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Abstract —While image alignment has been studied in different areas of computer vision for decades, aligning images depicting
different scenes remains a challenging problem. Analogous to optical flow where an image is aligned to its temporally adjacent
frame, we propose SIFT flow, a method to align an image to its nearest neighbors in a large image corpus containing a variety of
scenes. The SIFT flow algorithm consists of matching densely sampled, pixel-wise SIFT features between two images, while preserving
spatial discontinuities. The SIFT features allow robust matching across different scene/object appearances, whereas the discontinuity-
preserving spatial model allows matching of objects located at different parts of the scene. Experiments show that the proposed
approach robustly aligns complex scene pairs containing significant spatial differences. Based on SIFT flow, we propose an alignment-
based large database framework for image analysis and synthesis, where image information is transferred from the nearest neighbors
to a query image according to the dense scene correspondence. This framework is demonstrated through concrete applications, such
as motion field prediction from a single image, motion synthesis via object transfer, satellite image registration and face recognition.

Index Terms —Scene alignment, dense scene correspondence, SIFT flow, coarse-to-fine, belief propagation, alignment-based large
database framework, satellite image registration, face recognition, motion prediction for a single image, motion synthesis via object
transfer
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1 INTRODUCTION require objects to be salient, similar, with limited baakgnd

clutter.
Image alignment, registration and correspondence areatent | this work. we are interested in a new. higher level

topics in computer vision. There are several levels of stesia ¢ jnage alignment: aligning two images from different 3D
in which image alignment dwells. The simplest level, alfii scenes byt sharing similar scene characteristics. Image- al
different views of the same scene, has been studied for the i at the scene level is thus callsdene alignmentAs
purpose of image stitching [51] and stereo matching [84, jyystrated in Figure 1 (c), the two images to match may
in Figure 1 (a). The considered transformations are r&@btiv ;onain object instances captured from different viewtsin
simple €.g. parametric motion for image stitching and 1Dyaceq at different spatial locations, or imaged at difiére
disparity for stereo), and images to register are typicallsies The two images may also contain different quastitie
assumed to have the same pixel value after applying t§@opjects of the same category, and some objects present in
geometric transformation. ~one image might be missing in the other. Due to these issues
The image allgnmept pr_oblem becomes more complicatgeh scene alignment problem is extremely challenging.
for dynamic scenes in video sequencesy. optical flow geally, in scene alignment we want to build correspondence
estimation [12], [29], [38]. The correspondence betweea Wt the semantic level,e. matching at the object class level,
adjacent frames in a video is often formulated as an estimatis;;ch as buildings, windows and sky. However, current object
of a 2D flow field. The extra degree of freedom transitioningetection and recognition technigues are not robust entaigh
frp_m 1D in stereo to 2D in opt!cal flow mtrgdUC?S an adgetect and recognize all objects in images. Therefore, ke ta
ditional level of complexity. Typical assumptions in o@lic g gifferent approach for scene alignment by matching local,
flow algorithms include brightness constancy and piecewiggjient, and transform-invariantimage structures. Weettbpt
smoothness of the pixel displacement field [3], [8]. ~ semantically meaningful correspondences can be estadlish
Image alignment becomes even more difficult in the objeg{rough matching these image structures. Moreover, we want
recognition scenario, where the goal is to align differefy have a simple, effective, object-free model to align imag
instances of the same object category, as illustrated mr€ify pajrs such as the ones in Figure 1 (c).
(b). Sophisticated object representations [4], [6], [{8[{]  Inspired by optical flow methods, which are able to produce
have been developed to cope with the variations of objegénse, pixel-to-pixel correspondences between two images
shapes and appearances. However, these methods stiflitypicyroposeSIFT flow adopting the computational framework of
optical flow, but by matching SIFT descriptors instead of raw
e Ce Liu is with Microsoft Research New England, One Memorigv@ Pixels. In SIFT flow, a SIFT descriptor [37] is extracted at
Cambridge, MA 02142. Email: celiu@microsoft.com. _each pixel to characterize local image structures and encod
Jenny Yuen, Antonio Torralba and William T. Freeman are Witlyqniaxiyal information. A discrete, discontinuity predeg
the Computer Science and Artificial Intelligence LaborgfoMas- . . . . ! T
sachusetts Institute of Technology, Cambridge, MA 0213maiE flow estimation algorithm is used to match the SIFT descrip-
{jenny,torralba,billf @csail. mit.edu tors between two images. The use of SIFT features allows
robust matching across different scene/object appeasaarwk




(iii) Background clutter

(iv) High intra-class variations

(c) Scene level (scene alignment)
Fig. 1. Image alignment resides at different levels . Re-

searchers used to study image alignment problems at the pixel
level, where two images are captured from the same scene

scene alignment examples using SIFT flow with evaluations.
In Sect. 5, we show how to infer the motion field from a
single image, and how to animate a still image, both with
the support of a large video database and scene alignment.
We further apply SIFT flow to satellite image registratiodan
face recognition in Sect. 6. After briefly discussing how BIF
flow fits in the literature of image alignment in Sect. 7, we
conclude the paper in Sect. 8.

2 RELATED WORK

Image alignmenta.k.a.image registration or correspondence,
is a broad topic in computer vision, computer graphics and
medical imaging, covering stereo, motion analysis, video
compression, shape registration, and object recognittos.
beyond the scope of this paper to give a thorough review on
image alignment. Please refer to [51] for a comprehensive
review on this topic. In this section, we will review the ingag
alignment literature focusing on

with slightly different time or at different perspective [45] (a).
Recently, correspondence has been extended to the object
level (b) for object recognition [6]. We are interested in image
alignment at the scene level, where two images come from
different 3D scene but share similar scene characteristics (c).
SIFT flow is proposed to align the examples in (c) for scene
alignment.

(&) Whatto align, or the features that are consistent across
images.e.qg.pixels, edges, descriptors;

(b) Whichway to align, or the representation of the align-
ment,e.g.sparse vs. dense, parametric vs. nonparamet-
ric;

(c) How to align, or the computational methods to obtain

. o ) i ) alignment parameters.
the discontinuity-preserving spatial model allows maighof In addition, correspondence can be established between two

objects located at different parts of the scene. Moreover,irﬁages, or between an image and image models such as

coarse-to-fine matchmg sc_heme is designed to S|gn|f|canittly[15]_ We will focus on the correspondence between two
accelerate the flow estimation process. images

Optical flow is only applied between two adjacent frames | image alignment we must first define the features based

