inter-spike intervals among all the

motor units over the course of a 200 ms EMG simulation.

The firing probability (or firing rate) of a unit at a given time is computed by simulating the

spike sequence of the unit over multiple independent trials and estimating the mean number

of spikes in a sequence of narrow time bins. This estimate is a random process, and can be

characterized by the mean rate at each time-bin and the correlations between the rates at

different bins.

When the time axis is defined as the time duration following a given motor unit spike, we

measure the post-spike firing probability (or a spike triggered average), which is shown in

Figure 4.8 for two units at two different values of motor drive. We see that the mean rate is

quasi periodic with a periodicity equal to the mean ISI of the unit. The periodicity gets

weaker with time, and disappears after roughly 5 cycles. The duration needed for the spike

rate to become uniform is dependent on the standard deviation of the ISI distribution; in

this simulation, the standard deviation is 1/ 5 th the mean ISI.

When the time axis is defined independently of the spiking activity, as is the case for a

stimulus-triggered average in our experimental data, the averaged rate becomes independent

of the post-stimulus time, so that the firing probability becomes uniform, as illustrated in

Figure 4.9. Despite the uniform rate, the correlations between the spike counts persist, and

result in shaping the spectra of the spiking process (Figure 4.10). The non-white nature of
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this process has important implications to the estimation of the motor unit surface
response in Section 4.3

The surface EMG measures the response to the combined activity of all the units in the
pool. These units fire independently of each other, and span a range of mean firing rates as
shown in Figure 4.6. As a result, the composite spiking process can be expected to be
decorrelated to an extent depending upon the variance in the ISI and the range of motor
unit spike rates; in the limiting case, where the units have very similar firing rates and their
firing is almost periodic, the composite spike process remains correlated over long intervals.
For the choice of parameters in our model, we show the power spectrum and
autocorrelation of the composite spike process at different motor drives in Figure 4.11 and
Figure 4.12. We see that the spike rate at stimulus presentation is significantly correlated
with the rate at preceding time instants over a 50-70 ms duration.

In the rest of the study, we do not consider the above behavior: we treat the spike rate as a
white process driving the volume conductor filter. Although the spectral shape of the spike
rate process has important consequences on the validity of the unit surface response
(MUAPr) calculated in Section 4.2.4, the actual waveform shape is not critical to our
conclusions about the statistics of the surface EMG and VEMP.

More important is the relationship between the variance and mean of the rate at a given
instant. We see in Figure 4.9, that the variance of the rate estimates is larger for the units
whose mean rate is higher. We verify this property by computing a number of trials of the
motor unit pool at different motor drives, thus simulating units over wide range of mean
firing rates. We compute the mean and variance of the spike counts over 1 ms bins, and
show the relationship in Figure 4.13. The ratio of variance to mean is close to 1 for most
motor units and over a wide range of mean firing rates, a property that is characteristic of a
Poisson process.

For each trace, the spiking model produces spike sequences for each of the active motor
units. The spike positions are encoded at a precision much greater than the sampling rate of
the experimental and simulated surface EMG signals, to avoid introducing artificial
correlations between spikes and spike trains.

4.2.4 Surface response model

The motor unit action potential response is the surface response generated by a single
motor unit action potential on the muscle. In our model it corresponds to the filter impulse

response h(t). Although in reality the waveform depends on the depth, size and other

characteristics of each motor unit, this model assumes that the same waveform can be used
to describe all the units, and that it is invariant with time and motor drive.
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There is no direct means of measuring the surface response to a single action potential

when the motor unit activity is driven by voluntary contraction effort. We then have two

choices: we can estimate h (t) from first principles, by modeling the volume conductor and

a moving current dipole. Alternatively, we could design h(t)based on experimental data

from the subject/session. With the modeling approach, we may lack sufficient detail to

capture differences in response due to differences in anatomy and electrode geometry

between subjects and sessions, whereas with the experiment-based approach, the problem

may be ill-posed and yield physiologically unrealistic solutions. Our solution, described in

detail in Section 4.3 is a compromise between these two approaches. We design h(t) as the

sum of component waveforms derived from physiological models, but tailored to the

characteristics of the surface EMG from individual subjects and sessions. In Figure 4.14, we

show h(t)waveforms used in the simulation which have been derived from the

autocorrelation of the experimental surface EMG signal from normal subjects.

It should be pointed out that the h(t) found here are not unique: a given autocorrelation

can arise from any of a number of transfer functions. Therefore, two subjects or sessions

whose EMGs have very similar spectra could have transfer functions that are significantly

different. We are not interested in the specific h(t) shapes, but in reflecting the diversity of

the transfer function waveforms that can arise from differences in EMG spectra. We search

for h (t) in a constrained solution space using an iterative algorithm starting from the same

initial state in each case. The resulting waveforms are different from subject to subject and

session to session, but the constraints inherent in the estimation procedure mean that these

differences are smaller than might exist in the actual h (t)'s.

For each motor unit, each surface EMG trace is computed as the summation of individual

spike responses I Aa,h(t - , ), where each h(t) is offset by a delay T, determined by the

position of each motor unit spike, and is scaled by the response amplitude a, of the unit.

The summation is taken over the (variable) number of spikes over a duration equal to the

length of the trace + the length of h(t). Note that the spike positions r, as well as the

h(t) waveform are computed at a time resolution that is 10 times the sampling rate of the

surface EMG. A set of 500 such simulated traces forms an ensemble, which corresponds to

experimental traces recorded over a 40 second contraction..

From the model components described thus far, we are able to simulate the surface EMG

produced by the muscle for a given motor drive, and with the response characteristics



specific to a particular subject and session. We now consider the modulation of motor unit

spike rates that results in the VEMP.

4.2.5 Inhibition model

The inhibition model describes the influence of the tone-burst stimulus on the spiking

activity of the motor neurons. The stimulus is assumed to result in a fixed "internal

response" that modulates the spike rate of the active motor units. This presumed internal

response signal represents the response of the saccule, the neural coding and

transformations that occur in the vestibular nuclei. We assume that each motor unit receives

inhibitory projections of equal strength.

The modulation function is characterized by a duration T, which is fixed at 6ms, and an

inhibition depth D that takes values between 0 and 1. Once the spike positions for a

particular motor unit are determined based on the spike's firing rate, the inhibition model

deletes the spikes that fall within the interval T with a probability of deletion determined by

the inhibition depth D. The thinned spike sequence is then passed to the surface response

model to generate the motor unit's contribution to the surface EMG trace.

The inhibition depth is thus a measure of the size of the internal response to the stimulus.

It reflects the stimulus intensity, as well as physiological characteristics of the peripheral

vestibular system being modeled. We therefore expect that the relationship between the

stimulus intensity and the inhibition depth is a key feature that is informative of the

physiological state of the vestibular system. The primary use of the model is therefore to

investigate ways to estimate the inhibition depth from experimentally recorded data.

Our choice of the inhibition model is driven in part by a desire for simplicity and analytical

tractability: the effect of changes in stimulus intensity translates into simple scaling of the

modulation function. Since the duration and the waveform do not change, the VEMP

waveform recorded at maximum intensity can serve as a template for estimating the

response size at other stimulus levels. The value of the duration T is based on

measurements of inhibitory potentials [26] and of spike rate changes [27] following click

stimuli, and the fact that the tone-burst stimulus is 8 ms in duration with its energy

concentrated at the center of the pulse. Alternative approaches to estimating the actual

inhibition time-course with fewer rigid constraints are briefly discussed Chapter 6, but do

not form part of this study.
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4.2.6 Additive noise

The signal measured by the electrodes includes additive noise due to instrument sources as

well as the electrical activity of muscles and nerves unrelated to the SCM that is being

measured. This noise component is modeled in the simulation as zero-mean white Gaussian

noise that is low-passed to a bandwidth of 1250Hz with a 6 th order Butterworth filter. The

filter parameters are based on the noise signal recorded with no head turning and no

acoustic stimulus. The filter bandwidth and the amplitude of the noise signal are set so that

the spectrum of the simulated noise matches that of the experimental noise. We find that

even at small amounts of head-turning, the EMG from the muscle (presumably from the

SCM, since it is directly under the electrodes) quickly dominates the contribution of the

additive noise. Therefore, we do not attempt to match the noise generator parameters to

data from every subject and session, but use one set for all simulations.

4.2.7 Model Inputs/Outputs

The inputs to the model include the inhibition depth D, motor drive K and the MUAPr

waveform h (t) computed for the particular subject and session we wish to simulate. Each

run of the model yields a set of 500 synthetic EMG traces, corresponding to a recording

duration of approximately 38.5 seconds. Each trace is an array of 1723 samples

corresponding to the trace length of 77ms sampled at 25 kHz, the same rate as the

experimental recordings.

4.3 Fitting the model parameters

The three input parameters of the model are designed so that the statistical properties of

the output traces match those of the experimentally recorded trace ensemble. The motor

drive and the MUAPr waveform are designed to match the properties of the surface EMG

only, leaving one parameter, inhibition depth, which we can use to fit the properties of the

VEMP. If we are successful in simulating the VEMP properties, this would provide a validation for the

model as well as a means of estimating the inhibition depth, aproperty of the vestibular system that can not

directly be observed.

We cannot directly estimate the amplitude A of the single fiber surface response. This is a

scale factor that converts the simulated signal values into actual voltage measurements. The

amplitude of the output signal is affected by the scale factor A as well as the motor drive

K, and this ambiguity would be directly resolved if a parameter can be computed from the

model output that shows a different dependence on the motor drive than on the scale factor



A. We do not observe such a difference in the distribution of EMG samples between
scaling and the motor drive, so the ambiguity remains. For most clinical applications,
resolving this ambiguity is not important, since we are generally concerned with relative
changes in signal amplitude.

