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Abstract
MapReduce is a programming model for data-parallel

programs originally intended for data centers. MapRe-
duce simplifies parallel programming, hiding synchro-
nization and task management. These properties make
it a promising programming model for future processors
with many cores, and existing MapReduce libraries such
as Phoenix have demonstrated that applications written
with MapReduce perform competitively with those writ-
ten with Pthreads [11].

This paper explores the design of the MapReduce
data structures for grouping intermediate key/value pairs,
which is often a performance bottleneck on multicore
processors. The paper finds the best choice depends
on workload characteristics, such as the number of keys
used by the application, the degree of repetition of keys,
etc. This paper also introduces a new MapReduce li-
brary, Metis, with a compromise data structure designed
to perform well for most workloads. Experiments with
the Phoenix benchmarks on a 16-core AMD-based server
show that Metis’ data structure performs better than sim-
pler alternatives, including Phoenix.

1 Introduction

MapReduce [3] helps programmers to write certain kinds
of data-parallel applications. The programmer writes a
Map and a Reduce function that must obey some re-
strictions, and in return the MapReduce library can run
the application in parallel automatically: the program-
mer does not have to write code for synchronization or
to manage parallel tasks. MapReduce was initially pro-
posed for applications distributed over multiple comput-
ers, but the Phoenix library [11] shows that MapReduce
can help applications on a single multicore machine per-
form competitively with hand-crafted Pthreads applica-
tions. This paper describes a new MapReduce library for
multicore processors that achieves better performance
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Figure 1: A map computation produces a row of
key/value pairs. A reduce computation consumes a col-
umn of key/value pairs.

than Phoenix by using better data structures for group-
ing the key/value pairs generated by Map and consumed
by Reduce.

The focus of this paper is MapReduce applications
which involve a relatively large number of intermediate
key/value pairs and a relatively low amount of computa-
tion, that is, situations in which the run time is not domi-
nated by the application code in Map and Reduce, but by
the overhead of the library itself. Word count and creat-
ing an inverted index are example applications for which
the design of the library matters, while matrix multiply
isn’t. The paper further restricts itself to situations in
which the inputs and outputs are in memory (i.e., in the
file system buffer cache) so that the network and disk
systems are not bottlenecks. This configuration is one
that we use for sorting and counting data generated by
experiments in other research projects. Even with these
restrictions, engineering a MapReduce library for multi-
core processors is surprisingly challenging.

A MapReduce library organizes an application into
three phases: Map, Reduce, and Merge. The library par-
titions the input into a number of “splits,” and concur-
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rently runs a programmer-supplied Map function on each
split. Each instance of Map produces intermediate out-
put in the form of a set of key/value pairs (see Figure 1).
When the Maps have completed, the MapReduce library
invokes a programmer-supplied Reduce function, once
for each distinct key generated by the Map functions,
supplying each instance of Reduce with all the values
generated for the corresponding key. Each Reduce gen-
erates a set of key/value pairs as output. The different
Reduce instances can execute concurrently. When the
Reduces have finished, the library enters a Merge phase
to sort the aggregated output of the Reduces by key; the
sort generates the final output of the application.

The core challenge that we encountered in engineering
a MapReduce library is the organization of MapReduce
intermediate data—the matrix in Figure 1. The organi-
zation of the Map output is critical to the performance of
many MapReduce applications, since the entire body of
intermediate data must be reorganized between the Map
and Reduce phases: Map produces data in the same order
as the input, while Reduce must consume data grouped
by key. In a data center this operation is dominated by the
performance of the network, but when running on single
multicore processor the performance is dominated by the
operations on the data structure that holds intermediate
data.

A strategy for storing intermediate MapReduce data
must consider multiple factors in order to perform well
on multicore processors. Concurrent Map instances
should avoid touching the same data, to avoid locking
and cache contention costs. Inserting key/value Map out-
put should be fast, and for many applications looking up
existing keys should also be fast in order to support quick
coalescing of Map output for the same key. The Reduce
phase must consider all instances of a given key at the
same time, so ideally those instances would be grouped
together in the Map output. Finally, the Reduce invoca-
tions would ideally generate output in an order consistent
with that required by the overall application, to minimize
Merge cost.

Different MapReduce applications stress different per-
formance aspects of the intermediate data structure. In
particular, the application Map function’s tendency to re-
peat the same key in its output governs the relative impor-
tance of the data structure’s lookup and insert operations
and the ability of the data structure to group key/value
pairs with the same key.

This paper presents a new MapReduce library, called
Metis, whose intermediate data structure is a hash ta-
ble with a b+tree in each entry. In the common case
Metis can exploit the hash table’s O(1) operation costs
and avoid use of the b+trees. For workloads with unex-
pected key distributions, Metis falls back on the b+tree’s
O(log n) operations. The result is competitive perfor-

mance across a wide range of workloads.

We have implemented Metis in C on Linux and Win-
dows. The implementation includes multiple optimiza-
tions: support for Map output combiners, a lock-free
scheme to schedule map and reduce work, immutable
strings for fast key comparisons, and use of the scalable
Streamflow [13] memory allocator. Some of these opti-
mizations are obvious (e.g., using a combiner function,
which the Google MapReduce library already has, but
Phoenix doesn’t), but others took us a while to discover
(e.g., the fact that commonly-used memory allocators are
not scalable and that this property is important in Map-
Reduce applications).

An evaluation on 16 cores of standard MapReduce
benchmarks shows that Metis achieves equal or bet-
ter performance than Phoenix, and that for some ap-
plications this improvement is an order of magnitude.
This improvement makes the most difference for ap-
plications such as inverted index creation that produce
large numbers of intermediate key/value pairs. Metis
can achieve good performance without manual param-
eter tuning, which Phoenix requires.