in a video sequence in order to obtain meaningful correspasly which image correspondence will be established: an image
dences; likewise, we need to define theighborhoodfor  measyrement that does not change from one image to another.
SIFT flow. Motivated by the recent progress in large imagg stereo [26] and optical flow [29], [38], the brightness
database methods [28], [43], we define the neighbors of SIE§nstancy assumption was often made for building the cor-
flow as the top matches retrieved from a large database. TRgpondence between two images. But soon researchers came
chance that some of the nearest neighbors share the sange sgefbalize that pixel values are not reliable for image miaigh
characteristics with a query image increases as the data to changes of lighting, perspective and noise [25].Ufeat
grows, and the correspondence obtained by SIFT flow can §gh as phase [21], filter banks [30], mutual informatior] [54
semantically meaningful. and gradient [11] are used to match images since they are more
Using SIFT flow, we propose an alignment-based largeliable than pixel values across frames, but they still tfai
database framework for image analysis and synthesis. Tdal with drastic changes. Middle-level representatianzhs
information to infer for a query image is transferred fronas scale-invariant feature transform (SIFT) [37], shapeed
the nearest neighbors in a large database to this query imggje[6], histogram of oriented gradients (HOG) [17] haveshe
according to the dense scene correspondence estimatedniyduced to account for stronger appearance changes, and
SIFT flow. Under this framework, we apply SIFT flow toare proven to be effective in a variety of applications such
two novel applicationsmotion prediction from a single static as visual tracking [1], optical flow estimation [10] and adije
image where a motion field is hallucinated from a largeecognition [37]. Nevertheless, little has been investiddor
database of videos, andotion transfer where a still image exploring features to establish correspondences at theesce
is animated using object motions transferred from a similgsyel.
moving scene. We also apply SIFT flow back to the regime of The representation of the correspondence is another impor-
traditional image alignment, such as satellite image teafien  tant aspect of image alignment. One can utilize the infoionat
and face recognition. Through these examples we demoastigitevery pixel to obtain a dense correspondence, or merely us
the potential of SIFT flow for broad applications in computesparse feature points. The form of the correspondence can be
vision and computer graphics. pixel-wise displacement such as a 1-D disparity map (sjereo
The rest of the paper is organized as follows: after revigwirand a 2-D flow field (optical flow), or parametric models
the related work in Sect. 2, we introduce the concept of SIFSLich as affine and homography. Although a parametric model
flow and the inference algorithm in Sect. 3. In Sect. 4, we shaan be estimated from matching every pixel [7], and a dense



Dimension index of SIFT features

correspondence can be interpolated from sparse matchtig [5..

typically, pixel-wise displacement is obtained througkeghi LQW#RM N

wise correspondence, and parametric motion is estimaeal fr U LTITTTL RG .

sparse, interest point detection and matching [46]. In betw .

i N son o oo oo ool RGHB
e sparse and dense representation is correspondence ‘T G

contours [33], [55], which has been used in tracking objecte: ——=——————+ =

and analyzing motion for textureless objects. The factthat :} ;1. h L 1k e

underlying correspondence between scenes is complicated a-Tf T T[T T T 7T e

unclear, and detecting contours from scenes can be uregliab
leads us to seek for dense, pixel-wise correspondencedoesc

alignment.
Estimating dense correspondence between two images is = ;
a nontrivial problem with spatial regulariti.e. the displace-
ments (flow vectors) of neighboring pixels tend to be similar
When the feature values of the two images are close and

temporally smooth, this displacement can be formulated as (c) ARGB image (d) Visualization of the SIFT image of (c)
a continuous variable and the estimation problem is often o _ o
reduced to solving PDE’s using Euler-Lagrange [11], [Zgrlg. 2. Visualization of SIFT images . To visualize SIFT

- . . images, we compute the top three principal components of
When the feature values are different, or other informatiafj-+ descriptors from a set of images (a), and then map these

such as occlusion needs to be taken into account, one g&fcipal components to the principal components of the RGB

use belief propagation [22], [49] and graph cuts [9], [31] tepace (b). For an image in (c), we compute the 128-d SIFT

optimize objective functions formulated on Markov randorfgature for every pixel, project the SIFT feature to 3d color space,

fields. The recent studies show that optimization tools sugfd Visualize the SIFT image as shown in (d). Intuitively, pixels
. . . . . with similar colors share similar structures.

as belief propagation, tree-reweighted belief propagadiod

graph cuts can achieve very good local optimum for these

optimization problems [52]. In [47], a dual-layer formudat

is proposed to apply tree-reweighted BP to estimate optical

flow fields. These advances in inference on MRF’s allow us

to solve dense scene matching problems effectively.

B
(b) RGB color space

(a) Top 3 principal components of SIFT
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(a) An image with horizontal step edge (b) Plot of image intensities of the blue line in (a)

Scene retrieval, parsing and recognition has become an
important research direction to understand images at the
scene level [39], [53]. Image representations, such asr colo
histograms [50], texture models [23], segmented regioA§ [1
GIST descriptors [39], bag of words [18] and spatial pyrasnid
[32], have been proposed to find similar images at a global e
level. _Common to all these represent_ations i_s the Iack_ of (e It component o th SIFT (d)PmmagcmmmesOmmdnm(c)x
meaningful correspondences across different image region image of (2)
and therefore, spatial structural information of imagesigeto Fig. 3. The resolution of SIFT images . Although histograms
be ignored. Our interest is to establish dense correspeederare used to represent SIFT features, SIFT images are able to
between images across scenes, an alignment problem that@gére image details. For a toy image with a horizontal step-

. L e in (a), we show the 1st component of the SIFT image in
be more challenging than aligning images from the same sc CQWe plot the slice of a horizontal line in (a) (blue) and (c) (red)

and aligning images of the same object category since we W|ghp) and (d), respectively. The sharp boundary in (d) suggests
all the elements that compose the scene to be aligned. @it SIFT images have high resolutions.

work relates to the task of co-segmentation [41] that treed t
simultaneously segment the common parts of an image par, THE SIFT FLOW ALGORITHM

and to the problem of shape matching [5] that was used inth§  panse SIFT descriptors and visualization
context of object recognition.

o
o

o
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SIFT is a local descriptor to characterize local gradient in
formation [37]. In [37], SIFT descriptor is a sparse feature
Inspired by the recent advances in image alignment argpresentation that consists of both feature extractioth an
scene parsing, we propose SIFT flow to establish the corgetection. In this chapter, however, we only use the feature
spondence between images across scenes. An early versioextrfaction component. For every pixel in an image, we divide
our work was presented in [36]. In this paper, we will exploriés neighborhoodd.g.16x16) into a4x4 cell array, quantize the
the SIFT flow algorithm in more depth and will demonstraterientation into 8 bins in each cell, and obtaidal x8 =128-
a wide array of applications for SIFT flow. dimensional vector as the SIFT representation for a pixel. W
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Fig. 4. The visualization of flow fields . We follow the way
in [2] to visualize a flow field: each pixel denotes a flow vector
where the orientation and magnitude are represented by the
huge and saturation of the pixel, respectively.

v [ Smoothness term on u

i Smoothness term on v

call this per-pixel SIFT descriptdIFT image

To visualize SIFT images, we compute the top three princ u %% Regularization term on v
pal components of SIFT descriptors from a set of images,
and then map these principal components to the princigadh. 5. Dual-layer Belief Propagation . We designed the
components of the RGB space, as shown in Figure 2. Thro;?}jective fu_nction of SIFT flow to be decoupled for horizontal
projecting a 128D SIFT descriptor to a 3D subspace, v&) and vertical (v) components.

are able to compute the SIFT image from an RGB imagghich contains adata term small displacement ternand

in Figure 2 (c) and visualize it in (d). In this visualization gmqothness terrfa.k.a.spatial regularization). Theata term

the pixels that have similar color may imply that they shafg gqn. 1 constrains the SIFT descriptors to be matched along

similar local image structures. Note that this project®omly \yith the flow vectorw(p). The small displacement terrin

for visualization; in SIFT flow, the entire 128 dimensiong arEgn. 2 constrains the flow vectors to be as small as possible

used for matching. _ o when no other information is available. Teamoothness term
Notice that even though this SIFT visualization may 100, Eqn. 3 constrains the flow vectors of adjacent pixels to be

blurry as shown in Figure 2 (d), SIFT images indeed ha\gmilar. In this objective function, truncated L1 norms ased

high spatial resolution as suggested by Figure 3. We designg poth the data term and the smoothness term to account for

an image with a horizontal step-edge (Figure 3 (a)), and shWaiching outliers and flow discontinuities, wittandd as the

the 1st component of the SIFT image of (a) in (c). Becauggreshold respectively.