4.3.1 Estimating the MUAPr waveform

A central assumption of our parameter estimation method is that the experimental surface
EMG is the result of a white noise spiking process driving a linear filter with impulse

response h(t). We can therefore estimate h(t) for a particular subject/session from the

power spectrum or the autocorrelation of the experimental data. This estimation is difficult
because: (i) the waveform is a virtually infinite-dimensional parameter, and (ii) estimation of
the transfer function of the filter from the output spectrum is often an ill-posed problem,
especially when the filter has a low bandwidth and/or spectral nulls. We note that the
frequency response of the electrode montage and instrumentation has a null at DC, making

fh(t)dt=O.

We make the estimation problem more tractable by reducing the dimensionality of h(t). It

is now constrained to be a weighted sum of three "basis" functions, where each function is
a Gaussian pulse that is scaled along the time axis, scaled in amplitude, and shifted in

position. Estimating h(t) therefore reduces to choosing the amplitude, width and position

of the three pulses so that the autocorrelation of the summed waveform matches the
autocorrelation of the surface EMG. We fix the amplitude and position of one of the
pulses at nominal values of 1 and 0 respectively, leaving a total of 7 parameters to describe

h(t). In Figure 4.15, we see how these pulses are combined to form a single response

function.

The parameter values are computed using a simple iterative search algorithm, where the
goal is to match the autocorrelation function of the experimentally recorded surface EMG

signal from a given subject/session, subject to the constraint that the h(t) integrates to

zero.

* The autocorrelation function is computed from the ensemble of recorded traces. If
the EMG-only (i.e., stimulus-free) recordings are unavailable, data recorded at the

lowest stimulus intensity are used.

* An initial parameter set and the step size are selected, generally based on the

parameters previously computed for a different subject/session.
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* The h(t) is assembled using these parameters, and the autocorrelation of h(t) is

computed.

* The fitting error is defined as the sum of the squared difference between the data

autocorrelation and the autocorrelation of the model response. This difference is

weighted so that the autocorrelation at small lags (< 20ms) is more closely fit than

the large lag values.

* The fitting error is computed for each of 3 parameter vectors, where one single

element of the parameter vector is varied between the current estimate p , and

p (1 A) where A is the step size. The parameter vector is updated with the

element p that yields a lowest error. After sequentially optimizing each of the 7

parameters, we return to the first parameter and repeat the process, decreasing the

step-size at each iteration. In this way, we search for a local stable point of the error

surface in the 7-dimensional parameter space. We illustrate this process in Figure

4.16 where we evaluate h (t) for one ensemble: Subject 8/ Session 3.

We find that the algorithm converges rapidly in each case, and yields a response waveform

whose autocorrelation matches that of the data from the given subject/session.

There is no guarantee that the response computed above corresponds to a globally optimal

solution. Indeed, it is clear that the solution is not unique, since time-reversed and inverted

responses -h(t) and h(-t) yield the same autocorrelation function as h(t). This non-

optimality does not cause concern since we are interested in modeling mainly the statistical

behavior of the EMG and VEMP, not exact waveforms. The solution we find is viewed

simply as a plausible MUAPr that describes the volume conductor and only one of an infinite

number of similar solutions. In Figure 4.17, we show the results of the estimation process

for all subjects and sessions.

4.3.2 Estimating the motor drive

The motor drive parameter K controls the rate of the motor unit spiking process that

drives the linear filter described by h(t). An accurate simulation of the EMG incorporating

the effort variations requires an estimate of the motor drive for each trace of the ensemble.

Measures of contraction effort used in prior studies of muscle force and EMG include the

variance, the root-mean-square (rms) value and the mean absolute value (mav) of the

surface EMG [63]. We discuss the choice of measure in detail in Section 4.4.1.



Estimating the variance or the rms level of the signal requires averaging over a certain time

interval. A longer interval provides a more accurate estimate of the level (i.e., with a smaller

mean square error), but also assumes that the signal is stationary over the averaging interval.

One of the central problems of VEMP is the non-stationarity of the motor drive, and we

need to understand the time over which the motor drive may be considered stationary.

Our approach to estimating K thus uses two parameters established by examining the

synthetic EMG produced by the model at different values of motor drive:

* The relationship between the variance or rms value of the EMG and the motor

drive for different subjects/sessions

* The time interval over which the motor drive can be assumed to be stationary is

estimated by comparing the low-frequency components of the synthetic and the

experimental EMG.

These procedures are discussed in detail in Section 4.4; here we only note that these

observations allow us to estimate the level of the surface EMG, smooth it appropriately,
and translate this level into a motor drive value. We set the numerical scale for K by

assuming that the largest observed value of the EMG variance (filtered) corresponds to

K = 100 % of maximum voluntary contraction (%MVC).

4.4 Synthetic EMG: Properties

With the parameters determined as in Section 4.3, we can examine the model outputs and
compare the results with the experimental data. Figure 4.18 shows a qualitative comparison

of a selection of traces, and illustrates the similarity of signal characteristics. The following

sections examine the relationships between the simulation parameters and surface EMG

statistics in model outputs, in comparison with similar measures on experimental data.

4.4.1 The rms EMG is a measure of motor drive.

We have seen earlier (Figure 4.13) that for individual motor units, an increase in motor drive

translates into increases in the firing rate and in the variance of the spiking process. In our

model, the surface EMG is the output of a filter with a zero DC response, driven by the

spiking process which is assumed to be white and stationary.
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It is well known (e.g. [64]) that for a linear system driven by a stationary white input process

x (t) with mean p, and variance r'2, the mean and variance of the output x (t) are given

by

Piy =ux h (a) da and

2r = 2 h(a)12da respectively.

In case of the EMG, this means Ih(t)= 0, making the mean of the EMG is zero, and the

EMG variance is expected to be proportional to the variance of the spiking process,

(through Ilh(t) 2). The spike rate variance is equal to the mean spiking rate, which in turn

is proportional to the motor drive.

Examining the model outputs, we find that the simulated composite spiking activity of all

units exhibits this behavior (Figure 4.19, A and B). However, when we examine the behavior

of the synthetic EMG, (Figure 4.19, C and D), we find that the expected relationship does

not hold: the standard deviation, rather than the variance of the synthetic EMG, is seen to be

proportional to the spike rate variance. As a result, for the synthetic EMG produced by our

muscle model, the standard deviation or root mean square (rms) value is a better estimator

of the motor drive than the variance. This relationship is illustrated in Figure 4.20 for each

subject and session.

While this behavior is surprising for the output of a linear filter, the result is consistent with

a majority of EMG and muscle force modeling studies which use the rms EMG as a

measure of voluntary contraction effort. The use of rms EMG in these studies is based on

a multiplicative model of the EMG signal [23, 63] shown in Figure 4.21.

The reason for the difference between the expected relationship of input and output filter

statistics, and the relationship found in our computational model is not obvious. This

discrepancy has, however, been observed in an earlier study [65] which examined the mean-

to-standard deviation relationship of the spike rate for motor cortex neurons and motor

neurons. It was found that the mean and the variance of the firing rate were linearly related.

In contrast, measurements of muscle force found that the standard deviation was

proportional to the mean force, consistent with theoretical models of optimal motor

control [66]. The authors in [65] attributed this discrepancy to the orderly recruitment of

units under Henneman's size principle.

In this study, we will estimate the motor drive as a linear function of the rms EMG level.

This translation is done by assigning the largest measured value of the rms EMG (over all

the available ensembles from a particular subject/session) and to a motor drive of 95

%MVC. Assuming that a zero motor drive results in zero rms EMG (i.e., neglecting the
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additive noise), we find a single scale factor that, when multiplied by the measured EMG
level, gives the motor drive.

In the rest of this discussion we will use the term trace EMG level to refer to the rms value
of the EMG samples (synthetic or experimental) over the course of a single inter-stimulus
interval (trace). Thus an ensemble of consecutive traces corresponding to a single recording
or simulation trial will yield a sequence of trace EMG levels that reflect the contraction
effort or motor drive.

4.4.2 RMS EMG estimates are highly variable

The trace EMG level is a random variable. It has an intrinsic variability superposed over
variations due to changes in motor drive. Trace EMG levels from simulations at constant
motor drive will only display statistical variations. Therefore, by comparing these trace
EMGs with of trace EMGs from experimental data, we can isolate the component of the
variation that is due to actual changes in effort (Section 4.4.3), and use this component to
drive a new set of simulations that incorporate realistic changes in motor drive (Section

4.4.4).

The time-course of the synthetic trace EMG level (Figure 4.22 A) over a single simulation
run, and the distribution of these levels (Figure 4.22 B), indicate that a large proportion of
the trace-to-trace variability of the rms EMG is present even when the motor drive is held
constant. Changes in contraction effort can therefore account for only a small proportion
of the variability of the trace EMG level. The figure shows the experimental and simulated
EMG only for Subject 1/ Session 1, but the same behavior is found across subjects and
sessions.

4.4.3 Filtered RMS EMG estimates are a measure of effort

Since any changes in motor effort are expected to occur slowly relative to the trace duration,
we can smooth out the statistical variation of the measured trace EMG level in order to use
it as a measure of true variation in motor effort. To do this, we must first define the cutoff
frequency of the low-pass smoothing filter

The next set of figures (Figure 4.23) shows the low-frequency range of the spectra for the
measured trace EMGs superposed over the spectra of the trace EMGs of simulated traces.
The goal is to identify the frequency and the relative magnitude of the low-frequency

components that presumably reflect changes in contraction effort.