The main contribution is how to engineer a MapRe-
duce library that runs efficiently on a commodity mul-
ticore computer. More specifically, the contributions
are: 1) the observation that the data structure used to
group key/value pairs is a primary performance bottle-
neck on multicore processors; 2) a new MapReduce li-
brary, Metis, that performs this grouping efficiently with-
out application-specific tuning; 3) an evaluation showing
that Metis is more efficient than Phoenix; and 4) a set
of experience tidbits from running MapReduce applica-
tions on different operating systems and processors, and
experimenting with optimizations.

The rest of the paper is organized as follows. Sec-
tion 2 provides a brief description of MapReduce from
a parallel programming perspective. Section 3 describes
the Metis design. Section 4 summarizes the salient im-
plementation details. Section 5 evaluates Metis versus
Phoenix running on a machine with AMD processors and
provides an analysis of the benefits of Metis design deci-
sions. Section 6 summarizes our experience with Metis
and MapReduce. Section 7 relates our work to previous
work. Section 8 summarizes our conclusions.

2 Background

This section introduces the MapReduce model and out-
lines the design of Phoenix, an existing multiprocessor
MapReduce library.
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2.1 MapReduce Programming Model

A MapReduce library requires the programmer to cast
the computation in the form of two functions, Map and
Reduce. The library partitions the input into a number
of “splits”, and calls Map on each split. The library typ-
ically has a pool of Map worker threads, one per core,
that repeatedly take a split from a work list and call
Map. Each Map call’s output is a set of “intermediate”
key/value pairs. When all the splits have been processed
by Map, the library calls Reduce once for each distinct
key produced by the Map calls, passing Reduce the set
of all values produced by the Maps for that key. Again,
the library has a pool of Reduce worker threads, one per
core. Each Reduce generates a set of output key/value
pairs, and the library’s Merge phase sorts them by key to
produce the final output. The programmer must ensure
that the Map and Reduce functions have no side effects.

The charm of MapReduce is that, for algorithms that
can fit that form, the library hides all the concurrency
from the programmer. For example, one can count the
number of occurrences of each word in a body of text as
follows. The WordCount Map function parses the input,
generating an intermediate key/value pair for each word,
whose key is the word and whose value is 1. The Reduce
function (which the library calls once per distinct word)
emits a key/value pair whose key is the word, and whose
value is the number of values. The library gets parallel
speedup by running many Maps concurrently, each on a
different part of the input file, and by running many Re-
duces concurrently on different words. The Merge phase
combines and sorts the outputs of all the Reduces.

2.2 Phoenix

Phoenix is a MapReduce library for multi-core and
multi-processor systems. Phoenix stores the intermedi-
ate key/value pairs produced by the Map calls in a ma-
trix. The matrix has one row per split of the input, and a
fixed number of columns (256 by default). Each row acts
as a hash table with an entry per column. Phoenix puts
each key/value pair produced by a Map in the row of the
input split, and in a column determined by a hash of the
key. Each Phoenix Reduce worker thread processes an
entire column at a time.

This arrangement limits contention in two ways. First,
different Map workers write their intermediate results to
different areas of memory. Second, each Map worker
partitions its results according to the Reduce thread that
will consume each result. The result is that the Map
workers do not contend to produce output, and the Re-
duce workers contend to find work on column granular-
ity. This arrangement parallelizes a sort that groups keys
well.

i
am

the
way

the
truth

the
light

i : 1 am : 1

the : 1 way : 1

the : 1 truth : 1

the : 1
light : 1

i : 1 the : 3
light : 1

am : 1
way : 1

truth : 1

Input:

Output:

Figure 2: Example of the Phoenix WordCount applica-
tion processing the input “I am the way, the truth, the
light.”

Figure 2 shows an example of how data flows through
a Phoenix-based WordCount application. The horizon-
tal arrows represent a Map worker hashing intermedi-
ate key/value pairs into its row’s columns, chosen with
a hash of the key. The vertical arrows represent a Reduce
worker reading the hash table entries assigned to it. Note
that all the instances of “the” are processed by the same
Reduce worker.

am i light the truth way

1 1 1 1 11

1

1

Figure 3: Example of a Phoenix hash table entry filled
with the output of WordCount’s Map for the input “I am
the way, the truth, the light.”

Inside each entry of a hash table, Phoenix stores the
key/value pairs in an array sorted by key (see Figure 3).
An entry’s array has at most one element for each dis-
tinct key; if there is more than one pair with the same
key, the values are “grouped” into a list attached to that
key. This grouping is convenient for the Reduce phase,
since the Reduce function takes all the values for a key
as an argument. The cost for Map to insert a key/value
pair depends on whether the key is already in the relevant
hash table entry’s list. If it is, the cost is O(1) to hash to
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the correct column, O(log kb) to find the existing key in
the array (assuming kb distinct keys in the hash table en-
try), and O(1) to insert the new value in the key’s list.
If the key is not already in the table, the cost is O(1) to
hash to the correct column and O(kb) to move array en-
tries down to make room for the new key. The result is
that, for workloads with many keys, the linear insert cost
dominates total run-time.

3 Design

This section explores the main challenges in multicore
MapReduce performance and describes a design, called
Metis, that addresses those challenges. Metis inherits
much of its design from Phoenix but differs in a num-
ber of aspects to achieve better performance on multicore
processors.

3.1 The Problem

The core problem that a MapReduce library solves is
conveying the output of the Map phase to the Reduce
phase, by way of the intermediate data structure hold-
ing the Map output. The library’s design must trade off
among the following requirements for the intermediate
data structure:

• The different Map threads should not modify the
same data structures in order to avoid locking and
cache line contention costs. This suggests that there
should be a separate output data structure for each
Map thread.

