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Abstract
Amyloids and prion proteins are clinically and biologically important beta-structures, whose
supersecondary structures are difficult to determine by standard experimental or computational means.
In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid
fibrils. Recent work has indicated the utility of templates and pairwise probabilistic statistics in beta-
structure prediction. A new suite of programs, BETASCAN, STITCHER, and HELIXCAP, are presented to
address the problem of amyloid structure prediction. BETASCAN calculates likelihood scores for
potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The
program then determines the strands and pairs with the greatest local likelihood for all of the
sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns
relative ab initio probabilities based solely on amino acid sequence, probability tables, and pre-chosen
parameters. STITCHER processes the output of BETASCAN and uses dynamic programming to 'stitch'
structures from flexible abstract templates defined by constraints for amyloid-like all-beta structures.
The 'stitched' structures are evaluated by a free-energy-based scoring algorithm incorporating
BETASCAN scores, bonuses for favorable side-chain stacking, and penalties for linker entropy. The
analyses of STITCHER structures emphasize the importance of side-chain stacking ladders in amyloid
formation. HELIXCAP detects a class of end-caps, called beta-helix caps, which stabilize known beta-helix
structures. These structures are known to stabilize globular beta-helix proteins and prevent their
amyloidogenesis; their presence in a sequence is a powerful negative predictor of amyloid potential.
Together, these algorithms permit detection and structural analysis of protein amyloidogenicity from
sequence data, enhancing the experimental investigation of amyloids and prion proteins.
Thesis Co-Supervisor: Bonnie Berger, PhD
Title: Professor of Applied Mathematics; HST Affiliated Faculty
Thesis Co-Supervisor: Susan L. Lindquist, PhD
Title: Professor of Biology; Member, Whitehead Institute for Biomedical Research; Howard
Hughes Medical Institute Investigator
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Symbols used

c: frequency of a residue, derived from an amino acid frequency table C.

C: an amino acid frequency table.

Calproteins : the amino acid frequency table for all proteins, calculated from SWISS-PROT 50.4.

Callyeasts: the amino acid frequency table for GC-sparse yeasts, calculated from the genome of

Saccharomyces cerevisiae.

AEc: free energy change due to contact enthalpy.

AEel: free energy change due to electrostatic enthalpy.

f,g: the two strand-pairs between a STITCHER link.

f(s, p, 1, o): propensity of beta-strand formation; a subsidiary calculation in BETASCAN.

AG: free energy change due to folding.

g(s, p, i): propensity of strand sequence occurrence; a subsidiary calculation in BETASCAN.

h(s, p, i, o): odds ratio of beta-strand formation, the singleton score output of BETASCAN.

i: first residue of the upper strand of a strand-pair considered for a STITCHER structure, derived from p

in BETASCAN.

j: first residue of the lower strand of a strand-pair considered for a STITCHER structure, derived from q

in BETASCAN.

j(s, p, q, i, o): pairwise propensity of strand-pair formation; a subsidiary calculation in BETASCAN.

k: upper bound of strand and strand-pair length calculated by BETASCAN.

k(s, p, q, 1, o): odds ratio of strand-pair formation, the pairwise score output of BETASCAN.

1: length of strand or strand-pair in BETASCAN, counted in residues. Becomes L in STITCHER.

laa: the distance between alpha carbons in a peptide chain.

L: length of strand-pairs in STITCHER, derived from I in BETASCAN, counted in residues.
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Llink: number of residues in linker.

m: number of rungs per polypeptide chain in STITCHER.

n: number of strands per rung in STITCHER.

nxx: number of occurrences of residue-pairs {X, X} in a structure.

o: orientation of a strand-pair in BETASCAN.

p: position of first residue of strand or upper strand-pair in BETASCAN. Becomes i in STITCHER.

P: probability, in the general sense.

q: position of first residue of lower strand-pair in BETASCAN. Becomesj in STITCHER.

r: a rung-pair in STITCHER, 1 _ r < m.

r1 , r2 , ... rn: the strand-pairs in rung-pair r.

r0n- k: the linker from rung-pair r to the previous rung-pair, if any. Not defined for r = 1.

1-2 (n-i)-n
rinkl, ... Tl)-n : the linkers in rung-pair r.

R: the gas constant.

R1, R2 : residues in upper and lower strands, respectively.

s: polypeptide sequence(s) of a strand or strand-pair in BETSACAN.

AS: change in entropy.

t: summation variable, measuring length along strands or strand-pairs.

T: temperature, set to 300K for all calculations in this work.

v: occurrence of a residue, derived from residue occurrence table V.

Vends: the volume that may be occupied by the linked ends of a circular peptide chain.

V(X 1 , 0): the 1x2x20 table of residue occurrences in amphipathic parallel beta-strands.

w: occurrence of a residue-pair, derived from residue-pair occurrence table W.

W(X 1,X 2 , 0): the 2x2x20 table of residue-pair occurrences in amphipathic parallel beta-sheets.
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X: a residue, selected from the set of twenty possible amino acid sidechains.

X,: upper residue in residue occurrence table V and residue-pair occurrence table W.

X2 : lower residue in residue-pair occurrence table W.

Z: the number of structures calculated by STITCHER; a prescribed value.

fl1, f2: the strands of a strand-pair.

0: orientation in residue occurrence table V and residue-pair occurrence table W.

,A: parameter of the distribution of amphipathic parallel strand-pair lengths.
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Introduction

Protein structure and folding
For sixty years, understanding the formation of three-dimensional protein structures has been

one of the greatest challenges in the life sciences. The identification of secondary structures, such as the

n-pleated sheet [1], was only the first step in classifying and analyzing the incredible variety of folds

found in nature. Two experimental methods, X-ray diffraction crystallography and nuclear magnetic

resonance determination, have been used over decades to collect thousands of structures [2]. Both

convergent evolution and common genetic inheritance have been found to contribute to the existence

of fold families and superfamilies, which have now been extensively catalogued [3]. However, the

difficulty, uncertainty, and expense of these methods has so far precluded a large-scale experimental

canvass of protein structure [4] analogous to the Genome Project [5]. Investigations of the necessary

conditions of protein folding led to the postulation of Anfinsen's dogma of a unique and strongly

attractive thermodynamically stable native state [6, 7]. However, this notion was tempered and

challenged by Levinthal's recognition of the mismatch between the size of polypeptide conformational

space and the time required for protein folding [8].

The heritage of protein structure databases

The proteins produced by living organisms have been long recognized to adopt many and varied

three-dimensional conformations, usually referred to as protein folds. Depending on the function of the

protein; folds can form nearly any construction required for cell function, from pores to structural struts

and from small free-floating enzymes to gigantic complexes designed for metabolism, replication, or

signal transduction. Understanding the origin and production of this incredible diversity from a limited
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set of building blocks - the common peptide backbone and the standard twenty amino acid side-chains

- has been an enduring and profound challenge to the field of molecular biology.

The first major breakthrough in the understanding of protein structure came with the seminal

work of Linus Pauling and colleagues in 1951 [9]. These studies built on Pauling's theoretical work on

resonance theory, which predicted the planar nature of the peptide bond, and X-ray diffraction studies

of individual amino acids and short peptides, which provided critical data on bond lengths and angles.

Combining these aspects, a short series of papers laid out the fundamental components of secondary

structure. First to be predicted were the (o-helix and its rare cousin the y-helix [10], with their localized

hydrogen-bonding, non-integer residue/turn ratios, and repeating spiral conformations. Then, Pauling

and Corey turned their attention to the P-pleated sheet [1]. In the 3 conformation, the backbone of the

polypeptide chain forms multiple extended regions forming near-linear, laterally oriented "strands"

linked by hydrogen-bonds alternating in orientation with every other residue. Two possible

configurations, presented in their first figure (and reproduced here as Figure 1-1), were presented: one

with each peptide strand's bonds oriented opposite those of neighboring strands (Figure 1-1, left), and

the other with every peptide bond oriented identically (Figure 1-1, right). These conformations, now

referred to as the "antiparallel" and "parallel" -sheets respectively, were borne out as fundamentally

accurate representations of protein structure with the first direct observations of p-structures in the X-

ray diffraction crystallography of whole proteins in 1965 [11].

With the advent of X-ray crystallographic analysis of entire proteins, which had begun by the

late 1950's [12, 13], the importance of structural complexities beyond the a and P conformations

became evident. In the terms of the classification system devised by Kaj Ulrik Linderstrom-Lang in 1952
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[14] and illustrated by Figure 1-2, the interest shifted to the tertiary structure of proteins, i.e., the

arrangement of various helices, sheets, and connecting loops (secondary structure) within a single

polypeptide chain (whose sequence makes up the primary structure of the protein). With the increasing

worldwide experience and skill in crystallizing proteins in native conformations and collecting sufficient

data for analysis, the number of solved crystal protein structures began an exponentiation which has

continued to this day [15]. The foundation of the Protein Data Bank (PDB) [2, 16] in 1971 began the

process of assembling the coordinates of structures derived from X-ray crystallography, and later, from

nuclear magnetic resonance data utilizing the nuclear Overhauser effect[17] to devise constraints on

structural geometry [18].

By the 1980's, the recurrence of motifs and whole folds in the PDB led to the description of

families, and later superfamilies, of folds. These could be classified by secondary structure content (all-

(a, all-P, or (-J), by shape (e.g., the Greek-key motif), and sometimes by function (as in the G-protein

signaling family). The 1981 introduction of the now-standard 'cartoon' visualization method pioneered

by Jane Richardson [19] made visualization and understanding of these folds practical. As the number of

folds expanded, databases of related folds such as SCOP [3] and CATH [20] were created to classify and

organize knowledge of protein architectures. Today (mid-2009) there are over 59,000 total protein

structures in the Protein Data Bank, of which over 34,000 are non-redundant. These structures have

been classified by their fold architecture [21] into around 4,000 families of related conformations.

Anfinsen's dogma and Levinthal's paradox

The discovery of in vitro folding of proteins [6] demonstrated that the conformation of proteins

could be intrinsically determined by the amino acid sequence of the polypeptide chain, and could be
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adopted outside the cell under the correct environmental conditions [7]. Several key conclusions were

drawn from these observations that influenced future protein folding experiments. First, the 'native' or

fully folded state was believed to lie at a strong and unique free-energy minimum, making the native

conformation a strong thermodynamic attractor state. This minimum was held to be surrounded by

steep energy barriers, which would prevent instability of the native state once formed. Despite these

energy barriers, there must be kinetically accessible path(s) from the large number of unfolded states to

the unique native state. There was therefore strong interest in trying to trace the kinetic folding

pathway from the unfolded to the native state. Finally, the context of other molecules in vivo

(particularly chaperone proteins) and other "trans-acting factors" was de-emphasized in favor of study

of polypeptides in isolation.

In 1968, Cyrus Levinthal pointed out [8] that the number of potential conformations available to

any polypeptide chain is astronomical. Indeed, according to Levinthal's calculations, if every atom in the

universe were used to assemble a conformational variation of a single 100-residue protein every second

since the formation of the universe, only a tiny fraction of the available conformational space of the

polypeptide chain would have been explored. However, biologically active polypeptide chains typically

proceed from these vast deserts of random coil conformations to folded states in less than a second.

Any assumption that this rapid assertion of structural order occurs through random searches of the

available conformational space is therefore precluded by the so-called "Levinthal's paradox", namely,

that the needle of folding is impossibly small compared to the haystack of conformational space. As

Levinthal noted, it must therefore be possible to reach the native state quickly from nearly any

conformation. Despite this remarkable intuition, the random-search or 'golf course' [22] model of



201 Page I Chapter 1: Introduction

protein folding persisted for many years, spurring searches for unique pathways of folding for globular

proteins.

Amyloid

In parallel with the investigation of the folding of globular proteins, investigations began on a

distinct and highly organized type of protein aggregation that belied several of the assumptions made by

Anfinsen. Amyloids were originally named when a particular type of extracellular inclusions previously

described as 'waxy' were suspected by Virchow to be composed of starch because of their agglutinative

properties [23]. The term 'amyloid' had already become standard by the 1870's, when component

molecules were discovered to be proteinaceous [24]. Detection of amyloid was originally accomplished

by observing the binding of various organic dyes [25]. However, Congo red dye [26] became dominant

due to its superior definition, reliability, and its peculiar property of apple-green birefringence upon

amyloid binding [24]. The last major dye to be introduced for amyloid detection was thioflavin T, favored

for its yellow-green fluorescence upon binding [27]. Despite the historical association with extracellular

assembly, intracellular inclusions with amyloid properties have also been observed [28].

The modern understanding of amyloids began with the first electron microscope images of

amyloid [29], which revealed non-branching fibrils composed of aggregated proteins as a common form

of diverse types of amyloid. The nature of these fibrils was clarified by X-ray diffraction studies of

amyloid [30]. A characteristic sharp, intense signal at 4.7 A was observed, indicating a structure termed

"cross-p". Cross-3 is a not a specific fold, but a general descriptor indicating that the 3-strands are

oriented perpendicular to the long axis of the amyloid fibrils. The P-strands were originally believed to

be anti-parallel in all cases due to a weak reflection at 9.3 A, but subsequent studies [31] showed this

: :___ _ll__^l*C1__~~__~__ __i~l~~__ll__ll l~-~iilll- -- l _~ii~-~-;ii-~;~:;~iIT;i~-;--------;i--~i ~i-~---C-~--l---~ll-LCIIIC,_-i:II1X-i-~~
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signal to be an artifact of sample processing for at least some fibrils. A variety of other experimental

methods [32], including circular dichroism spectroscopy [33] and electron microscopy [34], have since

confirmed the fibrillar model of amyloid. Thus, amyloid is currently understood as a highly stable family

of structures composed of many protein monomers arranged into n-sheet-rich fibrils with cross-n

orientation [35] (see Figure 1-3).

Prions

Prions were first postulated by Griffith [36] and Prusiner [37] as the causative agent of scrapie,

an infectious neurodegenerative disease of sheep. The then-incredible suggestion of a proteinaceous

infectious agent lacking any genetic material was originally a hypothesis of exclusion, after tests

revealed the incredibly small size and radiation resistance of the scrapie agent [38]. Fifteen years later,

the hypothesis was confirmed when prion protein (PrP) was linked to the presence of scrapie[39]. The

PrP protein is now generally regarded as the cause of the entire class of spongiform encephalopathies,

including Cruetzfeld-Jakob disease and kuru in humans and 'mad cow disease' in bovines [40].

Since then, the definition of prion has been repeatedly and controversially extended as new

properties and functional roles have come to light [41, 42]. The term 'prion' now describes not only self-

templating aggregative proteins in mammals and avians, but also fibrillar proteins in yeast that

contribute to epigenetic inheritance [43-45], switching elements in sea slug axons [46], and control

elements for mating compatibility in fungi [47]. Prion fibrils and infectivity has been transmitted across

cell divisions, across cell membranes, and even between individuals of different species [48]. Currently,

a protein generally agreed to be a prion would have, in addition to its native and usually soluble
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conformation, at least one additional conformation (which is typically 1-sheet rich and insoluble) that is

self-perpetuating and infectious [35].

The structural natures of amyloid and prion proteins have been highly controversial topics [49-

51]. The debate has been complicated by the morphological heterogeneity of amyloid structures

suggested by EM imagery [52, 53] and the demonstration of prion 'strains' or 'variants' with differing

growth and stability phenotypes [54-56]. For the Sup35 prion, strains are known to maintain specificity

through serial passage [55] and have been correlated with differences in conformation [57].

Functional associations of prion and amyloid

Amyloids were originally studied due to their association with a host of diseases [24, 58]. The

systemic amyloidoses include familial or inherited amyloidosis, primary or AL amyloidosis, and

secondary or AA amyloidosis. The clinical distinction between these syndromes lies in their etiology,

respectively held to be genetic mutation [24], overproduction of plasma cells manufacturing light-chain

immunoglobulins [59], and overconcentration of a serum inflammatory protein [60]. Another major

class of amyloid-associated diseases is the neurodegenerative amyloidoses [61], including Alzheimer's

[62], Parkinson's [50], and Huntington's [63]. A variety of other amyloidoses have been observed to be

associated with neuropathy, angiopathy, nephropathy, and type II diabetes [34, 64].

By analogy to the systemic amyloidoses, the non-systemic amyloid diseases were originally

assumed to also be caused by the associated amyloids. However, more recent evidence suggests that

the formation of amyloids may more commonly be a protective mechanism. Especially in the case of the

neurodegenerative amyloidoses, aggregation may act to sequester misfolded polypeptides that would
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otherwise dwell in more toxic, and more highly interactive, oligomeric species. Structurally speaking,

the amyloid fibrils formed in all these diseases are strikingly similar considering the diversity of their

amyloid precursors - twenty-five of which were identified in humans as of the last major classification

[65].

More recent searches for amyloid function have revealed that amyloids serve important

biological functions across many species. Amyloid fibers composed of the protein Pmell7 are part of the

production system for melanin [66]. In bacteria, biofilm stability contributes to the tenacity of infections,

a property induced in part by the amyloid curli [67]. The self-templating amyloids in fungi may faithfully

pass their conformations on to daughter cells, providing new phenotypes [68] and in some cases

beneficial [69] buffered genetic diversity [70, 71]. Self-perpetuating prion-like switches in the state of

CPEB also appear to play a role in neuronal learning and memory, by maintaining a translation factor

involved in the maintenance of synapses in an active and highly localized state [46]. Most recently,

amyloid was discovered to be a primary means of stockpiling a wide variety of hormones in the Golgi-

derived secretory granules of various mammalian endrocrine glands [72].