The spectrum of the trace EMG sequence is found to be specific to each subject: the
cutoff frequency is the same for all the sessions from a given subject. By filtering the
experimental trace EMG sequence with a low-pass filter with the subject's cutoff frequency,
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we can obtain smoothed estimates of the rms EMG, as shown in Figure 4.24. We treat this

filtered EMG signal as reflecting changes in motor drive. From the figure, we see that the

subjects differ widely in how stable the motor drive remains over the course of the

contraction: some subjects maintain the motor drive in a narrow range, but with rapid

changes within the range, whereas the motor drive of other subjects shows large, slow

excursions.

4.4.4 EMG simulation with variable motor drive

We now have the MUAP surface response h(t) for each subject and session, as well as an

estimate of the motor drive for each experimentally recorded trace. We should be able to

generate realistic EMG simulations corresponding to each ensemble of recorded traces.

In order to avoid the computational load running the entire simulation including the

recruitment model for each simulated trace, we pre-compute sets of synthetic EMGs for a

number of distinct motor drive values for each subject/session. When we wish to generate

an ensemble of EMG traces with variable drive to match that of an experimental recording,

we compute the rms EMG level of each trace, map it to a motor drive value, choose a

synthetic trace at random from the appropriate pre-computed set and assemble the

ensemble. The resulting rms EMG profile and its histogram are shown in Figure 4.25,

which shows the contrast with Figure 4.22.

4.4.5 Distribution of EMG samples

The distribution of single EMG samples (as opposed to the distribution of the trace EMG

levels discussed in the previous section) has been a topic of study in the EMG community,

particularly as it influences the design of optimal EMG processors (e.g. [67]). Different

studies have suggested different standard densities (e.g. Gaussian, Laplacian) to fit EMG

distribution, without a clear consensus on the reason for differing observations. Our

modeling results shed new light on this question by allowing a comparison between

synthetic and experimental EMG, but they also raise new questions with implications for

muscle physiology. This problem is peripheral to the VEMP question, so we only note here

that the non-Gaussian nature of the EMG distribution observed in our experimental data is

adequately explained by modeling the EMG with variable effort. This is illustrated in Figure

4.26.



4.4.6 Time-series statistics of EMG

Our simulations have used h (t) that are derived from the autocorrelation of experimental

data from each subject/session. We therefore expect that the time-series statistics of the
simulated EMG with constant as well as variable motor drive match the statistics of the
experimental data. We show this in Figure 4.27.

Figure 4.26 and Figure 4.27 support the first of the hypotheses stated at the start of the
chapter: "With the appropriate choice of physiologically realistic parameters, the model can
produce synthetic EMGs with the same single-point statistics (i.e. distribution) and time-
series statistics (e.g. autocorrelation) as the experimental surface EMG from a given

subject/session." In the next section, we examine simulations with spike inhibition, which
produces the VEMP response.

4.5 Synthetic VEMP: Properties

When the computational model is run with a non-zero value of inhibition depth, the
resulting synthetic EMG waveforms show a systematic shift in the mean value over the
post-stimulus interval. This modulation, which can be observed when the traces in the
ensemble are averaged, is the VEMP signal.

For our simplified conceptual model, each post stimulus EMG trace x(t) is the

convolution of the composite spiking process r (t) and the unit surface response (the

MUAPr).

x(t)= r(t)@ h(t)

The mean EMG is found by taking the expectation of x(t):

E(x(t))= E(r(t)) h(t)

The mean E (r (t)) of the spike process is the mean post-stimulus spike rate. In the absence

of a stimulus, the mean spike rate is constant, and [E(x(t))becomes proportional to

Ih(t), which is zero by design. When a stimulus is present, we model the mean spike rate

to follow a stereotyped timecourse r, (t) where the spike rate diminished by a fixed fraction

for 6 ms following the stimulus. The theoretical post-stimulus mean EMG expected from
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this model is then r, (t) 0 h(t). In the limit of an infinite number of traces, we expect the

VEMP average from our model to converge to this value.

Figure 4.28 shows the VEMP average resulting from the outputs of the model operated

with an inhibition depth of 0.12. At this stage, we do not have an estimate of the scaling

factor A required to produce synthetic EMG with a realistic amplitude. Therefore, we

calibrate the model outputs by comparing the amplitude of the VEMP with the amplitude

of the "noise" signal outside the expected range of post-stimulus response time. We choose

the inhibition depth such that the resulting VEMP average displays similar relative

amplitudes. We find that for Subject1, at least, an inhibition of only 12% of the spikes in

the motor unit pool is sufficient to produce a realistic VEMP response. We have thus

verified the second hypothesis: "With the model parameters chosen as above, modulating

the motor unit spike rate on every trace results in a surface EMG ensemble which, when

averaged, yields a recognizable VEMP waveform".

The informal method use used to pick the inhibition depth in Figure 4.28 illustrates an

important idea which is central to later analysis of the VEMP, namely that the response

strength can be quantified using the noise level as a metric. When the properties of the

underlying noise process are not known (as in experimental VEMP data), we rely on the

signal to noise ratio at the output as a measure of the size of the response. In a

conventional VEMP test, the signal to noise ratio is used implicitly by the tester when

attempting to detect a response at low signal levels, e.g. for threshold measurements.

Presence of a response is declared when the measured signal in the region of the "expected

response" exceeds the surrounding noise floor by a certain percentage.

In VEMP, the principal source of noise is the EMG from the muscle under test. As we have

seen in our study of EMG simulations (Section 4.4), estimates of this EMG noise level are

highly variable from trace to trace due to statistical variations as well as changes in motor

drive, making the VEMP amplitude estimation and the VEMP detection problem much

more challenging. In this study, we use a slightly different measure of signal to noise ratio,

based on the definitions of signal level and signal variability developed in Chapter 3. In

Section4.7, we apply this measure to the problem of estimating the internal response

amplitude (i.e. estimating the inhibition depth) as it varies with stimulus intensity.

Figure 4.29 shows the experimental and simulated VEMP waveforms for all subjects and

sessions. For reference, we also show the computed single spike responses (MUAPr) derived

from the EMG-only data for each subject and session. We see that the simulated VEMPs

are very similar across subjects and sessions. This is due to the similarity of the MUAPr

waveforms used in the simulation. Recall that the MUAPr was selected to match the

autocorrelation function of the EMG-only data. Since the autocorrelation function does

not retain the phase information, the MUAPr represents only one possible choice out of a
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large solution space; other equally valid waveforms can exist. Our particular choice of

MUAPr is a result of the iterative algorithm used to derive it, and the choice of initial

conditions on the algorithm. Since EMG data from each subject/session were processed in

a similar manner, the similarity of the time-series statistics of the EMG of different

subjects/session means that the algorithm converges to similar-looking MUAPr solutions.

Nevertheless, small differences in the spectral properties of the EMG are seen to produce

corresponding differences in the VEMP (see, for example, the differences in autocorrelation

and MUAPr between the sessions of Subject 6 in Figure 4.17).

In Figure 4.30, we examine a selection of the MUAPr waveforms and the synthetic VEMPs

from each subject. We also show the theoretical mean VEMP waveform; the departure of

the synthetic VEMP averages from this mean represents the residual effects of the random

fluctuations in the spike rate after averaging over 500 traces. We see that the size of this

noise amplitude is large relative to the size of the VEMP even under the controlled

conditions of the simulation.

4.5.1 Growth of simulated VEMP amplitude with inhibition depth

Figure 4.31 shows experimental VEMP responses at different stimulus intensities and

compares them with synthetic VEMPs at different values of the inhibition depth. This

figure allows a number of comparisons: between simulated VEMPs at different inhibition

depths, between recorded VEMPs at different stimulus levels, between VEMPs at different

sessions for the same subject, and between simulated and experimental VEMPs. A careful

examination shows several interesting features of the response:

(i) The MUAPr shape has a strong influence on the VEMP response especially for small

amounts of inhibition. For example, comparing the synthetic VEMP from Sessions 1 and 2

of Subject 1 at the smallest inhibition depth (40%o), we see that the responses are very

different even though the motor drive, the inhibition, and the muscle architecture are

identical in both instances.

(ii) The amplitude of the simulated VEMP appears to increase systematically with the

inhibition depth for all subjects/sessions, whereas the amplitude of the experimental

VEMP as a function of stimulus intensity is very different: in many instances (e.g. Subjects

7 and 8), we find that the VEMP amplitude is unchanged for all but the highest stimulus

intensity. This nonlinear relationship is not surprising - the stimulus is measured on a

logarithmic dB scale, and the transformation from the stimulus to the inhibitory signal on

the CN-XI motor neurons is likely nonlinear as well.

The key point of feature (ii) is that the relationship that we find between the inhibition

depth and the amplitude of the simulated VEMP could allow us to associate a putative

"inhibition depth" with the amplitude of an experimental VEMP average as well. We will
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then have associated an observed response feature with an un-observable, but

physiologically meaningful parameter. The strength and reliability of this association can be

assessed by processing sets of independent experimental measurements within and across

sessions, and measuring the dispersion of the estimated inhibition depth. Our assumption is

that each subject is physiologically identical across observations and sessions, and should

therefore have the same inhibition depth. Since the data are inherently random, we expect a

certain amount of dispersion in our inhibition depth estimates. The simulation results can

help establish the amount of this inherent variability and provide a metric to assess the

quality of the inhibition depth estimates. As we will see, the simulation results can also help

identify alternatives to the VEMP amplitude as the statistic from which to estimate the

inhibition depth.