• Some workloads cause Map to produce many
key/value pairs with the same key. For such work-
loads, the intermediate data structure must effi-
ciently group together all pairs with the same key,
in order to later pass them together to Reduce.

• If there are many keys, the Reduce threads may ben-
efit from partitioning the keys among themselves in
bulk to avoid scheduling work per key. The set of
keys a given Reduce thread is responsible for would
ideally be grouped together, in the same order, in
the outputs of all the Maps.

• The Merge phase will run fastest if the Reduces gen-
erate output in the same order as that required for
the application’s final output, and thus if each Re-
duce thread processes keys in the same order as the
final output.

• The data structure must allow for load-balancing the
Map and Reduce work over the worker threads.

The best trade-off among these requirements depends
on the properties of the application and its input (the
“workload”). The following are the main relevant prop-
erties of the workload:

• Number of pairs: the MapReduce library’s inter-
mediate data structure affects performance only for
workloads in which Map emits many key/value
pairs.

• Key repetition: a large number of Map output pairs
may involve many distinct keys, each of which ap-
pears only a few times, or a few keys, each of
which appears many times (typically in the outputs
of many Map threads). If there are relatively few
repeated keys, the main operation the intermediate
data structure must support is partitioning the keys
for consumption by Reduce workers. If there are
many repeated keys, it is beneficial for the output
data structure to group pairs with the same key effi-
ciently, so a key lookup operation is critical for good
performance.

• Large output: some workloads have a Reduce phase
that emits many items, so that the final Merge has
significant cost. For these workloads, Reducing
keys in final output order may reduce the cost of the
Merge sort. For these workloads it may be benefi-
cial for the intermediate data structure to store keys
in sorted order.

• Predictability: some workloads generate roughly
the same distribution of Map output key frequen-
cies for all parts of the Map input, while others have
key statistics that vary in different parts of the in-
put. Predictability helps when the intermediate data
structure must be sized in advance (for example, for
a hash table).

• Load balance: some workloads involve roughly the
same amount of Reduce processing for each key,
while others have skewed amounts of Reduce work
per key. The MapReduce library must try its best to
load-balance the latter workloads.

3.2 Design Options
To provide comparison points for Metis’ intermediate
data structure, consider the following possible ways to
store Map output. Each one of them works well for cer-
tain workloads.

Each Map thread could store its output in a separate
hash table. All the hash tables should be the same
size, and all Map threads should use the same hash func-
tion, so that the Reduce threads can easily partition the
work. Each hash table entry would contain a linked list
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of key/value pairs whose keys are hashed to that entry.
If the hash tables have enough entries, collisions will be
rare and the lists will be short, so that lookup and insert
will have cost O(1) (i.e., be independent of the number of
keys). However, this property requires that the hash table
have enough entries to avoid collisions, which implies
that the MapReduce library be able to predict the total
number of keys. The hash table’s O(1) lookups make it
particularly attractive for workloads with many repeated
keys.

Each Map thread could store its output by appending
each key/value pair to an append-only buffer, and then
sorting that buffer by key at the end of the Map phase.
The Reduce threads would have to inspect the buffers to
agree on a partition of the keys. Sorting the buffer all
at once has better locality than (for example) inserting
many keys into a tree. The sort, however, has time de-
termined by the total number of pairs, rather than unique
keys, so an append-only buffer is mainly attractive for
workloads that have few repeated keys.

Each Map thread could store its output in a tree in-
dexed by key. The Reduce threads would have to inspect
the trees to agree on a partition of keys. A tree has rea-
sonably fast lookup and insert times (O(log k), where k
is the number of keys), and does not require prediction
of the number of keys. Thus a tree is attractive for work-
loads with repeated keys and with unpredictable number
of keys.

The append-only buffer and tree data structures have
the added attraction that they sort the pairs by key, and
may allow the Reduce threads to process the pairs in key
order, thus producing output in key order and reducing or
eliminating the time required in the Merge phase to sort
the output. A hash table, in contrast, does not naturally
order the keys.

3.3 Metis

No one of the data structures mentioned above works
well for all workloads. A hash table performs poorly
when the number of keys is hard to predict. An append-
only buffer performs poorly with many repeated keys. A
tree’s O(log k) operations are slower than a hash table’s
O(1) operations for predictable workloads.

Metis uses a “hash+tree” data structure to get the good
properties of both a hash table and a tree. The hash+tree
data structure consists, for each Map thread, of a hash
table with a separate b+tree in each entry of the hash
table (see Figure 4). The hash table has a fixed num-
ber of entries, chosen after a prediction phase (see Sec-
tion 3.4) to be proportional to the predicted total num-
ber of distinct keys. All the Map threads use the same
size hash table and the same hash function. The hash
table’s O(1) lookups support efficient grouping of pairs

am i

1 1

light the

1 1

1

1

i the

truth way

1 1

Figure 4: Example of the b+tree in a Metis hash entry
filled with the input “I am the way, the truth, the light.”
from the WordCount application.

with the same key since an existing key can be found
quickly. When Map emits a key/value pair, the MapRe-
duce library hashes the key to find the hash table entry,
then uses the key to descend the b+tree in that entry. If
a b+tree entry for the key already exists, the library ap-
pends the new value to the existing value(s) in the entry.
Otherwise the library creates a new b+tree entry for the
new key/value pair.

When all the Map work is finished, the library parti-
tions the hash table entries. Each Reduce thread repeat-
edly picks an unprocessed partition and processes the
same range of hash table entries in all the Maps’ outputs.
Small partitions allow better load balance and incur little
overhead.

For the Merge phase Metis uses a scalable sorting al-
gorithm: Parallel Sorting by Regular Sampling (PSRS)
[14]. The run-time of PSRS is O(k

c log k), where c is
the number of cores and k is the number of Reduce out-
put items. The reason that PSRS scales linearly is that
it ignores the bucket boundaries, so the number of buck-
ets doesn’t affect its run-time. The advantage that PSRS
has over mergesort is that PSRS can use all cores for the
whole sort, while mergesort leaves cores idle during its
final phase.

