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Quasi-stationary Waves and Blocking

by

Brian Bennett Reinhold
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the degree of Doctor of Philosophy in Meteorology

ABSTRACT

We hypothesize that periods of quasi-stationary behavior in the

large scales is integrally associated with an organized behavior of the

synoptic scales, thus the terminology "weather regimes". To investigate
our hypothesis, we extend the model of Charney and Straus (1980) to
include an additional wave in the zonal direction which is highly
baroclinically unstable and can interact directly with the externally
forced large-scale wave. We find that such a model aperiodically vacillates
between two distinct weather regime states which are not located near
any of the stationary equilibria of the large-scale state. The state of
the model flow may remain in either one of these two states for several
synoptic periods. During each of the two regimes, the net transports by
the transient disturbances are found to have consistent, zonally

inhomogeneous structure, the form of which depends upon the regime. This
result implies that the transports appear as a net additional external

forcing mechanism to the large-scale wave, accounting for the differences
between the time mean regime state and the stationary equilibria.

Following the analysis proceedure of Frederiksen (1979), we show
that the observed structure of these net transports can be accounted for
by the spatial modulation of the baroclinically most unstable eigenmodes
by the large-scale wave. We then consider only the tendency equations of
the large-scale variables where the effects of the transients are
parameterized by solving the stability problem at each time step. We find
that such a dynamical system possesses two absolutely stable "regime-
equilibria" which are very close in phase space to the time mean states of
the regimes appearing in the full model. We then demonstrate that the
instantaneous component of the transients are also capable of transfering
the state of the model flow from the attractor basin of one of the stable
regime-equilibria to the attractor basin of the other. Our experiments
thus indicate that the transients are important in determining the
qualitative behavior of both the instantaneous and time mean components of
the large-scale flow in our system, and suggest that the very different
short range climates in the atmosphere can result from entirely internal
processes.

Thesis Supervisor: Raymond T. Pierrehumbert
Title: Professor of Meteorology



BACKGROUND

One of the most interesting, but poorly understood,

phenomena in synoptic meteorology is the occurrence of

large-amplitude, planetary scale waves, which often persist

for periods long compared to the passing of a transient

synoptic-scale wave. On a day to day basis, these phenomena

appear as persistent, large-scale undulations or meanderings

of the circumpolar westerly jet on middle and upper level

tropospheric weather maps.

The impact of these events on regional weather can be

quite significant, since migratory cyclones have a tendency to

be "steered" by the upper level flow pattern. The maintenance

of a quasi-stationary wave, or persistence in the upper level

flow patterns, is then experienced at the surface as either

persistent or repetitive weather, depending upon ones relative

position with respect to the tracks of the migratory cyclones.

Surface regions sufficiently equatorward or poleward of the

storm track would experience an extended period of dry warm or

cold weather, respectively, while regions within the storm

track may experience excessive precipitation or highly

variable weather on a day to day basis, as a result of the

passing disturbances.

Occasionally, the quasi-stationary wave possesses such
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remarkable persistence and obtains such large amplitude that

the migratory cyclones are diverted far from their

climatologically determined paths for an anomalously extended

period of time. These events are so strikingly prominent on

the daily weather maps that synoptic meteorologists have come

to refer to the extreme example of a quasi-stationary wave as

a "block" or an "omega block" since the undulation in the jet

stream often resembles the shape of the Greek letter 2 .

The persistence of a planetary-scale quasi-stationary

wave and its associated pattern of migratory cyclones will be

referred to as a "weather regime" in recognition of its

influence over a considerable fraction of the globe's surface

weather. Blocking, from this viewpoint, is simply a special

case of the more general weather regime phenomenon.

Weather regimes are perhaps more common than generally

recognized, although some rather striking examples which have

occurred over the North American sector during the period from

1976 to 1981 have substantially increased interest in this

phenomenon. At least two reasons may account for the lack of

recognition of many regimes. One is that most regimes do not

appear as striking as the relatively rare Eastern Atlantic

block, for which the quasi-stationary component of the flow

strongly dominates the fluctuating synoptic component of the

flow. Another reason seems to be that unless the nature of
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the weather induced by a given regime is sufficiently extreme

to arouse publi-c interest, i.e., drought, heatwaves, excessive

precipitation, etc., it will often exist unnoticed.

The concept of regimes has not always been so absent from

the jargon of the meteorologist; in fact, at one time, the

concept was actively pursued. In the early to mid nineteen

forties several meteorologists, most notably Baur, Elliot,

Krick, and Namias, studied a phenomenon which they referred to

as "weather-types" or "grosswetterlage". In the interests of

extended-range forecasting, the studies catologued the shapes

of the upper-level quasi- stationary waves and the associated

tracks of cyclone events as well as the general flows of

surface warm and cold air. But for some reason, by the early

nineteen fifties, the concept of weather-typing phased itself

out of analytic meteorology and has since never gotten

re-established into the field.

In order to clarify and establish more concretely the

phenomenon of weather regimes, we now present a few examples

of atmospheric cases. The occurrence of weather regimes (or

quasi-stationary waves) is most easily demonstrated by

considering the limited-contour analyses of Sanders (personal

communication). Since 1976, Professor Sanders at MIT has

maintained what he has called Northern-Hemispheric Continuity

Charts. These charts are generated by tracing and superposing
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for periods of one week the daily 552 dam height contour of

the OOZ 500 mb NMC final analysis (transmitted over NAFAX).

The quasi-stationary waves are defined by the envelope or

"eyeball average" of the daily contours. Regions over which

the flow is steady will generally be marked by a narrow,

fairly constant meridional width envelope while regions where

the flow is unsteady will generally be marked by a wide and

bulging envelope. From the presently accumulated 4.5 year

sample (which excludes the months June through August) there

are several cases which can serve to illustrate the occurrence

of atmospheric weather regimes.

The first example to be considered is the 18 day period

from January 26, 1980 to February 15, 1980, shown in Figure A.

This was the year that brought record breaking drought to the

Olympic Winter Games in the Northeastern United States and

record snowfalls to the Southeast States. The most prominent

steady features which appear on the map are the large-scale

trough which occurs just downstream of the highly disorganized

flow over the Eastern Pacific and Western North America, and

the near zonal flow from Central Asia to the mid-Pacific. In

addition, there appears to be a somewhat more disorganized,

smaller scale, ridge-trough-ridge pattern over Europe and

Western Asia. However, it is not possible to ascertain from

the analysis whether the "disorganization" is real or an

artifact of the lack of two- dimensional information. (For
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example, if the height gradients of the quasi- stationary

pattern over Europe happen to be markedly weaker than other

regions about the globe, a given synoptic-scale transient

disturbance will produce a higher amplitude "wiggle" in that

location, introducing a spuriously erratic appearance to the

otherwise steady regime). Over the Eastern Pacific and

Western North America, on the other hand, the erratic behavior

is much more evidently a consequence of unsteady flow, for the

fluctuations are primarily larger scale.

The Eastern North America-Atlantic trough case is an

excellent example of the dramatic influence a regime can have

upon the behavior of the transient disturbances. The

asterisks, eight of which are concentrated in the Western

Atlantic, correspond to the occurrence of surface "bombs"

(explosively intensifying cyclones) as defined by Sanders and

Gyakum (1980). According to Sanders and Gyakum, this

frequency of bombs is excessive, suggesting the presence of a

regionally highly active baroclinic zone. Many of these bombs

initiated in the Gulf States (a process which, combined with

the southward extent of the cold trough, brought the Southeast

States anomalous snowfall amounts) and exploded out over the

Gulf Stream, but the deepening cyclones repetitively were

"steered" too far to the east to bring precipitation to the

dessicating, anomalously cold, Northeast States. Though we

generally regard the synoptic events as a "consequence" of the
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large-scale configuration, we do not mean to imply that such

is the case here. (Indeed, we intend to show that it is

equally likely that the repetitive bomb events were necessary

to maintain the large-scale pattern).

The second example, plotted in Figure B, is the period

from February 5, 1977 to February 20, 1977, which is the last

16 days of the now infamous winter regime of 1976-1977.

Outside of the very prominent ridge-trough pattern over North

America, the flows are basically zonal across Europe followed

by a low amplitude Central Asian ridge and Western Pacific

trough. A significant difference between this 16 day period

and the February, 1980 case in Figure A is that the flow

appears quite steady everywhere about the globe.

The feature of interest, however, is the high amplitude

ridge-trough pattern over North America. This pattern was

established well before the first day included in the figure,

being recognizable as early as the previous October, making

this particular regime the longest lasting regime of the data

set. The weather associated with this regime had economically

disastrous consequences across much of the United States: the

west coast suffered severe drought and anomalous warmth, while

the east coast, especially the Central East States, was

engaged in a record deep freeze.
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One of the most spectacular features of the 1976-1977

ridge-trough regime was its sudden collapse. Figure C is a

plot of the 15 day period from February 22, 1977 to March 8,

1977, which directly follows the period shown in Fig. B, save

February 21. The ridge-trough pattern, which had persisted

for longer than four months, was completely obliterated in

less than two days. In contrast, the rest of the globe,

except for Europe, remained essentially unchanged.

The third example, shown in Figure D, is another high

amplitude ridge- trough regime over North America, similar to

the 1976-1977 case. This plot encompasses the 16 day period

from December 31, 1980 to January 15, 1981 (which marked the

end of the 4.5 year data set). The 1981 regime, similar to

the 16 day period selected in the 1977 case, is accompanied by

steady behavior about the globe, again with a low amplitude

mid-Asian ridge and Western Pacific trough. However, the flow

over the Eastern Atlantic and Europe is markedly different.

In the 1981 case, a large-amplitude ridge-trough pattern

extends from the Central Atlantic across Europe, in contrast

to the zonal flow observed in the 1977 case (Fig. B).

The weather associated with the 1981 North American

ridge-trough regime is subtly different from the 1977 case.

First, the regime did not become established until the last

days of December 1980, and persisted only about 18 days or so.
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Second, the feature has a somewhat greater amplitude with a

trough axis further east than the 1977 case. The subtle

eastward shift has brought polar blasts down on New England

instead of the Central East States. These outbreaks result in

substantially colder weather in New England and the East Coast

States since the cold air is not modified by the eastward

travel across the Appalacians as in 1977. In addition, warmer

temperatures have crept further eastward across the Great

Plain States.

The paths taken by cyclones during this regime were

remarkably repetitive. Weak Alberta cyclones traveled

southeastward into the Great Lakes Regions and turned

northeastward, perhaps associated with weak coastal secondary

cyclogenesis. As the primary or secondary storm moved

northeastward, it rapidly intensified, too far to the north

and east to bring substantial precipitation amounts west of

Newfoundland, but not sufficiently far north and east for the

Northeast States to avoid the cold arctic blasts on the

leeward sides of the intensifying storms.

The last two cases, shown in Figures E and F, are

examples of a regime which has not been too common during the

winters since 1976; ridging in the Eastern Pacific and

troughing on the West Coast followed by a disorganized attempt

at East-coast ridging. This pattern, in a gross sense, is the
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reverse of the 1976-1977 and 1981 cases. Figures E and F

consist of the 20 day period from March 14, 1977 to April 2,

1977 and the eleven day period from March 26, 1979 to April 5,

1979. The flows in both examples have considerable synoptic

signal over North America and, in the 1977 case, part of

Western Asia. The remainder of the global flow patterns

(except over the Eastern Pacific) are, on the other hand,

considerably different in the two cases. The weather

associated with these North American regimes seems to have two

possibilities for the East Coast. The tendency for East-Coast

ridging brings anomalous warmth, but the highly variable

synoptic waves often develop into cutoff. circulations which

linger painfully over the Western Atlantic, bringing extended

periods of drizzle, rain, cloudiness, and otherwise general

misery, to the Northeast Coast. In the March 26-April 5 case

of 1979, it rained 8 out of the 11 days at Logan airport in

Boston, Mass., while in the March 14- April 2, 1977 case, a

drizzly, rainy period was followed by a heat wave.

There are several other examples of persistent

atmospheric states which have not been displayed. Two of

noterity were the ridge-trough regimes over North America

during the 1977-1978 and 1978-1979 winters, both of which

persisted on the order of 30 days. Each brought heavy

precipitation amounts to the eastern United States but a

subtle shift in the position of the large- scale trough
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between the two cases resulted in heavy snows one year on the

East Coast followed by heavy rains in the succeeding year.

Another event of note was the intense heat wave of the 1980

summer. Though the summer months were not analyzed, one can

be reasonably confident that the heatwave is undoubtedly

associated with an anomalous weather regime.

SUMMARY

The limited number of examples above are presented

primarily to familiarize the reader with the phenomenon of

interest and enable him or her to visualze this otherwise

difficult-to-describe feature. Though there is insufficient

data to provide conclusive evidence about the behavior and

properties of the weather regimes, there are a few statistics

of note which can be surmised from this limited sample. First

and foremost, there is an extreme diversity in the observed

regime persistence, with (subjectively determined) durations

ranging from as short as 11 days to as long as 130 days, with

no clear evidence of a preferred time scale. Second, regimes

appear to be rather strongly localized. This property was

evident in the February 1980 case (Figure A), where one sector

of the globe varied erratically while other sectors remained

essentially unchanged, and in the transition of the 1976-1977

regime (Figures B and C), where the North American sector

underwent a radical transition while the ridge-trough over
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Asia and the Western Pacific persisted with no change. Third,

a few regimes were noted to establish and or collapse at rates

approaching a synoptic time scale.

In spite of the presentation of some fairly well defined

"textbook" cases, it remains an extremely difficult task to

precisely quantify the weather regime (a problem discussed by

Dole, 1982). For this reason it is necessary to explicitely

point out the distinction between the weather regime and the

"stationary" and "transient" wave decomposition frequently

used in general circulation studies, with which it may be

confused. The stationary wave is computed as the residual

non-zonal component of the atmospheric flow field averaged

over some (arbitrarily) chosen time period, i.e., a month,

season, year, etc. Though a regime may persist for as long as

a season, such instances appear to be exceptional, and it is

generally unlikely that the stationary wave decomposition will

adequately represent the weather regime phenomenon. Since the

majority of observational studies consider several months,

seasons, or even years in their analyses to generate the

stationary and transient components, we may reasonably assume

that several regimes, fractions of regimes, as well as periods

of "unsteady" flow, are included in the data, and thus a

single regime will be partitioned in an unknown manner between

the stationary and transient components. It is evident from

the qualitative description provided in this section and the
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techniques used to compute the stationary and transient waves,

that the three features represent distinctly different

entities. The stationary waves, in this case, may simply

represent an "unoccupied average", e.g., the weighted average

of the various regime states.

The purpose of this dissertation is to investigate the

weather regime phenomenon. Based on what we have described in

this section, a potentially very important aspect of the

regimes so far neglected in theoretical studies is the

influence of the organized behavior of the synoptic-scale

disturbances. The investigation of the role of the transients

and their feedbacks upon the planetary scales during periods

of weather regimes as well as periods of regime transition is

the primary new contribution of this work.
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1. INTRODUCTION

The occasional persistence of certain large-amplitude

planetary-scale atmospheric features and their influence upon

the behavior of the transient synoptic-scale disturbances has

long been noted by forecasters and synoptic meteorologists.

Among such persistent events, the group of phenomena known as

blocking is perhaps the most striking. Although blocking has

been the subject of much research, the dynamical processes

which establish and maintain these quasi-stationary features

and couple them to the baroclinic disturbances are not yet

well understood.

A promising approach toward explaining blocking is

provided by the concept of multiple flow equilibria introduced

by Charney and DeVore(1979). The multiple flow equilbrium

results suggest that the atmospheric flow system in the

presence of zonally inhomogeneous external forcing mechanisms

(e.g., topography, land-sea contrasts, heat sources and sinks,

etc.) can possess not one, but several equilibrium flow

configurations. The hypothesis, as stated by Charney and

DeVore, is that the general behavior of the atmosphere can be

understood as a flow which is driven by smaller scale

instabilities from one quasi-stable equilibrium point to

another. In this theory, the particular event of blocking

occurs when the atmospheric trajectory approaches a quasi-



PAGE 14

stable equilibrium solution which possesses both a high wave

amplitude and low zonal index configuration.

