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Abstract  

Prions are proteins that can access multiple conformations, at least one of which is β-sheet rich, infectious 

and self-perpetuating in nature. These infectious proteins display several remarkable biological activities, 

including the ability to form multiple infectious prion conformations (also known as strains or variants) 

that encode unique biological phenotypes, and the ability to establish and overcome prion species 

(transmission) barriers. In this review, we highlight recent studies of the yeast prion [PSI+], using various 

biochemical and structural methods, that have begun to illuminate the molecular mechanisms by which 

self-perpetuating prions encipher these biological activities. We also discuss several aspects of prion 

conformational change and structure that remain either unknown or controversial, and propose 

approaches to accelerate the understanding of these enigmatic, infectious conformers.  
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Introduction 

The “misfolding” and assembly of proteins into β-sheet rich, amyloid fibers is important in both 

disease1 and normal biological function.2,3 Although many proteins form amyloid fibers in vitro, 

understanding the biological relevance and consequences of this process in vivo is difficult. Prions are one 

class of naturally occurring, amyloid-forming proteins that have received much attention.3-10 The first 

prion protein, PrP, was identified in mammals as an infectious agent responsible for several related 

neurodegenerative diseases, known collectively as the spongiform encephalopathies.8,10 How a protein 

could be infectious was a complete mystery until it was discovered that the protein in question was  a 

normal constituent of the brain that simply changed its conformation from an α-helical to a β-sheet form 

to become infectious.8-10 Once this conformation appears in the brain – due to contamination by infectious 

material, spontaneous conversion or mutation-induced misfolding – it is self-templating, converting more 

and more PrP to the infectious form and wrecking havoc in the brain as it does so.8-10 Even so, it took 

many years for the “protein-only” mechanism of prion transmission to be accepted.  

The discovery of a similar process operating in yeast cells, where it could be investigated more 

readily due to the ease of genetic manipulation, was an important factor in winning this battle.11-13 The 

prions of yeast and other fungi consist of completely different proteins whose sequences are unrelated to 

their mammalian counterparts.3,4,6,11 Moreover, fungal prions are generally not deleterious and can even 

be beneficial.3-7 They serve as heritable elements, producing stable new phenotypes due to a profound 

change in protein conformation that is self-templating and transmissible from mother to daughter 

cells.3,4,6,11 Indeed, the recent proposal of a prion-like mechanism for the perpetuation of synapses and 

neuronal memories,14 as well as a host of new prions with diverse functions in yeast,15,16 indicates that 

prions will prove vitally important in many organisms. 

An important similarity between mammalian and yeast prions is that they form not just one prion 

conformation, but a collection of structurally related yet distinct conformations, known as prion strains.17-

23 For example, mice infected with prions from diverse animal origins manifested different patterns of 
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disease and these could be stably passed from mouse to mouse.24-28 Although a seemingly obvious 

explanation was distinct viral strains, an explanation independent of nucleic acid emerged as evidence 

mounted that these different diseases traced to different (yet related) self-templating folds of the same 

protein, PrP.24-28  Similarly, for yeast prions, unique protein folds produce a suite of distinct (yet related) 

prion phenotypes.17-19 

Another critically important feature shared by mammalian and fungal prions is the species 

barrier.9,24,25,29-38 The aforementioned prion strains display extremely low prion infectivity when  

introduced into mice, yet once these mice succumbed to disease, mouse-to-mouse transmission was 

extremely efficient.  Yeast prions also exhibit strong species barriers that can be crossed, but with 

difficulty.28-32,34,35,39-41 Remarkably, for both mammals and yeast, prion strains and species barriers are 

interrelated.4,8,9,24,26,27,29,37,40  

To decipher the complexities of these problems in vivo, it is necessary to analyze the biochemical 

properties of these proteins. Unfortunately, forming highly infectious mammalian prion conformers in 

vitro from recombinant protein has been difficult (for recent progress, see refs 42,43). In contrast, bona fide 

highly infectious fungal prion conformers can be readily formed in vitro,18,19,44-46 allowing a more 

thorough characterization of their assembly process and amyloid structure, which will be reviewed here.  

