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Abstract

If a picture is worth a thousand words, can a thousand words be worth a training

image? Most successful object recognition algorithms require manually annotated

images of objects to be collected for training. The amount of human effort required

to collect training data has limited most approaches to the several hundred object
categories available in the labeled datasets. While human-annotated image data is

scarce, additional sources of information can be used as weak labels, reducing the
need for human supervision. In this thesis, we use three types of information to learn

models of object categories: speech, text and dictionaries. We demonstrate that our

use of non-traditional information sources facilitates automatic acquisition of visual
object models for arbitrary words without requiring any labeled image examples.

Spoken object references occur in many scenarios: interaction with an assistant
robot, voice-tagging of photos, etc. Existing reference resolution methods are uni-

modal, relying either only on image features, or only on speech recognition. We

propose a method that uses both the image of the object and the speech segment
referring to it to disambiguate the underlying object label. We show that even noisy

speech input helps visual recognition, and vice versa. We also explore two sources of
linguistic sense information: the words surrounding images on web pages, and dictio-
nary entries for nouns that refer to objects. Keywords that index images on the web

have been used as weak object labels, but these tend to produce noisy datasets with
many unrelated images. We use unlabeled text, dictionary definitions, and semantic
relations between concepts to learn a refined model of image sense. Our model can
work with as little supervision as a single English word. We apply this model to a
dataset of web images indexed by polysemous keywords, and show that it improves

both retrieval of specific senses, and the resulting object classifiers.

Thesis Supervisor: Trevor Darrell
Title: Associate Professor
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I
Introduction

The difference between the right word and the almost right word is the

difference between lightning and a lightning bug.
Mark Twain

In our daily lives, we use multiple senses to disambiguate concepts. When a phrase

has several interpretations, we look at the accompanying picture. When a diagram is

ambiguous, we read the caption. When we cannot see someone's face, we recognize

them by their voice. In short, multimodal context is an essential part of how we

learn and communicate about our world. This dissertation explores the interplay of

image, speech and written language to improve the way computers learn about visual

concepts.

To be useful, computer vision systems must be able to recognize a large vari-



That's a cat over Turn on the This is my favorite
there... lamp... purse...

Figure 1-1: Multiple modalities can help disambiguate the identity of objects.

ety of objects. This is especially true of systems targeted towards human-computer

interaction (HCI) in situated environments. Imagine a user communicating with a

household robot about objects in her home, as illustrated in Figure 1-1. The user

would expect such a robot to understand what objects she is referring to. However,

this is problematic from the computer vision perspective. It is estimated that humans

can recognize tens of thousands of object categories [Biederman, 1987]. In computer

vision research, attempts to construct object recognizers for more than a few hundred

categories have been stymied by the lack of labeled image data that is required to

train most state-of-the-art methods [Liu et al., 2007]. In HCI research, the goal of

large-vocabulary automatic speech recognition has been achieved, but robustness to

background noise remains an issue [Potamianos et al., 2003].

The Internet is an enormous source of free data. To avoid manually labeling

training examples for each object category, computer vision researchers have turned

to web search engines as a cheap source of training images. However, while thousands

of images are available at the click of a mouse button, their precision is low due

to the ambiguity of text queries [Fergus et al., 2005]. Figure 1-2 illustrates this by

displaying the mixed-sense images returned by the Yahoo!TM image search engine for

the query "mouse". The images depict a medley of visual senses, from computer mice

to field mice to Mickey Mouse. Such mixed results are due in part to polysemy, i.e.

words having multiple meanings, and also to the inherent imprecision of keyword-

based image indexing performed by search engines. Thus, an attempt to overcome



the problem of data scarcity has resulted in a new dillemma - that of image sense

disambiguation.

To address these challenges, this dissertation contributes two main solutions. The

first solution uses multimodality in new ways to reduce the need for supervision and

to increase the robustness of object recognition. The second solution takes Internet-

based image harvesting methods to the next level, tapping into the vast pool of

human-generated online knowledge to automatically disambiguate image senses.

Combining multiple modalities, views, or feature streams to achieve greater ro-

bustness is a popular paradigm in artificial intelligence (AI) research. Similarly, there

has been a recent rise in the number of methods that leverage multiple views to reduce

supervision [Blum and Mitchell, 1998], [Yu et al., 2008]. What is different about this

dissertation's multimodal approach is that it targets the problem of object recogni-

tion using modalities seldom utilized for that purpose, namely speech and written

language.

Most traditional approaches to object recognition are based solely on the pixel con-

tent of the image. However, with the advent of cheap digital cameras and fast Internet

connections, more and more high quality multimedia data is becoming available on-

line. In such data, objects depicted in images are often accompanied by related audio,

e.g., in instructional videos, product reviews, or educational programs. Furthermore,

spoken utterances referring to objects depicted in the image or video can arise in

human-computer interaction, robotics, voice-tagging, question-answering, and other

applications. The existing unimodal (speech-only or pixel-only) approach to object

reference resolution can be unreliable. As an example, short words such as "pen" and

"pan" are easily confused acoustically. Imagine showing your robot where you store

your pens, only to find it attempting to cook with one later! By combining speech

and image signals, we leverage their complimentary nature and facilitate recognition.

Another way in which this dissertation uses non-traditional information sources

to aid object recognition is in exploiting the words surrounding images on the web.

Text co-occurring with images on a web page can be a rich cue as to which object

is actually depicted in the image. For example, even before we see the image re-



Figure 1-2: Which sense of "mouse"? Mixed-sense images returned from an image

keyword search.

turned for the query "watch", we might know from the discussion of tornados that

preceeds it on the web page that it is probably not a wristwatch photo. While

several models have been proposed for images and their (manually generated) cap-

tions ([Barnard and Johnson, 2005],[Blei and Jordan, 2003], [Jain et al., 2007]), our

approach is different in that it learns image senses from free-form web pages. The

abundance of free, unlabeled, unstructured information on the web enables us to learn

models of image sense without manual annotation.

The reader may well be wondering, how is it possible to learn a model of image

sense without any labeled examples? The answer is that we once again employ lin-

guistic information sources, this time using word definitions extracted from online

dictionaries or encyclopedias. The cornerstone of our approach is in combining these

online knowledge repositories with unlabelled web text and images in order to ground

models of image senses.

1.1 Thesis Contributions

The main contribution of this thesis is a multimodal framework for learning a large

vocabulary of visual senses with a minimal amount of supervision. Previous methods

have either required labeled examples or assumed a single sense per word. In contrast,

this dissertation addresses the problem of ambiguous word meanings. We present a



succession of models, each of which represents a stepping stone toward the goal of

unsupervised, on-the-fly learning of objects in interactive situations.

For the case when a small number of labeled images are available, Chapter 4

develops a semi-supervised model of image sense. This model extends previous image-

only clustering methods to include text features gleaned from the context of the

originating web page. It develops a novel approach to combining text and image

features using latent dimensions. Experiments on a dataset collected by searching

for images on the web using polysemous queries demonstrate the advantage of the

combined text and image approach over single-view baselines.

For the case when no labeled images are available, Chapter 5 proposes a novel

unsupervised image sense model that can learn a model of an arbitrary visual con-

cept. The algorithm requires no labels; the only input required from the user is a

dictionary entry corresponding to a visual concept. Web search data and an online

dictionary are exploited to develop a generative probabilistic model of image sense.

Applications of the model include web image sense disambiguation and image-based

object classification. An additional contribution of this approach is the ability to

learn not just an image-based object model, but also a language-based model of the

corresponding word sense. The latter could be used for discourse processing and

language understanding in an integrated system.

Relaxing the supervision assumptions further, Chapter 6 presents a method that

automatically selects only the visual senses for inclusion in the object model for a

particular word, and filters out the abstract senses. This sense selection is based

on known semantic relations between words and enables retrieval of broad classes of

visual concepts (e.g. animals, people, etc.) The applications include object classifi-

cation, as well as retrieval of the visual senses of a keyword from web search results.

A final contribution, described in Chapter 7, is a method that uses both the spoken

reference to an object and the image of that object to recognize its identity. The

method combines a speech recognizer and an image classifier in a single framework.

We demonstrate improvements over unimodal recognition on a fixed vocabulary of

objects, using a dataset of images paired with spoken utterances.



Before presenting the methods, we first discuss related work areas in the next

chapter, and then describe the datasets used for evaluation in Chapter 3.



Related Work

The ideas in this thesis draw on several areas of research, including semantic image

retrieval, object recognition, word sense disambiguation, and latent topic models.

This thesis focuses on a subset of methods which utilize unlabeled and weakly labeled

data, such as images collected from the web. While semantic image retrieval and

object recognition are two closely related subfields of image processing, a full review

of these methods is beyond the scope of this work. Section 2.1 will review related

work in the semantic retrieval community, as well as papers in the object recognition

community dealing with harvesting image datasets from the web.

Latent topic models have been applied widely to the problem of clustering text

documents, and, more recently, images. Section 2.2 will provide some background on

latent topic models, starting with single-view models of bag-of-words data such as

latent Dirichlet allocation, then moving on to models of captioned images, and finally



describing methods that apply topic models to web-based dataset construction. The

rest of the chapter will describe work in the area of word sense disambiguation from

text and images (Section 2.3), as well as the area of multimodal reference resolution,

where image, speech and gestures are used to resolve object references (Section 2.4).

Finally, we summarize closely related ideas and contrast them to our own work.

2.1 Image Retrieval and Object Recognition

Content-based image retrieval (CBIR) and object recognition have originated as two

separate fields of research, but have evolved over the past decade to become very

closely related. The main difference is in the formulation of the problem: image

retrieval focuses on searching a given image collection for images matching a user's

query, while object recognition focuses on finding a specific object in a given image.

The goal in CBIR is to match the entire image, rather than a single object present in

it; however, recognizing objects contained in the image can be an intermediate step

of CBIR, and, conversely, object recognition can be formulated as scene recognition.

In this section, we will give a brief overview of each area, and concentrate on methods

that are most relevant to this work.

2.1.1 Semantic Image Retrieval

Answering a user's query lies at the heart of image retrieval. The main approaches

are text-based and content-based retrieval. The earliest text-based approaches date

back to the 1970s, and involve searching a database of manually annotated images

for a matching keyword. Most modern web image search engine, such as Google

or Yahoo, still use the text-based approach, searching for the query word in the

image filename and webpage text. Content-based image retrieval was introduced in

the 1980's and involves matching a query image based on either its low-level features,

such as color, texture and shape, or the high-level concepts present in the image, such

as 'sky', 'water', 'animals', etc. Matching based on high-level concepts is referred to

as semantic image retrieval. The query can be either an image, or a text query such



as "find me a picture of a beach", or an even more challenging request such as "find

me a picture of a parent hugging a smiling child". For an extensive review of CBIR

we refer the reader to [Liu et al., 2007].

While semantic retrieval borrows techniques from object and scene recognition,

such techniques do not provide the complete solution to CBIR. The use of supervised

object recognition to automatically label images with high-level concepts for later use

in retrieval has generally been limited to color categories (e.g. 'red', 'blue'), uniformly

colored and textured concepts (e.g. 'sky', 'grass', 'water'), and a small number of

object categories (e.g. 'faces', 'cars'). One problem with supervised object recognition

is that it requires many training images for every concept, and currently has only

been shown to work reliably for fewer than a few hundred objects. To deal with

this limitation, semi-supervised methods can be used for retrieval. For example, in

[Feng et al., 2004], co-training is used to iteratively bootstrap two separate classifiers

trained on a small number of labeled images and their text contexts. The paper

reports a level of performance similar to the fully supervised version of the approach,

but using much fewer labeled examples.

Unsupervised learning can also be applied to cluster the images for use in retrieval.

The hypothesis is that semantically similar images will cluster together. However,

traditional methods such as k-means often fail to cluster images into different concepts

[Liu et al., 2007], although this must depend greatly on the similarity measure used.

The CLUE retrieval system proposed in [James et al., 2003] uses a more sophisticated

clustering method called NCut to retrieve clusters of images similar to the query.

Another common approach is to improve retrieval accuracy by introducing a user

feedback loop into the process. Relevance feedback (RF) typically work by adapting

the similarity measure to better retrieve the images that the user has indicated as

being relevant to the previous queries. The advantage of RF is that it can learn the

user's intentions on the fly, by providing a "more like this" option.

CBIR can been applied to diverse image collections including personal photos,

specialized image databases such as medical or art galleries, and annotated datasets

such as COREL [Corel, 2009]. However by far the largest repository of images is the



World Wide Web. Currently, most commercial search engines only retrieve images

based on the text query, however, a few steps in the direction of more content-based

retrieval have already been taken. For example, Google Similar Images [Google, 2009]

allows the user to re-organize the retrieved images by content (currently limited to

'news', 'faces', 'clip art', 'line drawings' and 'photos'), by color, or by similarity to

one of the images. Still, web image search for semantic concepts has low precision,

and typically returns several topics mixed together [Cai et al., 2004].

Recently, there has been an interest in using both the image features and the

HTML content of the returned results to alleviate the poor precision of web search.

In CBIR literature, several methods have been proposed to re-organize the results re-

turned by a search engine to improve query by keyword [Feng et al., 2004] and query

by example [James et al., 2003], or to make it easier for the user to find desired images

[Cai et al., 2004]. Meanwhile, in the object recognition community, efforts to avoid

manually labeling training examples of each object category have led researchers to

use the search engines as a cheap source of training data. We will describe these ap-

proaches in Section 2.1.3, but first, let us briefly survey the standard labeled datasets

used in the object recognition field.

2.1.2 Datasets for Object Recognition

At the time of this writing, several labeled image datasets are available to researchers

for the development of object recognition algorithms. However, none satisfy the

requirement of providing images of any object named by the user. Furthermore, by

nature they are static requiring more manual effort to be expended should a new

object category become necessary.

Most hand-collected datasets contain only a few categories [Ponce et al., 2006].

Larger datasets freely available to the object recognition community contain several

hundred categories: Caltech-101 [Fei-Fei et al., 2007], Caltech-256 [Griffin et al., 2007],

PASCAL [Everingham et al., ], LotusHill [Yao et al., 2007], and

[Fink and Ullman, 2008]. The two exceptions, containing several thousand categories

each, are LabelMe [Russell et al., 2008] and ImageNet [Deng et al., 2009]. Finally,



the Tiny Images project [Torralba et al., 2008] has collected 80 million thumbnail-

sized images for about 75,000 keywords by crawling the Internet. While its size is

impressive, it is not suitable for evaluation because it does not contain labels.

LabelMe is a dataset collaboratively collected through an open web-based an-

notation tool [Russell et al., 2008]. It contains natural images of indoor and outdoor

scenes, many of which are annotated by users of the dataset. An annotation consists

of the outline of an object appearing in the image and a free-text description (e.g.

"car") Russell et al. [Russell et al., 2008] reports that, as of 2006, it contained more

than 4,000 unique descriptions and that while the rate of new outlines being added

was increasing, the rate of new descriptions has been slowing down. They also report

that most descriptions had fewer than 103 instances. We conducted an informal ex-

periment to assess the coverage of common household objects by searching the online

interface. A query for "pliers" returned 1 image, for "cellphone" 11, for "telephone"

349, for camera 67, and for "mug" 362. Many of the objects were of rather low

resolution. These results reflect the fact that the database is designed to provide

annotations of whole scenes and objects in the context of natural images. However,

the low number of instances and poor resolution of many categories makes it difficult

to use LabelMe for object recognition out of context.

ImageNet. In addition to covering a large vocabulary of words, another goal of

this work is to build sense-disambiguated models. Very few existing datasets contain

sense-disambiguated labels. A notable exception is the ImageNet [Deng et al., 2009]

project. ImageNet is a new project that aims to collect labeled images of the 80,000

synsets of WordNet, with an average of 500-1000 for each synset. The images are

collected by searching the web for the synset words and paying human labelers to se-

lect good examples from among the returned results. It is so far the most ambitious

dataset collection effort, expected to result in tens of millions of images. The fact

that it contains sense-disambiguated labels makes it a good dataset for evaluating

our unsupervised method for collecting sense-specific data, although since it does not

include webpage text, we can only use it to test image-only classification. Unfortu-

nately ImageNet was released after the experimental portion of this dissertation was



completed, and testing on it remains for future work.

2.1.3 Image Harvesting for Object Recognition

While object recognition has been shown to work well for several visual categories,

such as human faces, the lack of labeled datasets containing many examples per class

and large intra-class variation has thus far prevented it to be successful at recognizing

a wide variety of categories [Liu et al., 2007]. Efforts to avoid manual labeling by typ-

ing the name of the object into a search engine and automatically gaining access to

thousands of training images were met with low precision due to the ambiguity of word

meanings [Fergus et al., 2005]. Several approaches to dealing with the precision prob-

lem have been proposed, including iterative re-ranking with a classifier trained on the

top-ranked images [Schroff et al., 2007], bootstrapping image classifiers from labeled

image data [Li et al., 2007], clustering the returned images into coherent components

[Fergus et al., 2005],[Li et al., 2007],[Berg and Forsyth, 2006], and incorporating user

feedback [Collins et al., 2008],[Berg and Forsyth, 2006].

Several web-based dataset construction methods have incorporated both the image

and the HTML features of search results [Schroff et al., 2007], [Berg and Forsyth, 2006]

Schroff et al. [Schroff et al., 2007] first used a Bayes classifier based only on text and

HTML metadata (such as whether the keyword appears in the URL, the ALT tag,

etc.) to re-rank the images returned from web search. The classifier was trained

in a category-independent manner to predict whether the desired object appears in

the image. The images ranked highest by the text classifier were then used as noisy

training data for a support vector machine, which was used in turn to re-rank the

set once again to improve semantic retrieval, and to classify unseen examples. The

evaluation showed that the combination of text and metadata with image features

improves re-ranking over using either view alone.

A relevance-feedback approach was proposed by Collins et al. [Collins et al., 2008],

who asked the user to label several dozen images chosen randomly from search results,

and iteratively re-trained their boosting classifier on those images.

Recently, the object recognition field as a whole has seen a trend towards repre-



senting images as bags of visual words. The parallels between the problem of clus-

tering such bag-of-words data and problems in the text processing community have

led to the application of traditionally text-only topic models to unsupervised object

recognition. In fact, most of the existing web-based dataset construction methods in-

corporate topic models. In the next section, we first provide the reader with a review

of topic models as they were introduced in the text processing literature, and then

discuss their extensions to models of images and the text associated with them.

2.2 Latent Topic Models

Latent topic analysis is a classic problem in natural language processing (NLP) and

information retrieval. In the 1980s, latent semantic analysis (LSA), sometimes also

referred to as latent semantic indexing (LSI), was developed [Deerwester et al., 1990].

LSA applies singular value decomposition to a term-document matrix to find latent

"concepts" in the document corpus. Although LSA is a widely used model in NLP,

generative latent variable models have recently been suggested as a more principled

approach to probabilistic modeling of documents. Such approaches include mix-

tures of unigrams [Nigam et al., 2000], probabilistic LSA [Hofmann, 1999], and latent

Dirichlet allocation [Blei et al., 2003]. The advantages of using a proper generative

model is that standard techniques can be used for inference, parameter estimation,

and model combination.