The hash+tree data structure works well for many
workloads. If the number of keys is predictable and they
hash uniformly, then the hash table will have enough en-
tries to avoid more than a constant number of collisions
and b+tree entries per hash entry, and both inserts and
lookups will take O(1) time. If the prediction is too small
or the keys don’t hash uniformly, so that some or all hash
table entries contain many keys, then the b+trees in the
hash table entries may grow large. In that case the lookup
and insert costs will be O(log k)—that is, no worse than
using a single tree per Map thread. If the prediction is
too large, the overhead mainly comes from creating and
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destroying the hash table, which is small compared with
the total run-time.

The only situation where hash+tree is not attractive is
workloads with few repeated keys. For these workloads,
an append-only buffer would have better performance for
two reasons. First, quicksort on the append-only buffer
has better locality than inserting into a b+tree. Second,
the Merge phase is more efficient for an append-only
buffer than for hash+tree, because the Reduce output is
already sorted. However, section 5 shows that Metis sac-
rifices little performance by using hash+tree rather than
append.

Map Reduce Merge
O(p

c ) or O(p
c log k) O(p

c ) O(k
c log k)

Figure 5: Computational complexity of Metis.

Figure 5 summarizes the computational complexity of
Metis. p is the number of pairs of Map output, k is the
number of distinct keys of Map output, and c is the num-
ber of cores. For the Map phase, the first item is the
computational complexity when the prediction succeeds
to limit the collisions to a constant. The second item
is the computational complexity when Metis must make
significant use of the b+trees in the hash table entries.

3.4 Prediction
To ensure O(1) lookup and insert cost for the hash part
of its hash+tree data structure, Metis must ensure that the
number of keys per hash entry remains constant as the
total number of keys grows. Metis does this by predicting
the total number of distinct keys that a typical Map will
generate (kp), and creating each per-Map hash table with
a number of entries proportional to kp.

To predict kp, Metis runs Map over the first 7% of the
input file and finds the number n of distinct keys that
Map produced. It then computes kp as n

0.07 . Metis sets
the size of each per-Map-thread hash table to 0.1 ∗ kp, so
that each hash table entry is likely to contain 10 keys.

4 Implementation

We have implemented Metis in C on Linux and Win-
dows. The application calls the library start function with
the following parameters: the name of the input file, and
the names of the functions that implement Map, Reduce,
and Merge. Merge performs the final sort of the output
of all the Reduces.

The start function creates one POSIX thread per core,
and assigns it to a core using sched setaffinity. Each
thread processes Map input splits until there is no more
data in the input file. When all the input splits have

been processed, the threads call Reduce for each key in
the Map output. When all keys have been Reduced, the
threads Merge the Reduce output to produce the final out-
put.

Metis employs no locks. Each Map input split has ded-
icated memory (a row in Figure 2) into which it can emit
data. To assign Map output to Reduce threads, Metis
maintains a column counter, which is initially zero. Each
time a thread looks for more Reduce work, it increases
the column counter by one using an atomic add instruc-
tion. Each value of the column counter corresponds to
a range of Map output hash table entries for the Reduce
thread to process.

Based on many hours of experimenting with applica-
tions, discovering scalability bottlenecks, and tracking
down their sources, we refined the implementation in the
following ways:

Lock-free splitting MapReduce application splits the
input file into chunks (one per Map Task). The splitting
can either be determined by the application or Metis. Ap-
plications can use algorithms to exploit data locality. In
this case, the applications choose the split size to meet
the requirement of the algorithm. For example, in Ma-
trixMultiply, with a block-based algorithm (which comes
with Phoenix single-core implementation), the locality
can be exploited and the performance can be improved
by 95% percent.

For applications that scan each chunk only once, local-
ity of each chunk is not critical. In this case, the chunk
size can be determined by Metis. Metis’ Map threads
allocate work (splits of the input file) by atomically in-
crementing an input file offset counter by the split size.

Memory allocator The three stages (Map, Reduce,
and Merge) all require allocating, reallocating and free-
ing many chunks of memory. Multiple worker threads
may concurrently issue memory requests. Thus, an effi-
cient memory management scheme is important for good
application performance. After some experiments, we
used Streamflow [13], which is an efficient and scalable
memory allocator for multi-threaded programs. It per-
forms synchronization-free operations in most cases for
local allocation and deallocation.

Keycopy function When a key/value pair is emitted
during the Map phase, if the key is a pointer into the
memory, the application must guarantee that the memory
is not freed until the completion of MapReduce library.
This is unnecessary for a key which already appeared;
furthermore, keeping the memory around limits the size
of the input file to the size of virtual memory. Worse,
when the input file is large enough that it incurs paging,
a key comparison may trigger a read to the disk, which is
significantly slower compared with in-memory compari-
son.

void *keycopy(void *key, size_t len);
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Application Description Keys Pairs per key
MatrixMultiply(MM) Multiply two integer matrices 0 0

PCA Principle component analysis on a matrix Input matrix 1
InvertedIndex(II) Build reverse index for words Unique words # words
WordCount(WC) Count occurrence of Words Unique words # words
StringMatch(SM) Find an encrypted word from files with keys 4 # map input splits

LinearRegression(LR) Calculate the best fit line for points 5 # map input splits
Histogram (Hist) Compute frequency of image components 3X256 # map input splits

Kmeans Classifying 3D points into groups K Points/K

Figure 6: The benchmarks, with input sizes and number of distinct keys and pairs in the Map output.