One of the more important assumptions of the multiple

flow equilibria theory (MFET) is that some of the equilibrium

flow configurations in the atmosphere are quasi-stable in the

sense that a solution starting from an initial condition not

too.far from the equilibrium point remains close to that point

for a long period of time. However, we are interested in the

time dependent behavior of the solution after long periods of

time, far from the initialization, i.e. once the solution has

settled down into its attractor. It is not always clear that

the equilibria form part of the attractor, unless they are

absolutely stable. If the equilibria are stable, we know that

once the trajectory enters a finite region about the

equilibria, it will remain confined to that region and

approach the equilibrium state. In that case, the time

dependent problem becomes trivial. However, if the equilibria

are all unstable, there are no mathematical grounds upon which

we can make the assumption that the equilbria and the time

dependent behavior are related.

Several authors have studied the stability properties of

equilibrium states in various highly simplified models. Most

of these studies considered barotropic atmospheres. The

barotropic equilibria were generally found to be stable or
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weakly unstable to all perturbations (see Charney and

DeVore(1979) and Charney et. al. (1981)). These

observations provided the primary motivation for explaining

the quasi-stationary disturbances of the atmosphere as

manifestations of these equilibria. The analysis of the

baroclinic equilibria, on the other hand, results in

substantially different conclusions. For realistically large

values of the driving, Charney and Straus (1980) and Roads

(1980a,1980b) found that the baroclinic equilibria were highly

unstable to smaller scale perturbations. However, it was

generally assumed that the effects of the synoptic scale

instabilities were minimal and thus it was concluded that

"realizable" equilibria, i.e. those which would be part of

the time dependent attractor, were solutions which were found

to be stable or weakly unstable to perturbations restricted to

the scale of the equilibria. These assumptions, however, have

not been validated and clearly require further investigation.

We do know that the real atmosphere is highly

baroclinically unstable to perturbations on the synoptic

scale, in the sense that we frequently observe rapidly growing

disturbances on such a scale. a priori, it does not seem

possible to predict the manner in which the vigorous

synoptic-scale baroclinic disturbances of the atmosphere will

interact with the theoretical stationary solutions. It is

entirely possible that the instabilities may destroy the
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equilibria, as they will most-likely extract energy from the

large scale. Indeed, it is not clear whether the stability of

the analytically- derived stationary solution with respect to

perturbations restricted to the scale of those solutions will

have any relevance to the phase space behavior of a system

including the synoptic scales. Thus we must study the manner

in which the highly active synoptic-scale waves interact with

the externally forced stationary waves.

Theoretical and observational studies indicate that the

interactions may be significant for both the synoptic and

large scales. A modeling study by Frederiksen (1979)

demonstrated that the presence of a prescribed planetary-scale

wave modulated the baroclinic disturbances in such a manner

that the spatial configuration of the net transports by the

instabilities had distinct maxima relative to the phase of the

large scale wave. In a similar modeling study, Niehaus (1980)

showed that a prescribed basic state with wavy structure could

also account for the occurrence of storm tracks in terms of

certain regions of the basic state wave which were more active

baroclinically. In both cases, it is apparent that the

presence of a large- scale wave acts in some manner to

organize the transients. On the other hand, Gall et. al.

(1979), using a general circulation model, demonstrated that

the small-scale transient disturbances are capable of forcing

planetary scale circulations without the presence of any
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zonally inhomogeneous ror:ing or initial planetary scale

perturbations. In addition, Sanders and Gyakum (1980) in

their observational analvsis have noted the sudden

amplification of plane-ar-y scale ridges just downstream of a

region in which severa. successive explosively deepening

cyclones have occurred. :n these studies, it is apparent that

the synoptic scales are capable of forcing and altering the

large scales.

The combination of tzea organization of the transients by

the planetary scale, and ihe forcing of the planetary scale by

the organized transients suggests a potentially significant

feedback process. It is reasonable to expect that these

interactions could esta.zlish some type of balance. This

possibility provides a meChanism through which the highly

unstable externally forzed planetary scale wave considered in

the MFET can equilibrate with its own instabilities. The

basic hypothesis in this zaper is that exactly such a feedback

process is responsible f=- the occurrence of quasi-stationary

behavior in the atmosphoere.

Our hypothesis imcp.es that quasi-stationary behavior in

the planetary scales is .t.egrally associated with an

organized behavior of t-ne synoptic- scale events. In

recognition of the fact ::st the synoptic scales are generally

responsible for what is c:nsidered "weather", these
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quasi-stationary periods will be referred to as weather

regimes. The event of blocking, then, which is an unusually

steady, high amplitude quasi-steady state, is simply a subset

of the more general weather regime phenomenon.

We shall investigate the weather regime phenomenon in the

simplest possible model that has the necessary physics to

incorporate the feedback process alluded to above. This will

be accomplished by extending the model of Charney and Straus

to include an additional wave in the zonal direction in such a

manner that it can directly interact with the externally

forced planetary scale wave. The first aspect of the analysis

will be to consider the properties and characteristics of the

model theoretical equilibria. We then examine the

time-dependent behavior of the model and investigate the

appearance of regime-type phenomena. We can then consider the

qualitative properties of the regimes as a function of the

parameters and their relation to the corresponding

theoretically calculated equilibria. The final aspect of the

theoretical analysis will be to consider the behavior of the

synoptic scales and their roles during both persistent periods

and times of transition. In conclusion we will attempt to

ascertain in what manner the theory developed in this paper

can help us to understand the complex weather regime behavior

in the atmosphere.
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2. THE MODEL

Our model is essentially the same as the highly truncated

two-layer spectral channel model of Charney and Straus (1980).

The important difference between the two models is that we

retain two waves in the zonal direction so we can represent a

baroclinically unstable synoptic scale wave that interacts

directly with the large scale wave. As in Charney and Straus,

we will use the notation devised by Lorenz (1960b) where

LV= .( * + 'P ) is the mean streamfunction, t = ( ',- 94 ) is

the mean shear streamfunction, G )( + G3 ) is the mean

potential temperature, G = e , - &,) is the static

stability, which is assumed constant, and , = is the

velocity potential. The subscripts 1 and 3 refer to the

middle of the upper and lower layers, respectively. The

system of equations becomes:

afi/7t + J( T , z V) + J( -2-, V'2- ) + Ly/n x

-. 5 J( T,ffi/H) + .5 J('2,ffi./H) + k''V2-'-_)

+ J( q , q2C ) + J( C, V-) + f387'/Qx - f V=

+.5 J( ,fh/H) - .5 J( t,f'a/H) - k'' -k

;G/,t + J( G\7) G'X- = h''( -8)

(2.1)

where the Jacobian J(A,B) is defined as

QA/ax J)B/cy-;B/hx )A/cy, f is the coriolis parameter 2asing(,

where is some specified latitude and.Q is the angular

velocity of the earth, /2 is the gradient of f, 1/a,(Jf/Ad),
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where as is the radius of the earth, VI)Lis the horizontal

divergence given by the continuity equation 979=-ow/Ap where w

is the pressure velocity, k'' is the Ekman damping coefficient

at the surface, k '' is the Ekman damping coefficient between

the layers, H is the thickness of each layer, 6iis the

topographic height, where hi0/H << 1, h is the Newtionian

cooling coefficient, and e& is a prescribed radiative

equilibrium temperature field. The system of equations is

closed by the thermal wind relation

2-r= -(c~b*/2f)V 9

(2.2)

where cgis the heat capacity of air at constant pressure, and

b equals (p, /p. ) -(p, /p. ) where p, and p. are the pressure

levels at the center of the two layers (400 and 800 mb,

respectively), p. is the surface pressure, 1000 mb., and K is

the ratio R/c,=2/7, where R is the gas constant. This form of

the thermal wind relation for a two layer model is derived by

Young (1966). For details of the model, see Appendix I.

Following Lorenz (1960a), we will maximally simplify the

two layer quasi-geostrophic system by expanding the dependent

variables in orthonormal eigenfunctions of the Laplace

operator 72and retaining the fewest number of modes possible

that still possess the necessary physics to simulate the

phenomenon of interest. In order to be useful for testing our
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hypothesis, the model must contain the interaction between an

externally forced planetary scale wave and a baroclinically

unstable synoptic scale wave. We must choose our truncation

such that this minimum requirement is met.

The decomposition of the equations into spectral form is

given by Lorenz (1962, 1963), Young (1966), Yau (1977,1980),

Charney and DeVore (1979), and Charney and Straus (1980) and

will not be repeated in detail here. In essence, we write the

equations in dimensionless form and expand the dependent

variables in terms of the orthonormal eigenfunctions F;. The

expansions and the relations between the nondimensional(RHS)

and dimensional(LHS) forms of the parameters and the dependent

variables (where the nondimensional dependent variables are

denoted by subscripts) are given by:

LV Fj=-a F,.

=L2 f Y WF 7=f f w;F.- k' '=fk

't =L F;f .''F.e =ALa f GF k' ''=fk'

G=ALe f G;F to=t/f h''=fh

= H 7_-iF1, P =(L/a. )cot96 G =AL fG',

x. =xL yo=yL = G (Thermal wind)

(2.3)

where L is some horizontal scale factor, A=-(2f/cgb" ), and to,

x., and y. are the dimensional forms of the time and eastward

and northward coordinates, respectively. The spectral form of

the equations is obtained by substituting the above expansions
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into the original equations. We obtain:

+ b /a.h-

3~c [ (a -ak )( +9 +.,Ja

I+ w + h( G T- ;)

( a ( + )+ -ti (G - ) + )]/a.

b /a k (9 - G;)

9;=IF-c~ ~ ~ ~ 1,~ ,) - -h ( 9-) - (1 -Gi) I/ a
Pk 3 I .

+ b G/a - w;/al + kM'. - (k + 2k' G;

(2.4)

where cY,; =L2 /27t F; J(F ,F' )dx dy are the interaction

coefficients, and b , = L/27t fF F, aF, /.x dx dy. This system

can be further simplified by eliminating w;between the two

equations.

Our model, like that of Charney and Straus, is a channel

model with zonal walls at nondimensional y=O and y=7tand is

subject to the boundary conditions of no flow through the wall

and no net torque or momentum drag on the wall. The

rectangular geometry and these boundary conditions determine

the final form of the allowable orthonormal eigenfunctions F;.

We will choose to truncate the model at two waves in x

and two waves in y. This is the fewest number of components

possible that provides a planetary scale and a synoptic scale

and a nonzero wave-wave interaction coefficient. This

wave-wave interaction coefficient is the main new feature of

this model and is the dynamic mechanism through which the

planetary scale and the synoptic scale are directly coupled.
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We will label these eigenfunctions as Fiwhere = 1,2,3,... ,lO.

They are:

Mode 11 Mode 21

F, =T2 cos(y) F ,=2 cos(2y)

F = 2 sin(y)cos(nx) F5= 2 sin(2y)cos(nx)

F = 2 sin(y)sin(nx) F = 2 sin(2y)sin(nx)

Mode 12 Mode 22

F = 2 sin(y)cos(2nx) F,= 2 sin(2y)cos(2nx)

F = 2 sin(y)sin(2nx) F = 2 sin(2y)sin(2nx)

(2.5)

where n is one half the ratio of the meridional wavelength to

the zonal wavelength and is related to the global wavenumber m

by m=nascos /L. In addition, we have classified each set of

eigenfunctions into "modes" which represent the scale of the

particular two dimensional wave and zonal flow (both the

Mode 11 and Mode 21 variables contain eigenfunctions which

have only zonal structure, i.e. F, and F, ). For example,

Mode 12 corresponds to one wave in y and two waves in x,

1W, and Y . In this manner we can categorize what scales of

motion influence a given variable. From the form of the

equations, we note that only topography and the nonlinear

advective terms provide coupling mechanisms between the modes.

The remaining linear terms are effective only within a given

mode.

The spectral form of the model then consists of 20
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ordinary differential equations for the amplitude coefficients

of the ten eigenfunctions of the streamfunction Y and the

potential temperature G . Before the equations can be

written down, we must decide upon the form of the heating

G and the topography Ifi.. To best-simulate the equator to

pole differential heating, the model will be driven by

applying only a zonally symmetric south to north temperature

difference, thus all components of are zero except 6. The

nondimensional heating profile is then given by

6(y)=2 Gecosy, which is a fairly good first approximation

of the earth's equator to pole radiative equilibrium

temperature field. Topography, then, will provide the only

zonally inhomogeneous forcing in the model. For consistency

with our hypothesis, we require that the flow be forced at the

largest possible scale, which is designated by the

eigenfunctions F and F,. For simplicity, only the amplitude

of the F. topographic component will be chosen different from

zero. The final model equations become:

(See following pages) (2.6)

where the non-zero interaction coefficients (the calculation

of the interaction coefficients is given in Appendix II) are:



-842 n/157L = c, /5 = c, /4 = c3 /1O =c,/8 = c,/16

(2.7)

I. 2. 2
and the eigennumbers a, ,a , a 3

a, = 1 a =(n +1)

a =(n +1) a= 4

a =(4n Z+1) a

a, =(4n +1) aS? 7

,..., a are:

as =(n +4)

a =n 1+4)

= (4n (++4)

=(4n +4)

(2.8)

From the form of the equations we note that there are

certain independent subsystems. For example, if all the

variables except the Mode 11 variables are set to zero, they

will remain zero. The remaining tendency equations for the

Mode 11 variables then form an independent subsystem. Other

independent subsystems are:

i.e., Modes 11 and 22.
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3n/2 = c,
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3. MODEL SCALING

One of the most important aspects of any model study is

the degree to which the model under consideration simulates

the atmosphere. Even this particular very simple highly

truncated model contains parameters representing the magnitude

of various physical effects, such as Ekman friction. Though

we can always set these parameters to values we consider

appropriate to the atmosphere, this does not guarantee that

the model will behave in a manner that we would consider as

realistic. The severe truncation and lack of smaller scales

undoubtedly enhances the sensitivity of the few remaining

scales of motion to the parameters. In fact, it may not be

possible to simultaneously have both the dimensional values of

all the parameters and the qualitative aspects of the time

dependent flow "earthlike". It is reasonable to assume that

at least some of the parameters will have to be adjusted to

compensate for the effect of spatial scales and physical

processes left out of the model.

The relation between the dimensional and nondimensional

variables and external parameters is given by (2.3). All we

need do then, is to select appropriate values for L, H, f, and

the dissipative time scales and all the nondimensional

parameters are determined. However, of these scale factors

and time scales, only f is known precisely. There are a range
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of acceptable values for L, H, and the dissipative time scales

which lead to a large range of nondimensional parameters for

our model which are arguably earthlike. The problem, however,

is not so much the scaling, but the sensitivity of the model

to the external parameters. For example, estimates of the

atmospheric dissipative time scale easily vary by a factor of

three; however, in our model, a factor of three difference in

the nondimensional parameter k results in qualitatively very

different flows. We shall therefore consider a range of

nondimensional parameters and scale factors which arguably

correspond to atmospheric values, and then subjectively

determine whether or not the qualitative behavior of the model

flow is atmospheric. Each category of parameters will be

considered individually.

1). The dissipative parameters

Appropriate values for the atmospheric dissipative time

scales (k'') and (h'') are generally ascertained to range from

about 6 to 20 days. If we select f to be 10 /s, its

approximate value at 45 north, then the corresponding

nondimensional parameters k and h range from .02 to .005. The

internal dissipative time scale, (k'') , which is not well

known (but should be very long), will be taken to be about an

order of magnitude longer, which gives a nondimensional range

of values for k' of .002 to .0005.
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2). The beta effect.

Beta is scaled by Lcot//a~where a0 is the radius of the

earth, about 6400 km. An approximate range for L will be

taken to be 1200 to 2000 km., or a channel widthiL=4000 to

7000 km., which gives a nondimensional beta of .18 to .33 at

45"N. However, a change of only 5 degrees latitude in where

we choose to center our channel (which also changes f

slightly), say from 45 to 50 N with L=1600 km., changes

nondimensional beta from .25 to .21. Consequently, even for

fixed L there is considerable flexibility in our selection of

beta.

3). The temperature parameters.