The mystery of detailed structure in amyloid and prion

Amyloid fibrils, 10-30 nm in diameter, resolve into protofilaments measuring typically 2-6 nm in

width under transmission electron and atomic force microscopy [32, 34, 50, 73]. However, below this

resolution, microscopy must give way to alternate methods for detailed structural determination. The

standard methods for such investigation have been frustratingly difficult. The cross- structure, once

formed, is highly stable and resistant to proteinase activity or denaturation by heat or chemical solvent

[74]. Crystallization of the cross-P structure for X-ray structural determination has proven impractical
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except for extremely short segments [51, 75]. Likewise, solid-state NMR studies have been pursued due

to the insolubility of amyloid folds [76]. Biochemical studies of amyloid and prion structure have

therefore tended to utilize indirect observation of formation using dye-binding assays [24-26],

fluorophore activation [27, 77], or functional assays [78]. Recently, direct observations through solid-

state nuclear magnetic resonance (ssNMR) studies have permitted direct confirmation of parallel 3-

structure in a few specific cases [79-82]. Figure 1-3 depicts one example of these structures.

Amyloid and prion protein structures are of great interest to multiple disciplines for multiple

reasons. Physicians seek a greater understanding of the origin, assembly, diagnostic and pathological

implications of in vivo amyloid aggregation and prion infectivity. Biologists desire to understand the

mechanisms of amyloid and prion assembly and the evolutionary and phenotypic implications of the

presence and absence of amyloid states. Molecular biophysicists and computational biologists seek

greater clarifications of the underlying influences of primary structure, environmental effects, and

folding cofactors on the folding of polypeptides. Theorists of protein folding are challenged by the bi-

stable nature of prion conformational change and the context dependency of amyloid folding, which

violate the principles of Anfinsen's dogma, yet must still somehow avoid the pitfalls of Levinthal's

paradox. Despite this great concentration of interest, the experimental tools to elucidate detailed

structures of amyloid and prion proteins are insufficient. We therefore turn next to computational

methods of n-structure prediction to continue searching for the conformational details of these vital

proteins.
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Figure 1-1: the original drawings of the antiparallel, left, and parallel, right, -sheetCHLC

Figure 1-1: the original drawings of the antiparallel, left, and parallel, right, j3-sheet

conformations. Reproduced from [1].

Chapter
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Figure 1-2: An illustration of the levels of protein structure, as originally expounded by

Linderstrem-Lang in 1952 [14]. Red circles indicate the locations of amino acid residues, the

variable portion of the protein primary structure. Green arrows indicate the individual beta-

strands, an element of secondary structure. The blue rectangle indicates the whole fold of

the protein, described as tertiary structure.

- .......... 111
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Figure 1-3: An example of amyloid structure, depicting the cross-P nature of the

conformation and the stacking of multiple copies of a polypeptide sequence into a

aggregated fibril. Structure after Lihrs et al. [80], PDB structure 2BEG, rendered by PyMol [83].

........................ 0 - .-
............



281 Page 1 Chapter 1: Introduction



Chapter 2: Computational Strategies Page 129

Computational Strategies

Despite the fundamentally spurious nature of its most naive formulation, the Levinthal paradox

has nonetheless posed a challenge to computational efforts to solve the protein folding problem. In the

absence of means to define the dynamic free-energy state or the kinetic folding pathway(s) for a

particular protein, any conformational state appears a priori to be of equal probability for the purposes

of computer algorithms. The problem of protein structure prediction may be attacked in two ways:

relieving the Levinthal paradox by elimination of impossible or highly improbable conformations, and

preventing the effect of the paradox by finding the free-energy 'landscapes' that encourage folding [64].

Despite extensive efforts [84], a generalized understanding of the mechanisms of protein folding have

proven insufficient for reliable, high-fidelity ab initio prediction.

Ab initio prediction

Various studies have described the general protein folding problems as NP-hard for conditions

implying the naive equal-probability assumption. Preliminary attempts simplified by solving for straight-

line subsequences and for graphs reflecting simple folds [85, 86]. Eventually, even the simplest realistic

description of protein folding, modeling amino acids simply as hydrophobic or polar and the available

conformation space as a cubic 3D lattice, was shown to be incomplete [87]. These studies provided

confirming evidence for the Anfinsen postulate that folding pathway(s) are encoded into the amino acid

sequence of proteins [88].

Interest has thus alternatively turned to utilizing free-energy calculations in the context of

statistical mechanics [89]. Whole-protein ab initio theoretical methods were developed for globally



301 Page I Chapter 2: Computational Strategies

solving protein structures. Monte Carlo minimization [90] introduced the concept of pushing past local

minima to search for global optimization by perturbing protein structures in the process of optimization.

Molecular dynamics simulation [91] attempted to simulate both the kinetics and dynamics of protein

folding, in line with Levinthal's suggestion that kinetics would play a role in the selection of the

pathway(s) to the native state. These efforts were aided by the recognition that side-chain optimization

was as important to high-resolution structure determination as backbone packing [92, 93] and that the

optimization of interactions between secondary structures by manipulating them as unitary objects is an

important step in global alignment [94, 95]. Despite these improvements, constant testing and

optimization, and the sporadic success, a generally applicable, ab initio, whole-protein method for

predicting tertiary structure from primary sequence remains elusive [4, 84], with only incremental

improvements in the latest global assessment of performance, the critical assessment of methods of

prediction (CASP).

The primary difficulty with general ab initio protein structure determination is the importance of

interactions between residues that are distant from each other as measured by backbone position, but

highly proximal in the folded structure. One clue to how nature overcomes this difficulty was provided

by the recognition that one 3-strand can induce the formation of the next n-strand in a n-sheet [96].

Since P-strands, unlike (o-helices, can be far distant in backbone position yet specific in their assembly,

3-structure can provide a scaffold for the folding of some proteins. This realization is particularly vital to

the understanding of amyloid and prion proteins, which are not only all-3 in structure, but are known,

i.e. in the mammalian PrP protein, to be formed of sequences that form o-structure in other contexts

[97].
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Secondary structure prediction efforts have met with somewhat more success than tertiary

structure prediction. Starting with the initial propensity statistics of Chou and Fasman [98, 99],

increasingly complex and varied methods have been developed to incorporate the accumulated

knowledge of protein homology and similarity into modeling of secondary structure [100], including

Bayesian inference [101], support vector machines [102] and neural networks [103]. However, because

of the increased distance between n-strands as opposed to the highly local 3-4 residues/turn

connections of x-helices, P-strand prediction remains significantly poorer even for globular proteins

[104]. The poor sequence conservation and lack of homology between amyloid and prion proteins

effectively prevent utilization of any of these methods, which instead predict a lack of structure for

sequences that produce some of the most stable protein fibrils known.

Previous strategies

In the absence of a general ab initio solution to the protein folding problem, strategies with

more restricted scope have been developed. One of the most successful is known as threading, after the

THREADER algorithm that initially demonstrated the principle [105]. Threading can extrapolate from a

known protein structure to another, if the two are related in both sequence and structure. To do so, the

amino acid sequences of the two proteins are typically first aligned [106]. This alignment guides the

placement of the second protein in a conformation directly analogous to the structure of the first.

Localized methods are then employed to adjust this rough approximation into a high-quality structure.

The previously known, or template, structure is required to sufficiently restrict the conformational space

to make the prediction of high-quality structure tractable. In addition, the sequences must be

sufficiently similar to permit an accurate alignment [107]. In the "twilight zone" of protein structure
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[108], proteins have similar structures yet insufficient sequence similarity for accurate alignment,

despite better-conserved structural similarity [109-111].

Another approach to protein structure prediction attempts to use thermodynamic principles as

its guide [112]. Such methods seek to describe structures in terms of their free energy, accounting for

the enthalpy of hydrogen bonds and ionic interactions and the entropy caused by restricting the

freedom of the peptide backbone and sidechains, as well as the so-called "hydrophobic interactions".

This method is used to great effect as part of the localized optimization methods in threading. However,

attempts to apply free-energy calculations globally stumble on several limitations: the uncertainty of

measurement of free-energy parameters, the simplifying assumptions of many approaches, and the lack

of a computationally tractable method for describing the hydrophobic collapse of most globular

proteins. Without these features, the free-energy method cannot provide the reduction of

conformational space provided by the known structure of a template.

Yet a third method of protein structural prediction uses the thousands of determined protein

structures to determine statistics relating sequence patterns to structural features [113]. According to

this philosophy, the dependence of structure on sequence implies that similar interactions will occur

repeatedly throughout the database of known protein structures. By cataloguing these patterns,

predictions for proteins of unknown structure may be evaluated in terms of probability and likelihood.

Some local patterns, such as coiled coils [114], can be extracted by this method without recourse to

templates or previous knowledge of protein structures.

_
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A new approach for prediction of amyloid-like -structures

Recently, novel efforts to push the boundaries of protein structure predictions have begun to

combine these three methods in different ways. The challenge of identifying the parallel n-helix fold

(Figure 2-1), a fold postulated as similar to amyloid [115], from its sequence was addressed by

BETAWRAP [116, 117]. BETAWRAP was the first program to incorporate the important long-range

pairwise interactions into a computational method to predict j-structure. In doing so, BETAWRAP was

able to predict strand-pairs, defined as any two P-strands connected by the hydrogen bonds of a P-

sheet. The predictive power, and the greatest limitation, of the BETAWRAP approach originated from its

flexible template of relative 1-strand positions. One turn between two f-strands (designated T2 by the

authors of BETAWRAP, indicated by red in Figure 2-1) was discovered to consistently be of a particular

length, connecting two -strands of also consistent length. This pattern was repeated many times within

each 3-helix protein, and also replicated across proteins of widely divergent amino acid sequences. This

structural observation permitted the use of probabilistic prediction to both search for and align the P-

strands of the protein, facilitating the near-complete assembly of tertiary structure from primary

sequence - but only for a restricted sub-family of proteins.

The mechanism of an abstract structural template is more broadly applicable than the three-

dimensional fitting procedure of threading. The exact configurations of backbones and amino acids are

subsumed in this method by a succinct description of backbone contacts. Furthermore, abstract

structural templates can provide accurate predictions across a wider variety of primary sequences than

traditional threading. However, as currently implemented, this strategy depends on the manual

identification of a structural motif across multiple proteins. While such a strategy has been successful in
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other limited applications [118, 119], the general approach can only be extended slowly - and cannot

address at all the vast majority of proteins without clear family similarities of structure.

The divide and conquer plan for amyloid structure prediction

The approach outlined in subsequent chapters attempts to utilize the most successful aspects of

many of the previously mentioned approaches in a piecewise fashion. This "divide and conquer" plan

reflects the insight that secondary structure in general, and n-structure in particular, can be used as

building blocks to assemble and optimize tertiary structures. Because this plan applies only to 3-

structure, it must be applied to sequences without significant (o-helix content.

The first step is to identify individual parallel 1-strands, which is accomplished with singleton

probabilities derived from a pairwise probability database. Single strands are next combined into strand-

pairs, units of two adjacent parallel -strands, utilizing the same pairwise probability database. A

maxima-finding strategy prunes the strand-pairs to reveal the most likely connections between distant

residues (Chapter 3, BETASCAN). Next, these strand-pairs are 'stitched' together into sheets and

complete structures by chaining strand-pairs together (Chapter 4, STITCHER). A key component of the

stitching algorithm is the verification of the relative positional alignments of the 1-sheets. The effects of

side-chain stacking interactions, which create ladders of stabilizing residues along the sheets and turns,

are the most important influence on the selection of properly aligned strand-pairs. Free-energy methods

are used to choose the optimum combinations of stacking, linker loops, and pairwise interactions to

identify a set of near-optimum structures. Insights from experimental data may be used to enhance and

select the best structural predictions of amyloid structures. Lastly, to verify that these structures are
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amyloidogenic and not the related globular P-helix structure, a hidden Markov model identifies the 3-

helix caps peculiar to those proteins (Chapter 5, HELIXCAP). The P-helix cap prevents the exposure of the

P-strands and hydrophobic core of a folded peptide both to solvent and to fibril ends that promote

amyloid assembly. Therefore, in contrast to the positive detection methods of BETASCAN and STITCHER,

HELIXCAP represents a negative detection method that identifies sequences not prone to amyloid or

prion formation.

Figures

Figure 2-1: Pectate lyase C from Erwinia chrysanthemi, one of the first P-helices to be crystallized [120].

The T2 turn, the vital element of the BETAWRAP abstract template, is highlighted in red.
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BETASCAN: Prediction of P-strands and strand-pairs'

Introduction
As described in chapter 1, "amyloid" is a term used to describe a particular type of protein

structure that can be adopted by a very wide variety of proteins with completely unrelated primary

amino acid sequences [58, 64]. It is a form of protein aggregation, but of a distinct and highly ordered

type. It has recently been realized that, given the right conditions, a great many, perhaps most, proteins

have the potential to form amyloids. This appears to be due to intrinsic properties of the peptide

backbone, a finding of great importance for understanding the evolution of protein folds. A much

smaller fraction of proteins, and protein fragments, assemble into amyloid under normal physiological

conditions, and these are of great interest in diverse aspects of biology and medicine [121].

Many amyloids first came to our attention because they were associated with a wide variety of

diseases, from systemic amyloidoses to neurodegenerative diseases such as Alzheimer's [97]. It had

initially been assumed, therefore, that amyloids were toxic species. This indeed may be the case in

peripheral amyloidoses, where the massive accumulation of amyloid fibers may physically disrupt

normal tissue function [122]. Increasingly, however, evidence suggests that the formation of amyloids

may more commonly be a protective mechanism which, especially in the case of the neurodegenerative

amyloidoses, acts as to sequester misfolded polypeptides that would otherwise dwell in more toxic, and

more highly interactive, oligomeric species. It has also recently been realized that amyloids serve

important biological functions in a number of different situations. For example, in melanocytes, amyloid

fibers formed by Pmell7 play a role in the production of melanin [66], and in bacteria extracellular

The material in this chapter previously appeared in PLoS Computational Biology: Bryan, A.W., Jr., et al.,
BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis. PLoS Comput Biol, 2009. 5(3): p.
e1000333.
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amyloids are a key feature of the biofilms that are so difficult to eradicate in various infectious processes

[67]. In fungi, a special class of self-templating amyloids serve as elements of inheritance: these bi-

stable proteins can persist as soluble or amyloid species and the change in function that occurs when

with the switch to the amyloid form, is passed from generation to generation as mother cells faithfully

pass amyloid (prion) templates through the cytoplasm to their daughter cells [123, 124]. Such self-

perpetuating prion-like switches in state also appear to play a role in neuronal learning and memory, by

maintaining a translation factor involved in the maintenance of synapses in an active and highly localized

state[46]. There is, therefore, great interest in deciphering the structures that underlie amyloid states.

Several methods have established that amyloids are generally rich in f-strands aligned

perpendicular to the long axis of the fibril [32-34, 47, 125]. Beyond this, frustratingly little is known

about their structure. Crystallization for X-ray structure determination has proven impossible except for

extremely short segments [51, 75]. Notably, the importance of interactions between side-chains in

these structures establishes that a detailed understanding of such interactions will be necessary to

comprehend the physical and biological properties of other amyloids. The insolubility of amyloids has

also precluded NMR-based structural determination until very recently, when solid-state nuclear

magnetic resonance (ssNMR) studies have yielded partial, specifically parallel n-structures in a few

specific cases [80-82, 126, 127]. Due to the scarcity of direct evidence, the nature of amyloid and prion

supersecondary structures and their relation to sequence have been highly contentious topics [49, 51,

128]. The debate has been complicated by the morphological heterogeneity of amyloid structures

suggested by EM imagery [52, 53] and the demonstration of prion 'strains' or 'variants' with differing

growth and stability phenotypes [54-56]. In the case of the yeast prion protein Sup35, such variants have

been demonstrated to maintain specificity through serial passage [55] and have been correlated with
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differences in conformation [57]. These results underscore the need to consider alternate

supersecondary structures for amyloid and prion strands.

Given the difficulty of direct observation of supersecondary structure, computational modeling

of amyloid folding has been attempted. Unfortunately, barriers exist to the effective application of

sequence-based computational analysis. Several homologous prion-forming domains, while functionally

conserved over evolutionary time, have sequence identities of under 25%, with sufficient additional

rearrangement as to preclude multiple sequence alignment via standard algorithms such as CLUSTAL

[106]. Analysis of amyloidogenic proteins has not revealed overall commonalities of sequence, except in

individual residue frequencies [129-131] and a tendency for imperfect repeats to appear [132, 133].

Secondary structure prediction algorithms [100, 134] identify many amyloid- and prion-forming domains

as random coil without structure. The amyloid-forming domains of these sequences are removed by the

low-complexity filters of local sequence alignment tools such as BLAST [135], rendering another family

of methods ineffective.

The strong evidence for P-structure in amyloid suggests that, as an alternate means of

secondary structure prediction, computational methods designed to predict globular n-structure should

be assessed. BETAWRAP [116, 117] was the first program to incorporate the important long-range

pairwise interactions into a computational method to predict 3-structure. In doing so, BETAWRAP was

the first program to predict strand-pairs, defined as any two i-strands connected by the hydrogen

bonds of a 1-sheet. The program is restricted by a template of strand lengths to predict only one sub-

family of the parallel P-helices, a fold widely cited as similar to amyloid [52, 115, 136]. BETAPRO [137] is



Chapter 3: BETASCAN I Page 139

a general method that incorporates pairwise properties into a neural net to learn globular n-strands and

strand-pairs.