Known and Potential Fungal Prions 

The most well studied fungal prion proteins are Sup35, Ure2, Rnq1 and HET-s.3-7 Sup35 is a 

protein involved in recognition of stop codons during protein synthesis (Figure 1). Conversion of Sup35 

from its soluble non-prion state, [psi-], to its aggregated prion state, [PSI+], causes reduced termination 

activity.12,47,48 This results in increased read-through of stop codons and reveals complex phenotypes that, 

in some cases, are beneficial.49-51 Ure2 is an inhibitor of Gln3, a transcription factor that represses genes 

involved in metabolizing poor nitrogen sources when better ones are present.3-7,52 When Ure2 switches 

from it soluble non-protein state, [ure-o], to its aggregated prion state, [URE3], the activity of Ure2 is 

impaired. This causes the uptake of poor nitrogen sources in the presence of good ones.11 Rnq1 has no 
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known function except to influence the rate that other prion proteins such as Sup35 can access their prion 

conformations.17,53-57 This activity manifests itself when Rnq1 is in its prion state, [RNQ+]. HET-s is a 

prion protein, which is unique from the other fungal prions since it is not rich in glutamine and asparagine 

residues, that exists in the filamentous fungus Podospora anserina and is involved in heterokaryon 

incompatibility.58,59 To prevent fusion of fungal strains with different genomes, approaching P. anserina 

colonies undergo trial fusion to test for polymorphisms at a dozen loci. When the HET-s prion protein 

switches from its soluble non-prion state, [Het-s*], to its aggregated prion state, [Het-s], the insoluble 

prion protein facilitates programmed cell death for certain incompatible fusions through an unknown 

mechanism.  

An intriguing question is how many more fungal prions are there? Four additional yeast prions 

have been unambiguously identified recently ([SWI+]15, [MOT3+]60, [MCA]61 and [OCT+]62), and several 

other non-Mendelian phenotypes in S. cerevisiae,63-65  S. pombe66 and  P. anserine67 may be prion-based 

as well. Many potential prions have been identified by genome-wide analysis of yeast and other 

organisms for proteins of similar sequence composition to the known yeast prions.60,68 Also, the fact that 

P. anserina prion HET-s (and PrP for that matter) are not rich in glutamines and asparagines suggests 

there may be other such prions.  

Fundamentals of the [PSI+] prion 

Herein we highlight recent studies of Sup35, the most intensely studied yeast prion. Sup35 

contains an N-terminal domain rich in uncharged, polar residues (Figure 1). This domain is natively 

unstructured and governs prion formation. It contains 5.5 imperfect, oligopeptide repeats 

(PQGGYQQYN) reminiscent of the 5 oligopeptide repeats in PrP (PHGGGWGQ).69-72 The highly 

charged, middle (M) domain has a strong solubilizing activity and promotes the non-prion state.3-7 

Together these domains (NM) govern Sup35’s ability to exist in two states, namely prion (amyloid) and 

non-prion (soluble) conformers.73 The C-terminal folded domain contains its translation termination 

activity.3-7 
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 By ingenious interpretation of diverse genetic experiments, Reed Wickner suggested that Sup35 

(and also Ure2) might cause heritable phenotypic change via some sort of “protein only” mechanism.11,47 

Subsequent genetic, biochemical, and cell biological work by others proved it true and established elegant 

mechanisms by which it worked.73-76  Differential sedimentation studies provided critical initial evidence 

that Sup35, in an aggregated state, enciphers the [PSI+] phenotype. Sup35 from [PSI+] yeast lysates 

localizes to the pelleted fraction, while in [psi-] lysates it remains in the supernatant.13,77 These studies 

were strengthened by the fact that transient expression of Hsp104, a protein disaggregase, switch cells 

from the prion to the non-prion state heritably, and when it did so the aggregates of Sup35 

disappeared.74,75 Expression of GFP-tagged NM allowed monitoring of Sup35 dynamics in living cells.76 

In [psi-] yeast the fluorescence was diffuse. But in [PSI+] yeast it was captured into pre-existing prion 

foci. Other GFP proteins were not captured. Thus, Sup35 forms aggregates in the prion state that uniquely 

capture newly made Sup35 protein in vivo and convert it to the same aggregated state.76  

In vitro analysis of the assembly of purified Sup35 and fragments thereof revealed that these 

proteins have an intrinsic capacity to exist in two distinct states, one of which can template the other to 

change shape. Purified Sup35 self-assembles into amyloid fibers only after a considerable lag phase in 

vitro.78,79 But once these β-sheet rich fibers are formed, even a very small amount of fibers is extremely 

efficient at “seeding” (i.e., templating) soluble Sup35 to assemble into the same amyloid fiber state. 