Metis provides a keycopy function, which copies the
key on its first occurrence. As the above prototype
shows, the keycopy function receives the key to copy and
the length of the key, and returns the address of a new
key. In this way, the processed input can be freed so that
Metis can handle input files larger than virtual memory
size, and the key comparison is done in the memory.

Combiner function The hash entries holding inter-
mediate key/value pairs may have many values per key.
Many values increase the memory footprint and place
pressure on hardware caches. Metis, like the Google
MapReduce library, allows an application to provide an
optional Combiner function. The Combiner decreases
the memory pressure by reducing the values correspond-
ing to the same key as early as possible. Without a Com-
biner function, the library needs to keep these values un-
til the Reduce phase. The Reduce function in many ap-
plications, however, does not necessarily need all values
of a key before being able to apply the Reduce function.

size_t combiner(void *key, void **vals,
size_t len);

In Metis, Combiner is usually identical to the Reduce
function in the Reduce phase. There are two possible
places to apply the Combiner when merging the values
of the same key: (1) Inserting key/value pairs in the Map
phase; (2) Merging all key/value pairs with the same key
emitted by all Map worker threads. Currently, Metis ap-
plies the Combiner only in the Map phase. Since there
are only a few key/value pairs after applying the Com-
biner in the Map phase, the memory pressure in Reduce
phase is not intensive.

Output compare function The output of Phoenix is
an array of key/value pairs sorted by key. If the user
requires the output sorted by fields other than keys, an
additional MapReduce iteration must be executed to sort
the output. For example, in the output of WordCount,
the key is word and the value is the occurrences of the
word in the file. After that, another MapReduce iteration
is used to sort the output by occurrences.

typedef struct {
void *key;

void *val;
} keyval_t;
int outcmp(keyval_t *kv1, keyval_t *kv2);

Metis allows the application to provide an optional
comparison function for the final output, as shown above.
After the key/value pairs are reduced, the Reduce phase
and Merge phase use the output comparison function to
sort the output pairs, which reduces two MapReduce iter-
ations to one for applications that don’t require the output
to be sorted by keys.

5 Evaluation

This section evaluates Metis’ performance by exploring
five issues. First, it demonstrates that Metis provides
good parallel speedup as the number of cores increases.
Second, it shows that Metis’ absolute performance is bet-
ter than that of Phoenix for workloads where the MapRe-
duce library’s performance matters. Third, it investigates
the reasons for Metis’ good performance, focusing on the
interaction between workload and Map output data struc-
ture, and showing that Metis’ hybrid strategy performs as
well as the best individual data structure for each kind of
workload. Fourth, it measures the accuracy and overhead
of Metis’ prediction algorithm. Finally, we compare the
single-core performance of Metis and Hadoop for com-
pleteness.

5.1 Experimental Method

The measurements are taken on an AMD 16-core ma-
chine with 64 Gbyte memory running Linux with kernel
version 2.6.25. The machine has four quad-core 2.0 GHz
AMD chips. Each of the 16 cores has a 64 KByte L1 data
cache, and 512KByte L2 cache. The four cores on each
chip share a 2 MByte L3 cache. All caches have a block
size of 64 bytes. All the software uses the 64-bit instruc-
tion set.

The benchmark applications are derived from those
supplied by Phoenix, and summarized in Figure 6. For
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StringMatch, LinearRegression and Histogram, the num-
ber of keys is fixed and the number of pairs per key de-
pends on the number of map input splits. The results for
sections other than 5.4 use the workloads described in
Figure 7. These are chosen to ensure the applications run
for a moderately long time, but still fit in memory. The
inputs are in the in-memory buffer cache.

Application Input size Keys Pairs
MM 2048X2048 0 0
PCA 2048X2048 2.1 M 2.1 M

II 100 MB 9.5 M 13.7 M
WC 300 MB 1 M 51 M
SM 1 GB 4 1024
LR 4 GB 5 1280
Hist 2.6 GB 768 197 K

Kmeans Points = 5M, K = 16 16 5 M

Figure 7: The input size, number of Key and Key/Value
Pairs of the inputs. M stands for million, and K stands
for thousand.

All experiments run with 256 Map input splits, ex-
cept for MatrixMultiply. MatrixMultiply uses a blocked-
based algorithm, which splits the input matrix into 4175
blocks to exploit locality. The performance of other
benchmarks is not sensitive to the number of map input
splits.

5.2 Parallel Speedup

Figure 8 shows the speedup with increasing number
of cores for each benchmark, when using Metis. The
speedup is the run-time of an optimized non-parallel ver-
sion divided by the run-time for the application on the
indicated number of cores. The optimized non-parallel
version of each benchmark does not use MapReduce,
but is a separately written dedicated application. The “1
core” bar for each benchmark indicates performance of
the Metis-based benchmark, and is typically less than 1.0
because the optimized non-parallel version is faster than
the Metis-based version.

Histogram, LinearRegression, StringMatch, and Ma-
trixMultiply have run-times that are dominated by the ap-
plication logic, not the MapReduce library. This can be
seen in Figure 9, which shows the fraction of single-core
run-time spent in the library vs the application. String-
Match and MatrixMultiply achieve a good speedup be-
cause the application code is highly concurrent. His-
togram and LinearRegression scale well until 8 cores and
then drop. The scalability is limited by a lack of concur-
rency in Linux’s page fault handler, which is triggered as
the Map phase reads the memory-mapped input file. This
problem could be fixed with address ranges [1].
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Figure 9: Percent of total run-time spent in the applica-
tion and in the MapReduce library for the benchmarks,
measured with Metis on a single core using performance
counters. InvertedIndex and WordCount spend almost all
of the time in the MapReduce library manipulating Map
output and sorting Reduce output.

Figure 8 shows poor speedup for PCA and Kmeans
because they do not fit will into the MapReduce model.