every row is the same in (&) and (c), we plot the middle row e yse a dual-layer loopy belief propagation as the base

of (a) and (c) in (b) and (d), respectively. Clearly, the SIFfgorithm to optimize the objective function. Differenbfn

image contains a sharp edge with respect to the sharp edgg,#lysual formulation of optical flow [11], [12], the smooéss

the original image. _ _ term in Eqn. 3 is decoupled, which allows us to separate the

~ Now that we have per-pixel SIFT descriptors for tWayorizontal flowu(p) from the vertical flows(p) in message

images, our next task is to build dense correspondenceptgssing, as suggested by [47]. As a result, the complexity of

match these descriptors. the algorithm is reduced fro@(L*) to O(L?) at one iteration
_ o of message passing. The factor graph of our model is shown
3.2 Matching Objective in Figure 5. We set up a horizontal layerand vertical layer

We design an objective function similar to that of opticat with exactly the same grid, with the data term connecting
flow to estimate SIFT flow from two SIFT images. Similaixels at the same location. In message passing, we firsteipda
to optical flow [11], [12], we want SIFT descriptors to bentra-layer messages in and v separately, and then update
matched along the flow vectors, and the flow field to b@ter-layer messages betweerandv. Because the functional
smooth, with discontinuities agreeing with object bouregr form of the objective function has truncated L1 norms, we
Based on these two criteria, the objective function of SIBWfl use distance transform function [20] to further reduce the
is formulated as follows. Lep=(x, y) be the grid coordinate complexity, and sequential belief propagation (BP-S) [f2]
of images, andv(p) = (u(p), v(p)) be the flow vector ap. better convergence.
We only allowu(p) andv(p) to be integers and we assume
that there ard. possible states far(p) anduv(p), respectively. 3.3 Coarse-to-fine matching scheme
Lets; andsz be two SIFT images that we want to match. Set Despite the speed up, directly optimizing Egn. (3) using thi
contains all the spatial neighborhoods (a four-neighbstesy  dual-layer belief propagation scales poorly with respect t
is used). The energy function for SIFT flow is defined as: image dimension. In SIFT flow, a pixel in one image can
) literally match to any pixels in the other image. Suppose the
E(w) = ) min (Hsl(p) _82(p+w<p))|}1’t) + () image hash? pixels, then ~ h, and the time and space
P complexity of this dual-layer BP i®)(h*). For example, the

Zn(|u(p)| + \v(p)|) + (2) computation time forl45x 105 images with ar80x 80 search
p window is 50 seconds. It would require more than two hours
Z min <a|u(p) _ u(q)|,d> + to process a pair 0256 x 256 images with a memory usage
of 16GB to store the data term.

Q)€ :
(pajes To address the performance drawback, we designed a

min (Oé\v(P) - U(q)|7d>7 (3) coarse-to-fine SIFT flow matching scheme that significantly
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Fig. 6. Anillustration of coarse-to-fine SIFT flow matching on )

pyramid. The green square is the searching window for p, at Fig. 8. Coarse-to-fine SIFT flow not only runs significantly
each pyramid level k. For simplicity only one image is shown faster, but also achieves lower energies most of the time. Here
here, where p;, is on image s1, and c;, and w(p;) are on image We compare the energy minimized using the coarse-to-fine
s2. See text for details. algorithm (y-axis) and using the single-level version (x-axis)
by running them on 200 pairs of examples. The coarse-to-
fine matching achieves lower energy compared to the ordinary
matching algorithm most of the time.

to its neighborq, we first gather all other messages and data
term, and apply the routine in [20] to compute the message
from p to q assuming thag andp have the same offset and
range. The function is then extended to be outside the range
by increasinga per step, as shown in Figure 7 (a). We take
the function in the range thatis relative top as the message.
1 ‘ bbb For example, if the offset of the searching window feris
o 2 st 0, and the offset for is 5, then the message fromto q is
plotted in Figure 7 (c). If the offset of the searching window
Fig. 7. We generalized the distance transform function for for q is —2 otherwise, the message is shown in Figure 7 (b).
truncated L1 norm [20] to pass messages between neighboring Using the proposed coarse-to-fine matching scheme and
nodes that have different offsets (centroids) of the searching modified distance transform function, the matching between
window. two 256 x 256 images takes 31 seconds on a workstation with
improves the performance. The basic idea is to roughtlwo quad-core 2.67 GHz Intel Xeon CPUs and 32 GB memory,
' in a C++ implementation. Further speedup (up to 50x) can

estimate the flow at a coarse level of image grid, theﬁ]e achieved through GPU implementation [16] of the BP-S
gradually propagate and refine the flow from coarse to fin

The procedure is illustrated in Figure 6. For simplicity, aGIgorlthm since this algorithm can be parallelized. We éeav

we
(k) is as future work.

uses to represent bo}'f';l and s,. 'AEkJSrlll):T pyramid {5} A natural question is whether the coarse-to-fine matching
is established, where!") = s and s is smoothed and

: . scheme can achieve the same minimum energy as the ordinary
downsampled frons(*). At each pyramid levet, letp;, be the . .
coordinate of the pixel to match;, be the offset or centroid of matching scheme (using only one level). We randomly sedecte

the searching window, anet(px) be the best match from BP. 200 pairs of images to estimate SIFT flow, and check the

Ko MBI e st & [T 10 ST U oo e e
atps (cs —ps3) With sizemxm, wherem is the width (height) Y - fesp Y-

of s The complexity of BP at this level i@(m4). After 256 x 256 images, the average running time of coarse-to-

N fj IFT fl is 31 127 mi i
BP converges, the system propagates the optimized flowrvec{ge S ow is 31 seconds, compared to minutes in

4 .~ —"average for the ordinary matching. The coarse-to-fine sehem
w(ps) to the next (finer) level to be, where the searching L .

. . . : . . not only runs significantly faster, but also achieves lower
window of p, is centered. The size of this searching window . . . )
e . . . energies most of the time compared to the ordinary matching
is fixed to ben xn with n=11. This procedure iterates from ; - o . .

(3) 1) . ; . algorithm as shown in Figure 8. This is consistent with what
59 to s\ until the flow vectorw(p;) is estimated. The . . : o

. . ; . 1o has been discovered in the optical flow community: coarse-to
complexity of this coarse-to-fine algorithm @(h*logh), a

significant speed up compared@fh?). Moreover, we double fine search_not only speeds up computation but also leads to
. . ) etter solutions.

n and retaine andd as the algorithm moves to a higher IeverJ
of pyramid in the energy minimization. )

When the matching is propagated from an coarser levdf* Neighborhood of SIFT flow
to a finer level, the searching windows for two neighborintn theory, we can apply optical flow to two arbitrary images to
pixels may have different offsets (centroids). We modifg thestimate a correspondence, but we may not get a meaningful
the distance transform function developed for truncated Icbrrespondence if the two images are from different 3D
norm [20] to cope with this situation, with the idea illuged scenes. In fact, even when we apply optical flow to two
in Figure 7. To compute the message passing from pixeladjacent frames in a video sequence, we assume dense




sampling in time so that there is significant overlap between
two neighboring frames. Similarly, in SIFT flow, we define
the neighborhood of an image as the nearest neighbors when
we query a large database with the input. Ideally, if the
database is large and dense enough to contain almost every
possible image in the world, the nearest neighbors will be
close to the query image, sharing similar local structures.
This motivates the following analogy with optical flow:

Dense sampling in time : optical flow |:
Dense sampling in the space of all images : SIFT flow

As dense sampling of the time domain is assumed to enable ¥
tracking, dense sampling in (some portion of) the space of
world images is assumed to enable scene alignment. In order
to make this analogy possible, we collect a large database |
consisting of 102,206 frames from 731 videos, mostly from |
street scenes. Analogous to the time domain, we define the