Lysates from [PSI+] cells have this same seeding capacity, but not lysates from [psi-] cells.77  And mutants 

which hasten or hindered prion propagation in vivo have the same effect on the in vitro assembly 

reactions.80 Thus, this self-perpetuating conformational conversion of protein from one functional state to 

a profoundly different state explained the molecular nature of prion inheritance.  This was confirmed 

when the prion domain of Sup35 was transferred to a completely different protein, the glucocorticoid 

receptor, and converted that protein to a prion with all of the genetic and biochemical behavior of 

Sup35.81 
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The gold standard for verifying this hypothesis is to start with recombinant protein, assemble it 

into amyloid fibers in vitro, purify and introduce these fibers into the host organism and demonstrate that 

they induce the prion phenotype. This hypothesis was first confirmed for HET-s,44 but was soon 

demonstrated for Sup35,18,19 as well as for other fungal prions.45,46,60 In each case, the amyloid 

conformation was capable of inducing the prion phenotype, while the soluble protein did not do so above 

background rates of spontaneous prion formation.   

Prion Amyloid Structure 

Peptide Amyloids 

For years the arrangements of amino acids within prion amyloids has been fiercely debated.82-84 

The structures of insoluble amyloids are poorly defined since they are typically refractory to analysis by 

X-ray diffraction and conventional solution NMR. An important recent breakthrough is that two short 

overlapping peptides from the extreme N-terminus of Sup35 (residues 7-13 and 8-13) were crystallized 

and their structures have been studied both by X-ray diffraction85 and solid state NMR.86 The β-strands 

are oriented perpendicular to the long axis of the crystals (Figure 2a), as expected for amyloids. The key 

finding, however, is that two β-sheets bond together in a self-complementing “steric zipper”. Instead of 

opposing side chains hydrogen bonding with each other, they interdigitate with an extraordinary degree of 

geometric complementarity that excludes water and stabilizes the structure via van der Waals interactions. 

The outer faces of the two sheets are highly hydrated and may prevent lateral fiber growth. Short peptides 

(4-12 residues) from several other amyloid-forming proteins have now been crystallized as well and also 

show steric zipper structures.87 Importantly, interdigitated dry interfaces observed in these structures may 

explain the remarkable stability of amyloids observed both in vitro and in vivo. However, no peptide 

crystals by themselves have biological activity (e.g., induction of [PSI+] using the protein transformation 

method18,19). Thus, while they provide a fascinating view of the nature of amyloid interfaces, they are 

unlikely to be the actual infectious prion interface.   

Sup35 amyloids 
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 The structural analysis of amyloids assembled from full-length proteins such as NM is extremely 

challenging and there is tremendous controversy over the proposed structures.88-90 One prominent model 

is the in-register parallel β-sheet (Figure 2b).89,90 The crux of this model is that each monomer forms an 

accordion pleat, with each residue in the amyloid core stacked on top of an identical residue from a 

different molecule, resulting in one molecule per 4.7 Å in the axial direction. Regions not involved in the 

amyloid core are expected to decorate the surface as loops or pendent chains.  

Three principal experiments support the relevance of this structural model. First, mass-per-unit 

length measurements of amyloids formed from a fragment of NM (residues 1-61) revealed approximately 

one molecule per 4.7 Å,91 consistent with the in-register parallel β-sheet model. Second, the sequence of 

the N domain of Sup35 was scrambled in multiple ways and all were able to induce and propagate 

prions.92 Since self-stacking of identical residues would be unaffected by scrambling (i.e., a residue can 

stack on itself regardless of the identity of neighboring residues), these results appear to support the 

parallel β-sheet model. However, the induction frequencies appeared much lower than observed 

previously for wild-type Sup35 (the wild-type control was not reported). Reduced prion infectivity could 

be due to the fact that self-stacking is influenced by neighboring residues and parallel β-sheet structures 

require specific sequences to form efficiently. Alternatively, the parallel β-sheet model could be incorrect.  