It is not sufficient for the estimates of the presumed inhibition depth to be reliable; indeed,

a function that simply maps all the observations onto a single number would be found to be

perfectly reliable, and also completely meaningless. One test of whether the estimates are

meaningful is whether the estimates change with physiological changes in the vestibular

periphery. Such a study in humans would call for measurements across a number of clearly

identified pathological populations, and is outside the scope of this study, even if it were

possible. Instead, as we have discussed earlier, we use changes in stimulus intensity as a

surrogate for pathophysiological changes in vestibular sensitivity to a fixed stimulus. Our

question then becomes: are the inhibition depth estimates at different intensities statistically

different and do these estimates vary systematically (if nonlinearly) with stimulus intensity?

It is then very interesting to find out whether different subjects in our "normal" population

show the same pattern of inhibition depth variation with stimulus intensity. These are

questions we will address in the later sections of this chapter.

4.5.2 Growth of simulated VEMP amplitude with motor drive

The simulated VEMP average grows with the motor drive. As the drive increases, although

the probability of inhibition of a particular spike is unchanged, the number of inhibited

spikes increases, and the contribution at the surface of the "missing" spikes is larger. In

Figure 4.32 we show the growth of response with motor drive (for simulations) and with

stimulus intensity (for experimental data), for a selection of subjects and sessions. The

simulated trace ensemble consists of the same number of traces as the experimental

session, with variable motor drive as described in Section 4.4.4. The range of experimental

filtered rms EMG values is determined, and the motor drive parameters are chosen to map

95% MVC to the largest value, and 15% MVC to the smallest value of the filtered EMG.

In order to plot each panel of the figure, we compute the filtered rms EMG level of the

traces (synthetic or experimental), arrange the ensemble of traces in order of increasing

EMG level, then group the traces into 5 bins with equal numbers of traces. With each bin
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thus corresponding to a different range of EMG levels, we compute the average of the

traces in each bin. It is important to realize that the EMG ranges associated with each bin

are different in different panels, but are the same for the synthetic and experimental data in

each case.

4.5.3 VEMP amplitude growth (quantitative)

In this section, we will examine the VEMP amplitude growth quantitatively, and in later

sections, we will develop the inhibition depth estimator. But first we must contend with the

fact (seen in Figure 4.31 and Figure 4.32) that the response shape can vary widely from

subject to subject and session to session for simulation and experimental data. We address

this problem in our discussion of experimental data in Chapter 3. Here, we use the same

approach: the response waveform at maximum stimulus intensity (or inhibition depth) and

contraction strength (or motor drive) is used to create a prototype waveform for the

particular session/subject; and the inner product of a trace with this prototype is treated as

the response level of the trace. Thus each ensemble of simulated or recorded traces is

transformed into a set of scalar numbers whose statistics can be studied as a function of

different experimental parameters. We will refer to these scalars as the "response levels".

In Figure 4.33, we show the mean and the standard deviation of the response level of

simulated data as a function of inhibition depth at a fixed motor drive. The upper panels

show that for all subjects and sessions, the response level increases almost linearly with

inhibition depth. The slopes of this relationship vary considerably, indicating that

differences in MUAPr shape between subjects and sessions can influence the response

growth function, even though the underlying vestibular response is identical.

The standard deviation of the response level, shown in the bottom panel is seen to not

change with increase in stimulus intensity (and therefore is independent of changes in

response level). In this respect, the system's behavior is similar to an independent additive

noise model.

For both the mean level and the standard deviation, the units and the y-axis scale are

arbitrary, because the ambiguity in the unit spike response scale factor A has not been

resolved. As a result, we do not show a scale for the ordinate in these graphs and focus on

relative values of the statistics at each stimulus intensity.

This figure compactly characterizes the inter-subject, inter-session variability (top panel) and

the intra-session variability (bottom panel) of the stimulus growth function for simulations

with carefully controlled parameters. The intra-session variability, in particular, represents a

lower limit to the variability one can expect in response level measurements. In experimental
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data, where a larger number of external factors can influence the response, one would

expect a larger standard deviation of the response for the same mean response level.

One of these extraneous factors is the variation in motor drive. As we have seen, this factor

can be estimated in experimental data using the appropriately filtered rms EMG level,

allowing for the possibility of compensating for such variations in effort during clinical

measurements. This is a refinement of the trace-by-trace normalization approach described

in Chapter 3. In order to find out whether normalization is useful, we need to measure how

much increased variability is contributed by variations in effort. To do this, we first

systematically assess the effect of motor drive on simulated VEMPs in Figure 4.34. We

find, as expected, that the mean response level increases with motor drive, and the

relationship is close to linear. We also find that the response level becomes increasingly

variable as the motor drive increases, again in an almost linear fashion over most of the

motor drive values used.

The co-variation of response mean and standard deviation represents a significant

departure from an additive Gaussian model of the signal, and reiterates the need for a

different type of signal processing than traditional evoked potentials.

4.6 Time-varying EMG and Normalization

We have seen that we can simulate the effect of variable effort by changing the motor drive

in concert with variations of the rms EMG of the experimental signal. We can repeat the

process generate synthetic VEMP traces corresponding to an ensemble of experimental

VEMP traces. In order to compute the motor drive parameter, we need the filtered trace

EMG level with the cut-off frequency specific to the subject. We compute the trace EMG

level for the experimental VEMP data in the same manner as for the EMG data: by taking

the root mean square value of the samples of the trace. This method assumes that although

the stimulus causes a change in the statistics of the trace samples (including the rms value),

this change is negligible in comparison to the rms value of the background EMG.

A comparison of the response growth functions with fixed and variable motor drive is

shown in Figure 4.35. We see that although the motor drive variations break up the neat

linear growth of the response, the overall effect is minor, as emphasized by a comparison

of the standard deviations (Figure 4.36). This suggests that even if the filtered trace EMG

levels were to yield perfect information about the motor drive, normalizing each trace

would have a minimal impact on the variability of the resulting response.
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4.7 VEMP growth functions: model and experiment

We are now in a position to compare the amplitude growth function of the simulated
VEMP responses with that of the experimental data. Some of the properties of the
experimental VEMP have been described in Chapter 3.

Figure 4.38 is the experimental counterpart of Figure 4.37 which showed the signal mean
and standard deviation for simulated data. Note that while the simulated VEMP could be
studied as a function of the inhibition depth, in reality we do not have access to the putative
"inhibition depth" for the subject under study. The control variable is therefore the stimulus
intensity in dB, and the response growth curves (top panel) reflect not only the growth of
the size of the response with the amount of inhibition, but also the presumably nonlinear
relationship between stimulus level and the inhibition depth.

An examination of the growth curves in the top panel shows considerable differences
between subjects and sessions. Possible sources of these differences include:

(i) Intrinsic differences in vestibular response between subjects (we assume that for a
normal subject, the vestibular system remains stable across sessions, therefore this is
unlikely to contribute to the inter-session differences.

(ii) Differences in the muscle-to-electrode transfer function,

(iii) Differences in the extent and rate of changes in the motor drive over the recording

(iv) Statistical noise that remains after averaging.

The bottom panel quantifies the statistical noise in response level: it shows the standard
deviation in the response level across the ensemble of traces. We see that the standard
deviation is independent of the stimulus intensity, but like the mean level, it varies
considerably from session to session and from subject to subject. Taken together the mean
and standard deviation growth curves illustrate the large differences among subjects and
sessions in the size of the response, the variability of the responses and the response
growth characteristics.

As we have seen, the computational model can model influences of statistical noise and
motor drive variation, and to a limited extent, differences in transfer function. A
comparison of simulation with variable drive (Figure 4.37) and experimental data (Figure
4.38) shows that the size of the relative differences in response magnitude between sessions
and subjects is reflected in the simulation outputs as well.

To summarize:
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* We see from simulated VEMP response levels (Figure 4.33) that there exists an

almost linear relationship between the mean response level and the inhibition depth.

* This could allow us to translate an observed signal parameter (the mean response

level) into a physiologically meaningful model parameter (the inhibition depth).

Presumably, the inhibition depth at a given stimulus intensity is invariant from

session to session and within a session, for a given subject.

* However, there are several problems:

o The slope of the response level - inhibition depth curve changes from

session to session and subject to subject, so the mapping is not universal.

o Two ensembles recorded at different motor drive produce different mean

response levels, and therefore yield different inhibition depth estimates.

o An arbitrary and unknown scale factor A enters into the simulated traces

and into the response levels. This also enters into the slope of the response

level - inhibition depth relationship, and makes it difficult to translate

experimentally measured response level into inhibition depth.

* We thus see that the growth curve of the measured response levels (Figure 4.38)

simply reflects the variability of the experimental VEMP that we observed in

Chapter 3 (Figure 3.7).

* Can we do any better?



4.8 Growth function of inverse coefficient of variation

For an ensemble of synthetic VEMP traces, we have seen in Figure 4.33 that there is

considerable variation in the slope of the mean response level growth function across

sessions and subjects (the growth function, for simulated data, is with respect to inhibition

depth). In the same figure, we find that the growth curves with the larger slopes also appear

to have larger standard deviations in the response level. This suggests that for each

ensemble of traces, if the mean response level were scaled by the standard deviation, the

resulting parameter would show a consistent growth with inhibition depth. This

dimensionless parameter, which we call inverse coefficient of variation (iCOV), is explored

in Figure 4.39.

We find the iCOV, like the mean response level, grows linearly with inhibition depth (Figure

4.39 A), but its slope is more consistent across subjects and sessions than the mean

response level (Figure 4.39 B).

4.8.1 Growth of iCOV: simulation and experiment

We are naturally led to ask whether the improved consistency of iCOV over response level

holds in the case of experimental data as well. Before we make this comparison, we will

recapitulate the steps up to this point:

* We have been able to generate ensembles of synthetic traces using the unit surface

responses for each subject and session computed from the experimentally

determined autocorrelation function of the EMG alone.