“adjacent frames” to a query image as its N nearest neighbors (@) Original image (b) Image to match
in this database. SIFT flow is then established between thig. 9. For an image pair such as row (1) or row (2), a
query image and its N nearest neighbors. user defines several sparse points in (a) as “+". The human

For v im W fast indexing techni nnotated matchings are marked as dot in (b), from which a
Or a query image, we use a ias exing techniqué &y ssjan distribution is estimated and displayed as an ellipse.

retrieve its nearest neighbors that will be further alignethg  The correspondence estimated from SIFT flow is marked as “x”
SIFT flow. As a fast search we use spatial histogram matchimgb).

of quantized SIFT features [32]. First, we build a dictionar , |
of 500 visual words [48] by running K-means on 5000 SIF1:
descriptors randomly selected out of all the video frames i
our dataset. Then, histograms of the visual words are addainz o
on a two-level spatial pyramid [24], [32], and histograrrgm
intersection is used to measure the similarity between tw3
images. E *4 —SIFT flow 4
Other scene metrics such as GIST [39] can also be usg ¢ =rmmnonSEaadh
for retrieving nearest neighbors [35]. It has been repaitiad Radus r (poxets)
various nearest matching algorithms do not result in sigaifi Fig. 10. The evaluation of SIFT flow using human annotation.
difference in obtaining nearest neighbors for matching.[42 Left: the probability of one human annotated flow lies within r

distance to the SIFT flow as a function of r (red curve). For
comparison, we plot the same probability for direct minimum

0.8
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Stardard deviation of annotation (pixels)

L1-norm matching (blue curve). Clearly, SIFT flow matches
4 EXPERIMENTS ON VIDEO RETRIEVAL human perception better. Right: the histogram of the standard
4.1 Results of video retrieval deviation of human annotation. Human perception of scene

correspondence varies from subject to subject.
We conducted several experiments to test the SIFT flow

algorithm on our video database. One frame from each of ! ) ) ) N
the 731 videos was selected as the query image and histogf(&?ﬁ’laf:emem f"?ld’ visualized using the color-coding iguFe
intersection matching was used to find its 20 nearest neighbo 2], is shown in column ().

excluding all other frames from the query video. The SIFT Figure 11 shows examples of matches between frames
flow algorithm was then used to estimate the dense correspgfming from exactly the same (3D) scene, but different
dence (represented as a pixel displacement field) between ¥ifl€0 sequences. The reasonable matching in (1) and (2)
query image and each of its neighbors_ The best matches g@@qonstrates that SIFT flow reduces to classical Optical flow
the ones with the minimum energy defined by (3). AIignmerWhen the two images are temporally adjacent frames in a video
examples are shown in Figure 11-13. The original query imag@duence. In (3)—(5), the query and the best match are more
and its extracted SIFT descriptors are shown in columns @gptant within the video sequence, but the alignment atigari

and (b). The minimum energy match (out of the 20 neare&dn still match them reasonably well.

neighbors) and its extracted SIFT descriptors are shown inFigure 12 shows more challenging examples, where the two
columns (c) and (d). To investigate the quality of the pixdrames come from different videos while containing the same
displacement field, we use the computed displacementstype of objects. SIFT flow attempts to match the query image
warp the best match onto the query image. The warped imamgereshuffling the pixels in the candidate image. Noticeisign
and warped SIFT descriptor image are shown in columns (eant changes of objects between the query and the match in
and (f). The visual similarity between (a) and (e), and (l§xamples (8), (9), (11), (13), (14) and (16). The large arhoun
and (f) demonstrates the quality of the matching. Finahg t of discontinuities in the flow field are due to: (i) the coefiai
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Fig. 11. SIFT flow for image pairs depicting the same scene/object. (a) shows the query image and (b) its densely extracted SIFT
descriptors. (c) and (d) show the best (lowest energy) match from the database and its SIFT descriptors, respectively. (e) shows
(c) warped onto (a). (f) shows the warped SIFT image (d). (g) shows the estimated displacement field with the minimum alignment
energy shown to the right.

e -
e o |

Fig. 12. SIFT flow computed for image pairs depicting the same scene/object category where the visual correspondence is
obvious.



Fig. 14. Some failure examples with semantically incorrect correspondences. Although a SIFT flow field is obtained through
minimizing the objective function, the query images are rare in the database and the best SIFT flow matches do not belong to the
same scene category as the queries. However, these failures can be overcome through increasing the size of the database.

on spatial regularizatiomv is small, and (ii) the content of in the video database for the query image. It shows that our
the two images are too different to produce smooth matchéastabase is not dense enough in the space of images.
(compare to example (1) and (2) in Figure 11. The squareWe find that SIFT flow improves the ranking of the K-
shaped discontinuities are a consequence of the decoupiedrest neighbors retrieved by histogram intersectioiluzs
regularizer on the horizontal and vertical components ef thrated in Figure 15. This improvement demonstrates thagjéna
pixel displacement vector. similarities can be better measured by taking into account

Figure 13 shows alignment results for examples with rigsplacement, an idea that will be used for later applicetio
obvious visual correspondences. Despite the lack of dir&ftSIFT flow.
visual correspondences, SIFT flow attempts to rebuild the
house (15), change the shape of the door into a circle (462 Evaluation of the dense scene alignment

or reshuffle boats (18). After showing some examples of scene alignment, we want
Some failure cases are shown in Figure 14, where tteevaluate how well SIFT flow performs compared to human

correspondences are not semantically meaningful. Tyipjcalperception of scene alignment. Traditional optical flowusts

the failure are caused by the lack of visually similar imageswell-defined problem that it is straightforward for huméms



Query image

Ranking from histogram intersection Ranking from the matching score of generalized optical flow

Fig. 15. SIFT flow typically improves ranking of the nearest neighbor s. Images enclosed by the red rectangle (middle) are
the top 10 nearest neighbors found by histogram intersection, displayed in scan-line order (left to right, top to bottom). The top
three nearest neighbors are enclosed by orange. Images enclosed by the green rectangle are the top 10 nearest neighbors ranked
by the minimum energy obtained by SIFT flow, and the top three nearest neighbors are enclosed by purple. The warped nearest
neighbor image is displayed to the right of the original image. Note how the retrieved images are re-ranked according to the size of
the depicted vehicle by matching the size of the bus in the query.

annotate motion for evaluation [34]. In the case of SIFT flovg.1 Predicting motion fields from a single image
however, there may not be obvious or unique pixel-to-pix%

matching as the two images may contain different objects, or &€ interested in predicting motion fiends from a single

the same object categories with very different instances. image, namely to know which pixels could move and how

To evaluate the matching obtained by SIFT flow, we petrhey move. Th|s adds potential tempqral motion mforma‘uqn
: anto a singe image for further applications, such as animgati
formed a user study where we showed 11 users image pairs,.,, . .
. o o a §till image and event analysis.
with 10 preselected sparse points in the first image and aske . . . . .
scene retrieval infrastructure is established to queitly st

the users to select the corresponding points in the second im ; . ;
Jmages over a database of videos containing common moving

age. This process is explained in Figure 9. The correspgndn’léi . -
; ; ects. The database consists of sequences depicting@omm
points selected by different users can vary, as shown on o . .
. . : .events, such as cars driving through a street and kids glayin
right of Figure 10 . Therefore, we use the following metrlﬁq a park. Each individual 9ll‘rame gvas stored as a vec‘?oryof
to evaluate SIFT flow: for a pixgb, we have several human C ) .
pixgh word-quantized SIFT features, as described in Sect. 3.4. In

annotationsz; as its flow vector, andv as the estimated o . ) . ;
! (p) addition, we store the temporal motion field estimated using

distancer to SIFT flow w(p). This function ofr is plotted We compare two approaches for predicting the motion field

on the left of Fig. 10 (red curve). For comparison, we plot thi@" & auery still image. In the first approach, using the SIFT-
same probability function (blue curve) for minimum L1-nomP@Se€d histogram matching in Sect. 3.4, we retrieve nearest
SIFT matchingij.e. SIFT flow matching without spatial terms."€!9hPOrs (similar video frames) that are roughly spafiall