2.2.1 Probabilistic Latent Semantic Indexing

Probabilistic LSI (pLSI), introduced by Hofmann [Hofmann, 1999], discovers hidden

topics, or distributions over discrete observations (such as words), in unlabeled data.

It models a document collection using a graphical model with documents and words

represented as observed variables and "topics" as hidden variables. The topics rep-

resent distributions over word counts. In practice, they tend to align with coherent

themes within the corpus and can help to automatically distinguish between different

meanings and uses of the same word [Hofmann, 1999], a key reason for their choice



to perform visual sense disambiguation in this thesis.

The pLSI model makes the conditional independence assumption that, given the

latent topic z, the word w is generated independent of the identity of the document

d in which it occurs. In contrast to mixture models, the document is not assigned

to a cluster, but rather represented as a list of topic proportions. Given a collection

of N documents, each containing a bag of Nd words with vocabulary size M, pLSI

assumes the following generative process:

1. pick a document d E 1, ..., N with prior probability P(d),

2. for each word token i, sample a latent topic zi E 1, ..., K from P(z d), a multi-

nomial distribution with parameter Od,

3. choose a word wi E 1, ..., M from P(wlz), a multinomial with parameter ozi.

The probability of generating a word in a document is

K

P(d, w0i1:K,Gd)= P(d) P(w1d, 01:K, Od) = P(d)Z P(wlz, 1:K) P(zl0d) (2.1)
z=1

The probability of generating a document consisting of words wl, ..., WNd is

Nd K

P(d, wl, ..., WNdl 1:K, d) = P(d) 1 Y P(wiIz, 01:K) P(zI0d) (2.2)
i=1 z=1

The variable d represents an index into the list of training documents. The parameters

of the pLSI model are the document-specific topic distributions P(zld), learned for

each document d in the corpus, and the topic-specific word distributions, P(wlz). EM

can be used to estimate the parameters for a collection of documents. The pLSI model

suffers from two shortcomings: 1) the number of parameters grows linearly with the

number of documents, and 2) there is no natural way to generate previously unseen

documents. (One way is to use EM in a "fold-in" procedure, keeping P(wlz) fixed,

to estimate P(zld) for an unseen document.) These problems can lead to overfitting,

and a solution was proposed in the form of Latent Dirichlet Allocation (LDA).



2.2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) was introduced by (Blei et al.[Blei et al., 2003]).

It is a fully generative model that is similar to the pLSI model, but treats the topic

distribution as a hidden variable sampled from a Dirichlet prior. This prior, along

with an additional prior over the conditional distribution of words given the topic, are

shared across all documents in the corpus. As in pLSI, each document is modeled as

a mixture of topics z e 1,..., K. A given collection of N documents, each containing

a bag of Nd words, is assumed to be generated by the following process:

1. for each topic j = 1, ... , K, sample the parameters of a multinomial distribution

over words q0 from the Dirichlet prior with parameter /,

2. for each document d, sample the parameters Od of a multinomial distribution

over topics from the Dirichlet prior with parameter a,

3. for each word token i, choose a topic z, from the multinomial Od, then choose a

word wi from the multinomial z$".

The probability of generating a document is

Nd K

P(wl, ..., wNNd i ), Od) J7 P(wlz, ) P(zlOd) (2.3)
2=1 z=l

To perform inference, a number of approximate inference algorithms can be ap-

plied. In the experiments in this dissertation, we use the Gibbs sampling approach

of [Griffiths and Steyvers, 2004] to produce samples from the posterior distribution

P(zlw). The 0 and q variables are integrated out using the conjugate Dirichlet priors.

Given a posterior sample, the parameters are then estimated from their predictive

distributions conditioned on the data as:

=0 d +(2.4)
O M ( n 3 + 0 ) )> d K = 1 ( n +odZ

where n~, is the number of times word w was assigned to topic j, and nj is the

number of words in document d assigned to topic j. Using symmetric Dirichlet



priors with scalar hyper-parameters a and i has the effect of smoothing the empirical

distribution. The number of topics K is a fixed parameter that can be set by cross-

validation. The hierarchical Dirichlet process (HDP) model addresses this issue by

marginalizing over K [Teh et al., 2003].

Learning the latent structure is only the first step in solving the problem at hand.

The second step is to compute a similarity measure between pairs of documents, given

the learned latent structure, for the purpose of re-ranking the retrieved documents.

The basic approach to using a hidden topic model for retrieval is to score each docu-

ment by the likelihood of generating the query document under its model. We follow

the approach described in [Wei and Croft, 2006] to perform retrieval with the LDA

model. Given a query document q consisting of words wl, ..., WNq, and a document

d with estimated posterior parameters Od and 4, the similarity measure is the (log)

likelihood of the query under d's model:

D(q, d) = log(P(wl,..., WNq, Od)) (2.5)

which is given by ((2.4)).

LDA has been successfully applied to a variety of natural language tasks, such as

analyzing, organizing and searching document collections. It has also been extended

in a variety of ways. For example, the Author-Topic model [Rosen-Zvi et al., 2004]

extends the LDA model to include the identity of the authors of the document.

The hidden Markov model (HMM) LDA [Griffiths et al., 2004] separates syntactic

words from content words by making the word distribution dependent on the previous

word's syntactic state. For example, this allows the model to label the instance of

the word "and" as a syntactic word in "observe and measure", and as a content word

in "draw an AND gate". HMM-LDA has been applied by [Hsu and Glass, 2006] to

the problem of adaptive language modeling in lecture transcription. In audio lecture

processing, one of the difficulties is that the data available to train the language

model (i.e. probability of the speaker saying a particular word) either matches the

domain (lecture topic) or the style (written text vs. spoken lecture) of the test data,



(a) water grass flowers trees sky (b) "On the way west the expedition
towed, poled, and rowed their boats up
the Missouri River, against the current,
on a good day making 20 miles (32 kilo-

meters)"

Figure 2-1: Unlike image captions (a), the text surrounding a web image (b) does not

generally consist of words corresponding to each image region.

but rarely both. However, an effective language model needs to not only capture

the sponteneous speaking style of a lecturer, but also the domain-specific vocabulary.

By applying the HMM-LDA model, [Hsu and Glass, 2006] were able to dynamically

adapt the language model to the apparent topic substructure of a lecture.

2.2.3 Latent Topic Models of Annotated Images

In semantic retrieval literature, latent topic models have been applied to model image

and caption data (e.g. [Barnard et al., 2003],[Blei and Jordan, 2003]). It is impor-

tant to note that the free-text contents of HTML pages that co-occur with images

retrieved by web search are different from captions (see Figure 2-1). Image captions

are produced by a human labeler, who labels each image in a database (e.g. COREL

[Corel, 2009]) with the purpose of describing the image content. An example caption

is "rocks,sky,grass". The goal is usually to provide at least one word describing each

concept appearing in the image. Therefore, models of such annotated data can as-

sume that there is a correspondence between each image region and one of the words

in the caption.

In models of captioned images, image annotation is performed by using the con-

ditional distribution of words given an image region to predict the most likely word,



which serves as a category label [Blei and Jordan, 2003]. However, in the context

of web images, it does not make sense to predict noisy free-text words that are not

meant to be labels. Certain words on the page, for example, the words "Mickey

Mouse" co-occurring with an image returned for the query "mouse", might serve as

captions, however, such descriptive words are rare and are not necessarily related to

the desired object category. In general, a text context word does not have a corre-

sponding visual region, and vice versa. Thus, existing image and caption processing

methods address a different problem than the one we are interested in. Nevertheless,

it is a closely related problem, so we will briefly review those methods that are based

on topic modeling.

Two extensions of LDA were introduced by Blei to model annotated data [Blei, 2004].

The first is a Gaussian-multinomial LDA (GM-LDA), which uses latent topics to rep-

resent the joint clustering of image regions and caption words. An image/caption pair

is generated by first sampling 0 from the Dirichlet prior, then, for each image region,

choosing a topic z and sampling a region descriptor from a Gaussian distribution

conditioned on z. After the image regions have been generated, each caption word is

sampled by first choosing a topic v and then sampling a word from the multinomial

distribution conditioned on v. While both the image topics z and the caption topics

v are generated from the same distribution, there is no explicit dependency between

them, so it is possible for them to form two distinct sets.

Specific correspondence between image regions and caption words is introduced

by the correspondence-LDA (Corr-LDA) model. It forces the image and word topics

to be associated with each other by selecting each word topic from one of the topics

that generated the image regions. Specifically, it proceeds identically to GM-LDA to

sample N image regions, and then, for each caption word, it chooses a region index

y from a uniform distribution on the interval (1, ..., N), and selects a word from the

multinomial distribution conditioned on y's topic.

In work closely related to Corr-LDA, a People-LDA [Jain et al., 2007] model is

used to guide topic formation in news photos and captions, using a specialized face

recognizer. The caption data in news photos is less constrained than annotations



and includes some non-category words, however, it is still far more constrained than

free-text web pages.

2.2.4 Latent Topic Models of Image Search Results

Fergus et al. [Fergus et al., 2005] were the first to attempt to train a classifier given

nothing but the name of the object. They clustered images retrieved by a search

engine for that name using pLSI adapted to include the position of the topic in an

image. The assumption behind their method is that one of the learned topics will align

closely with either the desired object. The foreground object topic was selected using

a small validation dataset, which was automatically collected as follows: the word was

translated automatically into several languages, and the first page of image search

results from each language was used to create a high-precision set. The approach did

not include text features and was limited by the assumption that a single topic would

be formed by the desired object features.

Berg et al. [Berg and Forsyth, 2006] also used a probabilistic topic model (namely,

LDA) to cluster the retrieved images, but based on the text words surrounding the

image link. User feedback was then sought by asking which clusters belonged to the

desired image category and which were unrelated. The images in the labeled clusters

were then used to train a voting classifier.

Bootstrapping methods rely on the presence of good initial classifiers trained on

seed labeled data. The bootstrapping approach named OPTIMOL [Li et al., 2007]

used the Caltech-101 object dataset to obtain initial seed data, and iteratively refined

a classifier based on a hierarchical Dirichlet process.

2.3 Sense Disambiguation

There is a reason why retrieving visual concepts based only on the text name has

such poor precision - words are ambiguous! While a human can read the sentence

"The bank is closed" and guess that it is probably talking about a financial insti-

tution, a computer would have a much harder time disambiguating the sense of the



word "bank". Context, either textual of visual, can help automatic methods in this

task. For example, a news image showing the hotel heiress Paris Hilton can help

disambiguate the caption "Paris Hilton" as referring to the person, not the hotel.

2.3.1 Sense Disambiguation in Text

The problem of Word Sense Disambiguation (WSD) by computer is one of the most

fundamental problems in natural language processing. The difficulty lies in the fact

that disambiguation often requires common sense. Word sense disambiguation is

considered an Al-complete problem, meaning that it's at least as hard as the most

difficult problems in artificial intelligence [Navigli, 2009]. That said, statistical ap-

proaches that do not attempt to understand language but rather make a decision

based on the statistics of the surrounding words have had some success in WSD. The

current state of the art is about 75% accuracy in word sense disambiguation with

supervised learning. For a complete review of traditional (natural language) WSD

the reader is referred to [Agirre and Edmonds, 2006, Navigli, 2009].

One of the problems with obtaining supervised training data for WSD is the

difficulty in training people to tag word senses. This has led to the advent of semi-

supervised and unsupervised algorithms. Yarowsky [Yarowsky, 1995] proposed an

unsupervised bootstrapping method, and suggested the use of dictionary definitions

as an initial seed. The algorithm uses the "one sense per discourse" property of

natural language, where a polysemous word will typically take on only one meaning

in a given discourse. It accumulates a list of collocations, or words that co-occur

with the target word more frequently than would be expected by chance, that are

indicative of each sense. For example, the collocation "computer" and "mouse" is

highly indicative of the "input device" sense of "mouse".

2.3.2 Sense Disambiguation in Text and Pictures

The saying "a picture is worth a thousand words" certainly seems to apply to word

sense disambiguation, at least for a human observer. For computer methods, images



that co-occur with text may also be helpful, even though computers' image under-

standing abilities are limited. To investigate whether using both images and text

would improve WSD performance, Barnard and Johnson [Barnard and Johnson, 2005]

created a new dataset of Corel images [Corel, 2009] paired with text passages from

a sense-disambiguated text corpus. Each image was chosen such that it illustrated

the corresponding text passage, similar to a news caption and accompanying photo.

A statistical model linking image regions to word senses was trained on the train-

ing portion of the image/caption data. Given a test image and caption, the model

predicted the most likely word sense for each word in the caption based on the test

image. The evaluation showed that this approach exceeded the performance of two

text-only WSD methods, and that combining image-based and text-based methods

resulted in further improvement.

While images and their captions are an interesting domain, images occurring "in

the wild", i.e. on the world wide web, typically lack captions (see Section 2.2.3). We

are not aware of work on WSD applied to general webpage text and images. The work

of Loeff et al. [Loeff et al., 2006] introduced image sense disambiguation (ISD) for

web images retrieved by an internet search engine for an ambiguous keyword. There

are several distinctions between WSD and ISD, according to [Loeff et al., 2006]. First,

because the keyword indexing is not done on human generated labels, web images

contain not only the core senses, but also related meanings. For example, the key-

word "watch" can retrieve images of watch mechanisms, watch straps, people wear-

ing watches, etc. Furthermore, the authors make a distinction between iconographic

senses within a single core word sense: pictures of the fish "bass" may include zoo-

logical illustrations, swimming fish, caught fish, cooked fish, etc. Finally, the image

may not contain any core or related senses at all. The authors address the problem

of distinguishing between core, related, and unrelated senses of web search results

by performing spectral clustering in both the text and image domain. Evaluation

consisted of computing how well the clusters matched human-annotated senses. No

classification was done to assign labels to clusters.

Word sense disambiguation with words and pictures is not the only research prob-



lem in AI where meaning must be inferred using input from multiple modalities. In

human-computer interaction, such problems come up when the interface provides dif-

ferent means for the user to interact with the system, such as using speech, gesture,

gaze, etc. One issue is that of multimodal reference resolution, or identifying the

object referred to by the user with varying degrees of information about it contained

in each modality.

2.4 Multimodal Reference Resolution

Multimodal interaction using speech and gesture dates back to Bolt's Put-That-There

system [Bolt, 1980]. Since that pioneering work, there have been a number of projects

on virtual and augmented-reality interaction combining multiple modalities for refer-

ence resolution. In HCI, ambiguities can arise in difference forms, leading to problems

of deizxis. Deixis is a phenomenon wherein understanding of the meaning of certain

words and phrases requires contextual information [Wikipedia, 2009]. For example,

English pronouns (e.g. "he", "it") and place references (e.g. "this city") require reso-

lution to concrete people, things and places. Another type of deixis occurs when the

user refers to objects in the environment, for example, points to a cup and says "This

cup is hot". In this case, the ambiguity is not only in which physical cup the user

means, but also what sense of "cup" he means and what the object looks like. Since

speech recognition is prone to errors, the system may have trouble recognizing the

word "cup". In work by Kaiser, et al. [Kaiser et al., 2003], mutual disambiguation

of gesture and speech modalities to interpret which object the user is referring to in

an immersive virtual environment. However, in the virtual reality and game envi-

ronments, the identity of surrounding objects is known, making the problem easier.

In the real-world interaction scenarios that we are interested in, object identity and

location is unknown and must be determined based on visual appearance.

Haasch, et. al. [Haasch et al., 2005] describe a robotic home tour system called

BIRON that can learn about simple objects by interacting with a human. The robot

has many capabilities, including navigation, recognizing intent-to-speak, person track-



ing, automatic speech recognition, dialogue management, pointing gesture recogni-

tion, and simple object detection. Interactive object learning works as follows: the

user points to an object and describes what it is (e.g., "this is my cup''). The system

selects a region of the image based on the recognized pointing gesture and simple

salient visual feature extraction, and binds that region to the object-referring word.

Object detection is performed by matching previously learned object images to the

new image using cross-correlation. The system does not use pre-existing visual mod-

els to determine the object category, but rather assumes that the dialogue component

has provided it with the correct words. Note that the object recognition component

is very simple, as this work focuses more on a human-robot interaction (HRI) model

for object learning than on object recognition. We believe that such a system would

benefit from being able to recognize more complex types of visual concepts.

The idea of disambiguating which object the user is referring to using speech

and image recognition has also been studied by Roy et al. In [Roy et al., 2002],

the authors describe a visually-grounded spoken language understanding system, an

embodied robot situated on top of a table with several solid-colored blocks placed

in front of it on a green tablecloth. The robot learns by pointing to one of the

blocks, prompting the user to provide a verbal description of the object, for example:

"horizontal blue rectangle". The paired visual observations and transcribed words

are used to learn visual concepts, such as the meaning of "blue", "above", "square".

Again, the concepts considered are simple, and the focus of the work is on language

learning rather than object recognition.

2.5 Multimodal Fusion and Classifier Combination

Throughout this dissertation, the issue of combining evidence from multiple sources

comes up again and again. In this section, we discuss the main approaches to mul-

timodal fusion and classifier combination at a very coarse level, without delving into

the multitude of practical combinations schemes developed for the various modalities,

feature sets, and classifiers.



Multiple feature streams can be extracted from different modalities, e.g. speech

and vision, or from different views of the same modality, e.g. pixel intensities and

motion between video frames. The key is that the feature streams be compementary

in some way. At the most general level, multimodal approaches fall into two broad

categories: early fusion and late fusion. In early fusion, the features extracted from

different sources are concatenated together to form a single feature vector. In contrast,

late fusion approaches combine the decisions of separate classifiers, each of which

is based on a distinct feature representation. For example, in audio-visual speech

recognition, one early fusion method is to stack the acoustic features together with

visual features extracted from moving lip images into a single feature vector (see

[Potamianos et al., 2003], for example). In [Saenko et al., 2005, Saenko et al., 2009],

we have explored a late fusion approach to audio-visual speech recognition, where

acoustic and visual features are observed at separate nodes in a graphical model,

with other nodes performing the combination.

While multimodal problems such as audio-visual speech recognition involve syn-

chronized feature streams which are actually different manifestations of the same

underlying cause (the movement of speech articulators), other multimodal feature

sets are less tightly coupled. For example, when we think about combining spoken

references to objects with image features, concatenating the two feature spaces does

not seem to make sense. Besides being more appropriate for decoupled features, late

fusion has several additional advantages. One is efficiency: one can use the more

efficient classifier to quickly eliminate most of the hypotheses, and only then apply

the computationally intensive classifier [Kittler et al., 1998]. For example, a speech

recognizer can be used to efficiently eliminate most of the word hypotheses in a large

vocabulary before using a visual classifer to disambiguate between the remaining few

words (see Chapter 7. The other advantage is the greater accuracy resulting from the

commonly used classifier combination rules: (weighted) sum rule, (weighted) product

rule, min and max rules, and voting [Kittler et al., 1998].