 The third line of evidence that has been cited in support of the parallel in-register model comes 

from solid state NMR analysis of NM amyloids.89 Four amino acids (phenylalanine, tyrosine, leucine and 

alanine) were separately 13C labeled. Using a recoupling method to selectively probe 13C-13C separation 

distances, the number of labeled residues within 5 Å was measured to determine which residues are in β-

sheets. Since most of these residues do not neighbor identical residues, close proximity between labels 

must be due to intramolecular or intermolecular structure. For NM amyloids most tyrosine and leucine 

residues were within 5 Å (>85%), while a smaller fraction of phenylalanine and alanine residues (<65%) 

were in such close proximity. Shewmaker et al. argue that the close proximity of many residues in both 

the N and M domains is most consistent with the in-register parallel β-sheet model.89  
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 Another prominent model for amyloid structure of NM and other proteins is the β-helix (Figure 

2c).84,88 Crystal structures of globular β-helical proteins provide some insight into this model.84,93 For 

example, a single rung of a β-helix typically has ~10-20 residues. Moreover, there is a central pore inside 

the helix that prevents close contact of β-sheets. Therefore, the β-helix model makes two predictions 

about NM fiber structure: 1) if the amyloid core is long enough to form more than two rungs, then some 

residues within the core will not be in intermolecular contact and 2) there would not be a 8-10 Å 

reflection in the X-ray diffraction pattern since β-sheets parallel to the fiber axis are not in close contact.  

Results from two studies are consistent with these predictions.88,94 First, an exhaustive cysteine 

scanning mutagenesis study was used to probe NM amyloid structure.88 Since NM is devoid of cysteines, 

37 single cysteine mutations were introduced throughout its sequence to facilitate site-specific attachment 

of diverse biochemical probes. Importantly, the cysteine mutations did not influence the rate of amyloid 

polymerization in vitro or the fidelity of prion propagation in vivo. To access the degree of solvent 

accessibility of each cysteine residue, two methods were used. First, monomeric NM cysteine mutants 

were labeled with fluorescent dyes sensitive to the degree of solvent exposure and then assembled into 

fibers. As a complementary approach, single cysteine mutants were assembled into fibers and then labeled 

with fluorescent dyes.  For NM monomers labeled with environmentally sensitive fluorophores and then 

assembled into fibers at 25oC, a contiguous, solvent-shielded amyloid core that encompasses most of the 

N domain (residues 21-121) was found. The post-assembly labeling results revealed a smaller amyloid 

core (residues 2-73 were <50% solvent accessible); the difference between these results needs to be 

resolved. In any case, given the length of this amyloid core (at least 70 amino acids), a β-helix structure 

would predict more than two rungs. Therefore, it is expected that the central residues in the amyloid core 

would not be in intermolecular contact, a very different situation than predicted by the in-register parallel 

β-sheet model.  

Indeed, in the same study analysis of the intermolecular proximity of identical residues within 

NM fibers suggests that not all of the amyloid core is in self-contact.88 Single cysteine mutants were 
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labeled with fluorophores sensitive to inter-dye spacings prior to assembly into amyloid fibers. Two 

regions within the N domain (~residues 20-40 denoted as the “head” and 90-110 denoted as the “tail”) 

were in close self-intermolecular contact (4-10 Å), while the intervening region (~residues 40-90) and the 

M domain were not.  

One concern about the pyrene excimer analysis is the use of large fluorescent probes and their 

potential influence on local amyloid structure. Importantly, an additional independent method using 

smaller probes in the form of bifunctional, cysteine-reactive cross-linkers also supports the β-helix 

model.88 Cross-linking monomeric cysteine mutants in the head region (~residues 20-40) produced NM 

dimers that greatly accelerated amyloid formation, while cross-linking in the tail region (~residues 90-

110) did not alter the rate of amyloid assembly. However, cross-linking the intervening region (~residues 

40-80) inhibited amyloid formation, again suggesting that only a subset of residues in the amyloid core 

form intermolecular contacts. These and other results appear to be most consistent with the β-helix 

model;88 two regions are in self-intermolecular contact, while the intervening region forms intramolecular 

contacts.  

X-ray diffraction analysis of NM amyloids reveals that the reflection at 8-10 Å may be an artifact 

of drying the fibers.94 For fibers of both N and NM, two reflections (4.7 and 8-10 Å) were observed for 

dried fibers but only one (4.7 Å) for hydrated fibers. The absence of the equatorial reflection suggests that 

hydrated NM amyloids are devoid of closely stacked β-sheets in the direction parallel to the fiber axis. 

