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Abstract

Human observers are able to rapidly and accurately categorize natural scenes, but the
representation mediating this feat is still unknown. Here we propose a framework of
rapid scene categorization that does not segment a scene into objects and instead uses a
vocabulary of global, ecological properties that describe spatial and functional aspects of
scene space (such as navigability or mean depth). In Chapter 1, four experiments explore
the human sensitivity to global properties for rapid scene categorization, as well as the
computational sufficiency of these properties for predicting scene categories. Chapter 2
explores the time course of scene understanding, finding that global properties can be
perceived with less image exposure than the computation of a scene's basic-level
category. Finally, in Chapter 3, I explore aftereffects to adaptation to global properties,
showing that repeated exposure to many global properties produces robust high-level
aftereffects, thus providing evidence for the neural coding of these properties. Altogether,
these results provide support for the hypothesis that rapid categorization of natural scenes
may not be mediated primarily though objects and parts, but also through global
properties of structure and affordance.
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Introduction

When we look around our environment, our gaze shifts rapidly, providing us with

about three images a second (Rayner, 1998). While many of these visual scenes may be

familiar, we have no trouble recognizing the ones that are completely novel, such as

entering a friend's house for the first time, or walking down the street in a new city.

Indeed, numerous laboratory studies have shown that human observers can glean a great

deal of information from a single fixation on a novel scene: understand its semantic topic

or category (e.g. "birthday party": Intraub, 1981; Potter, 1975); determine whether the

scene is natural or urban (Joubert, Rousselet, Fize & Fabre-Thorpe, 2007; determine the

presence of a large object (Thorpe, Fize & Marlot, 1996; Van Rullen & Thorpe, 2001); or

even describe how pleasant the scene is (Kaplan, 1992). However, we do not yet know

how such a rich representation is built so quickly by the visual system.

Two types of initial scene representations have been proposed by the literature.

The first asserts that a scene can be understood from the identification of the objects it

contains. One might do this by recognizing a particularly prominent or diagnostic object

such as a refrigerator in a kitchen scene (Friedman, 1979), or by recognizing a few

objects that are contextually related to the scene category and arranged in a spatially

stereotyped manner, such as a desk, chair and computer monitor in an office (Biederman,

Blickle, Teitelbaum, Klatsky, & Mezzanotte 1988). The second type of initial scene

representation is a global pathway in which features from the whole scene allow the

recognition of the place and subsequent recognition of the objects within the scene.

Global scene features might include the aggregate shape of an arrangement of smaller

; ( __^;_;lll:ji/_i:/l_~;~-~ ~iiiS~--^-^---~--r -i~ (li--ii---~j -~_~~II -~11_1-1_ 11_-1 1~-~_~1_1-;-__(ii-ii~;li~ --~ii----l__liX_^I__-)^ ~__~--__irliii-i-.-_-_ ii _i.l-.liii iliii~i~ --i~-_---:l~i--i:-i:--~^*l-:---l-i-i -_l
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elements or objects (Biederman, Mezzanotte & Rabinowitz, 1982; Navon, 1977) or may

be described more formally as low-level image features corresponding to spatially

localized second-order image statistics (Oliva & Torralba, 2001; Torralba & Oliva, 2002,

2003).

Currently, there is not enough evidence to accept either view. The object-first

view cannot explain how human observers can recognize scenes even under

impoverished viewing conditions such as low spatial resolution (e.g. Schyns & Oliva,

1994) or high clutter (Bravo & Farid, 2006). In such images, object identity information

is so degraded that it cannot be recovered locally, yet the scene may still be recognized.

Furthermore, research using change blindness paradigms have shown that observers are

relatively insensitive in detecting changes to local objects and regions in a scene

(Henderson & Hollingworth, 2003; Rensink, O'Reagan & Clark,, 1997; Simons, 2000),

suggesting that not all scene objects are represented at once.

While the object-first view cannot explain several key findings in scene

perception, the biggest problem for the global view is that it lacks a clear operational

definition. Seminal work on artificial stimuli has shown that visual perception tends to

proceed in a global-to-local manner (Navon, 1977), but for stimuli as complex as a

natural scene, it is not obvious what the global level might be. As Navon (1977) stated, "I

am afraid that clear... operational measures for globality will have to patiently await the

time that we have a better idea of how a scene is decomposed into perceptual units".

Likewise, other authors have noted the need for a grammar of global, scene-emergent

properties (Biederman, 1981; Chun, 2003).
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In this thesis, I show evidence for a global property representation model view

using a variety of behavioral experimental techniques. I propose a grammar of global

scene properties to describe the variation in natural landscape scene categories. Some of

these global scene properties describe the structure and spatial layout of an environment,

such as the degree of openness, the degree of perspective or the mean depth (or volume)

of the space (Oliva & Torralba, 2001). Other global scene properties reflect actions that

an agent could take in a given environment, such as how well one could navigate, or

whether one could be concealed in the environment, (e.g. affordances, Gibson, 1979).

Last, some global scene properties describe the constancy of the scene's surfaces, or how

fast they are changing in time. Transience is a global scene property depicting the rate at

which scene surface changes occur, or alternatively stated, the probability of surface

change from one glance to the next. On the other hand, temperature describes the

differences in visual appearance of a place during the changes of daytime and season,

ranging from the intense daytime heat of a desert, to a frigid winter mountain. Using this

approach, a forest scene would be described as a natural, enclosed place with high

potential for concealment and moderate temperature instead of as a collection of trees

and leaves.

These properties are studied here as a proof of concept to demonstrate that rapid

basic-level scene classification might be mediated through an initial representation that

contains global information of scene structure, constancy and function, and not

necessarily object information.

In Chapter 2, four experiments explore the human sensitivity to these global

properties for rapid scene categorization, as well as examine the computational

-~--rr~~----~~-; uu-cl-
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sufficiency of global properties for basic-level scene classification, comparing the results

of a global property based scene representation to a representation built from a scene's

objects. In this work, I show that human observers are sensitive to global property

information, and that similarity in a global-property space predicts the false alarms made

by observers in a rapid basic-level categorization task, whereas object-based models

failed to reproduce human errors.

Chapter 3 examines the time course of global property perception relative to the

perception of a scene's basic-level category. If the initial representation of a scene

contains substantial global property information that allows subsequent basic-level

categorization, then observers should require less image exposure to correctly classify a

scene's global property than to categorize it at the basic level. This prediction is tested

through examining the image presentation time necessary to achieve equal performance

across a variety of global property and basic-level category classifications. Results show

that although human observers are remarkably efficient in all classifications, global

property classifications could be performed with less image exposure than basic-level

category classifications.

Another prediction of a global-property representation model is that the visual

system should be continuously updated to structural and functional regularities that are

useful for scene recognition and therefore prone to adaptation along these dimensions.

Chapter 4 tests this prediction in four experiments probing the existence and nature of

global scene property aftereffects. Using a novel rapid serial visual presentation

paradigm, aftereffects were observed to several global scene properties (magnitude 6% to

22%). Then, using adaptation to probe for a causal link between the perception of global
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properties and subsequent basic-level scene categorization, I show systematic alterations

in observers' basic-level scene categorization following adaptation to a global property.

Finally, Chapter 5 summarizes the experimental work, exploring the implications

and limitations of this approach and detailing additional future experimental work. This

thesis provides a proposal grammar for categories of environmental scenes, allowing the

generation of testable predictions about a global scene representation framework. This

thesis has examined some of these predictions, providing the first behavioral evidence for

a global initial scene representation, and showing that we may indeed be able to see the

forest without necessarily representing the trees.
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1 - Introduction

One of the greatest mysteries of vision is the remarkable ability of the human

brain to understand novel scenes, places and events rapidly and effortlessly (Biederman,

1972; Potter, 1975; Thorpe, Fize & Marlot, 1996). Given the ease with which we do this,

a central issue in visual cognition is determining the nature of the representation that

allows this rapid recognition to take place. Here, we provide the first behavioral evidence

that rapid recognition of real-world natural scenes can be predicted from a collection of

holistic descriptors of scene structure and function (such as its degree of openness or its

potential for navigation), and suggests the possibility that the initial scene representation

can be based on such global properties, and not necessarily the objects it contains.

1.1 - Rapid basic-level scene categorization

Human observers are able to understand the meaning of a novel image if given

only a single fixation (Potter, 1975). During the course of this glance, we perceive and

infer a rich collection of information, from surface qualities such as color and texture

(Oliva & Schyns, 2000; Rousselet, Joubert & Fabre-Thorpe, 2005); objects (Biederman,

Mezzanotte & Rabinowitz, 1982; Fei-Fei , Iyer, Koch & Perona, 2007; Friedman, 1979;

Rensink, 2000, Wolfe, 1998), and spatial layout (Biederman, Rabinowitz, Glass & Stacy,

1974; Oliva & Torralba, 2001; Sanocki, 2003; Schyns & Oliva, 1994), to functional and

conceptual properties of scene space and volume (e.g. wayfinding, Greene & Oliva,

2006; Kaplan, 1992; emotional valence, Maljkovic & Martini, 2005).
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Indeed, from a short conceptual scene description such as "birthday party,"

observers are able to detect the presence of an image matching that description when it is

embedded in a rapid serial visual presentation (RSVP) stream and viewed for -100

milliseconds (Potter, 1975; Potter, Staub & O'Connor, 2004). This short description is

also known as the basic-level category for a visual scene (Rosch, 1978; Tversky &

Hemenway, 1983), and refers to the most common label used to describe a place.

The seminal categorization work of Eleanor Rosch and colleagues has shown that

human observers prefer to use the basic-level to describe objects, and exhibit shorter

reaction times to name objects at the basic-level rather than at subordinant or

superordinant (Rosch, 1978). It is hypothesized that the basic-level of categorization is

privileged because it maximizes both within-category similarity and between-category

variance (Gosselin & Schyns, 2001; Rosch, 1978). In the domain of visual scenes,

members of the same basic-level category tend to have similar spatial structures and

afford similar motor actions (Tversky & Hemenway, 1983). For instance, most typical

environments categorized as "forests" will represent enclosed places where the observer

is surrounded by trees and other foliage. An image of the same place from very close up

might be called "bark" or "moss", and from very far away might be called "mountain" or

"countryside". Furthermore, the characteristic spatial layout of a scene constrains the

actions that can be taken in the space (Gibson, 1979; Tversky & Hemenway, 1983). A

"forest" affords a limited amount of walking, while a "countryside" might afford more

options for navigation because the space is open. Although such functional and structural

properties are inherent to scene meaning, their role in scene recognition has not yet been

addressed.
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1.2 - The object-centered approach to high-level visual recognition

Many influential models of high-level visual recognition are object-centered, treating

objects and parts as the atoms of scene analysis (Biederman, 1987; Biederman, Blickle,

Teitelbaum, Klatcky & Mezzanotte, 1988; Bulthoff et al., 1995; Fergus, Perona &

Zisserman, 2003; Marr, 1982; Pylyshyn, 1999; Riesenhuber & Poggio, 1999; Ullman,

1999). In this view, the meaning of a real-world scene emerges from the identities of a

set of objects contained within it, learned through the experience of object co-occurrence

and spatial arrangement (Biederman, 1981; Biederman, 1987; De Graef, Christaens &

d'Ydewalle, 1990; Friedman, 1979). Alternatively, the identification of one or more

prominent objects may be sufficient to activate a schema of the scene, and thus facilitate

recognition (Biederman, 1981; Friedman, 1979).

Although the object-centered approach has been the keystone of formal and

computational approaches to scene understanding for the past 30 years, research in visual

cognition has posed challenges to this view, particularly when it comes to explaining the

early stages of visual processing and our ability to recognize novel scenes in a single

glance. Under impoverished viewing conditions such as low spatial resolution (Oliva &

Schyns, 1997, 2000; Schyns & Oliva, 1994; Torralba, Fergus & Freeman, 2007); or when

only sparse contours are kept, (Biederman, 1981; Biederman et al, 1982; De Graef et al,

1990; Friedman, 1979; Hollingworth & Henderson, 1998; Palmer, 1975) human

observers are still able to recognize a scene's basic-level category. With these stimuli,

object identity information is so degraded that it cannot be recovered locally. These

results suggest that scene identity information may be obtained before a more detailed
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analysis of the objects is complete. Furthermore, research using change blindness

paradigms demonstrates that observers are relatively insensitive to detecting changes to

local objects and regions in a scene under conditions where the meaning of the scene

remains constant (Henderson & Hollingworth, 2003; Rensink, O'Reagan & Clark,, 1997;

Simons, 2000). Last, it is not yet known whether objects that can be identified in a

briefly presented scene are perceived, or inferred through the perception of other co-

occurring visual information such as low-level features (Oliva & Torralba, 2001),

topological invariants (Chen, 2005) or texture information (Walker-Renninger & Malik,

2004).

1.3 - A scene-centered approach to high-level visual recognition

An alternative account of scene analysis is a scene-centered approach that treats

the entire scene as the atom of high-level recognition. Within this framework, the initial

visual representation constructed by the visual system is at the level of the whole scene

and not segmented objects, treating each scene as if it has a unique shape (Oliva &

Torralba, 2001). Instead of local geometric and part-based visual primitives, this

framework posits that global properties reflecting scene structure, layout and function

could act as primitives for scene categorization.

Formal work (Oliva & Torralba, 2001, 2002; Torralba & Oliva, 2002, 2003) has

shown that scenes that share the same basic-level category membership tend to have a

similar spatial layout. For example, a corridor is a long, narrow space with a great deal of

perspective while a forest is a place with dense texture throughout. Recent modeling

work has shown success in identifying complex real-world scenes at both superordinant
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and basic-levels from relatively low-level features (such as orientation, texture and

color), or more complex spatial layout properties such as texture, mean depth and

perspective, without the need for first identifying component objects (Fei Fei & Perona,

2005; Oliva & Torralba, 2001, 2002, 2006; Torralba & Oliva, 2002, 2003; Vogel &

Schiele, 2007; Walker-Renninger & Malik, 2004). However, the extent to which human

observers use such global features in recognizing scenes is not yet known.

A scene-centered approach involves both global and holistic processing.

Processing is global if it builds a representation that is sensitive to the overall layout and

structure of a visual scene (Kimchi, 1992; Navon, 1977). The influential global

precedence effect (Navon, 1977, see Kimchi, 1992 for a review) showed that observers

were more sensitive to the global shape of hierarchical letter stimuli than their component

letters. Interestingly, the global precedence effect is particularly strong for stimuli

consisting of many-element patterns, (Kimchi, 1998) as is the case in most real-world

scenes. A consequence of global processing is the ability to rapidly and accurately

extract simple statistics, or summary information, from displays. For example, the mean

size of elements in a set is accurately and automatically perceived (Ariely, 2001; Chong

& Treisman, 2003, 2005), as is the average orientation of peripheral elements (Parkes,

Lund, Angelucci, Solomon & Morgan, 2001); some contrast texture descriptors (Chubb,

Nam, Bindman, & Sperling, 2007) as well as the center of mass of a group of objects

(Alvarez & Oliva, 2008). Global representations may also be implicitly learned, as

observers are able to implicitly use learned global layouts to facilitate visual search

(Chun & Jiang, 1998; Torralba et al, 2006).
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While all of these results highlight the importance of global structure and

relations, an operational definition of globality for the analysis of real world scenes has

been missing. Many properties of natural environment could be global and holistic in

nature. For example, determining the level of clutter of a room, or perceiving the overall

symmetry of the space are holistic decisions in that they cannot be taken from local

analysis only, but require relational analysis of multiple regions (Kimchi, 1992).

Object and scene-centered computations are likely to be complementary

operations that give rise to the perceived richness of scene identity by the end of a glance

(- 200-300 msec). Clearly, as objects are often the entities that are acted on within the

scene, their identities are central to scene understanding. However, some studies have

indicated that the processing of local object information may require more image

exposure (Gordon, 2004) than that needed to identify the scene category (Potter, 1975;

Schyns & Oliva, 1994; Oliva & Schyns, 2000). In the present study, we examine the

extent to which a global scene-centered approach can explain and predict the early stage

of human rapid scene categorization performance. Beyond the principle of recognizing

the "forest before the trees" (Navon, 1977), this work seeks to operationalize the notion

of "globality" for rapid scene categorization, and to provide a novel account of how

human observers could identify the place as a "forest", without first having to recognize

the "trees".

1.4 - Global properties as scene primitives

We propose a set of global properties that tap into different semantic levels of

global scene description. Loosely following Gibson (1979), important descriptors of
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natural environments come from the scene's surface structures and the change of these

structures with time (or constancy). These aspects directly govern the possible actions, or

affordances of the place. The global properties were therefore chosen to capture

information from these three levels of scene surface description, namely structure,

constancy and function.

A total of seven properties were chosen for the current study to reflect aspects of

scene structure (mean depth, openness and expansion), scene constancy (transience and

temperature), and scene function (concealment and navigability). A full description of

each property is found in Table 1. These properties were chosen on the basis of literature

review (see below) and a pilot scene description study (see Appendix 8.1) with the

requirement that they reflect as much variation in natural landscape categories as possible

while tapping into different levels of scene description in terms of structure, constancy

and function. Critically, the set of global properties listed here is not meant to be

exhaustive 1, as other properties such as naturalness or roughness (the grain of texture

and number and variety of surfaces in the scene) have been shown to be important

descriptors of scene content (Oliva & Torralba, 2001). Rather, the goal here is to capture

some of the variance in how real world scenes vary in structure, constancy and function,

and to test the extent to which this information is involved in the representation of natural

scenes.

1 See Appendix 8.2 for a description of the space of global properties.

=_i/_i/i_~ __ _i____~~___ ;i; ___~;_lj___ 1_X_);_^~_(I;;___ __ __(i______lli/Lil;_(_i- .i-_.i:i ii-;---~~l--i?--. i~ii~_i~iCiiL=;i
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Table 1:

Structural Properties
Openness [1,2,3,4] represents the magnitude of spatial enclosure. At one pole, there is a clear

horizon and no occluders. At the other pole, the scene is enclosed and bound by surfaces, textures
and objects. Openness decreases when the number of boundary elements increases.

Expansion [1] refers to the degree of linear perspective in the scene. It ranges from a flat view
on a surface to an environment with strong parallel lines converging on a vanishing point.

Mean depth [1,3] corresponds to the scale or size of the space, ranging from a close-up view
on single surfaces or objects to panoramic scenes.
Constancy Properties

Temperature [2,4] refers to the physical temperature of the environment if the observer was
immersed in the scene. In other words, it refers to how hot or cold an observer would feel inside
the depicted place.

Transience [4,5,7] refers to the rate at which the environment depicted in the image is
changing. This can be related to physical movement, such as running water or rustling leaves. It
can also refer to the transience of the scene itself (fog is lifting, sun is setting). At one extreme,
the scene identity is changing only in geological time, and at the other, the identity depends on
the photograph being taken at that exact moment.
Functional Properties

Concealment [4,6] refers to how efficiently and completely a human would be able to hide in
a space, or the probability of hidden elements in the scene that would be difficult to search for. It

ranges from complete exposure in a sparse space to complete concealment due to dense and

variable surfaces and objects.
Navigability [2,4,5] corresponds to the ease of self-propelled movement through the scene.

This ranges from complete impenetrability of the space due to clutter, obstacles or treacherous
conditions to free movement in any direction without obstacle.

Table 1: Description of the seven global properties of natural scenes used in Experiments 1, 2 and 3. The
numbers refer to additional references describing the properties ([1] Oliva & Torralba, 2001; [2] Gibson,
1979; [3] Torralba & Oliva, 2002; [4] Greene & Oliva, 2006; [5] Kaplan, 1992; [6] Appelton, 1975).

1.41: Properties of scene structure

Previous computational work has shown that basic-level natural scene categories

tend to have a particular spatial structure (or spatial envelope) that is well-captured in the

properties of mean depth, openness and expansion (Oliva & Torralba, 2001; Torralba &

Oliva, 2002). In brief, the global property of mean depth corresponds to the scale or size

of the space the scene subtends, ranging from a close-up view to panoramic environment.

The degree of openness represents the magnitude of spatial enclosure whereas the degree

of expansion refers to the perspective of the spatial layout of the scene. Images with
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similar magnitudes along these properties tend to belong to the same basic-level category:

for example, a "path through a forest" scene may be represented using these properties as

"an enclosed environment with moderate depth and considerable perspective".

Furthermore, these spatial properties may be computed directly from the image using

relatively low-level image features (Oliva & Torralba, 2001).

1.42: Properties of scene constancy

The degree of scene constancy is an essential attribute of natural surfaces

(Cutting, 2002; Gibson, 1979). Global properties of constancy describe how much and

how fast the scene surfaces are changing with time. Here, we evaluated the role of two

properties of scene constancy: transience and temperature.