The temperature scales depend upon the parameter A which

is determined by the thermal wind relation (2.2). If we

choose our model top to be at 200 mb, and the surface to be at

1000 mb., A=1.1886X10 s*K/cm3 (see Young, 1966), which for our

previous range of L, gives a range in the quantity AL f of 170

to 475. Typical values of the north south radiative

equilibrium temperature difference are given by 70 to 200 * K

(Stone, personal communication). In our model, since the

heating is given by e(y)=2 G*ALtf cosy, appropriate

nondimensional values of G, then range from .05 to .25.
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The static stability measures the temperature difference

between the middle layer and the upper or lower layer, which

in our model is separated by 200 mb. Appropriate values for

the lapse rate of potential temperature over the depth of the

atmosphere range from perhaps as low as 50K/200 mb to 150 K/200

mb. For the US standard atmosphere, the lapse rate is

approximately 11"K/200 mb. These values correspond to a

nondimensional range of G' from about .02 to .06 for the

previously mentioned range of L.

4) Topography

The topography is scaled by the thickness H of each model

layer. Since we have chosen the model top to be at 200 mb.,

the thickness of each layer is about 400 mb. which

corresponds to an H of about 4 to 5 km. The dimensional

mountain height is then given by 'i=2Hn sinycosnx. The

nondimensional value of fi is then restricted by the condition

that h,<<.5.

5) Wavenumber

The parameter n corresponds to the global wavenumber m

through the relation m=na.cos #/L. The selection of n then

determines the scale of the longest wave in our model. To be

consistent with our hypothesis, we must select n such that the
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largest scale in our model corresponds to a planetary scale

disturbance, i.e., m<5, but more importantly, n must be chosen

such that the 2n wave (Mode 12) is more unstable

baroclinically than the n (Mode 11) wave. To meet both of

these criteria, we find that n generally must be less than

1.5.

In summary, "arguably" earthlike ranges for our 8

nondimensional parameters are then given by:

k=.005 to .02, k'=.0005 to .002,p =.15 to .35,

2h <.35, h=.005 to .02, G=.02 to .06,

G =.05 to .25, and n<l.5.

(3.1)

Though we cannot justify completely independent variation of

certain parameters, we see that there is still considerable

flexibility in the range of nondimensional parameters that

correspond to earthlike conditions.

However, time dependent calculations with the above

nondimensional parameters indicate that the qualitative

behavior of the flow does not become "earthlike" until we

substantially increase the dissipative parameters and slightly

increase the static stability. With the values of the

dissipative parameters as they stand, the model has a tendency

to develop absurd easterly surface flows (>40 m/s) with an

associated near zero zonal flow aloft, a configuration far
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from an earthlike situation. The reason for this behavior is

not entirely clear, but the fact that the problem can be

eliminated by sufficiently increasing the nondimensional

dissipative parameters suggests that excessive dissipation is

necessary to compensate for the lack of eddy damping that

would normally be present in an untruncated model. (The lack

of eddy damping in highly truncated models is also discussed

by Young (1966)). We have found that increasing the

dissipative parameters to values where k and h are greater

than .03 is generally sufficient to limit the surface

easterlies to reasonable speeds for most ranges of the other

parameters.

With the values of the static stability as they stand the

time integrations lead to flows in which the small scale

circulations are too vigorous, i.e., all the energy is

contained in these scales. This problem is directly related

to ascertaining the scale height H, or the thickness of each

layer of the model. Our selection of 200 mb. as the model

top has inadvertently given us an H of 4 to 5 km. However,

from the dispersion relation for baroclinic instability in a

two layer model (see Pedlosky(1979)) it is found that in order

to best simulate the baroclinic dispersion relation of the

continuous atmosphere, H should be 7 to 8 km., the typical

scale height of baroclinically unstable modes in the

continuous atmosphere. With such a scale height, the top of



PAGE 32

the model atmosphere then appears to extend into the

stratosphere. The problem is that we cannot relate the

pressure levels and corresponding heights of the observed

atmosphere directly to the two layer approximation and

simultaneously simulate the baroclinic processes in the

continuous atmosphere. Consequently, since it is more

important to simulate the physical processes of the continuous

atmosphere, we "stretch" the pressure height relationship in

the sense that the 600 mb. level centers at 7 to 8 km.

instead of 4 to 5 km. as observed. The stretching of the

scale height also demands that the nondimensional values of

the static stability and mountain heights must also be

stretched. The dimensional static stability and mountain

heights that correspond to these stretched nondimensional

values then appear unrealistically large, but if they are

viewed relative to the pressure levels instead of the scale

heights, they become much more realistic. With these

considerations, the dimensional static stability parameter

G ranges from about .08 to .20.

With these alterations, the following ranges of

nondimensional parameters will be considered as "atmospheric"

and appropriate for experiments:
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k=.03-.06 k'=.001-.02 ( =.15-.35

diZ <.35 h=.03-.06 G' =.09-.20

,=.05-.25 n<1.5.

(3.2)

As mentioned above, it is not entirely correct to select any

arbitrary combination of the 8 parameters. Thus we have

considered a range of parameters that result in flows which,

qualitatively, are earthlike, primarily to de-emphasize the

practice of quantitatively associating a given parameter set

with a specific set of external conditions on the earth.

However, if we fix L=1600 km., we can narrow our choice of

parameters somewhat, though we may wish to vary parameters

such as B , , and n beyond values which we consider as

earthlike for academic purposes. In any case, with L fixed as

above, acceptable ranges for the nondimensional parameters

dependent upon L become:

=.20 to .27 G;0=.09 to .18 e=. 0 5 to .25 n<1.5

(3.3)
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4. MULTIPLE EQUILIBRIA

There already have been a host of studies concerned with

the multiple flow equilibrium problem, therefore we will not

consider the properties of the equilibria in any great detail.

We are primarily interested in obtaining the model equilibria

to study their relation to the time dependent behavior of the

model when the effects of synoptic-scale instabilties are

included.

To obtain the equilibria we could set the tendency terms

to zero and solve the twenty simultaneous nonlinear equations

for the twenty variables. This would be an arduous if not

impossible task. However, obtaining all the equilibria for

the twenty variable system is most likely unnecessary. As we

have pointed out in the Introduction, any equilibrium state is

highly baroclinically unstable to synoptic-scale perturbations

(this claim will be explicitly demonstrated shortly through

the examination of the stability problem). Though there are

undoubtedly model equilibrium solutions with synoptic-scale

components, rapidly growing instabilities at the synoptic

scale are likely to destroy any degree of organization of the

time mean state at this scale. This suggests that we

concentrate our efforts upon obtaining only the large-scale

equilibria. In our model, the planetary scale corresponds to

the directly externally forced Mode 11 variables, which form
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an independent subsystem. Thus the equilibria for the Mode 11

prognostic equations are also solutions to the entire twenty

variable model.

The implication that only the Mode 11 equilibria are

important to the time-dependent behavior of the model is an

assumption which can only be truly justified in hindsight. If

the synoptic-scale components of the equilibria were

important, we would expect to see some signal from them in the

time mean, but as will be seen shortly, the only non-zero

components in the time-average state of the model flow are the

Mode 11 variables.

The Mode 11 system of equations, from which our

equilibria will be calculated, is identical to the system from

which Charney and Straus obtained their equilibria. To solve

the system we reduced the 6 equations in 6 variables to one

algebraic equation in 9% which is solved numerically by a one

dimensional binomial chop, (for details, see Appendix III).

Consequently, we can always obtain all the roots for any set

of external parameters, limited only by the resolution of the

computer. The Mode 11 equations are:
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0= c,% Z2 (+ - 1-k ( Y, - G,)

0= c, n ( e++ G )+/ n+' -k(n +l)(-G)33

O=-c, n (++ G2-n -n+1(W-&)c3( -)

O= c, ( 4- 4,Ge ) +c, c;, ii, (P-9e )+h( 91 - 9,)J+kg -c, (k+2k ' ) oc;G,

O=-c,[ (1- c n? )4 -(l+ %n4 ) 1+flnD, -hG +k c; (n +1),

-(ni+1) g (k+2k' ) G

O= c,[ (1- G n7)G,+, -(1+ c(n? )41 e, If G;ne.-h, +k ag (n'+1)41

- (n + 1) 06 (k+2k')13+ ci ,

(4.1)

One solution, which can be obtained immediately by

setting all the wave variables equal to zero, is the purely

zonal equilbrium state referred to as the Hadley Solution by

Lorenz (1962, 1963). From the 41 tendency equation we see

4= Gwhich implies that there is no surf ace f low and thus no

interaction with topography. From the etendency equation we

obtain

G,% h 0% /(2k' G70 + h).

All the remaining equilibria have nonzero wave components and

can only be obtained numerically.

It is not possible to investigate the complete behavior

of the wavy equilibria as a function of the eight parameters,

but some qualitative aspects of the solutions can be

ascertained by varying a given parameter and holding the
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others fixed. There are two qualitative aspects of the

equilibiria that are of interest to this study. First, we

find that the phase and amplitude of the equilibria are very

sensitive to small changes in the external parameters,

especially k, l3 ,i , Gand n (for example, see Figure 1).

As mentioned previously, the extreme sensitivity of the

equilibria is probably an artifact of the severe truncation.

Second, the wavy equilibria occur in pairs; thus the total

number of solutions, including the Hadley state, is either

one, three or five. At least one of these pairs of wavy

equilibria consist of a trough near the mountain ridge while

the other solution consists of a ridge (though by no means

related by a simple 180 degree phase shift), suggesting the

super and subresonant locking phenomena discussed by Charney

and DeVore (1979) and Roads (1980a, 1980b).

One property of the equilibria that is of interest to

this study is the stability of the equilibria to the various

modes. This property can be ascertained in the standard

manner by linearizing the model equations about the various

equilibrium states and solving an eigenvalue problem for the

growth rates 1. The form of the equations is such that the

eigenmodes separate into either pure Mode 11, Mode 22, and

coupled Mode 21 and Mode 12 structure (the perturbation

matrices are given in Appendix IV). The eigenvalues '6 of the

pure Mode 11 and Mode 22 eigenmodes then determine the
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stability of the equilibria to Mode 11 and Mode 22

perturbations respectively. To determine the stability of the

equilibria to Mode 12 and Mode 21 disturbances we must

consider the detailed structure of the unstable coupled

eigenmodes to ascertain which perturbation scale dominates.

Through these methods, we can obtain the e-folding times of

the instability of each equilibrium state to each of the four

classes of modes in the model.

For an example we consider the equilibria and their

stability properties as a function of for the parameter set

k=.04, k'=.005, ( =.22, li=.3, h=.045, G-,=.15, n=1.22 for

C ranging from .06 to .18. (This is a case which we consider

in Chapter 5, in which we discuss the time dependent behavior

of the model). In Figure 1, we plot the amplitude of the

W- component of the equilibria as a function of G. For low

values of , only the Hadley Solution exists, which is purely

zonal and has no wave amplitude. For Ge>.075, two wavy

equilibria appear and for G=,>.105 two more wavy equilibria

appear. The upper branch of the first two solutions shall be

called the 90ORidge, since the phase of the Mode 11 wave is

generally about 90 west of the orographic ridge for the bulk

of the values of O considered, while the lower branch will be

referred to as the 450Trough for similar reasons. The upper

branch of the second pair of solutions shall likewise be

called the 30Ridge while the lower branch will be referred to
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as the Near Hadley solution since it has very low wave

amplitude and a high zonal index. (For plots of the

equilibrium flow patterns as they appear in the model, see

Chapter 6, on model synoptics).

In Figures 2a and b, we plot the e-folding times of the

instabilities of the various equilibria to the four modes of

the model. (For this particular case, all the solutions are

stable to Mode 22 perturbations, so we need only to consider

the other three modes). The 906Ridge and the 45 Trough are

considered in Fig. 2a and the remaining three equilibria in

Fig. 2b.

We see that on the whole the stability of the equilibria

decreases as Gincreases. The primary exceptions to this

tendency are the Mode 11 disturbances labeled "orographic".

These orographic or form drag instabilities, discussed in

detail by Charney and Straus, are characterized by the lack of

an imaginary component in the eigenvalues; thus they are

disturbances which grow in place. All the other instabilities

are topographically modified baroclinic disturbances. We note

that the Mode 12 disturbance is the most rapidly growing

instability for all the equilibria, with e-folding times

generally less than 4 to 5 days. The only exception is the

very high growth rates obtained by the Mode 11 orographic

instability of the Near Hadley solution at values of



PAGE 40

somewhat greater than .14.

It is also interesting to note that the Hadley Solution

becomes completely stable to Mode 11 disturbances at G*=.13

since the orographic eigenmode becomes stable and the

baroclinic eigenmode does not become unstable until G,=.14.

For some parameter sets, both orographically and

baroclinically unstable Mode 11 eigenmodes exist

simultaneously, cf. Charney and Straus (1980).

RECAPITULATION

We have extended the simple highly truncated spectral

channel model of Charney and Straus to include both a

topographically forced planetary scale wave and a synoptic

scale wave which can directly interact. The model has eight

external parameters k, k', , 2, h, G; , G, and n which

must be specified before the system can be integrated. We

then considered a range of nondimensional values for each of

these eight parameters which could arguably correspond to

earthlike values. A technique was developed to compute all

the large-scale equilibria and their respective stabilities to

perturbations on the scale of each of the four modes. We are

now ready to investigate the time dependent behavior of the

model for general sets of external parameters.
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5. TIME DEPENDENT BEHAVIOR

We approach the majority of our time dependent

investigations in a similar manner: First we select a set of

appropriate external parameters which then remain fixed

throughout the entire process of integration. Once the

parameters are chosen, we use the routines discussed

previously to calculate all the equilibria and their

respective stabilities. The model is then initialized at one

of its equilibrium states and perturbed by a small Mode 21

( 9',=.002) and Mode 12 ( Y7=.001) disturbance to which all the

equilibria are highly unstable. The equations are then

numerically integrated in time steps of 1.5 hours using the

N-cycle scheme of Lorenz (1971), with N=4.

The aspects of the time dependent behavior we are most

interested in are the periods of quasi-stationarity. As

discussed previously, quasi-stationary behavior is observed to

be confined primarily to the planetary scale, which in our

simple model is represented by the Mode 11 wave.

Consequently, we can identify the occurrence of a regime or

quasi-stationary period simply by observing the behavior of

this single wave.

To analyze the time dependent behavior of the Mode 11

wave, we construct phase space plots whose axes are defined by



PAGE 42

the streamfunction variables 1' and 941, and observe the

motions of this two-dimensional projection of the 20

dimensional model trajectory as a function of time. The

occurrence of regimes is then noted by the tendency for the

trajectory to be contained within a certain region of phase

space for an extended period of time.

Before we actually consider any time dependent

calculations, we briefly discuss the behavior of the flow as

anticipated by the multiple flow equilibria theory (MFET). As

stated in the introduction, one of the primary assumptions of

the MFET is that the synoptic-scale baroclinic instabilties

provide a mechanism through which the state of the atmosphere

vacillates from one "realizable" equilibrium state to another,

where "realizable" equilibria are defined by Charney and

DeVore, Charney and Straus, and Charney et. al. as those

equilibria which are quasi-stable to large-scale

perturbations. Implicit in this assumption is that the

effects of the synoptic scales upon the equilibria themselves

are minimal. These assumptions imply that the qualitative

time dependent behavior of our model is determined by the

phase space positions of the equilibria and their respective

stabilities to Mode 11 disturbances. In particular, the MFET

assumes that periods of quasi- stationary behavior and blocks

are intimately tied to the location of the calculated

quasi-stable equilibria, and the trajectory should be observed
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to aperiodically vacillate between such states.

The most important result of our time dependent

experiments is that, for a wide range of the external

parameters, the model atmosphere is observed to aperiodically

settle into one of two distinct flow configurations for

extended periods of time. These two preferred states are

characterized by the confinement of the Mode 11 components of

the trajectory to two distinct regions of phase space,

behavior which we will define as quasi-stationarity in the

large-scale Mode 11 wave. Superposed upon these

quasi-stationary large-scale Mode 11 features are erratic

eastward propogating synoptic-scale waves with periods on the

order of three to five days. This rather remarkable weather

regime behavior is best illustrated by the consideration of an

example. We select the parameter set

k=.05, k'=.Ol, ( =.2, Ii?= .2,

h=.045, G', =.1, e =.1, and n=1.3,

whose five equilibrium states and respective stabilities to

the four modes are given in Table 2.