A variety of other approaches have been implemented in the search for a reliable detector of

protein aggregation. TANGO [138] utilizes a statistical mechanics approach to make secondary structure

predictions, including differentiation of 3-aggregation from P-sheets. The TANGO algorithm presumes

that all residues of an aggregate will be hydrophobically buried. Zyggregator [139] models aggregation

propensity per residue as a combination of four factors intrinsic to a sequence: charge, hydrophobicity,

secondary structure propensity, and the "pattern" of alternating hydrophobic and hydrophilic residues.

Zyggregator derives its statistical basis from a study of effects of mutation on aggregation [140] and

calculates its scores based on a sliding window of 21 residues. SALSA [141] uses a sliding window to sum

the cumulative Chou-Fasman parameter score, then selects the 400 best scores and sums each residue's

contribution. Finally, PASTA [142, 143] calculates singleton and pairwise propensities for individual

residues and residue-pairs by calculating a weighted average of the contribution of that residue or pair

to P-strand formation. The pairwise scores, in turn, were calculated according to a Boltzmann energy

function derived from the adjacencies in a database of 500 annotated structures.

We introduce a program, BETASCAN, to predict prions and amyloids as well as other forms of

parallel 1-structure. Like PASTA, BETASCAN relies on calculation of strand propensities. However,

BETASCAN makes use of a novel hill-climbing algorithm to find the most preferred 1-strands and strand-

pairs. Our hypothesis is that BETASCAN will be able to determine the location and length of the 1-

strands present in the amyloid and prion protein sequences. Coupled with a more statistically robust

method to estimate pair propensities and the consideration of the amphipathic environment of amyloid
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3-sheets, the hill-climbing method leads to favorably comparable performance by BETASCAN compared

to previous methods, as determined by existing experimental data.

Results
BETASCAN was designed, in principle, to predict parallel n-structure in all cases where the two

surfaces of the n-sheet have significant environmental differences. Our strongest subset of interest

within this area of competence was the set of prion and amyloid proteins. We therefore tested

BETASCAN on five amyloids with known structures and a set of aggregating proteins. In order to verify

the accuracy of BETASCAN predictions, we ran BETASCAN on a non-redundant set of crystallized parallel

P-helix proteins. This set of structures provided the closest analogue to prion and amyloid proteins with

detailed crystal structures available.

Test sets

In addition to testing BETASCAN and competing programs on amyloids, we also test them on

their ability to detect P-strands in a superfamily of parallel 0-folds with solved crystal structures, namely

the parallel 3-helices. Here we test BETAWRAPPRO (the improved version on the BETAWRAP algorithm

specifically designed for predicting f-helices), BETAPRO (the neural network for predicting P-strands),

PASTA, SALSA, TANGO, Zyggregator, and our program BETASCAN for correct detection of f-strands in a

3-helix data set. In addition, we compare our program's predictions to those of the other algorithms in

light of the known experimental structural evidence for amyloid proteins.

Available verification data

X-ray crystallography results were available from 34 independent, non-redundant structures of

3-helix sequences excluded from the pairwise and singleton probability tables (Supplementary Table 1).
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In addition, deuterium-exchange solid-state NMR -sheet detection results were available for amyloid A-

P [80, 126], the Podospora Het-s prion [81, 82], portions of (o-synuclein [144], and the PHF43 fragment

of the tau protein [145]. A theoretical model of amylin/islet amyloid polypeptide [146] was also used in

the verification of PASTA, and its analysis was included as well. An additional structure of A-P was

considered [147], but was too low in resolution to determine lengths of component 1-strands.

Output formats

As an example of typical BETASCAN visual outputs, Figure 3-1 presents sample outputs from

BETASCAN for the 1-helix domain of Erwinia crysanthemi pectate lyase C. The heat-map at top (Figure 3-

1A) depicts the assignment of a likelihood score to each point on a lattice of possible 1-strands. In these

graphs, the starting point of a putative 1-strand is indicated horizontally, and the length of such a P-

strand increases vertically. Organized in this fashion, a likely 1-strand appears as a triangular signal of

high probability against a low-probability background; the strand location and length may be read at the

triangle's apex. The residues on the strands may face in one of two directions (starting inward or

outward, relative to fibril core); therefore, two graphs are presented to depict the effects of residue

orientation.

The strands with local maximal likelihood were calculated for output as described in Materials

and Methods; Figure 3-1B offers a concise version of the results. Here, the potential P-strand lengths

and locations are depicted horizontally; the vertical axis indicates the score for each potential strand. An

analogous procedure was then executed for all strand-pairs, resulting in the set of local maximum

likelihood strand-pairs depicted in Figure 3-1C. As in Figure 3-1B, strand-pairs lengths and locations are
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depicted, with the horizontal and vertical axes indicating the starting points in the sequence of the first

and second strands of the pair.

Predictions of specific P-strands and strand-pairs may now be made directly from the sets of

local maximal likelihood structures. For instance, the marked strands and strand-pairs in Figures 3-18

and 3-1C are the set of non-overlapping structures with the highest score. These correspond well to the

f-strands and strand-pairs observed in the PDB-deposited crystal structure (purple bars in Figures 3-18

and 3-1C). Confidence in the prediction for any strand, strand-pair, or subsequence thereof may be

inferred from the additional predictions for the location.

Verification from crystal structures of f3-helices

f-helices have been widely noted as the closest globular protein analogue of amyloid and prion

structures [52, 115, 136, 148]. Because of this similarity, the 3-helices were removed from consideration

during the computation of the probabilistic database. Therefore, these structures formed a useful test

set to evaluate the accuracy of the BETASCAN algorithm in n-strand detection. The BETASCAN results for

the non-orthologous P-helices (listed in Supplemental Table 3-S1) were compared to the STRIDE analysis

of -strands in crystal structures. Statistics were collected on the accuracy of predictions by strand and

by residue, and on the accuracy of left- and right-edge locations.

The accuracy of BETASCAN, counted by strand and by residue, is depicted in Figure 3-2A.

Examined strand-by-strand, BETASCAN had an effective sensitivity of 94-96% to correct strands. In

addition, as long as the maximum 3-strand length is equal or greater to the average 3-strand length,

BETASCAN achieved 80% or greater sensitivity, measured residue-by-residue, for this data set. As shown

in Figure 3-2B, the error in the predicting the left and right edges of each strand was between one and

- - - - - - - ' .. . . .. . . Z , -..
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two residues each. The error in edge localization was minimized when the maximum f-strand length

was closest to the average P-strand length, and increased considerably when longer strands were

considered. The residue-by-residue sensitivity is thus reflective of the error in edge localization.

Our hypothesis that pairwise probabilities reflect the occurrence of P-strands in structures

necessarily implied that the scores discriminate between n-forming subsequences and sequences that

form loops or other structures. Figures 3-2C, 3-2D, and 3-2E describe the sensitivity and specificity or

positive predictive value of BETASCAN scores for residues and for strands. Sensitivity and specificity,

measured by residue, were markedly reduced if strands of sufficient length are not considered, while

additional strand length had little or no effect. However, strand-by-strand sensitivity, specificity, and

PPV were slightly improved. For all lengths and scores examined, negative predictive value (NPV) was

95% or higher.

While portions of a loop may be found in -conformation without the distinctive hydrogen

bonds of a n-sheet, the majority of n-strands are found in n-sheets. Therefore, the scores of the

predicted pairwise contacts may indicate whether a given postulated n-strand is present in native or

amyloid structures. With this hypothesis in mind, a filter was devised to exclude strands without

significant associated pairwise contacts from the BETASCAN single-strand maxima results. A strand was

considered to have poor pairwise contacts if the summed scores of pairwise contacts with the strand as

the first element was less than some threshold value. Figures 3-2F, 3-2G, 3-2H reveal the effect of

increasingly filtering pairwise-poor strands on sensitivity, specificity, and strand-by-strand PPV for the 3-

helix test set. The best results for this set, as determined by the receiver-operating characteristic

method, were at a pairwise filter threshold score of 17. For strands with summed pairwise scores above
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this value, 91-94% sensitivity and 84-94% specificity was observed, with the longest allowed strand

lengths yielding the best statistics. Measured residue by residue, 72-83% sensitivity and 74-81%

specificity were achieved, with the best statistics observed at a maximum length of four residues. PPVs

achieved were 68-70% for strands and 70-73% for residues.

Comparison to BETAWRAPPRO results.

Comparisons were also made between the BETASCAN 3-helix results and the highest-scoring

predictions of BETAWRAPPRO, the latest BETAWRAP algorithm [117]. Since the BETAWRAPPRO

algorithm incorporates structural information specific to f-helices, comparison of BETASCAN and

BETAWRAPPRO indicates the relative utility of structure-specific knowledge.

BETAWRAPPRO predicted 276 strands in its top results for each of the P-helices studied. When

compared to the 631 n-strands in the crystal structures, 189 were found to correspond, for a sensitivity

of 30% and a positive predictive value of 68.4%. Of these 189 strands, 183 strands were considered

matched by BETASCAN under the same conditions used for matching in the BETASCAN analysis above.

These results were unchanged by changes in maximum P-strand length. Thus, BETASCAN effectively

reproduces the correct results of BETAWRAPPRO without structure-specific knowledge. While markedly

increasing sensitivity to -strands, especially to those outside the canonical 1-strand pattern, BETASCAN

also maintains the positive predictive value achieved by BETAWRAPPRO.

Verification from solid-state NMR analyses of amyloids, and comparison with PASTA
and SALSA

Solid-state NMR analysis was used by Petkova et al. [126], Luehrs et al. [80], Ritter et al. [81],

and Wasmer et al. [82] to determine strand-pair contacts in A-3 1-42 and the Podospora Het-s prion.

Briefly, 1H-NMR signals were taken before and after one week of immersion in D20. Deuterium exchange
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occurred in all locations except where retarded by the energy wells of hydrogen bonds, allowing the

identification of residues taking part in P-sheet hydrogen bonding.

The structure of A-P 1-42 (Figure 3-3A) under differing conditions was determined

independently by Petkova et al. [126] and Luehrs et al. [80]. As determined by Luehrs, the structure

included two P-strands formed at residues 15-24 and 30-42, each forming in-register interchain strand-

pairs. The structure as determined by Petkova included a strand from 10-14 and a region from 30-35

that was ambiguously determined as one or two strands. Predictions by PASTA and SALSA suggested 3-

structure in the regions 10-22 and 29-42 without elaboration. The BETASCAN algorithm, as its top

specific prediction, produced P-strands at residues 9-13, 15-22, and 30-42.

The heterokaryon compatibility prion Het-s from Podospora anserina [47] was found by Ritter et

al. [81] to form four P-strands, with one P-sheet composed of alternating copies of n-strands 1 and 3,

and another n-sheet similarly composed by strands 2 and 4 (Figure 3-3B). The results of Wasmer et al.

[82] indicated breaks in each of these four P-strands, thus predicting a total of eight closely spaced

strands. In addition, the new results indicated a reversal of orientation at the breaks in strands 1 and 3.

PASTA predicted two strands and the possibility of a third, corresponding to Ritter's strands 2, 3, and 4.

The BETASCAN algorithm strongly predicted Ritter's strands 2, 3, and 4 at their full length. While

BETASCAN's prediction matched only the C-terminal half of Ritter's strand 1, it matched both strands la

and lb of the Wasmer model at lower probability. Wasmer strands 2a, 2b, 3a, 3b, and 4a were all

indicated at high probability, and Wasmer strand 4b at the same probability as strand la. Each of the

strand-pairs observed by Ritter and by Wasmer was found in the strand-pair set predicted by BETASCAN,

although the signal was not clearly distinguishable from other potential pairings.
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o-synuclein has been analyzed by Heise et al. [144] to contain a total of seven strands. The two

highest-scoring, the third and sixth strands, were detected by both PASTA and BETASCAN with high

accuracy (Figure 3-3C). SALSA predicted the first two, with a large and vague prediction of amyloid

propensity covering the remaining strands. While some predictions were low-scoring, only BETASCAN

indicated the possibility of the seven strands detected by experiment.

Amylin, also known as islet amyloid polypeptide (IAPP), was modeled by Kajava et al. [146] to be

an in-register amyloid composed of three strands. PASTA predicted an amyloidogenic region from 15-32.

BETASCAN results (Figure 3-3D) suggested two of the three strands predicted by Kajava, part of the third

strand (30-33), and an additional strand at residues 3-7. This potential strand may be related to the

intrachain cysteine bond between residues 3 and 8.

Aggregation in the tau protein centers on the repeat domain, which takes the conformation of

random coil in the native state [145]. Interest has more specifically centered on the protease-resistant

PHF43 sequence, though other regions of the protein product have been suggested to play roles [149].

Trovato and colleagues only analyzed the PHF43 domain itself, verifying the importance of the

hexapetpide VQIVYK at residues 306-311. Here, the region between residues 205 and 441 is analyzed. A

more extensive run of the PASTA algorithm finds strands at 258 and 338. SALSA weakly detects strands

at about 235, as well as at 390 and 410. The more expansive BETASCAN analysis presented in Figure 3e

underscores the importance of residues 306-311, as it is the most likely f-strand to form in the entire

tau protein; it also detects strands at 255, 338, and 390-410.

/ t
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Comparison across multiple prediction programs

A synopsis comparing the predictions of BETASCAN to those of PASTA (as provided in [143]),

SALSA (as provided in [141]), TANGO [138], Zyggegator [139), and BETAPRO[137] is presented in Table

3-1. As a control, the results of JPRED [100] and PSIPRED[150] are included to represent traditional

secondary structure prediction. Because of the difficulty in translating one program's scores to

another's, predictions were indicated as 'strong' or 'weak' depending on relative internal scoring and

extent of prediction. For IAPP, Het-s, and ox-synuclein, our program BETASCAN was the only program to

detect the correct number of strands. All algorithms successfully predicted the strands of A-n, although

some did not detect all of strand 2. All algorithms were also able to detect the strongest strands for the

tau protein, except that BETAPRO and TANGO did not detect the first strand near residue 235. BETAPRO

tended to miss strands, while PASTA, SALSA, and Zyggegator had difficulty separating strands. TANGO

tended to miss strands at the edges of n-rich regions.

Analysis of aggregating sequences

We also used BETASCAN to analyze a larger database of sequences derived from proteins

observed to aggregate in experimental settings, and the results compared favorably to those of PASTA

(see Figure 3-4). The data set previously used for analysis by [138, 142] was considered as a benchmark.

However, the redundant content of the set was found to cause a loss of robustness, as determined by

an analysis involving the removal of one or two clusters' redundant sequences (see Supplemental Table

3-S2). Therefore, a non-redundant version was calculated by CD-HIT [151] with 40% sequence similarity

cutoff, and the resulting 120 sequences (see Supplemental Table S-S3) were analyzed by BETASCAN. The

specificity and sensitivity curves for the top P-strand score of each sequence intersect at 81%, which

compares favorably to previously reported PASTA results [142].
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Discussion
We have introduced the program BETASCAN and showed its improved performance over

previous methods for identifying P-strands in parallel 3-structures, most importantly amyloid structures.

The BETASCAN approach depends upon the idea that, while all sequences display some tendency

towards the 3 conformation, sequence details determine the relative likelihood of n-strand and strand-

pair formation at all scales. Thus, sequence has a broad effect not only on secondary structure, but also

on the supersecondary structural assembly of n-strands into a f-sheet. This concept is the driving force

of both the scoring and maxima-finding algorithms in BETASCAN. The score is designed to allow

unbiased comparisons between 3-strands differing not only in sequence, as in BETAWRAP, but also by

length and orientation. Correspondingly, the maxima-finding algorithm uses these comparisons to

explore strand and pair space for locally optimal P-strands and strand-pairs.

In addition, BETASCAN may owe some of its strong performance, compared to PASTA, to its

ability to distinguish strands of different lengths in relation to their rate of occurrence in nature. PASTA

scores are generated for residues and residue pairs based upon the weighted-sum scores of every

potential P-strand that could be formed using that residue or residue pair. In contrast, the emphasis in

BETASCAN is placed upon finding specific high-scoring strands. Any region with a high PASTA score will

also contain high-scoring BETASCAN predictions, which supply additional information about where

strands are likely to begin, end, and pair. The concentration on the strand as the fundamental unit of j-

structure also improves residue-by-residue detection of 3-structure.

BETASCAN is highly sensitive for potential strands and excellent at determining when sequences

will not contribute to 3- and amyloid structure (high negative predictive value). However, the effort to
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identify all potential P-structure variants can cause significant over-prediction of f-structure, as Figures

3-1, 3-2, and 3-3 all reflect. While the highest-scoring strands consistently reflect real structures, only

some of the lower-scoring strands are found in experimental data. The low-scoring strand at residue 146

in the 2PEC structure (Figure 3-1B) is an example of a low-scoring strand extant in crystal structure. By

synthesizing the singleton and pairwise maxima results of BETASCAN, a better predictive capacity is

achieved. The optional pairwise-based filter demonstrated in Figures 3-2F, 3-2G, and 3-2H can identify

structural strands with better performance than exclusion by low score alone, and retains low-scoring

strands that readily form strand-pairs. Additional factors, discernable by experimental data or by more

astute analysis, may be used as additional specificity filters to distinguish which potential P-strands are

contributors to either amyloid or native structures. However, the knowledge that amyloid structures

include multiple 'strains', may be heterogeneous even within a single fibril, and frequently include P-

strands not found in the native fold of the parent protein, argues for the inclusion of hypothetical 3-

strands in analysis until excluded by evidence.