Transience describes the rate at which scene surface changes occur, or

alternatively stated, the probability of surface change from one glance to the next. Places

with the highest transience would show actual movement such as a storm, or a rushing

waterfall. The lowest transience places would change only in geologic time, such as a

barren cliff. Although the perception of transience would be more naturalistically studied

in a movie rather than a static image, humans can easily detect implied motion from static

images (Cutting, 2002; Freyd, 1983), and indeed this implied motion activates the same

brain regions as continuous motion (Kourtzi & Kanwisher, 2000). Temperature reflects

the differences in visual appearance of a place during the changes of daytime and season,

ranging from the intense daytime heat of a desert, to a frigid snowy mountain.

1.43: Properties of scene function
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The structure of scene surfaces and their change over time governs the sorts of

actions that a person can execute in an environment (Gibson, 1979). The global

properties of navigability and concealment directly measure two types of human-

environment interactions deemed to be important to natural scene perception from

previous work (Appelton, 1975; Gibson, 1958, 1979; Kaplan, 1992; Warren, Kay, Zosh,

Duchon & Sahuc, 2001). Insofar as human perception evolved for goal-directed action in

the environment, the rapid visual estimation of possible safe paths through an

environment was critical to survival (Gibson, 1958). Likewise, being able to guide

search for items camouflaged by the environment (Merilaita, 2003), or to be able to be

concealed oneself in the environment (Ramachandran, Tyler, Gregory, Rogers-

Ramachandran, Duessing, Pillsbury & Ramachandran, 1996) have high survival value.

1.5: Research questions

The goal of the present study is to evaluate the extent to which a global scene-

centered representation is predictive of human performance in rapid natural scene

categorization. In particular, we sought to investigate the following questions: (1) are

global properties utilized by human observers to perform rapid basic-level scene

categorization? (2) Is the information from global properties sufficient for the basic-level

categorization of natural scenes? (3) How does the predictive power of a global property

representation compare to an object-centered one?

In a series of four behavioral and modeling experiments, we test the hypothesis

that rapid human basic-level scene categorization can be built from the conjunctive

detection of global properties. After obtaining normative ranking data on seven global
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properties for a large database of natural images (Experiment 1), we test the use of this

global information by humans for rapid scene categorization (Experiment 2). Then, using

a classifier (Experiment 3), we show that global properties are computationally sufficient

to predict human performance in rapid scene categorization. Importantly, we show that

the nature of the false alarms made by the classifier when categorizing novel natural

scenes is statistically indistinguishable from human false alarms, and that both human

observers and the classifier perform similarly under conditions of limited global property

information. Critically, in Experiment 4 we compare the global property classifier to two

models trained on a local region-based scene representation and observed that the global

property classifier has a better fidelity in representing the patterns of performance made

by human observers in a rapid categorization task.

Although strict causality between global properties and basic-level scene

categorization cannot be provided here, the predictive power of the global property

information and the convergence of many separate analyses with both human observers

and models support the hypothesis that an initial scene representation may contain

considerable global information of scene structure, constancy and function.

2 - General method

2.1 - Observers

Observers in all experiments were 18-35 years old, with normal or corrected-to-

normal vision. All gave informed consent and were given monetary compensation of

$10/hour.

Isl_ __1__~__~~1_1_;;1~__1.. .~. .-.i-i-~~~~----~--~ _
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2.2 - Materials

Eight basic-level categories of scenes were chosen to represent a variety of

common natural outdoor environments: desert, field, forest, lake, mountain, ocean, river

and waterfall. The authors amassed a database of exemplars in these categories from a

larger laboratory database of -22,000 (256x256 pixel) full-color photographs collected

from the web, commercial databases, personal digital images and scanned from books

(Oliva & Torralba, 2001, 2006). From this large database, we selected 500 images 2

chosen to reflect natural environmental variability. To estimate the typicality of each

image, independent, naive observers ranked each of the 500 images on its prototypically

for each scene category, using a 1-5 scale (see Appendix 8.3 for a description of the

typicality norming task). The most prototypical 25 images for each of the eight basic-

level category were kept, for a grand total of 200 images which were used in Experiment

1-4 (see details in Appendix 8.3). The remaining 300 poly-categorical images were used

in Experiment 3, section 5.27. For human psychophysics experiments, we used Matlab

and the Psychophysics Toolbox as presentation software (Brainard, 1997; Pelli, 1997).

3 - Experiment 1: Normative rankings of global properties on natural scenes

First, we obtained normative rankings on the 500 natural scenes along the seven

global properties. These normative rankings provide a description of each image and

basic-level category in terms of their global structural, constancy and functional

properties. Namely, each image is described by 7 components, each component

2 The image database may be viewed on the authors' web site.
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representing the magnitude along each global property dimension (see examples in

Figure A2 in Appendix 8.2).

As Experiments 2-3-4 involve scene categorization using global property

information, robust rankings are essential for selecting images for the human

psychophysics in Experiment 2 as well as for training and testing the classifier used in

Experiment 3.

3.1 - Method

3.11 - Participants

55 observers (25 males) ranked the database along at least one global property,

and each property was ranked by at least ten observers.

3.12 - Procedure

Images were ranked using a hierarchical grouping procedure (Figure 1, Oliva &

Torralba, 2001). This allows the ranking of a large number of images at once, in the

context of one another.

For a given global property, each participant ranked two sets of 100 images. The

two halves of the database were pre-chosen by the authors to contain roughly equal

numbers of images in each semantic category. 100 picture thumbnails appeared on an

Apple 30" monitor (size of 1.5 x 1.5 deg / thumbnail). The interface allowed participants

to drag and drop images around the screen and to view a larger version of the image by

double-clicking on the thumbnail.
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Participants were given the name and description of a global property at the start

of a ranking trial. They were instructed to divide the images into two groups based on a

specific global property such that images with a high magnitude along the global property

were placed on the right-hand side of the screen while images with a low magnitude were

placed on the left (see Figure 1). In a second step, participants were asked to split each of

the two groups into two finer divisions, creating four groups of images that range in

magnitudes along the specified global property. Finally, the four groups were split again

to form a total of 8 groups, ordered from the lowest to the highest magnitude for a given

property. At any point during the trial, participants were allowed to move an image to a

different subgroup to refine the ranking. Participants repeated this hierarchical sorting

process on the remaining 100 pictures in database along the specified global property.

Participants had unlimited time to complete the task, but on average completed a trial in

30 minutes. As the task was time consuming, not all participants ranked all seven

properties, and we are reporting results from 10 observers per property, normalized to fit

in the range of 0 to 1.

" 'K gill
Figure 1: A schematic illustration of the hierarchical grouping task of Experiment 1.
Here, a ranking along the global property temperature is portrayed. a) the images are
divided into two groups with the "colder" scenes on the left and the "warmer" scenes on the right; b) Finer
rankings are created by dividing the two initial groups into two subgroups and c) Images in each quadrant
are again divided into two subgroups to create a total of eight groups, ranked from the "coldest" scenes to
the "hottest" scenes.

3.2 - Results

I
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3.21 - General description

Examples of images that were ranked as low, medium and high for each global

property are shown in Figure 2. Global properties are continuous perceptual dimensions,

and therefore image ranks spanned the range of possible values across the database

(Scattergrams of rankings by category for all global properties can be seen in Figure Al,

Appendix 8.2). It is essential to note in Figure Al the high scatter of rankings indicates

that the basic-level category label is not the determinant of the global property ranking

for any single global property. In other words, concealment is not just another way of

saying forestness.

In order to compare the time-unlimited rankings of Experiment 1 to the speeded

categorization task of Experiment 2, it is necessary to know that global properties can be

rapidly and accurately perceived by human observers. Furthermore, a similar ranking of

images along global properties when presentation time is limited ensures that the

rankings of Experiment 1 are not due to inferences based on the scene schema. To this

end, we ran a control speeded classification task 3 (see the description of this experiment

in Appendix 8.4). Results showed that indeed, global properties could be estimated from

limited presentation time. The mean correlation of the speeded classification to the

hierarchical rankings was 0.82, ranging from 0.70 for concealment to 0.96 for

temperature (all significant), see Appendix 8.4 for more details.

3 Appendix (8.4) describes a speeded classification task, to verify that the global properties of natural
images are perceived under conditions of limited presentation time. The logic, as suggested by an
anonymous reviewer, is that under limited presentation time, the perception of global properties might be
less contaminated by other semantic information about the scene category. Although category information
cannot be completely abolished in a short presentation time, other data in a forthcoming article by the
authors show that the detection of global properties in a scene is significantly better than the detection of
the same scene's basic-level category at a 20ms presentation time (see also Joubert et al, 2007 showing that
the global property of naturalness is available faster than a scene's basic-level category), indicating that
some category information was suppressed in the manipulation.
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Magnitude of global property

Low High Figure 2: Examples of scenes with low,
medium and high rankings from Experiment 1

along each global property.
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3.22 - Between-observer consistency in ranking images along each global property

The extent to which global properties represent a reasonable basis for natural

scene recognition depends critically on the extent to which the global properties can be

ranked consistently by human observers.

Here we are using the 200 prototypical images as they give strong ground truth

for the purpose of categorization in Experiments 2-4. We computed observers'

consistency as a Spearman's rank-order correlation for each possible pairing of observers

for all seven global properties. The mean and standard error for these correlation

coefficients by global property are shown in Table 2. Between-observer Spearman's

rank-order correlations ranged from 0.61 (transience) to 0.83 (openness), and were all

statistically significant (p <0.01). This indicates that different observers estimated the

degree of these global properties in similar ways (see also Oliva & Torralba, 2001; Vogel

& Schiele, 2007 for similar results) and agreed well on which images represented a high,

medium and low magnitude for a given global property.

Openness Expansion Mean Temperature Transience Concealment Navigability

depth

r 0.83 0.64 0.76 0.73 0.61 0.65 0.69

s.e.m 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 2: Spearman's rank order correlations along with standard error of the mean between observers for
each global property from the rankings given in Experiment 1.

3.23 - Global property descriptions of semantic categories

The subsequent experiments test the utility of a global property representation for

rapid scene categorization. In this representation, images are represented as points in a
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seven-dimensional space where each axis corresponds to a global property. How are

different basic-level categories described in this space?

To visualize the global property signature of each semantic category, we

computed the category means and ranking spread for each global property. Figure 3

shows box-and-whisker plots for the global property rankings for each category, creating

a conceptual signature of the category. For example, most deserts were ranked as hot,

open and highly navigable environments, with a low magnitude along the transience and

concealment dimensions while most waterfalls are closed, highly transient environments

that are less navigable. Other categories, such as lakes, have global property ranking

averages that were intermediate along each dimension, meaning that most lakes have a

medium level of openness and expansion, are neither environments perceived as very

cold or very warm, and so on.

Euclidean distance measures between each pair of basic-level categories provided

a conceptual distance metric between basic-level categories (see Table A4 and details in

Appendix 8.6). As expected from intuition, categories like waterfall and river are close to

each other, but categories likefield and waterfall are very distant.
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median rankings, boxes indicate quartiles and whiskers indicate range. Significant outlier images are
shown as crosses.

3.3 - Discussion

Here we have shown that observers can provide normative rankings on global

properties with a high degree of consistency. We have also provided a conceptual

description of basic-level category prototypes as the mean global property rankings of a

category.

To what extent do the scene-centered semantic category descriptions shown in

Figure 3 contribute to human observers' mental representations of scene identity? We

test this explicitly in Experiment 2.

4 - Experiment 2: Human use of global properties in a rapid scene categorization

task

The goal of Experiment 2 was to test the extent to which global property

information in natural scenes is utilized by human observers to perform rapid basic-level

scene categorization. A global property-based scene representation makes the prediction

that scenes from different semantic categories but with similar rankings along a global

property (e.g. oceans and fields are both open environments) will be more often confused

with each other in a rapid categorization task than scenes that are not similar along a

global property (e.g. an open ocean view and a closed waterfall). We tested this

hypothesis systematically by recording the false alarm rates for each basic-level category

(serving as targets in blocked yes-no forced choice task) when viewed among distractor

images that all shared a particular global property pole (such as high concealment or low

openness).
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4.1 - Method

4.11 - Participants

For a purpose of completeness and replication of our effects, two groups of

participants participated in Experiment 2. First, four participants (1 male) completed the

entire experimental design. Throughout the experiment, we will refer to this group as the

complete-observer group. While having all observers complete all blocks of the

experiment is statistically more robust, it could also lead to over learning of the target

images. To eliminate the learning effect, a meta-observer group consisting of 73

individuals (41 male) completed at least 8 blocks (400 trials) of the design, for a total of

eight meta-observers (see Appendix 8.5 for details on the analysis of meta-observer data).

Meta-observer analysis is justified here because the critical analyses are on the image

items.

4.12 - Design

The experimental design consisted of a full matrix of target-distractor blocks

where each basic-level category was to be detected amongst distractor images from

different semantic categories that shared a similar ranking along one global property.

Both high and low magnitudes of each global property were used, yielding 112 blocked

conditions (8 target categories x 7 global properties x 2 magnitudes). For example, a

block would consist of one semantic category (such as forest) seen among images that

were all ranked in Experiment 1 as (for example) high-transience. The distractor sets

were chosen to reflect a wide variety of semantic categories, and to vary in other global
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properties while keeping ranks in the manipulated property constant. Therefore, as best

as possible, global properties were independently manipulated in this design. Distractor

sets for a given global property magnitude were therefore chosen uniquely for each

category. High and low rankings were defined as imaged ranked as >0.6 and <0.3 for a

given global property.

4.13 - Procedure

Each of the 112 experimental blocks contained 25 target and 25 distractor images.

At the start of each block, participants were given the name of the target category and

were instructed to respond as quickly and accurately as possible with a key press ("1" for

yes, "0" for no) as to whether each image belonged to the target category. Each trial

started with a 250 msec fixation cross followed by an image displayed for 30 msec,

immediately followed by a 1/f noise mask presented for 80msec. Visual feedback (the

word "error") followed each incorrect trial for 300msec.

4.2 - Results

For all analyses, we report results for both the complete-observer and the meta-

observer groups. Results from the two groups support each other well. In addition to

providing a self-replication, examining individuals completing the entire design reduces

the noise seen from pooling individual performances. On the other hand, the meta-

observer group reduces the problem of over-learning the target images.

In the following, we report 4 different analyses on both correct detection (hit) and

false alarms: 4.21 - the general performance of human observers in rapid basic-level
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scene categorization; 4.22 -the power of target-distractor global property resemblance in

predicting which particular images will yield false alarms to a basic-level category

target.; 4.23 - the relation between false alarms made between basic-level categories and

the relative distances of those categories in global property space; 4.24 - the effect of

global property similarity on reaction time.

4.21 - Basic-level scene categorization: overall performance

The complete-observers' average hit rate was 0.87 with a mean false alarm rate of

0.19. This level of performance corresponds to an average d' sensitivity of 2.07.

Performance by semantic category is detailed in Table 3. With this short 30 millisecond

presentation time, observers could reliably detect all scene categories (all d'>l.0).

However, critical for subsequent analyses, observers made substantial false alarms to

each category as well, giving a rich range of performance data to work with.

For the 8 meta-observers, the mean hit rate was 0.78, with a mean false alarm rate

of 0.24. This corresponds to a d' of 1.58. For the complete-observer group, we looked at

hit rate across the 14 times they viewed the target images. For each observer, we

performed a linear regression on the hit rate over these blocks and found that for 3 of the

4 subjects, there was a positive slope (mean - 0.095, just under 1% per block), indicating

that there was learning of the targets over the course of the experiment.

Hit False alarm d'
Desert 0.83 (0.88) 0.18 (0.17) 1.88 (2.13)
Field 0.77 (0.88) 0.30 (0.20) 1.27 (2.02)
Forest 0.88 (0.96) 0.17 (0.11) 2.23 (2.97)
Lake 0.74 (0.91) 0.26 (0.18) 1.32 (2.28)
Mountain 0.78 (0.88) 0.25 (0.17) 1.50 (2.15)
Ocean 0.68 (0.87) 0.27 (0.25) 1.11 (1.79)
River 0.69 (0.89) 0.30 (0.23) 1.03 (1.97)
Waterfall 0.91 (0.95) 0.20 (0.16) 2.29 (2.67)

i
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Table 3: Overall human performance in rapid categorization task of Experiment 2. Shown are hit rate, false
alarm rate and sensitivity measure d', measured as the mean for each category over eight meta-observers.
Numbers in parentheses show the same measurements for the complete-observer design.

4.22 - The role of global properties on basic-level categorization performance

A prediction of the scene-centered approach is that distractor images that share a

global property ranking with the target prototype should yield more false alarms than

images that are less similar to the target prototype. A pictorial representation of sample

results is shown in Figure 4: forests, which tend to be closed (c.f. Figure 3) have more

false alarms to closed distractors than to open distractors, and the opposite is true of

fields, which tend to be open environments.

Closed scene distractors

Target / F %j 20 % Target

forest 9 % 42 % field
Open scene distractors

Figure 4: Illustration of human performance along different distractor sets in Experiment 2. Distractor sets

that share a global property with the target category (closed is a property of forests and open is a property

of fields) yield more false alarms than distractor sets that do not. Representative numbers taken from meta-

observers' data.

A global property-based scene representation would predict that any image's

confusability to any target category could be predicted from this image's global property

distance to the target category. For example, in general, mountain scenes were ranked as

moderately-low navigability (c.f. Figure 3). Therefore, in a block where mountains were

Y
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to be detected among low-navigability distractors, we would expect more false alarms to

distractors that are also moderately-low navigability than non-navigable distractors of

greater magnitude (such as a very dense forest).

In each of the 112 experimental blocks, a single semantic category was to be

detected among distractor images that had a common global property rank. For each

distractor image in these blocks, we computed the one-dimensional distance between its

global property rank on the manipulated global property to the mean global property rank

of the target category for the same property. For example, in a block where deserts were

viewed among low-expansion scenes, each distractor would be expressed as the distance

between its rank on expansion (given from Experiment 1), and the mean desert rank for

expansion (c.f. Figure 3).

Therefore, all of the distractor images in the entire experiment could be ranked

from most similar to the target category to least. If global property information is used to

help human observers estimate the image category, then global property resemblance

should predict the false alarms that are made during the experiment.

To test, we first binned the false alarm data into quartiles based on ascending

target-distractor distance. The mean percent correct rejections for each quartile for each

data set are shown in Table 4. For both groups, the accuracies increase monotonically

with distance, indicating that difficulty of image categorization is in part due to the

resemblance of the distractors to the target category prototype. Human categorization

performance is not obliterated by this one-dimensional similarity, however as even the

most similar 1% of distractors are still classified significantly above chance by the meta-

observers: 64% correct, t(198)=5.5, p<0.0001.

'i6~iir~~XI--C---*XII-- i~-XI\~'~--~---~
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Quartile 25 50 75 100
% Correct Rejection 71.9 74.5 78.1 82.1
(meta-observers)
% Correct Rejection 75.9 78.1 84.4 88.5
(complete-observer)
Table 4: Average human correct rejection performance for both experimental groups in Experiment 2 on
distractor images arranged from smallest distance to target category prototype to largest. Performance
suffers with decreasing distance to target prototype, but remains above chance.

We also performed a correlation on the distractor distance data, using the mean false

alarm rate for each distractor to its distance from target prototype mean. For the

complete-observer group, we found a striking relation with correlation coefficients

ranging from 0.98 to 0.91, when binning the data respectively in 8 bins and 25 bins (for

all correlations, p<0.0001). For the meta-observers, correlations ranged from 0.95 for 8

bins, to 0.81 for 25 bins, all correlations were significant (p<0.001).

This strong relation shows that images that resemble the category global property

prototype are more often mistaken with the target category than other images, and

suggests that with a short presentation time, global property information is used by

human observers to categorize natural scenes into basic-level categories.

4.23 - Distance in global property space predicts pairwise category

false alarms

Are some semantic categories confused with each other more often than others?

Can such asymmetries be understood through a scene-centered global-property

representation? Ashby & Lee (1991) showed that false alarms increase with increasing

similarity between targets and distractors in a detection task. Therefore, if our global
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properties are incorporated into the human scene representation, we would expect false

alarms made between semantic categories in the rapid categorization task to follow from

the categories' similarity in global property space (from Experimentl, see Figure 3).

As the experimental task was a yes-no forced choice within a block of uniform

target categories, the false alarms made in a given block provide insight into which

category observers believed the image to be. For example, a false alarm to a forest image

while looking for river targets indicates that the observer believed the picture of the forest

to be a river. False alarm rates between each pair of categories were thus computed (see

Appendix 8.6 for more details).