True to their names, the product rule multiplies the posterior probabilities of the

class given by each classifier, while the sum rule adds them. The contribution of



each modality/classifier can also be weighted to reflect its reliability, provided that

this factor is known in advance or can be estimated at testing time. As shown by

[Kittler et al., 1998], both rules are approximations to the full posterior probability

of the class given all feature streams, obtained by making the assumption that the

features are conditionally independent given the class. Kittler notes that while this

assumption is likely to be violated in practice, the approximation still gives good

results experimentally. [Bilmes and Kirchhoff, 2000] derive the graphical models rep-

resenting the explicit assumptions made by the product and sum combination rules.

2.6 Connections and Comparisons

Our work lies at the intersection of object recognition, image retrieval, word sense

disambiguation and multimodal reference resolution. In image retrieval, an image

collection is searched to find images matching a user's query either by text keyword,

by low-level image content similarity, or by high-level semantic content. The visual

sense model we introduce in Chapter 5 can be considered a high-level CBIR method

that takes a text keyword as query and organizes the results by word sense. Although,

in this dissertation, we work with image datasets collected by web search, in principle,

the method can be applied to any collection of images associated with text, such as

news articles, magazines, photo sharing sites. The only modification required would

be adding an initial step of keyword-based indexing of the images, similar to Google

or Yahoo.

Previous CBIR approaches either focused mostly on simple visual concepts that

can be described by uniform colors and textures, or applied supervised learning to a

small number of more complex categories [Liu et al., 2007]. On the other hand, our

method learns models of arbitrary nouns. The combination of image and text features

is used in some web retrieval methods (e.g. [James et al., 2003]), however, our work

is focused not on instance-based image retrieval, but on category-level modeling.

The Corr-LDA model and others proposed for caption data are relevant to our

problem, however, to the best of our knowledge, they have not been extended to deal



with free-text web page contexts. Models of such annotated data often assume that

there is a correspondence between each image region and a word in the caption. The

focus is on predicting words, which serve as category labels, based on image content.

In our case, the goal is to predict a category label based on all of the words in the

text context.

Word disambiguation is a classic problem, however, it has only recently been posed

for images associated with words. Most previous work is concerned with images paired

with human-generated captions (e.g. [Barnard and Johnson, 2005]). In the area of

image sense disambiguation applied to keyword-based web image search results, the

approach of Loeff et al. [Loeff et al., 2006] attempts to separate the image and text

pairs by clustering in both domains, however, since it only performs clustering, it

cannot associate a sense label with an image. One of the major contributions of this

thesis is the ability to compute the likelihood of a particular word sense for a given

web image.

A recent trend in object recognition research is the exploitation of the large num-

ber of images available through image search engines to aid in the construction of

object category models. The models developed in this work can be used for auto-

mated dataset construction for an open vocabulary of objects, with varying degrees

of supervision. In Chapter 4, a few examples labeled by the user are required to select

the desired object, in Chapter 5 the word sense must be specified, and in Chapter 6,

we present a fully automatic method for retrieving only the "physical object" senses

of words.

In comparison with existing approaches to web-based dataset construction, our

method is the only one that can automatically deal with polysemous words. Re-

ranking with a category-independent text classifier and then with an image classifier

trained on the top-ranked results proposed by Schroff et al. [Schroff et al., 2007] fails

to deal with polysemous words, since their top-ranked results would likely include

several senses. However, theirs is a category-independent text classifier and does

not learn which words are predictive of a specific category. Another unsupervised

approach by Fergus et al. [Fergus et al., 2005] also relies on the top-ranked images



obtained by translating queries to several different languages to select the foreground

sense.

Similar to our model, many approaches to dataset construction utilize latent topic

models. Berg et. al.[Berg and Forsyth, 2006] discover topics using Latent Dirichlet

Allocation (LDA) [Blei et al., 2003] in the text domain. However, their method re-

quires manual intervention by the user to sort the clusters found by LDA into positive

and negative for each category. Also, the clusters are learned unimodally, i.e. on words

alone, rather than on both words and images.

In multimodal HCI applications, the problem of deixis has inspired research on

using images, gesture and speech to resolve references to objects in virtual real-

ity games [Kaiser et al., 2003], to teach a robot about objects in the environment

[Haasch et al., 2005], and to learn the meanings of words [Roy et al., 2002]. In Chap-

ter 7, we propose a method that uses both speech and gesture classifiers to resolve

object references. In contrast to the virtual reality systems, our method targets

the user's real-world environment, where the object identity is unknown. Speech-

based object recognition in such environments is explored in the BIRON project

[Haasch et al., 2005], however the system does not use pre-existing visual models to

determine the object category, but rather assumes that the dialogue component has

provided it with the correctly recognized words. Also, the object recognition compo-

nent is very simple, as this work focuses more on a human-robot interaction (HRI)

model for object learning than on object recognition. The focus of Roy and co-authors

is on language learning and understanding, whereas our interest is in improving visual

recognition. Specifically, we are interested in a realistic object categorization task,

and on disambiguating among many arbitrary categories using prior visual models.



Data

This chapter describes the datasets used for evaluation in this thesis. In Chapters 4,

5 and 6, we evaluate image retrieval and classification on several image/text datasets

collected by querying an internet search engine for a keyword. These are described

in Section 3.1 below. In Chapter 7, we evaluate multimodal object classification on

images from a standard object recognition dataset (CaltechlOl [Fei-Fei et al., 2007]),

paired with speech utterances. This dataset is described in Section 3.2. For an

overview of existing image-only benchmark data used in the object recognition liter-

ature see Chapter 2.1.2.



3.1 Web Image and Text Datasets

The main goals of this work are 1) to create a method that can automatically ( onstruct

visual models of arbitrary objects using unlabeled results of internet search engines,

2) to build sense-specific models for polysemous words, and 3) to explore the use of

image and speech for multimodal object resolution. In order to evaluate the proposed

methods on the first two of the above tasks, we need a dataset of images labeled with

sense-disambiguated labels. In addition, to evaluate the web image/text retrieval

method, we need a sense-labeled dataset of web image search results.

At the time of this writing, several labeled image datasets are available to re-

searchers for this purpose. However, very few of them contain either categories corre-

sponding to polysemous words with sense-disambiguated labels, or image/html data

harvested from the web. ImageNet [Deng et al., 2009] (see Chapter 2.1.2) contains

sense-disambiguated labels for a large number of concepts, which makes it a good

dataset for evaluating our unsupervised method for creating sense-specific classifiers.

Unfortunately, ImageNet was released after the experimental portion of this disserta-

tion was completed, therefore testing on that particular dataset remains a direction

for future work.

Several of the authors dealing with retrieval of clean images from web search re-

sults have collected and annotated datasets of such results and made them available

for research. Fergus et al. [Fergus et al., 2005] published a dataset of images down-

loaded from the web for the keywords 'airplane', 'cars rear', 'face', 'guitar', 'leopard',

'motorbike' and 'wristwatch'. However, this dataset included neither multiple sense

labels nor the originating page sources. Similarly, the authors of "Animals on the

Web" [Berg and Forsyth, 2006] have made available a dataset for several animal cat-

egories that only includes the images and single-sense labels.

On the other hand, the UIUC-ISD dataset released by Loeff et al. [Loeff et al., 2006]

contains both the originating page source and the images. It contains polysemous

words and human-generated image labels for multiple senses of each word. We use

the UIUC-ISD dataset to evaluate sense-specific image retrieval in Chapter 5 and



concrete sense retrieval iii Chapter 6. In addition, we collected two datasets that

are similar to UIUC-ISD. one containing five polysemous words (MIT-ISD), and one

containing ten words describing common office objects (MIT-OFFICE). All three

datasets were collected automatically by issuing queries to the Yahoo Image Search

engine and downloading the returned images and corresponding HTML web pages.

We will now describe each of the datasets in more detail.

3.1.1 UIUC-ISD

The UIUC Image Sense Disambiguation (UIUC-ISD) dataset was collected at UIUC

by Loeff et al. [Loeff et al., 2006] for the purpose of evaluating image sense disam-

biguation on images collected via query search. 1 Three basic query terms were used:

BASS, CRANE and SQUASH. The WordNet definitions of these words are shown in

Appendix A, Table A.1.

Internet search engines typically limit the total number of returned results per

query; in the case of Yahoo, the limit is 1000 images. In our experience, after dead

links and corrupted images have been eliminated from the raw results, an average of

700-800 valid image/html pairs can be obtained from one query. To increase corpus

size, the authors of UIUC-ISD used supplemental query terms for each word. The

search terms selected were those related to each concrete sense of each query (e.g.

for CRANE-4, they used "construction cranes", "whooping crane", etc.) Note that

these search terms required a human to propose relevant phrases for each word sense.

While this would no doubt increase the precision of the corpus, we are interested in

methods that do not require any human intervention beyond specifying the word or,

at most, the WordNet synset. We therefore exclude the results of manually-generated

queries from our experiments.

The images in UIUC-ISD were labeled by human annotators, with several senses

labeled for each word. Although the authors made no mention of consulting any dic-

tionary definitions, the annotated senses were common visual meanings of the words

1The UIUC-ISD dataset and its complete description can be obtained at
http://visionpc.cs.uiuc.edu/isd/index.html



and coincided with the following WordNet synsets: BASS-7 (musical instrument),

BASS-8 (fish), CRANE-4 (lift), CRANE-5 (bird), SQUASH-1 (plant), SQUASH-2

(vegetable) and SQUASH-3 (game). The annotators used four different labels for

each sense: core, related, unrelated and people. Examples of each label are shown

in Figure 3-1(a). The related label was used when the image seemed related to the

core sense of the query but did not depict a core-sense object (e.g. an image of a

squash blossom returned for the query "squash vegetable"). The people label was

used for unrelated images depicting faces or a crowd, which occur frequently due to

the people-centric way in which users tend to take pictures. In all of the experiments

we merge unrelated and people labels into a single unrelated category.

(a) core (b) related

(c) unrelated

Figure 3-1: Labeling of BASS-8 (fish) sense in the UIUC-ISD dataset.

3.1.2 MIT-ISD

While very similar to the UIUC-ISD dataset, the MIT Image Sense Disambiguation

(MIT-ISD) dataset was collected independently of that effort and differs in several re-

spects. The query terms used were: BASS, FACE, MOUSE, SPEAKER and WATCH.

Each of the words has anywhere from 4 to 13 senses in WordNet, shown in Appendix



A, Table A.1. The images were labeled by a human annotator with one or more coin-

crete WordNet synsets for each word. The annotated synsets were: BASS-7 (musical

instrument), BASS-8 (fish), FACE-1 (human face), MOUSE-1 (rodent), MOUSE-4

(device), SPEAKER-2 (loudspeaker) and WATCH-1 (timepiece). The annotator was

familiar with the dictionary definitions of the senses. Only the full-resolution im-

age and none of the corresponding webpage text was shown to the annotator. The

annotation interface made it possible to review and change labels.

For this dataset, each concrete sense was labeled as either core, related, or

unrelated. The core label was used to indicate that the core sense is present in

the image, takes up a significant portion of the center of the image, and is easily

recognizable by a human. Images where the core-sense object is relatively small or

significantly occluded were labeled as related. Examples of each label are shown in

Figure 3-1.

3.1.3 MIT-OFFICE

One of the main motivations behind this work is to enable interactive systems to

recognize a wide variety of common objects. For example, one application is an

assistant robot that can recognize objects typically found in a home or office. To

evaluate the ability of our method to construct training datasets for such objects,

we collected the MIT-OFFICE dataset. Ten common office object names were used

as queries to the search engine: CELLPHONE, FORK, HAMMER, KEYBOARD,

MUG, PLIERS, SCISSORS, STAPLER, TELEPHONE, WATCH. In Appendix A,

Table A.1, we show the definitions of these words found in WordNet.

The OFFICE dataset was labeled by human annotators as before, however, there

was only one core sense labeled per query. For example, for KEYBOARD, only the

KEYBOARD-1 sense (device consisting of a set of keys) was labeled as the core

category, although the KEYBOARD-2 sense (a key holder) can also be considered

a concrete visual sense. The senses used in labeling were selected to represent the

single most common "office object" meaning of each word. Images where the object

was prominent and easily recognizable was labeled core. Images where the object was



too small, occluded, or where related items were depicted were labeled unrelated.

3.2 Speech and Image Dataset

As mentioned at the start of this chapter, one of the goals of this work is to explore

the combination of images and speech for object reference resolution in an interactive

system, such as an assistant robot. We are particularly interested in whether or not

incorporating image features would benefit speech-based recognition of object names.

There are many important questions in designing such a system, including how to

extract the part of user's speech containing object references, and how to find image

frames that contain the object the user is referring to. However, in these initial

explorations, we are mostly interested in the effect of combining the two modalities

on classification performance. so we assume that the object name has been extracted

from speech and the image frame has been provided.

To evaluate our method, we seek a dataset of images of object paired with spoken

utterances describing those objects. In particular, we would like to use realistic

images, as well as recordings of real users describing the objects depicted in those

images. Since we are not aware of any publicly available databases that contain images

paired with spoken descriptions, we collected our own. In particular, we augmented

a subset of an existing image-only database with speech by asking subjects to view

each image and to speak the name of the object category it belongs to. Using this

data, we evaluate our fusion method in Chapter 7.

3.2.1 Image Dataset

As mentioned in Chapter 2.1.2, most publicly available image databases suitable for

category-level recognition contain very few object categories. We chose to use the

CaltechlOl database, because it contains a relatively large variety of categories, and

because it is a standard benchmark in the object recognition field on which several

methods have demonstrated a high level of performance. The latter consideration

is an important one: while objects such as those in the MIT-OFFICE dataset are



preferable, current object recognition methods do not necessarily work well on those

categories, as they have been optimized to perform well on standard benchmarks such

as cars, faces and Catechl01.

As implied by the name, the database has a total of 101 categories, with an average

of 50 images per category. Although the categories are challenging for current object

recognition methods, the task is made somewhat easier by the fact that most images

have little or no background clutter, and the objects tend to be centered in the image

and in a stereotypical pose. Sample images from each of the 101 categories are shown

in Figure 3-2.

3.2.2 Speech Collection

We augmented a subset of the images in Caltechl01 with spoken utterances recorded

in our lab, producing a set of image-utterance pairs. To limit the vocabulary to 101

names, users were prompted with the exact name of each object. We chose the set of

names based on the names provided with the image database, changing a few of the

names to more common words. For example, instead of "gerenuk", we used the word

"gazelle", and so on. The exact set of names is shown as captions in Figure 3-2.

A total of six subjects participated in the data collection, four male and two female,

all native speakers of American English. Each subject was presented with two images

from each category in the image test set, and asked to say the exact object name for

each image. Thus, across all six speakers, there were 12 image-utterance pairs for

each category, for a total of 1212 image-utterance pairs in the dataset. The reader

might question the necessity of showing the image to the subjects, in addition to

prompting them with the object's name. One reason for this is that some names are

homonyms (e.g., here "bass" refers to the fish, not the musical instrument). Another

reason is to make the experience resemble the real scenario of teaching a robot about

objects.

The recording process took place in a quiet office, on a laptop computer, using

its built-in microphone. The resulting audio was very clean, with a high signal-to-

noise ratio. To simulate more realistic home environments, we added "cocktail party"



noise to the original waveforms, using increasingly lower signal-to-noise ratios (SNRs):

10db, 4db, Odb, and -4db.
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Figure 3-2: Sample images from the Caltech-101 database. The category name used

in our experiments is shown at the top of each image.
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Semi-Supervised Image Sense

Disambiguation

In this chapter, we develop a semi-supervised method for disambiguating the sense of

an image returned by web keyword search. In contrast to previous work, our method

learns sense-specific topics in both the image features and the context information

contained in the words surrounding the image link. Learning is done largely on un-

labeled data, with a few labeled examples provided by the user. We propose and

evaluate two strategies for combining the text and image features. The evaluation is

focused specifically on polysemous nouns, i.e. nouns with multiple dictionary mean-

ings. We compare our multimodal text- and image-based topic learning approach to

unimodal baselines. We also explore the effects of learning a distribution over the

hidden topics rather than choosing a single best-fitting topic.



4.1 Introduction

The problem of image sense disambiguation (ISD) is the problem of categorizing

an image indexed by a word, e.g. "mouse", to reflect the specific sense of that

word depicted in the image, e.g. "computer mouse". Although the indexing is often

assumed to be performed by an internet search engine, the problem applies more

generally to any corpus of text illustrated by images. However, the unstructured

nature of web pages makes ISD more difficult. There are several applications of ISD.

One is in re-organizing the results of text-query image search by sense for better

display to the user. Another application is in the exploitation of the large number

of images available through image search engines to aid in the construction of object

category models.

The ISD problem occurs because the precision of the images returned from web

text-query search is often poor [Collins et al., 2008]. This is not surprising, given

that web search engines rely mostly on simple text cues, such as the presence of the

query word in the filename of the image, and not on image content [Cai et al., 2004].

The query word is not always a reliable cue, since words can have variable meaning

depending on the context. The ambiguity is even higher for polysemous words, i.e.

words with multiple dictionary meanings. For example, the first page of results re-

turned by an image search engine for the query "mouse" might contain multiple senses

of the word, such as: "computer mouse", "four-legged mouse", "Mickey Mouse".

Existing solutions to the ISD problem include iterative co-training [Feng et al., 2004],

image-only bootstrapping from labeled data [Li et al., 2007] , clustering the unla-

beled images into coherent components [Loeff et al., 2006, Fergus et al., 2005], and

iterative re-ranking [Schroff et al., 2007]. These approaches vary in the amount and

quality of supervision required from the user. Iterative co-training and bootstrap-

ping methods require the presence of a seed labeled dataset in order to train the

initial classifiers. In the case when such a dataset is not available, several methods

use the top-ranked results returned by the text-query search as positive examples

([Fergus et al., 2005, Schroff et al., 2007]). However, this approach fails in the case
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Figure 4-1: Two images and corresponding text contexts returned for the query
MOUSE.

of polysemous words, for which the top-ranked results are likely to include several

senses.

The semi-supervised paradigm of extracting coherent clusters from the noisy

search results ([Fergus et al., 2005, Berg and Forsyth, 2006]) has the desirable prop-

erty that it takes advantage of the large number of unlabeled data and thus re-

quires fewer labeled examples. A small amount of validation data is used to select

the cluster that aligns the best with the positive class. For example, Berg et al.

[Berg and Forsyth, 2006] discover topics using LDA [Blei et al., 2003] in the text do-

main, and then use them to cluster the images. However, their method requires

manual intervention by the user to sort the clusters into positive and negative for

each category. Also, the clusters are learned unimodally, on words alone, rather than

on both words and images.

Fergus et al. [Fergus et al., 20051 also perform topic clustering, but they do it

based on just the image features, ignoring the text contained in the corresponding

web pages. The limitation of learning distances in a single space is that often the rep-

resentation in that space is insufficient to distinguish semantically different examples.