We can see that the purely zonal Hadley solution (*1) and

the low wave amplitude Near-Hadley solution (*2) possess high

zonal indexes. The other three solutions possess substantial

wave amplitude and lower zonal indexes and are named according

to the position of the mid-level wave with respect to the
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orography. Two of the equilibria, the Near Hadley solution

(*2) and the 90 degree Ridge solution (#3), have easterly

surface flow, N', - G < 0. We also note that even though one of

the equilibria is stable and one weakly unstable to Mode 11

perturbations, all of the equilibria are highly unstable to

Mode 12 synoptic-scale perturbations. From the form of the

eigenmode and the eigenvalue (not shown), it can be

ascertained that the Mode 12 instabilities are all propagating

baroclinic disturbances. The only non-propagating orographic

instabilities for this particular set of parameters are

Mode 11 perturbations upon the 30 degree Ridge and Near Hadley

solutions.

Figure 3a is a plot of the daily position of the

't-~I -component of the trajectory for the first 17 years of

the integration period, which is taken as representative of

the climatological state of the Mode 11 wave. Though the

rather limited range of phases in the climatological state is

in itself noteworthy, the most interesting behavior is not

revealed until we compare the climatological state of the

model with Figures 3b and 3c. The latter two figures are

again plots of the daily position of the N -*-component of

the trajectory, but for periods that coincide with the

duration of the two single weather regime events. Figure 3b

consists of the 175 day period from time step 20765 to 23564,

during which the trajectory remained exclusively in the lower



PAGE 45

right hand quadrant, while Figure 3c consists of the 580 day

period from time step 23564 to 32855, during which the

trajectory remained primarily in the upper left hand quadrant.

The comparision of the three figures clearly demonstrates the

extended period of confinement of the large-scale component of

the trajectory relative to the significantly more extensive

climatological domain, which is exactly the type of behavior

we intuitively associate with a weather regime.

It is also evident from the figures that the phase space

trajectories are not, most of the time, confined in small

neighborhoods about one or another of the equilibrium points.

In fact, in both instances, we note that the equilibrium

states lie outside the regions defined by the fringe of the

scatter. However, a close inspection of the regimes plotted

in Figs. 3b and 3c, which we shall refer to as the trough (or

negative) and the ridge (or positive) regimes respectively,

suggests that there is some relation between the equilibria

and the time dependent quasi-steady states' it is just much

more complicated than implied by the MFET.

We consider the details of the trough regime first since

a correspon- dence to the equilibria appears more evident in

this case. In Figs. 3a and b, we note that the points

cluster primarily along a line of constant phase which is

almost identical to the phase of the Trough equilibrium
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solution (*4). The magor discrepancy between the actual time

dependent behavior of zrhe trough regime and that anticipated

by the MFET is that the Mode 11 mean wave amplitude of the

regime state is signif..cantly reduced over that of the

corresponding equilibr.us state, and though there is extensive

vacillation of amplitude on an instantaneous basis, the

Mode 11 wave never obtains the amplitude of the equilibrium

state. However, the a-zreement between the phases of the waves

in the two states strongly suggests that there exists some

type of correspondence ne:ween the stationary trough solution

and the time dependent r.ugh regime states.

The ridge regime, on the other hand, possesses

significant scatter in boh the phase and amplitude and does

not appear to be as clear.Ly related to any of the equilibria

as is the trough regime. The reason for the more complicated

behavior is that the ridce regime appears to be an altered

limit cycle, instead of aZ altered equilibrium state. (We

will discuss the detailed nature of these limit cycles

shortly.) The strong sLgcestion of quasi- circular or looping

motions of the trajectcry in Figs. 3a and 3c, which become

immediately visible in real-time observations, further support

this conclusion. The lin.: cycle, though, is closely related

to the 90 degree Ridge ev-ilibrium state (also to be discussed

later), and we will see ---at the time mean structure of the

ridge regime is also frly well represented by the 90 degree
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Ridge equilibrium state. Consequently, for both the ridge and

trough regimes, there appears to be some relation between the

regimes and some of the equilibria. This relation is clearly

quite complex, especially in the case of the ridge regime.

However, it is also of interest to note that there are still

three equilibria which appear to be of no consequence to the

time dependent flow, in spite of the fact that one of them,

the Hadley solution, is only weakly unstable to Mode 11

perturbations as is the 90 Ridge Solution. In our model then,

knowing the large-scale equilibria and their respective

stabilities to Mode 11 disturbances is insufficient

information for determining the qualitative aspects of the

quasi-stationary time dependent flow.

Though it appears that some properties of the time

dependent flow may be related to some of the equilibrium

points, the influence of synoptic- scale disturbances on the

nature of the regimes is clearly of great importance. This

role becomes especially apparent when all the wave-wave

interaction coefficients cgare set to zero, which then

eliminates the direct coupling between the externally forced

Mode 11 wave and the smaller scale synoptic waves. The

immediate effect is a drastic reduction in the instantaneous

fluctuations experienced by the large-scale wave, which

previously (from Figs. 3b and 3c) was quite large in both

regimes, though the aperiodic amplitude vacillation of the
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wave in the trough state continues. However, the most

important effect is the fact that for this particular set of

external parameters, the ridge regime disappears. The

trajectory then remains in the trough regime state for all

time.

This behavior is demonstrated in Figure 4, which is

generated in the same manner as Figure 3a, except that the

wave-wave interaction has been eliminated. We can see that

the overall behavior is less erratic than in Fig. 3a in the

sense that the trajectory is confined to a smaller region of

phase space. From our model equations we see that there are

still interactions between the various scales but they are

coupled through the zonal flows, and apparently this indirect

coupling is incapable of inducing transition or maintaining

the ridge regime. (By maintain we mean only that the direct

wave-wave interactions are necessary for the occurrence of the

ridge regime; we do not mean to imply that the synoptic-scale

interactions act as, e.g., a forcing rather than a

dissipation.) We have also found that the finite amplitude

synoptic-scale disturbances (with and without the wave- wave

interaction) differ remarkably from that predicted by linear

theory. Though the Mode 12 disturbance grows most rapidly

initially, the Mode 22 disturbance achieves the greatest

amplitude and generally accounts for the bulk of the

synoptic-scale amplitude sufficiently long after
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initialization. This aspect is observed in all our

experiments, even when linear theory predicts the Mode 22 wave

is stable to infinitesimal perturbations (as in case *1 and

case #2 to be discussed shortly).

To aid in the further- analysis of the individual regime

states it is adventageous to develop a quantitative scheme

that can isolate quasi-steady periods from all other types of

behavior. However, the objective identification and analysis

of quasi-steady flow patterns in the atmosphere are not

trivial problems (see Dole, 1982), and even though our model

is considerably simpler than the real atmosphere, we have not

been able to develop an objective scheme which is generally

applicable, though we can easily subjectively discern the

regime events by eye. Thus to isolate the regime events, we

use a method analogous to the zero-decameter, 15-day cutoff

criterion used by Dole in his objective analysis of

atmospheric persistent anomalies (though we do not first

remove a climatological state): we require that the state of

the large scale Mode 11 wave, as measured by the sign of the

advective term in the 9 tendency equation, n c14 ( , + G13),

remain the same for longer than 15 days. Though such a

criterion appears at first to be quite weak, by coincidence,

it happens to be effective for many parameter sets because the

phase of the large-scale Mode 11 wave is often confined to a

relatively narrow band, as demonstrated in Figure 3a.



PAGE 50

Needless to say, the effectiveness of this ad-hoc criterion in

isolating regimes has to be verified subjectively for every

new set of external parameters considered. However, when this

criterion is applicable, we can easily isolate and calculate

the statistics of each individual regime by type, regardless

of its persistence, as they occur in the time integrations.

We used this criterion in the case discussed previously

(with wave- wave interaction) to calculate the type, length,

and mean state of the regimes for a period of 205.5 years or

1.2 million time steps. In Table 3a, we present the type, the

time step at the start and finish, the length in days of the

regimes in their order of occurrence, and the upper

( f = 4';+ e; ) and lower ( (= A;- G; ) level time mean state

streamfunction for the first 28 years of the integration

period. (The time mean states will be discussed shortly).

We can see from the table that the duration of the

regimes is highly variable, ranging from as short as 25 days

to as long as 1100 days. In addition we note that the

occurrence of a ridge regime is not necessarily followed by a

trough regime and vice-versa; there are several instances

where the same type of regimes repeatedly occur. It is also

apparent that the regimes are highly persistent (in spite of

the fact that the synoptic-scale disturbances have periods in

the order of 3 to 5 days), lasting in the order of months and
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years instead of in the order of just a few weeks as commonly

envisioned in the atmosphere. Furthermore, the ridge regime

appears to be significantly more persistent than the trough

regime. This distinction is made even more evident in the

computation of the 205-year statistics. Over the 75000 day

integration period, the ridge state accounted for 50469 days,

while the trough state accounted for a considerably smaller

22565 days and periods of unsteady behavior for the remaining

mere 1966 days. The flow behavior, then, for this particular

parameter set is both ridge regime dominant (where dominant

means a particular regime accounts for more than 50% of the

steady or regime-type behavior) and persistent. These two

properties of regime dominance and persistence are found to be

quite sensitive to changes in the external parameters. Some

aspects of this sensitivity will be demonstrated shortly when

we discuss the behavior of the regimes as a function of G4.

The time average of the model flow over the duration of

the individual regime events are found to be non-zero only in

the Mode 11 variables, which strongly supports our earlier

notion that the baroclinic instability processes completely

dominate at smaller scales. From the list of sequential cases

in Table 3a we note that the mean states of the regimes

undergo apparently random, but minor fluctuations, though

there is a tendency for the less persistent regimes to possess

both a greater zonal wind speed and lower wave amplitude in
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the upper levels. To smooth out some of the random nature of

the individual regime statistics, we form 205 year composites

by type (ridge and trough) and seven categories of persistence

( Cat. 2=15.0-18.75 days, cat. 3=18.75-26.0 days,

cat. 4=26.0-32.25 days, cat. 5=32.25-43.75 days,

cat. 6=43.75-62.5 days, cat. 7=62.5-125.0 days, cat. 8>125.0

days (note that there is no category 1)). In this manner we

can ascertain an overall average regime state and note if

there exists any substantial difference between the very

persistent versus weakly persistent cases. In Table 3b, we

list the time mean state upper and lower level streamfunction

of the 205 year composites in phase and amplitude (instead of

wave components) by type and category as well as the number of

individual regime events and the total number of days that

went into the calculation of the composite. For comparision,

we also list the upper and lower level streamfunction values

of the five equilibria in phase and amplitude form.

We note that the ridge regime is characterized by

moderate easterly surface flow ( 1< 0) while the trough

regime possesses weak surface westerlies. This characteristic

is also the case for all the individual regimes except for one

24 day ridge event which occurs at time step 1162108, which

indicates that the direction of the surface flow rather than

the value of the mean zonal flow in relation to resonance

determines the phase of the large-scale wave. It is also
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apparent that the trough regimes, especially the more

persistent instances, possess both a greater time mean upper

level wave amplitude and zonal wind speed than the ridge

regimes, but one of the most distinctive differences between

the two regimes is the significantly greater variability in

the phase of the Mode 11 wave of the ridge regime. The trough

regime wave, on the other hand, is nearly fixed in space from

case to case.

From Table 3b we can also quantify the relation between

the composite regime states and the five equilibria. It is

clear that the Hadley, Near-Hadley, and 30 degree ridge

solutions have nothing in common with any of the time mean

regime states, but the phase of the upper and lower level wave

as well as the sense of the surface flow correspond reasonably

well between the 90 degree Ridge solution and the ridge regime

and the Trough solution and the trough regime. The latter

correspondence is distinctly better, as discussed previously,

but in both cases, the wave amplitudes of the regime states

are significantly smaller than the wave amplitudes of the

corresponding equilibria. However, in all cases (individual

time mean regime states, composite regime states, and all wavy

equilibria) we note the distinct westward tilt of the large-

scale wave in height, though the bulk of this tilt is confined

to the lower layer, in the sense that the two layer model can

be thought of as a "continuous" model with constant vertical
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shear, which demonstrates the importance of baroclinicity in

all these structures. The phase shift indicates that the

waves contibute to the poleward heat transports.

In Figure 5, we plot in phase space the five equilibria,

a scatter diagram of the time mean Mode 11 upper level wave

streamfunction T = 4-+ e for each of the regimes in Table 3a,

and the composites, which are designated by a cicle (e), where

the subscript n refers to the category. (Some of the

equilibria, in particular solutions *3, #4, and *5, if plotted

to scale would be off the figure.~ Consequently, we have

plotted these three states at one half their actual amplitude,

and have signified this by placing a subscript next to their

respective circles.) It is quite apparent from the figure that

the two regimes are significantly different from each other

and possess relatively little scatter in their respective time

mean states and are well represented by the composites. From

the structure of these time mean patterns we see that the two

regimes correspond to regionally vastly different climatic

states, which are completely internally determined.

The final consideration concerns the degree to which the

Mode 11 wave fluctuates during an individual regime event.

The observations of the model trajectory during a given regime

event suggest that the degree of fluctuation varies anywhere

from relatively severe vacillations to nearly stationary
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behavior. We can see this range of behavior in Figure 6a and

6b which are plots of the trajectory during fractions of the

single 112 day trough regime event (the fourth regime in Table

3a). Figure 6a consists of the 18 day period from time step

4996 to 5284 while Figure 6b consists of the 24 day period

from time step 5316 to 5700. We note that the region over

which the points are scattered in Fig. 6b is extensively

larger than the scatter in Fig. 6a. The very small region in

which the trajectory remains confined in Fig. 6a signifies

that the large-scale Mode 11 wave remained essentially

stationary during this 18 day period of the 112 day regime.

We shall refer to these periods of near stationarity as

regime type II behavior, though the distinction between flow

that is sufficiently steady to qualify as type II and that

which is not, is clearly arbitrary. However, the occurrence

of regime type II behavior is of interest since at large

amplitude it corresponds to the classic interpretation of the

atmospheric block' an event generally characterized by near

stationarity in the plantary scales and a large ratio of the

planetary to synoptic-scale components. In this sense, the

period of time plotted in Fig. 6a is an example of a "block"

in our model. (Note that its duration is considerably shorter

than that of the regime.) We can then investigate whether or

not there are any qualitative dynamical dis tinctions between

these periods of regime type II behavior and the more erratic
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periods which are, nevertheless, part of regimes. However,

from the above discussion, it seems most likely that these

distinctions are merely quantitative, and the so-called block

is simply a more spectacular, visibly striking, example of a

weather regime.

We have discussed the occurrence of regimes and some of

their properties for one case in our model. This particular

case was selected for demonstration purposes because of its

highly idealized two regime behavior. It is important to

emphasize at this stage, that the qualitative aspects of the

two regime behavior observed in this highly idealized case are

also observed in the vast majority of our experiments

considering numerous other sets of the previously determined

acceptable parameters. However, the detailed properties of

these regimes, i.e. time mean amplitude, regime dominance,

and persistence, like the properties of the multiple

equilibria, are found to be highly sensitive quantitatively to

changes in the external parameters in a complex manner.

Though both the regimes and equilibria are found to be

sensitive to changes in the external parameters, the relation

between the ridge and trough regimes and the 90 Ridge and

45 Trough equilibria persist in the same qualitative manner as

discussed in the demonstration case; specifically the phase

of the trough regimes are generally locked very close to the

phase of the 450Trough solutions and the ridge regimes show
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characteristics suggestive of a large-scale Mode 11 limit

cycle. The continual appearence of the remnants of a looping

trajectory in the ridge regimes in all our experiments made it

of interest to investigate the properties of this limit cycle

and its relation to the 90 degree Ridge Equilibrium Solution

and the ridge regime.

We investigate this question by observing the time

dependent behavior of just the Mode 11 six-variable system.

It turns out that for a limited range of the external

parameters there is, in addition to the existence of several

equilibria, a stable limit cycle whose trajectory traces out a

counterclockwise loop that remains confined primarily to the

upper left hand quadrant of the ( MV, 9 ) phase space plane.