This observation led to Kishimoto et al. to first propose the β-helix model for NM amyloid structure.94 

However, this study is controversial since the diffraction pattern is much weaker for the hydrated samples 

and may limit detection of the equatorial reflection.95 

To reconcile these dissimilar models of NM prion structure (i.e., in-register parallel β-sheet vs β-

helix), it is essential to employ independent methods of amyloid structural analysis. Indeed, a recent 

heroic study of NM fiber structure using hydrogen/deuterium (H/D) addresses some discrepancies 

between these models.96 Mature NM amyloids were exposed to deuterium, dissolved in DMSO and the 
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degree of H/D exchange was probed by solution NMR. Like solid state NMR, this approach is time 

consuming and technologically challenging given the highly degenerate sequence of NM. While no 

specific structural model is proposed in this study, the NM amyloid core that formed at 37oC 

encompassed residues ~5-70. This is remarkably similar to the amyloid core (residues 2-73) identified by 

the much simpler cysteine accessibility studies for NM fibers that form at 25oC (fibers formed at 25 and 

37oC have similar thermal stabilities19 and apparently similar structures).88 That fact that these two 

disparate methods give such similar results is a significant accomplishment in the controversial field of 

amyloid structural analysis. Moreover, these results suggest that analysis of cysteine accessibility in prion 

amyloids is a powerful and straight-forward approach for identifying which residues are within the 

amyloid core. Finally, both results differ significantly from the residues predicted to be structured in β-

sheets by solid state NMR results (most of residues 1-123 and a portion of residues 124-253).89 The lack 

of agreement may be due to the inability of solid-state NMR to discriminate between β-sheets with 

different stabilities, while labeling methods (H/D exchange and alkylation of cysteines) may be capable of 

such discrimination since highly stable β-sheets are labeled more slowly than less stable β-sheets.  

How can controversies regarding different Sup35 structural models be resolved? Site- and 

segment-specific labeling methods appear to hold the key. Until structural properties of individual amino 

acids or small segments of amino acids within prion amyloids are studied in a systematic manner, it is 

unlikely that a single structural model will emerge from this controversy. For solid state NMR studies, 

single positions within proteins could be 13C or 15N labeled by introducing mutations encoding residues in 

the Sup35 prion sequence not naturally present (e.g., tryptophan) and using expression media with only 

these amino acids isotopically labeled. Moreover, 13C or 15N labeled peptide segments could be 

introduced into otherwise unlabelled Sup35 protein using inteins or other ligation methods.97,98 Finally, 

use of side-chain specific reagents that covalently modify proteins,99 even reagents other than cysteine-

reactive molecules,100 coupled with NMR or mass spectrometry stand to make important contributions for 

resolving these controversies.  
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Prion Strains  

 One of the most perplexing aspects of prions is their ability to form different structural strains.17-23 

Prion proteins have long been speculated to access not only one infectious amyloid conformation, but a 

suite of related yet distinct, self-perpetuating conformations, that encode different biological 

phenotypes.101 Recently this was demonstrated unequivocally by transforming yeast with NM amyloids 

with different physical properties and demonstrating that they produce distinct phenotypes.18,19 An 

enabling breakthrough in this study was that different NM amyloid conformations could be formed 

simply by assembling fibers at different temperatures (e.g., 4 vs. 25oC).19 Tanaka et al. demonstrated that 

there are gross structural differences between the two populations of fibers by measuring differences in 

their stabilities (e.g., fibers formed at 4oC melt at lower temperatures than those formed at 25oC).19 When 

amyloids formed at 4oC were transformed into yeast, they generally produced a relatively high degree of 

read-through of stop codons and, hence, a strong [PSI+] phenotype. Conversely, transformation of yeast 

with amyloids formed at 25oC encode a lower degree of read-through and a weak [PSI+] phenotype.  

 This elegant protocol to form different prion strains has led to several studies of their structural 

differences.19,40,88,96 Krishnan and Lindquist found two important differences in the structures of NM 

amyloids formed at 4oC and 25oC.88 First, single cysteine NM mutants labeled with dyes whose 

fluorescence depends on solvent exposure prior to assembly revealed that there are many fewer residues 

in the amyloid core for fibers formed at 4oC (~residues 31-86) than for those formed at 25oC (~residues 

21-121). The smaller amyloid core for the 4oC fibers is consistent with their lower melting temperature 

and higher propensity to be fragmented in vitro relative to 25oC fibers.19,102 Second, the location of one of 

the intermolecular contact regions is strongly shifted while the other is somewhat shifted.88 For both 

amyloid conformations, residues ~20-40 (head region) form an intermolecular contact. An additional 

contact is seen at the extreme N-terminus for 25oC fibers. However, the second intermolecular contact 

(tail region) encompasses residues ~80-100 for 4oC fibers and ~90-110 for 25oC fibers.  
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Are differences in the intermolecular contacts sufficient to determine the formation of unique 

prion strains? If so, cross-linking NM proteins in the head and tail regions should bias formation of 

different strain conformations in a manner independent of the temperature at which they nucleate. Indeed, 

cross-linking NM proteins in the head region yields dimers that form strong prion strains regardless of the 

nucleation temperature (4 or 25oC).88 Conversely, cross-linking NM proteins in the tail region yields 

dimers that form weak strains regardless of the nucleation temperature.88 The fact that it is the nature of 

the intermolecular contact that determines the nature of the strain explains how these properties can be 

self-perpetuating, because strains are propagated from the templating surface. Similar analysis for other 

prions will determine the generality of these exciting insights into prion strain nucleation.   