InvertedIndex and WordCount are of the most inter-
est because they spend most of their time in the MapRe-
duce library, as Figure 9 shows. Both achieve more than
half-linear parallel speedup on 16 cores. For Inverte-
dIndex, the three phases scale to 13.1x, 8.2x and 13.9x
on 16 cores, while WordCount’s phases scale to 10.8x,
1.4x, and 9.8x. Both are limited by the poorly scaling
Reduce phase. For InvertedIndex the reason is that the
Reduce phase copies and merges values from different
Map workers, and thus may suffer from Linux’ unscal-
able page fault handler [1]. For WordCount, the run-time
of the Reduce phase is quite short with 16 cores, and
the overhead of assigning the large number of hash table
entries to the Reduce threads may dominate the perfor-
mance.

5.3 Metis versus Phoenix

Figure 10 compares the throughput of applications using
Metis to throughput with Phoenix. All the numbers are
normalized to Phoenix, so Phoenix has a throughput of
one. InvertedIndex and WordCount are much faster with
Metis than with Phoenix, because both produce a large
number of Map output pairs which Metis is more effi-
cient at handling. The other benchmarks have about the
same performance for Metis and Phoenix because they
spend most of their time in application code.
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Figure 8: Parallel speedup of the benchmarks with Metis, relative to optimized non-parallel versions of the applica-
tions.

Implementation InvertedIndex WordCount PCA KMeans
Phoenix 31.7 65.3 5.3 3.1
Phoenix+Ext 25.2 51.1 4.2 2.6
Phoenix+Ext+Tuning 12.3 9.9 4.0 2.6
Metis 5.3 5.9 3.7 2.7

Figure 11: Run-time in seconds of InvertedIndex, WordCount, PCA, and KMeans for different implementations on
16 cores. Phoenix+Ext indicates Phoenix with the StreamFlow, KeyCopy, OutCmp, and Combiner optimizations.
Phoenix+Ext+Tuning also includes tuning of the number of Reduce tasks for best performance.

In order to explain the difference in performance be-
tween Phoenix and Metis, Figure 11 shows how Phoe-
nix’s run-time improves as Metis’ optimizations are
added. The Phoenix+Ext line shows the effect of adding
the optimizations from Section 4: a modest increase
in throughput, mostly due to Combiner functions and
StreamFlow.

The Phoenix+Ext+Tuning line shows the improve-
ment when the number of Phoenix’s Map output hash ta-
ble entries is chosen to yield the highest throughput: the
improvement is large for both InvertedIndex and Word-
Count. Phoenix’ default number of entries is 256. In-
creasing the number of entries improves Map perfor-
mance because it decreases hash collisions. However,
Phoenix’s Merge phase sorts the output of the Reduces
with a merge-sort that takes time logarithmic in the num-
ber of Map output hash entries, since the starting point
for the merge-sort is the Reduce output for each Map
output hash entry. As a result, increasing the number of
entries helps Map but hurts Merge; Phoenix+Ext+Tuning
chooses the best trade-off.

Metis’ use of PSRS in Merge avoids any performance
penalty due to the number of Map output hash entries,
and as a result Metis can use enough hash entries to re-
duce the number of hash collisions to an insignificant
level. The result is the increase in performance in Fig-
ure 11 between the Phoenix+Ext+Tuning line and the
Metis line.

5.4 Workloads and data structures
This section demonstrates that Metis’ hash+tree data
structure for Map output is a good design choice, by
comparing its performance to the data structures out-
lined in Section 3.2 (a per-Map worker append-sort only
buffer which doest not group pairs after the sort, a per-
Map worker append-group buffer which does grouping
after the sort, a per-Map worker single b+tree, and a per-
Map worker fixed-size hash table with 256 b+tree en-
tries). These designs are compared using InvertedIndex
with four input workloads (all tests run with 16 cores):

Workload Input size Keys Pairs
Few Keys & Many Dups 100 MB 108 K 13.3 M
Many Keys & Few Dups 100 MB 9.5 M 13.7 M

Many Keys & Many Dups 800 MB 513 K 106.7 M
Unpredictable 500 MB 457 K 102.4 M

Figure 12 shows throughput with the “Few keys &
Many dups” workload. Append-sort and append-group
perform the most poorly because it cannot take advan-
tage of the fact that there are few keys; for example,
the time append-sort and append-group spend sorting
is O(p log p) while b+tree spends only O(p log k) time
inserting. Append-group performs slightly better than
append-sort since grouping key/value pairs of the map
output at Map phase has better locality than grouping at
Reduce phase. Metis performs best because it has O(1)
lookup operations rather than O(log k).

9
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Figure 10: Comparison of Metis throughput to Phoenix
throughput. The bar lengths are rate of work divided by
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length one. Measured on 16 cores.
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Figure 12: Throughput of InvertedIndex with different
data structures using the “Few keys & Many dups” input.

Figure 13 shows throughput with the “Many keys &
Few dups” workload. Append-sort, append-group and
b+tree perform similarly: they all have O(log k) sort-
ing times, and they all cause the Reduce output to be in
nearly sorted order, which makes Merge fast. Metis runs
somewhat slower than either, because its Reduce output
is not sorted and requires significant work in the Merge
phase.

Figure 14 shows throughput with the “Many keys &
Many dups” workload. Append-sort and append-group
perform the worst due to the same reason for “Few keys
& Many dups” workload. The other three data struc-
tures do allow grouping, but are lookup-intensive due to
the large number of repeated keys. Metis has the fastest
lookup operation (O(1)), so unlike “Few keys & Many
dups”, it performs greatly better than b+tree and fixed
sized hash table.