Most interestingly, BETASCAN is capable of revealing details and variants of protein structure

previously inaccessible to computational methods. For instance, two solid-state NMR studies of A-f

protein [80, 126] produced conflicting results in the region between residues 30 and 42. However, each

result is reflected in the BETASCAN results (Figure 3-3A), where both short strands corresponding to the

Petkova results and long strands corresponding to the Luehrs results are high-scoring maxima. Likewise,

two solid-state NMR studies of Het-s [81, 82] were differentiated by the presence or absence of

interruptions in the P-strands. Both the elongated and truncated versions of these strands were isolated

by the maxima-finding subroutine of BETASCAN. Thus, BETASCAN can distinguish the local attractor

states that the two pairs of experimental samples occupied, opening the possibility of understanding the
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influence of environmental conditions and/or folding kinetics on "prion strains" and other amyloid

folding variations.

BETSACAN forms part of a synergistic strategy for the evaluation of all- structure. Additional 3-

strand specificity may be found using experimental contextual clues, such as discernment of physical

attributes, specific links between residues such as cysteine bonds and side-chain ladders, and

constraints on the conformational space of the amyloid. The variants indicated by BETSACAN may also

be distinguished in vitro or in vivo by additional exterior factors, such as pH, osmolarity, and the

presence of seeding factors or chaperone proteins. By distinguishing folding variants and providing

specific location and likelihood data, BETASCAN thus boosts to the efficacy of both experimental and

computational efforts to understand the parallel n-sheets of amyloids and prions.

Materials and Methods

Algorithmic strategy

BETASCAN calculates likely f-strands and strand-pairs for an input sequence presumed to

contain parallel f-structure. Every contiguous subsequence of length 2 up to k is initially considered as a

possible parallel P-strand (k defaults to 13, the length of the longest parallel n-strand in our source

database). For each pair of possible strands, a score is determined corresponding to a prediction of how

likely their pairing would be (see Strand state propensity and Pair state propensity below). This

probability is based on the observed preferences for each pair of residues in the strands to be hydrogen-

bonded (see Probability tables below). Maxima-finding algorithms, also known as "hill-climbing"

algorithms, are then used to detect all local maxima of formation propensity across strand-pair space
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(see Maxima finding below). The outputs of BETASCAN are score-ordered lists of all locally optimal

strands and strand-pairings.

Note that BETASCAN can return strands and/or strand-pairs that inconsistently overlap in the

local-optimum list. These results reflect the potential, under differing conditions, for alternate -strand

folding patterns.

Probability tables

Pairwise probability tables to capture the preference for each pair of amino acids to be

hydrogen-bonded in a P-sheet was estimated using a method similar to McDonnell et al. [117] Briefly,

the non-redundant structures of the Protein Data Bank [2] as of June 8, 2004, were filtered to remove

the set of structures in Supplementary Table 3-51. These structures, including all three-stranded right-

handed P-helices, were removed for two reasons. First, their similarity to known and theorized amyloid

structures was considered a potential source of bias. Second, their removal allowed their use as a

control test set (see Test set construction below). The STRIDE algorithm [152] was used to on the

remaining structures to find all amphipathic P-sheets, namely P-sheets with solubility differences

between its two faces. The frequencies of occurrence of hydrogen-bonded pairs (X1,X2, ) were

tabulated, where the orientation 6distinguished n-sheet faces with lesser (zero) or greater (one)

solubility. The frequencies were normalized to sum to 1, generating the 20x20x2 pairwise statistical

table W. (Symbols identify structures as indicated in Figure 3-5A.)

V, the 1x20x2 singleton probability table, represents the propensity of a side-chain X, to be present in an

amphipathic 3-strand. Vwas calculated by summing the pairwise probability tables across rows.
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Background probability tables were generated by counting single amino acid frequencies across all

protein sequences (not only n-structures). Background probability pairwise tables were formed by

squaring the singleton frequencies, corresponding to an independence assumption for the null

hypothesis. The default table Ca,,irotejns is derived from the release 50.4 (July, 2006) of the SWISS-PROT

database. Prion and amyloid sequences derived from genomes of yeast species with amino acid

distributions potentially biased by sparse GC content, as determined by whole-genome phylogenetic

analysis, were analyzed using a table Cy,,,easts derived from the genome of Saccharomyces cervisiae as of

July, 2006.

Strand state propensity

Figure 3-5A serves as a visual reference for the following formulas. For a possible n-strand

starting at position p with length I and orientation o, the propensity h(s, p, I, o) of formation for a strand

state (p, I, o) forming from a polypeptide sequence s is calculated as the ratio of the propensityf(s, p, I,

o) of the strand sequence to form a n-sheet and the propensity g(s, p, I) of the strand sequence to occur

randomly. The background propensity g is calculated as the product of the occurrence rates c of each

residue in the possible strand, derived from the background table C. (The table Caoiproteins, as derived

above, is the default for C.) The strand propensityf calculation similarly begins by multiplying each

residue's frequency v in the singleton probability table V (as calculated above) for the orientation o. The

calculation off also includes dividing by a length correction term to model the effect of length on the

formation of a f-strand. The length correction term is included to enable comparison of strands with

different lengths on an equal basis, a requirement for the maxima-finding subroutine (see Maxima

finding below). The form of the correction was chosen to reflect the observed histogram of parallel

strand-pair lengths in the PDB [153]. The best-fit curve of this independently derived data was found to
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be a Poisson distribution with parameters (I - 1, 3.15). A potential explanation for the Poisson

distribution is the modeling of each residue's addition to the n-strand as a Poisson process.

Including the correction term, the propensity of formation is therefore

1-1
SV(s,,,p,O)

ti=O

h(s, p,1, o)= f(s, p, 1, o) In e"Al1 /(1 - 1)!)
h(s, p, 1, o) p-c

g (s, p , 1) i l C, sp,

t=O

Pair state propensity

Given a second strand starting at position q, the propensity k(s, p, q, I, o) of formation for a

parallel pair state (p, q, I, o) from one or more copies of a polypeptide sequence s is calculated in a

fashion similar to that above. (See Figure 3-5A for a complete visualization of the structure under

consideration.) The calculation of k incorporates the single-strand propensity h(s, p, I, o) of the first

strand, the composition propensity g(s, q, I, o) of the second strand, and the pairwise propensityj(s, p, q,

/, o) of the two strands' adjacency. The pairwise propensityj, is calculated from the pairwise propensity

table W by multiplying terms w for each pair of residues and dividing by the length-correction term. The

inclusion of h in the calculation of k is necessitated by the form of W, which pre-supposes the formation

of the first P-strand.

1-1 1-1
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Maxima finding

The maxima finding subroutine of BETASCAN extracts the most likely strands and strand-pairs

by asking if a single change to the strand or strand-pair would result in a higher probability of formation.

Not all transitions between strand states or strand-pair states are physically realizable in one step. The

constraints on the strand and pair spaces may be described as lattices, with nodes corresponding to

each potential strand or strand-pair and edges corresponding to the conformational changes required to

form one potential strand from another. Edges may be formed by the addition or removal of residues at

either end, by the reversal of strand orientation (1800 rotation around the long axis of the strand), and

for strand-pairs, the shearing of the strands' interactions by one or two residues. The possible

transitions, and the lattices so created, are depicted in Figures 3-5B and 3-5C.

The BETASCAN method assigns a propensity to each node of these lattices, with the highest

score corresponding to the most likely strand or strand-pair. A hill-climbing method, which searches

each node's adjacent neighbor for a higher score, is then executed across the entirety of strand and pair

space. All nodes with at least one such neighbor are removed from consideration. The remaining sets of

strand states and pair states are local propensity maxima in strand and pair space. Together with their

propensity scores, these sets form the output of the BETASCAN algorithm.

To allow comparisons with other prediction methods and to highlight the most relevant strands

and pairs, filtering was applied. Only those strands and pairs with positive log-odds propensity scores,

indicating a propensity of formation greater than random sequence, were selected. For the results in the

Comparison sections, a consistent set of strands was chosen by repeatedly selecting the highest scoring

strand that was consistent with all previously selected strands until the list of potentially consistent

strands with scores more likely than random was exhausted.
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Test set construction

3-D crystal structures of the P-helices removed from the probability database (listed in Supplementary

Table 3-S1) were downloaded from the Protein Data Bank [2]. The P-helix test set structures were

chosen as non-redundant representatives of SCOP families, without substrates or other co-crystallized

molecules. 3-strands and strand-pairs were identified using STRIDE [152] as described in McDonnell et

al. [117].

The all-3 secondary structures of the input sequences were verified. For the n-helix sequences,

3-D X-ray crystallography was available to guarantee secondary structure details [116]. In addition, the

sequences were analyzed by the secondary structure prediction program DSSP [154] to localize a(-helical

content.

Comparison calculations

BETASCAN, BETAWRAPPRO, BETAPRO, and PASTA were run on the 34 P-helix structures listed in

Supplemental Table 3-S1. Because n-helix strands are, on average, just over four residues in length,

BETASCAN runs were executed using maximum n-strand lengths of 3, 4, 5, 6, and 7, as well as with the

default length of 13. A single consistent set of predicted strands was selected from the set of all

predicted strands by repeatedly selecting the strand with the highest positive score that failed to

overlap either any previously selected strand or any ax-helix (as observed in crystal structure by DSSP

[154]. The set of predicted strands was compared to the P-strands calculated from crystal structures by

the program STRIDE [152] according to the settings of McDonnell et al. [117]. The STRIDE predictions

were taken as the true positive 3-strands for this class.
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For each real strand, if at least one predicted strand overlapped more than 50%, a match was

recorded. In addition to the fraction of matching crystal and predicted strands, statistics were collected

on the number of matching residues and on the predictions of P-strand 'edges'. The N- and C-terminal

ends of the crystal strand were compared, respectively, to the N- and C-terminal ends of the N- and C-

most matching predicted strands. In most cases, only one predicted strand matched the crystal strand,

and so the ends compared were the N- and C-terminal ends of the prediction.

To generate ROC and sensitivity/PPV curves (Figures 3-2C, 3-2D, and 3-2E), the output of

BETASCAN was repeatedly analyzed with a lower-bound score cutoff, which was varied from 0 to +2

units. For the poor-pairwise-contact filter (Figures 3-2F, 3-2G, and 3-2H), ROC and sensitivity/PPV curves

were generated as follows. For each strand in the BETASCAN singleton results, the scores of all strand-

pairs sharing the first residue of the first pair (parameter p) with the predicted n-strand were summed.

The 0-strand was removed from the prediction if the summed score was less than the summed-score

cutoff, which was varied from 0 to +40 units to produce the curves shown.

Comparison to BETAWRAPPRO results

The top hit of BETAWRAPPRO was taken as the prediction for each of the 23 structures; this

yielded a set of 276 strands predicted by BETAWRAPPRO. A BETAWRAPPRO strand was taken to be a

"correct prediction" if its N-terminal end was within 3 residues of a crystal structure strand as

determined by the DSSP analysis found at the PDB website [2].

Comparison to BETAPRO, PASTA, PSIPRED, JPRED, SALSA, TANGO, and Zyggregator
BETAPRO, PASTA, SALSA, TANGO, PSIPRED, and JPRED were executed using all default settings.

Zyggregator was used in fibrillar mode. To avoid bias and in keeping with author suggestions, no

i _ _1_ _~__1___1____1_1___~_____
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additional secondary structure descriptions or alignments were input to BETAPRO or JPRED. To

overcome differences in scoring methods, predictions in Table 1 were rated as 'strong' (S), 'weak' (w),

'no prediction' (n), or no data available (x). A prediction was rated as 'strong' if more than 2/3 of the

strand's length was predicted and if the internal rating system of the program (if present) scored any

portion of the strand as greater than 50% of the peak prediction for that sequence. The prediction was

rated 'weak' if the above conditions were not satisfied, but more than two residues of the strand were

predicted at any confidence level. A prediction was indicated as (+) if the requirements for a weak

prediction were met, but no separation existed between strand predictions.

Figures
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Figure 3-1, Sample output of the BETASCAN algorithm. The results for the 3-helix domain of pectate lyase C

are shown. a, heat-map of all P-strand probabilities. The horizontal axis indicates the N-terminal residue of

potential P-strands, while the vertical axis indicates strand length. The upper and lower boxes display results

for the two orientations of the strand. Colors indicate propensity of strand formation. Red indicates above-

background probability, while blue indicates below-background probability. b, predicted most likely P-

strands based on single strand probabilities. BETASCAN predictions are marked as horizontal lines, shading

from red (maximum predicted score) to yellow (zero score, i.e., probability equal to background). The

horizontal axis indicates the N-terminal residue of potential P-strands, while the vertical axis indicates the

log-odds propensity. Overlapping strands represent alternate folding patterns with indicated likelihoods.

Purple brackets indicate experimentally determined P-strands as derived from the PDB structure. c, predicted

most likely strand-pairs based on pairwise probabilities. Purple dots indicate the N-terminii of experimentally

determined strand-pairs as derived from the PDB structure.
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Figure 3-2, Statistics on BETASCAN accuracy in the set of 3-helices. a, effect of maximum 3-strand length

on sensitivity and positive predictive value of BETASCAN, measured by strand and by residue. b, effect of

maximum 1-strand length on average absolute value difference in predicted and crystal-structure

observed 1-strand edges. c-e: effectiveness of BETASCAN singleton scores in 1-structure prediction; c,

ROC curve calculated residue-by-residue; d, graph of sensitivity against (1-PPV) calculated strand-by-

strand; e, ROC curve calculated strand-by-strand. f-h: effectiveness of BETASCAN pairwise scores in 3-

structure prediction; f, ROC curve calculated residue-by-residue; g, graph of sensitivity against (1-PPV)

calculated strand-by-strand; h, ROC curve calculated strand-by-strand.
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Figure 3-3, BETASCAN output for amyloid and prion proteins with experimentally determined P-

structures. Green vertical brackets indicate experimentally derived locations of n-strands; blue brackets

indicate locations determined by a separate method. In the same manner as Figure Ib, BETASCAN

predictions are marked as horizontal lines, shading from red (maximum predicted score) to yellow (zero

score, i.e., probability equal to background). Overlapping lines indicate alternate folding patterns for the

P-strands, with indicated probability. Two graphs are included to display the results for each orientation

of the strand. For purposes of comparison, the set of highest-scoring non-overlapping strands in the

BETASCAN single-strand prediction was taken as the predicted structure. Corresponding outputs of

PASTA [142, 143], TANGO [138], and Zyggregator [139] are displayed below the BETASCAN results. Refer

to Table 1 for a summary of the correspondences of these predictions. a, amyloid-P structure as

determined by Luehrs et al. [126] (green) and Petkova et al. [80] (blue); b, het-S structure as determined

by Ritter et al. [81] (green) and Wasmer et al. [82] (blue); c. alpha-synuclein structure as determined by

Heise et al. [144]; d, amylin structure as determined by Kajava et al. [146]; e., tau protein fragment

PHF43 structure as determined by von Bargen et al. [145].
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marked by arrows. The arrowheads therefore define the relative locations queried by the maxima-
finding algorithm at each point. c, structure of the lattice of the strand-pair search space defined by the
variables p (first strand location), q (second strand location), I/ (length) and o (orientation, not shown). In
addition to the physically possible changes in b, shifts of one or two residues in the relative strand
positions are possible. Arrowheads indicate the relative locations queried by the strand-pair maxima-
finding algorithm for each point.
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Tables
Table 3-1, Comparison of BETAWRAP results to previous algorithms. Letters indicate strength of

prediction: S, strong (complete prediction); w, weak (missing >30% of length or <50% confidence); (+),

prediction without strand boundaries; n, not predicted; x, data not available.

Protein A-3 Het-s (x-synuclein IAPP Tau

Strand 1 2 1 2 3 4 1 2 3 4 5 6 7 1 2 3 1 2 3 4

BETASCAN S S w S S w w S S w S S S S w ww S S S

BETAPRO S w n n n S n S n w n n w n n nn S S w

TANGO S S n S n n n S w w w S n w w n n S n n

Zyggregator S S + + + + n S w + + + w S + + S w S n

PASTA SS n S w n n w S w w S n + + nSS S w

SALSA S S x x x x n S S + + + + x x x n S w w

PSIPRED S S n w w w n S w n n n n n n n n n S n

JPRED S S w S w w n S S w S S w nwn nw S w
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STITCHER: Flexible assembly of likely n-structures

Introduction

While the secondary structure of amyloid is known to be highly P-rich[32-34, 47, 125], structural

determination has proven highly difficult, with only extremely short segments crystallized [51, 75] and a

very few successful solid-state nuclear magnetic resonance (ssNMR) studies [80-82, 126, 127]. Due to

the scarcity of direct evidence, the nature of amyloid and prion supersecondary structures and their

relation to sequence have been highly contentious topics [49, 51, 128]. The parallel P-helices form a fold

widely cited as one potential model for amyloid [52, 115, 136], while others favor a 'superpleated 3-

sheet' [146, 155, 156]. Complications include the morphological heterogeneity of amyloid structures

suggested by EM imagery [52, 53] and the demonstration of prion 'strains' or 'variants' with differing

growth and stability phenotypes [54-56]. In the case of the yeast prion protein Sup35, such variants have

been demonstrated to maintain specificity through serial passage [55] and have been correlated with

differences in conformation [57].