Clearly, SIFT flow matches better to human annotation thg{9ned with the query, and directly transfer the motiomiro
minimum L1-norm SIFT matching. the nearest neighbors to the query. In the second approach,

dense correspondences are estimated between the query and

nearest neighbors using SIFT flow, and the temporally esti-
5 DENSE SCENE ALIGNMENT APPLICATIONS mated motion of the nearest neighbors are warped to the query
As illustrated in the previous section, we are able to fingiccording to the estimated SIFT flow fields . Figure 16 shows
dense scene correspondences between two images using $amples of predicted motion fields directly transferreairfr
flow, and the correspondence can be semantically meaninghg top 5 database matches and the warped motion fields.
if the two images contain similar objects. In this section, A still image may have multiple plausible motions: a car
we will introduce two novel applications for dense scenean move forward, back up, turn, or remain static. This is
alignment: motion field prediction from a single image, antdandled by retrieving multiple nearest neighbors from the
motion synthesis via transfer of moving objects common wideo database. Figure 18 shows an example of 5 motion fields
similar scenes. predicted using our video database. All the motions fiel@és ar
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Fig. 16. Motion from a single image . (a) Original image; (b) bast match in the video database; (c) temporal motion field of (b);
(d) warped motion of (c) and superimposed on (a), according to the estimated SIFT flow; (e) the “ground truth” temporal motion
of (a) (estimated from the video containing (a)). The predicted motion is based on the motion present in other videos with image

content similar to the query image.

(a) (b) ()

Fig. 17. Motion synthesis via object transfer.  Query images (a), the top video match (b), and representative frames from the
synthesized sequence (c) obtained by transferring the moving objects from the video to the still query image.
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ground truth motion with respect to the motion of random
distracters is an indicator of how close the predicted nmoigo

to the true motion estimated from the video sequence. Becaus
there are many possible motions that are still realistic, we
perform this comparison with each of the tepmotion fields
within the result set and keep the highest ranking achieved.
This evaluation is repeated ten times with a different ramigo

= : selected test frame for each test video, and the median of the
' B=. = rank score across the different trials is reported.

There are a number of ways of comparing temporal motion
(optical flow) fields [2], such as average angular error (AAE)
Fig. 18. Multiple motion field candidates . A still query image ~ For our experiment, we want to compare two motion fields at a
with its temporally estimated motion field (in the green frame) coarse level because careful comparisons such as AAE would
and multiple motion fields predicted by motion transfer from a 5t pe meaningful. In fact, we care more fahich pixels
large video database. . .

(2) All Videos (b) Street Videos (c) Ranking precision move thanhow they move. For this evaluation, therefore,

70 70 07 we represent each motion field as a regular two dimensional

« « o motion grid filled with 1s where there is motion and 0
otherwise. The similarity between two motion fields is define

v
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Fig. 19. Evaluation of motion prediction . (a) and (b) show - . . .
normalized histograms of prediction rankings (result set size of that this formula indeed compares the segmentation of motio

15). (c) shows the ranking precision as a function of the result ~ fields.

set size. Figure 19 (a) shows the normalized histogram of these
rankings across 720 predicted motion fields from our video
data set. Figure 19 (b) shows the same evaluation on a subset
of the data that includes 400 videos with mostly streets and
cars. Notice how, for more than half of the scenes, the iaterr
motion field is ranked the first suggesting a close match to the
temporally-estimated ground truth. Most other test exaspl
are ranked within the top 5. Focusing on roads and cars gives
even better results with 66% of test trials ranked 1st and eve
more test examples ranked within the top 5. Figure 19 (c)
shows the precision of the inferred motion (the percentdge o

Fig. 20. Motion instances where the predicted motion was ; . .
not ranked closest to the ground truth . A set of random t€stexamples with rank 1) as a function of the size of thelresu

motion fields (blue) together with the predicted motion field —Set, comparing (i) direct motion field transfer (red cirglaad
(green, ranked 3rd). The number above each image represents  (ii) warped motion field transfer using SIFT flow (blue stars)
the fraction of the pixels that were correctly matched by com- While histograms of ranks show that the majority of the

paring the motion against the ground truth. In this case, some . : :
random motion fields appear closer to the ground truth than our inferred motions are ranked 1st, there are still a number

prediction (green). However, our prediction also represents a  ©f instances with lower rank. Figure 20 shows an example

plausible motion for this scene. where the inferred motion field is not ranked top despite
the reasonable output. Notice that the top ranked distracte
different, but plausible. fields are indeed quite similar to our prediction, indicgtin

that predicted motion can still be realistic.
5.2 Quantitative evaluation of motion prediction

Due to the inherent ambiguity of multiple plausible motion8-3 Motion synthesis via object transfer

for a still image, we design the following procedure for quarBesides predicting possible temporal motions for a stihgm,
titative evaluation. For each test video, we randomly sedec we want to infer moving objects that can appear in a single
test frame and obtain eesult set of topn inferred motion image and make a plausible video sequence. For example, a
fields using our motion prediction algorithm. Separatelg wcar moving forward can appear in a street scene with an empty
collect anevaluationset containing the temporally estimatedoad, and a fish may swim in a fish tank scene.

motion for the test frame (the closest to a ground truth we The goal of motion synthesis is to transfer moving objects
have) and 11 random motion fields taken from other scenesm similar video scenes to a static image. Given a still
in our database, acting as distracters. We take each of th@mageq that is not part of any videos in our databadsewe
inferred motion fields from the result set and compute thdutentify and transfer moving objects from videosihinto ¢
similarity (defined below) to evaluation set. The rank of thes follows:
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(b) Image 2 (Dec 22, 2001) (c) 4390 SIFT features of (a) (d) 6257 SIFT features of (b)

(e) Matching of the sparse features (f) Dense flow from (e) (g) Matching error of (f)

F

(h) Dense SIFT of image 1 (i) Dense SIFT of image 2 (j) SIFT flow field (k) Matching error of (j)

Fig. 21. SIFT flow can be applied to aligning satellite images . The two Mars satellite images (a) and (b) taken four years apart,
show different local appearances. The results of sparse feature detection and matching are shown in (c) to (g), whereas the results
of SIFT flow are displayed in (h) to (k). The mean absolute error of the sparse feature approach is 0.030, while the mean absolute
error of SIFT flow is 0.021, significantly lower. Please refer to http://people.csail.mit.edu/celiu/SIFTflow/NGA/ for the animations
showing the warping.