* Each trace in the ensemble is computed using a fixed inhibition depth, which is a

measure of the magnitude of the internal vestibular response to the stimulus

* For each subject, we have calculated the cutoff frequency that separates statistical

noise and effort variation effects in the rms EMG. We use this cutoff to filter the

EMG and compute the motor drive profile for each experimental recording.

* Each trace in the synthetic ensemble is simulated using a motor drive value

computed from the filtered EMG of corresponding experimental data.

* Thus, for each ensemble of experimental traces, we can create an ensemble of

synthetic traces with a specified inhibition depth. All the simulated ensembles have

the same muscle model (i.e. identical numbers of motor units, with identically

distributed properties), and the same inhibition profile. The simulated ensembles

differ from each other in the MUAPr waveform shape (which is designed to be
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specific to the subject and session, but is not uniquely determined), and in the time-

course of the motor drive (which is derived from the rms trace EMG level of the

particular experimental recording).

* For a simulated or experimental ensemble, we can calculate the match-filter signal

amplitude for each trace, and obtain the sequence of scalar response levels. In

order to do this, we compute the inner product with a prototype response waveform

obtained at maximum stimulus intensity or maximum inhibition depth.

* We can compute the mean and standard deviation of the response levels for each

ensemble. The ratio of the mean to standard deviation is the dimensionless inverse

coefficient of variation (iCOV). Since the iCOV is dimensionless, we can

compare the experimental and simulated ensembles without concern for the

ambiguity due to the unit response size A.

Figure 4.40 A shows the growth function of the response level with stimulus level (for the

experimental data, top panel), and with inhibition depth (for simulation data, in the bottom

panel). The experimental data in each instance is recorded with "maximum" contraction

effort. After scaling these response level measurements by the standard deviations, we

obtain the iCOV plots in Figure 4.40 B.

For simulated data, we find, as before, that the linear relationship between the iCOV and

inhibition depth is much more consistent. For experimental data, the iCOV values and the

relationship between iCOV and stimulus intensity are seen to be dramatically different for

different subjects. It also appears that the inter-session differences are smaller for iCOV

than for the response level - this is a point we will explore further in the next section.

Finally, we see that the y-axis for both the plots in Figure 4.40 B represents the same

dimensionless quantity. Therefore, the relationship between iCOV and inhibition depth

found for the simulated data can be applied directly to the iCOV computed for

experimental data.

We are thus in a position to address the question posed at the end of Section 4.7: From

each experimental measurement, can we find a parameter that is better than the mean

response level in computing the (presumed) inhibition depth? The iCOV promises to be

such a parameter.

4.9 Estimating inhibition depth

In order to translate the iCOV into inhibition depth, we use the simulation results to relate

the two quantities. This is shown in Figure 4.41, where all the pairs of iCOV and D values



are indicated. A linear regression between the iCOV and inhibition depth yields a slope of

5.397 with a 95% confidence interval of +/- 0.1.

We can apply this relationship to experimental data, and associate an inhibition depth value

to each ensemble of recorded traces. It should be remembered that this value is a parameter

of the conceptual model of VEMP generation, and not an independently measurable

physiological entity; nevertheless, we will continue to refer to it in the context of

experimental measurements as the "inhibition depth", and omit the qualifiers "putative" or

"presumed".

Our procedure for processing an ensemble of traces therefore becomes:

* Compute the prototype response from the average of traces obtained at maximum

voluntary contraction and maximum stimulus intensity.

* For every trace in the current ensemble, compute the inner product with the

prototype. The ensemble of traces is now reduced to a sequence of real numbers.

* Find the ratio of the mean and standard deviation of each sequence. This is the

iCOV.

* Convert the iCOV into inhibition depth using the fixed slope (-5.4) of the straight-

line fit to the iCOV vs. inhibition depth found from the simulated data.

When we apply this procedure to ensembles of traces recorded at different stimulus

intensities, we obtain the growth characteristic of the inhibition depth.

Although our experimental pool consists of "normal" subjects, we are not guaranteed that

their growth characteristics are identical - there is little normative data on the variability of

saccular sensitivity, and its growth characteristic outside of VEMP literature. Therefore we

should not be surprised at inter-subject differences in the inhibition depth.

However, there is no evidence that a non-pathological vestibular system is particularly labile

over intervals of weeks or months. Therefore our experiment design, with reproducible

recording procedures and small inter-session intervals leads us to expect that the inhibition

depth remains stable across sessions. Along similar lines, we also expect that repeated

recordings within a session, and sub-ensembles of traces within a recording, correspond to

identical inhibition depths. Finally, we should expect that if the estimation procedure is

sufficiently robust, recordings made with different degrees of contraction effort produce

similar inhibition depth estimates.

These are properties that traditional measures of VEMP response magnitude such as peak-

to-peak amplitude do not possess: in many instances, the inter -session and intra-session

variability of these measures overwhelm the systematic differences that might exist between

different stimulus levels, and therefore obscure any differences in growth characteristic
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between subjects. We have also seen the dependence of the response size on contraction

effort variations.

We are now in a position to test whether our inhibition depth estimation procedure offers

an improvement over traditional response size estimates. Our metric for the comparison is

the ability of the measures to distinguish VEMP responses to different stimulus intensities.

We do this by measuring the mean and the dispersion (standard deviation) of the two

estimates on the body of experimental data we have obtained.

4.10 Inhibition depth growth characteristics

We measure the reproducibility of inhibition depth estimates for experimental data as

follows:

For each stimulus level, we have recorded ensembles of approximately 500 consecutive

traces. We break these into 3 sub-ensembles containing about 160 traces each.

We have performed three recordings at each stimulus intensity, two recordings with the

subject maintaining maximum contraction effort, and one at a "moderate" effort.

The above recordings are repeated over 4 independent sessions for each subject.

Therefore, for each subject we have 36 ensembles of 160 traces each, at every stimulus

intensity. As we have discussed earlier, these 36 ensembles are presumed to correspond to

the same underlying inhibition depth. We can therefore examine the spread of the 36

inhibition depth estimates.

For comparison, we choose a traditional response level estimate (in the form of the peak-

to-peak value within the region of expected response) for each of the 36 VEMP averages.

Figure 4.42 through Figure 4.46 show the VEMP average waveforms and a comparison of

the resulting growth characteristics using both measures'. Figure 4.47 shows the growth

curves from all subjects along with the 1-sd error bars.

4.11 Discussion

The goal in this study was to characterize the variability of the VEMP and find ways to

derive from conventional VEMP measurements a reliable and clinically meaningful measure

1 The peak-to-peak amplitude is computed as the difference between the largest and smallest values of the
VEMP average within the region of expected response (which is determined for each session/subject from
the response at maximum intensity). This introduces a positive bias in the p-p amplitude values, but
reduces their standard deviation.



of vestibular function. We approached this question by developing a model of the

physiological basis for the response. We expected that if a model could be found, whose

outputs reflected the observed features of experimental VEMP, one could perform tests on

the model that reveal details of the relationship between internal variables (which would be

unobservable in experiment) and output parameters. This is analogous to experiments using

animal models, where controlled manipulations, ordinarily not possible on human subjects,
are used to reveal relationships that can then be used in developing clinical tests.

4.11.1 Model limitations

Like all models, the computational model used in this study is necessarily simplified, and

captures only some of the features of the human subject. These simplifications are

necessary to make the model tractable, and the model design represents a compromise

between physiological realism and analytical simplicity.

Since the VEMP arises from the interaction of the motor and vestibular systems, models of

both systems are necessary in our study. An important feature of our model development

was the decoupling of the VEMP and EMG components. By designing the motor

component of the model to fit the EMG data, and the vestibular component to fit the

VEMP, the modeling was greatly simplified.

The degree of detail with which the motor and vestibular systems are modeled (i.e. the

number of free parameters assigned to each system) is different, and this design choice

reflects certain "informed biases" that should be borne in mind when examining the results.

One bias comes from the question being addressed: Since the vestibular system in each

subject was "normal", we assumed that their internal vestibular responses were identical
except for the one factor, the modulation depth. This was because the modulation depth

related fairly directly to VEMP amplitude, and the amplitude is clearly known to be different

between normal and pathological populations. Other mechanisms of vestibular change

(changes in duration, or in timing jitter) could give rise to changes in response amplitude,
but the relationship is much more complicated. It is possible that in pathological ears,
changes in VEMP arise from these types of changes, so one should be cautious about over-

interpreting the results of the inhibition depth estimate in pathological populations.

Another source of the bias is the obvious diversity of gross anatomy among subjects. It is

easy to conceive of differences in surface signals arising from differences in muscle size,
neck length and conventional models of the action potential propagation and volume

conduction support this notion. For this reason, a majority of free parameters were

assigned to modeling the muscle-electrode transfer function. Was this model adequate? The

relatively small diversity of the estimated MUAPrs in comparison with the diversity of the

VEMP responses (Figure 4.29) suggests that either our MUAP estimation was over-
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constrained, or that the differences arose from complicated patterns of vestibular

modulation. Further study of single MUAP surface responses or of surface responses to

electrical or magnetic neurostimulation could help clarify this question.

Thirdly, we assumed that the basic architecture of the muscle (the number of motor units,
the recruitment pattern) is the same between subjects. Thus, the parameters describing the

muscle are not free, and are not fitted to the EMG. There are sound biomechanical reasons

for assuming that muscles with identical function would have similar properties. However,
effects of gender, age and body type have not been considered when assigning the

parameter values. It is likely, however, that the VEMP is insensitive to changes in these

parameters, a property that could be verified in the future by a sensitivity analysis of the

computational model.