This ridge limit cycle continues to exist with the addition of

a second y mode (Mode 11 and Mode 21) though it is radically

destabilized' that is, it exists only for a narrow range of

the external parameters. However, the 12-variable Mode 11 and

Mode 21 system possesses a second limit cycle not present in

the 6-variable system which is confined primarily to the lower

right hand quadrant of the ( 9 , 91 ) phase space plane. This

new limit cycle defines a much tighter counterclockwise loop

than the ridge limit cycle and is stable for a wide range of

parameter sets. In Figure 7, we plot some of the equilibria,

the 6 and 12 variable limit cycles, and some representative

time mean states of the composite regimes for case #2 ( to be
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discussed shortly) with values of O =.12, .13, .14, .15, and

some intermediate values.

In Figure 7, we see that the 6-variable ridge limit cycle

is stable for values of Of slightly greater than .12, but

becomes unstable for values of O in excess of .145. We also

note that the limit cycle appears to "develop" out of the 90

degree Ridge Solution and more or less encircle it; the

finite amplitude response to the 90 degree Ridge becoming

unstable. The 12-variable ridge limit cycle, on the other

hand, is stable only for (,=.12. (Again, whether the limit

cycle is stable or unstable to Mode 11 or Mode 21 disturbances

appears to be inconsequential to its incorporation into the

detailed behavior of the full model ridge regimes. Our

experiments show that the "looping" full model ridge regime

exists for many more parameter sets than the 6-variable limit

cycle is stable.) Figure 7 also demonstrates that the time

mean states of the composite ridge regimes, whether an

interaction with the 90 degree Ridge or the limit cycle, still

possesses wave amplitudes considerably below that of the

purely Mode 11 features.

The trough regime composites behave slightly differently.

We note that the time mean wave amplitudes of the regimes

actually exceed that of the 12-variable trough limit cycle.

However, it is not clear that these limit cycles have any
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influence upon the behavior of the full model trough regimes;

at least there is no suggestion of the looping signal

remaining in the full model. It appears then, that the

12-variable trough limit cycle is simply an artifact of the

truncation and completely disappears with the addition of the

synoptic scales. In any case, these rather complex behaviors

and relations that are observed as we vary the truncation only

further support the notion that the presence of the smaller

scale instabilities are of qualitative significance to the

large-scale externally forced disturbance.

We now investigate the functional dependence of the

regime properties and the relation between the regimes and the

corresponding equilibria to changes in the external parameters

by selecting two case studies in which different values of the

driving O*are considered. For case *1 we select k=.04,

k'=.0l, P =.22, -z=.2, h=.045, % =.12, and n=1.3 with the

following five values of QC: .07,.08,.09,.10,.ll. For

case #2 we select k=.04, k'=.005, P =.22, I =.3, h=.045,

GE=.15, and n=1.22 with the following 11 values of Gd: .07,

.075, .0775, .08, .09, .10, .11, .12, .13, .14, .15. This

gives a total of 16 experiments.

In Table 4a,b the infinitesimal stability of the

equilibria to small amplitude perturbations of each of the

four modes is given as a function of G4 for each case. (The
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case *2 equilibria and their stabilities were discussed (and

graphed) earlier in chapter 4). The equilibria are named

according to the phase of the upper level wave when G4=.10 in

case *1 and when 9*=.12 in case #2- and identified by

continuity as OD'is changed. The tables show that at higher

values ofAthere are four wavy equilibria. At lower values of

the driving the 30 degree Ridge and the Near Hadley solution

disappear, while at values of ODsomewhere between .07 and

.08, the remaining two equilibria, which we have defined as

corresponding to the regime states, also disappear. This

leaves only the purely zonal Hadley solution at the lowest

values of Gconsidered in our 16 experiments, which is stable

to Mode 11 disturbances. However, we note again that all the

equilibria are highly unstable to Mode 12 perturbations,

except at the lowest values of the driving where the e-folding

time is about 10 days. The existence of instability at these

low values of Gfis important because it implies that the

model atmosphere will still possess propagating synoptic-scale

disturbances. It will then be of interest to investigate the

nature of the large-scale time dependent flow and note whether

or not the time mean state of the Mode 11 wave amplitude is

zero as would be anticipated by the MFET.

Each of the 16 experiments is initialized in the manner

discussed earlier and integrated for 17 years or 100000 time

steps. To demonstrate the functional dependence of the time
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mean regime states and their relation to the corresponding

equilibria upon G, we plot the phase and amplitude of the

upper level streamfunction of the composite ridge and trough

regimes and their corresponding equilibria as a function of

for both cases in Figures Ba,b,c,d and 9a,b,c,d. (The

numbers 8 and 9 correspond to case *1 and case #2

respectively, while a,b,c,d indicate plots of the trough

amplitude, trough phase, ridge amplitude and ridge phase

respectively.) To demonstrate the sensitivity of the regime

persistence and dominance properties to we tabulate the

total number of days accounted for by the ridge regime, the

trough regime, both regimes (the sum of the ridge and trough

columns which represent "steady" behavior), and periods of

unsteady behavior (everything else) as a function of Oe in

Tables 5a,b (a,b refer to case *1 and case #2 respectively).

In addition we list the ten most persistent ridge and trough

regimes in each of the 16 experiments.

It is clear from the tables and figures that the tendency

for the regimes to persist and for a given regime to dominate

depend in a rather complex manner upon G. We have likewise

considered variations in other parameters and found that the

regime properties depend in a complex manner upon these

parameters as well. However, if we compare the statistics of

the two regimes in case #1 and case #2 we observe two

characteristics which appear to be relatively consistent as
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is varieds first, since Figs. 8 and 9 are plotted to the

same scale, we see that the trough regimes, especially the

most persistent (highest) categories, possess a greater time

mean wave amplitude than the ridge regimes (though the wave

amplitude of both regime states is significantly reduced over

that of the corresponding equilibria) at all values of

above the point where the Mode 11 equilibria cease to

exist. (Note that this relation also holds for the Trough and

90 degree Ridge Solutions). Second, whereas the wave

amplitude of the trough composites appear to be more erratic

(Figs. Ba, 9a) and their phases highly consistent (Figs. 8b,

9b), the wave amplitudes of the ridge composites are highly

consistent (Figs. 8c, 9c) while the phases tend to be more

erratic (Figs. Bd, 9d). However, the analysis of the two

cases demonstrate other important features which are of

significance to the understanding of the qualitative behavior

of the regime phenomenon.

First, the eight figures demonstrate that the mean state

of the seven composite regime categories vary continuously as

a function of 9 , in spite of the fact that the large-scale

Mode 11 stability properties (see Figs. 2a and 2b) behave in

a complex and discontinous manner. The continuous variation

of the regime states while the Mode 11 stability properties

switch from orographically unstable to absolutely stable to

baroclinically unstable suggests that these detailed stability
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properties are inconsequential to the final time dependent

behavior of the flow.

A second, and most interesting, observation is that the

multiple regime states continue to exist at values of the

driving where the stationary Mode 11 equilibria no longer

exist. (In case *1 this occurs at et=.07 and in case *2 it

occurs at &=.07 and .075). This observation clearly

demonstrates the importance of the dynamical influence of the

synoptic-scale disturbances in our model. The existence of

these regimes also implies that the synoptic- scale

disturbances are capable of directly forcing and maintaining

the large- scale circulation, further demonstrating the

importance of accounting for the synoptic-scale interactions

in the understanding of weather regime phenomena.

Third, and last, the one characteristic of the regime

behavior that is evident in all 16 experiments involving

G (as well as other experiments involving the remaining seven

external parameters) is the highly variable duration of a

single given regime event, regardless of the tendency for the

individual regimes to persist. An excellent example of this

indeterminent persistence is given in case *2 for G9=.15. In

spite of the fact that the general state of the flow for this

parameter set is highly unstable, one regime persisted for 102

days, more than twice the length of the second most persistent
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event. Though it may be highly improbable, there is no reason

not to assume that a 1000 day event may eventually occur. We

demonstrate the highly arbitrary nature of the regime

persistence by plotting the total number of regime events of a

given type for case #2 with G*=.12 and .14, which persist for

x number of days or longer in Figure 10. (To minimize

statistical fluctuations, we ran the model for 1.5 million

time steps or 93,750 days or about 257 years.) For comparison,

the cumulative distributions obtained by Dole (1981) for both

positive and negative 5-dam persistent anomalies are also

plotted.

If we had considered only periods longer than 15 days,

all the distributions would be straight lines on the

log-linear plot (except at the tail ends where a given event

is statistically very rare), indicating that the probability a

given event will persist for n+l days, if it persists for n

days, is constant. A dynamically preferred time scale, on the

other hand, would appear as a bulge, e.g., some type of

deviation from a straight line. Clearly, for periods greater

than 15 days, our statistics (as well as Dole's) do not imply

the existence of a preferred time scale.

However, a very interesting feature in the persistent

anomaly distribution was noted by Dole at much shorter time

periods which inspired us, in turn, to investigate the shorter
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period model transitions. Between 3 to 10 days, depending

upon which distribution is considered, there is a distinct

kink, e.g., there is a first-order discontinuity, where the

slope of the otherwise straight line distribution becomes

abruptly steeper for shorter time periods. In addition, we

find a pronounced but continuous bulge at about ten days in

the model ridge regimes (not duplicated by Dole's statistics)

which corresponds to the remnants of the limit cycle alluded

to previously. As discussed by Dole (1982.), this change in

slope suggests the existence of two distinct dynamical

processes, one characterized by relatively little persistence

and the other characterized by greater persistence. Dole

associates the former process with synoptic-scale disturbances

and the latter with what he calls persistent anomalies, or in

our terminology, regimes. The "kink" is especially apparent

in the G1=.12 trough distribution, demonstrating first that

the persistent phenomenon is a much more dominant process at

.12 than at ew=.14 or in the atmosphere, and second,

that the kink, and, thus, the distinction between the two

unique dynamical processes (which is subtle in the atmospheric

statistics), is a very real characteristic of externally

forced multiply scaled baroclinic systems. For further

discussion with regard to these distributions and their

implications, the reader is referred to Dole.

With the exception of the model ridge regimes, then,
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these distributions indicate that there is no favorable time

scale for these phenomena. This result does not agree with

the observational results of Charney et. al. (1981) who find

a peak in their distributions of atmospheric persistent

anomalies at 7 days. However, the statistical significance of

this peak has not yet been established. Dole's more

comprehensive analysis indicates that such peaks are quite

sensitive to the method of analysis and he concluded that a

statistically significant peak could not be resolved with his

14 year data set. We are also unable to resolve a distinct

peak in our 257 year sample of model data. The resolution of

this problem in the atmosphere clearly requires further study,

but with regard to the model, it appears quite safe to

conclude that there is no dynamically preferred time scale for

these weather regime phenomena, except perhaps the "peak" at

around 10 days associated with the limit cycle behavior in the

ridge regime.

RECAPITULATION

We have investigated the time dependent behavior of our

model for many sets of external parameters and found that the

Mode 11 wave aperiodically vacillates between two distinct,

"randomly" persistent, weather regime states. Though the

regimes were a generic property of the model, we found that

the quantitative characteristics of these regimes, ie. regime

persistence, dominance, and structure, are highly sensitive to
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the external parameters, as are the multiple equilibria

themselves. A detailed analysis of the individual regime

states showed that the time average was non-zero only in the

Mode 11 variables and that the two regimes were generally

characterized by a Mode 11 trough or ridge slightly west of

the orographic ridge. We also noted that during a given

regime event, the Mode 11 wave was found to undergo a wide

range of fluctuations on an instantaneous basis, from highly

erratic to nearly stationary. We then defined the nearly

stationary periods as Regime type II behavior and recognized

that such behavior at high amplitude was analogous to the

classic interpretation of the atmospheric block, which, in

turn, implied that blocking was simply a special case of the

more general weather regime phenomenon.

Finally we noted that the differences between the

observed time dependent behavior and that predicted by the

MFET indicated that the synoptic scales must have interacted

with the forced disturbances in a considerably more

complicated manner than that anticipated by the MFET. It is

also apparent that the finite amplitude synoptic-scale

disturbances are much more crucial in determining the

qualitative behavior of the large-scale flow than the Mode 11

stability properties. We see from Figs. 8 and 9 that the two

regime behavior occurs for all values of Gfand varies

continuously as a function of in spite of the fact that
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the Mode 11 stability properties (graphed in Figs. 2a and 2b

and discussed in the Multiple Equilibria section) behave in a

complex manner as a function of 9,. None of this complex

behavior is reflected in the time dependent behavior of the

full model. We also noted that limit cycles, as well as the

equilibria, may account for some of the large-scale behavior

in our model.
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6. MODEL SYNOPTICS

We have discussed the time dependent behavior of the

model in considerable detail, but to further clarify some of

the aspects of this behavior we create a series of "weather

maps" which display the height and temperature fields at the

model mid and lower levels for case #2 with e,=.12. For

scaling purposes we choose L=1600 km. which gives a channel

width Z L=5027 km. The height field in dimensional units is

then given by

z=(L f TH-.F, +constant)=(2560 714F, +constant) meters

where the constant (which is arbitrary in our simple model) is

taken to be 5460 meters at the midlevel (to correspond to the

500 mb. surface) and 1440 meters at the lower level (to

correspond to the 850 mb. level). Actually, the model mid

and lower levels should be 600 and 800 mb. respectively, but

these levels are not as familiar as the 500 and 850, and since

the correspondence between a given model level and an

atmospheric pressure level is by no means precise, the

differences are rather inconsequential.

The dimensional temperature field is given by

G =(AL f I G F, +constant)=(304 'Z G7F +constant)"K

where the constant is taken to be 253 * K. the approximate mean
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500 mb. temperature. Since G is constant, the temperature

field has the same form at all levels, thus we plot only the

500 mb. temperature but on the 850 mb. level. This practice

is reasonable since the temperature field is directly

proportional to the thickness field in our simple model. The

scaling also gives us the radiative north-south temperature

difference which for 0=.12 is 110 K.

In Figures lla,b,c,d we plot the Near Hadley, 90ORidge,

450 Trough, and the 30*Ridge respectively. In Figures 11 e,f

we plot the category 7 trough and ridge regime mean state

composites respectively. The height contours are every 6

decameters and the isotherms every 18'K, and the units of

distance in the x-direction are given in degrees with respect

to the mountain ridge (not to be confused with degrees

latitude on earth). We note that the time mean regime states

in Figs. lle and f are represented fairly well by the

90Ridge and 450Trough (Figs. llb and c), though the

amplitudes of the time mean states are considerably reduced

over that of the equilibria. In addition, we note that the

temperature gradients are quite excessive. This again is

related to the difficulty of representing the heights of the

pressure levels of the continuous atmosphere to the two layer

model. (However, if we chose the model top to be at 0 mb.

instead of 200 mb., a common practice in two layer models,

bLwould change such that each contour represents only 12"K,
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which gives a much more reasonable, but still excessive,

temperature gradient of 60 0K). Since the temperature is

determined by the vertical structure, the dimensional

temperature field, similar to the static stability and the

mountain heights, is likewise "stretched". Otherwise, we see

that the phase relation between the temperature and height

fields has structure which is characteristic of baroclinic

systems. At 850, 500 and 250 mb. (levels 3,2, and 1), the

phase of the time mean ridge and trough regime waves are given

by -5, -69, and -87 degrees and 178, 1436, and 135"degrees

respectively. In spite of the simplicity of our model, we

still obtain a reasonable vertical structure, in the sense the

two layer model can be related to a continuous model with

constant vertical shear, where the bulk of the westward phase

shift occurs in the lower layer and the maximum amplitude in

the upper layer.

Nevertheless, none of these patterns above are what we

would call realistic primarily because they all lack smaller

scale components. However, we also plot the instantaneous

unfiltered flow configurations during both a trough and ridge

regime event in Figures 11 g,h. Both of these examples are

taken during a period of high amplitude, regime type II

behavior (a model block), though the ridge case happened to be

more unsteady and less persistent than the trough. We can see

that these two figures are surprisingly realistic, considering
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the simplicity of the model, especially at the 500 mb. level,

where the lack of smaller scale disturbances is not so

apparent. (The weak high over low and "split flow" that

appear in the ridge of the trough regime are merely

coincidental and are not apparent in the succeeding days).