We then computed the Euclidean distance between each category in the global

property space (n*(n-1)/2 = 28 pairwise comparisons for the n=8 categories). This is a

dissimilarity metric: larger values indicate more differences between two categories (See

Appendix 8.5 for more details).

For the complete-observer group, we found a strong negative correlation between

category dissimilarity and false alarm rates (r=-0.76, p<0.001), indicating that pairs of

categories that are similar in global property space (such as river and waterfall) are more

often confused by human observers than pairs of categories that are more distant, such as

field and waterfall. The same pattern held for the meta-observers: (r=-0.78, p<0.001).

4.24 - The reaction time effects of global property similarity

The previous analyses have shown that the probability of human observers mis-

categorizing images given a brief presentation is strongly related to how similar a given

distractor is to the target category in global property space. Is there evidence of global
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property similarity for the images that are correctly categorized? In particular, is the

speed at which an image can be correctly categorized inversely related to how similar it is

to the category prototype? One can imagine that a distractor sharing very few global

properties with the target category might be more quickly rejected than a distractor that

more closely resembles the target category.

For this analysis, we report data from the complete-observer group as individual

differences in reaction time from the meta-observer group are confounded in the blocked

design. For all correctly rejected distractors, we correlated the participants' reaction time

to the Euclidean distance of that distractor to the target category in global property space.

We found that there was a strong inverse relation between target-distractor resemblance

and reaction time (r=-0.82, p<0.0001), indicating that distractors that are more dissimilar

to the target category are more quickly rejected than distractors that are more similar. In

other words, similarity in global property space predicts the mistakes that human

observers tend to make as well as which images will take longer to categorize.

4.3 - Discussion

The previous analyses have shown that with a very brief image exposure, human

observers are able to detect the basic-level category of a natural scene substantially above

chance (section 4.21; see also Joubert, Rousselet, Fize & Fabre-Thorpe, 2007; Oliva &

Schyns, 2000; Potter, 1975; Rousselet et al., 2005). However, participants' performances

were far below ceiling, suggesting that the scene representation afforded by this amount

of image exposure was incomplete, providing a rich array of false alarms that are useful

for understanding the initial representation.
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In this experiment, we have shown converging evidence from different analyses

indicating that human observers are sensitive to global property information during very

brief exposures to natural images, and that global information appears to inform basic-

level categorization.

First, we have shown that the probability of false alarm to a given image can be

very well predicted from the one-dimensional distance of this image's rank along a global

property to the target category prototype for that same property (section 4.22). We have

also shown that semantic categories that are more often confused by human observers are

more similar to one another in global property space (section 4.23). As distractor images

varied in semantic categories, other global properties and objects, this implies that global

property information makes up a substantial part of the initial scene representation. Last,

we have shown that the reaction times for correctly rejected distractors were also related

to the distractors' resemblance to the target category (4.24). Altogether, these results

support a scene-centered view of scene understanding that asserts that spatial and

functional global properties are potential primitives of scene recognition.

5 - Experiment 3: The computational sufficiency of global properties for basic-level

scene categorization

We have shown so far that global property information strongly modulates human

performance in a rapid scene categorization task. To what extent is a global property

representation sufficient to predict human rapid scene categorization performance? To

answer this question, we built a conceptual naive Bayes classifier whose only information

about each scene image was from the normative ranking data of Experiment 1. Therefore,

; ;___;ICY_:_Li____~_:/liir~ _~___l____ iii :_::;__(__~_i____;;__Il~_^_li____/;__l_
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the classifier is agnosic to any other visual information (color, texture, objects) that

human observers could have used to perform the task. Here we compare the performance

of this classifier (correct and false alarms) to the human scene categorization performance

of Experiment 2.

5.1 - Method

The training input to the classifier consisted of the ranks that each image received

for each of the seven global properties along with a label indicating which semantic

category the image belonged to. From this input, the classifier estimated Gaussian

distributions for each category along each global property. Then, given a test image (not

used in training), the classifier computed the most likely semantic category for the set of

global properties given to it:

1 1
C, = arg max In (x - pjk 2

S cC k ~= 2 2o'jk

where the log likelihood of each categoryj is estimated from the distributions of each

property dimension k (for background, see Mitchell, 1997). For a discussion on the

assumptions of such a classifier, see Appendix 8.6.

The classifier was run 25 times, testing each image in turn using a leave-one-out

design. In each run, 24 images from each semantic category (192 total) served as

training, and the last eight (one from each category) were used for testing.

It is of note that the naYve Bayes classifier was chosen to be the simplest classifier

for testing this global property representation. All reported results were also done with a

linear discriminant analysis with no significant performance differences (see Appendix

8.7).
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5.2 - Results

In comparing a classifier's performance to human performance for the goal of

gaining insight into the human representation, it is necessary to examine classifier

performance at several levels. Similar overall performance is not enough since any

psychophysical task can be made arbitrarily harder or easier by changing presentation

time, for example. The errors made by a classifier are more informative than the overall

correct performance because similarities in errors make a stronger argument for a similar

representation. Conversely, dissimilarities in the patterns of errors are informative in

refining hypotheses. We report here four distinct types of analyses using data from

Experiments 1, 2 and 3: section 5.21 - the overall performance of the classifier relative to

human scene categorization performance from Experiment 2; sections 5.22- an

examination of the types of classification errors made by both humans and classifier;

section 5.23 - an examination of the distances between categories in our scene-centered

space (Experiment 1) and how this predicts errors made by both classifier and human

observers; and sections 5.24 and 5.25- a comparison of how the classifier and human

observers perform under conditions where a complete global property representation

cannot be used for scene categorization. As a last test of this model (5.26), we compare

the classifier's responses to non-prototypical images to that of the human norming data of

Experiment 1 (see Appendix 8.3).

5.21 - Classifier performance: Percent correct and correlation to

human basic-level category performance
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Overall, the performance of the classifier was remarkably similar to that of human

meta-observers: the overall proportion correct for the classifier was 0.77 (0.77 for human

meta observers, t(7)<l). The performance for the complete observer group was higher

(proportion correct was 0.86), in part because of the over-learning of the stimuli.

To get an idea of how classifier performance compared to human performance by

basic-level category, we correlated meta-observer's correct performance and classifier

correct performance and found a striking similarity: the by-category correlation was

r=0.88, p<0.01 (see Figure 5). This level of agreement did not differ from meta-observer

agreements (r = 0.78: t(7)=1.72, p=0.13), indicating that the classifier's overall correct

performance and correct performance by category were indistinguishable from human

performances. Similarly, the correlation between the classifier and the mean correct

performance of the complete observer group was similarly high (r=0.75, p<0.01).

100 --- - - --- - ____-

00 F Forest

go*
-4

8 o* F .ld Desert Waterfall

70 Mountain

Ocean Lake

50
* River

40
65 70 75 80 85 90

Human metaobservers' performance (% correct)

Figure 5: Categorization performance (percent correct) of naYve Bayes classifier in Experiment 3 is well-
correlated with human rapid categorization performance from Experiment 2 (meta-observer data).

C~-- -- --- --
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5.22 - Error analysis: Easy and Difficult Images

Do human observers and the classifier have difficulty classifying the same

images? We looked at the errors that both humans and classifier made in a by-image

item analysis, comparing the probability of classifier failure (average performance in 4,

10 and 25 bins, due to the binary classification of the 200 images by the classifier) to

human false alarm rates (over the same bins).

We found a significant correlation between the classifier and the meta-observers

(for 10 bins, r=0.89, p<0.0001) indicating that indeed humans and classifier have trouble

categorizing the same images. Bin size did not affect the nature of the result: using bin

sizes of 4 and 25, the correlation coefficients were 0.97 and 0.76 respectively (all

significant). Similarly, the correlation between the classifier and participants from the

complete-observers design were all significant (p<0.001, r=0.96, r=0.81, and r=0.64 for

the same bin sizes).

5.23 - Qualitative error analysis: Distribution of error types

Next, we sought to determine the qualitative similarity of the false alarms made

by both classifier and human observers. The yes-no forced choice task of the human

observers allowed insights into which category observers believed an image to be given a

false alarm, and this can be compared directly to the output of the classifier. In other

words, in a block where the target image was river, and an observer made a false alarm to

an image of a forest, does the classifier also call this forest a river?

Given an error made by the classifier, we found that at least one human observer

in the meta-observer group made the same false alarm in 87% of the images (88% for the
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complete-observer group). However, human observers are also prone to finger errors,

attentional lapses and other possible mistakes, so when we include only the false alarms

that at least five of the eight meta-observers made; there was human-classifier

correspondence on 66% of the images (59% for at least 3 of the 4 participants who

completed the entire experiment).

Examples of the correct responses and the false alarms made by the classifier and

human observers (meta-observer group) are shown in Figure 6. This indicates that the

scene categorization performance of a classifier knowing only about global property

rankings is highly similar to that of human observers when given a 30 msec exposure to a

scene image.

A

waterfall ocean field lake forest desert

"field" "field" "field" "ocean" "ocean" "waterfall"

C

"desert" "lake" "mountain" "mountain" "river" "river"

D

"lake" "mountain" "ocean" "river" "lake" "desert"

Figure 6: Examples of human and model performances. (A) (bold titles) corresponds to the correct

responses made by both humans (Experiment 2) and the global-property classifier (Experiment 3) for the

above scene pictures. The other rows (with titles in quotes) represent categorization errors made

;;;;;;;;;~~

Page 47



A Global Framework for Scene Gist

respectively by both humans and the model (B); by the model only (C); by the humans only (D), for the
respective scene pictures.

We have shown so far that the overall performance of the global property

classifier as well as the types of errors it made is highly similar to the performance of

human observers in a rapid scene categorization task. To further compare classifier to

human performance, we created a category-by-category confusion matrix for the global

property classifier (see false alarms Table A6 in Appendix 8.6) and human observers

(human matrix of false alarms from Experiment 2, see Table A5 in Appendix 8.6). We

found that the between-category confusions made by the classifier were highly correlated

with those made by human observers (r=0.77, p<0.0001 for complete observers and

r=0.73 for the meta-observers, p<0.0001). It is of note that the diagonals of the confusion

matrices (the correct detections) were taken out for both as it would have led to a

spuriously high correlation. This analysis further suggests that a scene representation

containing only global property information predicts rapid human scene categorization, a

result which strengthens the hypothesis that a global scene-centered representation may

be formed by human observers at the beginning of the glance.

5.24 - "Knocking out" a global property I: missing properties

A stronger case for a global scene representation in human observers would be if

the classifier and humans are similarly impaired under degraded conditions. We have

shown so far that these global properties are sufficient to predict human performance in

rapid scene categorization. From Experiment 2, we found that human observers are

remarkably flexible in scene categorization under conditions where target-distractor

similarity along a global property dimension decreases the utility of that dimension for
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categorization - performance suffers but remains above chance with such incomplete

information. How does the classifier perform when similarly impaired? To test, we

compared human false alarms in Experiment 2 to runs of the classifier trained with all

global properties but one in turn. Experiment 2 "knocked-out" global properties for

human observers by matching the target and distractors on that property, reducing the

utility of the property for categorization. For example, assuming high transience is a

diagnostic property of oceans, classifying oceans among high transience scene distractors

will render transience useless for the task. Likewise, training the classifier without a

property "knocks-out" that property because there is no representation of the property at

all.

All training and testing procedures were identical to the previously presented

method in section 5.1 except that all images were represented by six global properties

instead of the full set of seven, which served as a performance baseline. For the human

comparison, for each global property we used the pole (high or low rank) that yielded the

most false alarms. For each category, we compared these false alarm rates to the average

performance of that category over all distractor conditions.

For each basic-level category we compare the increase in false alarms for the

classifier to the increase in false alarms for human observers. Interestingly, "knocking-

out" the use of a global property decreased performance to a similar degree: overall

increase in false alarms by category was an average of 5.2% more for the classifier and

3.2% more for the complete observer group (3.1% for meta-observers, difference

between humans and model were not significant, t(7) < 1) indicating that the loss of

global property information affected both human observers and the model to a similar
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degree, and that the classifier's representation was similarly robust to incomplete global

property information. Furthermore, the correlation between classifier and human correct

performance by category remains strong in this manipulation (r=0.81, p<0.0001 for the

complete-observers, and r=0.83 for meta-observers), indicating that the absence of each

global property is similarly disruptive to categorization, and suggesting that both observer

types are using similar diagnostic global property information to perform the

categorization task. Again, the correlation existing between the classifier and mean

human performance was not different from the agreement between meta-observers

(t(7)<l), indicating that the classifier's performance is indistinguishable from human

observers.

5.25 - "Knocking out" a global property II: the role of all properties

What is the limit of the classifier's ability to deal with incomplete information and

to what extent are all of the global properties necessary to predict human categorization

performance? To address this question, we ran the classifier on exhaustive combinations

of incomplete global property data, from one to six global properties.

The average performance of the classifier for each number of global properties

used is shown in Figure 7a. Interestingly, when the classifier is trained on only one of the

global properties, categorization performance is still significantly above chance (30%,

chance being 12.5%, t(6)=7.93, p<0.0001) and reaches a plateau when combinations of

six global properties are used (74%).

Next, we looked at which combinations of global properties lead to maximum

performance for all eight basic-level categories. We tabulated the average performance

------ ----
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of global property combinations containing each global property. If the maximum

classifier performance is carried by one or two properties, one would expect maximum

performance when these properties are present and diminished performance with other

combinations. Instead, Figure 7b shows that all properties were represented in these

combinations with similar frequency (between 54-61% correct). Although global

property combinations containing transience are slightly higher than the mean

performance (t(6) = 2.0, p<0.05), and combinations containing expansion trend toward

lower performance (t(6) = 1.8, p=0.12), this result suggests that overall categorization

performance is not carried by one or two global properties, but rather that each global

property provides essential information for classifying all 8 basic-level categories. This

result is conferred by the multi-dimensional scaling solution on the rankings as described

in Appendix 8.2 (showing that there is no obvious asymptote in the stress of a six

dimensional solution over a seven dimensional solution).
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A

Number of global properties

B
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Figure 7: (A) Classifier's performance in Experiment 3 when trained with incomplete data, using from 1-7
global properties. The classifier can perform above chance with only one global property (30%), and
performance linearly increases with additional properties. Chance level is indicated with the dotted line.
(B) Mean classifier performance when trained with incomplete data that contained a particular global
property. Classifier performed similarly when any particular global property was present.

5.26 - Global property classifier generalizes to less prototypical

images

I -

1
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Up until this point, all scene images we have used have been ranked as being very

prototypical for a basic-level scene category. However, scenes, unlike objects can often

be members of more than one basic-level category (Tversky & Hemenway, 1983). A

candidate scene representation is not complete without being able to generalize to and

deal with images that span category boundaries. Many of the images in the natural world

contain elements from multiple categories (poly-categorical). Take, for example the

bottom image in Figure 8. This scene contains elements that could reasonably be

assigned to forest, mountain, river or lake scenes. What assignment will the global

property classifier give to such a scene?

Recall that the 200 typical scene images used so far were chosen from a larger

pool of 500 images that had been ranked by human observers by how prototypical they

were for these eight scene categories (Appendix 8.3). Recall also that the global property

classifier is a maximum likelihood estimator, who computes the probability of an image

being in each of the eight basic-level categories. Therefore, we can directly compare the

order of category membership given by the human observers to the order of category

probability given by the classifier (see examples in Figure 8).

First, for the 300 poly-categorical images, we compared the top-ranked choice

from a category-ranking experiment (see Appendix 8.3) to the most likely category given

by the classifier when trained on the 200 prototypical images. We found that the

classifier's top category choice matched human observers' top category choice in 56% of

images. It is of note that we would not expect the classifier performance on poly-

categorical images to exceed its percent correct on prototype images (77%, section 5.21).

It is also unreasonable to expect the model to agree better with human observers than
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these observers agree with each other about an image's category (Spearman's correlation

0.73, see Appendix 8.3).

A further complexity is that an image might be ranked equally prototypical for

multiple categories, have possibility to be ranked in most categories, or have low overall

prototypicality for all of the categories used in this experiment. In order to account for

these, we then only analyzed images that received a score of at least 3 out of 5 for a

category on the prototypicality scale (see Appendix 8.3 for method details), and those

without a close second-place category rank. For these images, the model's top category

choice matched the human observers' top category choice in 62% of the images. It is

also notable that the top two category choices for the model match the top choice for the

human observers in 92% of the images.

Image

SH
C

H

H

C

H

C

Mountain, Lake, Ocean

Mountain, Lake, Ocean

Forest, River

Forest, River

Desert, Mountain, Lake

Desert, Lake, Mountain

Mountain, River, Lake, Forest

Mountain, Lake, River, Forest

Figure 8: Examples of non-prototypical images. Human observers ranked the images
according to their prototypicality along one or more categories (Appendix 8.3). For all

I - -~ -- -- 9 -- -- -
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examples (H) indicates the order of prototypicality given by the human observers and (C)
is the order of classification given by the global property classifier. Although the
classifier rates the probability of the image being in each category, we show only the
top choices for the same number of categories ranked by the human observers. In other
words, if the human observers gave prototypicality rankings for two categories, we show
the top two choices of the classifier.

5.3 - Discussion

Given that Experiment 2 showed that human observers were sensitive to global

property information while rapidly categorizing natural scenes, in Experiment 3 we

investigated the extent to which a scene-centered global description is sufficient to

predict human rapid scene categorization performances. To do this, we employed a

simple classifier whose only image information was the global property ranking data

from Experiment 1. In terms of overall accuracy, the classifier is comparable to human

performance (section 5.21), and has a similar performance by semantic category (section

5.21), indicating that the same semantic categories that are easier for human observers are

also easier for the classifier. We have also shown that the errors made by the classifier

are similar to the false alarms made by human observers (5.22-5.23). Critically, the exact

errors are often repeatable (in other words, if a human observer makes a false alarm to a

particular mountain as a forest, the classifier will most often make the same mistake).

We have shown that the classifier, when trained on incomplete global property data,

replicates the false alarms made by human observers in Experiment 2 when certain global

properties were rendered less diagnostic for the classification task (sections 5.24 and

5.25). Finally, we have shown that the global property representation can deal with non-

prototypical images as well as it deals with prototypical images (5.26). Altogether, we

have shown that in terms of accuracy and errors, a representation that only contains
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global property information has high predictive value for human performance at rapid

basic-level scene categorization.

6 - Experiment 4: An alternative hypothesis - comparing a global property

representation to a local region representation

The global property based classifier shows remarkable human-like performance,

in terms of both quantity and fidelity, in a rapid scene categorization task. Could any

reasonably informative representation achieve such high fidelity? Basic-level scene

categories are also defined by the objects and regions that they contain. Here, we test the

utility of a local representation for predicting human rapid natural scene categorization by

creating an alternative representation of our database that explicitly represents all of the

local regions and objects in each scene. In order to fairly test the local representation, we

employed two different models using these data, based on implementations of proposals

in the literature: the local semantic concept model (Vogel & Schiele, 2007) and the

prominent object model (Biederman, 1981; Friedman, 1979).

The local semantic concept model presents the case where an exhaustive list of

scene regions and objects is created, and that scene recognition takes place from this list.

Vogel and Schiele (2007) showed that very good machine scene classification could be

done by representing a natural landscape image as a collection of local region names

drawn from a small vocabulary of semantic concepts: an image could be represented as

9% sky, 25% rock, and 66% water, for example. Here we implement a similar idea,

using the names of all regions and objects using a set of basic-level and superordinant
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region concepts along with their percent image area in a scene (see Method section 6.1

and Appendix 8.8 for details).

The prominent object model represents the case where scene recognition proceeds

from a single, prominent object or region rather than an exhaustive list. This has been a

popular potential mechanism for scene understanding proposed in the literature

(Biederman, 1981; Friedman, 1979). Our implementation calculates the predictability of

a scene category given the identity of the largest annotated object in the image. For

example, we would predict that an image whose largest object is "trees" to be a forest, or

an image whose largest region is "grass" is likely a field. Of course, objects can be

prominent without necessarily being the largest objects, and a related literature is devoted

to determining the image features that make an object prominent, or salient (for a review,

see Itti & Koch, 2001). As the nature of these features is still relatively open, here we are

limiting our definition of "prominent" to only include size.

It is important to note that both local region models present two conceptually

different views about how scene recognition might proceed from local region and object

information. The local semantic concept model categorizes a scene based on the co-

occurrence of regions from an exhaustive list of scene regions, assuming that in a glance

all objects can be segmented, perceived and abstracted into concepts. This model

represents the best-case scenario for the local approach, in which the identities of all of

the objects and regions in the scene are known, as well as their relative sizes.