1) QueryD using the SIFT-based scene matching algorithfb) from our database, and synthesize a new video sequence
to retrieve the set of closest video frame matches: (some representative frames are shown in (c)) by transggrri
{filfi is theith frame from a video inD} for the query the moving objects from (b) into the still image (a). Notibe t

imageq. variety of region sizes transferred and the seamless atiegr
2) For each framgf; € F, synthesize a video sequen@e of objects into the new scenes. Although it is challenging
in which theith frameg; is generated as follows: to estimate the correct size and orientation of the objects

introduced to the still image, our framework inherentlydsak
care of these constraints by retrieving sequences that are
g/li{sually similar to the query image.

a) Estimate temporal motion fieleh, from frame f;
and fi1;

b) Perform motion segmentation and obtain the ma
of moving pixels:z; = |m;| > T, whereT is a
threshold,;

¢) Treatq as backgroundy; as foregroundz; the 6 EXPERIMENTS ON IMAGE ALIGNMENT AND
mask of foreground, and apply Poisson editing [4JTACE RECOGNITION

to obtaing;: g;=PoissonBlend(q, fi, 2i). We have demonstrated that SIFT flow can be effectively used

Examples of motion synthesis via object transfer are shovar retrieval and synthesis purposes. In this section wevsho
in Figure 17. Given a still query image (a), we use histograrthat SIFT flow can be applied to traditional image alignment
intersection and SIFT flow to find its retrieved video seq@sncscenarios to handle challenging registration problems.
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(a) Image 1 (b) Image 2 (c) SIFT flow field (d) Warped image 2 (e) Checkerboard of (a) and (d)

Fig. 22. SIFT flow can be applied to same-scene image registration but under different lighting and imaging conditions
Column (a) and (b) are some examples from [58]. Column (c) is the estimated SIFT flow field, (d) is the warped image 2. In (e),
we follow [58] to display (a) and (d) in a checkerboard pattern. Even though originally designed for scene alignment, SIFT flow is
also able to align these challenging pairs. Please refer to http://people.csail.mit.edu/celiu/SIFTflow/NGA/ for the animations of the
warping.

6.1 Same-scene image registration on both images ((c) and (d)), and a sparse correspondence is
Image registration of the same 3D scene can be challeng ablished through minimum SSD matching on SIFT features
when there is little overlap between two images, or drastg)- This sparse correspondence is further interpolatéorrto
appearance changes due to phenomena such as chang@sdsinse flow field as shown in (f). To investigate the quality
seasons and variations of imaging conditions (angle, -ightf this dense correspondence, we warp image (b) to image
ing, sensor), geographical deformations, and human tietivi (&) according to the dense flow field and display the pixel-
Although sparse feature detection and matching has beeligé matching error in (g). The mean absolute error of this
standard approach to image registration of the same scéhe [SOr"espondence is 0.030 (the pixel value is between 0 and
[58], we are curious how SIFT flow would perform for thisl)- Clearly, the underlying correspondence between these t
problem. Mars images are not captured by this sparse correspondence

Take a look at two satellite imaglesf the same location @Pproach.
in Mars, as shown in Figure 21 (&) and (b). Because they\ye now apply SIFT flow to align these two images. The
were taken four years apart, image intensities vary d@Btic g|eT flow field is displayed in (j), and the pixel-wise matofin

between the two images. For our experiment, we first UsGor of the SIFT flow field is displayed in (k). The mean
sparse SIFT feature detection [37] to detect SIFT featul®0 4psqiute error decreases to 0.021 for SIFT flow, and visually

1. Image source: http://www.msss.com/mamsages/moc/2006/12/06/ Wwe can see _that misal!gnmem haslbeen Sig'_’]iﬁcamly reduced.
gullies/sirenumcrater/index.html To our surprise, there is a fracture in the estimated SIFT flow
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Fig. 23. SIFT flow can account for pose, expression and lighting changes for face recognition. (a): Ten samples of one subject
in ORL database [44]. Notice pose and expression variations of these samples. (b): We select the first image as the query, apply
SIFT flow to align the rest of the images to the query, and display the warped images with respect to the dense correspondence.
The poses and expressions are rectified to that of the query after the warping. (c): The same as (b) except for choosing the fifth
sample as the query.

field in (j), which could be caused by some stitching artifact
the satellite images. This is automatically discovered ByTS
flow. o

We further apply SIFT flow to align some challengings »
examples in [58] (the algorithm proposed in [58] is able ta ..

0.95

09

0.85

cation rate

Classification rate

handle all these examples well) and the results are displaye st || o e N
in Figure 22, where column (a) and (b) are pairs of images,,| =St _J | [—Sff» _J
to a"gn_ The Correspondences between some m‘@srowg Ratio ofsarﬁples used for tréiniﬁg Ratio ofsarﬁples used for training

(1), (3), and (4) are not obvious to human visual systems. The (e) 32,32 (b)92x112

dense correspondences estimated from SIFT flow are displajég. 24. SIFT flow is applied for face recognition.  The curves

in column (c). For visualization purposes, we warp image i2 (a) and (b) are the performance plots for low-res and high-

to image 1 according to the flow field and display the warpdgS images in the ORL face database, respectively. SIFT flow

. . - - significantly boosted the recognition rate especially when there

image 2 in column (d).. To mspect_the quality of the flow, w§ g 1ot enough training samples.

superimpose warped image 2 to image 1 on a checkerboard,

as shown in column (e). From these results, the reader can see

that SIFT flow is able to handle challenging image regisirati e alignment will be more meaningful than the distances

problems despite drastically different image appearaaocels directly on the original images.

large displacement. In order to compare with the state of the art, we conducted

experiments for both original siz62x 112) and downsampled

(32x32) images. We randomly splita (y€ (0, 1)) portion of

the samples for each subject for training, and use thelrest

Aligning images with respect to structural image inforrati portion for testing. For each test image, we first retriesttp

contributes to building robust visual recognition systeiVe nearest neighbors (maximum 20) from the training database

design a generic image recognition framework based on SI&$ing GIST matching [39], and then apply SIFT flow to find

flow and apply it to face recognition, since face recognitiothe dense correspondence from the test to each of its nearest

can be a challenging problem when there are large pose awighbors by optimizing the objective function in Egn. (3).

lighting variations in large corpora of subjects. We assign the subject identity associated with the besthmatc
We use the ORL database [44] for this experiment. Thi®. the match with the minimum matching objective, to the

database contains a total of 40 subjects and 10 images wght image. In other words, this is a nearest neighbor approa

some pose and expression variation per subject. In Fig. 23where the SIFT flow score is as the distance metric for object

female sample is selected as an example to demonstrate heeognition.

dense registration can deal with pose and expressionieansat The experimental results are shown in Figure 24. We use

We first select the first image as the query, apply SIFT flothe nearest neighbor classifier based on pixel-level Eaclid

to align the rest of the images to the query, and display théstance (Pixels + NN + L2) and nearest neighbor classifier

warped images with respect to the SIFT flow field in Fig. 2@sing the L1-norm distance on GIST [39] features (GIST + NN

(b). Notice how the poses and expressions of other images arél) as the benchmark. Clearly, GIST features outperform

rectified to that of the query. We can also choose a differeraw pixel values since GIST feature is invariant to lighting

sample as query and align the rest of the images to this quayanges. SIFT flow further improves the performance as SIFT

as demonstrated in (c). Distances established on imagers afow is able to align images across different poses. We observ

6.2 Face recognition
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Test errors 1 Train 2 Train 3 Train Input image = Nearest neighbrs
S-LDA [13] N/A 171+27 81+1.8
SIFT flow 284+3.0 16.6+22 89+2.1 7
TABLE 1 - Labels ot
Our face recognition system using SIFT flow is comparable with I\D’[c";;‘:“ - ;:-"1"
the state of the art [13] when there are only few (one or two) c e : k:bels
» L » Motion
training samples. H - Depth
that SIFT flow boosts the classification rate significantly LR Y

especially when there are not enough samples (smaNe The space of world images

compare the perfo'rmance of SIFT flow Wit.h.the state of tI«F—alg. 25. An alignment-based large database framework
art [13], where facial components are explicitly detected & for image analysis and synthesis . Under this framework, an

aligned. The results of few training samples are listed ilda inputimage is processed by retrieving its nearest neighbors and
1. Our recognition system based on SIFT flow is comparahitansferring their information according to some dense scene

with the state of the art when there are very few samples fegrrespondence.