Clearly, the characteristics of the surface weather during

these two regime events would be remarkably different, and

thus for extended range forecasting purposes for the model

atmosphere, it becomes critical to be able to predict the

regime states. Furthermore, these very different persistent

patterns occur for a fixed external forcing, and thus are

entirely internally determined.
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7. SYNOPTIC-PLANETARY SCALE INTERACTIONS

Our time dependent experiments have demonstrated two

important facts; first, the highly simplified model possesses

the necessary physics for the development of weather regimes,

and second, the additional physical process which we represent

by including a second wave in the x-direction (the direct

interaction between an externally forced planetary scale wave

and a highly unstable baroclinic wave) is an essential

mechanism in the multiple regime phenomenon, and its inclusion

is important in determining the final qualitative behavior of

the large-scale circulation. In the Introduction, we suggest

that the mutual interaction between the planetary and synoptic"

scale waves establishes regime type phenomena by the

equilibration of a feedback process. This feedback occurs

through the process whereby the large-scale disturbance

modulates the development of its own instabilities such that

the net transports by these instabilities, in turn appear as a

zonally inhomogeneous forcing to the large-scale wave. A

priori we know that the baroclinic modes will result in time

mean correlations that are non-zero since these correlations

represent the net heat and momentum transports, but the

potentially significant aspect to the feedback mechanism is

the possible existence of wave structure in the net transport

fields. In this section we investigate the quantitative

details of this equilibration mechanism diagnostically by
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consideration of the time mean regime budgets.

The budgets are calculated in the standard manner of

applying the Reynolds' decomposition to the instantaneous

system of model equations and evaluating the individual terms

over the lifetime of a given regime event, a proceedure also

followed by Dole (198Z) in his study of atmospheric anomalies,

which we will discuss in more detail later. It is very

important to our study that the period over which we compute

the budgets be chosen to coincide with the duration of a given

regime event. We specifically avoid the common practice of

selecting arbitrary periods over which to perform our

analysis, e.g., a week, month, or season, since we may then

include fractions of the two different regimes as well as

periods of unsteady behavior. It is also important for the

validity of the Reynolds' decomposition that the regime

persist for periods very long compared to the passing of a

synoptic-scale disturbance. In our model (and in the

atmosphere) many regimes persist only in the order of a few

weeks, corresponding to perhaps 3 to 5 synoptic periods.

Though we generally consider such periods as persistent,

mathematically, such a small number of transient events does

not consist of a statistically significant sample.

Consequently, we compute the budgets for an ensemble of

regimes of a given type, which are, by our previous

definition, the regime composites. In this manner, we reduce
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spurious fluctuations in the budget terms from sampling

problems to a minimum.

The general system of time mean prognostic equations for

our model which result from the Reynolds' decomposition,

consists of 20 equations, 20 time mean variables, and on the

order of 100 correlation or Reynolds' stress terms. However,

the equations for the analysis of the time mean regime budgets

are considerably simplified by our previous observation that

only the Mode 11 variables have a non zero time mean state

over the duration of a regime event, and by the fact that the

time mean tendency terms are approximately zero. With these

simplifications the general system of 20 equations reduces to

the 6 time mean Mode 11 prognostic equations. This system of

equations is identical in form to the instantaneous system of

Mode 11 equations from which we obtained the stationary

equilibria, except for the addition of the correlation terms.

However, the individual terms in the 6-equation Mode 11 system

represent both thermodynamic and hydrodynamic processes, which

leads to difficulties in interpreting the various physical

mechanisms. To separate these physical processes, we rewrite

the equations in terms of the time mean upper and lower level

streamfunction T and 0 , and do not eliminate w between the

thermodynamic and shear equations. This process gives us a 9

equation system; 6 equations for T , (s, g , , g(, and

91 and 3 equations for 9,, G., and e,. In this system, w can
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be written as a result of purely thermal processes, e.g.

Newtonian cooling and temperature advection (from the G

equations). Then the w terms in the upper and lower level

vorticity equations represent the thermal effects while all

the remaining terms represent the various inertial effects.

The final set of equations from which we calculate the budgets

are as follows:

(See the following page) (7.1)

where we have labeled the individual terms (or groups of

individual terms) by the scale and nature of the physical

process they represent. All the correlation terms are denoted

by adxx (advection xx) where xx represents the scale of the

smallest wave present in the interaction, while BETA, TOP2,

DISS, and INT refer to the time mean beta, topographic,

dissipative (frictional in the vorticity equations and thermal

in the w equations), and internally dissipative processes

respectively, while AD1l (advection 11) refers to the

advection of the time mean quantities by the time mean flow.

The correlation terms (adll, ad2l, adl2, ad22) are of

primary interest since they represent the net effects of the

transient disturbances. From the form of the correlation or

stress terms, we can see that their influence upon the large-

scale circulation is then analogous to a specified vorticity
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or heat source or sink; thus the concept of synoptic-scale

forcing. Clearly, if the time mean states of the correlation

terms are zero (no synoptic-scale forcing) the solutions to

the above system are the stationary equilibria of Charney and

Straus. In this sense, it may be convenient to view the

weather regime as one of perhaps several solutions to the time

mean prognostic system with the time mean tendency terms set

to zero, analogous to the manner in which the stationary

equilibria are solutions to the instantaneous system with the

instantaneous tendency terms set to zero.

Our budget analysis consists of computing diagnostically

the phase and amplitude (instead of wave components) of the

time mean of each of the individual terms (or groups of terms)

in the 9 equations for the 7 categories of composite ridge and

trough regimes. In addition, we also compute various

combinations of terms. First we compute the sum of the

correlation terms, adll+ad2l+adl2+ad22=sum, which in the

vorticity equations give the net advection of perturbation

vorticity by the perturbed flow, and in the w equations, give

the net advection of perturbed potential temperature by the

perturbed flow. Second, we sum ADll and BETA (denoted by

BEAD) in the vorticity equations since they are both very

large and generally 180*out of phase. Third we calculate the

net effects of the nonlinear or correlation components of w,

denoted by "wnln", and the linear components of w, denoted by
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WLIN, (which are both purely thermodynamic) upon the vorticity

equations. For the final step we combine the thermodynamic

and hydrodynamic components resulting from the correlations

between the transient motions, wnln+sum=nlns, and the mean

field components, WLIN+INT+DISS+TOP2+BEAD=LINS. Over the

lifetime of a regime, then, the sum of nlns+LINS should be

approximately zero. Numerically this is accomplished by

calculating each individual term every time step (1.5 hrs.)

and averaging over the duration of a given regime. At the end

of the integration, the time mean budgets of the individual

trough and ridge regimes are placed into one of the 7

categories from which the final weighted statistics of the

composites are obtained.

Despite our primary focus on the nature of the

synoptic-scale transport quantities, we consider all the

physical processes in our budget analyses for two reasons.

First, we need to consider the role of the transient forcing

quantities relative to the other physical processes, and

second, the budget statistics provide a means of

quantitatively comparing the model weather regimes to

atmospheric phenomema. In Table 6a we present the budget

analysis for the category seven 34-year trough and ridge

composites for case *2 with eo=.12. (For convenience, each

nondimensional term is multiplied by 1000.) To better compare

the variation of the transports in the different categories,
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we plot the phase and amplitudes of the upper level transport

terms adll, ad2l, adl2, and "sum" in Figure 12.

There are two distinct aspects of the nonlinear transport

quantities apparent in Figure 12 which demonstrate that the

synoptic scale transient forcing has zonally inhomogeneous

structure. First, we see that the individual nonlinear

transport terms are concentrated into relatively confined

areas of the figure as a function of category in a given

regime state which indicates that the transports are highly

consistent from regime to regime of a given type. Second, the

algebraically identical nonlinear transport quantities which

are highly consistent within a given regime, are very

different between the trough and ridge regime states. The

first type of behavior indicates that the transports are

distinctly organized during the occurrence of weather regimes,

while the second type of behavior implies that the nature of

the organization is somehow dependent upon the structure of

the large-scale wave.

These two results are also obtained when we consider the

budget analysis for the individual (instead of composite)

trough and ridge regime states. Though the budget statistics

possess considerable fluctuations for the less persistent

regimes (as expected), the magnitudes of the fluctuations do

not exceed the mean. The statistics of the most persistent
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regimes, on the other hand, possess fluctuations in the budget

terms of the same order as the composites. Both the

individual and composite analyses, then, support the notion

that there exists a consistently organized behavior in the

transient disturbances whose transports possess a non zero

time mean zonally inhomogeneous structure. According to our

time mean prognostic equations, then, these transports appear

as a zonally inhomogeneous forcing to the large-scale wave.

In order to provide some insight as to the role of the

transients in the maintenance of the time mean regime states,

we plot two "balance of forces" diagrams for the upper level

waves of the 7 categories of composite trough and ridge

regimes in Figures 13a and b respectively. Each term, as well

as the time mean state wave, is represented by a vector. The

projections of the various force vectors perpendicular and

along the wave vector then provide a means of ascertaining the

role of the various processes in the maintenance of the time

mean wave, e.g., components of forces along and opposite the

wave vector are directly enhancing and dissipating the wave

respectively, while components 90 to the left and right of the

wave vector are attempting to propogate the wave westward and

eastward respectively. The two largest terms BETA and ADll,

which are purely barotropic processes, exceed all the

remaining terms by nearly an order of magnitude, but since

they act in opposing manners and are always constrained to lie
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perpendicular to the wave vector, we plot only their sum BEAD,

which is of the same order as the remaining terms in the

budgets. This near balance between the BETA and ADll effects

indicate that the time mean state of the upper level wave is

near barotropic resonance. However, the condition for

resonance of the upper level wave alone does not imply that

the full model is near its resonant state.

The first aspect of the two figures which is of note is

that all the force vectors of a given type are constrained to

a narrow region in space. The lack of variability in the

budgets of both regimes indicates that the behavior during the

periods we have composited for analysis is remarkably similar.

The second point of note is that the manner in which the

forces establish a balance in the two regime states is

considerably different ( a behavior we most likely would not

have noted had we selected arbitrary periods of time over

which to compute our budgets). In the trough composites (Fig.

13a), the two largest magnitude forces, WLIN and BEAD, are

oriented primarily perpendicular to the wave vector while in

the ridge composites (Fig. 13b) WLIN BEAD, and nlns are about

equal in magnitude with much larger components of WLIN and

nlns directed along and opposite the wave vector instead of

perpendicular to it. In both cases, however, after

cancellation of the perpendicular (propogating) component of

the forces, we note that the upper level wave is maintained
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primarily by WLIN (advection of mean potential temperature by

the mean flow) and dissipated by nins (the transients), though

both of these projections are quite small.

Similar relationships between the budget terms described

above are also obtained by Dole (1982) in his study of

atmospheric persistent anomalies. Dole's persistent anomalies

are defined by carefully tested selection criteria and

composited by type similar to our regimes, and thus his study

provides (to the best of our knowledge) the only observational

work which is consistent with our regime analysis. Dole finds

that the dominant processes (in order) tend to be the time

mean advection of absolute vorticity (equivalent to our BEAD)

and what he refers to as divergence effects, which is

essentially temperature advection (equivalent to our WLIN).

The remaining processes, including external forcing

mechanisms, dissipation, and the effects of transients, are

all within the levels of observational noise' thus their

magnitudes cannot be ascertained with much confidence.

However, the implications are that the transients, as well as

the dissipative processes, act to damp the wave, though both

mechanisms are relatively weak.

The results of our analysis are then in qualitative

agreement with those of Dole, which provides evidence that the

model regime phenomenon bears some resemblance to the
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atmospheric event. However, perhaps the most interesting

aspect of the combined budget analyses is the fact that the

effects of the transients and topography are relatively small,

and thus to a first approximation, appear negligible. Clearly

the assumption that neglecting terms which appear small in the

budgets would lead to qualitatively correct solutions would

lead to erroneous conclusions in the case of external

mechanisms, for no regime-type phenomena are observed in our

model in the absence of topography. In an analogous manner,

we have shown in Chapter 6 that the presence of interacting

baroclinic transients has a major effect upon the nature of

the large-scale flow and the occurrence of regimes. It does

not appear possible, then, to conclude that a given process is

negligible based solely upon the relative magnitudes of the

budget terms. In fact, the small contribution to the budgets

by the time averaged transient terms which we have obtained

diagnostically must account entirely for the relatively large

differences between the stationary equilibria and the time

mean regime states. We can at least partially demonstrate

that the relatively small transports do account for the rather

large differences in the time mean state by consideration of

an example. In the w equation, the driving is given by the

quantity -h Of/ G. =-.036 in our nondimensional units, which

corresponds to convergence south of the channel center and

divergence to the north of the channel center. The net

transient term "sum", given by 5.7487/1000 in the category 7
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ridge regime (Tab. 6a), then acts to oppose the divergence

pattern established by Gf, which is equivalent to reducing

from .12 to eGwhere e,"is given by

0- /h)(.036-.0057487)=.109. From Fig. 1 we can see that

this small change in , accounts for a rather significant

change in the stationary equilibria. Of course this single

alteration cannot account for all the observed differences

between the stationary equilibria and the time mean regime

states; however, if we solved the above system of 6 Mode 11

time mean prognostic equations using our diagnostically

determined values for the correlation terms, by definition,

the solutions should be very close to the observed time mean

regime states.

The purpose of our budget analysis, however, is not to

attempt to understand the roles of the various mechanisms in

the maintenance of the time mean regimes, but to study the

organization of the transient disturbances. In the single

case discussed above, the transients are both consistently

organized from category to category and very different in the

two regime states. It is then of interest to investigate the

degree to which this behavior is maintained as the external

parameters are changed.

We compute the budgets for all the parameter sets studied

in Chapter 5 and find that the transports, analogous to the
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time mean regime states, vary continuously as a function of

the parameters, and for a majority of the cases considered,

behave in a very consistent manner in each of the two

different regimes. To demonstrate these aspects of the

transient behavior we plot the phase of the transient forcing,

the time mean state wave and corresponding equilibrium state

as a function of for the case *1 trough regime composites

in Figure 14a, and a similar plot for the case #2 ridge regime

composites in Fig. 14b. (The only reason we choose the two

different cases for the two regimes is that in the more

extensive case #2, the trough regime becomes so rare at low

values of the driving most of the categories contain no data,

thus we resort to the less extensive case #1).

In both figures we see that the difference between the

phase of the transient forcing terms and the time mean Mode 11

waves is very consistent for a given value of O9,, and that

the behavior of the transients vary continuously as a function

of 9 . We also note that at progressively lower values of

the driving, a larger component of the transient forcing is

directed along the wave vector, and at values of G* below

which the equilibria cease to exist the transients actually

act to maintain the time mean regime state. At more realistic

values of the driving, on the other hand, the transients are

primarily dissipative, and it appears that the phase

difference between the mean wave and the transient forcing
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tends toward 180 as Gis progressively increased.

The final point of interest is to compare the budgets of

the composite regimes in Table 6a with the budgets calculated

in two subset periods of Regime type II behavior. The first

example is a moderate amplitude 31-day ridge and the second

example is a high amplitude 46-day trough (which corresponds

to a classic block). The results, which are presented in the

same format as Table 6a, are given in Table 6b; in addition,

the transient terms are plotted as solid triangles and

rectangles in Fig. 12. We can see that there are no

significant differences between the two trough regimes but in

the ridge regime type II event, the adll term has become

considerably smaller (which is to be expected since the

fluctuations in the Mode 11 wave, by definition, are less).

Thus the transient forcing is primarily a result of the adl2

terms. (Note that the magnitudes of the transients in the

type II cases are, nevertheless, of the same size as in the

regular regimes). Outside of the differences in the adll

terms, the statistics of both regime types are similar. This

result supports the previous claim that such impressively

steady periods are simply extreme examples of the more general

weather regime phenomenon.