4.11.2 Key findings

Despite the limitations discussed above, the modeling study has a yielded a set of very

interesting results. We list them briefly:

We find that the components of the EMG arising from spiking noise of the motor units

can be separated from the components corresponding to variations in motor drive by

filtering the sequence of root-mean-square EMGs. The filter cutoff frequency is specific to

each subject, and the same for all sessions from the subject.

We find that the distribution of measured EMG values is non-Gaussian. Our simulations

show that at least part of the non-Gaussian nature can be attributed to variations in effort.

These variations that result in EMG amplitudes being distributed as a mixture of Gaussians.

We find that a muscle model based on well-established principles of rate-recruitment

(Henneman [68]) and motor unit (Clamann [53]) , produces composite spike trains whose

mean and variance are equal over a wide range of motor drives.

Despite the above finding, the motor drive used in the model is best estimated using the

square root of the EMG variance rather than the variance itself. This is consistent with the

convention of using the rms EMG as a measure of motor effort.

Synthetic VEMP waveforms with duration and amplitude comparable to experimentally

measured VEMPs can be created by inhibiting the motor unit spiking for a brief (6ms)

interval. A decrease in rate of less than 15% over this interval is sufficient to replicate the

amplitude of the VEMP at the maximum (90 dB HL) stimulus level used in the study.

The inner-product of the EMG trace and the subject-and-session-specific prototype

waveform is a robust measure of VEMP magnitude. It correlates well with conventional

measures such as peak-to-peak amplitude, and has smaller variance.



VEMP amplitude measured using this metric increases linearly with inhibition depth.

The slope of the relationship between VEMP amplitude and inhibition depth as well as the

variance of the VEMP amplitude estimates change from subject to subject and session to

session. The common muscle architecture, recruitment, spike statistics and modulation

waveform mean that the ony source for this variability is in the shape of the muscle-

electrode transfer function. We find that slope of the VEMP-inhibition depth relationship

varied within a subject by as much as 1.7-fold, and across the subject pool, by as much as

2.7-fold.

When normalized by the standard deviation of the VEMP amplitude estimates, the

simulated growth curves were much more uniform, and the slopes differed at most by a

factor of 1.3 across all subjects and sessions. This ratio, (which we termed iCOV) can

therefore be used to recover the inhibition depth from an ensemble of VEMP amplitude

measurements, regardless of subject and session.

We use the iCOV to estimate the inhibition depth of experimental data. We find that the

trial-trial variability (across sessions and within sessions) of the inhibition-depth estimates

for a given subject at a given stimulus intensity is much smaller than the peak-to-peak

amplitude variability over the same data.

The smaller variance of the depth estimates mean that the response amplitudes at different

stimulus levels differ from each other at a greater level of significance. We can compute

response growth curves for the inhibition depth with much tighter confidence intervals

than possible with peak-to-peak amplitude.

Within the small subject pool we were able to observe significant differences in the

response growth characteristics between subjects. This suggests that using iCOV, we may be

able learn more about the physiological mechanisms that translate stimuli into motor

modulation, and about normal and pathological variation in the properties of these

mechanisms.
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4.12 Figures
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Figure 4.1 Physiological model of VEMP

Labels on the right indicate the main neuroanatomical structures underlying the VEMP

reflex. Labels on the left show in schematic form some of the signals involved in generating

the VEMP response
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Fig. 4.2 (cont'd) Elements of the computational model of VEMP The motor drive and the vestibular response interact to form the surface EMG/VEMP output:

thick red lines show the signal pathways involved. Each block in the figure is a component of the simulation program that generates the ensemble of

synthetic EMG and VEMP traces. The shaded regions represent the physiological systems and processes involved in generating each surface EMG trace,

while boxes outside these regions are processes that determine the parameters controlling the EMG generation; these control pathways are shown by

dotted lines.
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Figure 4.3 Distribution of muscle fibers among the motor units.
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Figure 4.5 Distribution of relative sizes of the surface response from each motor unit

Based on the number of fibers in each unit and its effective depth, we can compute the size

of its surface response. Since these are relative sizes, the amplitude units are arbitrary.
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Figure 4.6 The recruitment of motor units with motor drive

This figure shows the firing rates across the motor unit pool at different amounts of motor

drive (MD). The recruitment order follows Henneman's size principle: The smallest units

(those with fewest fibers) are recruited first, followed by larger ones. Each unit is recruited

with an initial firing rate of 8 spikes/s, and the rate increases linearly with MID. More units

are progressively recruited (i.e. have a non-zero firing rate) as the motor drive increases, and

at a motor drive of 70 % maximum voluntary contraction (%/oMVC), all units are recruited.

For reference, the size of the surface response from each unit is shown in blue (the same

data as Figure 4.5), showing that in our simulation, the incremental contributions to the

surface EMG are recruited in a highly stereotyped order.
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Figure 4.7 Distribution of interspike intervals

The distribution of interspike intervals (ISIs) is shown for each unit in the motor unit pool

at motor drive values corresponding to two different contraction levels. Each point

represents the interval between consecutive spikes, and all the intervals for a given unit

constitute one row. The data are derived from one run of the model (for generating one

200ms EMG trace). Note that a lower MD results in a fewer recruited units, smaller rate

(larger ISI) of each unit, and larger ISI spread.
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Figure 4.8 Post-spike firing probability at different motor drives

For two motor units (#20 and #180), this figure illustrates the spike-timing dependence due

to the quasi-periodic nature of the motor unit firing. Each curve represents the firing

probability of a given motor unit at a fixed motor drive following the occurrence of a single

spike. The values are computed for ims bins using a spike-triggered average over 5000

independent trials. The periodicity in the spike probabilities corresponds to the mean rate

of each unit at different values of the motor drive.



0.08
I-I - -MD -- 55-MU 20 MU 180

- MD = 25 -

. 0.04
o

g 0.02

0
0 50 100 150 200

Post-stimulus time (I ms bins)

Figure 4.9 Post-stimulus firing probability vs. time

Here we look at the same data as Figure 4.8, but with the time measured from the start of
the stimulus. Since the stimulus occurs independently of the spike times, the firing
probability is not dependent on the time: we can see this in the absence of periodic patterns
in the spike rates. This is the situation we expect in experimental data. Note that the
variance in spike probability appears to increase as the mean firing rate increases.
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Figure 4.10 Power Spectrum of spike sequences

This figure shows the same data as Figure 4.9 in the frequency domain. We see that even

though the mean post-stimulus spike rate of each unit is a constant, the correlation

illustrated in Figure 4.8 is present in the spike sequences. Thus, although the spike rate is

a white process at higher frequencies, it can no longer be assumed to be white at

frequencies close to the mean spike rate.
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Figure 4.11 Power Spectra of the composite spiking of all 250 units

This figure shows the power spectrum of the rate sequence of the composite spiking

processes from all 250 units. The units have the range of mean ISI and the ISI variance
values specified by the recruitment model at motor drive MD=25 and 55 %MVC.
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Figure 4.12 Autocorrelation sequences of the composite spike-rate processes

We show the same data as in Figure 4.11, but in the time domain, to illustrate the time range

over which the spike counts are correlated. The correlation at lag 0 is set to zero for clarity.
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Figure 4.13 Variance vs. mean of the spike rate of different motor units

This figure shows a scatter plot of the variance and mean of the number of spikes in a 1
ms bin. The points are computed from all 250 motor units at motor drive values of 25, 45,
65 and 85 %MVC. We find a very close relationship, with the index of dispersion or Fano
factor = 1 for low rates, with a small decrease at higher rates.
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Figure 4.14 MUAPr waveforms computed for different subjects and sessions

Surface responses to single motor unit action potentials (MUAPr) waveforms are computed

based on the autocorrelation of the surface EMG signals recorded from each

subject/session. The figure shows the MUAPr for 4 sessions from each of 5 normal

subjects.
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Figure 4.15 Constructing the MUAPr waveform

This figure shows the three basis functions and the unit surface response h (t) constructed

by adding them. The parameter values in this example are:

Amplitude Width Delay

Basis 1 1 0.46 0

Basis 2 0.47 0.42 4.63 ms

Basis 3 -1.47 0.80 3.37 ms
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Figure 4.16 Iterative computation of the MUAPr response

This figure illustrates the iterative computation of the parameters that define the surface

response h(t). At each iteration, we compute the autocorrelation of the estimated h(t)

and measure the square error with respect to the autocorrelation of the experimental data.

The error is weighted more towards smaller lags as shown by the dotted line. During each

iteration, the error is minimized in 7 steps, one for each of the parameters being computed.

We show the autocorrelation of the response estimate at the first 3 steps of the iteration 1

and at the end of iteration 6 to illustrate the convergence of the algorithm. This

computation is shown for Subject 8 / Session 3.
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Figure 4.17 Autocorrelation functions and corresponding computed MUAPr responses, aH
subjects/sessions

For each subject and session, this figure shows the autocorrelation computed from the data

in the left column (blue), the unit surface response h (t) computed from the data

autocorrelation on the right column, and the autocorrelation of h (t) in red on the left

column.
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Figure 4.18 Experimental and simulated EMG traces

This figure shows a selection of 4 different experimental (blue) and simulated (red) EMG

traces from Subject 1/ Session 2. The experimental data was recorded at a 70dB stimulus

level in lieu of the stimulus-free condition, while the simulation was carried out at an

inhibition depth of 0 and a motor drive of 55%MVC. The scale bars show the relative

difference in the units between experiment and model data. When the amplitude scale

factor A is established, the two sets of data should be at the same scale. This figure is

chosen to visually illustrate the similarity between model and experiment.
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Figure 4.19 Relationships between spike statistics and EMG statistics

This sequence of scatter plots shows the relationships between statistics of simulated EMG
ensembles (50 traces each) computed for different subjects/sessions at motor drive values
between 15 and 95 %MVC. A: The mean spike rate from each ensemble is shown as a
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function of the motor drive. B: The variance of the spike rate as a function of the mean

spike rate (similar to Figure 4.13, but for the composite rate). C&D: Contrast the behavior

of EMG variance and rms EMG as a function of the spike rate variance (See Section 4.4.1

for details).
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Figure 4.20 RMS EMG level of
synthetic EMG as a function of motor
drive

This figure shows the results of

computing the rms EMG level at

different values of the motor drive

between 15 and 95 %MVC. Each

graph shows curves for all 4

sessions of a particular subject.