Figure 15 shows the throughput of InvertedIndex with
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Figure 13: Throughput of InvertedIndex with different
data structures using the “Many keys & Few dups” work-
load.
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Figure 14: Throughput of InvertedIndex with different
data structures using the “Many keys & Many dups”
workload.

different data structures using the “Unpredictable” work-
load, whose input has 457,000 keys but which Metis in-
correctly predicts to have 2.8 million keys. Metis is still
attractive for this workload since the extra cost of allo-
cating an overly large hash table is small.

5.5 Prediction
We evaluate the accuracy and overhead of sampling for
InvertedIndex, WordCount, and Kmeans, for which the
MapReduce library is critical to the performance. As
Figure 16 shows, since the input of InvertedIndex and
PCA has few repeated keys, each Map worker is ex-
pected to receive a subset of the keys, which is about 1

16
of the total number of keys (593 K and 131 K). For Word-
Count and KMeans, the input contains more repeated
keys than core number, so that each Map worker would
process almost all the keys.

The “PK” column shows the predicted number of keys
per Map worker. For WordCount, the prediction is no-
tably larger than expectation because the keys are not
uniformly distributed. The fact that the input file contains
more repeated keys at the beginning of the file, which is
used by Metis for sampling, results in over prediction.
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Figure 15: Throughput of InvertedIndex with different
data structures using the “Unpredictable” workload. The
input contains 457K keys, but Metis predicts that each
Map worker would hold 2.8M keys.

Total Keys EK PK Overhead
II 9.49 M 593 K 697 K 0.8%

WC 1 M 1 M 2.67 M 6.3%
PCA 2.10 M 131 K 131 K 1.2%

KMeans 16 16 17 2.7%

Figure 16: Accuracy and overhead of prediction with
16 cores. “EK” stands for “Expected Keys per Map
worker”, while “PK” stands for “Predicted Keys per Map
worker”.

For other benchmarks processing uniform inputs, Metis’
sampling scheme can adapt to the input, and the overhead
of prediction is less than 3%.

5.6 Metis versus Hadoop

Hadoop [15] is an open-sourced MapReduce implemen-
tation for clusters. To facilitate debugging, Hadoop pro-
vides a standalone operation to run in a non-distributed
mode. We compare the performance of WordCount on
standalone Hadoop (version 0.20.1) and Metis.

For WordCount with a 10MB input containing 1M key
and 1.3M pairs, single-core Metis runs in 4 seconds, and
single-core Hadoop runs in 31 seconds. Hadoop cannot
easily be configured to use parallel workers on a single
multicore machine. This comparison is not entirely fair,
however, since Hadoop uses Java and hasn’t focussed on
single-node performance. If Metis were used in a clus-
ter environment, we expect Metis’ good per-node perfor-
mance would provide good cluster performance as well.

6 Discussion

This section summarizes the more interesting insights
gained from investigating the performance of Metis and
Phoenix.

6.1 Locality
The number of Map input splits in Metis is mostly driven
by the goal of balancing load across the cores. We found
out, as also pointed out in the Phoenix evaluation (see
section 5.3 of [11]), that choosing a split size that allows
the split to fit in a core’s cache has little impact on per-
formance (except for MatrixMultiply), because there is
little locality; the working set of the applications is much
bigger than the cores’ caches.

We also observed that Kmeans has no short term tem-
poral locality in access pattern. Kmeans with Phoenix
runs faster with smaller unit size because the Map phase
is extremely imbalanced with larger unit size. Since the
input is small (1.2 MB), with a unit size of 128KB, there
are only 9 Map splits for 8 cores. Metis splits the input
by 256 by default to avoid this case.

Since the grouping-by-key operation is a global sort,
we investigated in isolation different ways of performing
sorts that might have better locality. For example, we ex-
plored using quicksort on an input of the size of an L2
cache and then use merge sort on the sorted L2 buffers.
We observed some benefits in isolation but small com-
pared to the overall run-time of an application. Never-
theless, we believe that optimizations of these kind are
likely to be important when processors have more cores.
With more cores, it might also become important to make
a distinction between nearby caches and far away ones,
and perhaps perform a hierarchical sort.

6.2 Processor
The results in this paper are not much different for the
AMD and Intel processors. Performance on the 16-core
AMD computer is slightly better than on the 16-core
Intel computer. The primary reason is that the AMD
Opteron processors are faster processors than the Intel
ones (quad-core Xeon processors), and run at a higher
clock rate (2.0 GHz versus 1.6 GHz). MatrixMultiply
and InvertedIndex are the exceptions, with the Matrix-
Multiply difference being most pronounced (10.7s ver-
sus 7.9s on 16 cores). The Intel processors win on this
application because they have bigger and faster caches,
and MatrixMultiply has good memory locality.

6.3 Operating system
The impact of the operating system is minimal for Map-
Reduce applications, since they interact with the oper-
ating system infrequently. There are three areas, how-
ever, where operating system functions have some im-
pact: memory allocation, address space management,
and file I/O.

Memory allocator In initial evaluations of Word-
Count on Windows we found that it performed surpris-
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ingly badly, spending a large amount of time in the mem-
ory allocation library. The Windows library has a num-
ber of flags, and we tried several different configurations
of memory management to find what might be the major
cause of the problem: contention of the heap-lock, inap-
propriate algorithm in heap management, or something
else. Of five different configurations we tried the config-
uration that sets the “Low Fragment Heap” (LFH) flag is
the best. Using a heap per thread instead of shared global
heap brings only a small performance improvement, in-
dicating contention for the heap-lock is not intensive
when LFH is enabled. The 32-bit version of WordCount
performs slightly better than the 64-bit one, due to the in-
creased memory usage in the 64-bit version. By contrast,
shared-heap without LFH option scales rather badly in
both 32-bit and 64-bit, due to the false sharing of caches
among multiple worker threads. On Linux we used the
Streamflow allocator instead of the standard libc alloca-
tor, because Streamflow is more efficient.