RECAPITULATION



PAGE 87

The diagnostic budget analyses have demonstrated several

important facts. First, the transients do, in fact,

distinctly organize in a consistent manner and act as a

zonally inhomogeneous forcing to the large scale during

periods of weather regime type behavior. Second, the

structure of the organization of the transports is highly

dependent upon the regime type, third, the behavior of the

transient forcing term varies continuously as a function of

the parameters, as do the time mean regime states, and fourth,

at low values of the driving G , the transients act to

directly maintain the large-scale wave, while at more

realistic (higher) values of G,, the transients act as a

dissipation. Though we found the magnitudes of the transient

components to be small relative to some of the other budget

terms, we have shown that the transports can account for the

differences between the stationary equilibria and the time

mean regime state. We have also argued that certain processes

cannot be considered negligible just because the budget terms

are small, providing as examples the profound influences both

topography and the transients have upon the large-scale flow.

Finally, comparison of the model regime budgets to those

obtained by Dole in his study of atmospheric persistent

anomalies strongly indicates that the model phenomenon is a

dynamically representative counterpart to the atmospheric

phenomenon.
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8. SUMMARY

Motivated by the recently developed MFET and the

subjective impression that periods of quasi-stationary

behavior in the large scales are integrally associated with an

organized behavior in the synoptic scales, we proposed the

hypothesis that such periods of weather regime type behavior

are established through the equilibration of a feedback

mechanism whereby the zonally inhomogeneously externally

forced planetary-scale wave modulates its own instabilities

such that the net transports, in turn, appear as an additional

zonally inhomogeneous forcing to the large-scale wave. To

test this hypothesis, we developed one of the simplest

possible models that contains the interaction between a

zonally inhomogeneously externally forced planetary- scale

wave and a highly baroclinically unstable synoptic-scale wave,

by adding a second wave in the zonal direction to the

12-variable model of Charney and Straus (1980). We then study

the time dependent behavior of the model by introducing a

small synoptic-scale perturbation about the large-scale

Mode 11 stationary equilibria; the equilibria are always

highly unstable to such perturbations.

The most important result of our experiments is that when

both large- scale topography and wave-wave interaction are

included in the model, the flow possesses two weather regime
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states, which are characterized by the confinement of the

large-scale Mode 11 wave component of the trajectory to two

distinct regions of phase space for periods of time which are

long compared to the 3 to 5 day vacillations of the smaller

scales. A more comprehensive analysis of the individual

regimes for numerous parameter sets reveal several important

qualitative properties:

1. The time mean state of the regimes is non zero only

in the Mode 11 variables, which indicates that any

smaller scale components of stationary equilibria, if

they exist, are subsequently destroyed by the highly

active synoptic-scale baroclinic mechanisms.

2. The time mean states of the two regimes are

generally characterized by either a Mode 11 upper

level trough about 400to 50*west of the orographic

ridge or a ridge about 70cto ll0 west of the

topographic ridge. The ridge regime generally

possesses surface easterlies while the trough regime

possesses surface westerlies, which indicates that

the two regime states are not super and subresonant

pairs.

3. The degree to which the large-scale wave vacillates

on a day to day basis during periods of regime type
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behavior is extremely variable, ranging from highly

erratic to nearly stationary. Periods of near-

stationary behavior are subsequently defined as

Regime type II behavior since at large amplitude,

Regime type II behavior is reminiscent of the classic

interpretation of the block.

4. The regimes appear to have no dynamically preferred

time scale in the sense that the probability a given

regime will persist n+1 days, given that it persists

n days, is constant.

5. Transition from one regime to another, which can

occur on a synoptic time scale, as well as the two

extraordinarily different regime short-range

climates, which correspond to extremely different

states of the weather on a local basis, result from

purely internal processes, i.e., they occur for a

single fixed set of external parameters.

In spite of the simplicity of our model, several of the

above properties are consistent with the results of Dole's

(1982) study on atmospheric persistent anomalies. Of

particular significance is Dole's observation that the anomaly

events, which he finds to occur most frequently over the

eastern Pacific, eastern Atlantic, and the Urals, are 1) both
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positive (ridges) and negative (troughs), 2) occur

(independently) with about equal frequency at each of the 3

regions, and 3) do not form ideal antisymmetric pairs. In

addition, Dole finds no indication that either type of anomaly

event has a preferred time scale, and thus the persistence of

an individual anomaly event is, to a certain extent,

arbitrary. Furthermore, Dole notes that at any one of the

three preferred regions, a given season could be dominated by

positive events, negative events, a mixture of both, or an

absence of any type of persistent behavior at all. These

events are also observed to establish and or dissipate very

rapidly; e.g. Dole finds that two days before the anomaly

meets his selection criteria, even in the composites, that

there is no recognizable sign of their pattern. The

similarities between Dole's results and the model regimes then

strongly indicate that the model weather regimes bear some

resemblance to the atmospheric event.

Another important result of our experiments is the

observation that the regions in phase space about which the

trajectory remains confined during periods of weather regime

type behavior, are not centered on the stationary equilibria

as anticipated by the MFET. In fact, the stationary

equilibria generally lie outside of the volume defined by the

furthest extent of the large-scale trajectory. Nevertheless,

there are significant indications that the regimes are
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associated with a certain select set of equilibria or limit

cycles (which we refer to as the "corresponding" equilibria).

This association is indicated primarily by the fact that the

phase of the time mean wave and the direction of the surface

flow are similar in both the regimes and the corresponding

equilibria. However, it is not clear why only two of the

stationary equilibria are associated with regimes and the

other three stationary equilibria are not.

One possible explanation suggests that "realizable"

equilibria in the time dependent problem are those which are

either stable or weakly unstable to large-scale (Mode 11)

perturbations. This assumption is clearly not valid in our

model since we find several parameter sets for which the

regimes associate with equilibria that are unstable to Mode 11

perturbations while some of the remaining equilibria, which

appear to have no influence upon the flow, are either stable

or weakly unstable to Mode 11 perturbations. In fact, we find

that the large-scale Mode 11 stability properties of all the

stationary equilibria, including the occasional appearence of

orographic instability, to vary in a complex manner as a

function of the external parameters, yet none of this complex

behavior is reflected in the nature of the full model weather

regimes. Furthermore, two-regime behavior (both with time

mean zonally inhomogeneous wave structure) is observed to

exist for parameter sets where the only stationary equilibrium
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state is the purely zonal Hadley Solution.

It is quite apparent, then, that we cannot predict the

qualitative nature of the large-scale flow in our model

knowing only the stationary equilibria and their large-scale

stability properties, as is implicitly assumed by the MFET.

The presence of the synoptic scales and their mutual

interaction with the forced stationary equilibria is of

importance in determining both the instantaneous and time mean

state of the large scale, and accounts for the differences

between the Mode 11 stationary equilibria and the time mean

regime states.

The budget analyses of the two regime states demonstrate

that the synoptic scales are organized during the regime

events such that their net time mean transports have zonally

inhomogeneous structure on the scale of the Mode 11 wave, and

therefore appear as either a heat or vorticity source, and act

as an additional forcing mechanism upon the large-scale wave.

Though our budgets show that these transport quantities are

small, they are sufficient to account for the differences

between the stationary equilibria and the time mean regime

states. The inclusion of these transport quantities in the

large- scale Mode 11 equations then allows for a

self-consistent solution where the effects of the transient

feedbacks have been considered.
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There are, however, several aspects of the feedback

mechanism which are unclear. First, we have not yet

established the mechanism by which the large scale organizes

the transients. Second, the budgets indicate that the

magnitudes of the net transports, though highly consistent

from case to case, are quite small relative to some of the

other physical processes. This result raises the question of

how a small forcing can result in such a profound change in

the time mean states. These questions are considered in the

succeeding chapters.
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9. ESTIMATES OF EDDY TRANSPORTS FROM STABILITY THEORY

We have demonstrated in the previous chapters that during

the occurrence of weather regime behavior the time averaged

(net) transports by the transient disturbances are spatially

organized and act as a zonally inhomogeneous forcing mechanism

to the large-scale wave. The next stage of this analysis is

to understand the mechanisms through which the transports are

organized. The fact that the phase structure of the net

transports during the trough and ridge regimes are so

different, indicates that the large-scale wave plays an

important role in the organization process. Frederiksen

(1979) and Niehaus (1980) have both done studies which

indicate that the presence of a prescribed large-scale zonally

inhomogeneous circulation can organize the transports of the

smaller scale disturbances by modulation of the shapes of the

baroclinically unstable modes. Frederiksen was able to

qualitatively account for the observed high-pass variance

distribution of Blackmon et. al. (1977) by computing the

time averaged (net) transports of the baroclinic disturbances

which develop from a prescribed planetary-scale wavenumber

three pattern superposed upon the climatological zonal flow.

Without the large-scale wave, the time averaged (net)

transports are zonally homogeneous. It is then of interest to

investigate whether we can account for the observed structure

of the net transports during periods of regime type behavior
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in our model by performing an analysis similar to that of

Frederiksen. For convenience, we shall refer to this analysis

as the "Frederiksen-Niehaus problem" or "Frederiksen problem".

Frederiksen's calculation is based upon the assumption

that the baroclinically most unstable eigenmode of his

prescribed circulation equilibrates to some finite amplitude

while maintaining its spatial structure. The net heat and

vorticity transports which result from this propagating

disturbance are then obtained by taking the time average of

the products of the meridional velocity components of the most

unstable eigenmode with the thermal and vorticity structures

of the most unstable eigenmode. The product contains terms

which involve oscillating components (that may be very large

on an instantaneous basis) as well as terms where the

oscillating components cancel. In the time average, the

oscillating components eventually average to zero over several

periods, leaving only the stationary non-propagating cross

terms.. This calculation will be further illustrated below

when we consider its application to our study.

In our model, the prescribed planetary-scale circulation

corresponds to the time mean state of the regimes, thus the

first aspect of the problem is identical in form to the

calculation of the stability of the stationary equilibria

except that we replace the equilibria with the time mean
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states.

Performing a perturbation analysis about the time mean

state may at first appear inconsistent since the time mean

states are not solutions to the instantaneous system of

equations. Clearly, if we initialized the full model with the

time mean state and a small synoptic-scale perturbation, the

time- dependent behavior would most likely be catastrophically

violent since the large-scale processes alone, regardless of

the net effects of the transients, are far from an equilibrium

and highly unbalanced' thus the eigenmodes and eigenvalues of

the stability calculation of the time mean state would not be

representative of the initial model behavior. However, we are

interested in ascertaining whether the eigenmodes that develop

on the time mean state are, in fact, representative of the

finite amplitude disturbances that are present during the said

regime, and we hope that the transports due to these

eigenmodes balance the large-scale equations. If the

calculated eigenmodes are a reasonable facsimile of the actual

finite amplitude disturbances, the net transports of these

eigenmodes will possess structure similar to those obtained in

the budget studies.

Mathematically, the analysis is then identical to the

stability calculation of the stationary equilibria if we

assume that the eddy transport terms, which represent the
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long-term averaged effects of the transients, are constants,

and thus drop out of the stability matrix. As discussed in

Chapter 4, the form of the equations is such that the 20X20

stability matrix reduces to three submaticesi a 6X6 matrix

involving only Mode 11 perturbations, a 1OX10 matrix involving

coupled Mode 21 and Mode 12 perturbations, and a 4X4 matrix

involving only Mode 22 perturbations. The baroclinically most

unstable mode for all sets of external parameters we have

considered is one of the eigenmodes of the lOX10 coupled

Mode 21 and Mode 12 matrix, thus we will concentrate on the

transports which result from this submatrix. The general form

of the coupled Mode 21 and Mode 12 perturbation is given by

r(t)= B Real ( Y e )]

where B is an arbitrary amplitude coefficient and and

are vectors of the form ( '- , G, M, Q,, C, 1, (,, M,

G,, G.) where the components of the eigenvector ' and the

eigenvalue r are complex. The behavior of the individual

spectral components, say Y; , is then given byl

9';= BE Real ( 4e )3.

The net transports or correlation terms are then obtained by

taking the time average of the products of these individual

terms, for example, one of the components of the heat

transport is given by

Y G = B Real ( t;e*) B Real ( G3e )=

B (9 e + 4i-e )(Ge + e )/4

where the * denotes the complex conjugate. Expanding we
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obtain the following:

4' B ( k ; Oie + j ee +( + M~e

We now assume, as in Frederiksen, that the perturbation

attains a finite amplitude while retaining its structure, so

that all the exponential quantities are replaced by their

trigonometric parts, which is equivalent to setting the real

part of Y to zero. The only non zero components of the

expansion remaining in the time average are then the cross

terms Y;G, + ( '+ = 0), since the oscillating

time dependent components cancel. In this manner, we can

calculate the various transport quantities adll, ad2l, adl2,

ad22 that appear in the time mean Mode 11 prognostic equations

(see 7.1 of Chapter 7) and compare them to those obtained

diagnostically in our budget study.

However, there are several reasons for discrepancies

between the theoretical and diagnostic analyses. The primary

cause is that the most rapidly growing perturbation does not

necessarily become the most dominant structure at finite

amplitude (Pedlosky(1981)). Either nonlinear exchange

processes, such as transfer of energy from the most unstable

mode to other modes may become significant, or less unstable

perturbations and secondary instabilities may simply continue

to grow long after the initially most unstable mode

equilibrates at finite amplitude. In addition, the use of the

time mean state is not necessarily the most appropriate basic



PAGE 100

state for the stability analysis as the time mean state

already reflects the influence of the eddy fluxes. Though

these complications may be quantitatively significant, the

fact that Frederiksen is able to account qualitatively for the

observed distribution of the time mean atmospheric transports

indicates that the modulation of the most unstable baroclinic

modes by the large scale is the dominant mechanism.

The first aspect of this analysis is to compute the

values of the individual net transport terms adll, ad2l, adl2,

ad22 (which are given by 7.1) for the upper and lower level

tendency equations and the w equations from the most unstable

eigenmodes and to compare them with the corresponding

diagnostically ascertained terms in Tables 6a and 6b. Though

the linear theory can give us a phase and spatial structure,

the amplitude is indeterminate, and at best we can only obtain

the relative amplitudes of the net transport terms.

Consequently, to obtain a measure of the degree to which the

linear calculation reproduces the budget analyses, we

calculate the ratios between the amplitudes of each of the

theoretically derived values and the corresponding amplitudes

obtained from the diagnostically ascertained budgets. If the

linear theory then predicts the observed transport structure

exactly, the phases of the budget terms and the theoretically

derived net transports will be identical and the amplitude

ratios of each of the theoretically derived quantities will be
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identical.

For our first example we compute the transports from the

most unstable eigenmode of the time mean states of the two

periods of Regime type II behavior (periods of relatively

steady behavior in the large scales on an instantaneous basis)

in Table 6b. We consider these periods initially (instead of

the composites) since the large-scale wave varies the least

about the time mean state. Consequently, these periods are

more consistent with the linear analysis which considers the

stability of only the time mean state without taking into

account the degree to which the large-scale wave fluctuates.

The agreement between the linear theory and the diagnostics of

Regime type II behavior is then expected, a priori, to be the

best.

The stability analysis for the 46-day trough and 31-day

ridge in Table 6b each have only one unstable eigenmode;

coupled Mode 21 and Mode 12 disturbances, which, when

normalized by the largest amplitude component, are as follows:

REAL IMAG REAL IMAG

1336 0640 -1333 -2376
Ar 4706 -0339 4630 -0673
'4' -0258 -4892 0429 -4230
) 1679 0023 -0239 0849

6= 2166 -2382 -0481 -0990
62& -2152 -2439 -1102 -0064

7 7346 -9971 0436 9939
4 -10000 -73461 10000 -0187

0524. -4046 3139 3491
G6 4075 -5222 /TROUGH 3527 -3212 RIDGE
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In both cases, we can see that the Mode 12 amplitudes

( +4+ 4- ) and ( G.,Ge+ sg )" have greater relative

amplitude than the Mode 21 amplitudes ( ' 9 )' and

(cG 1W+ egG4) by about a factor of 2 to 4. In Table 7a, we

compare the phases and amplitude ratios of the theoretically

obtained transports from these eigenmodes to those of Table

6b.

First, we can see that the agreement between the

predicted phase and that of the ad12 component of the budgets

is excellent. For example, in the trough regime, in the upper

level, theory gives 49.1 against the observed (full model)

48.40, in the lower level theory gives l0.70 against the

observed 28.4 (the poorest agreement), while in the w field

0 6

theory gives 110.0 against the observed 108.8 . Similar

quantitative success is also apparent in the ridge regime.