Note the slight differences in the y-

axis scaling. The rms EMG is seen

to be linearly related to the motor

drive, although the slope may be

different across sessions and

subjects.
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Figure 4.21 The "functional" EMG model [23, 63]: basis for rms EMG -based estimators

This figure (adapted from [63]), illustrates the signal model used in traditional motor control

studies. For this model, the motor drive may be estimated from the measurements by taking

the root mean square of the surface EMG.
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(Subjectl/ Sessionl)

110



Subject I
25

2 Cumt 1.0 Hz

05 S I 15 2 25 3

Subject 7

Subject 2

2- Cutof 0.3 Hz

0 0. I Is 25

Freqwcy (Hz)

Subject 6
25

0 Cucer 0.5 H

I02

0 as 1 .5 2 Z

Subject 8

Figure 4.23 Spectra of simulated and experimental RMS EMG (low frequency region)

This figure shows the power spectra of the rms EMG sequences of all the traces for each subject. The simulated data (red) has a flat

spectrum, while the experimental data (blue) shows additional components at frequencies below 1 Hz. These low-frequency components

correspond to changes in motor drive, and can be extracted by low-pass filtering the rms EMG with the appropriate cutoff frequency.
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Figure 4.24 Filtered EMG levels from experimental data

Each curve shows the rms EMG level over the course of a single 40-second contraction,
computed by smoothing the trace-to-trace EMGs illustrated in Figure 4.22 A. Each panel
contains all the data from a particular subject recorded at a 70 dB stimulus level. The red
traces show the "moderate" contraction ensemble, while the blue and cyan traces are
recorded at "maximum" contraction effort The cutoff frequency used to smooth the data
is different from subject to subject, and is determined from Figure 4.23.

The fltered EMG is used as a measure of the motor drive. Note the clear differences in
magnitude and variability characteristics of the motor drive across subjects.
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Figure 4.25 Time-course and distribution of EMG as in Figure 4.22 with variable motor drive.
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Figure 4.26 Distribution of EMG samples: Experimental + Simulated, with & without variation of
motor drive.

The blue line shows the histogram of EMG samples from Subjectl/Sessionl. The data are

shifted and scaled to give zero mean and unit standard deviation. Note the sharp peak near

zero. The dotted line shows the same data for simulated EMGs with constant motor drive.

The distribution is seen to be more Gaussian. The red line is the simulated EMG, with

motor drive varied from trace to trace as described in the text. Note the similarity of the

distribution near zero to the experimental data.
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Figure 4.27 Autocorrelation of the EMG: Experimental + Simulated, with & without variation of
motor drive

This figure compares the normalized autocorrelations of the experimental and simulated

data. It is complementary to the comparison of distributions shown in Figure 4.26: this

figure compares time-series statistics.
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Figure 4.28 Experimental and Simulated VEMPs for Subject 1

The right panels show the experimental VEMP waveforms computed for 4 different

recording sessions from Subject 1. Each trace represents the average of -500 traces

recorded under maximum voluntary contraction, with a stimulus level of 90dB HL. The left

panels show corresponding simulation data: the average of 500 traces generated with a

constant motor drive of 75 %/MVC at an inhibition depth of 0.12. The inhibition duration

is fixed at 6ms in all simulations.

We see that while the experimental and simulated waveforms are not identical, key

similarities and differences can be identified. We find similarities in the relative levels of the

VEMP response and the noise outside the 10-30ms response region. However, there is a

dramatic difference in the scale of the waveform: we have not evaluated the unit response

size parameter A required to establish a meaningful amplitude scale for the simulations.

Session-to-session differences in simulated VEMP can be attributed to statistical noise and

to differences in the unit response as illustrated in Figure 4.17
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Subi #
Figure 4.29 Computed surface
response, simulated VEMP and
experimental VEMP for all subjects

8 8 and sessions

This figure extends the

comparison of Figure 4.28 to all

subjects and sessions. The left

column shows the MUAPr

waveform derived from the

experimental EMG recorded

under low- or zero-stimulus

conditions. The middle column

shows the waveform of the

2 2 average of 500 simulated traces

at a motor drive of 55 %MVC

and an inhibition depth of 0.08.

The right column shows the

average of approximately 500
experimental traces recorded

I I I _with the subject exerting
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 maximum contraction effort, and

Post-spike time (ms) Post-stimulus time (ms) Post-stimulus time (ms) a 90dB stimulus intensity.nce
again, we can compare simulated and experimental VEMP waveforms, but now we look at similarities and differences between sessions and

subjects, and relate them to the tissue transfer functions represented by the MUAPrs.
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Figure 4.30 Selected MUAPr and corresponding synthetic VEMP waveforms

This figure shows a selection of the waveforms from Figure 4.29, illustrating the variety of

the MUAPr shapes computed from the autocorrelations of the EMGs from different

subjects/sessions (left), and the corresponding synthetic VEMP averages (right). The dotted

line is the "theoretical" response formed by convolving the MUAPr waveform and the spike

rate waveform consisting of the flat 6ms inhibition.

To illustrate the influence of the randomness inherent in the signal, we show (for Subject 8)

two different synthetic VEMP averages where the MUAPr shape was virtually identical.

Since all other simulation parameters are the same, the differences in VEMP arise from the

statistical fluctuations in the spike counts over the inhibition interval, with a very small

contribution from the additive noise.
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Figure 1.32 A, B (cont'd)
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Figure 1.32 C, D (cont'd)
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Figure 4.31 Growth of simulated and experimental VEMP with stimulus level

This figure consists of 5 panels (one for each subject studied), and in each panel, the left

figure shows the synthetic VEMP responses, while the right figure shows the experimental

VEMP. Each set of superimposed curves corresponds to a single session; and each curve in

the set is the response computed at a given inhibition depth (left figures), or recorded at a

given stimulus intensity (right figures). All simulations were done at a motor drive set to

75 % MVC, and all recordings were with the subject exerting maximum contraction effort.

Each curve represents the average of -500 traces.
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Figure 4.32 Growth of simulated and experimental VEMP with motor drive

For a selection of subjects and sessions, this figure shows sub-averages of simulated (left
panels) and recorded (right panels) traces that have been grouped based on the range of
filtered rms EMG associated with them. There are 5 such EMG ranges (bins) in each
ensemble of 500 traces, Bin 1 corresponding to the 100 lowest EMG levels and Bin 5 being
the top 100 EMG levels. The motor drive in the simulations is varied paripassu with changes
in the EMG level of the corresponding experimental traces. The stimulus level for the
recordings is 90dB, and the inhibition depth for simulations is 12%.
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Figure 4.33 Simulation: Variation of mean VEMP response and std. dev. of response with inhibition
depth

This figure shows the response growth with inhibition depth for the simulated VEMP (top

panel) as well as the dependence on inhibition depth of the response variability (bottom

panel). Each group of curves refers to a different subject, and each curve is the growth

characteristic for a single session. The x-axis is the inhibition depth, ranging from 0 (no

inhibition), to 0.16 (16%).

Each point is computed from an ensemble of 500 traces simulated at the specified

inhibition depth and a motor drive of 75 %MVC. We compute the inner product of each

trace in the ensemble with the simulated prototype response for the particular subject and

session. The mean of these 500 inner products yields a point on one of the curves in the

top panel, while the corresponding point in the bottom panel is the standard deviation of

these inner products.

In the top panel, the insets indicate the slope of a linear fit to the 5 points of the response

growth curve. The slopes for all 4 sessions are shown for each subject.

The units (nominally Volts, but with an undetermined scale factor) are the same for both

top and bottom panels.
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Figure 4.34 Simulation: Variation of mean VEMP response and std. dev. of the response with motor
drive

The mean and standard deviation of the synthetic VEMP response level are shown as in the

previous figure, but this time as a function of the motor drive.

As we expect from the qualitative observations in Figure 4.32, the signal level is seen to

increase with increased motor drive. The relationship is not as clearly linear as the stimulus

level dependence in the top panel of Figure 4.33, but is close to linear. We show the slopes

of a linear fit to the data, as before.

Unlike the stimulus level dependency, we find that the variability of the response increases

almost linearly with the motor drive over most of the simulated range of motor drives.
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Figure 4.35 Response level growth functions (simulated VEMP): Comparison of fixed and variable
motor drive.

This figure shows the response growth functions of simulated data for the case of fixed

motor drive (bottom panel) and motor drive that is varied in the same manner as the

experimental traces (top panel).
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Figure 4.36 Response level variability (simulated VEMP): Comparison of fixed and variable motor
drive.