For example, an image of a white bird in a blue sky cannot be distinguished from a

similarly-colored image of an airplane using color histogram features. Furthermore,

because the models learn only clusters similar to the labeled data, generalization to

different types of objects in the same class is restricted. For example, if the labeled



images do not include computer mice shaped like a UFO (see Figure 4-1), the model

may reject them as being too dissimilar from the training set.

Both of these problems can be mitigated by incorporating multiple complementary

modalities into the learning process. In this chapter, we extend the semi-supervised

learning approach of Fergus et al. [Fergus et al., 2005] to use both text and image

features to learn same-sense clusters from unlabeled data. The advantages of our

multimodal scheme over text-only and image-only clustering are 1) better robustness

and 2) better generalization. Better robustness comes from the fact that, when the

two types of features are conditionally independent, the classifiers' errors tend to be

uncorrelated, and they are able to correct each other's mistakes. Better generalization

comes from not restricting the classifier to instances that are only visually similar to

the labeled set. In the example above, our method can take advantage of the text

context of a UFO mouse being similar to text in the labeled data, even if the image

is not.

This chapter is organized as follows: Section 4.2 presents an image sense dis-

ambiguation method that is based on learning hidden topics in a corpus of images

and associated text. Implementation details of image and text processing are given

in Section 4.3. Experiments on a dataset collected using polysemous nouns as web

queries are presented in Section 4.4. Section 4.4.1 gives a qualitative evaluation of the

learned topics, and Section 4.4.2 shows that combining text and image information

can result in improved performance over using either modality alone. We conclude

the chapter with a discussion of the results in Section 4.5.

4.2 Approach

The textual context information typically available in web search scenarios consists

of HTML source code with the image link embedded in it. We use the term text

context to refer to the 100 or so words surrounding the image link in the code, as

well as text in the relevant tags, such as the ALT tag. The text context potentially

contains useful information about the particular meaning of the word: For example, a



web page selling watches might surround watch images with text describing the dial,

strap, brand, and so forth, whereas another web page posting an image with "tornado

watch" in the filename might contain weather-related words. Such text, however, can

be highly unconstrained and noisy (see example in Figure 4-1). One of the goals of

this chapter is to evaluate how useful such noisy text is for classifying the visual sense

depicted in the image.

We follow the approach of treating both images and text contexts as unordered

discrete observations, or "bags of words". In the case of images, the "words" are

local patch descriptors quantized into visual words using a codebook. From now on,

unless specified otherwise, we will use the terms "document" and "words" to refer

interchangeably to text contexts and words, and to images and visual words.

The main idea behind our approach is to extract cohesive components from the

unlabeled image/text data that correspond to different meanings, or senses, of the

query word. This approach was proposed by Fergus et al. [Fergus et al., 2005] for

learning visual components. Here we also use the text context to guide the formation

of components, and explore different ways of combining modalities. There are two

classic approaches to modality fusion: late fusion (i.e. combination at the classifier

level) and early fusion (i.e. concatenation of features). We explore both approaches

within the framework of a latent Dirichlet allocation (LDA) model (see Chapter 2.2.2).

First, we describe the early-fusion model.

4.2.1 Early-Fusion Model

We construct an early-fusion multimodal LDA model in a straightforward manner:

we treat visual and text words identically and allow a topic to represent distributions

over both types of words. The intuition is that, similarly to how unimodal LDA

discovers clusters of words that frequently co-occur in documents, multimodal LDA

may discover that certain visual words tend to co-occur with certain text words. The

graphical model is shown in Figure 4-2(a). It is identical to unimodal LDA, except

that, if IVI is the size of the visual vocabulary and ITI of the text vocabulary, the

word variable w takes values w E {1,..., IVI + ITI}. Also, the total number of word



(a) Early

Figure 4-2: Graphical models of (a) early-fusion LDA and (b) late-fusion LDA. The
superscripts in (b) refer to the modality: (v)isual, (t)ext.

observations in document d is Md + Nd, where Md is the number of visual words in

the image, and Nd is the number of words in the text context. Once the features have

been combined in this way, inference proceeds as in regular LDA.

The advantage of this model is that it is straightforward to implement and can

potentially capture correlations between visual and textual manifestations of senses.

The disadvantage is that, as with most early-fusion approaches, the increase in the

dimensionality of the data means that more data may be required to properly train the

model. Also, as it is described above, the model does not account for the possibility

of mismatched amounts of visual and text words. In fact, as we will show in Section

4.4.2, when words in one modality greatly outnumber words in the other modality,

the latter do not have as much influence on the formation of topics.

4.2.2 Late-Fusion Model

Our late-fusion LDA method works by fitting a separate LDA model in each modality,

independently of each other. Figure 4-2(b) shows the corresponding graphical model.

The idea is to delay the interaction of the visual and text topics until the time of

classification, when the category label is inferred based on the multimodal image-text

pair. The label is inferred using late fusion of two classifers: the classifier based on

text topics and the classifier based on image topics. This amounts to assuming that

(b) Late



the distributions of image and text words are conditionally independent of each other,

given the category label, which is a reasonable assumption in our case. There are two

advantages to this model: 1) it does not suffer from the unbalanced word numbers in

the two views like the early-fusion model does, and 2) it allows the modalities to be

weighted differently during classification.

4.2.3 Classification Algorithm

The input to the algorithm consists of image and web page pairs retrieved by text-

query image search. The data is split into a large number of unlabeled pairs and a

small validation set. The user is asked to label each image in the validation set as

either positive (depicting the correct sense) or negative. The output is a categorical

label y { -1, +1} for each unlabeled pair.

First, a hidden topic model - either early-fusion LDA, or late-fusion LDA - is

learned on the unlabeled data. Then, following the approach of [Fergus et al., 2005],

we classify the validation set with each of the resulting K topics. For a given topic j,

a document d is classified as positive if the probability of the topic, P(z = jld) = O0

(estimated using Eq. (2.4)), exceeds a certain threshold. Varying this threshold

allows one to compute a recall-precision curve over the validation dataset. Finally, a

single topic is chosen that has the best performance (in terms of the area under the

recall-precision curve). The other topics are assumed to represent the negative class

(background).

In the case of the text-only, image-only, and early-fusion models, a single best

topic j is chosen to represent the positive sense. In the case of the late-fusion model,

an image topic j and a text topic k are chosen independently. The probabilities of

the two topics are combined as follows:

P(y = +1ld, j, k ) _ A P(z v = jld) + (1 - A) P(zt = kid )  (4.1)

where y E {-1, +1} is the category label, d is the document consisting of the

text/image pair, and A E [0, 1] is a weight that controls how much each modality



contributes to the final decision. The weight can be set by cross-validation or fixed.

While LDA has been shown to discover coherent topics in text documents (e.g.

politics, science, etc.), the assumption that a single visual-word topic will capture the

positive class is rarely justified in practice, except for very simple cases

[Larlus and Jurie, 2009]. This is because, unlike words in a language, which represent

whole concepts, visual words correspond to small texture patches and are not nearly

as descriptive. Therefore, our use of a single topic to embody the inlier sense may be

too restrictive. To explore and alternative, we also propose a multi-topic classifier.

The hidden topics are discovered as before, but, instead of committing to one topic,

we learn a Dirichlet distribution over the topic proportions 0 given the positive class:

P(Oly = +1) = Dir(Ola, y = +1), (4.2)

The probability of the inlier sense given a document is then

P(y = +ld) - P(y = +l0d) cK P(Ody = +1)P(y = +1). (4.3)

A similar distribution is learned for the negative class. A sample with topic distribu-

tion Od is labeled as positive if the following decision rule holds true

P(Od1y = +1)log( POdY=+1)) > 0. (4.4)
P(OdY -1

and negative otherwise. For the late-fusion multi-topic classifier, the decision values

of the text and image models are combined in a similar manner to the single-topic

case.

4.3 Features

This section describes the processing of the dataset required to extract image and text

words. The following processing steps were applied to the raw dataset: Image/HTML

pairs that contained unreachable URLs and/or corrupted images were removed from



the dataset. Furthermore. pairs for which the algorithm failed to extract a text

context were removed. This mostly happened when the link to the image could not

be located in the HTML document, such as when the original webpage was changed

or removed.

Text Bag-of-Words. To extract text context words for each image, the image

link was located automatically in the corresponding HTML page. All HTML tags

were removed, and the remaining text was tokenized. A standard stop-word list of

common English words was applied (adding a few domain-specific words like "jpg"),

followed by a Porter stemmer [Porter, 1988] to extract word stems (e.g. "us" from

"use"). Word stems that appeared only once and the actual query word stem were

pruned. Finally, all word tokens in a 100-token window surrounding the location of

the image link were extracted. The resulting vocabulary size (per query word) ranged

between 3500 and 4500 words. Each text context was represented as a histogram of

counts for each word in the vocabulary.

Image Descriptors. All images were resized to 300 pixels in width and converted

to grayscale. Two types of local feature points were detected in the image: edge fea-

tures [Fergus et al., 2005] and scale-invariant salient points. In our experiments, we

found that using both types of feature points boosted classification performance rel-

ative to using just one type. To detect edge features, we first performed Canny edge

detection, and then sampled a fixed number of points along the edges from a distri-

bution proportional to edge strength. The scales of the local regions around points

were sampled uniformly from the range of 10-50 pixels. To detect scale-invariant

salient points, we used the Harris-Laplace [Mikolajczyk and Schmid, 2004] detector

with the lowest strength threshold set to 10. Altogether, 400 edge points and ap-

proximately the same number of Harris-Laplace points were detected per image. A

128-dimensional SIFT descriptor was used to describe the patch surrounding each

interest point.

Image Bag-of-Words. After extracting a set of interest point descriptors for

each image, vector quantization into visual words was performed. A codebook of

size 800 was constructed by k-means clustering on a randomly chosen subset of the



Table 4.1: The 10 most-likely words in LDA topics learned for IOUSE.

1 2 3 4 5 6 7 8

watch page pad mice home mouse gif optical

mickey custom mouse like cat frame index usb

click products item new pictures thumbnail size wireless

disney animals product posted site pet gallery use

contact order great web new user descrip- logitech
tion

band home quality news make add directory keyboard

price tcp resolution carlpc picture img modified design

photos world gift store copyright advertise la laser

inform- access- note posts search jmk di creative

ation ories
samuel october personal- pm photo simian photo hand

ized

database (300 images per (

resulting visual words. To

centers (codewords) of the

query). All

be precise,

images were converted to histograms over the

the "visual words" correspond to the cluster

codebook. Note that no spatial or color information was

included in the image representation in these experiments.

4.4 Experiments

In this section, we outline the experimental setup and results of image sense disam-

biguation. The dataset used for evaluation in this chapter is the MIT-ISD dataset

described in Chapter 3.1.2. In all of the following experiments, Gibbs sampling was

carried out using the Matlab Topic Modeling Toolbox [Steyvers and Griffiths, ].

4.4.1 Qualitative Analysis of Learned Topics

Having learned the hidden topics in an unsupervised fashion, one might ask: how

meaningful are they? Do the text words align with our intuitive understanding of

different meanings of each query word? An example of the text topics learned using

late-fusion LDA with K = 8 for the query MOUSE is shown in Table 4.1. Each

column shows the top ten most likely words in the distribution for one topic. Upon



analysis of the topics, they do seem to correspond to the common meanings of the

query words that can be used to describe images. For MOUSE, topic 8 has words like

"optical", "usb", etc., suggestive of computer devices. Other learned topics seem to

do with Mickey Mouse watches, cat and mouse, and some more general background

topics.

For the other query words in the MIT-ISD dataset, the topics (not shown here)

also tend to align with different senses of the word. For BASS, the topics seem to

have to do with either fishing or guitars. For FACE, the different meanings are not

as clear, but some words in topics are suggestive of possible meanings: "rock face",

"funny face", "smiley face". Some of the topics align not with word meanings, but

rather background topics that have to do with types of web pages on which one

might find images. For example, there seem to be blog topics (with words "blog",

"comment", "post"), e-commerce topics ("price", "usd"), and image gallery topics

("home", "gallery" ).

We also examine the learned visual topics. Figure 4-3 visualizes the topics learned

on the image data of the MOUSE and WATCH query words. The other queries'

results are similar. Each row shows the 10 most likely visual word examples for one

topic, in order of decreasing likelihood from left to right. The visual word examples

were picked at random from the dataset: For each visual word (codeword), a random

image was chosen that contains a patch assigned to that visual word, and this patch

was shown in the figure. One must keep in mind that different-looking patches can be

assigned to the same word. In general, it is more difficult to analyze the visual topics,

as the patches do not have an easily deduced meaning. However, one observation we

can make is that some of the mouse topics prefer simple edges, suggesting computer

mice on white backgrounds, while others prefer more natural textures, suggesting

animals in outdoor scenes, fur, etc. For WATCH, the third topic from the top seems

to be picking out rounded parts of the watch face.



(a) MOUSE (b) WATCH

Figure 4-3: Each row shows the ten most likely visual words for one topic.

Late vs. Image Late vs. Text Early vs. Image Early vs. Text

Figure 4-4: Early vs. Late fusion: Average difference in area under the RPC

between each fused model and text- and image-only models is shown.

4.4.2 Image Sense Disambiguation

In this section, we evaluate the proposed multimodal sense classifiers and compare

them to baselines that use text or image features alone. The following issues are

investigated: 1) whether combining modalities using either early or late fusion LDA

benefits classification, 2) whether multi-topic classification is better than single-topic

classification, and 3) the effect of fixed model parameters A and K on performance.

Evaluation metric. The evaluation task is to classify the unlabeled image/text

pairs as either depicting the core sense or not. Classification of a single core sense

was evaluated for each keyword: BASS-8 (fish), FACE-13 (human face), MOUSE-

4 (rodent), SPEAKER-2 (loudspeaker), WATCH-1 (timepiece). As mentioned in



Bass Face Mouse Speaker Watch

Figure 4-5: Results for each keyword: Area under the RPC is shown for several
methods ("ours" means the late-fusion model).

Chapter 3.1.2, each sense in MIT-ISD was labeled as core, related, or unrelated. In

the following experiments, only core labels are mapped to positive labels, and related

and unrelated are grouped into the negative class. To quantitatively compare models,

we conduct a ten-fold classification experiment by randomly splitting the data into

a 20-pair validation set and an unlabeled test set. The labels are held out when

training the LDA models on the unlabeled data, and only used to compute recall

and precision. The unlabeled data are assigned labels by thresholding P(y = +1ld).

Precision (the number of true positives divided by the total number of samples labeled

as positive) and recall (the number of true positives divided by the total number of

positive samples) are computed at each threshold. The area under the resulting recall-

precision graph, which corresponds to average precision (the higher, the better), is

used as the evaluation metric.

Early vs. Late LDA. Figure 4-4 shows the relative improvement obtained by the

early- and late-fusion classifiers over the baseline text-only and image-only classifiers.

The plot shows the absolute difference in area under the recall-precision curve (RPC),

averaged over trials and over the five words in MIT-ISD. While the late-fusion method

obtains a significant improvement over both baselines, the early-fusion method does



(a) BASS-8

(b) MOUSE-4

Figure 4-6: Images top-ranked by Yahoo (first row), the image-only method (second
row), the text-only method (third row) and the late-fusion method (fourth row).

not. The failure of the early-fusion model may be caused by the fact that it does not

properly normalize for the disparity in the number of words across modalities (there

are more than eight times the number of visual words than there are text words in

each pair). Since visual words have more influence in the model, its performance is

essentially limited by the image-only baseline. In the rest of the experiments, we only

consider the late-fusion model.

Multimodal vs. Unimodal. Figure 4-5 shows the actual areas under the RPC

for our method (late-fusion classifier) and several baselines. For each keyword, the

average area is reported with the error bars showing standard deviation. Our model

consistently improves upon the original Yahoo recall-precision curve, which means it

is able to achieve a higher precision of the true sense, based on the input features. The

text-only and image-only models generally improve on the original Yahoo precision,



except for the case of the FACE query, where the target sense cannot be distinguished

based on either the image or the text context. Our multimodal approach tends to

achieve either the best of the text-only or image-only performances, or improve on

both. Overall, it is better than using either modality alone.

Re-ranking Example. Figure 4-6 illustrates the benefit we get from text and

image data fusion. Each row corresponds to a particular method's re-ranking of

unlabeled images, for queries BASS and MOUSE. The positive categories are core

senses BASS-8 (fish) and the MOUSE-4 (computer device). Images whose ground

truth labels are negative are outlined in red. For each query, the top row shows the

original top ten Yahoo images. The next three rows show the ten most likely images

for the positive class: The second row shows images for the best image-only topic,

the third row for the best text-only topic, and the fourth row for the combination of

the best text and image topics using late fusion. The original Yahoo results contain

images of mixed meanings of each word (music and fishing, device and animal). The

image topic tends to cluster images with similar features together, but makes mistakes

(e.g. cooked fish). The text-only classifier does well at selecting a single meaning of

the word, but the images are not always representative of the visual object (e.g.

people fishing, boats). On the other hand, when combined in the late-fusion model,

the topics tend to correct each others mistakes.

Single- vs. multi-topic model. We also compare a classifier that picks a single

best topic to one that learns a distribution over topic proportions to represent the

positive class. Figure 4-7 shows the area under RPC for both types of classifier,

using the late-fusion model. For three out of five queries, the multi-topic model out-

performs the single-topic approach; for the other two queries it performs comparably.

Parameter Selection. In the above experiments, the number of topics was set

to K = 8, and the text model weight to A = 0.5. Picking the K that gives the best

results on the small validation set is not a good idea, since this tends to favor large

K and over fit. Fergus, et. al. [Fergus et al., 2005] found that K = 8 worked well,

and that for K greater than about 10 the validation set was less able to predict a

good topic. Figure 4-8 shows a similar finding for our late-fusion model. The dashed



Area under RPC

Figure 4-7: Single- vs. multi-topic model: Average area under RPC is shown.

curve shows the performance of the classifier using the best topics chosen on the

test data, averaged over categories. The solid line shows the best validation topics'

performance, which peaks around K = 8 and starts to diverge from the that of test

set-picked topic for K > 8. Figure 4-9 shows the effect of varying A, evaluated on the

test set. We see that, on average across categories, the fused classifier improves upon

unimodal classifiers (A = 0 and A = 1) in the range between 0.2 and 0.9; the value

of 0.5, which assumes that text and image features are equally important, is in that

range.

4.5 Discussion

In this chapter, we have argued that a multimodal approach to category learning from

web image search engines is advantageous because it leads to increased robustness

and generalization. We proposed two LDA-based models of text context and image

data, one based on concatenation of features, and another based on combination of

classifier decisions. Both models learn a hidden topic space on the large available
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Figure 4-8: Varying K: As the number of topics K increases, performance (on test
data) of the best topic chosen on the validation set diverges from that of the best
topic chosen on the test data.

unlabeled dataset obtained by image search, and select the best topic or combination

of topics based on performance on a small number of hand-labeled examples. We have

compared the proposed multimodal methods to the original search engine retrieval

and to the unimodal (text- and image-only) baselines.