 Encouragingly, several of these structural insights have been confirmed by an independent 

method of amyloid structural analysis, namely hydrogen/deuterium (H/D) exchange coupled with solution 

NMR.96 Residues ~4-40 were most protected for the 4oC fibers, while residues ~4-70 were most protected 

for the 37oC fibers. These results are qualitatively similar to those obtained by labeling NM cysteine 

mutants with acrylodan prior to assembly.88  

 An extensive mutagenesis study recently strengthened the idea that prion strain variation is due to 

differences in the size of the amyloid core.103 King and coworkers systematically introduced mutations 

(proline substitutions or glycine insertions) that destabilize amyloid structures throughout the prion 

domain of Sup35. Interestingly, they found that mutations in largely continuous peptide segments 

prevented prion propagation in vivo, and that three prion strain variants displayed unique stretches of 

amino acids (ranging from as small as residues 7-21 to as large as residues 5-55) that could not be 

mutated without causing loss of the prion state.  

A common theme of the Sup35 prion strains studied to date is that they display relatively large 

structural variations (e.g., regions shielded by solvent differ by more than 10 residues). However, 

Eisenberg and coworkers recently illuminated more subtle structural changes (that do not require 

significant changes in solvent exposure) that may also contribute to the unique biological properties of 
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strain variants.87 Through careful analysis of steric zipper structures of several short peptide fragments (4-

12 residues) from different amyloid-forming proteins (e.g., Su35, PrP, and Aβ), several arrangements of 

peptides in amyloid-like conformations were identified. Eight different steric zipper structures are 

expected based on the possible permutations of the orientation of peptides within each β-sheet (parallel or 

anti-parallel) and how peptides in different β-sheets are oriented relative to each other. Interestingly, not 

only did Eisenberg and co-workers experimentally confirm that at least five out of the eight steric zippers 

can form, but also that individual peptide fragments from Sup35 (8NNQQ11) and other amyloid-forming 

proteins also can form multiple types of steric zippers (Figure 4). Unfortunately, the large structural 

differences observed for different Sup35 prion strains88,96 cannot be mapped on these small peptides. 

However, the diversity of the structures provides a fascinating glimpse into the nature and variety of prion 

amyloid packings and polymorphic structures. Analysis of the biological role of steric zippers in the 

context of larger polypeptides with known prion activities is an exciting area of future research.  

Prion Species Barriers 

Elucidating how prions establish and overcome species barriers is a key pursuit in the field of 

prion biology. An important molecular determinant of species barriers is the primary sequence of prions. 

For example, this was illuminated through the study of Sup35 prions from the yeast species S. cerevisiae 

(Sc), C. albicans (Ca) and P. methanolica (Pm).31 Each protein efficiently formed self-perpetuating prions 

when overexpressed, but none cross-catalyzed conversion of the same proteins from the other species. 

The species barrier between the NM domains of S. cerevisiae (ScNM) and C. albicans (CaNM) was 

confirmed in vitro; amyloid fibers of ScNM could template polymerization of ScNM, but not for CaNM, 

and vice versa.31 This and other studies29-35,39 established the utility of studying prion species barriers in 

yeast.   

Surprisingly, much can be learned about how prions establish and overcome species barriers 

using libraries of immobilized, short peptide fragments.41 Overlapping peptides (20mers) that encompass 

the entire sequence of ScNM and CaNM were arrayed on glass slides, and used to interrogate the role of 
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both prion sequence and structural variation on the ability of prions to overcome species barriers. 