training. ] o o )
in aligning satellite images of the same scene but different

appearances. Therefore, SIFT flow becomes a suitable tool

7 DISCUSSIONS for scene alignment.

An important direction for improving SIFT flow is speed.
The current system cannot be used for real-time image or

We introduced a new concept of image alignmestene video retrieval and matching. One potential approach is the
alignment to establish dense correspondences between imagg®y implementation [16] of the BP-S algorithm, which can
across scenes, as illustrated by the examples in Figure. 1 (&t up to 50x speedup. However, we feel that there could be
The concept of scene alignment advances image alignmeséential speedup from the sparse matching. The bottlefeck
from pixel and object levels to a new, scene level. AlthougbIFT flow is the large search window size as the locations of
seemingly impossible at a first glance, we showed in the papfifjects may change drastically from one image to the other.
that dense scene alignment can be obtained by matchingrife sparse, independent matching provides good, appréxima
large database using SIFT flow. We also demonstrated throyghtching for sparse points, and this correspondence can be

many examples that scene alignment can be a very useful tp@pagated by abiding by the spatial regularities.
to many computer vision problems.

I. Scene alignment

lll. SIFT flow vs. optical flow

Il. Sparse vs. Dense correspondence Although derived from optical flow, SIFT flow is drastically

There have been two schools of thought for image aligdifferent from optical flow. In SIFT flow, correspondence
ment: dense and sparse correspondence. In the sparse igefpuilt upon pixel-wise SIFT features instead of RGB or
resentation, images are summarized as feature points sgrddient that was used in optical flow [11]. We formulated a
as Harris corners [27], SIFT [37], and many others [46{iscrete optimization framework for SIFT flow, whereas ofte
Correspondence is then established by matching thesedeatucontinuous optimization is incurred for optical flow as sub
points. The algorithms based on the sparse representatienspixel precision is required. Even if optical flow is formugalt
normally efficient, and are able to handle lighting changdés a discrete manner, the search window size in SIFT flow is
and large displacements. In the dense representationyeowemuch larger than that in optical flow as we want to handle
correspondence is established at the pixel level in the twarge location changes of objects in SIFT flow.
imagesge.g.optical flow field for motion analysis and disparity However, the similarity between SIFT flow and optical
field for stereo. Because of spatial regularities.(the flow flow can be helpful. Inspired by the coarse-to-fine scheme
vectors of neighboring pixels are similar), estimating flown optical flow, we also designed a coarse-to-fine matching
fields is reduced to optimization in Markov random fieldscheme for SIFT flow that improves both speed and quality.
(MRF’s). Despite the challenges in optimizing MRF's, vieBimilar to the dense temporal sampling as the foundation
dense correspondence we can easily warp one image to fihre obtaining meaningful optical flow fields, we proposed
other, and this warping can be very useful in many applicdense sampling in the space of world images for obtaining
tions. potentially semantically meaningful SIFT flow fields, naynel

SIFT flow inherits the merits of both the dense represenerrespondences are establishes between objects of thee sam
tation by obtaining pixel-to-pixel correspondences, ahd tcategories.
sparse representation by matching transform-invariaattfe Can we apply SIFT flow to analyze temporal motion? On
of SIFT. In Sect. 4, we demonstrated that SIFT flow iene hand, SIFT flow can be complementary to optical flow.
able to align images across scenes, a task that cannotBxample (1) and (2) in Figure 11 and the results on satellite
achieved by traditional optical flow. In Sect. 6.1, we showedhage alignment in Sect. 6.1 suggest the possibility. Rigen
that SIFT flow outperforms traditional sparse feature magh matching image features such as SIFT has been integrated int



16

the traditional optical flow estimation framework to impeov REFERENCES

temporal motion estimation [10]. On the other hand, the, s ajigan. Ensemble trackingEEE TPAMI 29(2):261-271, 2007.
continuous optical flow model can achieve sub-pixel acouragz] s. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Blaci] R. Szeliski.
but discrete-matching based SIFT flow can only achieve pixel A database and evaluation methodology for optical flowPiac. ICCV,

. 2007.
level accuracy. Therefore, we do not feel that optical flow Cd3 L. Barron, D. J. Fleet, and S. S. Beauchemin. Systerdsaperiment

be replaced by SIFT flow. performance of optical flow techniqueklCV, 12(1):43-77, 1994.
[4] S. Belongie, J. Malik, and J. Puzicha. Shape context: ¥ descriptor
IV. An alignment-based large database framework for image for shape matching and object recognition. NtPS 2000.
analysis and synthesis [5] S. Belongie, J. Malik, and J. Puzicha. Shape matching abjgct
recognition using shape context€EEE TPAM| 24(4):509-522, 2002.
Using SIFT flow as a tool for scene alignment, we designé®l A. Berg, T. Berg., and J. Malik. Shape matching and objecbgnition

. . using low distortion correspondence. GVPR 2005.
an alignment-based large database framework for image angl ;" gergen, P. Anandan, K. J Hanna, and R. Hingoranirartbical

ysis and synthesis, as illustrated in Figure 25. For a query model-based motion estimation. ECCV, pages 237-252, 1992.
|mage7 we retneve a set Of nearest nelghbors |n the datab&e M. J. Black and P. Anandan. The robust estimation of rpldt'motions:

and transfer information such as motion. geometrv and dabel parametric and piecewise-smooth flow field€Computer Vision and
9 y Image Understanding63(1):75-104, January 1996.

from the nearest neighbors to the query. This framework [ Y. Boykov, O. Veksler, and R. Zabih. Fast approximate rggiemini-

concretely implemented in motion prediction from a single _ Mization via graph cutslEEE TPAM| 23(11):1222-1239, 2001.

. : i . 10] T. Brox, C. Bregler, and J. Malik. Large displacementicgd flow. In
image (Sect. 5.1), motion synthesis via object transfect(Se[ ] CVPR 2009. 9 ge disp o

5.3) and face recognition (Sect. 6.2). In [35], the same &an11] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. Highuaacy optical
work was applied for object recognition and scene parsing. flow estimation based on a theory for warping. HECV, pages 25-36,
Alth_OUQh Iarge-d_a_ltabase fram_eworks ha_“_/e been used bef 5? A Bruhn, J. Weickert, and C. Schnorr. Lucas/Kanade etsie
in visual recognition [42] and image editing [28], the dense = Horn/Schunk: combining local and global optical flow metsotICV,
scene alignment component of our framework allows greateg 61(3):211-231, 2005.

- . . L . ] D. Cai, X. He, Y. Hu, J. Han, and T. Huang. Learning a spgtismooth
flexibility for information transfer in limited data scenas. subspace for face recognition. GVPR 2007.