The evaluation has shown that classifiers based on text alone sometimes outper-

form image-based classifiers, however, neither is a clear winner across all categories

in our dataset. However, the late-fusion approach benefited from the redundancy of

the text and image features, allowing the unimodal clusters to correct each other's

mistakes and outperforming all baselines on average across categories. We also found

that our early-fusion LDA approach suffers from an imbalance in the number of text

and visual words, the latter outnumbering the former by a factor of eight or greater.

Our semi-supervised classifier is based on LDA, which has been shown to be ef-

fective at learning coherent and meaningful topics in both text and image domains.

However, in principle, other clustering methods could be used in our general frame-

work, as long as they are able to provide well-defined posterior probabilities of the

cluster given the data. A direction for future work is to attempt to address the afore-

mentioned normalization problem in the early-fusion model, and to explore other
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Figure 4-9: Varying lambda: effect of the text model weight on test set performance.

LDA-based models of text and image data for this problem, such as a modified version

of Corr-LDA [Blei and Jordan, 2003] that does not assume a correspondence between

each visual region and a text word. Another avenue for future work is a more princi-

pled approach to selecting the number of clusters, perhaps by using infinite mixture

models, such as the HDP [Teh et al., 2003].

In this chapter, we learn hidden topics using LDA directly on the words surround-

ing the images. However, while the resulting topics were often aligned along sense

boundaries, the approach suffers from over-fitting, due to the irregular quality and

low quantity of the data. Often, the text context is just a short text fragment, such

as "fishing with friends" for an image returned for the query "bass". The topics

learned on this data tend to over-fit, learning unusual words that are specific to web-

sites/webpages over-represented in the search results. In the next chapter, we propose

an alternative that alleviates this problem.

One major drawback to the methods outlined in this chapter is the requirement

of labeled examples to learn the inlier topics. This most likely means asking the user

to manually several label examples of the object he/she is looking for. In Chapter 7,

we propose a robust way of using speech to label objects in the interactive scenario.

However, many applications would benefit from a method that can learn visual models

in a way that does not require any supervision from the user. One of the benefits of



incorporating text-based models of image sense into our method is the possibility of

using text-based ontologies to reduce the amount of required supervision. In the next

chapter, we introduce a method that does just that, and apply it to the problems of

image sense disambiguation and object recognition.



5
A Dictionary Model of Image Sense

In this chapter, we continue to address the problems of automatic image sense disam-

biguation and automatic dataset construction. In contrast to the previous chapter,

we no longer require that the user manually label examples of the desired sense. In-

stead, we learn image sense models in an unsupervised way, using existing text-based

knowledge repositories of word senses to guide the learning process.

5.1 Introduction

In the previous chapter, we introduced a method that can be used to retrieve images

of a word's visual sense, if both the word and a few labeled examples of the desired

visual sense are available. However, manually labeled images are costly to obtain.

'Portions of this chapter were published in [Saenko and Darrell, 2008]



One example where image labels are difficult to obtain is the "home tour" scenario

(see Chapter 2). The robotic assistant may have access to a user's spoken description

of an object, but not necessarily to image examples to ground the word sense. In this

case, word sense disambiguation may still be possible based on the results of speech

recognition. For example, given the utterance "I am going to read a book, bring

me my glasses," the system may infer that "glasses" refers to "spectacles", and not

"drinking glasses", as indicated by the collocations "read" and "book".

The goal of this chapter is to develop an unsupervised approach to ISD, where

the only information required besides the word is the word sense. In addition to

the interactive scenario described above, where the word sense may be inferred from

language, such an approach can be applied more generally in any scenario where a

list of word senses is known. For example, one might cluster image search results by

dictionary sense, or build sense-specific visual models. Although word senses do not

always co-incide with physical objects, for now, we will assume that the desired sense

is indeed a visual one. In the next chapter, we will address the problem of identifying

non-visual senses automatically.

Existing unsupervised approaches to automatic dataset construction attempt to

filter out images unrelated to the desired object, but do not directly address poly-

semy. Often the search query is tailored by the researcher in an effort to narrow down

the category, e.g. "computer mouse", and polysemous words are generally avoided.

Most existing approaches rely on a labeled seed set of inlier-sense images to ini-

tialize bootstrapping or to select the right cluster [Li et al., 2007, Fergus et al., 2005,

Berg and Forsyth, 2006]. The unsupervised approach of Schroff et al. [Schroff et al., 2007]

bootstraps a classifier from the top-ranked images returned by a search engine, with

the assumption that they have higher precision for the desired object. However, for

polysemous words, the top-ranked results are likely to include several senses.

As shown in the previous chapter, the words surrounding web images indexed by a

polysemous keyword can be a rich source of information about the sense of that word.

But how can we learn a model of sense without any labeled images? One idea is to

use repositories of word sense knowledge, such as online dictionaries and ontologies,



Figure 5-1: WordNet entry for one sense of the word "mouse", including its hyponyms

and hypernyms.

to ground visual senses. In its most general form, a dictionary is a list of entries that

define the senses of each word in a language. An example entry for one of the senses

of the word "mouse" contained in the WordNet dictionary2 is shown in Table 5-1.

The WordNet ontology also contains lexical information such as example sentences,

synonyms, hyponyms and hypernyms. A potential method of learning sense models in

an unsupervised way would be to use this information as a word observations to seed

a probabilistic model of each sense, as it is defined by entries in the dictionary. This is

similar to the unsupervised WSD algorithm proposed by Yarowsky [Yarowsky, 1995].

In this chapter, we introduce such an unsupervised dictionary-based ISD method,

one that specifically takes word sense into account. The only input to the algorithm

is a list of words (such as all English nouns, for example) and their dictionary entries.

The proposed method is multimodal, in that it uses both web search images and the

text surrounding them in the document in which they are embedded. It learns a

model of the word sense using an electronic dictionary together with a large amount

of unlabeled text. The use of a dictionary is key because it frees us from needing a

labeled set of images to ground the sense. The model can retrieve images of a specific

sense from the mixed-sense image collection, and the re-ranked images can be used as

training data for an sense-specific object classifier. The resulting classifier can predict

not just the word that best describes a novel image, but also the correct meaning of

2See http://wordnetweb .princeton. edu/perl/webwn?s=mouse



that word.

The rest of the chapter is structured as follows: Section 5.2 describes the method,

Section 5.4 the features, and Section 5.5 experimental evaluation, which includes both

sense retrieval from web search results and classification of unseen images. Section

5.6 concludes the chapter.

5.2 Approach

Since this work is concerned with objects rather than actions, we restrict ourselves to

the noun senses of words. As in standard word sense disambiguation (WSD) methods,

we make a one-sense-per-document assumption [Yarowsky, 1995], and rely on words

co-occurring with the image in the HTML document to disambiguate that sense.

However, image links are not guaranteed to be surrounded by grammatical sentences,

which makes it difficult to extract structured features such as part-of-speech tags

and apply traditional WSD methods. We therefore once again take a bag-of-words

approach, using all available words near the image link to evaluate the probability of

the sense. This is accomplished by a latent topic model that predicts which words

are likely for the sense. The proposed method consists of three main steps:

1. discovering latent topics associated with a word,

2. learning a topic-based probabilistic model of dictionary senses, and

3. using the model to construct sense-specific image classifiers.

We will now describe each step of our method, which we refer to as Web Image Sense

DictiOnary Model, abbreviated WISDOM.

5.2.1 Latent Text Space

As mentioned above, our goal is to learn a probabilistic model of words that are

likely for a particular word sense. While dictionary entries contain examples of such

words, they are usually limited in size and can only provide coverage of a very small



portion of the input word space. A possible supervised approach is to learn on a

sense-disambiguated corpus, one that is used in traditional WSD, and apply the

learned model to web data. However, based on observation, image text contexts

are sufficiently different from such corpora, and a better approach might be to learn

on data obtained from the web. We can extend the limited coverage of dictionary

entries by leveraging the fact that, while sense-disambiguated examples of web text

are rare, unlabeled web text related to the word in question is abundant. Such text

can be obtained, for example, by extracting the word context of each occurrence of

the keyword in web pages returned by a search engine.

The first step of the WISDOM algorithm is thus to use a large collection of text

related to the word to learn coherent dimensions. The hope is that these dimensions

will fall along different senses or uses of the word. Several existing techniques could

be used to discover latent dimensions in documents consisting of bags-of-words. Here,

as in the previous chapter, we use latent Dirichlet allocation. In Chapter 2.2.2 we

gave a review of LDA; we now briefly review the notation for the convenience of the

reader.

Each document is modeled as a mixture of topics z E {1, ..., K}. A given collection

of M documents, each containing a bag of Nd words, is assumed to be generated by the

following process: First, we sample the parameters q of a multinomial distribution

over words from a Dirichlet prior with parameter 3 for each topic j = 1, ..., K. Then,

for each document d, we sample the parameters Od of a multinomial distribution

over topics from a Dirichlet prior with parameter ac. Finally, for each word token

i, we choose a topic zi from the multinomial Od, and then pick a word wi from the

multinomial z,.

In Chapter 4, we learned text topics on a corpus consisting of the words surround-

ing the images. Such text contexts are often short, sometimes consisting only of a text

fragment. The irregularity of text contexts is compounded by the ad-hoc structure of

web pages, with unrelated text often appearing close to the image file. Furthermore,

search engines limit the number of images they return for a query, typically to 1000

results, which further limits the amount of available data. While the resulting topics



were often aligned with senses, the approach suffered from over-fitting, due to the

irregular quality and low quantity of the data (see Chapter 4.5). As an example,

we refer back to Table 4.1, which showed sample topics learned from image contexts

returned for the query MOUSE. While some of the topics contain likely words that

are indicative of the "rodent" sense (e.g. "animal", "pet"), it is difficult to assign a

single topic that is clearly aligned with that sense. Compare this to topic 8, which is

is strongly suggestive of the "computer device" sense of MOUSE.

To allieviate the aforementioned overfitting problem, we create an additional un-

labeled dataset of text-only web pages. This is done by sending the basic keyword as

a query to a web search engine, such as Google or Yahoo. We then fit an LDA model

to the obtained dataset and use the resulting topic distributions to constructing a

model of the dictionary senses, as described in the next section.

5.2.2 A Text Model Based on WordNet

Table 5.1: WordNet semantic relations included in WISDOM.

Relation Definition Example Included?
synonym Y is a synonym of X if they bug is a synonym of germ /

have very similar meanings
hypernym Y is a hypernym of X if ev- canine is a hypernym of 1st-level

ery X is a (kind of) Y dog
hyponym Y is a hyponym of X if ev- dog is a hyponym of canine /

ery Y is a (kind of) X
coordinate Y is a coordinate term of X wolf is a coordinate term of
term if X and Y share a hyper- dog

nym
holonym Y is a holonym of X if X is building is a holonym of /

a part of Y window
meronym Y is a meronym of X if Y window is a meronym of v

is a part of X building

WISDOM uses the limited text available in dictionary entries to relate each sense

to latent topics formed as described abbve. Here, we will present a version that uses

the WordNet lexical database, although a different dictionary, thesaurus or ontology



can be used in its place. The advantage of WordNet is that it provides semantic

relations between words. Word senses are grouped into synsets, or sets of synonyms,

each of which represents a single concept. Examples of synsets are given in Appendix

A, Table A.1. Various relations link the concepts represented by synsets. In the case

of nouns, these are "part-whole" relationships and "is-a" relationships. Table 5.1

shows the noun relations that are used in WISDOM to access additional content for a

sense entry. We exclude hypernyms higher than the first level because they are very

general concepts. Coordinate terms are excluded because they contain entire classes

of concepts, such as all canines.

Given a query word with WordNet senses s E {1, 2, ...S}, the definition and se-

mantically related items are concatenated together to produce the sense entry. For

instance, for sense s = 1 of PLIERS, this entry consists of the synonyms "pair of

pliers, plyers", the definition "a gripping hand tool with two hinged arms and (usu-

ally) serrated jaws", the first-level hypernym "hand tool", the hyponyms "locking

pliers, needlenose pliers, pump-type pliers, rib joint pliers, slip-joint pliers", and the

meronym "jaw". We denote the bag-of-words extracted from an entry with the vari-

able es = {wl, w2, ..., WE.}, where Es is the total number of words in the entry. Next,

we outline two alternative formulations of generative models of image sense based on

such entries.

Mixture-of-Multinomials Model. The first model we propose is a generative

model of image contexts based on the mixture-of-multinomials model. Each text

context belongs to a single sense, which generates a topic, which in turn generates

the words. The assumption here is that the observed words are independent of the

sense given the underlying topic. A text context document d consisting of words

{wI, w2 , ... , WNd} is generated as follows:

1. pick a sense sd E 1, ..., S from a prior distribution P(s),

2. select a topic Zda 1, ..., K from P(ZISd), a multinomial distribution with pa-

rameter rlSd

3. for each word token i, choose a word wi from P(wlzd), a multinomial with



parameter zj.d

The probability of a document is

S K ND

P(wl, ... , WNd) = E E H P(w, z = j)P(z = jls = h)P(s = h) (5.1)
h=1 j=1 i=1

The graphical model is shown in Figure 5-2(a). Note that, in this paradigm, there is

a single topic per document. This is a limiting assumption for complex documents

such as entire webpages, but for the relatively short (100 or so words) text contexts,

it is not unrealistic. The parameter 7r of the distribution of topics for each sense is

fixed for the entire corpus.

LDA-Factor Model. The mixture-of-multinomials sense model is intuitive, but

suffers from a major drawback. It treats the topic proportions inside a document as

a fixed parameter and not as a random variable, as it is done in LDA. Without the

smoothing provided by the prior, overfitting can occur, especially since many text

contexts contain very few words. In an alternative approach, we compute the topic

proportions in the text context using LDA, with a Beta(a) prior on the multinomial

0 parameter. This model does not explicitly generate words, but rather treats docu-

ments d and their topic proportions Od as observed variables. Because it states that

the sense is independent of the observations conditioned on the latent topic, or factor,

we call this model the LDA-Factor model. For a web image with an associated text

document {wl, w2, ... , WND}, the probability of sense conditioned on that document

is given by
K

P(sld) = P(s z = j)P(z = j d). (5.2)
j=1

The above requires the distribution of latent topics in the text context, P(zld), and

the probability of the sense given the latent topic, P(slz). The former is given by the

Od variable computed by generalizing the LDA model trained on the text-only data to

the (unseen) text contexts. Note that, while the LDA model allows multiple topics to

be associated with one document, for the purposes of the sense model, a single topic

variable is associated with one document, as in the mixture-of-multinomials model.



(a) Mixture-of-Multinomials Sense (b) LDA-Factor Sense

Model Model

Figure 5-2: Graphical representations of the sense models.

Figure 5-2(b) displays the corresponding graphical model.

To obtain P(slz), we first compute the likelihood of s given latent topic z = j as

the average likelihood of words in the entry es, or

P(zIs) oC wiz), (5.3)
i=1

normalized so that it constitues a probability distribution over z. The average word

likelihood was found to be a good indicator of how relevant a topic is to a sense. The

total word likelihood could be used, but would mean that senses with longer entries

dominate. Using Bayes's rule, we obtain

P(zls)P(s) (5.4)
P(sz) = (5.4)

P(z)

The text-only model we have outlined defines the probability of a particular dic-

tionary sense given an image/text pair to be equal to P(sjd). Thus, the model is able

to assign sense probabilities to images returned from the search engine, which in turn

allows it to group the images according to sense.



5.2.3 Incorporating Image Features

The text-only LDA-Factor model computes P(sld), where d is the text context. Thus,

it does not take into account the image part of the image/text pair. Here, we extend

this model to include an image term, which, as we showed in Chapter 4, can poten-

tially provide complementary information. From this point on, we will refer to the

text observation as dt and the image observation as d4. We call the joint image and

text model WISDOM-2.

First, we estimate P(sld), or the probability of a sense given an image di . Similar

to the text-only case, we learn an LDA model consisting of latent topics v E {1, ..., L},

using the visual bag-of-words extracted from the unlabeled images in the dataset. The

estimated 0 variables give P(vld'). To compute the conditional probability of a sense

given a visual topic, we marginalize the joint P(s, v) across all document pairs {di, dt}

in the collection
k~ 1 P(sldt)P(vld)

P(sv) = Ek(5.5)
P(v)

Note that the above assumes conditional independence of the sense and the visual

topic given the observations. Intuitively, this provides us with an estimate of the

collocation of senses with visual topic.

We can now compute the probability of dictionary sense for a novel image d' as:

L

P(sld ) = P(slv = j)P(v = ild,) (5.6)
3=1

Finally, the joint text and image model is defined as the combination of the text-space

and image-space models via the sum rule,

P(sld', dt) = AP(sld) + (1 - A)P(sldt) (5.7)

Our assumption in using the sum rule is that the combination can be modelled as a

mixture of experts, where the features of one modality are independent of sense given

the other modality [Bilmes and Kirchhoff, 2000].



5.2.4 Classification of Novel Images

The last step in WISDOM uses the sense model learned in the first two steps to

generate training data for an image-based classifier. The choice of classifier is not

an essential part of the algorithm. We choose to use a discriminative classifier, in

particular, a support vector machine (SVM), because of its ability to generalize well

in high-dimentional spaces without requiring a lot of training data.

For each particular sense s, the model re-ranks the images according to the prob-

ability of that sense, and selects the N highest-ranked examples as positive training

data for the SVM. The negative training data is drawn from a "background" class,

which in our case is the union of all other objects that we are asked to classify. We

represent images as histograms of visual words, which are obtained by detecting local

interest points and vector-quantizing their descriptors using a fixed visual vocabulary.

We compare the WISDOM classifier with a simple baseline method that attempts

to refine the search by automatically generating search terms from the dictionary

entry, described in the next section.

5.3 Baseline

A human operator is often able to refine the search by using sense-specific queries, for

example, searching for "computer mouse" instead of "mouse". We explore a simple

method that does this automatically by generating sense-specific search terms from

entries in WordNet. Experimentally, we found that queries consisting of more than

two or three terms returned very few image results. Consequently, the terms are gen-

erated by appending the polysemous word to its synonyms and first-level hypernyms.

Multiple word occurrences are removed. For example, the sense MOUSE-4 has a

synonym "computer mouse" and a hypernym "electronic device", which produces the

query terms "mouse computer" and "mouse electronic device". An SVM classifier is

then trained on the returned images.

Because the terms method must rely on one- to three-word combinations, it can

be brittle. Many of the generated search terms are too unnatural and bookish to



retrieve any results (e.g. "percoid bass"). Some retrieve too many unrelated images,

such as the term "ticker" used as an alternative to "watch". WISDOM overcomes

these issues by learning a model of each sense from a large amount of text. Web text

is more natural, and is a closer match to the type of text surronding web images than

dictionary words are. This makes WISDOM more robust, as will be shown in the

experimental section.

5.4 Features

When extracting words from web pages, all HTML tags are removed, and the re-

maining text is tokenized. A standard stop-word list of common English words, plus

a few domain-specific words like "jpg", is applied, followed by a Porter stemmer

[Porter, 1988]. Words that appear only once and the actual word used as the query

are pruned. To extract text context words for an image, the image link is located

automatically in the corresponding HTML page. All word tokens in a 100-token win-

dow surrounding the location of the image link are extracted. The text vocabulary

size used for the sense model ranges between 12K-20K words for different keywords.