By contrast, the prominent object model assumes that not all regions have equal

diagnostic information for the scene category, and that in particular, if an object is

prominent in the scene, it will contain more information about the scene's category.
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Scene categorization is therefore an inference based on the recognition of this prominent

(and informative) object. However, it is important to note that as size information is also

included in the local semantic concept model, all of the information in the prominent

object model is contained in the local semantic concept model. Therefore, the essential

difference in the two models is in the relative importance of one object verses the

importance of all objects.

6.1 - Method

Two independent observers (one author, and one na've observer) hand-segmented

and labeled all regions and objects in the 200 image database. The labeling was done

using the online annotation tool LabelMe (Russell, Torralba, Murphy & Freeman, 2008).

Example annotations are found in Figure 9. There were a total of 199 uniquely labeled

regions in the database. All of the labels were pared down to 16 basic and superordinant

level region names by removing typos, misspellings, synonyms and subordinant-level

concept names (for example "red sand" instead of "sand"). We used the following region

concepts for the local semantic concept model: sky, water, foliage, mountains, snow,

rock, sand, animals, hills, fog, clouds, grass, dirt, manmade objects, canyon and road.

This list includes the nine semantic concepts used by Vogel & Schiele (2007) as well as

others that were needed to fully explain our natural image database. In Appendix 8.8, we

report that the performance of this 16 concept model is not different from a model using

the raw data (199 concepts), or a model using 50 basic-level region concepts.
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Figure 9: Examples of segmentations and annotations made using the LabelMe annotation tool, and used
as the basis for the local scene representation in Experiment 4.

Each image's list of regions (along with their image area) was used to train and

test a naYve Bayes classifier using the same leave-one-out procedure as described in

Experiment 3. As with the global property classifier of Experiment 3, results are

compared to the human psychophysical performance of Experiment 2.

For the prominent object model, the naYve Bayes classifier was not needed

because the relevant information could be calculated directly from the statistics of the

LabelMe annotations. For each image, we calculated the probability of the image being

from each basic-level category based on the identity of the scene's largest object. For

this analysis, we used the 50 local concept list (see Appendix 8.8) as it had the best

balance between distinctiveness and representation of the object concepts.

For each image, we computed a 50 region by 8 category matrix of object

predictability from the 199 remaining scenes where each entry (i,j) was the probability of

the region (i) being in the basic-level category (j). Taking the row representing the

largest region in the test image, we selected the category for maximum probability for

that region. For example, if a scene's largest region was sky, the probabilities of the
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scene being from each of the eight categories are as follows: 0.20 desert; 0.14 field; 0.04

forest; 0.16 lake; 0.17 mountain; 0.15 ocean; 0.05 river; 0.09 waterfall. Therefore, the

scene is most likely a desert.

6.2 - Results

A summary of the classification results of the two local region models, along with

a comparison to the global property model of Experiment 3, can be found in Table 5.

Percent By-category Item analysis Between-
correct correlation correlation category

confusion
correlation

Prominent 52% 0.55 0.69* 0.06
object model
Local semantic 60% 0.64 0.69* 0.23
concept model
Global 77% 0.88* 0.76* 0.77*
property
model
Table 5: A summary of performance of local region-based models tested in Experiment 4 with the global
property model of Experiment 3. The local semantic concept model refers to a model in which a scene is
represented as a co-occurrence vector of all labeled regions and objects along with their relative sizes. The
prominent object model refers to the predictability of the scene category conditioned on the presence of its
largest object. The by-category correlation (cf. section 6.21 for the local models and 5.21 for global model)
shows the extent to which the models are similar to the pattern of human correct performance rate by
category for the eight basic-level categories. The item analysis (section 6.22 and 5.22 for local and global
models respectively, bins of 25) shows the extent to which the models tend to misclassify the same images
as humans do. The between-category confusion correlation (section 6.23 and 5.23 for local and global
models respectively) shows the extent to which the patterns of confusability between pairs of basic-level
categories for the models were similar to those of human observers. (*) indicates significant correlations
(p<0.05).

6.21 - Local models' performance: Percent correct and correlation to human basic-

level category performance

The local semantic concept model averaged an overall 60% correct

categorizations (vs. 77% for the global property classifier, section 5.21), which was

significantly lower than the percent correct of human meta-observers (77%, t(7)=-2.88,

p<0.05, also recall 86% for complete observers). To ensure that the local semantic
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concepts were not too general, we compared this performance to the performance on a

larger list of 50 basic-level region concepts, finding no significant performance difference

to the semantic concept model (t(398)<1, see Appendix 8.8 for details, including the

percent of correct classifications per semantic category). The prominent object model

performed well overall. The overall percent correct for this model was 52% (chance

being 12.5%), but still under the rate of human observers (t(7)=-9.4, p<0.0001).

To evaluate how the local models compared to human performance by category,

we correlated meta-observer correct performance and object models' correct performance

for the 8 basic-level categories (as in Section 5.21 and Figure 5 for the global property

model): None were significant (r=0.64, p=0.09, for the local semantic model, and r=-0.55,

p=. 16, for prominent object model).

These results suggest that the scene categories that are easy or hard for human

observers to classify at a short presentation time are not necessarily the same for the

objects models. In fact, the categories field, forest and mountain are classified by all three

models at human performance levels, whereas the object models' classifications drop for

desert, lake, ocean and river. Indeed, field, forest and mountain are environments that are

mostly composed of one or two prominent regions or objects (e.g. grass for field, trees for

forest, and mountain for mountain), whereas other scene categories share more objects

between them, putting local models at a disadvantage.

6.22 - Error analysis: Easy and Difficult Images

As we did in Experiment 3 (section 5.22), we performed an item analysis to

determine if the local region models would have trouble classifying the same images that
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human observers do. This analysis quantifies whether an error is made on an image, but

not the type of error made.

Both the local semantic concept model and the prominent object model reflected

the level of difficulty of the images for humans as well as the global property model did

(for bins of 25, r-0.69 for both object models, both correlations significant p<0.001, see

Table 5. Bins of 10 yielded higher coefficients, r-0.89 for local semantic concept model

and r-0.85 for the prominent object model). These correlations indicate that both global

and local representations have a tendency to perform well or poorly on the same images.

However, this analysis does not give information about the type of errors made. In other

words, the local models and human observers tend to misclassify the same images, but do

they misclassify these images as being the same category? We explore this issue below.

6.23 -Qualitative error analysis: Distribution of error types

In order to evaluate further the types of errors made by the local models, we

analyzed the extent to which the distribution of errors made by the object models was

similar to the distributions of false alarms made by human observers. For instance, in the

rapid scene categorization task (Experiment 2), humans often confused river and

waterfall, as well as desert withfield (Table A5). However, they almost never mistake a

forest for an ocean. Are the pairs of categories often confused by human observers also

often confused by the local region models? As in section 5.23, we compared the pairwise

basic-level category confusions made by the local region models to the distribution of

false alarms made by the human observers for each pair of categories. For both local

models, there was no significant relation between their patterns of category confusability
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and those of the human observers: r=0.23 (p=.25) for the local semantic concept model,

and r=0.06, (p=0.75) for the prominent object model (the global property model gave

r-0.77 for comparison). This indicates that there is limited similarity between the local

models and human observers in terms of the pairs of categories confused, and suggests

that these local models do not capture the richness of the representation built by human

observers in a 30 msec presentation time.

6.3 - Discussion

The high performance of the global property model begs the question of whether

any reasonably rich and informative representation could predict human rapid scene

categorization performance.

Here we have explored two distinct alternative hypotheses to the global property

scene representation. In particular, our results suggest that a local, region-based

approach, based on suggestions from the literature does not have the same capacity to

explain human rapid scene categorization as the global property model does. It is of note

that the local semantic concept model represents one of the best-case scenario for the

local approach, in which the identities of all of the objects and regions in the scene are

known, as well as their relative sizes.

While the local semantic concept model shows relatively good percent correct

performance at basic-level scene categorization (60%, chance being 12.5%), it does not

have the fidelity to predict the types of false alarms made by human observers in a rapid

scene categorization task (c.f. Table 5). For instance, Figure 10 shows example false

alarms made by the global property classifier of Experiment 3 with the local semantic
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concept model of Experiment 4. Strikingly, the top desert and river are classified by the

global property classifier as being field and forest respectively. This mirrors the pattern

of false alarms made to the same images by human observers in Experiment 2. However,

the lake and river shown at the bottom of Figure 10 were classified as ocean and field

respectively by the local semantic concept model; errors that were not made often by the

human observers in Experiment 2. At first glance, it seems strange that such a

prototypical river (bottom right of Figure 10) would be classified as a field at all.

However, as fields in our database have large amounts of sky, trees and rock (similar to

rivers), this image was classified as a field by the local semantic concept model.

The prominent object model, while having the lowest overall correct

categorization performance of the models, still performed substantially above chance.

This is because some categories, such as field and forest were very well categorized by

this model. This makes intuitive sense, as typical prominent objects for these categories

were grass and trees respectively, which were very diagnostic for these categories.

However, these categories which were easy for the model to classify had limited

similarity to the categories that were easy for the human observers to classify, which is

why the by-category correlation was modest. While the prominent object model had a

tendency to correctly categorize the same images as human observers, it could not predict

the types of errors that the human observers would make. For example, if water was the

largest object in a scene, the prominent object model could not distinguish whether the

scene was a lake, ocean, river or waterfall because water is equally diagnostic for these

categories.
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Likewise, the local semantic concept model was able to correctly classify the

majority of the images in the database. This is because there is a considerable amount of

redundancy in image categories that allowed the model to learn that a scene with cliffs,

water and sky is likely to be a waterfall while a scene with sand, rock and sky is likely to

be a desert. However, the pattern of correct category classification of this model showed

only modest similarity to that of the observers. For example, field was very well

classified by the model while it was on average, one of the more difficult categories for

the human observers in the rapid categorization task. This is likely because the model

was relying heavily on the presence of objects such as grass orflowers that are unique to

this category. Like the prominent object model, the local semantic concept model tended

to correctly classify the same images as human observers, but could not predict the types

of false alarms made by humans. In particular, categories such as lake and river have

very similar sets of objects (typical objects include sky, water, trees and grass), so it was

difficult for the local semantic concept model to distinguish between these categories,

even though human observers did not have such a difficulty.

In contrast, the global property model of Experiment 3 had higher correct

classification performance than the local models, and was very similar to human

observers' performance. Also in contrast to the local models, its pattern of performance

by category significantly correlated with that of the human observers'. Like both of the

local models, it also tended to correctly classify the same images that human observers

did. However, unlike the local models, it has the power to predict the types of false

alarms made by the human observers. To go back to the lake and river example, the local

models made errors in these categories because the objects in them are very similar.
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However, the global property model can distinguish between them because they have

different layout and surface properties: lakes are more open, and less transient, for

example (see Figure 3). To the human observers, few errors are made between these

categories, perhaps because the observers are using the structural differences between

these categories to distinguish them.

Clearly, more sophisticated object models that incorporate structure and layout

information should be able to capture more of the essence of a natural scene (Grossberg

& Huang, in press; Murphy, Torralba, Freeman, 2003). Our point here is that object

models testing simple instantiations of valid propositions from the visual cognition

literature do not have the same explanatory power as our global property model for

predicting human rapid scene categorization performance.

Importantly, we do not mean to imply that local objects are regions are not

represented in early processing of the visual scene. Instead we have shown that the

remarkable fidelity of a global property representation for predicting human rapid scene

categorization performance cannot be achieved with any reasonably informative

description of the visual scene.

~~-- ' ' ---- - ~- 'L--iil - i--;lli?;----;--; : :: '-r ;r-.i-li~:-;:i2-~~ ;~

Page 66



A Global Framework for Scene Gist

Ialse alarms: global property classifier

"field "forest"
(human -63%) (human - 57%1

I alse alarms: local semantic concept classifier

"ocean" "field"
(human -12%) (human- 0-

Figure 10: Examples of false alarms made by the global property classifier of Experiment 3 and the local
semantic concept classifier of Experiment 4. Underneath, we report the percent of human false alarms
made on that image. The global property classifier captures the majority of false alarms made by human
observers while the local semantic concept classifier captures less (see Table 5).

While local region and object information most certainly make up an important

part of a scene's identity, our results suggest that the representation formed by human

observers after a very brief glance at a scene is not dominated by local object information

(see also Fei Fei et al, 2007). Our results suggest the possibility that our qualia of object

perception in a brief glance might be based upon inference of these objects given global

scene structure and schema activation.

7 - General discussion

~;;;;;;;;;;;;;;
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In this work, we have shown that a global scene-centered approach to natural

scene understanding closely predicts human performance and errors in a rapid basic-level

scene categorization task. This approach uses a small vocabulary of global and

ecologically relevant scene primitives that describe the structural, constancy and

functional aspects of scene surfaces without representing objects and parts. Beyond the

principle of recognizing the "forest before the trees" (Navon, 1977), here we propose an

operational definition of the notion of "globality" for natural scene recognition, and

provide a novel account of how human observers could identify a place as a "forest",

without first having to recognize the "trees".

Several independent analyses, on human performance alone (Experiments 1 and

2), and on human performance compared to a classifier (Experiments 3 and 4), were

undertaken to finely probe the relation between a global scene representation and human

rapid natural scene categorization performance. Although strict causation cannot be

inferred from these correlational results alone, all results taken together are suggestive of

the view that a scene-centered approach can be used by human observers for basic-level

scene categorization. Strengthening this view is the fact that performance of a classifier

representing the local objects and regions of the images (Experiment 4) does not have the

same explanatory power as the global property representation (Experiment 3) for

predicting human performance and false alarms (Experiment 2).

We have shown that human performance at a rapid scene categorization task can

be dramatically influenced by varying the distractor set to contain more global property

similarities to a target category (c.f. Figure 4, section 4.22). Moreover, the item analysis

which calculates the probability of a false alarm occurring to single distractor images,
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was very well predicted from each distractor's distance from the target-category mean for

a global property, suggesting that rapid image categorization performance follows the

statistical regularities of global properties' distributions in basic-level categories. Last,

the relative confusability of basic-level categories (section 4.23, Tables A5 and A6) to

one another is also well-explained by the basic-level categories' similarity in global-

property space.

To determine how computationally sufficient the global properties are for

explaining the human rapid scene categorization data in Experiment 2, we compared a

simple classifier to human performance on several metrics (Experiment 3). First, the

overall categorization performance of the classifier was similar to humans', and the

relative performance of the classifier by category was also well correlated with human

observers.

However, similar levels of performance are not enough: if the global property

representation is a plausible human scene representation, then the classifier should also

predict the false alarms made by human observers. We have shown that image difficulty

for the classifier is very similar to image difficulty for human observers, and that the

same qualitative errors are made by both (e.g. false alarming to a particular river image

as a waterfall) the majority of the time (sections 5.23). Furthermore, we have shown that

when a global property is not available for use in categorization, either because it is not

explicitly represented (classifier), or because the distractors make it non-diagnostic of the

target category (humans), performance suffers similarly (sections 5.24-5.25).

Furthermore, we have shown in section 5.26 that the high fidelity of categorization

performance in the global property model can generalize beyond prototypical images. In
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particular, the level of agreement between the classifier and human observers is not

different from the agreement between the human observers. Lastly, the striking

predictability of the global property model for human scene categorization performance

is not found in two local object models that we tested (Experiment 4).

It has been known that visual perception tends to proceed in a global-to-local

manner (Navon, 1977), but for stimuli as complex as a natural scene, it is not obvious

what the global level might be. Computational models have shown that basic-level scene

categories can emerge from a combination of global layout properties (Oliva & Torralba,

2001, 2002, 2006), or from a collection of regions (Fei Fei & Perona, 2005; Grossberg &

Huang, in press; Vogel, Schwaninger, Wallraven & Bulthoff, 2006; Vogel & Schiele,

2007) but no psychological foundation has yet been established between global scene

properties and basic-level scene categorization performance. This work has tried to make

this link. By grounding our search in the principles of environmental affordance (Gibson,

1979; Rosch, 1978), we found a collection of global properties that are sufficient to

capture the essence of many natural scene categories.

Our result is also in the spirit of seminal scene understanding studies from the

1970s and 1980s. Biederman and collaborators have shown that coherent scene context

aided the search for an object within the scene, even when the identity and location of the

object were known in advance (Biederman, 1972). Furthermore, lack of coherent spatial

context seemed particularly disruptive on negative trials where the object was not in the

scene, but had a high probability of being in the scene (Biederman, Glass & Stacy, 1973).

Together, this suggests that scene identity information may be accessed before object

identity information is complete. Biederman (1981) outlined three paths by which such
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scene information could be computed: (1) a path through the recognition of a prominent

object; (2) a global path through scene-emergent features that were not defined at this

time; (3) the spatial integration of a few context related objects.

Our results offer positive evidence for path 2 (the global path suggested by

Navon, 1977, but never operationalized) and non-conclusive evidence for path 1 (the

prominent object). Path 3 supposes that the co-occurrence of a few objects in a

stereotypical spatial arrangement would be predictive of the scene category. The semi-

localized local model of Vogel & Schiele (2007) along with the studies of relation

processing by Hummel and colleagues (e.g. Saiki & Hummel, 1998) has started to find

evidence for this path. However, there is also reason to believe that path 3 may not be the

only approach for capturing the type of representation built over a brief glance at a novel

scene. This view requires that several objects be segmented, recognized and relationally

organized for scene categorization to occur. However, it is still not clear that humans can

segment, identify and remember several objects in a scene at a glance. Potter et al.

(2004) demonstrated that, in a memory test following an RSVP sequence of images, a

large number of false alarms were made to images that were conceptually similar to an

image presented in the sequence, but did not necessarily have the same objects and

regions, suggesting that what is encoded and stored from a brief glance at a scene is a

more general description of the image than an exhaustive list of its objects. This view is

corroborated with the facts that human observers also make systematic errors in

remembering the location of objects from a briefly glimpsed display (Evans & Treisman,

2005), and are relatively insensitive to changes in single objects in a scene (change

blindness, Rensink et al, 1997; Simons, 2000).
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A consequence of our global precedence finding could be that the perceptual

entry-level for visual scenes is not the basic-level category, but rather an image's global

property descriptions, at a superordinate level (Joubert et al., 2007; Oliva & Torralba,

2001, 2002). This idea is not necessarily contradictory of the behavioral findings of

Rosch and colleagues. We argue that the basic-level category is the entry level for

communication about objects and places because it represents a compromise between

within-category similarity and between-category distinctiveness. However, under the

constraints of a rapid categorization task, perhaps the initial scene representation would

benefit from processing distinctiveness first, making a superordinate description an ideal

level, particularly if the visual features used to get this superordinate description do not

require a segmentation stage, known to be computationally more expensive than an

holistic analysis (Oliva & Torralba, 2001).

Finding the image-level features that mediate such rapid visual categorizations is

a fascinating, yet rather open question that is beyond the scope of the current work.

Indeed, previous work has shown that certain spatial layout properties, such as openness

and mean depth can be well-described from a set of low-level image features

corresponding to spatially localized second-order image statistics (Oliva & Torralba,

2001, 2002; Torralba & Oliva, 2002, 2003). Some properties, such as temperature, might

even be represented by simpler images features, such as the color distribution. However,

functional properties such as navigability and concealment may be more complex to

represent, as their spatial structures might not co-vary in a simple way with first or

second order image statistics. For instance, if a scene is very open, it is open because it

has a very salient horizon line somewhere near the vertical center, and all scenes that are
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consistently ranked as highly open share this feature. A navigable scene however, might

be navigable because the scene is open and free of clutter, or it could be navigable

because it has a very obvious path through an otherwise dense environment. Therefore,

image features of a higher complexity might be needed to fully represent these global

properties, a question that future research will investigate.

A global scene-centered representation is a plausible coding of visual scenes in

the brain and a complementary approach to object-based scene analysis. This present

work suggests that rapid scene recognition can be performed by global scene-centered

mechanisms and need not be built on top of object recognition. Indeed, work in

functional imaging has shown a dissociation between brain areas that represent scenes

(the parahippocampal place area, or PPA, Epstein and Kanwisher, 1998) and those that

represent individual objects (Bar, 2004; Grill-Spector, Kourtzi & Kanwisher, 2001).

Furthermore, the PPA seems to be sensitive to holistic properties of the scene layout, but

not to its complexity in terms of quantity of objects (Epstein and Kanwisher, 1998). The

neural independence between scenes and object recognition mechanisms was recently

strengthened by Goh, Siong, Park, Gutchess, Hebrank & Chee (2004). They observed

activation of different parahippocampal regions when pictures of scenes were processed

alone compared to pictures containing a prominent object, consistent within that scene.