Address space management In Phoenix and in earlier
versions of Metis, the Map, Reduce, and Merge phase
each create a new thread per core and delete the threads
at the end of the phase. Both on Windows and Linux,
when freeing the stack of a thread, the operating system
updates the process’s address space. This update can be
an expensive operation on Windows (because of a global
lock) and to a lesser degree on Linux (because of soft
page faults). To avoid any thread-related overhead, Metis
creates threads once in the beginning and reuses them in
each phase.

File I/O The Histogram and LinearRegression appli-
cation, which have few keys, spend little time in the
MapReduce library and most of their time in application
functions. The main system overhead, which is small
compared to the application run-time overhead, is lock-
ing overhead in the page fault handler in the operating
system when reading the input file. With a larger num-
ber of cores, operating systems may need more tuning to
ensure that they don’t become a performance bottleneck
for applications.

6.4 Fault tolerance

Unlike MapReduce libraries for data centers, Metis
doesn’t support restarting Map and Reduce computations
when a Map or Reduce fails. As suggested by the Phoe-
nix paper, such a feature could be important if cores
could fail independently. Since the failure model for
large-scale multicore processors hasn’t been worked out
yet, we have not implemented this feature and assume
that the unit of failure is a complete computer. A fault-
tolerant master process can reschedule the tasks assigned
to the failed computer to another computer in the data
center.

7 Related work

This paper shows that the global operation that groups
key/value pairs by keys is a bottleneck on multicore
processors, and proposes various optimizations. This
global operation can also be a bottleneck in data cen-
ters and necessitate special care in that environment as
well. On a multicore machine, this bottleneck appears
as cache misses and memory accesses. In a data cen-
ter, it appears as the exchange of messages and load on
core switches [3]. Some systems have been designed to
improve locality in the data center. For example, the
Hadoop scheduler [15] is aware of the switch topology
and uses that knowledge when scheduling to keep load
local and off the core switches.

The Phoenix MapReduce library [11] is the library that
is most related to Metis. Phoenix has been implemented
on Solaris and evaluated on a 24-processor SMP and the
UltraSparc T1 processor. The evaluation demonstrates
that applications that fit the MapReduce model can per-
form competitively with hand-tuned parallel code using
Pthreads. Metis augments the Phoenix work in several
ways. First, it focuses on the challenge of handling the
intermediate key/value pairs. It combines several differ-
ent Map output data structures that have O(n log n) per-
formance, or better for specific workloads; Phoenix’s im-
plementation has O(n2) performance in the worst case.
Second, it shows that no single data structure is best, and
that the Combiner function is also important on multicore
processors, since it reduces the pressure of storing inter-
mediate values. Third, the evaluation demonstrates the
benefits of Metis on commodity multicore processors,
and provides a more detailed analysis of which applica-
tions can benefit from MapReduce.

The core challenge the paper addresses is the design
of an intermediate data structure that, in essence, sup-
ports an efficient global, parallel sort/group-by function
for MapReduce applications. Like much of the previous
work on sorting, Metis uses a data partitioning scheme
to achieve good locality for individual Map and Reduce
computations, and adopts key sampling from sophisti-
cated sorting algorithms (e.g., [14]). The main contribu-
tion of Metis is what data structure to use when, by pro-
viding insight in the structure of the workloads induced
by MapReduce applications. These insights result in sub-
stantial performance improvements for MapReduce ap-
plications and are likely to be important for any MapRe-
duce implementation, as processors with large number of
cores become prevalent.

Pavlo et al. compared Hadoop with databases im-
plementations for the data center [9], and conclude that
MapReduce implementers can learn much from database
implementers. In this respect, Metis’s contributions is
similar: databases support efficient group-by operators
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and that is important for certain MapReduce applications
too.

A number of implementations extend or augment the
Google’s MapReduce model. Lämmel [7] describes an
implementation of MapReduce in Haskell. Map-Reduce-
Merge [2] adds an additional Merge step after Reduce
to facilitate the joining of datasets output by different
MapReduce jobs. Hadoop [15] is open-source and im-
plemented in Java, and, as mentioned earlier, optimizes
for the switch topology. Dryad [6] generalizes MapRe-
duce into an acyclic dataflow graph. Mars [5] extends
MapReduce to graphics processors.

MapReduce has been augmented with languages to
make it even easier to program. For example, Google
Sawzall [10] and Yahoo! Pig [8]. DryadLINQ [16] is a
high-level language for programming Dryad in LINQ, a
language for specifying queries.

Several papers have looked at scaling systems on mul-
ticore computers. Gough et al. [4] show how carefully
organizing the fields of C structures can reduce both false
sharing and cache line bouncing in the Linux kernel.
Others have looked at special runtimes (e.g., McRT [12])
and operating systems (e.g., Corey [1]) to scale systems
well with many core processors. Yet others have pro-
posed special hardware-based features (e.g., Synchro-
nization State Buffer [17]) to achieve good performance.
Our work is in the same spirit, but tailored to MapRe-
duce applications on commodity hardware and operating
systems.

8 Summary

This paper studies the behavior of MapReduce on com-
modity multicore processors, and proposes the Metis li-
brary. The paper’s main insight is that the organiza-
tion of the intermediate values produced by Map invo-
cations and consumed by Reduce invocations is central
to achieving good performance on multicore processors.
Metis stores these intermediate values using an efficient
data structure consisting of a hash table per Map thread
with a b+tree in each hash entry. As a result, Metis can
achieve better performance than Phoenix on MapReduce
applications that interact with the library frequently (e.g.,
applications with many keys).

We have found Metis useful in practice, using it on our
16-core computers for counting and sorting gigabytes of
data generated as part of another research project. As
computers with more cores become prevalent, we hope
that others will find Metis useful too. We will make the
code for Metis publicly available.
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