The bi-stable nature of amyloid prions, as well as the observation of heterogeneity and 'strains'

in amyloid and prion folding, undermines the canonical viewpoint of 'one protein, one fold' long held by

theorists of protein folding. Instead, a murky view arises of a set of stable valleys in a field of

conformational configurations, within which variations are permitted around common or similar folding

patterns. Enzymologists have long studied the variations in globular protein conformations caused by

ligand binding, catalytic activity, presence of ions or cofactors. Amyloids embody a similar but larger set

of variations.
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In Chapter 3, the foundations were laid for a broader interpolation of P-protein structure from

sequence in the program BETASCAN. Like BETAWRAP, BETASCAN calculated likelihood scores for

potential P-strands and strand-pairs based on correlations observed in parallel n-sheets. A key and novel

feature of BETASCAN was a maxima-finding algorithm that searched the strands and pairs with the

greatest local likelihood for all of the sequence's potential 3-structures. BETASCAN suggested multiple

alternate folding patterns and assigned relative a priori probabilities to these strand-pairings. While

sufficient to act as a detector of P-structure propensity in general and amyloidogenic potential in

particular, BETASCAN did not filter enough alternate folding patterns to suggest the most likely overall

folds of a p-structure. Thus, BETASCAN was insufficient to distinguish difficult cases of amyloid

detection, such as the Het-S allele in Podospora anserina, and was unable to describe supersecondary

structure more complex than strand-pairs.

The STITCHER method described in this chapter extends prediction of amyloid-like proteins by

employing a combination of the flexible template, probabilistic prediction [113], and free-energy [112]

methods for protein structural prediction. Since amyloid templates cannot be directly derived from

known structures, the algorithm creates flexible templates based on an abstraction of the n-helix and

superpleated-sheet folds by 'stitching' strand-pairs into 3-sheets. Evaluation of the templates is then

made by using a combination of free-energy methods and BETASCAN-derived probabilities. The free-

energy methods account for the enthalpy of created hydrogen bonds and the entropy of linkers, while

the probabilities describing the likelihood of 3-sheet formation account for the specific sidechain-

sidechain interactions that confer structural specificity. Of particular importance to achieving a

sufficiently narrow search space for the flexible amyloid structural templates is the detection of stacking

ladders, formed by the sidechain-sidechain stacking and bonding of glutamine, asparagine, tyrosine, and
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phenylalanine residues [77, 129, 157]. Once a set of high-scoring plausible structures is calculated, a

consensus is established by polling for the inclusion of specific strand-pairs among the top Z structures.

Portions of the structure are considered more likely to form if 80% or greater of the top Z structures

agree on their inclusion. The STITCHER approach differs from the usual free-energy strategies in that

neither an atom-by-atom calculation of structural free-energy nor a ensemble calculation spanning all

possible free-energy spaces is attempted. Instead, the strand-pairs, linkers, stacks, and other structural

elements are considered as discrete elements to be combined by the dynamic algorithm. This

philosophy of establishing and then manipulating pre-defined structural components has been

previously used successfully in other contexts [95].

Results

Detection of linear vs. 3-helix-like amyloid potential

While amyloid structure is generally agreed to be overwhelmingly composed of n-structure, the

applicability of the 3-helix or superpleated-sheet models to any one amyloid has been contentious in the

absence of readily available crystallization or NMR data. To address this difficulty, STITCHER was tested

on amyloid beta, an amyloid with solved NMR structures [79, 80], allowing both superpleated sheet

(m = 1, i = j) and p helix (m > 1) structures (see Symbols Used for definitions of all variables). The

results are shown in Figure 4-1A.

In the case of amyloid beta, the highest-scoring structures all incorporate at least one i = j

strand-pair (the ten-residue n-strand from isoleucine 31 to valine 40 inclusive). Several of the highest-

scoring structures include strands analogous to those in solved NMR structures, including strands
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beginning at tyrosine 10 (corresponding to [79]) and at leucine 17 (corresponding to [80]). However, the

highest-scoring structures include a first strand with one residue shifted from a perfect in-register

parallel alignment, in the region between histidine 13 and alanine 21 (sequence HHQKLVFFA). This

region is known to have varying stability in alignment, especially at differing pH [158].

Het-s: detection of amyloidogenicity

A key ability in amyloid folding studies is the distinguishing of amyloidogenic from non-

amyloidogenic sequences. To address this requirement, STITCHER was tested on the small-s and big-S

variants of the Het-s mating compatibility factor. The small-s allele of this protein is known to form a

prion [47] with multiple, partially conflicting determined solid-state NMR structures [81, 82]. In contrast,

the big-S allele does not form an amyloid structure, despite having only three differing residues.

The results for Het-s and Het-S are displayed as Figure 4-2A and Figure 4-2B, respectively.

Immediately evident is the greater connectivity of the Het-s predictions. Very few of the predicted Het-S

strand-pairs are able to form multiple-sheet structures within the available constraints. On the other

hand, Het-s has multiple potential connectivities. The strand-pair with the greatest occurrence,

identified by N-terminal residues as isoleucine 14 - threonine 49, corresponds to the strands ib, 2a, 3b,

and 4a in the latest structure [82].

Sup35p: case study in three species

To compare the analysis of STITCHER in amyloids of related function, the sequences of the yeast

prion Sup35p from Candida albicans, Saccharomyces cerevisiae, and Yarrowia lipolytica were analyzed.

The results are available in Figure 4-3.
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The clearest structural prediction is found in the results for the C. albicans sequence (Figure 4-

3A), with only one consensus fold predicted for most of the amyloidogenic domain. The signal from each

structural strand-pair is fairly weak, with most strands only of length 3 or less. Most of the

amyloidogenic potential detected in this sequence comes from its long polyglutamine stretches. These

are counted by STITCHER as loop-based stacking bonuses that contribute to structural stability.

However, without sequence variation in these regions, they do not confer greater conformational

specificity. Instead, tyrosine and phenylalanine ladders serve to align the structure, as previously verified

experimentally [77].

The results for Sup35p S. cerevisiae (Figure 4-31) and Y. lipolytica (Figure 4-3C) are more

heterogeneous in fold prediction. Much of this heterogeneity is due to the recurrent repeats of the

Sup35p sequence. For instance, the strand beginning at glycine 44 can favorably be paired with the

repeats at glycines 68, 77, and 97. In the midst of this heterogeneity, the importance of consistently

predicted strand-pairs is increased. Three pairs in the S. cerevisiae structure, identified by their N-

terminal residues as asparagine 12 - glutamine 38, tyrosine 29 - tyrosine 49, and glutamine 38 -

glutamine 62, are highly recurrent. These pairs correspond to the "head" area identified in previous

experimental studies [57], where mutations are known to have large effects on amyloidogenic potential

[133]. This contrasts with the increased variance in predictions for the region beyond residue 91, which

corresponds to the "tail" region known to have structural heterogeneity associated with "strains" [57].

The Y. lipolytica structure (Figure 4-3C) shows similar traits, but with heterogeneity further increased by

the irregularity of the sequence repeats.
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Alpha-synuclein, Rnqlp results underscore the effects of ladders and single-residue
repeats

To explore the utility of STITCHER to new amyloids, analysis was undertaken on human alpha-

synuclein, a known amyloidogenic protein, and S. cerevisiae Rnqlp, a yeast prion (Figure 4-4). One

putative structure has been proposed for alpha-synuclein [144], but confirmatory experimental evidence

is yet to be forthcoming. No structure has yet been proposed for Rnqlp, although it is known that Rnqlp

fibrils may serve as templates for Sup35p nucleation [159, 160].

Rnqlp structural prediction results (Figure 4-4A) are highly consistent and follow a pattern

similar to that seen for C. albicans Sup35p. While nonspecific loop-based sidechain ladders of glutamine

residues provide the bulk of structural stability, shorter strands including not only glutamine but

phenylalanine, tyrosine, and asparagine ladders provide fold specificity. In the region of residues 53-175,

the fold pattern is regular, albeit with large exterior loops exposing high glutamine and asparagine

content. Thereafter, the increasing occurrences of polyasparagine and polyglutamine stretches in the

sequence preclude specific structural alignments.

The results for alpha-synuclein (Figure 4-4B) reveal an overall consistency with local variations.

The highest-scoring structures are composed of two sheets, the first with strands of length 3 and the

second with strands of lengths 7-10. Interestingly, some strand pairings have several alternate

alignments in nearly the same locale and with nearly equal scores. As with amyloid beta, this variability

is associated with repeated residues found most often near the edges of the strands (valines 15 and 16,

alanines 17-19; alanines 29 and 30; valines 48 and 49, glycines 67 and 68, valines 70 and 71, alanines 88-

91, lysines 96 and 97).

~:l~~rr=--~~--;~~~ ~-~~~~;,;,,,_~,~,,~,,
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Discussion

The STITCHER algorithm addresses the problem of amyloid structural prediction by generalizing

the template method utilized by BETAWRAP and its successors. The BETAWRAP algorithm was

applicable only to those f-helices which conformed to its rigid template. STITCHER utilizes the free-

energy scoring method to 'stitch' a template based on the BETASCAN strand-pair locations and scores,

stacking patterns, and linker distances. Within the constraints of the rung and sheet patterns of the

superpleated-sheet and n-helix folds, a range of potential strand and loop lengths and locations are

dynamically analyzed and compared. Because of both the uncertainty in free-energy parameters and the

heterogeneity of amyloid folds, the top fifty fold solutions are presented and polled for strand-pair

inclusion. While the highest-scoring fold is frequently correct in many particulars, the best results are

achieved by assembling consensus structure(s) from the most frequently occurring strand-pairs among

the top solutions. The exploration of the local folding space permits a more robust and complete

description of the structures available to the amyloidogenic protein than a single, so-called "optimal"

structure. At the same time, the consensus structure is distinct from an "ensemble" structure in that it is

composed solely of separately evaluated structures, any of which could be a stable local minimum in

conformational space. Therefore, the consensus reflects not an "average" structure, but the degree and

location of similarity between the possible structures of the amyloid.

The results for alpha-synuclein, Rnqlp, and to some extent the various Sup35p proteins

highlight the roles of single-residue repeats, motif repeats, and sidechain stacking ladders in amyloid

structure. Single-residue repeats may contribute to the stability of a structure by forming stacking

ladders, especially in the cases of polyglutamine and polyasparagine. However, this stability increase
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comes at the expense of specific folding in the repeat region, as the importance of aligning any

particular pair of residues is reduced. The same effect is seen in a reduced form for repeats composed of

multiple-residue motifs, such as in S. cerevisiae Sup35p. Specificity of folding for repeat-heavy

amyloidogenic proteins appears to be conveyed through two other features of a structure: length

minimization of the intervening linker loops, and formation of strand-pairs with rarer residues and

stacking ladders.

In the case of alpha-synuclein, the double histidine and double phenylalanine may contribute to

the added stability of the shifted strand-pair over the in-register alignment, as well as the avoidance of

close proximity for the charged lysine 16. However, the differential in stability would likely be

dependent on the ionization state of histidines 13 and 14. This state would also contribute to the

heterogeneity of amyloid beta fibrils and complicate structural determination efforts. Given the known

sensitivity of amyloid beta folds to pH changes and the presence of variable-ionization histidines,

previous structural determination efforts may be biased towards preparations that discourage

formation of the shifted strand-pair in favor of the in-register alignment.

In the cases of known amyloid structures, STITCHER is able to extract and present the essential

elements of experimentally determined folds. All experimentally based structural models of amyloid

beta and Het-s protein are contained in the top predictions in Figures 4-1 and 4-2. Conversely, the

results for Het-S protein convey its non-amyloidogenic nature, despite high f3-propensity and a sequence

only three mutations away from the Het-s prion sequence. While more robust analysis and verification

awaits additional amyloid structure determination, the STITCHER methodology appears to be a valuable

addition to the growing number of amyloid detection algorithms. It should be noted that the particular

fold taken by an amyloid is sensitive to environmental conditions, including pH, concentration of
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protein, and presence of chaperone proteins. Thus, the structure with the highest STITCHER score may

not be that taken by the protein under experimental conditions, as in the case of Het-s.

The low sequence homology, low sequence complexity, and high heterogeneity of amyloid

proteins only underscore the adaptable nature of the flexible-template approach. With the identification

of further sets of flexible constraints on P-rich folds, the STITCHER methodology should be readily

extensible to other varieties of all-1 protein structures. While some interpretation and experimental

verification is necessary for complete understanding of amyloid folding, the identification of the range of

most likely folds should greatly enhance the further computational and experimental investigation of

amyloid and prion proteins.

Materials and Methods

Algorithmic strategy

The greatest problem in protein structure prediction is the reduction of possible conformation

patterns from a mind-boggling potential space to the few viable and stable conformations. In the

present case, the restriction to parallel, all-3 structures massively reduces the conformational space and

simplifies the prediction problem. The maxima-finding algorithm of BETASCAN reduced the problem

further by identifying locally probable strands and strand-pairs. Nonetheless, far more 1-strands are

deemed 'probable' by BETASCAN than could be assembled into any one fold.

The challenge of 'stitching' an all-P fold from strand-pairs originates in the observation that the

most stable structure may not consist of that formed from only the most likely strand-pairs. Once the

conformational space is restricted by one strand-pair, the conditional probability of formation for other
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strand-pairs may be increased. Therefore, even low-probability strand-pairs need to be considered as

potential components of a fold. However, the number of possible folds increases exponentially with

each additional component. The conformational space must be reduced to a computationally tractable

size without excluding components which may form part of near-optimal structures. Two strategies are

here employed. First, constraints are placed on the structure space to fit observations and suspected

characteristics of the structure. Then, the remaining structure space is subdivided into rungs, sheets,

and ultimately units of strand-pairs and linker loops, whose contributions to fold stability may be

assessed piecewise. Finally, a dynamic programming algorithm is used to assess the stability of complete

structures by assembling the results of strand and rung sub-calculations. Once complete structures are

assembled and ranked by stability, the top structures are polled to assess their agreement or

disagreement for specific strand-pairs. As more top-scoring structures contain a specific strand-pair or

set of strand-pairs, the more likely it becomes that these structural component(s) will be found in

experimental studies of the amyloid.

Fold constraints and parameters

The target conformational space of STITCHER is the space of amyloids composed of parallel 3-

sheets. Following the conventions of previous authors [115-117, 161] and the evidence provided by

known amyloid structures [79-82, 155], the amyloid is modeled as a set of n sheets arranged with

sequential rungs. Each rung contains n strands, with the strands contributing to the 3-sheet. For a

structure of m rungs, therefore, there will be mn strands and mn - 1 linkers connecting strands to

each other. Strand-pairs {i,j 2 i, L > 1}, formed by two strands starting at residues i and j stacked

atop one another in a 3-sheet for the next L residues, exist between every adjacent rung. There are

-'~(-1~~~-~-I~--I---~~~E-;ri--:-~; -;^X" 1---- ~-:l--il--~-;^r~i""~_*:~Y~~~~~I~~*~i:~;;
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therefore (m - 1)n of these strand-pairs in each putative structure. A complete amyloid protofibril is

believed to be composed of many copies of such structures, each aligned either head-to-tail or head-to-

head, tail-to-tail [57].

The regularity of the 1-helix motif markedly simplifies the conformational space to be probed.

Bounds on the parameters m and n further reduce the number of choices to be made in selecting

plausible structures. The two models of amyloids in the literature may be described by constraints on

parameters. The P-helix fold requires m _ 1, n > 2 [81, 126, 147]; nearly all observed cases in nature,

including solved structures of amyloids, are either n = 2 or n = 3. The superpleated P-sheet model is

formed by parameters m = 1, n 2 2. This model can be viewed as a special case of P-helices stacked

head-to-tail, where every copy of the amyloid protein forms a single rung of n -strands. In the case of

m = 1, therefore, every strand-pair consists of two identical copies of a strand, and i = j for all strand-

pairs. Therefore, two possible sets of parameters were considered for analysis: n = {1,2,3}, m 2 1

and m = 1,n 1, i = j.

Finally, the space of potential strand-pair combinations is restricted by the geometry of all-3

structures. While an amyloid has a quaternary structure resembling an undulating planar surface, the

backbones of m > 1 amyloids must loop back to a location near their starting point at the end of each

rung. This requires, geometrically, that the distance from the end of the first strand of any strand-pair to

the start of the second be longer than the strand itself: (j - i) > 2L. Likewise, observations of crystal

and NMR structures indicate that the shortest, tightest turn possible in a compact 1-helix is three

residues; therefore, for m > 1, linkers must be at least three residues long.
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Free-energy scoring function

The structures which conform to the restrictions outlined above are scored using a formula that

includes the BETASCAN scores of their strand-pairs, as well as bonuses reflecting the stabilizing influence

of non-backbone hydrogen bonding and the entropic cost of restricting backbone movement into the

loops of strands. The problem of weighting the contributions of these various effects to fold stability was

solved by summing estimates of their free-energy contributions to stability. Following the pattern of

Zhang et al. [162], the Gibbs free energy delta G of the change from unfolded to folded state is

AG = AE c + AEei - TAS rot

where AEc is the contact enthalpy of placing residues together, AEe, is the electrostatic energy

associated with ionic interactions, and TAS otbb is the entropy of folding. Amyloids are typically poor in

charged amino acids, and the stronger partial dipoles associated with other amino acids are usually

incorporated into hydrogen bonding. In this analysis, the electrostatic interaction is therefore only

considered with reference to hydrogen bonds, and AEe, is set to zero.