[14] C. Carson, S. Belongie, H. Greenspan, and J. Malik. Btwld: Color-
and Texture-Based Image Segmentation Using EM and Its éqijuin
8 CONCLUSION to Image Querying and ClassificatiofEEE TPAM| 24(8):1026-1038,

. ) 2002.
We introduced the concept of dense scene alignment: [i§] T.F. Cootes, G. J. Edwards, and C. J. Taylor. Active apmece models.
estimate the dense correspondence between images acrosgn ECCV, volume 2, pages 484-498, 1998.

scenes. We proposed SIFT flow to match salient local imaffl N- Comelis and L. V. Gool. Real-time connectivity carained depth
’ map computation using programmable graphics hardwareCMRR

structures with spatial regularities, and conjectured nietch- pages 1099-1104, 2005.
ing in a large database using SIFT flow leads to semantically] N. Dalal and B. Triggs. Histograms of oriented gradgefir human

; ; , detection. InCVPR 2005.
meaningful correspondences for scene alignment. Exmns[liIS] L. Fei-Fei and P. Perona. A bayesian hierarchical mddelearning

experiments verified our theory, showing that SIFT flow iS ~ natural scene categories. ¢upr, volume 2, pages 524-531, 2005.
capable of establishing dense scene correspondenceejeml P. Felzenszwalb and D. Huttenlocher. Pictorial stices for object

L . - . recognition. IJCV, 61(1), 2005.
significant differences in appearances and spatial layotits P. F. Felzenszwalb and D. P. Huttenlocher. Efficienteigdropagation

matched images. We further proposed an alignment-based for early vision. 1JCV, 70(1):41-54, 2006.
large database framework for image analysis and synthe§ig] D. J. Fleet, A. D. Jepson, and M. R. M. Jenkin. Phaseatspar-

; ; ; ; ity measurement. Computer Vision, Graphics and Image Processing
where image information is transferred from the nearest (CVGIP) 53(2):198-210, 1991.

neighbors in a large database to a query image accordjpf] w. T. Freeman, E. C. Pasztor, and O. T. Carmichael. liegriow-level
to the dense scene correspondence estimated by SIFT flow. vision. IJCV, 40(1):25-47, 2000.

; ; ; ; ; i~ti~ 23] M. M. Gorkani and R. W. Picard. Texture orientation farting photos
This framework is concretely realized in motion predlct|0|[12 at a glance. ICPR volume 1, pages 459-464, 1994.

from a Singl? _image, motion Syn_theSiS via object transf«_‘* ap4] K. Grauman and T. Darrell. Pyramid match kernels: Disgmative
face recognition. We also applied SIFT flow to traditional classification with sets of image features. IGCV, 2005.

; ; i W. E. L. Grimson. Computational experiments with a teat based
image alignment problems. The preliminary success on thé&d V. & p gl ol oty

experiments suggested that scene alignment using SIFT flg¢{ m. 3. Hannah. Computer Matching of Areas in Stereo ImageBhD
can be a useful tool for various applications in computepwnis thesis, Stanford University, 1974.
; 27] C. Harris and M. Stephens. A combined corner and edgectigt In
and computer graphlcs. 127] Proceedings of the 4t$1 Alvey Vision Conferengages 147—91?;1, 1988.
The SIFT flow code package can be downloaded g j. Haysand A. A Efros. Scene completion using milliohplotographs.
http://people.csail.mit.edu/celiu/SIFTflow/. ACM SIGGRAPEI26(3), 2007.
[29] B. K. P. Horn and B. G. Schunck. Determing optical flowrtificial
Intelligence 17:185-203, 1981.
9 ACKNOWLEDGMENTS [30] D. G. Jones and J. Malik. A computational framework fetetmining
stereo correspondence from a set of linear spatial filter&ACV, pages

Funding for this work was provided by Royal Dutch/Shel| _ 395-410, 1992.

31] V. Kolmogorov and R. Zabih. Computing visual corresgence with
Group, NGA NEGI-1582-04-0004, MURI Grant N00014- occlusions using graph cuts. I€CV, pages 508-515, 2001.

06-1-0734, NSF Career award [IS 0747120, NSF contrgst] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags afifeesit Spatial

11S-0413232, a National Defense Science and Engineering pyramid matching for recognizing natural scene categorlasCVPR
. . . volume I, pages 2169-2178, 2006.

Graduate Fellowship, a Xerox fellowship, Foxconn, anng'ft%] C. Liu, W. T. Freeman, and E. H. Adelson. Analysis of @amtmotions.

from Microsoft and Google. In NIPS 2006.



(34]
(35]
(36]
(37]

(38]

(39]
(40]

[41]

(42]

(43]

(44]

[45]
[46]
[47]
(48]
[49]

[50]
[51]

(52]

(53]

(54]
[55]
[56]
(57]

(58]

C. Liu, W. T. Freeman, E. H. Adelson, and Y. Weiss. Hunaasisted
motion annotation. I'CVPR 2008.

C. Liu, J. Yuen, and A. Torralba. Nonparametric scenesipg: Label
transfer via dense scene alignment.dWPR 2009.

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freem&iFT flow:
dense correspondence across different sceneECV, 2008.

D. G. Lowe. Object recognition from local scale-invart features. In
ICCV, pages 1150-1157, Kerkyra, Greece, 1999.

B. Lucas and T. Kanade. An iterative image registratechnique with
an application to stereo vision. Proceedings of the International Joint
Conference on Artificial Intelligencepages 674—679, 1981.

A. Oliva and A. Torralba. Modeling the shape of the scemdolistic
representation of the spatial envelopdCV, 42(3):145-175, 2001.

P. Pérez, M. Gangnet, and A. Blake. Poisson image nedittACM
SIGGRAPH 22(3):313-318, 2003.

C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Cosegmtation of
image pairs by histogram matching - incorporating a glotmdstraint
into mrfs. InCVPR volume 1, pages 993-1000, 2006.

B. C. Russell, A. Torralba, C. Liu, R. Fergus, and W. Teéman. Object
recognition by scene alignment. MIPS 2007.

B. C. Russell, A. Torralba, K. P. Murphy, and W. T. FreemaabelMe:
a database and web-based tool for image annotdti@\V, 77(1-3):157—
173, 2008.

F. Samaria and A. Harter. Parameterization of a stdithasodel
for human face identification. IHEEE Workshop on Applications of
Computer Vision1994.

D. Scharstein and R. Szeliski. A taxonomy and evalmatd dense
two-frame stereo correspondence algorithid€V, 47(1):7-42, 2002.
C. Schmid, R. Mohr, and C. Bauckhage. Evaluation ofrigée point
detectors.lJCV, 37(2):151-172, 2000.

A. Shekhovtsov, I. Kovtun, and V. Hlavac. Efficient MRefdrmation
model for non-rigid image matching. IBVPR 2007.

J. Sivic and A. Zisserman. Video Google: a text retrieapproach to
object matching in videos. IFICCV, 2003.

J. Sun, N. Zheng, , and H. Shum. Stereo matching usingefbel
propagation.lEEE TPAM| 25(7):787-800, 2003.

M. J. Swain and D. H. Ballard. Color indexingJCV, 7(1), 1991.

R. Szeliski. Image alignment and stiching: A tutori&bundations and
Trends in Computer Graphics and Computer Visig(i), 2006.

R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. #aolgorov,
A. Agarwala, M. Tappen, and C. Rother. A comparative studgrargy
minimization methods for markov random fields with smoot®based
priors. IEEE TPAM| 30(6):1068-1080, 2008.

A. Torralba, R. Fergus, and W. T. Freeman. 80 milliorytimages:
a large dataset for non-parametric object and scene reémynlEEE
TPAMI, 30(11):1958-1970, 2008.

P. Viola and W. Wells Ill. Alignment by maximization of utual
information. InICCV, pages 16—-23, 1995.

Y. Weiss. Interpreting images by propagating bayesieiefs. InNIPS
pages 908-915, 1997.

Y. Weiss. Smoothness in layers: Motion segmentationgusonpara-
metric mixture estimation. I€VPR pages 520-527, 1997.

J. Winn and N. Jojic. Locus: Learning object classeswibsupervised
segmentation. INCCV, pages 756—763, 2005.

G. Yang, C. V. Stewart, M. Sofka, and C.-L. Tsai. Regittn of
challenging image pairs: Initialization, estimation, ashetision. IEEE
TPAMI, 29(11):1973-1989, 2007.

17