Under fixed motor drive (bottom) and variable motor drive (top), we see similar values for

the standard deviation of the response level across the trace ensemble. The variable drive

does not appear to substantially increase the magnitude of the variability in response.
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Figure 4.37 Simulation with variable drive: Growth of mean and std. dev. of the response level with
inhibition depth

This figure shows the top panel of the previous two figures: it is the variable-motor-drive

version of Figure 4.33
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Figure 4.38 Experimental data: Variation of response mean and standard deviation with stimulus
level

This figure replicates the analysis shown in Figure 4.33 for experimental data. The
independent variable on the x-axis is the stimulus level instead of inhibition depth. The top
panel shows the growth in mean VEMP response level as the stimulus level is increased,
where the response level in each trace is computed as the inner product of the trace with a
prototype waveform derived from the maximum stimulus-maximum contraction recording
for the same subject/session. The bottom panel is the standard deviation of the response
level estimates over the ensemble of traces. For each subject, each curve represents a
different session. Each point on a curve represents one recording in each session, with the
subject maintaining "maximum" contraction effort.

As in the simulation data, the scale on the ordinate is arbitrary, but identical in both panels.
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Figure 439 Simulation: Growth of the mean response and the iCOV with inhibition depth

The thin curves on panel A show the growth of the response level with inhibition depth, as

in the top panel of Figure 4.33. The curves for different sessions of each subject have been

offset slightly for clarity; as a result, we do not show a y-axis scale, only a 0-1V scale bar..

The thick lines show the growth of the ratio of the mean to standard deviation (inverse

Coefficient Of Variation, or iCOV).

The two types of growth curves are seen to be approximately linear, and the slope of a

linear fit can be computed in each case. We see that there is a greater diversity of slopes for

the mean response characteristic than for the iCOV characteristic. In the panel B we show

the spread of slopes: The slopes of each type of characteristic are computed for all 4

sessions and all 5 subjects. Each slope is then scaled by the mean of all the slope, and the

results for each curve are shown as a function of the type of characteristic. The spread of

the slope values about the mean is seen to be significantly larger for the response level

curves than for the iCOV curves, Le., the iCOV slope appears to be more robust to

differences of subject and session.
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Figure 4.40 Growth of iCOV with stimulus

This figures shows a comparison of the

level and inhibition depth

growth curves of the response level (Fig. A) and
iCOV (Fig. B). The top panels in each figure show experimental data as a function of
stimulus intensity, while the bottom panels show simulation data as a function of inhibition
depth.
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Figure 4.41 Relationship between iCOV and inhibition depth

At each value of inhibition depth between 0 and 16%, the small dots show the 20 iCOV

values computed from the simulated trace ensembles (with variable motor drive) for each

subject and session. The larger circles show the mean iCOV at each inhibition depth, and

the line connecting these means shows the close to linear relationship between the

simulation parameter (inhibition depth D), and the measured parameter (iCOV). A linear

regression based on the pairs of iCOV and depth values is found to yield the relationship

iCOV
5.4
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Figure 4.42 Comparison of traditional and proposed response magnitude estimates: Subject 1

At each stimulus intensity, the left panel shows the 36 VEMP averages, across all sessions
for Subject 1. The right panels show growth curves of two response magnitude measures:

the absolute peak-to-peak amplitude (top) and the inhibition depth estimate computed in

Section 4.9 (bottom). The individual stars show the 36 values computed at each stimulus

intensity, and the error bars represent 1 standard deviation about the mean. The solid line
connects the mean values and represents the growth of the response magnitude with

stimulus intensity.
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Figure 4.43 Comparison of response magnitude estimates: Subject 2 (See caption for Figure 4.42)
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Figure 4.44 Comparison of response magnitude estimates: Subject 6 (See caption for Figure 4.42)
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Figure 4.45 Comparison of response magnitude estimates: Subject 7 (See caption for Figure 4.42)
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Figure 4.46 Comparison of response magnitude estimates: Subject 8 (See caption for Figure 4.42)
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Figure 4.47 Performance of peak-to-peak amplitude and inhibition depth measures of VEMP
response
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Chapter 5. Conclusions and future directions

The men of experiment are like the ant, they on!y collect and use; the reasoners resemble ipiders, who make

cobwebs out of their own substance. But the bee takes the middle course: it gathers its materialfrom the

flowers of the garden andfield, but transforms and digests it by a power of its own. Not unlike this is the

true business of philosophy; jr it neither relies solely or chiefly on the powers of the mind, nor does it take

the matter which it gathersfrom natural history and mechanical experiments and lay up in the memory

whole, as it finds it, but lays it up in the understanding altered and digested

- Francis Bacon

Although it is fairly well understood that the mechanisms underlying VEMP are

fundamentally different from those underlying neurogenic evoked potentials, the way

VEMPs are acquired, processed and interpreted in the clinic today does not take these

differences into account. The VEMP is largely studied from a phenomenological point of

view, examining the response for features that are conserved over the course of the

measurement and across the population, and looking for quantitative differences in these

features between normal and pathological populations. The difficulties with this approach

have been well documented: the response is extremely variable during a measurement, and

those features that show the greatest promise for distinguishing populations (viz. amplitude

and threshold) are also ones that show very large dispersion of values within each

population.

We have approached the question of processing VEMP from a very different direction in

this study. We try to understand what processes in the vestibular system give rise to the

VEMP, and hypothesize a quantitative model to relate these processes and the response

waveform. Using this model, we are able to ask the question: What is the best estimate of

the parameters of the vestibular processes given only the surface measurements in response

to each stimulus?

The experimental system we used to address this question was largely unchanged from the

conventional clinical VEMP setup, but differed in the crucial respect that we could record

the response to each stimulus presented. Thus, we were free to compute a variety of

statistics on the measurements, and were not constrained to the sample mean computed by

the waveform average in a conventional VEMP system..

Our approach to the estimation problem was to construct a computational analog of the

physiological model, to examine its outputs and to find statistics - largely by examination -

that correlated with parameters of the simulated vestibular processes. Thus, we did not

directly answer the question above that sought an optimal solution to the estimation

problem; we settled instead for a metric (the iCOV), that was simply better than the existing

measure of VEMP amplitude in terms of intra-subject variability. More important than the
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statistical performance of the metric, the use of a physiologically based model provides a

framework for thinking about the iCOV metric and possible refinements to this metric in a
systematic fashion. This allows us to define the several different directions for future

development of the model-based analysis of VEMP. We now describe some of the

proposed directions of future development

5.1 Future directions: signal processing

5.1.1 Analytical basis for iCOV

We discovered the relative independence of the iCOV metric from the subject- and session-

specific characteristics and from contraction effort by examining the outputs of the

computational model. We would like to understand the theoretical basis for this

independence. To this end, we are in the process of developing an analytical description of

a simplified version of the computational model, and obtaining an expression for the iCOV

ratio.

Our analytical model assumes that the composite spiking process of the motor unit pool is

characterized by a linear relationship between the mean rate and the variance of the spike

counts in a unit time window: a relationship that was observed in the model (Figure 4.13).

We define the units of the spike rate and the modulation depth so as to be unity at the

maximum effort and stimulus intensity. Using the response obtained under these conditions

as the template, we compute the inner product of this template with the traces at different

values of motor drive and inhibition depth. When we compute the expressions for the

mean and standard deviation of the inner product, we find that the iCOV reduces to a ratio

of quadratic forms which is independent of the motor drive. The analysis also suggests that

the iCOV could also become independent of the tissue transfer function under certain

conditions. We are currently investigating the properties of a transfer function that would

display this independence, and whether a physiologically realistic transfer function would

satisfy these properties.

5.1.2 Improved estimators of inhibition depth

As we have seen, the iCOV metric was obtained by examination of the outputs of the

computational model. The development of an analytical model, albeit a simplified one,
opens the possibility of computing estimators of the inhibition depth that are optimal with

respect to some statistical criterion, and thus take the modeling effort to its logical

conclusion. An advantage of an analytically derived estimator is that one can establish

confidence bounds on the estimate. However, such an estimator is only as good as the
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accuracy of the statistical model underlying it, and as the models get more detailed, the

estimation problem becomes more intractable.

5.1.3 Generalized forms of modulation

In developing the model of VEMP, we used an idealized representation of the internal

vestibular response in the form of a rectangular function with a fixed inhibition duration

and variable inhibition depth. In focusing on the inhibition depth as the quantity of interest,
we have implicitly assumed that every pathological change in the saccule results in a

reduction in the amplitude of the vestibular response. It is possible, however, that in some

circumstances, the principal effect of the change is in the duration of the response. A

generalization of the parameter estimation method to simultaneously estimate both

parameters could provide greater insight into the physiological processes in different

pathologies.

A further generalization could seek use the ensemble of response traces to estimate the

entire time-course of the spike rate modulation following the stimulus. This problem is of

potential interest in a variety of applications beyond VEMP, where the underlying process is

a point process, but only filtered observations are available, and we are interested in short

term changes in the rate of the point process. There have been relatively few studies of this

type of parameter estimation, but problems of this type arise in such diverse areas as

seismology, neurophysiology, water-flow modeling and optical detection.

5.2 Future directions: clinical applications

An immediate follow-up to the study described in this thesis is to apply the inhibition depth
estimate to a variety of identified vestibular pathologies. We propose to implement the

estimation algorithm in real time on a version of the clinical VEMP system and perform a
systematic clinical study on subjects recruited from the patient population at one or more
centers for diagnosis and treatment of vestibular disorders. We expect to learn the
normative ranges of the inhibition depth in each population, and study differences in

derived parameters such as thresholds, tuning curves, and level functions.

We also propose to explore the application of these methods to other situations where the

underlying mechanism is the variation in the rate of a point process, but only filtered

observations are available. Examples include assessment of neuromuscular tremor, control

of motor prostheses using surface signals, and in neurophysiology, for studying ion channel

dynamics from membrane potential measurements.
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