The contact energies can be further decomposed into energies contributed by backbone-

backbone, backbone-sidechain, and sidechain-sidechain interactions:

AG = AEbb-bb + AEbb-sc + AEsc-sc - TASbprot'bb

Role of BETASCAN scores

;^-rr:-;;,-l.i;iiix--~~~"i~-~~C_~~-I~--- --l~-"'-'-L"'~~'i-T~il-~~_~
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In the case of an all-P structure, the backbone consists of n-strands, with a quasi-linear

arrangement constrained by the hydrogen bonds to other strands, and linkers, which are only

constrained by the strands at their beginning and end. There is one hydrogen bond per residue in the

length of each strand-pair, and an equivalent entropy loss for the constraint it imposes on backbone

flexibility. Therefore we separate the entropy into linker and strand terms, and rearrange to express

them with reference to length:

AG = (AEbb - TASstr.) + AEbb-sc + AEsc-sc- TASlink

AG = (AEH-bond - TASbb-res.)Lstr. + AEbb-sc + AEsc-sc -TASlink

Side-chain/backbone interactions are a primary determinant of P-sheet propensities, both

through van der Waals interactions [163] and entropy of salvation [164]. These factors explain much of

the known relative affinities of amino acids [165], although these propensities must be interpreted in

context [166]. The BETASCAN algorithm uses these propensities to estimate relative probabilities of

formation of a strand-pair, with normalization for length to allow comparison of strands with different

lengths. These relative probabilities are related to the energy of formation of the 3-strand, according to

the Boltzmann relationship

AG-form. = k In(#

where Pfl/P is the ratio of potential P-containing conformations to all potential conformations. Since

the BETASCAN score is a log-odds ratio estimating the relative probability of the n-containing

conformation, it can be surmised as proportional to this energy. The energies from the direct hydrogen
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bonds made by all residues in the strand may be combined with the side-chain effects and estimated by

the BETASCAN score for the entire strand:

AG = [(AEH-bond + AEbb-res - TASbb-res.)Lstr.] + AEsc-sc -TASnk
strands

AG = Score AGer) Lstr. + AEsc-sc -TASlink

strands

Side-chain stability bonuses

Side-chain/side-chain energies include hydrogen bonding in the case of asparagine and

glutamine stacking [129], pi-bond orbital stacking in the case of tyrosine and phenylalanine [167], and

van der Waals interactions between side-chains. The first two contribute bonus stability beyond that

calculated by BETASCAN. The last has been shown to be very small (less than 0.20 kcal/mol [162]) and

can be disregarded. We therefore set:

AEsc-sc = (nxx)AEXX-stack

X={Q,N,Y,F}

Entropic penalties

Finally, we consider the entropy of the linkers, those free loops of peptide constrained at either

end by attachment to n-strands. The problem of calculating this entropy is a subset of the general



Chapter 4: STITCHER Page 183

problem of polymer condensation entropy [168] and bears remarkable similarity to that of disulfide

bond entropy [169]. The entropy may be calculated as

AS = -R In (27laa2 lin3/2' Vends

where R is the gas constant, laa the length from a-carbon to a-carbon, 3.8 angstroms, Llink is the

number of residues in the linker, and Vends is the volume the ends of the linker may occupy. A

hydrogen bond is approximately the same length as the distance between sulfide groups in a disulfide

bond, namely 4.8 angstroms. The entropy calculation, using these values, may be simplified to

kcal 3
TAS = -2.1 mol -res 2 R In Llink

mol - res 2

for T = 300 K. Because we are comparing structures each known to have linkers, we disreagard the

constant term and estimate simplify further to yield the relative entropy of a linker,

kcal
TAAS = (0.9 mol - res) In Llink

This formula is used in two different ways: to calculate the entropic penalty of adding a rung,

and to calculate the entropic penalties accruing to forming strands inside the rung. The difference is in

the value of Llink. For a rung penalty, we assess the entropy of forming a loop from a free polypeptide

chain without regard to strand-pairs (as the strand-pairs cannot form until the chain is in proximity to

itself). In this case, ling = jl - il, the difference between the N-terminii of the two strands in the

first strand-pair of the rung. For linkers within the rung connecting two strand-pairsf and g, the length
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of the linker is the number of residues between the strand-pairs, counting both the upper and lower

chains of the pair:

ink= ig (i + Lf) +j - (j + Lf)

The form of the scoring function for STITCHER may now be fully described as

AG = [Score AGp )res) Lstr.] (+xx)AEXXstack
strands X={Q,N,Y,F}

- (09 kcal InL rung kcal nL

mol - resol - res link
rungs links

Energy weights

To make this function calculable, we must estimate the weights AGp res. and AExx-stack.

Experimental data [162-164, 166] suggests the free energy of n-strand formation per residue to be

approximately 1 kcal/mol-res, a combination of the enthalpy of the hydrogen bond and the entropy of

salvation as influenced by side-chains. This is a somewhat rough estimate due to context-dependency

[166]. For the bonuses and penalties, we assess the contribution of additional hydrogen bonds to the

free energy. The free energy of the hydrogen bond is again offset to some degree by salvation, though

kcal
not as strongly as for the backbone. The rough bonus weights AEQQ-stack 1 mol-re AENN-stack

kcal kcal
2mol-re AEYY-stack 1 were used for this study. The extra weighting of NN over QQ ismol-res mol-res
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justified in two ways. First, asparagine (N) has a shorter distance from backbone to amide than does

glutamine (Q). Additionally, experimental data [157] demonstrate that in at least one prion, replacing all

glutamines with asparagines provides double the stability of the prion fold as compared to replacing all

asparagines with glutamines. These estimated energy weightings may become more accurate as

calorimetry of sidechain-sidechain interactions becomes available.

Evaluation of score

The STITCHER algorithm uses a dynamic programming algorithm to evaluate estimated AG for

the combinations of strand-pairs that can be combined into templates matching the parameters

described above. To do so, the calculation of AG is subdivided into calculation by rungs. The total free

energy change can then be calculated by summing the stability contribution of any rung r containing

1-2 (n-1)-n 0 to the previous rung, asstrands f(r ... rn) and linkers (rink ... 1ink 1, with a linker nkto the previous rung, as

AG = [AGr]
r={1...m}

AGr = > [Score AGper res. Lstr]+ (firX)AEXX-stack
str= {r...rn} X={Q,N,Y,F}

- 0.9 kcal In L
mol - res) L(lin k

g=(1...n}

If the stacking bonuses, a directly sequence-dependent calculation, are considered apart from

the strand and linker scores, which are only indirectly sequence-dependent, then the rung calculation

can be partially separated into strand calculations:
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AGr = Score AG per res L - (09 kcal res ln(L k )
'Iefr rLs. mol - res) link

g={1...n)

+ (nxx)AEXX-stack

X={Q,N,Y,F}

By calculating the free-energy scores of strand-pairs and linkers as subproblems of rung scoring,

and rung scores as subproblems of structure assembly, the dynamic programming method can be used

to iteratively calculate the Z structures with the highest score by tracing back through internally

consistent partial structures that do not violate the defined fold constraints.

Consensus evaluation and output

The consensus of the Z highest structures (with default Z of 50) is assessed by scanning over all

structures for included strand-pairs by the locations (i,j) of their termini. If the number of strand-pairs

in the Z highest structures with N-termini of (i + 2,j ± 2) total more than 80% of Z, the location is

noted as a consensus structure element, and the ranges of i,j, L, and strand-pair score over the strand-

pairs in the (i + 2,j ± 2) region are output. For display purposes, the strand-pairs with matching lower

and upper strands are aligned vertically to reconstruct predicted n-sheets. The output of STITCHER

includes the set of Z predicted structures, a diagram of local structure space, and the top-scoring and

consensus structures.

'~~'-i~----i-l i;:l^--r~i~---lirr~~ii,=c I------- --^i icl- -r~iir;_;,;ii'''r--LI~ r:~=; ;:-:i ii---^ --l-l-l------ -^------;-ri- ;-- ;i-i--ii ~i.ic"'~;i"i;~ir-l_~-il;~lii~i~~~_
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Figures
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Figure 4-1, STITCHER results for, A, amyloid beta. At left, a contact map of the fifty highest-scoring folds.

The horizontal and vertical axes indicate, respectively, the residue numbers (counted from the N-

terminus) of the lower and upper strands in each strand-pair of the structures. Starting locations of

strand-pairs are indicated by circles, with size of circle (small to large) and color of circle (magenta to

black, right-hand color spectrum) indicating the strength of the consensus vote of the top fifty structures

for that strand-pair. The strand-pairs are drawn along their length in shades of orange, with stability

increasing from yellow to red (left-hand color spectrum). Fold structures are indicated by the dotted

lines connecting strand-pairs into rungs and sheets. Structure scores are indicated by shades with

stability increasing from blue to green (center color spectrum).

At right, the highest-scoring fold. Each strand-pair is denoted by its score (Sc) and its length (L). To the

extent possible, rung-pairs proceed from left to right and sheets from top to bottom. Numbers to the

left of the strands indicate the number of the residue immediately preceding the N-terminus of the

strand. Slanted lines indicate the first residue of the strand, arrowheads the last residue of the strand,

and connecting line(s) indicate the possible residue-pairing(s) of the first residues of the strands.
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Figure 4-2, STITCHER results for the two alleles of the Podospora anserina mating compatability protein:

A, Het-s; B, Het-S. Contact maps, at left, and top-scoring structures, at right, are as described in the

caption to Figure 4-1.
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Figure 4-3, STITCHER results for Sup35p in three species. A, C. albicans, B, S. cerevisiae, and C, Y.

lipolytica. At left, a contact map of the fifty highest-scoring folds. At right, the top-scoring structure. For

S. cerevisiae, the highest- scoring structures for n = 2 and n = 3 are presented. For description of

colors, numbers, and lines, see the caption to Figure 4-1.
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Figure 4-4, STITCHER results for, A, S. cerevisiae Rnq1p, and B, (c-synuclein. At left, a contact map of the

fifty highest-scoring folds. At right, a consensus structure assembled from all clusters of strand-pairs

((i o - 2) _ i (i o + 2), (jo - 2) 2 j > (jo + 2)} found in > 80% of the top fifty highest-scoring

folds. The range of strand positions and lengths is indicated by the shortest and longest possible strand

arrows, drawn at the most N- and C-terminal possible locations. Connecting lines indicate the possible

pairings of the first residues of the strands making up the strand-pair. The range of lengths and scores

for a cluster of possible strand-pairs is indicated at L and Sc, respectively, for each cluster. The numbers

to the left of the strands indicate the residue immediately before the leftmost possible residue in each

strand (i.e., the residue before the first written above and below the strand arrows). For description of

colors and numbers, see the caption to Figure 4-1.
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HELIXCAP: Inhibition of amyloidogenesis

Introduction

Parallel 0-helices (Figure 5-1) are a subdivision of the protein all-0 folds, as defined by the

Structural Classification Of Proteins (SCOP) database [3, 170] .The defining attribute of the 1-helix

structure is the regular nature of its rungs, which consist of 1-strands arranged in a sequential and

repeating order. The combination of repetitive order and a helical conformation creates two or more

parallel 1-sheets around a central core. Although sometimes interrupted by loops containing other

elements of secondary structure, the 1-helix as a domain is structurally and geometrically regular. This

regularity is maintained despite great disparity in primary sequence [116, 171, 172].

The plant virulence factor pectate lyase C was the first parallel 1-helix fold to be identified [173].

Identifications of similar proteins followed [174, 175] and led Yoder and Jurnak to describe a family of

pectate lyase-like folds [170]. In the pectate lyase family of P-helices, characteristic right-handed turns

and three-stranded rungs create three 1-sheets in the complete fold. Further families with other folds

were identified. UDP-N-acetylglucosamine acyltransferase typifies left-handed three-stranded 1-helices

[171, 176]. Likewise, Pseduomonas aeruginosa alkaline protease [177] is an example of a two-stranded

right-handed 0-helix.

Richardson and Richardson [178] noted that 0-helices typically have a loop at either end of the

structure that serves as a 6 helix cap. This cap is amphipathic, with one side exposed to solvent and the

other to the hydrophobic core. The cap thus protects the hydrophobic core of the 1-helix from solvent

exposure. Richardson and Richardson, among others [179], have speculated that the cap also acts to
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prevent aggregation in -helix proteins. These studies point to evidence that many agglutinative

proteins, including many prion and amyloid proteins, are repeating and indefinitely extendable -sheets.

Without an element that interrupts 03- contacts at the ends of P-helices, multiple strands of -helices

could dock and form multimeric fibers.

In this chapter, we present an in-depth study on caps in -helices. Despite the interest in 3-

helices as potential models of prions and aggregative proteins [77, 180], no in-depth study of -helix

caps has been made. The available structures in the Protein Data Bank (PDB) [2] can be classified by 3-

helix cap fold to reveal the a-helix cap and 'visor' cap families. Next, we show that these cap families are

cross-correlated with the established 0-helix families. Finally, a more in-depth study of the sequences of

a-helix caps is also made, culminating in a predictive HMM tool that can identify a-helix family caps for

-helices.

Results

Types of caps

In reviewing the known PDB structures of 3-helix proteins, several recurrent cap motifs became

evident. These motifs are here denoted as the a-helix cap, subdivided into left- and right-handed motifs,

and the 'visor' cap, subdivided into the previous-strand and cross-helix motifs. Together, these motifs

comprise 83% of the caps in the non-redundant sample of structures described in Table 5-1. In addition

to these recurrent motifs, 9 structures use unique, structurally unrelated, and motif-less loops as their

caps. One structure, the tailspike of the Salmonella phage P22 [174], has a cap domain in lieu of a cap

motif. Composed of strands from three identical monomers, a second, interleaved -helix domain abuts
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the C-terminal end of the monomeric 3-helix domain. The interleaved helix serves as a cap for all three

monomeric P-helices.

There is a distinct bias in cap location. N-terminal caps are most often found in the data set to

be a-helix caps, and vice versa. Similarly, C-terminal caps are most often found be to 'visor' caps, and

vice versa. However, counterexamples exist for both major types of caps. 1THJ, a carbonic anhydrase

[181], bears a C-terminal right-handed a-helix cap. Likewise, 1HF2, the MINC protein [182], bears an N-

terminal 'visor' cap.

cr-helix cap

Structural alignments of a-helix caps are depicted in Figure 5-2. An a helix cap consists of an a

helix, a cap loop, and an additional element of secondary structure. The additional element may be a 3-

strand, as with 2PEC [120] and 1KK6 [183], a loop, as with 1CZF [184], or an a helix, as with 1G95 [185].

The cap helix and additional element form an approximate plane, perpendicular to the long axis of the

0-helix (see Figure 5-2B and 5-2D). The cap helix is slightly offset from the long axis and interfaces with

the hydrophobic residues in the first rung of the 1-helix. Observed examples of a-helix caps (see Table 5-

1) have a-helices of 5 to 21 residues in length. The additional element and cap helix lie on the opposite

sides of the long axis. However, the additional element is antiparallel to the cap helix and more distant

from the long axis.

Typically, the cap elements are the only secondary structures in the immediate vicinity of the N-

terminal region of the 1-helix. The polypeptide chain immediately N-terminal to the cap either interacts
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with one face of the 0-helix or interacts directly with the cap elements. There is some evidence [186]

that elements distal to the cap may act to immobilize cap elements and hold them in place.

The contacts of the cap elements with the exterior side chains of the first rung vary according to

the type of helix. In right-handed helices, the cap helix is often both parallel and proximate to the B2

strand of the first rung (see labels, Figure 5-1). For these proteins, interactions are possible between cap

helix residues and B2 exterior side chains. The additional element, which is not an a helix in observed

right-handed helices, interacts with the B1 and B3 strands of the first rung. In left-handed helices, the

cap helix often lies perpendicular to one of the three 1 strands. For these structures, only one or two

cap helix residues are in sufficient proximity to permit contact with exterior side chains. The additional

element interacts with a second 1 strand.

a-helix caps are found in both right-handed (Figure 5-2A) and left-handed (Figure 5-2B) versions,

irrespective of the parity of the helix it caps. The population of left-handed a-helix caps is both larger

and more diverse than that of right-handed a-helix caps (3 vs. 14 families). In addition, the left-handed

a-helix caps have less structure or sequence conservation in the cap loop than right-handed a-helix

caps.

'Visor' caps

'Visor' caps are a set of motifs usually, though not exclusively, found at the C-terminal ends of 3-

helices. A representative assortment of 'visor' caps is shown in Figure 5-3. 'Visor' caps vary widely in

their topology but share a common feature. In each 'visor' cap motif, the cap loop crosses and interacts

^ -':'i-li'---~-~l----- ----
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with one of the three 1-strands. The motifs may be classified according to the location of the crossing as

previous-strand or cross-helix motifs.

Unlike a-helix caps, 'visor' caps may not completely prevent exposure of the core of the 0-helix

to solvent. The previous-strand caps of left-handed 0-helices (Figure 5-3A) only interact with two of the

four core hydrophobic residues in the last rung.

The most common 'visor' cap motif is a previous-strand motif, where the cap loop is directly

connected by a turn to the last strand in the 1-helix. The turn element of a previous-stand motif is

located below a 0-strand, thus making the last strand shorter than those preceding it. Depending on the

angle between the last strand and the cap loop at the crossing, this turn is between 180 and 270

degrees. The cap loop crosses under and interacts with the previous strand. The interaction may involve

many amino acids and resemble a hairpin loop, such as 1KQA [187] (Figure 5-3A). Contrariwise, the

interaction may involve only one or two pairs of amino acids, such as 1IDK [188] (Figure 5-3B).

The opposite motif is a cross-helix motif, in which the cap loop crosses one of the other two

strands of the helix. Cross-helix motifs are found in both left-handed P-helices (Figure 5-3C, 1G95 [185]),

and right-handed helices (Figure 5-3D, 1DBG [189]). In contrast to previous-strand motifs, cross-helix

motifs tend to originate below turns in the 0-helix. The exception is 1HF2 [182], which originates after a

shortened strand. The angle formed by the turn between the last strand and the cap loop is less than

180 degrees. The crossing of a cross-helix motif is close to 90 degrees and creates interactions between

only one or two pairs of amino acids.

A few 'visor' cap motifs, such as that for pectate lyase C (Figure 5-3E, 2PEC [120]), include an a-

helix. These motifs are distinguished from the a-helix motifs by the relative location of the helix. In a
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'visor + a' motif, the a-helix interacts with one strand of the 1-helix and not with the hydrophobic core.