To extract image features, all images are resized to 300 pixels in width and con-

verted to grayscale. Two types of local feature points are detected in the image: edge

features [Fergus et al., 2005] and scale-invariant salient points. In our experiments,

we found that using both types of points boosts classficiation performance relative to

using just one type. To detect edge points, we first perform Canny edge detection,

and then sample a fixed number of points along the edges from a distribution pro-

portional to edge strength. The scales of the local regions around points are sampled

uniformly from the range of 10-50 pixels. To detect scale-invariant salient points,

we use the Harris-Laplace [Mikolajczyk and Schmid, 2004] detector with the lowest

strength threshold set to 10. Altogether, 400 edge points and approximately the

same number of Harris-Laplace points are detected per image. A 128-dimensional

SIFT descriptor is used to describe the patch surrounding each interest point. After

extracting a bag of interest point descriptors for each image, vector quantization is



performed. A codebook of size 800 is constructed by k-means clustering a randomly

chosen subset of the database (300 images per keyword), and all images are converted

to histograms over the resulting visual words. To be precise, the "visual words" are

the cluster centers (codewords) of the codebook. No spatial information is included

in the image representation, but rather it is treated as a bag-of-words.

5.5 Experiments

In this section, we evaluate WISDOM on the tasks of ISD and classification of novel

images, and compare it to the baseline terms method. The datasets used for evalua-

tion in this chapter are the MIT-ISD and UIUC-ISD datasets described in Chapter

3.1.2. In all of the following experiments, Gibbs sampling was carried out using the

Matlab Topic Modeling Toolbox [Steyvers and Griffiths, ], and the SVM was imple-

mented using the LIBSVM toolbox [Chang and Lin, 2001].

For the following experiments, we collected two additional sets of unlabeled train-

ing data. The first set of data is the images collected using the generated sense-specific

search terms to augment the MIT-ISD dataset (see Section 5.3.) This data was used

to train the baseline classifier. The second set of data was collected via regular

web search, using the original keywords, for both the MIT-ISD and the UIUC-ISD

datasets. Bag-of-words data were extracted from the web pages and used to train the

text component of WISDOM. Table 5.2 shows the size of the additional datasets for

MIT-ISD and the distribution of labels.

5.5.1 Qualitative analysis of text topics

First, we examine the learned text topics to gauge the benefit of using a separate

corpus of webpages vs. the text contexts of images. Table 5.3 shows the web topics

learned for the MOUSE query. When we compare them to the topics in Table 4.1

learned from text contexts, several differences emerge. The main difference is that

the web topics are more general than image context topics. Another observation is

that web topics seem to consitute better models of different senses of the word. For



Table 5.2: MIT-ISD additional data: sizes of the text-only, sense-term, and key-
word datasets, and distribution of ground truth sense labels in the keyword dataset.

size of datasets distribution of labels in the keyword dataset
text-only sense-term keyword positive (core) negative (related, unrelated)

Bass 984 357 678 146 532
Face 961 798 756 130 626

Mouse 987 726 768 198 570
Speaker 984 2270 660 235 425
Watch 936 2373 777 512 265

example, topics 1 and 2 are clearly "computer device" topics, and topic 6 is likely a

"rodent" topic.

In addition, several of the web topics have to do with scientific research involving

mice, judging from the words "gene", "research", "protein", etc. While these topics

can help disambiguate the "rodent" sense of the word mouse, they are specialized to

a particular area and may not be represented in image search results. In either case,

our algorithm is flexible in that it is able to "ignore" irrelevant topics by assigning

them a low likelihood.

5.5.2 ISD Using Text Features

The goal of these experiments is to evaluate how well WISDOM can distinguish

between images depicting the correct visual sense and all the other senses, based only

on their text contexts.

Evaluation metric. The evaluation task is to classify the unlabeled image/text

pairs as either depicting the core sense or not. As described in Chapter 3.1.2, senses

in evaluation data are labeled as either core, related, or unrelated. In the follow-

ing experiments, only core labels are mapped to positive labels, while related and

unrelated are grouped into the negative class. The labels are held out when training

the LDA models on the unlabeled data, and only used in evaluation. The unlabeled



Table 5.3: 20 word stems from 8 LDA topics learned for MOUSE, sorted by decreasing
likelihood (top to bottom).

1 2 3 4 5 6 7 8

optic button comment anti new mice cell gene
pad us video fc research post express sequenc

product click mickei ciali mice trap abstract genom

review window new antibodi anim just al human

usb user add kit human like et data
wireless right blog purifi univers hous human us

design download site mg develop us text map

price cursor disnei rat speci make articl chromosom
keyboard left view bui scienc littl mice transcript

laser devic music pe genet pm protein articl

pc set librari gener copyright rat activ al

custom control email view center place result clone
game appl http alpha servic sai us genet

logitech softwar nih goat home rodent fig et

microsoft keyboard organ receptor inform small embryo analysi

technolog wheel game igg year cat promot region
home movement repli effect work look stem databas
item screen pictur clone us don site dna

card driver track affin write live free primer
us support brain il includ thing cultur differ

data are assigned labels by thresholding P(sld). In addition to precision and recall,

we also compute the receiver operating characteristic (ROC). The ROC plots the

fraction of true positives against the fraction of false positives at each threshold.

Experimental settings. We train a separate text LDA model for each keyword

on the web text dataset, setting the number of topics K to 8 in each case. Although

this number is roughly equal to the average number of senses for the given keywords,

we do not expect nor require each topic to align with one particular sense. In fact,

multiple topics can represent the same sense. Rather, we treat K as the dimensionality

of the latent space that the model uses to represent senses. While our intuition is that

it should be on the order of the number of senses, it can also be set automatically by

cross-validation. In our initial experiments, different values of K did not significantly

alter the results. We used symmetric Dirichlet priors with scalar hyperparameters

a = 50/K and 3 = 0.01, which have the effect of smoothing the empirical topic

distribution, and 1000 iterations of Gibbs sampling.
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Figure 5-3: Retrieval of BASS senses in UIUC-ISD. ROCs are shown for the original

Yahoo search ranks (blue) and WISDOM model of all possible WordNet senses.
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Results. We evaluate the retrieval performance of ground truth image senses

using WISDOM models of different dictionary senses. We only show results for the

LDA-Factor model, as it tends to slightly outperform the Mixture-of-Multinomials

model. Figure 5-3 shows the resulting ROCs for BASS in UIUC-ISD, computed

by thresholding P(s d) and scoring it against labels of BASS-8 (fish) and BASS-7

(musical instrument) senses. The eight models corresponding to each of the senses of

the keyword "bass" are shown using different colors and line types. The solid blue

curve is the ROC obtained using the original Yahoo retrieval order. Figure 5-4 shows

the same for SQUASH.

These results demonstrate that the WordNet-based model retrieves far more core-

label images than the original search engine order. This is important for improving

the precision of training data used in the classification step. Of course, not all sense

generate good ROCs, as is expected. For BASS and SQUASH, as for several other

keywords, there are multiple dictionary definitions that the model is too coarse to

distinguish. For example, all three senses "sea bass", "freshwater bass" and "non-

technical bass" are about the same atidentifying the fish sense of bass. In the rest of

the evaluation, we do not make such fine-grained distinctions, but simply choose the

WordNet sense that applies most generally.

As a side note, in interactive applications, the human user can specify the intended

sense of the word by providing an extra keyword, such as by saying or typing "bass

fish". The correct dictionary sense can then be selected by evaluating the probability

of the extra keyword under each sense model, and choosing the highest-scoring one.

5.5.3 ISD Using Text and Image Features

Next, we evaluate the full text and image model on retrieval of all image senses in

the two datasets. First, we train a separate text LDA model and a separate image

LDA model for each word in the dataset, setting K = 8 each. This was done for

the text model so that the number of latent text topics would roughly equal to the

number of senses. In the image domain, it is less clear what the number of topics

should be. Ideally, each topic would coincide with a visually coherent class of images



(a) Text Model (b) Image Model

Figure 5-5: The top 25 images returned by the text and the image models for MOUSE-

4 (device).

all belonging to the same sense. In practice, because images of an object class on the

web are extremely varied, multiple visual clusters are needed to encompass a single

visual category. Our experiments have shown that the model is relatively insensitive

to values of this parameter in the range of K = 8, ..., 32. As before, we use symmetric

Dirichlet priors with scalar hyperparameters a = 50/K and 3 = 0.01 and 1000

iterations of Gibbs sampling.

Figure 5-5 shows the images that were assigned the highest probability for MOUSE-

4 (computer device) by the text-only model P(sldt) (Figure 5-5(a)), and by the

image-only model P(sld) (Figure 5-5(a)). We observe that both models return high-

precision results, but somewhat different and complementary types of images. The

image model's results are more visually coherent, while the text model's results are

more visually varied, which is what we would expect to happen.

The recall-precision curves (RPCs) of isolated senses are shown in Figure 5-6 for

WISDOM-2 (green curves) and the Yahoo rank order (blue curves). RPCs are com-

puted for each labeled sense in the MIT and UIUC-ISD datasets by thresholding

P(sld', dt) (Eq. 5.7). For example, the top leftmost plot shows retrieval of BASS-7

(musical instrument). These results demonstrate that we are able to greatly improve

the retrieval of each concrete sense compared to the search engine, without any su-

pervision. That said, this comparison is somewhat unfair to the search engine as



our method has one piece of knowledge the engine does not - the dictionary sense

number.

Our model does fail to retrieve one sense, FACE-13. There happened to be quite

a few mountain cliff images in the Yahoo results, prompting the labeler to mark

them as a separate sense of FACE. However, in WordNet FACE-13 is defined only

as "a vertical surface", a very vague and terse definition. This is a highly visually

ambiguous sense, one that could potentially include a very diverse class of images, and

not just the cliff faces that were labeled in MIT-ISD. In addition, none of the LDA

topics for FACE seem to align with this meaning of the word, which likely caused the

poor performance. Had there been a strong "mountain cliff' topic, then the model

might have overcome the terseness of the definition.

5.5.4 Classifying Unseen Images

The goal of these experiments is to evaluate WISDOM on an object classification task

where only a novel image is provided as input. The evaluation is carried out on the

MIT-ISD dataset.

Experimental Settings. We train classifiers for five objects corresponding to

the following image senses: BASS-8 (fish), FACE-1 (human face), MOUSE-4 (device),

SPEAKER-2 (loudspeaker) and WATCH-1 (timepiece). The classifiers are binary,

assigning a positive label to the correct sense and a negative label to incorrect senses

and all other objects. The top N unlabeled images ranked by the sense model are

selected as positive training images. The unlabeled image pool consists of both the

keyword and the sense-term datasets. N negative images are chosen at random from

positive data for all other keywords. A binary SVM with an RBF kernel is trained on

the image features, with the C and y parameters chosen by four-fold cross-validation.

The baseline algorithm is trained on a random sample of N images retrieved using

the automatically generated sense-specific query terms. Recall that the terms were

generated from word combinations extracted from the target sense definition (see

Section 5.3. Training on the first N images returned by Yahoo did not qualitatively

change the results.
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We evaluate the method on two test cases. In the first case, the negative class

is composed only of images from the other words. We refer to this as the 1-SENSE

test set. In the second case, the negative class also includes other senses of the target

word. For example, if we are testing classification of MOUSE-4 (device), the negative

class includes images of any sense of BASS, FACE, SPEAKER and WATCH, as well

as "animal mouse", "Mickey Mouse" and other non-MOUSE-4 images in the MOUSE

dataset. We refer to this as the MIX-SENSE test set.

Results. Figures 5-7,5-8 and 5-9 compare the classification accuracy of WISDOM

to the baseline auto-terms classifier. Average accuracy across ten trials with different

random splits into train and test sets is shown for each object. Figure 5-7 shows

results on 1-SENSE and 5-8 on MIX-SENSE, with N equal to 250. Figure 5-9 shows

1-SENSE results averaged over all five categories, at different numbers of training

images N. In both test cases, our dictionary method significantly improves on the

baseline algorithm. As the per-object results show, we do much better for three of

the five objects, and comparably for the other two. One explanation why we do not

see a large improvement in the latter cases is that the automatically generated sense-

specific search terms happened to return relatively high-precision images. However,

in the other three cases, the term generation fails while our model is still able to

capture the dictionary sense.

5.6 Discussion

While labeled examples of image senses are rare, an abundance of human knowledge

about word senses exists in the form of electronic dictionaries, encyclopedias, and

semantic databases. In this chapter, we introduced a way to harness that knowledge

in creating unsupervised models of image sense. To the best of our knowledge, this is

the first use of a dictionary in either web-based image retrieval or in object recognition.

Another key feature of the algorithm is the use of a large amount of unlabeled text

available through keyword search on the web in to learn a generative model of sense.

The approach is unsupervised, requiring no labeled images of the desired object, and
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Figure 5-9: Plot of classification results averaged over categories vs. number of train-
ing images N on the 1-SENSE test set.

is appropriate for web images. The use of LDA to discover a latent sense space makes

the approach robust despite the very limited nature of dictionary definitions. As a

final step, a discriminative classifier is trained on the re-ranked mixed-sense images

that can predict the correct sense for novel images.

We evaluated our model on a large dataset of web images consisting of search

results for several polysemous words. Experiments included retrieval of the ground

truth sense and classification of unseen images. On the retrieval task, WISDOM

improved on the Yahoo search engine precision by re-ranking the images according to

sense probability. On the classification task, it outperformed a baseline method that

attempts to refine the search by generating sense-specific search terms from Wordnet

entries. Classification also improved when the test objects included the other senses

of the keyword, and distinctions such as "loudspeaker" vs. "invited speaker" had

to be made. To our knowledge, this is the first attempt to automatically deal with

polysemy in object recognition.

In this chapter, we assumed that the desired word senses are provided as input to
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the algorithm. This can be considered as a form of supervision. This would classify

our method as not completely unsupervised, but rather weakly supervised. Also,

while this chapter used the WordNet semantic database to obtain sense entries, other

repositories could and should be explored. A different source of sense definitions could

change not only the senses but also the performance of the model. One avenue for

future work is using online encyclopedias, such as Wikipedia, which contain pages

rather than sentences of text per entry.

Of course, we would not expect the dictionary senses to always produce accurate

visual models, as many senses do not refer to objects (e.g. "bass voice"). Automatic

classification of dictionary senses into objects and abstract concepts is a very interest-

ing research question. In the next chapter, we address this question in the framework

of the WISDOM algorithm, and develop a method that filters senses automatically

based on semantic relations in WordNet.
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Automatic Sense Selection

In the previous chapter, we presented WISDOM, an unsupervised algorithm for learn-

ing visual sense models based on dictionary senses. The algorithm required the sense

of the word as an input. In this chapter, we relax the supervision constraints even

further, and assume that the target sense of the word is unknown. This brings us

even closer to the goal eliminating the need for user input.

6.1 Introduction

The requirement that the dictionary entry corresponding to the desired visual object

be specified a priori is a compromise between asking for labeled images and asking for

no supervision at all. In many scenarios, the desired senses may be gleaned from the

language context. For example, for a collection of image/text documents, a supervised



WSD method can be applied as a pre-processing step to identify the sense of keywords

in the vicinity of images. Following that step, visual models can be learned only for

the identified set of senses using the WISDOM method. In interactive systems that

use natural language to interact with the user, the sense can also potentially be

inferred from the language context.

However, many practical scenarios call for robots or agents which can learn a

visual model on the fly given only a brief spoken or textual definition of an object

category. In these scenarios, one cannot always expect to be provided with enough

context to identify the correct dictionary sense. A prominent example is the NSF-

funded Semantic Vision Robot Challenge (SVRC) 1, which provides robot entrants

with a text-file list of categories to be detected shortly before the competition be-

gins. Each participant robot then searches the environment for instances of objects

corresponding to the provided terms. More generally, we would like a robot or agent

to be able to engage in situated dialog with a human user, and have the robot be

able to understand what objects the human is referring to in an environment. While

some limited experiments have been carried out on multimodal object recognition

[Saenko and Darrell, 2007], it is generally unreasonable to expect that users will limit

their vocabulary to existing visual object databases, e.g., Caltech 101/256 or Pascal.

We thus would like to take a spoken word from a user's utterance when she is referring

to an object of interest, and train a model on the fly so that the robot can find the

desired object.

For both the SVRC and the open-vocabulary multimodal object reference prob-

lem, and similar tasks, we are therefore faced with the problem of learning a visual

model based only on the name of an object. A common approach is to find images on

the web that co-occur with the object name by using popular web search services, and

train a visual classifier from the search results. As we discussed in previous chapters,

words are generally polysemous, and this naive approach can lead to relatively noisy

models if many images of clutter senses are added to the model.

Early methods used manual intervention to identify clusters corresponding to the

'http://www.cs.cmu.edu/-srvc/
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Figure 6-1: Abstract word senses are automatically excluded from the visual model.

desired sense (e.g., Berg and Forsyth [Berg and Forsyth, 2006]). Image clustering

methods can group together visually coherent sets of returned queries, but clusters

are rarely exactly aligned with actual senses. Individual senses will be split into

distinct clusters corresponding to different visual appearances of the object sense,

and clutter from senses of the word that are abstract (are not associated with a

physical representation; see Figure 6-1) can further complicate matters.

In general, one can imagine using the text and image feature distributions asso-

ciated with a sense, and/or the words in its dictionary definition, to infer whether

a particular sense is one due to a physical entity or a non-physical concept. An al-

ternative approach, one that we explore in this chapter, is to exploit features of the

WordNet hierarchy directly to infer whether a sense is abstract or concrete, and thus

to form an estimate of the likelihood that a particular image arises from a physical ob-

ject vs. an abstract concept. Instead of assuming that the physical object senses are



known, we make much more general assumption about the nature of physical objects,

namely, that they fall into several general categories of animals, people, artifacts, etc.

We outline our approach to automatic sense selection in Section 6.2. Then, in

Section 6.3 we propose an improvement to WISDOM that adapts the generic web

topics to paired image and text data. In Section 6.4. we show results of detecting

concrete senses on three evaluation datasets consisting of web images and their text

contexts.

6.2 Selecting Concrete Senses

We tackle the problem of classifying concrete vs. abstract senses in images by ex-

tending WISDOM, the multimodal sense grounding method presented in the previous

chapter. The input is a single word or phrase that maps to a set of senses in WordNet.

Given the set of senses, we introduce a step to classify each sense as being abstract

or concrete, and consequently either add or remove it from the visual model. We call

this model WISDOM-Concrete, abbreviated WISDOM-C.

We might attempt to accomplish this in a data-driven or supervised way, e.g. by

examining the text surrounding each occurrence of the target sense in a sense-tagged

corpus to see what role it may play as the subject of a realized action in a sentence.

For example, we might learn that the sense of "diamond" that can be the object of the

actions of holding, cutting, giving, etc., is an artifact, as opposed to the "rhombus"

sense that is an abstract shape.