Fluorescently-labeled ScNM and CaNM proteins each bound to a small set of their own peptides (ScNM 

residues 9-39 and CaNM residues 59-86; Figure 5). Importantly, they did not cross-react with eachother.41 

The amino-acid sequences bound by each protein were named “recognition elements”. Closer inspection 

of this binding revealed that each prion protein nucleated into amyloids upon binding to peptides in their 

own recognition elements. Moreover, the specificity of binding of each prion protein suggests that the 

species barrier is enciphered by small elements of primary sequence. Indeed, a Sc/Ca NM chimeric prion 

capable of traversing this species barrier bound to peptides from both species, unlike either ScNM or 

CaNM proteins.41  

Prion species barriers are also highly dependent on the conformational diversity of prion 

strains.4,8,9,24,26,27,29,37,40 It is likely that mammalian prions were transmitted from cattle to humans through 

a specific, highly infectious prion conformation.8,9,24,26,27,37 This fascinating interdependence has recently 

been interrogated in yeast.29,30,40 The Sc/Ca NM chimera can form different amyloid conformations with 

unique propensities to cross species barriers by simple manipulations such as altering the temperature at 

which they assemble.29,30 One conformation of the chimeric prion is specific for infecting S. cerevisiae, 

while the other conformation is specific for infecting C. albicans. Using peptide microarrays the 

molecular origins of this behavior were elucidated. The chimeric prion bound selectively to peptides in 

the ScNM sequence at 15oC. In contrast, it bound selectively to CaNM peptides at 37oC. These and 

related results show remarkable correspondence to the species-specific seeding activities of the two 

chimeric strains.29 Selective binding of the chimera to CaNM peptides at 37oC reflects the assembly of 

chimeric amyloids that selectively infect C. albicans. And the selective binding of the chimeric prion to 

ScNM peptides at 4oC reflects the assembly of prion amyloids that selectively infect S. cerevisiae.  These 

results indicate it is nucleation at the recognition elements that regulates formation of an amyloid 

conformation that will perpetuate seeding specificity for the same recognition sequence.  

Prion Nucleation and Oligomerization  



15 

 

As discussed above, prion nucleation is the basis for multiple facets of prion strains and species 

barriers. An important aspect of nucleation is the context, namely the oligomerization state, during which 

conformational change occurs. Serio et al. first identified that NM forms spherical, structurally-fluid 

oligomeric structures during amyloid assembly.104 These oligomers were observed initially by AFM and 

TEM, 104 and later by dynamic light scattering.105 Several different lines of evidence established that these 

oligomers were on pathway for amyloid formation (for a conflicting report, see ref 106).104,107 Nucleation 

through the formation of specific intermolecular contacts within molten oligomers provided a completely 

different explanation for the lag phase in the assembly of this polypeptide than previously established for 

the assembly of actin and tubulin,108 and solved the Levinthal paradox for protein folding104,109 of 

amyloidogenic proteins. This protein folding paradox states that finding the global energy minimum and 

finding it quickly are mutually exclusive. For a large unstructured protein like NM, it appears that folding 

in the context of oligomers leads to acceleration of proper amyloid folding pathways while limiting 

sampling of other pathways, yielding specific amyloid conformations on biologically relevant time scales.  

Importantly, since this initial report, other prions and many other amyloid-forming proteins have 

been found to nucleate via very similar oligomeric intermediates,13,46,110-115 and these intermediates are 

widely posited to be the key toxic species in numerous protein misfolding diseases.111,112,116,117 

Remarkably, a conformationally-specific antibody initially developed to recognize oligomeric 

intermediates to the Aβ peptide recognizes NM oligomers,112,118 as well as oligomeric intermediates 

formed by several other proteins.112 This antibody inhibits amyloid formation of both NM and full-length 

Sup35,107 confirming that NM oligomers are an obligate structural intermediate in the nucleation of 

infectious prion conformers. Nevertheless, very little is known about these structures, and elucidating 

their dynamic structural evolution during nucleation is an important pursuit in coming years. Single 

molecule approaches for studying protein nucleation, such as those used to study NM119 and polyQ120, are 

well suited for such studies.  

Conclusions and Perspectives 
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 The biochemical analysis of yeast prions has produced many important findings that have shed 

light on their enigmatic properties. However, much remains unknown about these captivating proteins. 