Steeves, Humphreys, Culham, Menon, Milner & Goodale, (2004) have shown that an

individual with profound visual form agnosia could still identify pictures of real world

places from color and texture information only. These findings are consistent with the

hypothesis that whole scene recognition may be dissociated from object identification.
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What is the mechanism by which a scene-centered pathway could arise in the

brain? Although we are far from a definitive answer, an examination of the time course

of visual processing yields critical insights. Thorpe and colleagues (1996) have made a

case that the speed of high-level visual processing necessitates a single feed-forward

wave of spikes through the ventral visual system. Furthermore, biologically inspired

models of this architecture yield high performances in detection tasks (Delorme &

Thorpe, 2003; Serre, Oliva & Poggio, 2007). However, very rapid feedback might also

mediate this performance. Physiological evidence shows that there is considerable

overlap in time between spikes arriving in progressive areas of the ventral visual stream

(Schmolesky, Wang, Hanes, Thompson, Leutgeb, Schall & Leventhal, 1998), suggesting

that feedback from higher visual areas can feed back to early visual areas to build a

simple yet global initial scene representation. Furthermore, a combined EEG/MEG and

fMRI study has shown a Vl feedback signal as early as 140msec after stimulus

presentation (Noesselt, Hillyard, Woldorff, Schoenfeld, Hagner, Jancke, Tempelmann,

Hinrichs, & Heinze, 2002) furthering the idea that scene recognition may be mediated

through rapid feedback. Strikingly, there is evidence of the global pattern from a

contextual cueing display being processed 100 msec after stimulus presentation

(Chaumon, Drouet & Tallon-Baudry, 2008). These results confer with behavioral

evidence which suggest that global properties such as concealment or naturalness are

available for report with less exposure time than basic-level categories (Greene & Oliva,

in preparation; Joubert et al, 2005, 2007; Kaplan, 1992). Although this does not

necessarily imply that they are processed first by the brain, it is consistent with the view

that global properties are reasonable scene primitives for basic-level categorization.
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Emphasizing the importance of a scene-centered view does not imply that objects

are not an important part of rapid scene recognition. Surely, as objects can make up the

identity of the scene and are the entities acted on by agents in a scene, they are of critical

importance for scene understanding with longer image exposures. However, it appears

that objects might not necessarily be the atoms of high level recognition especially under

degraded conditions of blur or at the very beginning of visual analysis (Oliva & Schyns,

2000; Schyns & Oliva, 1994). But given longer image exposures, objects become

increasingly important in our representations of scenes during the course of the first

fixation (Fei Fei et al, 2007; Gordon, 2004) and a framework that would combine objects

and their spatial relationships with global properties would capture more of the richness

of scene identity.

In this work, we have demonstrated that global property information is more

diagnostic of natural scene categories than local region and object information. A natural

question is then what roles both types of information play in other types of environments,

such as indoor scenes? Intuitively, the prominent object model from Experiment 4 seems

like it would do a good job at categorizing some indoor categories such as bedrooms or

living rooms because the largest object (bed or sofa) is not typically found in other scene

categories. However, it does not seem that all indoor categories are so strongly object-

driven. A corridor, for example, is unique among indoor scene categories as having a

great deal of perspective. A conference room and a dining room might also be confused

by a prominent object model as they both have prominent tables surrounded by chairs.

Part of our ongoing effort is characterizing the relative use of global and local diagnostic

information for scene categorization for a greater variety of scene categories.
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An extension of the present work that could indirectly probe the neural

representation of visual scenes is to measure if global properties are adaptable (Greene &

Oliva, 2008). A ubiquitous property of neural systems is that repeated presentation of a

represented property leads to a temporary decrease in sensitivity to that property, a

phenomenon known as adaptation. This phenomenon is seen at all levels of visual

processing for entities that seem to have dedicated processing, from basic properties such

as color, motion, orientation and spatial frequency (for a review, see Wade & Verstraten,

2005) to complex features such as facial emotion and identity (Webster, 2004; Leopold,

O'Toole, Vetter & Blanz, 2001). Furthermore, adapting to low-level image features can

modulate higher level perceptual judgments for surface glossiness (Motoyoshi, Nishida,

Sharan & Adelson, 2007) or the naturalness of real-world scenes (Kaping, Tzvetanov &

Treue, 2007).

7.1: Concluding remarks

The present work was designed to operationalize the notion of globality in the

domain of natural real-world images. We have shown that global properties capture

much of the variance in how real world scenes vary in structure, constancy and function,

and are involved in the representation of natural scenes that allows rapid categorization.

All together, our results provide support for an initial scene-centered visual

representation built on conjunctions of global properties that explicitly represent scene

function and spatial layout.
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8 - Appendix

8.1 - Pilot experiment for determining global properties

In order to ensure that image properties and affordances stated in the literature are

relevant to our natural scene image database and participant population, we ran the

following pilot experiment with 5 naive observers. Participants viewed each of the 200

natural landscape images, one at a time for one second each. Observers were given the

following instruction: "We are studying how people perceive space in photographs.

Describe the kinds of actions that you could do if you were in that scene at that moment,

from that viewpoint. You might also mention what you might not be able to do due to

environmental conditions". Observers typed their answer in a free-response prompt, and

were given unlimited time.

Observers' responses were tabulated by one author as to the broad environmental

concepts they contained. Table Al summarizes these concepts (see caption for details).

Recognizing the possibility for experimental bias in this method, care was taken to be as

conservative with tabulations as possible. The descriptors given are similar to those found

in other studies of environmental interaction (Appelton, 1975; Kaplan, 1992), and of

environmental spatial layout (Oliva & Torralba, 2001). All of the global properties used

in the subsequent experiments (openness, navigability, mean depth, concealment,

perspective, transience, and movement) were conceptually mentioned or described by all

participants.
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Concept
Navigation
Exploration
Temperature
Movement
Space
Camouflage
Harvest
Rest
Water
Animal
Ruggedness

Mean frequency mentions per image
1.39 (5)
0.26 (5)
0.17 (5)
0.15 (5)
0.14 (5)
0.12 (5)
0.11 (5)
0.06 (4)
0.06 (3)
0.03 (2)
0.02 (2)

Table Al: Mean mentions of scene properties per image in the scene description study (see Appendix 8.1).
The number in parentheses indicates the number of observers who have mentioned the concept (out of 5
total observers). Navigation refers to self-propelled land or water movement through the scene (e.g.,
walking, running, swimming, driving). Exploration refers to examination or interaction with a particular
object (e.g. look at, play with). Although this was mentioned by all participants, it was not included as a
global property because it refers to interactions with single objects, and not the entire scene. Temperature
contains references to the physical temperature of the environment (e.g. hot, cold, warm). Movement refers
to statements of the scene in change or anticipation of it changing ("wait for car", "water is too fast to
swim"). This is a similar concept to transience in Experiments 1, 2 and 3. Space includes mentions of the
size or physical geometry of the scene (openness, perspective, mean depth). Camouflage contains
references to either the human being able to hide in the scene or that something/someone could be hidden
in the scene ("hide in trees", "watch for birds"). This is a similar concept to concealment from
Experiments 1, 2 and 3. Harvest contains references to taking something from the environment (e.g.
picking flowers, hunting and fishing). Water refers to the presence of, or search for water. Rest contains
repose words such as "sit" or "lie down". Animal contains references to animals that are either present in
the scene or could potentially come into the scene. Ruggedness contains references to aspects of the
environment that make navigation treacherous.

8.2 - Global property space

In the ranking task of Experiment 1, there was considerable spread in the ranking

values for each of the basic-level categories (waterfall, river, ocean, mountain, lake,

forest, field and desert) along each global property (see Table 1). Figure Al shows every

image's rank for each global property, broken down by basic-level category (see the

Method section of Experiment 1).
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Figure Al: The figure shows the mean rank of each of the 200 scene image, in their respective semantic

category, along each of the seven global properties. These are from the ranking data from Experiment 1. In

all basic-level categories, there is a considerable spread of image rankings, indicating that the eight basic-

level categories used in Experiment 1,2,3 and 4 do not cluster along single global properties. Abbreviations

of the basic-level categories correspond to: Waterfall, River, Ocean, Mountain, Lake, Forest, Field and
Desert.
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Table A2 shows the correlations between the images' ranking along one global

property to the images' ranking along each other global property, from Experiment 1.

Correlations between image rankings were computed for each pair of global properties in

the database.

Openness Expansion Mean Temperature Transience Concealment Navigability

depth

Openness *

Expansion 0.75 *

Mean depth 0.90 0.70 *

Temperature 0.35 0.29 0.19 *

Transience -0.22 -0.22 -0.34 -0.13 *

Concealment -0.52 -0.24 -0.43 -0.17 -0.06 *

Navigability 0.53 0.64 0.40 0.46 -0.44 0.13 *

Table A2: Correlations between pairs of global properties (image by image) from the human ranking data
of Experiment 1. Correlations that are statistically significant are shown in bold.

It is of note that these correlations are more a reflection of the landscape images in the

natural image database we used, and less a statement about the similarity of the property

concepts. For example, in this database openness and mean depth are highly correlated.

However, previous work has shown that for a larger and more diverse database of real

world scenes, this relation is much less strong (Oliva & Torralba, 2002).

While the global properties are not all statistically independent with each other

(Table A2), each property gives unique information about the scene images. For

example, while all open places also have large mean depth, not all large depth pictures

are necessarily open (see Figure A2-a). Likewise, places that are easily navigable might

~:':"- ----;; i;-i -- ii: iiD:-; -;--;;-'i- ':-"iii ;-i-;;;;; -~
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or might not be have perspective (see Figure A2-b), and two very closed places such as

forests can have different degree of expansion (see Figure A2-c). It's of note that

concealment and navigability are not correlated with one another (r-0.13). This is

because it is the size and distribution of the obstacles in a scene that matter for estimating

these properties in a given space, and not merely the presence of obstacles. For example,

a very dense forest of thin trees does not provide good cover for a human (low

navigability and low concealment), and a forest with a clear path through it would rank

highly for both navigability and concealment.
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Figure A2: A) A scatterplot of the rankings of the 200 natural scenes along mean depth and openness

(from Experiment 1) shows that although there is a strong correlation between these properties in this

particular database, these properties represent distinct spatial concepts. For example, images with large

depth, can either be very open, with an infinite horizon like the picture of the canyon, or moderately closed

such as the mountainous landscape scene, where the horizon is bounded by a peak. B) A scatterplot

showing all image ranks along the navigability and expansion dimensions. The two images shown are

Page 82

0.5

04

a.1

0.)

Iro -

o0.

CA

oa

I
d 06

es b
0.5

OA

n 1

. ........ .

"" '~

U I m



A Global Framework for Scene Gist Page 83

perceived as having a high degree of navigability, however they have a different linear perspective; C) A
scatterplot between openness and expansion dimensions, illustrated the fact that open environments may
have different degree of perspective. Each dot in the scatterplot represents the mean rank of one image,
averaged over at least 10 observers.

To further test the structure and dimensionality of the ranking data of Experiment

1, we employed classical multidimensional scaling (MDS) from the Euclidean distance

matrix of images along the seven global properties. The first three dimensions of the

solution are plotted in Figure A3-a. The eigenvalues of the y*y' transformation matrix

are plotted in Figure A3-b. Unfortunately, there is no objective test of MDS

dimensionality. A "scree" or elbow test is typically employed to test the underlying

dimensionality of an MDS solution. The lack of an obvious elbow as shown in Figure

A3-b suggests that all seven dimensions, although correlated, contribute to the scene

category representation.
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Figure A3: The classical multi-dimensional scaling (MDS) solution for the global property rankings from

Experiment 1. a) A scatter plot of each of the 200 scenes in the database projected onto the first three MDS

dimensions. Different semantic categories are shown in different colors. b) - Scree test showing

eigenvalues for the y*y' matrix of the MDS: there is no obvious elbow in these values indicating that all

global properties have a unique (if unequal) contribution to the scene representation.
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Introduction

Catching meaning at a glance is a survival instinct, and a uniquely human talent

that movie producers manipulate to their advantage when making trailers: by mixing

snapshots of meaningful scenes in a rapid sequence, they can convey in a few seconds an

evocative story from unrelated pictures of people, events and places. In the laboratory,

now classic studies have shown that novel pictures can be identified in a 10Hz sequence,

although they are quickly forgotten when new images come into view (Intraub, 1981;

Potter, 1975; Potter & Levy, 1969). While several studies have investigated the

availability of visual features over the course of a glance, here we investigate the early

perceptual availability of a number of semantic scene tasks. What types of meaningful

information can human observers perceive from the briefest glances at novel scene

images?

A typical scene fixation of 275-300 ms (Henderson, 2003; Rayner, 1998) is often

sufficient to understand the "gist" of an image, namely its semantic topic (e.g. "birthday

party": Intraub, 1981; Potter, 1975; Tatler, Gilchrist & Risted, 2003). It takes slightly

more exposure to recognize the smaller objects in the scene (Fei-Fei, Iyer, Koch &

Perona, 2007), or to report their locations and relations (Evans & Treisman, 2005; Tatler

et al, 2003).

There is also evidence that sophisticated scene analysis can be accomplished by

observers after viewing a novel scene for a single monitor refresh (10-40ms) without

masking. Observers are able to classify real-world scenes using tasks as diverse as

detecting how pleasant a scene is (Kaplan, 1992), whether a scene is natural or urban
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(Joubert, Rousselet, Fize & Fabre-Thorpe, 2007); determining the basic or superordinant

level categories of a scene (Oliva & Schyns, 2000; Rousselet, Joubert, & Fabre-Thorpe,

2005), or determining the presence of a large object (Thorpe, Fize & Marlot, 1996; Van

Rullen & Thorpe, 2001). While the extraordinarily high performances in these studies

may be partially mediated by the persistence in iconic memory, high performances are

seen on similar tasks using masking paradigms (Bacon-Mace, Mace, Fabre-Thorpe &

Thorpe, 2005; Fei-Fei et al, 2007; Greene & Oliva, in press; Grill-Spector & Kanwisher,

2005; Maljkovic & Martini, 2005).

While many studies of natural scene understanding have focused on basic-level

categorization or object identification, real world scenes contain a wealth of structural

and functional information whose time course of perceptual availability has not yet been

determined. For example, how navigable a place is, or what environments afford

concealment are perceptual decisions with high survival value (Kaplan, 1992). Similarly,

how scene surfaces extend in space and how they change over time may influence how

observers would behave in the scene. Spatial layout properties such as the mean depth of

an environment, or its openness also influence its affordances (Oliva & Torralba, 2001).

One can run in an open field, but not a small and enclosed cave. Some materials of

natural environments have a high transience (e.g. the scene changes very rapidly from

one glance to the next, as a rushing waterfall or a windy sand-scape), whereas others

surfaces such as cliff rocks have low transience, changing mostly in geological time.

Similarly, material properties of surfaces, along with the interplay of atmospheric

elements (e.g., water, wind, heat) give a place a particular physical temperature, another

global property of the natural environment that strongly influences observers' behavior.
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All of these properties (and certainly more) combine to provide an understanding of the

scene, much like the recognition of a face's gender, race and emotion are part of a

person's identity, or how the recognition of an object depends on its shape, material, or

pose.

In the present study, we establish perceptual benchmarks of early scene

understanding by estimating the image exposure thresholds needed to perform two types

of tasks: A basic-level scene categorization task performed in several blocks (whether an

image is an ocean, a mountain, etc.) and a global property categorization task, where

observers classified several spatial and functional properties of the scene image, also

performed in different blocks (i.e. is the scene a hot place? Is it a large environment?).

There are several possible predictions of the results based on different theories from the

literature. Prototype theorists might predict that the basic-level categories should be

available first, as this level is privileged in object naming experiments (e.g. Rosch, 1978).

However, formal and experimental work has shown that global property information is

highly useful for basic-level scene categorization (Greene & Oliva, in press; Oliva &

Torralba, 2001), which would predict an early advantage for global properties. However,

recent work examining the perceptual availability of object information at different levels

of categorization has shown that while subordinant-level categorizations take more image

exposure than basic-level categorizations, there was no presentation time difference

between knowing that an object is present (versus noise) and knowing what it is at the

basic level (Grill-Spector & Kanwisher, 2005), so there may be no substantial threshold

differences between tasks.
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Experiment

In psychophysics, staircase methods have been successful in efficiently

determining human perceptual abilities (Klein, 2001). Here, we employ a presentation

duration threshold paradigm to determine perceptual benchmarks on both global property

and basic-level categorization tasks.

Method

Participants

20 participants (8 males, age 18-35) completed the psychophysical threshold

experiment. They all had normal or corrected-to-normal vision and provided informed

written content. They received $10 for the one hour study.

Stimuli

A total of 548 full-color photographs of natural landscapes were used in this

experiment (see Figure 1). Images were 256x256 pixels in size and were selected from a

large scene database (Greene & Oliva, in press; Oliva & Torralba, 2001).
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Mean depth Openness

Lo. Navigability High Low Transience High

Figure 1: Example images from low and high poles of four global properties.

To compare natural image tasks, it is necessary to have normative rankings on the

basic-level category and global property status of all images.

For the basic-level category classification blocks, we used prototypical scenes

from 7 natural landscape categories (desert, field, forest, lake, mountain, ocean and

river). Prototypicality of scenes' basic-level categories was assessed in a previous study

(Greene & Oliva, in press) as follows: 10 naYve observers ranked 500 scenes on different

basic-level category labels using a 1 (atypical) to 5 (highly prototypical) scale. At least

25 images per basic-level category with a mean rank of 4 or higher were selected.

Additional exemplars were added for each category by visual similarity matching

between the ranked prototypes and images from a database of -10,000 natural

landscapes. For each basic-level category block, 50 images were from a single target

category (forest, for example) and 50 images were randomly selected from all other

categories (constrained to have roughly equal numbers of each other category).
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For the global property blocks, we used images that had been ranked as poles in

one of 7 global properties (concealment, mean depth, naturalness, navigability, openness

transience and temperature, see Greene & Oliva, in press, and Table 1 for descriptions).

The same collection of 500 natural scene images were ranked along each of the global

properties (excepting naturalness) using a hierarchical grouping task: at least 10

observers organized trials of 100 images at a time from lowest to greatest degree of a

property (from the most close-up to farthest view when ranking mean depth, for

example). Images whose ranks were within the first (<25%) or last quartiles (>75%) of

the ranking range were considered typical poles for that global property and were used in

the current experiment. Images for naturalness consisted of images sampled from this

pool of natural images as well as various urban distractor images. For each global

property block, 50 images from the high global property pole served as targets (high

openness, or large depth, for example), and 50 images from the low pole served as

distractors (e.g. closed or small depth). A description of the 7 global properties, as

described to participants, is listed in Table 1.

Global Property Target Description Non-target description
Concealment Scene contains many accessible If standing in the scene, one

hiding spots, and there may be would be easily seen.
hidden objects in scene.

Mean depth Scene takes up kilometers of Scene takes up less than a few
space. meters of space.

Naturalness Scene is a natural environment. Scene is a man-made, urban
environment.

Navigability Scene contains a very obvious Scene contains many obstacles or
path that is free of obstacles. difficult terrain.

Openness Scene has a clear horizon line Scene is closed with no
with few obstacles. discernable horizon line.

Temperature Scene environment depicted is a Scene environment depicted is a
hot place. cold place.

Transience One would see motion in a video Scene is not changing, except for
made from this scene. patterns of daylight.
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Table 1: Description of global property target and non-target images as described to participants in the
experiment.

As far as possible, test images for both the category and global property tasks

were drawn from the same population of natural landscape pictures. About half of all

images served as both targets and distractors for different blocks. This helps to ensure

that image-level differences are balanced across the experiment.

To produce reliable perceptual benchmarks, it is necessary to effectively limit

additional sensory processing following image presentation. To this end, we used a

dynamic masking paradigm (Bacon-Mace et al, 2005) consisting of a rapid serial visual

presentation sequence of mask images. The use of multiple mask images minimizes

visual feature interactions between target images and masks, ensuring a more complete

masking of image features.

Mask images (Figure 2) were synthesized images created from the same database

of natural images, using a texture synthesis algorithm designed by Portilla & Simoncelli

(2000). We used the Matlab code provided on their web site enhanced to include the

color distribution of the model input image. Examples of masks are shown in Figure 2.

The texture synthesis algorithm uses a natural image as input, and then extracts a

collection of statistics from multi-scale, multi-orientation filter outputs applied onto the

image and finally, coerces noise to have the same statistics. Importantly, this method

creates a non-meaningful image that conserves marginal and first-order statistics as well

as higher-order statistics (cross-scale phase statistics, magnitude correlation and

autocorrelation) while discarding object and spatial layout information. Additionally, a t-

test performed on the power spectrum slopes for various orientations between the group

of natural images and the group of masks was not significant (prep=0.76).
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Mask images
20 msec each

Figure 2: Schematic of experimental trial. The presentation duration of each test image was staircased

using a linear 3-up-1-down procedure, with the first trial of each block presented for 50ms stimulus onset

asynchrony (SOA). Test images were dynamically masked using four colored textures.