The a-helix is located between the last strand of the 0-helix and the cap loop. Because of the distance

thereby introduced between the last strand and the cap loop, all 'visor + a' motifs are cross-helix motifs.

Common sequence features of cr-helix cap motifs

Figure 5-4 depicts a composite sequence alignment of the a-helix caps based on structural

considerations (see Methods). The a-left (pectate lyase), a-right (pectate lyase), and a-right (left-handed

-helix) helix caps were aligned as separate groups. Each alignment displays the structural elements

noted by visual observation and structural alignment: an additional element and a consensus a-helix

immediately adjacent to the 0-helix. The a-helices are broadly amphipathic, with a hydrophobic side

facing the 1-helix and a polar side facing solvent.

In contrast, 'visor' caps do not display significant similarities in sequence. These caps' sequences

vary in length and sequence composition. There is little or no correlation between structural alignment

and sequence composition. Instead, some 'visor' cap families share more distant structural elements.

For instance, almost half of the members of the pectate lyase superfamily have a secondary structure

element after the C-terminal 'visor' cap, aligned parallel to the axis of the 0-helix and located beside the

B2 -sheet of the helix.

_~II___ ~L__~~I___ ~_ _I_
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Hidden Markov model of a-helix cap sequences

Our initial data set contained 44 1-helix proteins, each representing one SCOP family of 1-helix

structures. This set was divided into classes by N-terminal cap structure, as follows: a-left cap, 4

structures; a-right from pectate lyase superfamily, 15 structures, a-right from left-handed superfamily, 7

structures; double-a, 2 structures; visor, 5 structures; loop cap, 4 structures; and cap missing from

structure, 6 structures (see Table 5-1). Of these, the a-left and a-right structures were sufficiently similar

to allow structure and sequence alignment (Figure 5-4); the composite structure and sequence

alignments therefore comprised 26 proteins.

The sequence and structure patterns of these a-helix caps were used to create a hidden Markov

model (HMM) [190]. A logo of the HMM, as generated by Logomat-M [191], is shown in Figure 5-5A. The

most prominent features of the model are the high incidence of hydroxyl residues around the a-helix

(residues 7, 9, 11, and 12) and the tendency towards small hydrophobic residues in the 0-strand

(residues 15-20).

Predictive model of a-helix cap structure

In order to produce a model with greater statistical support, BLAST [192] was used to search the

GenBank [193] protein database for sequence homologues of the 26 a-left and a-right structures,

resulting in an expanded database of 1057 sequences. These sequences were aligned by hmmalign to
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the HMM described above and used to generate a second HMM, depicted in logo format in Figure 5-5B.

This second model displays a complex pattern with signal distributed throughout, except for low

contributions from the turn positions 3-5, 21, and 23. Compared to the first model, there are stronger

signals in positions 7 and 9 for serine and threonine residues. In addition, the -strand (residues 13-17)

displays a slight but continuous preference for alanines. In positions 18 and 19, where the 1-strand

crosses the first rung below, the preference switches to bulky hydrophobics (isoleucine, leucine,

proline).

Predictive capabilities of cr-cap model

In order to validate our HMM-based model of the a helix cap, several target sets were analyzed.

First, as a negative control, the October 12, 2007 copy of the sequences of structures in the Protein Data

Bank (PDB) [2] with all -helices removed (the "PDB-" data set) was analyzed. None of the 18,659

sequences in this set resulted in an hmmsearch score above threshold. As a positive test and a

demonstration of model robustness, leave-one-out cross-validation was performed on sequence-

similarity clusters of the 1083 source sequences. To ensure that performance was not due to clustering

parameters, validation was performed on clusters with 25% and with 75% sequence similarity. At 25%

cluster similarity, the model detected 757 caps (70%), while at 75% similarity, 943 caps (87%) were

detected. Finally, to guard against the possibility of overtraining, a model generated without 24 initial

sequences was tested on them; 22 of the 24 sequences were detected (93%).

To evaluate the predictive performance of the HMM on a plausible target set, a set of

amyloidogenic sequences not known to have helix caps was assembled (Table 5-2) and analyzed with

hmmsearch. Of these sequences, only the huntingtin analogue of Xenopus tropicalis residues 1097-1109
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scored above threshold. However, as only a 12-residue portion of the model was matched in a region

not suspected of amyloidogenicity (i.e., the polyglutamine sequence found in the first 100-200 residues

of known huntingtin sequences), this result may be a spurious hit.

Discussion
The identification of helix caps as a key element of the 0-helix fold advances our understanding

of the mechanisms used to inhibit and/or control aggregation, and particularly amyloid formation. As

has been previously noted by other authors, the wraps of the 0-helices are quite similar to the resolved

and theorized structures of many amyloid protofibrils. Two major forces act to bring together the

monomer 0-strands of amyloids: the hydrophobic effect and the hydrogen-bonding patterns of 13-

sheets. Secondary effects that have been observed stabilizing amyloids, such as tight side-chain packing,

side-chain to side-chain hydrogen bonding and packing interactions, and side-chain to backbone

hydrogen bonding, require the alignment of the 1-sheets to form. The unifying structural functions of

the helix caps appear to be to block the hydrophobic effect by shielding the 1-helix core from solvent,

and to preclude extension of one or more 1-sheets via a stably folded physical obstruction.

Because of the broad nature of these structural functions, evolution appears to have selected

for a range of different solutions to the helix-capping problem. The diversity of 'visor' cap shapes, as well

as unique non-secondary-structure caps and the interleaved -strands of P22 tailspike, illustrate that no

one supersecondary structure or motif must necessarily lie at the ends of a 1-helix domain. It was

therefore something of a surprise that a significant number of P-helices, including but not limited to the

pectate lyase superfamily, do indeed have a loosely conserved motif of secondary structure elements.

These 1-helices are low in sequence homology. The multiple a-left and a-right folds, as well as the
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double-a motif seen in the left-handed 0-helix superfamily, suggest the possibility of either the loose

conservation of an ancient motif or convergent evolution in the design of -helix caps.

The HMM-based HELIXCAP detector for a-helix-containing -helix folds presented here should

prove useful in future studies of -helices. Beyond its immediate role of detecting a-helix cap motifs

similar to those noted here, we suggest its use as a scanner of genomic data to identify hitherto

unidentified P-helices. Because of the low sequence homology of -helices, their detection from

sequence data has often proven difficult. Efforts such as BETASCANPRO [117] have been only partially

successful, depending on particular features of the wrap design. While the HELIXCAP detector is also

limited, identifying only caps with the a-motif, the range of structures detected is different than that of

BETASCANPRO and may be useful in identifying targets for or in conjunction with that or other 1-helix

detectors.

Finally, the a-helix motif discovered here suggests a possible control mechanism for amyloids. If

a cap motif is proximate in sequence to the amyloidogenic domain of a protein, it would serve to

forestall the polymerization of its neighboring sequence during initial folding. If the cap is then moved by

conformational change, unfolded, or removed by proteolytic action, it would be unable to further

prevent amyloid propagation. This hypothesis was tested by scanning a set of known and well-

characterized amyloids, some known to contain a-helices, with the HMM-based detector. While no

evidence for this mechanism was found, it remains an intriguing possibility either to be found naturally

or to be engineered in future amyloidogenic protein constructs.
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Methods

Structural and sequence alignments
P-helix families and superfamilies were determined according to SCOP. One PDB structure per

SCOP family was downloaded and used for analysis; the latest structure without ligands, heavy atoms, or

other molecules incorporated into the crystal was used as representative. The structures were grouped

by SCOP superfamily. The full list of structures used is found in Table 5-1 [120, 170, 171, 174, 176, 177,

181-185, 187-189, 194-212].

Structural alignments were generated using DALI [213]. All generated alignments were of

secondary structures in the 1-helix cap and turns connecting these secondary structures. Alignments

were first made in a pairwise fashion to a template structure: 1DBG (a-left helix caps), 1GQ8 (a-right

helix caps, pectate lyase superfamily), 1G95 (a-right helix caps, left-handed superfamily), 1JTA (previous-

strand visor), 1QCX (cross-strand visor), 2PEC (visor + a). The rotation and translation matrices derived

from the DALI alignment were applied to the original PDB files. The rotated PDB structures were

combined to produce a general alignment. The orientations of the secondary structure elements, as well

as the long axes of the P-helices, were examined to confirm the accuracy of the alignments. Images of

the caps were generated using iMol 0.3 [214]. Sequence alignments for each superfamily were derived

from the DALI alignments. The general sequence alignment of a caps was arranged to optimize

correspondence of secondary structure elements as determined by PSIPRED [150] and turns as

determined by inspection of DALI alignments.

Hidden Markov model generation and testing
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HMMer [190] was used to compile and calibrate hidden Markov models (HMMs). An initial seed

model was generated from the sequence alignment of a caps using hmmbuild. Because of the small

number of sequences in the alignment, this model was considered to be insufficient for statistical

validation. Therefore, a larger model was constructed as follows. A database of 3-helix sequences was

generated by using BLAST [192] to search the NIH Entrez nonredundant database for matches to

sequences in the alignment of Figure 4, with a minimum E-value of 1.0x10 -60 . 1084 sequences were

included in the database. hmmalign was used to align the database to the initial seed model, and

hmmbuild was run on the alignment to build the large model. To use the large model for detection of an

a-helix cap, hmmsearch was executed, using the forward (as opposed to the default Viterbi) algorithm

to calculate the score. E-values of 0.5 and above were considered as positive hits. The forward algorithm

was chosen because of the high specificity and low sensitivity of the detector; Eddy [190] noted that the

forward algorithm is more sensitive to subtle patterns.

An updated version of the PDB- data set from BETAWRAP [116] was used as a negative control

data set. The PDB- database used for HELIXCAP is the non-redundant database of all sequences in the

October 12, 2007 release of the Protein Data Bank [2] with corresponding elements in SCOP [3],

excluding all sequences identified as 1-helices. PDB--HELIXCAP contains 18,659 sequences. For a positive

control, cross-validation was conducted as follows. The database of -helix sequences was clustered

using BLASTCLUST [192], creating 69 clusters with greater than 25% sequence identity and 498 clusters

with greater than 75% sequence identity. For each cluster, a corresponding cross-validation model was

constructed. Cross-validation models were constructed in the same manner as the full model, except

that the sequences in the cluster were removed from the database before alignment. Each cluster was
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then analyzed using its corresponding cross-validation model. Results were pooled for statistical

analysis.
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Figures

N-cap B2

T2

C-cap

Figure 5-1. Pectin methylesterase, 1GQ8; a typical 1-helix. 1GQ8 is a right-handed P-helix, three-sided,

with a right-handed a-helix cap at its N-terminus and a previous-strand 'visor' cap at its C-terminus.

Inset, the assignment of O-strand and turn names in a 1-helix rung.

~:::::::::::~;;;;;;;;;;;~ I- 1
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A B C

Figure 5-2. a helix caps. Residues more than three residues distal to the cap, or beyond the first rung of

the P-helix, are omitted for clarity. A and B depict caps in the pectate lyase superfamily; C depicts caps in

the left-handed 0-helix families. A, right-handed a-helix caps, top view; B, left-handed a-helix caps, top

view; C, right-handed a-helix caps, top view. All views were produced by SWISS-PDB [215].
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Figure 5-3. The visor family of caps. Visors are heavily variable; these images depict a representative

cross-section of folds. For visibility, N-caps and loops outside the P-helix have been removed. From top

left: A, 1KQA, a previous-strand visor on a left-handed 3-helix; B, 1IDK, a previous-strand visor on a right-

handed 1-helix; C, 1G95, a cross-helix visor on a left-handed 1-helix; D, 1DBG, a cross-helix visor on a

right-handed 0-helix; E, 2PEC, a visor + a visor on a right-handed P-helix; F, 1HF2, a structure with visor

caps at both the N- and C-terminal ends.

A.E. a-helix

.QVVASNETLYQVVKE..VK.........
CCCCCCHHHiRHHHH CC
VYTVSNRNQLVSALGKETNT ........

EEEEECH ICHHHHHCCCCCC
........ DIVNITDA..ARLDANGKEVKG

CCCCHHH CCCCCCCCEECC

PNVVVAAD.. GSGDYK ........... TVSEAVAAA. PEDSK

CCEEEEEC CCCCEE EHHHHHHh HHCCC

DSCTFTT.......AA ........... AAKAGKAK .......

CCCCCCC HR HHHCCCCC

TPVYPDT ....... ID ........... ELVSYLGDD.E ....

CCCCCCC H HHHHHHCCC C

NIYIVTN ...... IS ...... EFTSALSAG.A ....

CEEEEEC HH HHHHCCC C

VNYDLV ...... DDFGANGNDTSDDSNALQRAINAISRKPN.

CCCCC CCCCCCCCCCCCHHHHHHHHHRHHHCCCC

P.VYPTT.......TD ...........ELVSYLGDN.E....

C CCCCC HH HHHHHCCC C

YNAVVSKSSSDGKTFK ........... TIADAIASA. PAGS.

CCCEEECCCCCCHHHH HHHHHHHC CCCC

FKYS.VKLS.......DYP...........TLQDAASA.......

EEEE EEEC CCC CHHHHH iH

f-helix, first rung

PGGLVQIADGTYKD..VQL

CCCEEEECCCCCCC CCC

TPKIIYIKGTIDMN..VDD

CCCEEEEEEEEEEE ECC

GAYPLVIT.YTGNEDSLIN

CCCCEEEE EECCCCCCCC

TRYVIRIKA .......

CCEEEEEEC

.CSTITLNNIEVPAGTTLD
CCEEEECCEECCCCCCCC

.ARVIVLTK ........

CCEEEEEC

EAKIIQIKG........
CCCEEEEEC
.GGTLLIPN ........

CCEEECCC

.PRVIILDQ. .........
CCEEEECC

TPJFVILIKN .....

CCEEEEEEC

AVDGLLIDR ........

HHHCEECCC

IG95 226 ................................. VNDRVALATAESVMRRRINHKHIMN ....................... GVSFVNFEATYID

CCCHHHRMHHHRHH RHHHHHi1HHHHiiiHC CCEEECCCEEEEC

1HV9 226 ................................. VNNRLQLSRLERVYQSEQAEKLLLA ....................... GVMLRDPARFDLR

CCCHHHHHfRHHH1HRHHRHHHHHHC CCEEECCCEEEEC

1KK6 1 ........................... MGPNPMKMYPIEGNK.SVQFIKPILEK..LE ........ .............. NVEVGE..YSYYD

CCCCCCCCCCCCCCC CEEEEHHRHHH HC CEEEEE ECCCC

1KQA 19 .......... CEGLPEKRLRGKTLM ...... YEFNHSHPSE.VEKRESLIKEMF .................. ....... ATVGE. .NAWVE

CHHHHHHHHHHHHHH HHHCCCCCCC RHHRHHHHHH HHCCC CCEEC

10CX 1 STEKEKMIAGEL ..................... YRSADETLSRDRLRARQLIHRYNHSLAEEHTLRQQILADLFGQVTEAYIEPTF..RCDYG..

CCHHHiHHCCCC CCCCCiHHRHHHiiHH HHHHH CCCCCCHHRHHHHHRHHCCCCCEECCCC EEECC

Figure 5-4. Alignment of a-helix caps. At top, a-left caps from the pectate lyase superfamily; middle, a-

right caps from the pectate lyase superfamily; at bottom, a-right caps from the left-handed superfamily.

The a-helix and additional element (A.E.) are labeled.

1DBG 25

1BN8 52

2PEC 28

1GQ8

ICZF

IIDK

1JTA

IKTW

1QCX

IQJV

1TSP

slf" _;; ;;;;;;;;;;;;;;;~~~~ _~ ~. ;;;;;;~ ~- -------------------------------------~-- ;;;;;;~ -----------~---- -------~ ~-------~
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Preliminary model (IT sequences)
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Final model (245 sequences)

Figure 5-5. HMM-Logo representations [191] of the at-helix-cap predictive model. A, the initial model

constructed from 26 aligned crystal structures. B, the augmented model constructed from 1083

sequences aligned to the initial model.
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Tables

Table 5-1: Classification of 1-helix caps by type.

PDB ID Protein name N-cap Residues C-cap Residues

Pectate lyase superfamily

1BHE Polygalacturonase a-right 19-51 Previous-strand 364-376
visor

1BN8 Pectate lyase a-left 32-48 Previous-strand 354-368
visor

1CZF Endopolygalacturonase II a-right 28-45 Cross-helix visor 347-362

1DAB P.69 pertactin virulence factor * Loop 520-528

1DBG Chondroitinase B a-left 26-40 Cross-helix visor 421-428

1EE6 Pectate lyase * *

1GQ8 Pectin methylesterase a-right 8-32 Previous-strand 270-286
visor

1HG8 Polygalacturonase a-right 25-43 Cross-helix visor 357-373

11A5 Polygalacturonase a-right 1-24 Cross-helix visor 323-339

1IDK Pectin lyase A a-right 23-38 Cross-helix visor 317-324

1JTA Pectin lyase A a-right 34-52 Previous-strand 320-329
visor

1K5C Endopolygalacturonase I a-right 1-17 *

1KTW lota-carrageenase a-left 46-79 Loop 438-450

1NHC Endopolygalacturonase I a-right 33-51 Cross-helix visor 352-368

10GM Dextranase Cross-helix 215-231 Previous-strand 544-574
visor visor

1PCL Pectate lyase E a-right 27-44 Visor + a 280-324

1QCX Pectin lyase B a-right 23-39 Cross-helix visor 317-328
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1QJV Aspartyl esterase a-right 29-56 Previous-strand 330-344
visor

1RMG Rhamnogalacturonase A a-right 19-51 Cross-helix visor 343-364

1RU4 Pectate transeliminase a-right 38-72 Cross-helix visor 349-360

1RWR Filamentous hemagglutinin FhaB Cross- 1-28 *
strand
visor

1TSP P22 tailspike a-right 124-132 Interleaved 13-
helix§

2PEC Pectate lyase C a-left 19-40 Visor + a 307-314

Left-handed superfamily

1EWW Spruce budworm antifreeze Loop 1-18 *

1G95 GLMU a-right 239-255 Previous-strand 426-439
visor

1HV9 UDP-N-acetylglucosamine a-right 239-256 Previous-strand 426-440
pyrophosphorylase visor

1KK6 Streptogramin A acetyltransferase a-right 16-33 Previous-strand 155-169
visor

1KQA Galactoside O-acetyltransferase a-right 22-54 Cross-helix visor 172-184

1LXA UDP-N-acetylglucosamine * Visor + loop 185-197
acyltransferase

260-262

1M8N Isoform 501, spruce budworm * Previous-strand 103-121
antifreeze visor

1OCX Maltose O-acetyltransferase a-right 19-53 Previous-strand 169-183
visor

1SSM Serine acetyltransferase a-right 102-137 Previous-strand 234-240
visor

1T3D Serine acetyltransferase a-right 105-142 Cross-helix visor 233-247

1TDT Tetrahydrodiplicolinate N- Loop 87-107 Cross-helix visor 249-256
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* Cap not in crystal structure.