Fortunately, WordNet contains relatively direct information related to the phys-

icality of a concept. In particular, one of the main functions of WordNet is to put

synsets in semantic relation to each other as described in Chapter 5. The semantic

network makes it possible to follow the chain of hypernyms all the way to the top of

the tree, a node that contains the word "entity". Thus, we can detect a concrete sense

by studying its semantic relations to other concepts. For example, we can examine its

hypernym to see if it contains synsets such as "artifact", or "animal". What's more,

we can restrict the model to include specific types of physical entities: living things,



Table 6.1: WordNet features used in WISDOM-C.

Feature Value
hypernyms 'article', 'instrumentality','article of clothing', 'animal',

'body part'
lexical tag <artifact>, <animal>, <body>, <plant>

artifacts, clothing, etc.

In addition to semantic relations, WordNet contains lexical file information for

each sense in the definition, marking each sense as <state>, <animal>, <person>,

<artifact>, etc. For example, for the noun "mouse":

1. <animal> mouse (any of numerous small rodents typically resembling

diminutive rats having pointed snouts and small ears on elongated bodies with

slender usually hairless tails)

2. <state> shiner, black eye, mouse (a swollen bruise caused by a blow to

the eye)

3. <person> mouse (person who is quiet or timid)

4. <artifact> mouse, computer mouse (a hand-operated electronic device

that controls the coordinates of a cursor on your computer screen as you

move it around on a pad; on the bottom of the device is a ball that rolls on

the surface of the pad)

Table 6.1 summarizes the features that identify a concrete sense. We exclude

"people" senses from the present model, as we are not trying to address person (face)

recognition. In fact, we remove all proper noun senses from the model, excluding

people (e.g. Albert Einstein), places (e.g. New York) and other named objects. The

reason for doing so is that we are presently concerned with basic object category

recognition, and proper nouns refer to specific instances, not categories.



6.3 Topic Adaptation

In the WISDOM algorithm presented in the previous chapter, the generative model

of sense leverages a latent topic space learned on a large corpus of web pages. These

topics generally tend to coincide with different meanings and/or uses of the word. In

contrast, text topics occurring in image contexts can be hard to interpret as meanings,

and often cluster around specific websites (see discussion in Chapter 4.5). In general,

web topics form around both objects and abstract concepts. For example, web topics

for MOUSE include computer device topics and topics related to experimentaion on

mice in medical research. On the other hand, image context topics form mostly

around visual concepts, even though they do not always constitue a coherent object

category.

While the generative model has been shown so far to be relatively robust to the

presense of abstract web topics, the keywords on which it was tested were highly

polysemous, with very distinct meanings. This is not the case for all words. Words

that are not strongly polysemous may have several uncommon meanings. As an

example, compare the words BASS and STAPLER. BASS has strong distinctions

between its common meanings, which show up in both web and image context topics.

STAPLER, on the other hand, only has one common meaning and the other topics

surrounding the word (e.g. the stapler featured on the comedy show "Office Space")

are dictated by the particular document collection.

To better handle the case of mismatched topics, we propose a modification to the

WISDOM paradigm. The modification involves adapting the web topic to the image

context data, in order to better reflect the meanings present in the image collection.

Figure 6-2 illustrates this by showing a web topic discovered for FORK (on the left)

and the same topic after it has been adapted (right). The original topic seems to be

about bicycle forks, however, several words are indicative of the utensil case (these

words are enlarged in the figure). After adaptation, most of the words are related to

the utensil case, and the topic takes on a decidedly less bicycle-related tone.

Specifically, rather than use the web LDA model directly to model the generation
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accessory handle shop bike tube seal oil knive
order remove store kitchen utensil ship
custom home weightcustom home weight order use table spring
steel supply cap supply design piece

clamp fit false
.carve weight shop

Figure 6-2: A web topic for FORK is adapted to have more likely words related to

the utensil sense (shown in large font).

of the text contexts, we employ a semi-supervised paradigm. The topic variables in

the LDA model are sampled using Gibbs sampling for several iterations, however,

the z variables in the web data are kept fixed. Unlike the sampling procedure used

in Chapter 5 to obtain 9 parameters for the text contexts, this procedure alters the

distributions of words ¢ of the original web topics.

6.4 Experiments

6.4.1 Retrieval of Concrete Senses

First, we evaluate WISDOM-C on the task of retrieving concrete sense images in the

MIT-ISD, UIUC-ISD and MIT-OFFICE datasets. Table 6.2 shows the actual concrete

senses automatically selected from WordNet entries by our model for each word in

the data, using the settings shown in Table 6.1. For the MIT-OFFICE dataset, we

restricted the model further to artifact senses and pruned infrequent entries. We also

pruned senses that corresponded to parts of objects rather than whole objects, as

indicated by the meronym semantic relations. Note that all of the resulting senses

shown in Table 6.2 correspond to actual visual concepts and were tagged by human

labelers in the datasets.
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Figure 6-3: Retrieval of concrete senses in MIT-ISD and UIUC-ISD datasets.
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MIT Dataset UIUC-ISD Dataset OFFICE Dataset

bass-7 (instrument) bass-7 (instrument) cellphone-1 (mobile phone)

bass-8 (fish) bass-8 (fish) fork-i (utensil)
face-1 (human face) crane-4 (machine) hammer-2 (hand tool)
face-13 (surface) crane-5 (bird) keyboard-1 (any keyboard)

mouse-1 (rodent) squash-1 (plant) mug-1 (drinking vessel)

mouse-4 (device) squash-3 (game) pliers-1 (tool)

speaker-2 (loudspeaker) scissors-1 (cutting tool)

watch-1 (timepiece) stapler-1 (stapling device)
telephone-1 (landline phone)
watch-1 (timepiece)

Table 6.2: Concrete senses selected from WordNet for words in our datasets.

LAO, F7AM I

(a) Yahoo Image Search

Figure 6-4: The top images returned by the
our multimodal concrete-sense model.

(b) Concrete-Sense Model

search engine for CRANE, compared to

In this section, we evaluate the ability of WISDOM-C to filter out abstract senses

from a given word's image search results. Figure 6-3 shows the resulting recall-

precision curves (RPCs), computed by thresholding the probability of any of the

concrete senses in a given search result. The ground truth labels used to compute

these RPCs are positive if an image was labeled with any core sense (Fig.6-3 (a,b)),

or any core or related sense (Fig.6-3 (c,d)) in the dataset, and negative otherwise.

These results demonstrate that our model improves the retrieval of images of concrete

(visual) senses of words by filtering out the abstract senses. Figure 6-4 shows an

example of images being filtered out of the CRANE results, including illustrations by

an artist named Crane.
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Figure 6-5: Retrieval of concrete senses MIT-OFFICE dataset.

Figure 6-5 shows results on the MIT-OFFICE dataset using the adapted topic

version of the model. The average area under the RPC for this data improves from

0.47 for the original search engine order to 0.57 for the adapted-topic WISDOM

model, and the average RPC area acheived by the non-adapted model is 0.45. Topic

adaptation brings a substantial improvement on this data.

In Figure 6-5, the only keyword for which the method causes retrieval to be worse

is KEYBOARD. A possible cause for this is that the text topic identified by the

model as the most likely to belong to the concrete sense of the word in fact does

not describe the canonical keyboard object. A visual inspection of the top results

reveals many technical illustrations that have to do with a computer keyboard's use

and inner workings, but do not necessarily depict the object in its most recognizable

form.

6.4.2 Classification Experiments

We have shown that our method can improve retrieval of concrete senses, therefore

providing higher-precision image training data for object recognition algorithms. We

have conjectured that this leads to better classification results; in this section, we

provide some initial experiments to support this claim. We train multiclass (ten-way)
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SVM classifiers using the vocabulary-guided pyramid match kernel over bags of local

SIFT features implemented in the LIBPMK library [Lee, 2008]. The training data

for the SVM was either the first 100 images returned from the search engine, or the

top 100 images ranked by our model. Since we're interested in objects, we keep only

<artifact> senses that descend from "instrumentality" or "article". Figure 6-6 shows

classification results on held-out test data, averaged over 10 runs on random 80%

subsets of the data.

Our method improves accuracy for most of the objects; in particular, classification

of "mug" improves greatly due to the non-object senses being filtered out. This is

a very difficult task, as evidenced by the baseline performance; the average baseline

accuracy is 27%. Training with our method achieves 35% accuracy, a 25% relative

improvement. We believe that this relative improvement is due to the higher precision

of the training images and will persist even if the overall accuracy were improved due

to a better classifier.

baseline

Figure 6-6: Classification accuracy of the ten-way object classifier on MIT-OFFICE.
6 ................................................. ...... ............... to dictionary word senses. Our method distinguishes which senses are abstract from

sifier for a particular object of interest to a situated agent. This can be of particular2 0 % -...---- -... ............. .. ...

cellphone fork hammer keyboard mug pliers scissors stapler telephone watch

Figure 6-6: Classification accuracy of the ten-way object classifier on MIT-OFFICE.

6.5 Conclusion

We have presented an architecture for clustering image search results for polysemous

words based on image and text co-occurrences and grounding latent topics according

to dictionary word senses. Our method distinguishes which senses are abstract from

those that are concrete, allowing for filtering of the former when constructing a clas-

sifier for a particular object of interest to a situated agent. This can be of particular
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utility to a mobile robot faced with the task of learning a visual model based only on

the name of an object provided on a target list or spoken by a human user.

Our method uses both image features and the text associated with the images

to relate estimated latent topics to particular senses in an available online ontology.

Our model does not require any human supervision, and takes as input only anl

English noun. It estimates the probability that a search result is associated with

an abstract word sense, rather than a sense that is tied to a physical object. We

have carried out experiments with image and text-based models to form estimates of

abstract vs. concrete senses, and have shown results detecting concrete-sense images

in three multimodal, multi-sense databases. We also demonstrated a 25% relative

improvement in accuracy when classifiers are trained with our method as opposed to

the raw search results.
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Multimodal Reference Resolution For

Conversational Systems

In this chapter, we present a method that uses both the speech reference and the

image to recognize the object identity.1

7.1 Introduction

Multimodal recognition of object categories in situated environments is useful for

robotic systems and other applications. Information about object identity can be

conveyed in both speech and image. For example, if the user takes a picture of a

cylindrical object and says: "This is my pen," a machine should be able to recog-

1Portions of this chapter were published in [Saenko and Darrell, 2007]
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Figure 7-1: Multimodal object reference in conversational systems.

nize the object as belonging to the class "pen", and not "pan", even if the acoustic

signal was too ambiguous to make that distinction. Conventional approaches to ob-

ject recognition rely either on visual input or on speech input alone, and therefore

can be brittle in noisy conditions. Humans use multiple modalities for robust scene

understanding, and artificial systems should be able to do the same.

The conventional approach to image-based category recognition is to train a clas-

sifier for each category offline, using labeled images. Note that category-level recog-

nition allows the system to recognize a class of objects, not just single instances.

To date, automatic image-based category recognition performance has only reached a

fraction of human capability, especially in terms of the variety of recognized categories,

partly due to lack of labeled data. Accurate and efficient off-the-shelf recognizers are

only available for a handful of objects, such as faces and cars. In an assistant robot

scenario, the user would have to collect and manually annotate a database of sample

images to enable a robot to accurately recognize the objects in the home.

A speech-only approach to multimodal object recognition relies on speech recog-

nition results to interpret the categories being referred to by the user. This approach

can be used, for example, to have the user "train" a robot by providing it with speech-

labeled images of objects. Such a system is described in [Haasch et al., 2005], where

a user can point at objects and describe them using natural dialogue, enabling the

system to automatically extract sample images of specific objects and to bind them to
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turtle crab

lobster

water lily

Figure 7-2: Examples of the most visually confusable categories in our dataset (see
Section 7.3 for a description of the experiments). The image-based classifier most
often misclassified the category on the left as the category on the right.

recognized words. However, this system uses speech-only object category recognition,

i.e. it uses the output of a speech recognizer to determine object-referring words, and

then maps them directly to object categories. It does not use any prior knowledge of

object category appearance. Thus, if the spoken description is misrecognized, there is

no way to recover, and an incorrect object label may be assigned to the input image

(e.g., "pan" instead of "pen".) Also, the robot can only model object instances that

the user has pointed out. This places a burden on the user to show the robot every

possible object, since it cannot generalize to unseen objects of the same category.

We propose a new approach, which combines speech and visual object category

recognition. Rather than rely completely on one modality, which can be error-prone,

we propose to use both speech- and image-based classifiers to help determine the

category of the object. The intuition behind this approach is that, when the categories

are acoustically ambiguous due to noise, or highly confusable (e.g., "budda" and

"gouda"), their visual characteristics may be distinct enough to allow an image-based

classifier to correct the speech recognition errors. Even if the visual classifier is not
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accurate enough to choose the correct category from the set of all possible categories, it

may be good enough to choose between a few acoustically similar categories. The same

intuition applies in the other direction, with speech disambiguating confusable visual

categories. For example, Figure 7-2 shows the categories that the visual classifier

confused the most in our experiments.

There are many cases in the human-computer interaction literature where multi-

modal fusion helps recognition (e.g. [Potamianos et al., 2003], [Kaiser et al., 2003]).

Although visual object category recognition is a well-studied problem, to the best of

our knowledge, it has not been combined with speech-based category recognition. In

the experimental section, we use real images, as well as speech waveforms from users

describing objects depicted in those images, to see whether there is complementary

information in the two channels. We propose a fusion algorithm based on probabilis-

tic fusion of the speech and image classifier outputs. We show that it is feasible, using

state-of-the-art recognition methods, to benefit from fusion on this task. The current

implementation is limited to recognizing about one hundred objects, a limitation due

to the number of categories in the labeled image database. In the future, we will

explore extensions to allow arbitrary vocabularies and numbers of object categories.

7.2 Speech and Image-Based Category Recogni-

tion

In this section, we describe an algorithm for speech and image-based recognition of

object categories. We assume a fixed set of C categories, and a set W of nouns (or

compound nouns), where Wk corresponds to the name of the kth object category,

where k = 1, ..., C.

The inputs to the algorithm consist of a visual observation x1 , derived from the

image containing the object of category k, and the acoustic observation x2 , derived

from the speech waveform corresponding to Wk. In this paper, we assume that the user

always uses the same name for an object category (e.g., "car" and not "automobile".)
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Future work will address an extension to multiple object names. A simple extension

would involve mapping each category to a list of synonyms using a dictionary or an

ontology such as WordNet.

The disambiguation algorithm consists of decision-level fusion of the outputs of the

visual and speech category classifiers. In this work, the speech classifier is a general-

purpose recognizer, but its vocabulary is limited to the set of phrases defined by W.

Decision-level fusion means that, rather than fusing information at the observation

level and training a new classifier on the fused features x = 1, x 2, the observations

are kept separate and the decision of the visual-only classifier, fi(xi), is fused with

the decision of the speech-only classifier, f 2(x 2). In general, decisions can be in the

form of the class label k, posterior probabilities p(c = klxi), or a ranked list of the

top N hypotheses.

There are several methods for fusing multiple classifiers at the decision level, such

as letting the classifiers vote on the best class. We propose to use the probabilistic

method of combining the posterior class probabilities output by each classifier. We

investigate two combination rules. The first one, the weighted mean rule, is specified

as:
m

p(clxi, ..., xm) = Zp(cxi)Ai, (7.1)
i=1

where m is the number of modalities, and the weights A sum to 1 and indicate the

"reliability" of each modality. This rule can be thought of as a mixture of experts.

The second rule is the weighted version of the product rule,

m

p(cl, , , m) = np(ClXi)A (7.2)
i=1

which assumes that the observations are independent given the class, which is a valid

assumption in our case. The weights are estimated experimentally by enumerating

a range of values and choosing the one that gives the best performance. Using one

of the above combination rules, we compute new probabilities for all categories, and

pick the one with the maximum score as the final category output by the classifier.
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Note that our visual classifier is a multi-class SVM, which returns margin scores

rather than probabilities. To obtain posterior probabilities p(c = klz 2 ) from decision

values, a logistic function is trained using cross-validation on the training set. Further

details can be found in [Chang and Lin, 2001].

7.3 Experiments

If there is complementary information in the visual and spoken modalities, then using

both for recognition should achieve better accuracy than using either one in isolation.

The goal of the following experiments is to use real images, as well as recordings of

users describing the objects depicted in those images, to see if such complementarity

exists. Since we are not aware of any publicly available databases that contain paired

images and spoken descriptions, we augmented a subset of an image-only database

with speech by asking subjects to view each image and to speak the name of the object

category it belongs to. The data collection is described in Chapter 3.2. Using this

data, we evaluate our probabilistic fusion model. We investigate whether weighting

the modalities is advantageous, and compare the mean and product combination

rules.

The nature of the category names in the CaltechiOl database, the controlled en-

vironment, and the small vocabulary makes this an easy speech recognition task. The

speech recognizer, although it was trained on an unrelated phone-quality audio cor-

pus, achieved a word error rate (WER) of around 10% when tested on the collected

category utterances. In realistic human-computer interaction scenarios, the environ-

ment can be noisy, interfering with speech recognition. Also, the category names of

everyday objects are shorter, more common words (e.g. "pen" or "pan", rather than

"trilobite" or "mandolin"), and the their vocabulary is much larger, resulting in a lot

more acoustic confusion. Our preliminary experiments with large-vocabulary recog-

nition of everyday object names, using a 25K-phrase vocabulary, produced WERs

closer to 50%. Thus, to simulate a more realistic speech task, we added "cocktail

party" noise to the original waveforms, using increasingly lower signal-to-noise ratios
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(SNRs): 10db, 4db, Odb, and -4db. For the last two SNRs, the audio-only WERs are

in a more realistic range of around 30-60%.

7.3.1 Training of Classifiers.

There is a large body of work on object recognition in the computer vision literature,

a comprehensive review of which is beyond the scope of this paper. The current best-

performing object classification methods on Caltech 101 [Fei-Fei et al., 2007], the

image database we use in our experiments, are based on discriminative multi-class

classifiers. In [Frome et al., 2006], a nearest-neighbor classifier is used in combina-

tion with a perceptual distance function. This distance function is learned for each

individual training image as a combination of distances between various visual fea-

tures. The authors of [Zhang et al., 2006] use a multi-class support vector machine

(SVM) classifier with local interest point descriptors as visual features. We use the

method of [Grauman and Darrell, 2005], which is also based on a multi-class SVM,

but in combination with a kernel that computes distances between pyramids of visual

feature histograms.

We trained the image-based classifier on a standard CaltechiOl training set,

consisting of the first 15 images from each category, which are different from the

test images mentioned above. The classification method is described in detail in

[Grauman and Darrell, 2005], here we only give a brief overview. First, a set of fea-

ture vectors is extracted from the image at each point on a regular 8-by-8 grid. A

gradient direction histogram is computed around each grid point, resulting in a 128-

dimensional SIFT descriptor. The size of the descriptor is reduced to 10 dimensions

using principal component analysis, and the x,y position of the point is also added,

resulting in a 12-dimensional vector. Vector quantization is then performed on the

feature space [Grauman and Darrell, 2006], and each feature vector (block) of the

image is assigned to a visual "word". Each image is represented in terms of a bag

(histogram) of words. Two images can then be matched using a special kernel (the

pyramid match kernel) over the space of histograms of visual words. Classification

is performed with a multi-class support vector machine (SVM) using the pyramid
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match kernel. Our implementation uses a one-vs-rest multi-class SVM formulation,

with a total of C binary SVMs, each of which outputs the visual posterior probabilities

p(c = klxl ) of the class given the test image.