Design and Procedure

Participants sat in a dark room about 40cm away from a 21 inch CRT monitor

(100Hz refresh rate). Stimuli on the screen subtended 7 deg. x 7 deg. of visual angle.

Each participant completed 14 blocks of 100 images each: 7 category blocks and 7 global

property blocks. The order of blocks was randomized and counterbalanced across

participants. For each block, participants performed a yes-no forced choice task, and

were instructed to respond as quickly and accurately as possible whether the image

briefly shown was of the target (category or global property pole).

During each block, a linear 3-up-i-down staircase was employed. The first image

in each block was shown for 50ms followed by the dynamic mask. Subsequent

presentation times of trials in that block were determined by the accuracy of the
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observer's previous response, increasing by 10ms (to a ceiling of 200ms) if the response

was incorrect and decreasing by 30ms (to a floor of 10ms) for a correct response. In this

way, performance converges at 75% correct (Kaernbach, 1990).

At the beginning of each experimental block, an instruction page appeared on the

screen, describing the task (detect a basic level category or a pole of a property, see Table

1) and giving a pictorial example of a target and a non-target. Figure 2 shows a pictorial

representation of a trial. Each trial commenced with a fixation point for 250ms, followed

by the target image for a variable presentation time (10-200ms staircased). Target images

were immediately followed by a sequence of four randomly drawn mask images,

presented for 20ms each, for a total of 80ms. Participants were then to respond to the

target status of the image as quickly and accurately as possible. Visual feedback was

provided for incorrectly classified images (the word "Error" displayed for 300ms

following the response). Participants were first given a practice block of 20 trials to get

used to the staircase procedure. The task for the practice block was "indoor vs. outdoor"

which was not used in the main experiment. This experiment was run using Matlab and

Psychophysics toolbox (Brainard, 1997; Pelli, 1997).

Results

For all blocks, the image presentation threshold was the presentation duration

required for a participant to achieve 75% accuracy on the task. For some participants, not

all blocks yielded a stable threshold. Due to the adaptive nature of the stair casing

algorithm, very poor performance at the beginning of the block could lead to a

considerable number of trials spent at 200ms of image duration (the ceiling duration)
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such that final threshold calculations were artificially high. For all results reported, we

exclude data where more than 10% of trials were spent at the maximum duration of

200ms. Altogether these trials constituted only 5% of the data, and were evenly

distributed between global property and basic-level category blocks (t(13)<1). Below,

we examine two processing benchmarks: (1) an upper bound of the exposure duration

necessary to perform a categorization block, given by the maximum image duration seen

by each participant during each block and (2) the 75% correct threshold duration to

compare time needed for equivalent performance across blocks.

To ensure equal task difficulties, we compared the maximum image exposure

needed by each participant in each block. As image presentation times were controlled

adaptively in the staircase procedure, the longest presentation time seen by a participant

corresponds to the duration where no classification errors were made (recall that errors

resulted in increased subsequent presentation times). If global property and category

tasks are of comparable difficulty, we would expect them to have similar maximum

duration values. Indeed, the mean maximum duration for the global property task was

93ms and the mean for the category task was 91ms (t(19)<1, see Table 2). This result

indicates that both tasks were of similar difficulty.

In order to reliably estimate the 75% correct presentation time thresholds, we

employed two methods: (1) taking the mode image duration seen by each participant and

(2) fitting a psychometric function (Weibull) to the accuracy data for each presentation

time, and solving for the threshold. Reported thresholds in Table 2 are the average of the

two estimates.
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A classic method for estimating thresholds from up-down staircases such as ours

is to take the mode stimulus value shown to a participant (Cornsweet, 1962; Levitt,

1971). The logic here is simple: by moving the presentation duration 30ms shorter for a

correct response on a previous trial, and moving 10ms longer for an incorrect response,

the participants will, over the course of the block converge on 75% correct performance

(Kaernbach, 1990), viewing more trials around the perceptual threshold than above or

below it.

As estimation with the mode is a rather coarse method, we also estimated

thresholds from the psychometric function for each participant and each block. Here, a

Weibull function was fit to the performance data (proportion correct) for each

presentation time viewed using the maximum likelihood procedure. This function

typically provides very good fits to psychometric data (Klein, 2001). To illustrate, Figure

3 shows the Weibull fit and a histogram of presentation times viewed by one participant

for a global property block and a basic-level category block.
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Figure 3: Example of threshold computation for example participant for (a) a global property block

(concealment) and (b) a basic-level category block (ocean). Top row shows Weibull fits with thresholds,

and bottom row shows histograms of presentation times viewed, where mode indicates thresholds. For all

data reported here, the 75% presentation time threshold refers to the mean of these two values for each

participant.

We found that the presentation time thresholds for all 14 categorization blocks were

remarkably short (see Table 2): all were well under 100ms, and ranged from 19ms

(naturalness) to 67ms (river).

Concealment
Mean depth
Naturalness
Navigability
Openness
Temperature
Transience
Mean (st. dev.)

75% threshold Asymptote
35 (2.7) 97 (7.9)
26 (2.8) 75 (4.9)
19 (1.9) 63 (4.9)
36 (4.5) 120 (9.2)
47 (4.6) 119 (9.5)
29 (2.4) 119 (9.5)
45 (4.0) 123 (8.8)
34 (10) 102 (24)
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75% threshold Asymptote
Desert 47 (4.7) 93 (7.2)
Field 55 (4.6) 95 (7.3)
Forest 30 (3.4) 78 (6.6)
Lake 51(3.7) 100 (7.1)
Mountain 46 (3.3) 95 (6.2)
Ocean 55 (3.9) 105 (6.5)
River 67 (5.1) 113 (6.1)
Mean (st. dev.) 50(11) 97 (11)

Table 2: Presentation time threshold values (s.e.m. in parentheses) for the 7 global properties blocks (top
table) and the 7 basic-level category blocks (bottom table). While global property blocks had lower
average thresholds than basic-level category blocks, both reached asymptote performance at similar
presentation times. While global property blocks had, on average, a smaller variance of thresholds between
participants compared with category tasks (t(13)=-1.85, prep = 0.83), there was larger variance in
performance between the global property tasks, suggesting that these properties are less homogenous as a
set than the basic-level categories.

We compared the threshold values for the global property blocks to the threshold

values for the basic-level category blocks and found that the mean global property

presentation time thresholds (34 ms) were significantly lower than the category

thresholds (50 ms) (t(19) = -7.94, prep = 0.99 for average thresholds; t(19) = 7.38, prep >

0.99 for Weibull; t(19) = 3.51, prep = 0.98 for mode). It is of note that to compare any

tasks, it is necessary to ensure that there were equivalent distractor images. In the limit, a

scene distractor with one pixel difference from the target would produce extremely large

presentation time thresholds (if observers could perform the task at all). On the other

hand, distinguishing scene targets from white noise distractors should result in ceiling

performance. In our tasks, distractors were always prototypically different from the

target image. For the global property blocks, this means that the distractors represented

the opposite pole of the queried property and that both targets and distractors came from

several basic-level categories. For the basic-level category blocks, this means that

distractors were prototypes of a variety of other scene categories, and were chosen to
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show the greatest variety of category prototypes. In this way, targets and distractors were

chosen, as best as possible, to vary only in the attribute being tested. Recall that global

property and basic-level category tasks reached ceiling performance at similar

presentation durations, indicating the equivalence of the distractor sets at longer

presentation times.

Figure 4a shows the distributions of participants' presentation duration thresholds

for global property blocks and basic-level category blocks. As shown in Figure 4b, the

distributions of participants' thresholds in basic-level category blocks are rather

homogenous in terms of both means and variances. In contrast, the distributions of

thresholds on global property blocks (Figure 4c) are more heterogenous, some coming

very early and others more closely resembling the category thresholds.

b
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Figure 4: (a) Shows the distributions of observers' presentation duration thresholds for the global property

tasks and the basic-level category tasks. (b) Shows the distribution for each basic-level category block. (c)

Shows the distribution of each global property block. We calculated a 95% confidence interval around the

global property and basic-level category means. We found that "forest" had a significantly faster threshold

than other basic-level category blocks while "openness" and "transience" had significantly slower

thresholds than other global property blocks.
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Discussion

A large amount of meaningful information can be gleaned from a single glance at

a scene (Bacon-Mace et al, 2005; Biederman, Rabinowitz, Glass & Stacy, 1974;

Castelhano & Henderson, 2008; Fei-Fei et al, 2007; Grill-Spector & Kanwisher, 2005;

Joubert et al, 2007; Maljkovic & Martini, 2005; Oliva & Schyns, 2000; Potter & Levy,

1969; Schyns & Oliva, 1994; Thorpe et al, 1996; Walker-Renninger & Malik, 2004 and

many others), but our study is the first to establish perceptual benchmarks comparing the

types of meaningful information that can be perceived during very early perceptual

processing.

What meaningful perceptual and conceptual information can be understood from

extraordinarily brief glances at a novel scene? Here, we provide insight into this question

by comparing the shortest image exposures required for participants to achieve equivalent

performance (75% correct) on a number of naturalistic scene tasks. We found that these

benchmarks ranged from 19ms to 67ms of image exposure, reaching asymptote between

60 to 120ms of exposure. Remarkably, the perception of global scene properties

required, on average, a lower presentation duration than the perception of the scene's

basic-level category. These results are related to other works in ultra-rapid scene

perception (Joubert et al, 2007; Rousselet et al, 2005) that demonstrated that reaction

times in a natural versus manmade task were faster than to a semantic classification (e.g.

mountain, urban). Indeed, we also found that naturalness classification required the least

image exposure (19ms).

Our results are complementary to other studies examining the accrual of image

information over time (Fei-Fei et al, 2007; Intraub, 1981; Rayner et al., in press; Tatler et
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al, 2003). For instance, Rayner et al (in press) found that while the overall semantic topic

of a scene was rapidly understood, being able to find an object within that scene (such as

a broom in a warehouse image) took at least a 150ms fixation. Likewise, in Fei-Fei et al

(2007), observers were presented with briefly masked pictures depicting various events

and scenery (e.g. a soccer game, a busy hair salon, a choir, a dog playing fetch) and asked

to describe in detail what they saw in the picture. They found that global scene

information, such as whether the picture was outdoor or indoor, was perceived well

above chance (50%) with less than 100ms of exposure. Although free report responses

may also be confounded with inference (overestimation of what was seen due to the

covariance with other perceived features and objects, see Brewer & Treyans, 1981), and

may be biased towards reporting verbally describable information, this study conferred

with other results from the literature (Biederman et al, 1974; Intraub, 1981; Oliva &

Schyns, 2000; Potter, 1975; Tatler et al, 2003 among others) finding that as image

exposure increases, observers are better able to fully perceive the details of an image.

In agreement with a global-to-local view of scene perception (Navon, 1977; Oliva

& Torralba, 2001; see also Joubert et al, 2007; Schyns & Oliva, 1994 and others), we

have shown that certain global visual information can be more easily gleaned from an

image than even its basic-level category at the very early stages of visual analysis. This

result suggests the intriguing possibility that there exists a time during early visual

processing that is sufficient for an observer to know that a scene is a natural landscape or

a large space, but is insufficient to know it is a mountain or a lake scene. Our result may

be predicted by computational work showing that basic-level scene categories cluster

along global property dimensions describing the spatial layout of the scene (the Spatial
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Envelope Theory; Oliva & Torralba, 2001). Furthermore, for human observers

performing a rapid basic-level scene categorization task, more false alarms are produced

by distractors sharing global property similarities with the target category than those that

do not (for example, more false alarms to closed images when the target category was

forest, Greene & Oliva, 2009). The current results lend credence to the possibility that

rapid scene categorization may be achieved through the perception of a few robust global

scene properties.

In the current study, the range of presentation time thresholds over all tasks was

large (19-67ms), but remained well below 100ms of exposure. There was also a large

range of thresholds within both global property and basic-level category tasks (19-47ms

and 30-67ms respectively). This suggests substantial diversity in the diagnostic image

information used by observers to perform each task, and that these pieces of information

may be processed with different time courses. Future work will involve uncovering the

image features responsible for these remarkable performances. An intriguing possibility

that is now emerging from studies in visual cognition is the idea that the brain may be

able to rapidly evaluate robust statistical summaries of features and objects, such as the

mean size of a set of shapes (Ariely, 2001; Chong & Treisman, 2005), the average

orientation of a pattern (Parkes, Lund, Angelucci, Solomon & Morgan, 2001); the center

of mass of a set of objects (Alvarez & Oliva, 2008) or even the average emotion of a set

of faces (Haberman & Whitney, 2007), in an automatic fashion (Chong & Tresiman,

2005) and outside of the focus of attention (Alvarez & Oliva, 2008). Similarly, some

tasks might be performed with less presentation time than others because the features that

are diagnostic of this task are somewhat coded more efficiently. For instance,
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naturalness had the fastest threshold in our study and the fastest reaction time in Joubert

et al (2007), and has been shown to be correlated with low-level features, distributed

homogeneously over the image (Torralba & Oliva, 2003). Likewise, Walker-Renninger

& Malik (2004) demonstrated that texture statistics provided good predictions of human

scene categorization at very short presentation times. By abstracting away statistical

homogeneities related to structural and functional properties of a scene, the human brain

may be able to comprehend complex visual information in a very short time. Uncovering

the benchmarks of visual processing at the image feature level will be a significant step

forward in understanding the algorithms of human visual processing.
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Chapter 3: High-level aftereffects to global properties

Published as: Greene, M.R., & Oliva, A. (under review) Adapting to Scene Space: High-

Level Aftereffects to Global Scene Properties.
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Introduction

Just as a brief glance at a face can give a wealth of information about the person's

age, gender, race, mood and attractiveness, a brief glance at a scene provides the observer

with equally rich and varied information (Intraub, 1981; Potter, 1975; Oliva & Schyns,

2000). This brief glance can provide knowledge about whether the scene is indoors or

outdoors (Fei-Fei, Iyer, Koch, & Perona, 2007); if outdoors, whether it is natural or urban

(Greene & Oliva, 2009b; Joubert, Rousselet, Fize & Fabre-Thorpe, 2007; Rousselet,

Joubert & Fabre-Thorpe, 2005); if there is a clear path for navigation (Greene & Oliva,

2009b; Kaplan, 1992), and even a sense of the pleasantness of the environment (Kaplan,

1992).

In addition to rapid processing, behavioral and computational work has shown

that certain global scene properties that represent the structure and function of a scene

(such as openness, mean depth, and potential for navigation) are correlated with a scene's

basic level scene category (Greene & Oliva, 2009a; Oliva & Torralba, 2001). In a recent

study, Greene & Oliva (2009a) observed that human observers' errors in rapid scene

categorization were better predicted by the similarity between target and distractor

images in a global property space than by similarity in an object space. For example,

given a brief glimpse of a scene (50 ms), observers were more likely to confuse river and

forest scenes which have very similar spatial layout properties (for example, both tend to

be enclosed and concealed environments with a relatively low potential for efficient

navigation), than to confuseforest and field scenes which have very different spatial

layout properties, even though they have similar objects (for example, fields are more

open than typical forests, and have greater potential for concealment and navigation).
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Computational work has shown that a system can categorize pictures of scenes,

particularly outdoor environments, by using localized combinations of low-level features

such as texture elements, spatial frequency, orientation and color, without the need to

segment the objects that compose the scene (Fei-Fei & Perona, 2005; Oliva & Torralba,

2001; Torralba & Oliva, 2002, 2003; Vogel & Schiele, 2007; Walker-Renninger &

Malik, 2004). Altogether, these results suggest a global, scene-centered view of scene

understanding in which the meaning of a scene can be understood from the rapid

computation of global scene properties representing aspects of scene structure and

affordance.

A scene-centered framework of recognition predicts that the visual system should

be continuously updated to structural and functional regularities that are useful for

recognition and action and therefore prone to adaptation along these dimensions. Just as

adaptation is observed in the relevant coding dimensions for faces such as emotion,

gender and identity (Leopold, O'Toole, Vetter & Blanz, 2001; Webster, 2004), we would

expect that the human visual system also adapts to scene properties that are relevant for

scene analysis. Broadly, aftereffects are measured changes in the perceptual appearance

of stimulus B after being adapted through prolonged exposure to stimulus A. The effects

of adaptation are often repulsive in nature, meaning that stimulus B will appear less like

its adaptor A. As it is generally thought that adaptation reflects strategies used by neural

system for optimizing perceptual mechanisms (Attnaeve, 1964; Barlow, 1961), the

adaptation method has been long employed in psychology to elucidate neural

mechanisms of perception (see Clifford, Wenderoth & Spechor, 2000; Clifford, Webster,
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Stanley, Stocker, Kohn, Sharpee & Schwartz, 2007; Wade & Verstraten, 2005 and

Webster, 1996 for reviews).

Indeed, adaptation has been observed for many different features coded by the

visual system, from basic features such as color, motion, orientation and spatial

frequency (Wade & Verstraten, 2005) to higher-level properties such as facial emotion,

gender and identity (Leopold et al, 2001; Webster, 2004). Adaptation has also been

shown to transfer between sensory modalities (Konkle, Wang, Hayward & Moore, 2009).

Furthermore, adapting to low-level image features can modulate higher level perceptual

judgments. For example, adapting to lines curved like a smile can modulate perceived

face emotion (Xu, Dayan, Lipkin & Qian, 2008); adapting to subtle relationships between

dots can alter the perceived gender of point-light walkers (Troje, Sadr, Geyer &

Nakayama, 2006); adapting to textures with different skewness can change the perceived

glossiness of surfaces (Motoyoshi, Nishida, Sharan & Adelson, 2007) and adapting to

textures with different orientation content can alter the perceived naturalness of real-

world scenes (Kaping, Tzvetanov & Treue, 2007). The converse is also true: adaptation

to the direction of implied motion from static photographs of movement (a racecar

driving, for example) creates a measurable motion aftereffect in a random dot coherence

measure (Winawer, Huk & Boroditsky, 2008). While each of these examples illustrates

how low-level features can alter high-level perception and categorization (and vice

versa), it has not yet been shown that adaptation to complex natural inputs such as scenes

can alter the perception of subsequently presented natural scenes.

The goal of this work is to determine whether global aspects of natural scene

structure and affordance can produce aftereffects that alter the perception of subsequently
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presented natural scenes. Intuitively, experiences from our daily lives tell us that this

might be the case. After spending a day spelunking, the world outside of the cave might

appear much larger than it did before. Many of us have had the experience of leaving our

familiar environments to go on vacation in another place that looks very different from

our homes, such as leaving a spacious suburb in California to visit New York City. Upon

returning home, the differences in spatial layout between the two places might seem

exaggerated: exposure to the urban, crowded, vertical structure of Manhattan might make

the back yard seem spacious and green. If our visual system efficiently codes spatial and

affordance properties of natural scenes, then we would expect observers to be sensitive to

small differences in these properties' magnitudes, producing aftereffects. Furthermore, if

these same global properties are used by the visual system for rapid scene categorization,

then adaptation to these properties should alter the speed and accuracy of human scene

categorization abilities.

Greene & Oliva (2009a) proposed a set of global scene properties designed to

reflect the natural variation in natural scene categories' spatial, surface and affordance

properties (see also Appelton, 1975; Gibson, 1979, Kaplan, 1992 & Oliva & Torralba,

2001). Importantly, human observers are sensitive to these properties in rapid scene

categorization tasks (Greene & Oliva, 2009a), making them good candidate properties for

aftereffects.

In Experiment 1, we tested for perceptual aftereffects from adaptation to five

global properties of natural scenes (openness, naturalness, mean depth, navigability and

temperature, see Figure 1 for pictorial examples) using a novel rapid serial visual

presentation (RSVP) adaptation paradigm. Experiments 2-4 explore the nature of these
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aftereffects using the openness of a scene's space as the case study. In Experiment 2, we

ruled out the possibility that the aftereffects observed in Experiment 1 were inherited

from adapting low-level (retinotopic) visual areas, and in Experiment 3 we ruled out the

possibility that the aftereffects are due to a post-perceptual decision bias. Last,

Experiment 4 tested the extent to which participants' adapted state to a global property

might contribute to rapid scene categorization ability, suggesting a causal role for global

property computation at an early stage of scene representation. Taken together, these

results indicate that certain global properties of natural scenes are selectively adaptable,

producing high-level aftereffects, and that such properties may be relevant for the rapid

categorization of natural scenes.