Understanding how prions nucleate into infectious amyloid conformers is critical to unlock unanswered 

questions about prion strains and species barriers. Advances in amyloid structural analysis should enable 

new insights into the molecular basis of prion strains and better definition of the extent of structural 

differences between different prion conformers. In turn, these structural insights will aid in further 

elucidating the molecular basis of how different prion strains have unique capacities to overcome prion 

species barriers. This analysis is not only relevant to prion biology, but also to the pathogenic role of pre-

amyloid (oligomeric) structures in many neurodegenerative diseases, where conversion to amyloid forms, 

with diverse strain properties, may be neuroprotective.121 Amyloid formation has also recently been 

shown to be the basis of melanin production in mammals,122 the basis of biofilm formation in 

microorganisms,123 and appears to play a role in long term memory in neurons.14 Finally, the recent 

discovery of several new prions,15,60-62 some of which confer strong beneficial trains in particular 

environments,60 and the realization that proteotoxic stress increases prion switching rates124 support the 

exciting hypothesis that prion amyloids severe as “bet-hedging” strategies, vastly increasing heritable 

phenotypic diversity.60 A whole new world of amyloid-based biology is unfolding before our eyes. Heroic 

efforts to solve the challenging problems these proteins present in the realm of protein folding will be 

well worth the effort.  

Acknowledgements 

We thank members of the Tessier and Lindquist labs for critical reading of this manuscript. PMT 

acknowledges financial support from the Alzheimer’s Association (NIRG-08-90967). SL acknowledges 

funding from NIH (GM25874) and the Howard Hughes Medical Institute.  



17 

 

Figure Captions 

Figure 1. Molecular basis of [PSI+] prion propagation. Isogenic Saccharomyces cerevisiae in the (A) 

[psi-] and (B) [PSI+] states. The protein determinant of [PSI+], Sup35, is (C) soluble and complexed to 

Sup45 in the [psi-] state and (D) insoluble and inactive in the [PSI+] state. The inactivation of Sup35 

causes read-through of stop codons and large phenotypic changes, some of which are beneficial.49-51 (E) 

Molecular architecture of Sup35. (F) Primary sequence of the prion (N) domain of Sup35.  

 

Figure 2. Amyloid structures of prion peptides and proteins. (a) Crystal structure of 7GNNQQNY13, a 

7-mer peptide from the N-terminus of Sup35.85 The crystal structure reveals a high degree of geometic 

complementarity between opposing strands, which leads to exclusion of water at this interface and 

explains the stability of these amyloids. (b) In-register, parallel β-sheet model of NM amyloid structure 

based on solid-state NMR results.89 This model proposes that most of the residues in the N domain and 

some residues in the M domain self-stack (such as indicated residue, Y101). (c) β-helix model of NM 

amyloid structure.88 This model proposes that two amino acid segments in the N domain are in 

intermolecular contact, while the intervening region is intramolecular contact.  

 

Figure 3. Steric zipper structural variants of a Sup35 peptide fragment.  Crystal structures of the 

Sup35 peptide 8NNQQ11 in two of eight possible steric zipper structures.87 (a) Parallel β-sheet steric 

zipper structure where the faces of identical peptides in different β-sheets face each other and are both 

oriented upward. (b) Similar β-sheet steric zipper structure where the opposite faces of peptides in 

different β-sheets face each other and the orientation of peptides in the second β-sheet is down relative to 

the upward orientation of peptides in the first β-sheet.  

 

Figure 4. Species-specific infectivities of prion strains. A chimeric Sup35 prion, composed of N-

terminal and middle domains (collectively referred to as NM) of S. cerevisiae (Sc) and C. albicans (Ca) 
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Sup35, nucleates into two different prion amyloid conformations at different temperatures with species-

specific infectious properties. Peptide microarray analysis reveal that this prion has two small regions of 

primary sequence (recognition sequences) that regulate its nucleation behavior, one from Sc domain of 

this prion and the other from the Ca domain.41 Low temperatures favor nucleation from the Sc recognition 

sequence and generate an amyloid conformation specific for templating Sc Sup35 monomers.29,30 High 

temperatures favor nucleation from the Ca recognition element and generate an amyloid conformation 

with the opposite templating specificity.  
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Definition Box 1 

Prion protein   Any polypeptide that, in addition to its normal conformation (which is 
typically soluble), can access at least one conformation (which is 
typically β-sheet rich and insoluble) that is self-perpetuating and 
infectious 

Amyloid A highly stable structure composed of many protein monomers arranged 
into β-sheet rich fibrils such that the β-strands from different monomers 
stack perpendicular to the fibril axis 

Prion strains (variants) Distinct prion diseases or phenotypes that are caused by unique β-sheet 
rich conformations of infectious prion proteins with identical amino acid 
sequence  

Prion species barriers A phrase describing the inefficient transmission of infectious prions 
between different species     

Templating The process by which infectious prions catalyze the conformational 
change of proteins (that are typically identical in amino acid sequence) 
from their soluble, non-prion conformation to their insoluble, prion 
conformation 
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Figure 5. Tessier & Lindquist
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