The speech classifier is based on the Nuance speech recognizer, a commercial,

state-of-the-art, large-vocabulary speech recognizer. The recognizer has pre-trained

acoustic models, and is compiled using a grammar, which we set to be the set of

object names W, thus creating an isolated phrase recognizer with a vocabulary of 101

phrases. This recognizer then acts as the speech-based classifier in our framework.

The recognizer returns an N-best list, i.e. a list of N most likely phrase hypotheses

k = kl, ..., kN, sorted by their confidence score. We use normalized confidence scores

as an estimate of the posterior probability p(c = kIx 2) in Equations 7.1, 7.2. For

values of k not in the N-best list, the probability was set to 0. The size of the N-best

was set to 101, however, due to pruning, most lists were much shorter. The accuracy

is measured as the percentage of utterances assigned the correct category label.

7.3.2 Experimental Settings

The test set of image-utterance pairs was further split randomly into a development

set and test set. The development set was used to optimize the speech weight. All

experiments were done by averaging the performance over 20 trials, each of which

consisted of randomly choosing half of the data as the development set, optimizing

the weight on it, and then computing the performance with that weight on the rest

of the data.

7.3.3 Results

First, we report the single-modality results. The average accuracy obtained by the

image-based classifier, measured as the percentage of correctly labeled images, was

50.7%. Chance performance on this task is around 1%. Note that it is possi-

ble to achieve better performance (58%) by using 30 training images per category

[Grauman and Darrell, 2007], however, that would not leave enough test images for
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Figure 7-3: Object classification using the mean rule, on the development set. Each
line represents the performance on a different level of acoustic noise. The y-axis shows
the percent of the samples classified correctly, the x-axis plots the speech weight used
for the combined classifier.

some of the categories. The average 1-best accuracy obtained by the speech classifier

in the clean audio condition was 91.5%. The oracle N-best accuracy, i.e. the accu-

racy that would be obtained if we could choose the best hypothesis by hand from the

N-best list, was 99.2%.

Next, we see how the fused model performs on different noise levels. Figure 7-3

shows the results of the fusion algorithm on the development set, using the mean

combination rule. The plot for the product rule, not shown here, is similar. Each

line represents a different level of acoustic noise, with the top line being clean speech,

and the bottom line being the noisiest speech with -4db SNR. The x-axis plots the

speech model weight A2 in increments of 0.1, where A1 + A2 = 1. Thus, the leftmost

point of each line is the average image-only accuracy, and the rightmost point is the

speech-only accuracy. As expected, speech-only accuracy degrades with increasing

noise. We can see that the fusion algorithm is able to do better than either single-
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Figure 7-4: Absolute improvement across noise conditions on the test set. The Y-axis

shows the percent of the test samples classified correctly, the X-axis shows the SNR

of the noise condition. Chance performance is around 1%.

modality classifier for some setting of the weights. The product combination rule gives

similar performance to the mean rule. We also see that the weighted combination

rule is better than not having weights (i.e. setting each weight to 0.5). The average

accuracy on the test set, using the weight chosen on the development set for each noise

condition, is plotted in Figure 7-4. The plot shows the gains that each combination

rule achieved over the single modality classifiers. The mean rule (red line) does

slightly better than the product rule (green line) on a number of noise conditions,

and significantly better than the either speech or vision alone on all conditions.

7.4 Discussion

We presented a multimodal object category classifier that combines image-only and

speech-only hypotheses in a probabilistic way. The recognizer uses both the name

of the object and its appearance to disambiguate what object category the user is

referring to. We evaluated our algorithm on a standard image database of 101 object
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categories, augmented with recorded speech data of subjects saying the name of the

objects in the images. We have simulated increasingly difficult speech recognition

tasks by adding different levels of noise to the original speech data. Our results show

that combining the modalities improves recognition across all noise levels, indicating

that there is complementary information provided by the two classifiers. To avoid

catastrophic fusion, we have proposed to use the weighted version of the mean rule

to combine the posterior probabilities, and showed experimentally that there exists a

single weight that works for a variety of audio noise conditions. We have thus shown

that it may be advantageous for HRI systems to use both channels to recognize object

references, as opposed to the conventional approach of relying only on speech or only

on image recognition, when both are available.

We regard this work in this chapter as a proof of concept for a larger system,

the first step towards multimodal object category recognition in HRI systems. We

plan to continue this line of research, extending the model to handle multiple words

per category, and, eventually, to extract possible object-referring words from natural

dialogue. A simple extension to handle multiple object names is to map each category

to a list of synonyms using a dictionary or an ontology such as WordNet.

We are also interested in enabling the use of arbitrary vocabularies by incorporat-

ing the WISDOM approach as a component in the overall multimodal system. With

this approach, web-based image search would be conducted for keywords correspond-

ing to words in the N-best list output by the speech recognizer. The returned images

could then be used to build visual models for disambiguation of arbitrary objects.
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Conclusion

Humans interact with their world and with each other in inherently multimodal ways,

learning and comminicating about the physical world through the faculties of speech,

written language and vision, to name a few. If computers are to match human abilities

in this regard, automatic object recognition methods should not be limited to image-

space learning. In this dissertation, we have shown that non-traditional information

sources, namely, dictionaries, web pages, and spoken utterances, can facilitate object

recognition, lessening the need for human supervision and increasing robustness over

using image data alone.

Our work shows that massive amounts of parallel image and language data avail-

able in electronic form and readily accessible through the Internet can facilitate the

automatic acquisition of visual concepts by machine. It advances the state of the

art through WISDOM, a method for learning visual sense models in the absense of
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la beled examples. Human labeling of images is heavily relied-upon in the computer

vision community, but it is time-consuming, not online, and must be repeated for

every new visual concept. WISDOM, inspired by the use of electronic dictionaries to

learn word sense models in the natural language community, removes the need for

manual labeling of images. The key innovation is the use of the WordNet semantic

database together with a collection of web pages to train visual object classifiers. The

model is flexible, in that different forms of written knowledge about a visual sense can

be used in place of WordNet, such as other dictionaries, encyclopedias or ontologies.

Ours is the first web-based object recognition approach able to predict not only a

word label, but also the dictionary meaning of the word. This can be a useful feature

at a higher level of interaction, such as speech recognition and discourse processing,

as it can make distinctions such as "loudspeaker" vs. "invited speaker". In extensive

experiments with both polysemous and single-sense words, we have demonstrated

that the version based on WordNet is excellent at retrieving isolated senses from web

images. On the task of novel image classification, WISDOM outperformed a baseline

method that attempts to refine the search by generating sense-specific search terms

from Wordnet entries.

Of course, we would not expect all dictionary senses to produce accurate visual

models, as many senses do not refer to physical entities. While the question of

what constitutes a visual concept remains largely open, this work is a step towards

a solution based on the semantic relationships between words. In Chapter 6 we

extended WISDOM to distinguish abstract senses from those that are more likely to

be concrete, allowing it to filter out the abstract ones when constructing a classifier

for a particular object. The final model does not require any human supervision, and

takes as input only an English noun. For a set of words corresponding to everyday

objects, significant improvement in accuracy is obtained when classifiers are trained

with our method instead of the unfiltered web search results.

Our unsupervised scheme is of particular utility to an autonomous robot faced

with the task of learning a visual model based only on the name of an object, either

provided as input or spoken by a human user. In the last part of this dissertation, we
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showed that having an a priori visual model of a word can in turn help to disambiguate

the user's spoken utterance. Chapter 7 presented a multimodal object category clas-

sifier that combines image-only and speech-only hypotheses in a probabilistic way,

and demonstrated that combining the modalities improves recognition across several

audio noise levels. We have thus shown that it may be advantageous for HRI systems

to use both channels to recognize object references, when possible, as opposed to the

conventional approach of relying on speech-only or image-only recognition.

8.1 Limitations and Future Work

At the end of each method chapter, we have summarized any outstanding technical

issues and future work directions pertaining to that specific component of our system.

Here we discuss the "big picture" view of what is still missing and where this line of

research might lead us next.

An Open Vocabulary of Concepts. Ironically, our experiments with a system

that learns visual concepts in an unsupervised way were limited by the lack of labeled

images to test it on. Although the datasets used for evaluation contained a total

of over 44,000 images, there were only 17 unique words tested. An important part

of continuing this research is to test the ideas on a dataset of labeled web images

of much grander scale. Fortunately, such a dataset may soon be available in the

form of ImageNet [Deng et al., 2009]. Also, a very interesting research direction is

the question of visual vs. abstract concepts. Can we determine automatically if a

word or phrase in a passage of text refers to an physical object or an abstract idea?

This may be more difficult than it seems at first thought, as abstract concepts are

frequently used by manufacturers to brand products.

Adaptive HCI System. Chapter 7 proved that image and voice provide com-

plimentary cues of object identity, however, it was limited to a small vocabulary. The

limiting factor was the lack of image-based object classifiers for arbitrary words. The

next step is to use WISDOM to expand the vocabulary of the overall system. The

final system could then recognize user references to arbitrary objects. Another future
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work direction is to adapt the models built from web images to be useful for an au-

tonomous robot to understand its environment. Web images are not representative of

the types of images that a robot would come across in an office or home environment.

Images on the web are typically taken by professional photographers and aimed for an

aestheticaly pleasing effect. As a result, these images have little blurring or occlusion,

and the objects are often centered and in canonical poses. On the other hand, a robot

in the real world would encounter images with poor lighting, blurring and random

poses. Our method could be used to robustly process user references to an object in

a home tour scenario, providing labeled examples for adaptation of the prior model

of the object.
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Word Definitions

This appendix includes the WordNet definitions of words used as queries to collect

the datasets described in Chapter 3.

Table A.1: WordNet definitions for words in the datasets.

Synset Definition

BASS-1 the lowest part of the musical range

BASS-2, the lowest part in polyphonic music

BASS-PART-1

BASS-3, an adult male singer with the lowest voice

BASSO-1

Continued on next page
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Table A.1 - continued from previous page

Synset Definition

SEA BASS-1, the lean flesh of a saltwater fish of the family Serranidae

BASS-4

FRESHWATER-BASS-1, any of various North American freshwater fish with lean

BASS-5 flesh and especially of the genus Micropterus

BASS-6, BASS-VOICE-1, the lowest adult male singing voice

BASSO-2

BASS- 7 the member with the lowest range of a family of musical

instruments

BASS-8 nontechnical name for any of numerous edible marine and

freshwater spiny-finned fishes

CELLULAR TELEPHONE- a hand-held mobile radiotelephone for use in an area divided

1, into small sections, each with its own short-range transmit-

CELLULAR PHONE-1, ter/receiver

CELLPHONE- 1,

CELL-5,

MOBILE PHONE-1

CRANE-i, United States writer (1871-1900)

STEPHEN CRANE-1

CRANE-2, United States poet (1899-1932)

HART CRANE-1,

HAROLD HART CRANE-

1

GRaus-1, a small constellation in the southern hemisphere near

CRANE-3 Phoenix

CRANE-4 lifts and moves heavy objects; lifting tackle is suspended

from a pivoted boom that rotates around a vertical axis

Continued on next page
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Table A.1 - continued from previous page

Synset Definition

CRANE-5 large long-necked wading bird of marshes and plains in many

parts of the world

FACE-i, the front of the human head from the forehead to the chin

HUMAN FACE-1 and ear to ear) "he washed his face"; "I wish I had seen the

look on his face when he got the news"

EXPRESSION-1, the feelings expressed on a person's face) "a sad expression";

LOOK-1, "a look of triumph"; "an angry face"

ASPECT-5,

FACIAL EXPRESSION-2,

FACE-2

FACE-3 the general outward appearance of something) "the face of

the city is changing"

FACE-4 the striking or working surface of an implement

FACE-5 a part of a person that is used to refer to a person) "he

looked out at a roomful of faces"; "when he returned to

work he met many new faces"

SIDE-4, a surface forming part of the outside of an object) "he ex-

FACE-6 amined all sides of the crystal"; "dew dripped from the face

of the leaf'

FACE-7 the part of an animal corresponding to the human face

FACE-8 the side upon which the use of a thing depends (usually the

most prominent surface of an object)) "he dealt the cards

face down"

GRIMACE-1, a contorted facial expression) "she made a grimace at the

FACE-9 prospect"

Continued on next page
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Table A.1 - continued from previous page

Synset Definition

FONT-i, a specific size and style of type within a type family

FOUNT-i,

TYPEFACE-1,

FACE-10,

CASE-14

FACE-11 status in the eyes of others) "he lost face"

BOLDNESS-2, impudent aggressiveness) "I couldn't believe her boldness";

NERVE-3, "he had the effrontery to question my honesty"

BRASS-4,

FACE-12,

CHEEK-4

FACE-13 a vertical surface of a building or cliff

FORK-1 cutlery used for serving and eating food

BRANCHING-1, the act of branching out or dividing into branches

RAMIFICATION- 1,

FORK-2,

FORKING-2

FORK-3, the region of the angle formed by the junction of two

CROTCH-1 branches) "they took the south fork"; "he climbed into the

crotch of a tree"

FORK-4 an agricultural tool used for lifting or digging; has a handle

and metal prongs

CROTCH-2, the angle formed by the inner sides of the legs where they

FORK-5 join the human trunk

HAMMER-i, the part of a gunlock that strikes the percussion cap when

COCK-3 the trigger is pulled

Continued on next page
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Table A.1 - continued from previous page

Synset Definition

HAMMER-2 a hand tool with a heavy rigid head and a handle; used to

deliver an impulsive force by striking

MALLEUS-1, the ossicle attached to the eardrum

HAMMER-3

MALLET-2, a light drumstick with a rounded head that is used to strike

HAMMER-4 such percussion instruments as chimes, kettledrums, marim-

bas, glockenspiels, etc.

HAMMER-5 a heavy metal sphere attached to a flexible wire; used in the

hammer throw

HAMMER-6 a striker that is covered in felt and that causes the piano

strings to vibrate

HAMMER-7, POWER a power tool for drilling rocks

HAMMER-1

HAMMER-8, the act of pounding (delivering repeated heavy blows)) "the

POUND-14, sudden hammer of fists caught him off guard"; "the pound-

HAMMERING-i, ing of feet on the hallway"

POUNDING-3

KEYBOARD-1 device consisting of a set of keys on a piano or organ or

typewriter or typesetting machine or computer or the like

KEYBOARD-2 holder consisting of an arrangement of hooks on which keys

or locks can be hung

MOUSE-1 any of numerous small rodents typically resembling diminu-

tive rats having pointed snouts and small ears on elongated

bodies with slender usually hairless tails

Continued on next page
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Table A.1 - continued from previous page

Synset Definition

SHINER-1, a swollen bruise caused by a blow to the eye

BLACK EYE-1,

MOUSE-2

MOUSE-3 person who is quiet or timid

MOUSE-4, a hand-operated electronic device that controls the coordi-

COMPUTER MOUSE-1 nates of a cursor on your computer screen as you move it

around on a pad; on the bottom of the device is a ball that

rolls on the surface of the pad) "a mouse takes much more

room than a trackball"

MUG-1, the quantity that can be held in a mug

MUGFUL-1

CHUMP-1, a person who is gullible and easy to take advantage of

FOOL-2,

GULL- 1,

MARK-9,

PATSY- 1,

FALL GUY-1,

SUCKER- 1,

SOFT TOUCH-1,

MUG-2

Continued on next page
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Synset

COUNTENANCE-3,

PHYSIOGNOMY- 1,

PHIZ-2,

VISAGE-1,

KISSER-2,

SMILER-2,

MUG-3

Table A.1 - continued from previous page

Definition

the human face ('kisser' and 'smiler' and 'mug' are informal

terms for 'face' and 'phiz' is British)

MUG-4 with handle and usually cylindrical

PLIER-1, someone who plies a trade

PLYER-1

PLIERS-1, a gripping hand tool with two hinged arms and (usually)

PAIR OF PLIERS-1, serrated jaws

PLYERS- 1

SCISSORS-1, an edge tool having two crossed pivoting blades

PAIR OF SCISSORS-1

SCISSORS-2, a wrestling hold in which you wrap your legs around the

SCISSORS HOLD-1, opponents body or head and put your feet together and

SCISSOR HOLD-1, squeeze

SCISSOR GRIP-1,

SCISSORS GRIP-1

SCISSORS-3 a gymnastic exercise performed on the pommel horse when

the gymnast moves his legs as the blades of scissors move

Continued on next page
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Table A.1 - continued from previous page

Synset Definition

SPEAKER-1, someone who expresses in language; someone who talks (es-

TALKER-i, pecially someone who delivers a public speech or someone

UTTERER-3, especially garrulous)) "the speaker at commencement"; "an

VERBALIZER-1, utterer of useful maxims"

VERBALISER- 1

LOUDSPEAKER-i, electro-acoustic transducer that converts electrical signals

SPEAKER-2, into sounds loud enough to be heard at a distance

SPEAKER UNIT-1,

LOUDSPEAKER SYSTEM-

1,

SPEAKER SYSTEM-1

SPEAKER-3 the presiding officer of a deliberative assembly) "the leader

of the majority party is the Speaker of the House of Repre-

sentatives"

SQUASH-i, any of numerous annual trailing plants of the genus Cucur-

SQUASH VINE-1 bita grown for their fleshy edible fruits

SQUASH-2 edible fruit of a squash plant; eaten as a vegetable

SQUASH-3, a game played in an enclosed court by two or four players

SQUASH RACQUETS-i, who strike the ball with long-handled rackets

SQUASH RACKETS-1

STAPLER-I, a machine that inserts staples into sheets of paper in order

STAPLING MACHINE-1 to fasten them together

TELEPHONE-1, electronic equipment that converts sound into electrical sig-

PHONE-i, nals that can be transmitted over distances and then con-

TELEPHONE SET-1 verts received signals back into sounds) "I talked to him on

the telephone"

Continued on next page

129



Table A.1 - continued from previous page

Synset Definition

TELEPHONE-2, transmitting speech at a distance

TELEPHONY- 1

WATCH-1, a small portable timepiece

TICKER-2

WATCH-2 a period of time (4 or 2 hours) during which some of a ship's

crew are on duty

WATCH-3, a purposeful surveillance to guard or observe

VIGIL-3

WATCH-4 the period during which someone (especially a guard) is on

duty

LOOKOUT-1, a person employed to keep watch for some anticipated event

LOOKOUT MAN-1,

SENTINEL- 1,

SENTRY- 1,

WATCH-5,

SPOTTER-3,

SCOUT- 1,

PICKET-1

VIGIL-2, the rite of staying awake for devotional purposes (especially

WATCH-6 on the eve of a religious festival)
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