Experiment 1: Aftereffects to Global Scene Properties

The goal of the first series of experiments was to determine if aftereffects could

be obtained for a set of global scene properties in a novel rapid serial visual presentation

(RSVP) adaptation paradigm. Here, we tested five global properties (openness, mean

depth, naturalness, navigability and temperature) for aftereffects. In these experiments,

we adapted participants to the extremities (or poles) of each global property dimension.

Figure 1 shows examples of the poles of each of these global property dimensions. Each

global property was tested in an independent experimental session. As the method and

design details for all of these experiments was the same, we are presenting the five

experiments as one.
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Openness

Mean depth

Naturalness

Navigability

Temrn perature

Low 25th 50th 75th High

Figure 1: Example images illustrating the five global scene property used in Experiment 1. Images on the

ends were used in the adaptation phase, and images from the 25" , 50'h and 75th ranking percentiles were

used as test images.

General Method

Materials

Scene images were full color, 256 x 256 pixels in size, and were chosen from a

large laboratory database of real-world photographs that had been previously ranked
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along the dimensions of naturalness, openness, navigability, mean depth and temperature

(Greene & Oliva, 2009a). To summarize, observers performed a hierarchical grouping

task that organized groups of 100 images from lowest to greatest degree of each global

property by making three binary groupings that produced eight groups of images. For

example, observers organized the images from the most close-up to the farthest view for

the case of mean depth, or from coldest to hottest places in the case of temperature.

Detailed description of this ranking can be found in Greene & Oliva (2009a).

Adaptation and test images were chosen from these rankings. Adaptation images

were chosen from the poles (or extremes) of the ranks, and test images were moderate

along the ranks (see Figure 1 for pictorial examples). For each global scene property,

three groups of 100 images were chosen. First, 200 images served as experimental

adaptors, 100 from each pole of the property (for example, 100 images of natural

environments and 100 urban environments in the case of naturalness). In all cases, these

images were chosen to vary as much as possible in physical and semantic attributes other

than the global property being tested. For example, in the case of mean depth, large depth

images would consist of panoramic images from many natural image categories (fields,

oceans, farmland, mountains, canyons, etc.) with various viewpoints, object density and

lighting. The third group of 100 images served as a control adaptation condition, and

represented all ranks along a given global property dimension. The test images consisted

of 30 additional images for each global property that represented rank values from around

the 2 5th, 5 0 th and 75 th ranking percentiles (see Figure 1 for examples).
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All experiments were run using MATLAB and psychophysics toolbox (Brainard,

1997, Pelli, 1997). Experiments were displayed on a 21" CRT monitor with a 100 Hz

refresh rate. Images subtended approximately 7 x 7 degrees of visual angle.

Participants

A total of 46 participants from the MIT community participated in at least one of

the five experiments. Each global property was run as an independent experiment, so

individual observers could participate in more than one experiment. Between 10 and 20

observers participated in each experiment. All were between 18-35 years old and had

normal or corrected-to-normal vision. Participants provided informed consent and were

paid $10/h for their time.

Design and procedure

Each of the five global properties was tested in an independent experimental

session lasting approximately 45 minutes. Each experiment was a within subjects design

in which participants were adapted to each pole of the global property and to the control

set in three separate blocks. The order of the blocks was counterbalanced across

participants.

A schema of the experimental procedure for a sample block is shown in Figure 2.

Each experimental block consisted of two phases, an adaptation phase (Figure 2A) and a

testing phase (Figure 2B). The adaptation phase was approximately five minutes long and

consisted of displaying the 100 adaptor images eight times each in random order. Each

image was shown for 100 ms with 100 ms blank between images. To keep focus on the
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image stream, participants were instructed to press the space bar when back-to-back

image repeats were displayed. On average, there were seven repeats in the stream,

appearing about every 80 seconds.

The testing phase consisted of 30 trials, and immediately followed the adaptation

phase. Each trial commenced with 10 seconds of top-up adaptation were given in the

form of a rapid serial visual presentation (RSVP) stream in which the 100 adaptor images

were shown again for 100 ms each in random order. Participants were instructed to

carefully watch and attend to the 10 second image stream. Following the top-up RSVP

adaptation, stream there was a 500 ms blank, followed by the test image presented for

100 ms, and then masked by a 1/f noise mask for 80 ms. Following each test image,

participants were instructed to respond as quickly and accurately as possible as to which

pole of the global property the test image belonged. For example, in the mean depth

experiment, participants would indicate if the test image was large depth or small depth.

As test images were rated as ambiguous along the global property dimension tested, no

performance feedback was given. The descriptions of the global properties as given to

participants can be found in the Table 1.

Global property High pole description Low pole description
Mean depth The scene takes up The scene takes up less than

kilometers of space. a few meters of space.
Naturalness The scene is a natural The scene is a man-made,

environment. urban environment.
Navigability The scene contains a very The scene contains many

obvious path that is free of obstacles or difficult terrain.
obstacles.

Openness The scene has a clear The scene is closed, with no
horizon line with few discernible horizon line.
obstacles.

Temperature The scene environment The scene environment
depicted is a hot place. depicted is a cold place.

Table 1: Description of global scene properties.
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-A-

(5 min)

-B-

Top-up
(10 sec) Test image (100 ms)

Figure 2: A schematic representation of the experimental procedure of Experiment 1. -A- A five minute

adaptation phase in which participants viewed 800 adaptor images (100 images repeated 8 times each)

while performing a one-back task. -B- Each trial of the test phase consisted in a 10 seconds top-up

adaptation in the form of an RSVP stream, followed by a test image for 100 msec.

Results

As aftereffects are fleeting (Rhodes, Jeffery, Clifford & Leopold, 2007), speed

was essential. At the test, trials with reaction times greater than two seconds were

discarded from the analysis (the mean RT over the five experiments was around 760 ms).

Participants whose mean reaction time was more than three standard deviations above the

group mean were not included in the analysis (n=6). As each global property was tested

independently, each was analyzed separately. As we did not have hypotheses about the

relative magnitudes of the adaptation effects, no comparison between the properties is

provided.

Figure 3 illustrates participants' responses in each of the five experiments. For

each participant in each experiment, we computed the proportion of trials in which the
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participant classified test images as the high pole of the global property (i.e. open,

natural, hot, large depth, and navigable) for each of the three groups of test images.

Adaptation to each pole of a global property was compared against adaptation to the

control stream, to establish a baseline for how the test images would be classified in our

paradigm. As shown in Figure 3, participants' classifications of the same test scenes

differed systematically with their adaptation condition. For example, adaptation to open

images made moderately open images appear more closed than after viewing the control

stream of images. Importantly, the same test images were perceived by the same observer

as more open after adapting to closed images.
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Figure 3: Results from Experiment 1. The properties are, from top to bottom, -A- openness, -B-

naturalness, -C- Temperature, -D- Mean depth and -E- Navigability. Error bars correspond to +/- 1 within-

subjects SEM (Loftus & Masson, 1994). Graphs in the left column show proportion of responses to the

high pole of each global property for the three groups of test images over the three adaptation conditions.

Graphs in the right column show the magnitude of the effect in each direction by showing the proportion of

high pole responses for the two global property poles subtracted from responses to the control condition.
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Repeated-measure ANOVA was performed on the average proportion of images

classified as the high pole of the global property for each experimental session. There

was a significant main effect of adaptation condition for openness (F(2,40)=19.51,

p<0.001), naturalness (F(2,18)=10.8, p<0.001), temperature (F(2,30)= 19.71, p<0.001),

mean depth (F(2,30)=7.95, p<0.005) and navigability (F(2,26)=3.69, p<0.05). The mean

magnitude of the aftereffects (the overall difference between adapting to one global

property pole versus the other, and collapsing over the three groups of test images) was

21% for temperature, 20% for naturalness, 15% for openness, 13% for mean depth and

8% for navigability.

We next determined whether both poles of each global property showed

significant adaptation. For each participant and for each adaptation condition, we

collapsed over the three groups of test images and subtracted the proportion of responses

to the high global pole of the global property from the proportion responses to the high

pole from the control block. For each global property, we contrasted these with the null

hypothesis that these numbers were zero, indicating the absence of aftereffects. Average

magnitudes are shown in the right-hand column of Figure 3. For all properties except

navigability, both global property poles were significantly different from zero (p<0.05).

Discussion

Here we have shown that several global scene properties related to scene spatial

layout and function can produce aftereffects. Experiment 1 demonstrated robust

aftereffects to four global properties (naturalness, openness, temperature and mean
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depth). The property navigability showed a weak and one-directional aftereffect as shown

in Figure 3E.

To our knowledge, this is the first laboratory demonstration of aftereffects from

prolonged viewing of natural scene images. However, we are all aware of similar effects

in our daily lives, such as moving from a cramped airplane cabin into a spacious airport

terminal. The global scene properties tested here are known to reflect a large amount of

the variability existing between natural scene categories (Appelton, 1975; Baddeley,

1997; Gibson, 1979; Greene & Oliva, 2009a, 2009b; Joubert et al, 2007; Kaplan, 1992;

Rousselet et al, 2005) and are informative dimensions describing differences between

basic-level scene categories (Greene & Oliva, 2009a; Oliva & Torralba, 2001).

Adaptation is generally seen as a functional mechanism used by the visual system to

efficiently encode changes in the visual world (Attnaeve, 1954; Barlow, 1961). In this

framework, the visual system can store an average (or prototype) value for a stimulus,

and encode individual exemplars as differences from this prototype (Leopold et al, 2001).

For environmental scenes, this prototype may reflect the mode of experienced scene

properties. In other words, this prototype reflects the most common values of scene

spatial layout and function that one has experienced. Finding stimulus dimensions that

are prone to adaptation is informative for ascertaining neural mechanisms underlying

perception as adaptation is believed to target neural populations underlying the

processing of the adapted dimension. In other words, the existence of aftereffects for a

particular stimulus dimension can be taken as evidence for neural populations

representing that dimension.

ii*u~i~;r-- -rx r~r~r;;- ~r-;;---~- -;~~
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An outstanding question is the extent to which the aftereffects observed in

Experiment 1 are a result of adaptation of multiple low-level features, rather than

adaptation of the global properties as single, high-level entities. Indeed, the global

properties of naturalness, openness and mean depth are also well-correlated with low-

level image features such as combinations of localized orientations and spatial

frequencies (Oliva & Torralba, 2001; Torralba & Oliva, 2002). For example, a high

degree of openness is correlated with low-spatial-frequency horizontal orientation in the

vertical center of the image: a feature that corresponds with the horizon line of the scene,

whereas a low degree of openness is correlated with more uniform texture throughout the

image (Oliva & Torralba, 2001). Similarly, the judgment of how hot or how cold a place

is (temperature) is related to the reflectance, color and material properties of scene

surfaces, like the difference between desert sandstone and an iced-over river; and

aftereffects have been observed to texture and material properties (Durgin & Huk, 1997,

Motoyoshi et al, 2007). Therefore, it is possible that the aftereffects observed in

Experiment 1 could be inherited from the low-level adaptation of visual features. We

address the nature of global property aftereffects in Experiment 2.

Experiment 2: Translation Invariance of Openness Aftereffect

As robust aftereffects have been demonstrated for low-level features (for review,

see Clifford et al, 2007), we need to address the extent to which the aftereffects observed

in Experiment 1 are due to low-level adaptation of low-level features inherited from early

visual areas.

A standard method for gaining insight into the processing level of aftereffects has

been to test the translation invariance of these effects. As early visual areas have small
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receptive fields, adaptation of cells in these areas will not be invariant to a shift in

location, while later visual areas show greater tolerance to this transformation (Gross,

1973; Ito, Tamura, Fujita & Tanaka, 1995). Melcher (2005) examined a variety of

aftereffects, and found that the degree of spatial tolerance of the effects is related to the

complexity of the stimulus: contrast adaptation had no spatial transfer, but faces had

considerable transfer (c.f. Jiang, Blanz & O'Toole, 2006; Leopold et al, 2001; Rhodes et

al, 2005; but see Afraz & Cavanagh, 2008). In Experiment 2, we tested the spatial

tolerance of global scene property aftereffects, using the global property of openness as a

test case.

A new group of participants were adapted to images centered five degrees of

visual angle to the right or left of a central fixation. Aftereffects were probed in the

opposite hemifield, five degrees away from fixation in the opposite hemifield from where

adaptation occurred. If the aftereffects observed in Experiment 1 were inherited from

adaptation of low-level visual features from early visual areas, then we would not expect

to observe an aftereffect in Experiment 2. However, if the aftereffect is invariant to the

hemifield transformation, then it suggests the existence of a high-level aftereffect.

Methods

Participants

10 new observers from the MIT community participated in Experiment 2. All

were between 18-35 years old and had normal or corrected-to-normal vision. As eye

fixation was monitored with an eye tracker, only participants without eye glasses were

selected. Participants provided informed consent and were paid $10/h for their time.
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Materials

The same set of images used for testing adaptation to openness in Experiment 1

was used here. Participants' right eye positions were monitored with an ETL 400 ISCAN

table-mounted video-based eye tracking system sampling at 240 Hz. Participants sat at

75 cm from the display monitor and 65 cm from the eyetracking camera, with their head

centered and stabilized in a headrest. The position of the right eye was tracked and

viewing conditions were binocular.

Design and procedure

The design and procedure for Experiment 2 was identical to that of Experiment 1

except that the five minute adaptation phase and the top-up adaptation streams were

presented at a location centered five degrees to one side of a central fixation point, while

test images were centered five degrees on the other side. The side that was adapted was

counterbalanced across participants. Images were approximately 5.3 x 5.3 degrees of

visual angle in size, and there was no spatial overlap between adaptation and test

locations. Eye position was monitored throughout the experiment, and trials in which the

eyes moved more than one degree away from central fixation were discarded from

analysis (this corresponds to two trials from one participant, none for all others).

Results

As in Experiment 1, for each participant, we computed the proportion of trials in

which the participant classified test images as open for each of the three groups of test

images. Also as in Experiment 1, trials with reaction times greater than two seconds were
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discarded from analysis. Repeated-measure ANOVA was performed on the average

responses of each observer. There was a significant main effect of adaptation condition

(F(2,40)=8.83, p<0.05) indicating that the openness aftereffect survived a ten degree

spatial shift.

As in Experiment 1, we then tested whether the aftereffect was significant for

both global property poles. Indeed, the open (t(9)=3.12, p<0.05) and closed (t(9)=3.04,

p<0.05) poles showed significant aftereffects. The magnitude of the adaptation effect (the

summed magnitude from each pole) was 14%, which was similar to the 15% magnitude

observed in Experiment 1. This degree of spatial invariance is similar to the results

obtained by the face adaptation literature (Afraz & Cavanagh, 2008; Jiang, Blanz &

O'Toole, 2006; Leopold et al, 2001; Rhodes et al, 2003).

Discussion

Here we have shown that the openness aftereffect observed in Experiment 1 has

strong position invariance, and is therefore unlikely to be solely due to the cumulative

adaptation across multiple low-level features from early visual areas. This result suggests

that what is being adapted is a higher-level representation of the degree of openness of a

scene.

The current results show that there is substantial spatial transfer of aftereffects

across space. Although we observed similar a similar magnitude of adaptation in this

study, spatial transfer of face aftereffects typically find that that the magnitude of the

effect is 50-70% of the magnitude of the aftereffect when tested in the adapted location.
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Our current result suggests that the aftereffects observed in Experiments 1 and 2 are high-

level in nature, and not simply inherited from adaptation of lower level features.

Experiment 3: Ruling out the Post-Perceptual Account

Experiments 1 and 2 found that participants were more likely to classify test

images as more dissimilar to the global property pole that they were adapted to. In other

words, scenes that were, for instance, moderately natural would appear more or less

natural given the observer's adapted state. Given the difficulty in describing perceptual

changes in a complex natural scene, we need to account for the possibility that in fact, the

aftereffects observed in Experiments 1 and 2 could be explained by post-perceptual

decision biases rather than perceptual aftereffects. In other words, were participants

classifying these ambiguous scenes as less similar to the adapting images because the

adapting images changed participants' decision boundaries between the global property

poles?

As the participants' task in Experiments 1 and 2 was to determine the global

property pole of a test image (open or closed, for example), it is possible that seeing

many very open scenes would simply change the decision boundary between open and

closed without producing a perceptual aftereffect. Our participants were not given

feedback during the experiments, so they were not motivated to intentionally adopt a

behavioral strategy that would shift the response curves. However, the results of

Experiments 1 and 2 could also be explained by the decision boundary between global

property poles shifting systematically with the adaptation condition. Ruling out this

decision criterion is a potential problem for all experiments claiming high-level
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aftereffects, and while it is sometimes acknowledged (Troje et al, 2006), it has not been

satisfactorily addressed.

In Experiment 3, we address the decision criterion issue by testing whether

participants' adapted state to a global property pole would systematically influence an

orthogonal basic-level scene categorization task. We reason that if adaptation to a global

property (for example, the openness of an environment) changes observers' performance

in a task that does not involve the judgment of that global property, then the change in

classification performance is unlikely to be a result of a post-perceptual decision bias.

We chose a basic-level categorization task for this purpose. There can be graded degrees

of category membership in natural scene categories, and an image of a natural

environment can lie between multiple basic-level categories. For example, a landscape

image composed of trees, water and hills in the background has elements of forest, lake

and mountain scene categories. In Experiment 3, we capitalize on the fact that there

exists a continuum of environments between a forest prototype, which is typically an

enclosed environment, and afield prototype which is typically open (see Figure 4 for

examples). Therefore, if the classification changes observed in Experiments 1 and 2 were

perceptual aftereffects, then adaptation to very open scenes should make an ambiguous

image on the field-forest continuum look more like a forest, and adaptation to very closed

scenes should make that image look more like a field. In Experiment 3, we used an

adaptation method analogous to Experiment 1, where test images were exemplars ranked

as lying between forest and field prototypes.

Methods

'~~;'II;"-;-";- -'-^- ^--i---i --~-- --" 'l;"l'":-i:iiil;l;i;- i:: i';;':~
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Participants

Twelve participants (9 new and 3 from Experiments 1 or 2) from the MIT

community participated in this experiment. All were between 18-35 years old and had

normal or corrected-to-normal vision. Participants provided informed consent and were

paid $10/h for their time.

Materials

In this experiment, it is important that observers only adapt to the openness of

environments. Therefore, we removed forest and field images from the adaptation

streams, replacing them with images from other basic-level categories such as as ocean,

canyon, desert, beach, etc.

Test images were chosen from a database of natural images previously ranked on

their prototypicality in regards to various basic-level categories (Greene & Oliva, 2009a,

Experiment 3). In this previous study, 10 observers ranked 500 images of natural

landscapes in terms of how typical each image was for each of several basic-level scene

category labels using a scale from 1 (atypical) to 5 (highly prototypical). For the current

experiment, the test images consisted of 30 natural landscape images that had been

ranked as partially prototypical for both forest andfield categories. Analogous to

Experiments 1 and 2, three groups of test images were chosen: 10 images that were

ranked as more field than forest, 10 that were equally prototypical of field and forest and

10 that were more forest than field. Figure 4 shows example images along the ranked

continuum between forest and field.
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Field Forest

Figure 4: Examples of images ordered along the field-forest continuum. Environmental scenes, unlike

most objects, can belong to more than one basic-level category. Experiment 3 tested images from the

middle of the row, while Experiment 4 tested images from the ends.

Procedure

As in Experiments 1 and 2, each participant completed three experimental blocks

that each contained two phases, an adaptation phase and a test phase. The adaptation

phase of each block was identical to Experiment 1. Following the adaptation phase,

participants completed a test phase that was identical to that of Experiment 1 except that

the instructions were to classify test images as forests orfields as quickly and accurately

as possible. As in Experiment 1, no performance feedback was given.

Results

Trials with reaction times greater than two seconds were discarded from analysis,

and one participant with a mean reaction time of 3843 ms was not included in the

analysis. As shown in Figure 5A, adaptation to openness modulated participants' basic-

level classifications of natural scene images. After adapting to open images, participants

were more likely to classify ambiguous test images as forests rather than fields.

Conversely, after adapting to closed scenes, ambiguous test images were more likely to

be categorized as fields (F(2,20)=17.87, p<0.001). The overall magnitude of the effect

was 11% (see Figure 5A). While adapting to open scenes strongly modulated test image
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categorization as forest or field (t(10)=4.88, p<0.001), adaptation to closed images had

only a marginally significant effect (t(10)=2.21, p-0.08).
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Open adaptation
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Figure 5: Results of basic-level categorization (field or forest) after adaptation to open or closed images. -

A- Results of Experiment 3: Aftereffects to ambiguous images along the forest-field continuum: adapting
to open scenes makes ambiguous images appear more like forests. -B- Results of Experiment 4: Reaction
time to categorizing prototypical images of fields and forests, after adaptation to open and closed scenes.