" Residue numbers given from start of sequence present in crystal structure.

§Part of an adjoining domain.

Table 5-2: List of amyloidogenic proteins tested with helix-cap detector.

succinyltransferase

1THJ Carbonic anhydrase Loop 8-13 a-right 171-185

1XAT Hexapeptide xenobiotic Visor 11-31 Previous-strand 151-164
acetyltransferase visor

Non-pectate-lyase superfamily

1EAO Glutamase synthase Double a- 1210-1236 Visor + a 1400-1415
right

1EZG Tenebrio molitor antifreeze * *

1HF2 MINC Visor 96-110 Cross-helix visor 187-202

1K4Z CAP-1 * Cross-helix visor 1492-1508

1LLZ Glutamate synthase Double a- 1248-1300 Visor + a 1436-1451
right

Otherfamilies

1K28 T4 cell-puncturing device 03-sheetO 389-433 *

1WMR Isopullulanase Visor 200-214 Loop 535-564

2ARA ARAC Loop 110-118 *

Protein name Organism

Amyloid beta Homo sapiens

Het-s Podospora anserine
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Amylin (IAPP) Homo sapiens

Alpha-synuclein Homo sapiens

Tau fibrillar protein Homo sapiens

Curli A (csgA) Escherichia coli K12

Curli B (csgB) Escherichia coli K12

PrP Homo sapiens

Huntingtin Homo sapiens

Huntingtin Canis lupus familiaris

Huntingtin Mus musculus

Huntingtin Rattus norvegicus

Huntingtin Sus scrofa

Huntingtin Gallus gallus

Huntingtin Danio rerio

Huntingtin Takifugu rubripes

Huntingtin Pan troglodytes

Huntingtin analog gi 147220259 Tetraodon nigroviridis

Huntingtin analog HD-prov Xenopus tropicalis

Huntingtin analog gi 172175056 Strongylocentrotus purpuratus

Huntingtin analog ENSANGP00000020200 Anopheles gambiae

Huntingtin analog CG9995-PA Drosophila melanogaster

Huntingtin analog DDB0206578 Dictyostelium discoideum

Sup35p (ERF3) Saccharomyces cerevisiae

ERF3 Candida glabrata CBS138

ERF3 Zyqosaccharomyces rouxii

I;liili...i-~i-l------~--- ..... Tli-T --.,_l___.__(_ _ ._~~_.liXi;:il-_ - ~-.L_~i~-.iiii-li--.-ii.-_--Liliili-i~-i
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EFR3 Kluyveromyces lactis

ERF3 (AGL145Wp) Ashbya gossypii

ERF3 Candida albicans

ERF3 Candida albicans SC5314

ERF3 Debaryomyces hansenii

ERF3 Debaryomyces hansenii CBS767

Rnqlp Saccharomyces cerevisiae

New1p Saccharomyces cerevisiae

Ure2p Saccharomyces cerevisiae

Acyl phosphatase Homo sapiens

Beta-microglobulin Homo sapiens

Cro repressor Phage 434

Myoglobin Physeter macrocephalus

Myohemerythrin Themiste zostericola

Plastocyanin Phaseolus vulgaris

Bovine pancreatic trypsin inhibitor Bos Taurus

Ribosomal protein L9 Bacillus stearothermophilus

Glutathione S-transferase Homo sapiens

Spectrin SH3 Gallus gallus

Ada-2h Homo sapiens

Ara Arabidopsis thaliana

Com-A Bacillus subtilis

CheY Escherichia coli

Flavodoxin Clostridium mp
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P21-ras Homo sapiens

PL-B1 Peptostreptococcus magnus

Protein G Streptococcus sp. group g
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Conclusions and Future Paths

The prediction and understanding of overall p-structure remains a challenge. Nonetheless, the

results of the BETASCAN-HELIXCAP-STITCHER set of algorithms demonstrate that the challenge can be

selectively overcome. With sufficient restriction of conformational space and utilization of the

cooperative and piecewise assembly of protein structure from simpler elements, Levinthal's paradox

becomes merely a surmountable barrier to computational analysis. A day can be foreseen when flexible

templates, free-energy assessments, and probabilistic prediction are combined in new ways to solve

even larger subsets of the general protein folding problem.

Several obstacles remain to the full generalization of the "divide and conquer" method.

Attempts to provide BETASCAN with the ability to analyze both parallel and antiparallel strand-pairs

foundered on the inability to compare the two types of P-alignment on an equal basis. While estimates

of antiparallel frequency with regard to length exist, no empirically based formula could be found to

estimate the relative probability of a parallel configuration with that of an antiparallel configuration that

also preserved the length normalization.

The STITCHER algorithm was designed to permit the further extension of sheets between

monomers to model the assembly of full amyloid fibrils. While this can be accomplished with some deft

manipulation of input for interfaces composed of parallel P-strands, the antiparallel cases would depend

on the yet-to-be-implemented antiparallel BETASCAN scoring. Automation of analysis for the various

parallel and antiparallel interface cases would be a welcome and useful addition to the STITCHER

protocol.
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Finally, the HELIXCAP algorithm provides not only a useful negative detector to rule out

amyloidogenicity in protein sequences, but enhances our understanding of the types and effects of I-

helix caps. Experiments are now ongoing to determine if removal of the N-terminal cap of pertactin has

the predicted dimerizing effects. Preliminary experiments with the removal of the entire N-terminal half

of pertactin have indeed resulted in a crystallizable dimer of the C-terminal halves of the pertactin 3-

helix. With further understanding of the binding of helix caps to the first rung of the 0-helix, there arises

the possibility of a new class of pharmaceutical inhibitors intended to mimic the helix-capping

interaction. Such inhibitors could be designed to either stabilize amyloidogenic proteins against fibril

formation or to retard the growth of fibrils already present.

Sixty years after the first elucidation of secondary structures in proteins, the paths forward to a

full understanding of the workhorse molecules of life on Earth remain murky. The amyloid and prion

proteins, a puzzling mystery of folding vital to medicine and biology, present a new perspective on

protein folding that both challenge and affirm long-held assumptions about the causes of and influences

upon the specificity of fold conformations. By subdividing the folding problem into tractable

components, utilizing our full computational and algorithmic capabilities, and intuiting the means to

assemble full structures from the most likely elements, parts of the amyloid/prion folding problem can

now be attacked productively. A way now lies open to further understanding by both experimentalists

and computational biologists of the fundamental properties of these most intriguing molecules.
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Supplementary Tables
Supplemental Table 3-S1, 3-helices used in BETASCAN statistical analyses.

PDB id Protein Species

lair Pectate Lyase E Erwinia chrysanthemi

lbhe Polygalacturonase Erwinia carotovora ssp. Carotovora

lbn8 Pectate Lyase Bacillus subtilis

lczf Endo-Polygalacturonase II Aspergillus niger

2dab Virulence Factor P.69 Pertactin Bordetella pertussis

2dbg Chondroitinase B Flavobacterium heparinum

lee6 Pectate Lyase Bacillus sp. Strain KSM-pl5.

1h80 Ilota-Carrageenase Of Alteromonas fortis

lhg8 Endopolygalacturonase Fusarium moniliforme

lib4 Polygalacturonase Aspergillus aculeatus

lidj Pectin Lyase A Aspergillus sp.

ljrg Pectate Lyase A Erwinia chrysanthemi

ljta Pectate Lyase A (C2 Form) Erwinia chrysanthemi

lk5c Endopolygalacturonase I Stereum purpureum

lktw Iota-Carrageenase Alteromonas sp. Atcc43554

lnhc Endopolygalacturonase I Aspergillus niger

logm Dex49a From Penicillium minioluteum

lqcx Pectin Lyase B Aspergillus niger

lqjv Pectin Methylesterase PEMA Erwinia chrysanthemi

lrmg Rhamnogalacturonase A Aspergillus aculeatus
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lrwr Filamentous Hemagglutinin Secretion Bordetella pertussis
Domain

Itsp Tailspike Protein Bacteriophage P22

2pec Pectate Lyase C Erwinia chrysanthemi

Supplemental Table 3-S2. Nonredundant set of sequences from aggregative proteins, derived from
[138].

iCro MQTLSERLKKRRIALKY

2Cro YKMTQTELATKAGVK

3Cro YKQQSIQLIEAGVTKR

4Cro TKRPRFLYEIAMALNSD

5Cro AMALNCDPVWLQYGTKRGKA

Acyl-phosphatasel7-Jan STAQSLKSVDYEVFGRV

Acyl-phosphatasel8-33 QGVSFRMYTEDEARKI

Acyl-phosphatase34-53 GVVGWVKNTSKGTVTGQVQG

Acyl-phosphatase54-68 PEDKVNSMKSWLSKV

Acyl-phosphatase69-85 GSPSSRIDRTNFSNEKT

Acyl-phosphatase86-98 ISKLEYSNFSVRY

Ada-2HH1-Wt VPSNEEQIKNLLQLEAQEHLQY

Ada-2HH2-WT FVNVQAVKVFLESQGIAY

Alpha-synucleinNAC1-18 EQVTNVGGAVVTGVTAVA

Alpha-synucleinNAC1-18s TVNGVGEVTATAVQGVAV

Alpha-synucleinNAC6-14 VGGAVVTGV

Amyloid-betaAB3 HQKLVFFAE

Amyloid-betaHABP5 KKPVFFAED
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Amyloid-betaWhole DAEFRHDSGYEVH HQKLVFFAEDVGSNKGAIIGLMVGGVV

AraAra 1 AVG KSN LLSRYARN EFSA

AraAra2 RFRAVTSAYYRGAVG

AraAra3 TRRTTFESVGRWLDELKIHSD

AraAra4 AVSVEEGKALAEEEGLF

AraAra5 STNVKTAFEMVILDIYNNV

Beta-microglobulinA IQRTPKIQVYSRHPAE

Beta-microglobulinB NGKSNFLNCYVSG

Beta-microglobulinC FHPSDIEVDLLK

Beta-microglobulinD NGERIEKVEHSDLSFSKD

Beta-microglobulinEl DWSFYLLYYTEFTPTGKDEYA

Beta-microglobulinF PTGKDEYACRVNHVT

BPTIP1-15 RPDFSLEPPYTGPSK

BPTIP16-28 ARIIRYFYNAKAG

BPTIP29-44 LSQTFVYGGSRAKRNN

BPTIP45-58 OFKSAEDSMRTSGGA

CheYCheY1 DFSTMRRIVRNLLKELGYN

CheYCheY2 EDGVDALNKLQAGGY

CheYCheY3 MDGLELLKTIRADSAY

CheYCheY4 AKKENIIAAAQAGASGY

CheYCheY5 PFTAATLEEKLNKIFEKLGMY

ComComAl DHPAVMEGTKTILETDSNLS

ComComA2 EPSEQFIKQHDFSSY

ComComA3 VNGMELSKQILQENPH

ComComA4 EVEDYFEEAIRAGLH

ComComA5 TESKEKITQYIYHVLNGEIL

'~B~l~r~~l - ~ ;~-----.-I~~_.1II1--~-iif ?iili_*ii~~~~i_;ij1_~ ji:-~i~~;.~ll/~~-li~;~~_-~~~~ ^..l_:r.L*_.._ .li j_~ii~~~~~-~i-~~~
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FlaxodoxinFXN1 GTGNTEKMAELIAKGIIESGKDY

FlaxodoxinFXN3 EESEFEPFIEEISTKISY

FlaxodoxinFXN4 GDGKWMRDFEQRMNGYGSV

FlaxodoxinFXN5 EPDEAEQDSIEFGKKIANIY

GlutexAlpha-4 DQKEAALVDMVN DGVEDLRCKYATLIYT

GlutexAlpha-5 YEAGKEKYVKELPEH LKPFETLLSQ

GlutexAlpha-6 QISFADYN LLDLLRIHQVLN

GlutexAlpha-7 PLLSAYVARLSA

GlutexAlpha-8 PKIKAFLA

myoglobinAB-Domain VLSEGEWQLVLHVWAKVEA

myoglobinA-Helix EGEWQLVLHVWAKVEADVAGHGQDILIRLFK

myoglobinBC-Turn KSHPET

myoglobinB-Helix DVAGHGQDILIRLFKS

myoglobinCCD-Domai HPETLEKFDRFKHLK

myoglobinD-Helix TEAEMKA

myoglobinEF-Turn SEDLKKHGVTVLTALGAILK

myoglobinE-Helix KKGHHEAE

myoglobinFG-Turn ATKHKIP

myoglobinF-helix ELKPLAQSHA

MyohemerithinAB-loop Am-YEQLDEEHKKIFKGIFDCIRD

MyohemerithinA-helix RDNSA

MyohemerithinBC-loop DAAKYSEV

MyohemerithinB-helix SAPN LATLVKVTTN HFTH EEAM MD

MyohemerithinCD-loop GLSAPVD

MyohemerithinC-helix EVVPHKKMHKDFLEKIGGL

MyohemerithinC-terminal GTDFKYKGKL



1381 Page I Suppleme

MyohemerithinD-helix AKNVDYCKEWLVNHIK

MyohemerithinN-terminal GWEIPEPYVWDESFRVFY

PlastocyaninPc-1 LEVLLGSG

PlastocyaninPc-10 IPAGVDAVKISM

PlastocyaninPc-10a EIPAGV

PlastocyaninPc-10b DAVKIS

PlastocyaninPc-11 MPEEELL

PlastocyaninPc-12 MPEEELLNAPGETYVVTL

PlastocyaninPc-13b APGET

PlastocyaninPc-14 GETYVVTL

PlastocyaninPc-14a ETYVVT

PlastocyaninPc- 15 VTLDTKGTY

PlastocyaninPc-16 GTYSFYT

PlastocyaninPc-16a TYSFYC

PlastocyaninPc-18 MVGKVTVN

Plastocyani nPc- 19 GTVSFVTSPHQGAGMVGKVTVN

PlastocyaninPc-2 LEVLLGSGDGSLVFV

PlastocyaninPc-3 SLVFVPSEFS

PlastocyaninPc-5 SEFSVPSGEK

PlastocyaninPc-6 KIVFKNNA

Plastocyani n Pc-6a GEKIVFKNNAGFPHNVVFDE

PlastocyaninPc-8 KNNAGFPHNV

PL-B1PL-B1-114-138-pH-
2.4 KGTFEKATSEAYAYADTLKKDNGEY

PL-B1PL-B1-136-155D-pH-
6.1 GEYTVDVADKGYTLNIKFAGD

PL-B1PL-B1-95-114-pH-4. 1 VTIKANLIFANGFTQTAEFKG

ntary Tables
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ProteinGProteinG21-40 TYKLINGKTLKGE-TTTEA

ProteinGProteinG2-19 GDAATAEKVFKQYANDNGVD

ProteinGProteinG41-56 GEWTYDDATKTFTVTE

RasP21A GVGKSALTIQLIQNHFVY

RasP21B EYSAMRDQYMRTGEG

RasP21C INNTKSFEDIHQYREQIKRVKDS

RasP21D ARTVESRQAQDLARSYGIP

RasP21E RQGVEDAFYTLVREIRQHK

Ribosome-L9AIpha-1 GYANNFLFKQG

Ribosome-L9Alpha-2 TPANLKALEAQKQKEQR

Ribosome- L9 Beta - 1 MKVIFLKDVKG

Ribosome-L9Beta-2 KGKKGEIKNVAD

Ribosome- L9 Beta-3 LAIEATPA

Spectrin-SH3M-2 AYVKKLDSGTGKELVLAL

Spectrin-SH3M-4 YDYQEKSPREVTMKKGD

Spectrin-SH3M-68 DILTLLNSTNKDWWKVEVNDRQGFVPA

Spectrin-SH3M-C GGKDWWKVGG

t-ProteinK19 PGGGKVQIVYKPV

t-ProteinK19d PGGGKVYKPV

t- Protein K19GI uc4 QTAPVPM PDLKNVKSKIGSTE

t-ProteinK19Gluc41 NLKHQPGGGKVQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVE

t-ProteinK19Gluc42 VKSE

t-ProteinK19Gluc78 QTAPVPMPD

t-ProteinV313-K321 VDLSKVTSK

t-ProteinV335-E342 GQVEVSKE