Discussion

Here we observed that adaptation to the openness of natural environments can

systematically shift the perception of a scene's basic-level category. For example, after

adapting to very open environments, scenes such as ones in the middle of Figure 4 will
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look more like forests. However, these same images will look more like fields after

adapting to closed environments. This result suggests that the aftereffects observed in

Experiments 1 and 2 were not due to a change in decision criterion, but rather due to a

perceptual aftereffect.

Determining whether classification changes following adaptation are due to

perceptual or post-perceptual mechanisms is essential for all studies of high-level

aftereffects, particularly when the adaptation dimension is continuous such as the global

properties used here, or a continuously morphed face space (e.g. Jiang, Blanz & O'Toole,

2006; Leopold et al, 2001; Rhodes et al, 2005 and many others). While this issue is

sometimes addressed in the literature as a potential weakness of high-level adaptation

paradigms (Troje et al, 2006), or addressed through ensuring that participants do not

adopt cognitive strategies that would systematically influence experimental results

(Leopold et al, 2001), to our knowledge, Experiment 3 is the first attempt to address

decision criterion issue experimentally. In the domain of visual cognition, it has been

difficult to disentangle whether effects are perceptual versus post-perceptual, particularly

in light of theoretical controversies surrounding the extent to which visual perception and

cognition are continuous (Pylyshyn, 1998). In categorical perception, a post-perceptual

shift of category boundary can be detected as a shift in discrimination peak in a same-

different task (Liberman, Harris, Hoffman & Griffith, 1957). This technique could not be

employed for our global scene properties, however, as they are continuous dimensions.

Signal detection theory has also been employed for determining changes in decision

criterion (Swets, 1998), but these methods require that the signal be in a defined category,

rather than values along a continuous dimension.
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The strength of the adaptation paradigm is that it allows one to probe visual

properties that are difference from, but that may depend on the adapted property. For

example, Fang, Ijichi & He (2007) tested whether the coding of face viewpoint is

independent of face identity and face gender using a transfer paradigm in which

participants were adapted to an individual face at a particular viewpoint, and then asked

to identify the viewpoint direction of a test face that could be either the same or different

individual, or same or different gender as the adaptor face. This study found evidence of

joint coding as adaptation did not completely transfer over gender or identity. The

current experiment suggests that the perception of openness influences the rapid

categorization of scenes as forests or fields, implying that basic-level categorizations

might be mediated through the computation of structural properties such as openness. If

this is the case, then we would expect that the categorization of prototypical forests and

fields to also be modulated by the observers' adapted state to openness. We directly

tested this hypothesis in Experiment 4.

Experiment 4: Adaptation to Openness Modulates Rapid Scene Categorization

Experiment 3 demonstrated that adaptation to a global property can change the

classification of basic-level categories: exposure to closed or open scenes can change

whether an ambiguous image would be classified as a member of the forest or field

categories. This result suggests that openness may play a role in the rapid categorization

of natural images as forests or fields. If the perception of global scene properties such as

openness is necessary for rapid and accurate basic-level categorization then an observer's

adapted state should change the speed and accuracy of prototypical scene categorization.
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This was explored in Experiment 4. As in Experiment 3, participants in Experiment 4

were first adapted to streams of open and closed scenes. Following adaptation, they

performed a basic-level categorization task on pictures of prototypical forests and fields.

If the perception of openness is part of the scene representation allowing rapid basic-level

categorization, then we predict the following cross-over interaction: participants should

be slower and less accurate in categorizing fields after adapting to open images, and

slower and less accurate in categorizing forests after adapting to closed images.

Methods

Participants

Ten participants (6 new, and 4 who had participated in Experiments 1, 2 or 3)

participated in this experiment. All were between 18-35 years old and had normal or

corrected-to-normal vision. Participants provided informed consent and were paid $10/h

for their time.

Materials

The adaptation images in this experiment were the same images used in

Experiment 3. The images used at test were 30 prototypical forests and 30 prototypical

fields. The prototypicality of these scenes was determined from a previous ranking study

(described in Experiment 3, with additional details in Greene & Oliva, 2009a). Images

were determined to be prototypical if their mean ranking as forest or field was greater

than 4 on a 5 point scale, and were not ranked as prototypical for any other scene

category.
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Procedure

Participants completed a two block experiment in which they were adapted to

open and closed images in different blocks. Half of the participants adapted to open first,

the other half to closed first. As we were only looking for an interaction in the

experimental adaptation conditions, the control block of images was not used in this

experiment. As in Experiments 1-3, each experimental block contained an adaptation

phase and a test phase. The adaptation phase was identical to Experiment 3. In the test

phase, participants performed a basic-level categorization task on prototypical forest and

field images following the top-up RSVP adaptation before each trial. Participants were

instructed to respond as quickly and accurately as possible as to whether the test image

was a forest or a field. Because test images were prototypical exemplars of a scene

category, visual response feedback was given (the word "Error" appeared on the screen

for 300 ms following an incorrect categorization).

Results

For this experiment, we analyzed both reaction time and accuracy. Reaction times

greater than two seconds were discarded from analysis. Data from one participant with

mean RT of 2923 ms (group mean RT was 660 ms) was not included in the analysis. For

the remaining participants, accuracy in this experiment was very high, approaching

ceiling performance (accuracy average of 95%, median 96% correct). Therefore, the

predicted interaction between scene category and adaptation condition was not observed

(F(1,8)<1) for the accuracy data. However, for reaction times, we did observe a
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significant interaction between basic-level category and adaptation condition

(F(1,8)=40.32, p<0.001). As shown in Figure 5B, observers were on average slower to

categorize fields (average RT of 696 ms) than forests (average RT of 584 ms) after

adapting to open images (t(8)=4.37, p<0.01). Adaptation to closed images did not have a

significant effect on reaction time (average RT of 679 ms for fields, and 681 ms for

forests).

Discussion

While Experiment 3 demonstrated that adapting to open or closed scenes could

push the perception of novel ambiguous scenes towards being perceived as more field or

forest-like, Experiment 4 went one step further, showing that the speed of categorization

of prototypical forests and fields could be altered by the participants' adapted state to

openness. For both Experiments 3 and 4, the effect is particularly strong for adaptation to

open, rather than closed images. Together with the results of Experiment 3, the present

results regarding a change in the speed with which prototypical images are categorized

after adaptation, suggest a representational role for global properties in the rapid

computation of a scene's basic-level category. As adaptation targets neural populations

coding openness, the observed decrements in the speed of scene categorization can be

taken as additional evidence of the openness property's role in representing these basic-

level categories.

Importantly, Experiments 3 and 4 are the first behavioral evidence of a transfer of

high-level semantic adaptation to an orthogonal task, providing critical insight into neural

mechanisms that depend on the adapted property. In the case of natural image
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understanding, this provides a method for causally determining global scene properties

that make up the representation of basic-level scene categories. Future work will involve

elucidating which global scene properties participate in the representation of other basic-

level scene categories (Greene & Oliva, 2009a).

General Discussion

Here we have demonstrated aftereffects to several global scene properties

(Experiment 1). These aftereffects are not due to adaptation inherited from early visual

areas (Experiment 2), and do not solely reflect a shift in the observers' decision criteria

regarding the global scene properties (Experiment 3). Furthermore, we have

demonstrated the perceptual consequences of global property adaptation to rapid scene

categorization (Experiment 4), furthering the view that rapid scene analysis may be

driven by the perception of such global properties (see also Greene & Oliva, 2009a).

Many of us have had the experience of traveling from our homes to a destination

with very different visual features. For example, one might travel from a cold Boston

winter to a sunny Florida beach. Upon returning from the trip, we might feel that our

home is more gray and cold looking than remembered. Similarly, a city in the western

United States might seem very open after visiting the dense and enclosed cities of the east

coast. Such experiences demonstrate how our visual system adjusts to the input statistics

of our current environment. In this laboratory demonstration we have shown that this

process is rapid, and robust to changes in retinal position.

The use of adaptation and aftereffects has the potential to show important

dimensions of stimulus coding. Webster et al (2004) demonstrated high-level aftereffects
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to the face dimensions of gender, expression and ethnicity. This served to be an

important confirmation to the already accepted view that these dimensions were

important to face coding. Scene understanding, on the other hand, does not yet have such

readily accepted dimensions of coding. However, global properties such as navigability

and openness have already been shown to be important dimensions of scene variability,

as they are used by human observers in rapid scene categorization (Greene & Oliva,

2009a). They are therefore, reasonable properties for testing high-level aftereffects to

environmental spaces. The existence of global property aftereffects, therefore gives

considerable credence to a scene-centered view of scene recognition. Although we

cannot fully reject the possibility that the neural axes of scene representation are not these

global properties as we have defined them, but rather properties that are covariant with

these properties, the presence of robust aftereffects to these global properties suggests

that these dimensions of scene variability are important aspects of the semantic

representation (or gist) of a scene. As adaptation directly targets populations of neurons

coding a particular global property (Clifford 2005), the presence of aftereffects can be

taken as evidence for the neural coding of such properties.

Although a variety of high-level aftereffects have been reported for faces

(Leopold, O'Toole, Vetter & Blanz, 2001; Rhodes et al, 2005; Webster, 2004), relatively

little work has been done investigating perceptual aftereffects to real-world scenes. One

exception has been from Kaping and colleagues (2007). In this study, participants were

adapted to texture patterns that had orientation distributions that were similar to either

natural or urban images. Following adaptation, participants categorized moderately

urban images as either natural or urban. They found that when the orientation statistics of
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the adapting textures matched natural scenes, the test images were more consistently

classified as urban, and the reverse also being true for adapting images matching urban

scene statistics. Our results are completely congruent with this study as we also found

robust adaptation to naturalness using our paradigm. However, while the Kaping et al

(2007) study demonstrates that adapting to a single image statistic alters the perception of

scenes, our study demonstrates that considerable exposure to scenes with a specific set of

global property regularities can alter the perception of subsequent scene images.

While adaptation to global scene properties had a significant effect for all

measured properties in Experiment 1, the effect was unidirectional for navigability. As

suggested by Figure 3E, adaptation to non-navigable environments seems to have an

effect only on the least-navigable test images (2 5 th ranking percentile). This leads to the

possibility that it is not navigability that adapts per se, but rather information that is

correlated with non-navigable environments. For example, very low navigability

environments tend to be closed environments made up of dense textures (from elements

such as thick brush or rock outcroppings), suggesting that the unilateral aftereffect could

reflect adaptation to closedness or texture density (Durgin & Huk, 1997).

Experiment 2 demonstrated that the openness aftereffect cannot be explained by

adaptation from early visual areas as the aftereffect was tolerant to a relatively large

spatial shift across the vertical meridian. It is an open question of where in the visual

system this adaptation takes place. However, a few general points can be made. While the

eccentricity of our stimuli from the central fixation point is similar to the receptive field

sizes reported to macaque V4 (Gattass, Sousa & Gross, 1988), our stimuli were presented

on opposite sides of the vertical meridian and only IT has receptive fields that represent

Page 145



A Global Framework for Scene Gist

both hemifields (Gross, Rocha-Miranda & Bender, 1972), though the human homolog to

this area is still an area of active research (Bell, Hadj-Bouziane, Frihauf, Tootell &

Ungerleider, 2008).

The set of global properties used here was designed to describe major dimensions

of natural scene variation, not to be an independent basis for describing scenes. There is

some significant covariation existing between properties (Greene & Oliva, 2009a). In our

experiments, attempts were made to test the properties as independently as possible. Our

adaptation paradigm used a large number of real-world scenes that were selected to vary

as much as possible in all spatial, semantic and low-level properties as possible while

maintaining a consistent rank along the particular global property dimension.

In the domain of face processing, the concept of a "face space" has been in the

literature for some time (Turk & Pentland, 1991). This framework has been particularly

influential because rather than encoding the local features of a face, such as eyes, nose

and mouth, it represents global patterns of individual variation. This framework has

allowed work to be done on high-level adaptation for faces by providing a continuous,

high-dimensional space. A global scene property framework provides much of the same

function: it describes large patterns of global variation over natural environmental

categories in a continuous way, without the need to represent the individual objects that a

scene contains. Adaptation provides a method for testing the psychological reality of

candidate dimensions for this scene space. As Experiments 3 and 4 also demonstrated,

adaptation provides a method for testing the utility of these candidate properties for scene

tasks, such as basic-level category recognition.
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Chapter 5: Conclusion
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In this thesis, I have shown a variety of behavioral evidence for a global scene-

centered approach to natural scene understanding. This approach uses a small vocabulary

of global and ecologically relevant scene primitives that describe the structural, constancy

and functional aspects of scene surfaces without representing objects and parts; asserting

that one may recognize the "forest" without necessarily first representing the trees.

In Chapter 2, human performance at a rapid scene categorization task was

dramatically influenced by varying the distractor set to contain more global property

similarities to a target category, suggesting that human observers were sensitive to global

property information when performing rapid scene categorization (Chapter 2, Experiment

2). To what extent is global property information alone a sufficient predictor of rapid

natural scene categorization? The performance of a simple classifier representing only

these properties is indistinguishable from human performance in a rapid scene

categorization task in terms of both accuracy and false alarms (Chapter 2, Experiment 3).

To what extent is this high predictability unique to a global property representation? I

compared two models that represented scene object information to human categorization

performance and found that these models had lower fidelity at representing the patterns

of performance than the global property model (Chapter 2, Experiment 4).

The time course of global property and basic-level category perception was

explored in Chapter 3. If the initial scene representation contains substantial global

property information that allows basic-level categorization, then observers should require

less image exposure to correctly classify a scene's global property than to categorize it at

the basic level. Indeed, I found that observers needed to see an image for less time on

average to classify the scene's global properties than to categorize it at the basic level.
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This result suggests the intriguing possibility that there exists a time during early visual

processing where a scene may be classified as a large space or navigable, but not yet as a

mountain or lake. This work is unique in that it compares the perceptual availability of a

relatively large number of classification tasks (14). Comparing the relative availability of

these different tasks can reveal bottlenecks in the accumulation of meaning.

Understanding these bottlenecks provides critical insight into the computations

underlying rapid visual understanding. Furthermore, given the extraordinarily rapid

nature of some classifications (75% thresholds as little as 19 ms for naturalness), this

result provides strong time constraints for early visual mechanisms of scene perception.

Last, Chapter 4 used an adaptation paradigm to explore the susceptibility of

global properties to aftereffects and used the presence of aftereffects as a method to probe

for a causal link between global property perception and the perception of the scene's

basic-level category. In this chapter, I demonstrated aftereffects to several global scene

properties (Chapter 4, Experiment 1). This work is the first laboratory demonstration of

aftereffects from prolonged viewing of natural scene images. These aftereffects are not

due to adaptation inherited from early visual areas (Chapter 4, Experiment 2), and do not

solely reflect a shift in the observers' decision criteria regarding the global scene

properties (Chapter 4, Experiment 3). This experiment provides a possible control

experiment method for other work on high-level aftereffects as the potential for criterion

shift is sometimes addressed in the literature as a potential weakness of high-level

adaptation paradigms, but has not been experimentally addressed. I lastly demonstrated

the perceptual consequences of global property adaptation to rapid scene categorization

(Chapter 4, Experiment 4), showing systematic reaction time differences as a function of
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adaptation. As adaptation targets neural populations coding openness, the observed

decrements in the speed of scene categorization can be taken as additional evidence of the

openness property's role in representing these basic-level categories.

Taken together, the experimental results described in this thesis provide

converging behavioral evidence for an initial global scene-centered visual representation.

However, there are some limitations to the current approach that must be addressed. First,

although the global properties used in this work have been found to influence human

observers' basic-level scene categorization, I cannot make the claim that these global

properties are exactly the ones being processed by the brain to allow categorization to

take place. Rather, there is still the possibility that the brain is processing properties that

are covariant with the currently defined properties. Similarly, as robust correlations exist

between certain pairs of global properties, it could be that neural axes reflect aspects of

more than one global property. One solution to this issue is to use functional brain

imaging to determine the relevant scene axes, using either adaptation or pattern

classification techniques, as both allow inferences to be made about the neural similarity

of different stimuli.

A second limitation is that I cannot currently predict a scene's global properties

from the image pixels, but rather only through the rankings of human observers. Finding

the image features responsible for these global properties would be a great leap forward

in this work. While image statistic correlates exist for some of the spatial global

properties (Oliva & Torralba, 2001; Torralba & Oliva, 2002), I believe that a more

fundamental question is which image features are human observers using to classify a

scene's global properties? Hopefully, future advances would allow the use of reverse
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correlation techniques to be used to probe this question (Ahumada, 2002; Gosselin &

Schyns, 2001).

As all global properties used here made some contribution to basic-level scene

categorization, one must ask whether there is anything "special" about these properties or

whether any reasonable description of a scene will do. Although Chapter 2 Experiment 4

shows that a scene description using objects fails to replicate human categorization

errors, we are still left with the question of whether any global property would contribute

in the computation of a scene's basic-level category. One possibility is that global

properties that are "accidental" (in other words, not distinguishing between basic-level

categories) will not contribute to scene categorization. For example, clutter is a

dimension where many scene categories can vary - there can be more or less cluttered

bedrooms and offices, for example. Another example might be mirror symmetry as this is

a property that could depend more on the angle of the photograph than any intrinsic

geometry of the space. Symmetry has been found to not be used by human participants in

scene recognition (Sanocki & Reynolds, 2000). Psychophysical aftereffects provide a

possible method for testing potential useful aftereffect as adaptation directly targets

populations of neurons coding a particular global property (Clifford 2005). Therefore,

presence of aftereffects to a candidate property can be taken as evidence for the neural

coding of that property.

The global properties presented here work for natural environments, which reflect

only a small subset of the scenes that we experience in our lives. A clear future extension

of this approach would be to test the role of global properties for other types of

environments, such as indoor scenes. While a corridor, for example, has a stereotyped
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spatial layout including a great deal of perspective, some of the current global properties

used for natural environments may not be diagnostic of indoor environments. For

example, no indoor environments are open and all are designed to permit navigation.

This leaves us two possibilities for indoor scene recognition: (1) indoor scenes can be

described using a different set of global properties; or (2) indoor scenes are recognized

primarily through one or more prominent objects. The first possibility is testable,

although new global properties specific to indoor scenes must be devised. For example,

the maximum occupancy of the place is an intuitive functional property of indoor

environments. A closet or bathroom would have smaller occupancy than a conference

room or classroom. Although occupancy would increase with increased volume of the

room, a bedroom of similar volume will have a smaller occupancy than a living room.

Another global scene property for indoor scenes could describe the location of the

scene's center of mass: a dining room or conference room has a more central mass than a

kitchen or corridor. However, indoor scenes could also be well-described by an object

model similar to those described in Chapter 2 Experiment 4. An empty room in a new

house becomes a bedroom, an office, a library or a music studio depending on the objects

that are placed in the room. Intuitively, the prominent object model seems like it would

achieve high categorization performance on some indoor categories such as bedrooms or

living rooms because the largest object (bed or sofa) is not typically found in other scene

categories. Future work should examine the representations building all types of scene

categories.

One last question surrounds the time course of object processing in building scene

identity. Surely, as objects can make up the identity of the scene and are the entities acted
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on by agents in a scene, they are of critical importance for scene understanding with

longer image exposures, but when and how does object information become available?

This and other work emphasize that objects (especially small ones) might not be available

for report at the beginning of the glance (Fei-Fei et al, 2007; Gordon, 2004; Rayner

Smith, Malcolm & Henderson, 2008). Therefore, a critical question for scene

understanding involves examining how object identity becomes available in the scene

representation. As objects can vary in size and salience, answers about the availability of

"objects" in general may be impossible. To make matters worse, it will be difficult to

disentangle the perception of an object with inference (overestimation of what was seen

due to the covariance with other perceived features and objects, see Brewer & Treyans,

1981). Therefore, a complete understanding of the representation of objects in scenes will

require knowledge about object size and context. However, with large databases and

object labeling techniques available on the internet, such as LabelMe (Russell, Torralba,

Murphy & Freeman, 2008), it is now possible to gather these statistics and design the

experiments. A view of the time course of object understanding within a scene, combined

with the current work would provide a rich picture of the early dynamics of the human

visual system.

Concluding remarks

All together, the results in this thesis provide support for an initial scene-centered

visual representation built on conjunctions of global properties that explicitly represent

scene function and spatial layout, but not necessarily the objects in the scene. This fills a

critical gap in the literature on high level visual processing, by allowing a global scene
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representation to be operationalized and tested. It also presents a significant departure

from traditional behavioral and modeling work on scene understanding which builds the

scene from pixels to contours through objects and then finally the scene. Here, scene

recognition can proceed without the laborious segmentation and object recognition

stages, providing a novel account of how human observers could identify a place as a

"forest", without first having to recognize the "trees".
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