Second, we can see that the theory successfully predicts

the relative amplitudes of the adl2 terms, as shown by the

fact that the amplitude ratios are nearly constant. For

example, in the trough regime, the amplitude ratios for the

upper level, lower level, zonal and wave w fields are 1.46,

1.31, 1.31, and 1.26, respectively. (Again, equal success is

apparent in the ridge regime.) The fact that the amplitude

ratios are nearly constant states that if we multiply each of

the theoretically calculated amplitudes of the ad12 terms
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(before computing the ratios) by the reciprocal of the average

values of the above ratios, we will be able to nearly

duplicate the amplitudes of the observed full model adl2

terms.

The ad2l terms, on the other hand, are not predicted

quite so successfully by this theory. Though we can see from

Table 7a that in many cases the predicted phase of the ad2l

component is quite good, except where the amplitude of the

observed ad2l component is small, the theoretical technique

both underpredicts and poorly replicates the amplitude of the

ad2l component. First, we see that the amplitude ratios of

the individual predicted terms vary quite considerably, for

example, in the ridge regime, the amplitude ratios of the

upper level, lower level, zonal and wave w fields are given by

.33, .88, .98, and .30, respectively, a variation of about a

factor of three. Secondly, if we choose our multiplication

factor, discussed above, such that the theoretically predicted

adl2 components have the correct amplitudes, the resulting

amplitudes of the predicted ad2l terms (which also must be

multiplied by this same factor to be consistent) will be too

small. The underprediction of the ad2l terms is associated

with the fact that in the fully nonlinear model the amplitudes

of the Mode 21 variables are comparable to the amplitudes of

the Mode 12 variables, whereas the Mode 21 amplitudes of the

eigenvectors of the stability problem are considerably smaller
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than the Mode 12 amplitudes. Since ad2l involves products of

purely Mode 21 terms, we may have anticipated a priori that

the magnitudes of the ad2l terms would be underpredicted.

The adll and ad22 terms, on the other hand, are predicted

to be zero since all perturbations with Mode 11 and Mode 22

components are linearly stable. In the case of Regime type II

behavior, adll is very small thus the error is minimal. This

is not the case for the ad22 term. In Chapter 5 we noted

that the Mode 22 wave, though often linearly stable, grew

rapidly to substantial amplitude several days after

initialization, and maintained a relatively high amplitude

state for the duration of most experiments. Clearly either

nonlinear exchange processes or a secondary type of

instability (perhaps a wave instability of the smaller scale

waves of the type discussed by Lorenz (1972)) become

important. It is noteworthy, though, that the ad22 component

affects the state of the large-scale wave only through their

effect on the zonal flow.

In spite of these shortcomings, the linear analysis

predicts the spatial structure of the total observed eddy

transports during periods of both trough and ridge regime type

II behavior quite well. To obtain a more quantitative measure

of the success of the linear technique in replicating the

observed budgets, we will compare the vector sum of the
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components of the eddy transports predicted by theory (ad2l

and adl2) to the vector sum of the diagnostically ascertained

budget components (adll, ad2l, and adl2) for both the trough

and ridge regime type II periods considered in Table 7a.

Again, the absolute amplitudes of the theoretically derived

transports are indeterminate, thus we shall multiply these

transports by some appropriate factor (which is different for

the two different regimes) such that the adl2 components given

by the theory best simulate the adl2 terms of the budgets. In

other words, we wish to find the most appropriate value of the

constant B. We choose to best fit the adl2 components

(instead of the ad2l components) since the analysis above

indicates that the linear theory has a much better potential

for predicting the structure of the adl2 components. For the

2 z
trough regime, we chose B = .75 and for the ridge B = 1.03.

The results of this calculation are presented in Table 7b in a

format similar to Table 7a.

From the table, we see that the linear theory generally

underpredicts the amplitudes of the observed total eddy

transports (though nowhere is it less than 50 percent), while

the phases are replicated quite well. The greatest

discrepancies between theory and observation, e.g. the upper

level vorticity transport in the trough regime (.53 theory to

.989 observed) and the w field in the trough regime (1.90

theory to 3.74 observed) occur where the amplitudes of the
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ad2l components are comparable or exceed the amplitude of the

adl2 components. The fact that the linear theory predicts the

spatial structure of the total eddy transports so well without

predicting the adil component and underpredicting the ad2l

component suggests that the adl2 component accounts for the

bulk of the eddy transports. In fact, if we look at the

amplitudes of the observed eddy transports in Table 7a, we

will see that the amplitude of the adl2 term exceeds the

amplitudes of all the other terms in every case but one.

For comparison with the Regime type II analysis, we also

compute the transports for the category 7 trough and ridge

regime composites of Table 6a (the results are listed in Table

7c in the same format as Table 7a). Before we consider the

results, a priori we know that the adll and ad22 terms will

either be zero or vastly underpredicted, since the only

information available to the linear calculation is the time

mean state of the regimes, which are not very different from

the time mean state of the two Regime type II events. (In

fact, there are cases where the time mean state of the

composites and periods of Regime type II behavior are

extremely close). Consequently, the structure of the

eigenmodes for the composites will most likely be very similar

to those calculated for the periods of Regime type II

behavior.
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As expected, the results of the theoretical calculation

for the composites are very similar to those of Table 7a.

Again, both adll and ad22 are zero, though adll in the

diagnostic budgets is no longer a trivial component

(especially in the ridge regime), and the magnitudes of the

ad2l components are underpredicted. However, the adl2 terms

are again excellently represented in both phase and amplitude,

and the phase of the ad2l terms, as in the above analysis, are

fairly well predicted. Clearly, however, the linear theory

will not predict the total eddy transport field in this case

as well as it did for the periods of regime type II behavior

since the adll terms have substantially.greater amplitudes.

But similar to the periods of regime type II behavior, we see

that the amplitudes of the adl2 components still exceed the

amplitudes of the adll and ad2l components in all cases but

two.

The results of these analyses indicate that a substantial

percentage of the organization of the transports during

periods of weather regime type behavior is, in fact, a

consequence of the spatial modulation of the baroclinic

transient waves by the large-scale wave. The quantitative

agreement between the theoretically computed transports and

the diagnostics are excellent in the case of the adl2

components, and the phase of the ad2l components are predicted

with reasonable accurracy (some of the reasons for these
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differences are discused in Appendix V). The major

discrepancies between the theoretical and diagnostic analyses

are the underprediction of the magnitude of the ad2l

amplitudes and the failure to predict the adll and ad22

components, however, since the adl2 component accounts for the

bulk of the observed eddy transports, the linear theory is

quite successful at replicating the observed eddy transports.

RECAPITULATION

The Frederiksen-Niehaus analysis thus shows that a large

percentage of the transport structure can be understood as a

result of the modulation of the spatial structure of the

baroclinically most unstable eigenmode by the large- scale

wave. The analysis is best able to account for the structure

of the adl2 eddy transports. Since the adl2 eddy transports

also account for the bulk of the observed eddy fluxes, the

linear analysis replicates the total observed eddy fluxes

reasonably well, especially during periods of regime type II

behavior. The analysis does not account for the adll and ad22

transports since both the Mode 11 and Mode 22 waves are

predicted to be linearly stable.
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10. SYNOPTIC SCALE STABILIZATION

We have shown that the qualitative structure of the net

synoptic-scale transports as obtained in our diagnostic budget

study can, to a certain extent, be accounted for by the

modulation of the baroclinic transient disturbances by the

large-scale wave. In chapter 7, we demonstrated that these

organized transients, in turn, appear as a thermal or

vorticity source to the large scale, and that such forcing can

account for the observed differences between the stationary

equilibria and the time mean regime states. This feedback

process then provides a mechanism through which the

large-scale wave can equilibrate with its own highly active

baroclinic instabilities.

However, there are several aspects of this equilibration

process which we have yet to understand. First, in Chapter 7,

the results of our budget analysis (as well as Dole's (198Z)

for atmospheric cases) demonstrate that the magnitude of these

transport forcing terms are significantly smaller than other

physical processes, such as the advection of time mean

relative vorticity by the time mean flow, and appear to be

negligible. Thus it is not clear why these small transient

terms should have such a profound effect upon the qualitative

nature of the large-scale flow. Second, the regimes appear to

be "associated" with only two stationary equilibria, in spite
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of the fact there are as many as three other stationary

equilibria with similar large- scale stability properties.

Furthermore, we have noted that two-regime behavior continues

to exist for parameter sets where the only stationary

equilibrium state is the purely zonal Hadley Solution. It is

then not clear what the precise roles of the stationary

equilibria and the organized transient disturbances are in the

regime dynamics.

We hypothesize that periods of weather regime type

behavior occur when the transient disturbances which develop

on a given large-scale pattern are organized by the large

scale such that the net forcing by the transients acts to

stabilize the large-scale wave. In this situation, if the

phase- or amplitude of the large-scale wave is perturbed by a

small amount, the change in the net transports organized by

the perturbed large-scale feature act against the sense of the

perturbation, forcing the wave back to its original state.

From this point of view, then, whether the transients appear

to dissipate or directly maintain the large-scale circulation

in the budget calculations is only of secondary importance.

Their primary importance is in the role they play in the

stabilization of the large-scale wave.

In this hypothesis, the final structure of this stable

equilibration pattern then depends critically upon the manner
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in which the transients are organized by the large-scale flow

and the influence the resultant feedbacks have upon the large

scale. There is no reason, a priori, to assume that the

stationary equilibria, calculated without taking into account

the forcing by the synoptic scales, should be near those

points in phase space where both the external forcing

mechanisms and the synoptic-scale feedbacks stabilize. We can

also see that the magnitude of the transients do not have to

be large to dramatically alter the state of the large-scale

circulation. From our budget calculations of Chapter 7, we

note that the time mean regime state is primarily a balance

between the time mean advection of the earth's and relative

vorticity in the upper level, which indicates that the upper

level wave is near resonance. Consequently, a small magnitude

force can produce a large change in the state of the wave.

We shall demonstrate that the feedbacks from the

organized synoptic- scale baroclinic disturbances act to

stabilize the large-scale flow by considering the time

dependent behavior of just the Mode 11 model equations given

below:

(see following page) (10.1)

In the full model, the effects of the smaller scale

disturbances upon the large-scale Mode 11 variables are
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incorporated in the terms which we have labeled ad2l, adl2,

and ad22, which are different from the terms of the same name

in the budget studies in that we have not, as of yet, taken

any time averages. In Chapter 9, we have shown that the time

mean value of the term ad12 and part of the time mean value of

adl2 can be obtained by calculating the transports from the

most unstable eigenmode of the given large-scale Mode 11

circulation. This result implies, to a certain extent, that

the large-scale Mode 11 variables determine the time mean

state of ad2l and adl2; or at least a fair percentage of

these time mean transports. We shall therefore consider the

Mode 11 system of equations in which we parameterize the net

effects of the smaller scale disturbances by calculating the

corresponding values of the transport terms ad2l and ad12 from

the most unstable eigenmode of the given large-scale pattern

as we did for the time mean regime states in Chapter 9 above.

This parameterization effectively removes the oscillatory

components of the transient forcing and retains only the net

"Reynolds' stresses" which we expect to be much more slowly

varying. We anticipate that the integration of such a

dynamical system, where the smaller scale transports are

calculated explicitly from the large-scale pattern at each

time step, will lead to two absolutely stable "regime-

equilibria" whose phase and amplitude should approximate the

time mean state of the full model regimes. Unlike the purely

Mode 11 stationary equilibria, these regime-equilibria form a



PAGE 113

self-consistent solution by directly incorporating the effects

of the highly active baroclinic eddies in their dynamics.

The primary difficulty in developing this particular

parameterization scheme is the determination of the

indeterminate amplitude constant B (see Chapter 9), giving the

overall eddy amplitude. This problem is identical to the

problem faced by climate modelers when they attempt to predict

northward eddy heat transports based upon the zonal

temperature profile alone, or other relevant basic state

conditions (see Branscome, 1980, who was interested in

determining the heat transports that result from the Charney

modes). There is, currently, no universally accepted best

solution to this problem so we are left with a number of

options. Since we are not striving to predict the model

regimes, but are more interested in understanding how the

feedbacks equilibrate with the large-scale flow, we shall

choose a scheme which is most likely overly simplified but,

nevertheless, physically reasonable: we shall assume that the

total energy (available potential energy and kinetic energy)

in the small-scale eddies is some percentage of the total

energy in the Mode 11 zonal flow. (We have neglected the

contribution to the energy from the large-scale wave since the

characteristics of the unstable disturbances are very similar

to the classic baroclinic disturbances that develop on zonally

symmetric flows.) We reason that such a scheme is perhaps more
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realistic than an energy conserving formulation since we know

that the stability analysis does not account for all the eddy

energy, e.g., the Mode 21 and Mode 22 components. The

magnitudes of the individual components of the eigenvector can

then be normalized such that its total energy satisfies the

above relationship. Since we do not know what the most

appropriate value of the energy ratio is, a priori, we will

consider the behavior of the model for energy ratios ranging

from 0% to 200%. Clearly, these are absurd limits, but by

considering such a large range of values, we can investigate

the manner in which the purely Mode 11 stationary equilibria

are altered by increasing the level of transient energy. We

can then work "backwards" and ascertain which energy ratio

gives us the best results, and compare this ratio with the

actual values obtained from the full model.

A second problem is the parameterization of the term

ad22, which is predicted to be zero using the eigenvector

analysis, yet in our budgets has substantial amplitude

relative to the other transport terms. Fortunately, the ad22

component has only zonally homogeneous structure and thus its

influence on the large-scale wave occurs primarly through its

effective alteration of the driving (;(see Chapter 5), so

that we do not expect that it is as important to the

stabilization process as the zonally inhomogeneous transports.

The inclusion of ad22 will, however, most likely have some
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stabilizing effect since the presence of the Mode 22 wave

always acts to reduce the effective driving by drawing energy

from the zonal flow, and we have shown in the stability

calculations that lower values of the driving are generally

associated with more stable behavior. To verify the

assumption that the effect of ad22 is qualitatively minimal,

we will consider experiments in which the effects of the term

is either eliminated or retained. When we choose to retain

the effect of ad22, we will parameterize the term as being

some percentage of the zonal component of the predicted

transport terms ad2l and adl2. We select this

parameterization scheme since the observed ratio between the

ad22 terms and the zonal component of the ad2l and ad12 terms

appears to be nearly constant from case to case and category

to category in the budgets of a given regime type. This

percentage can then be obtained empirically from the budget

analyses of Chapter 7 and Tables 6a and 6b.

Both our parameterization schemes are based upon the

assumption that the energetics of the flow are essentially the

same during both regimes. Such an assumption may introduce

further quantitative error, but we do not suspect that it will

eliminate the transient-feedback stabilization process.

However, the possibility that the energetics of the flow may

be significantly different during the two types of regimes has

important repercussions in the interpretation of the
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partitioning of energy between the "stationary" and

"transient" waves in both the model and the real atmospheres.

This problem is, however, an object of future study and will

not be considered here.

For the first series of experiments, we consider case #2

with 6 =.12. For those experiments in which we wish to

retain the parameterized effects of ad22, we see from Table 6a

that in the trough regime, ad22 is about 25% of the zonal

component of the transports while in the ridge regime, it is

almost 45% of the zonal component of the transports. The

absolute magnitude of the zonal transports is also

considerably larger in the ridge regime than in the trough

regime, which only re-emphasizes the possibility that the

energetics of the flow may be significantly different in the

two regimes. Since our scheme implicitely assumes that the

energetics of the flow are more or less the same, when we wish

to retain the parameterized effects of ad22, we shall choose

the term to be 33% of the zonal component of the predicted

transports. In any case, the results were found to be

insensitive to rather large changes in this percentage.

With the above parameterization schemes incorporated into

the large- scale equations, we then integrated the model from

a number of initial conditions. The most important result of

our model integrations is that for a large range of energy
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ratios, both with and without the parameterized effects of

ad22, there are two absolutely stable solutions. We will

refer to these solutions as "regime-equilibria" since they

contain the parameterized effects of the baroclinic transient

waves. (The purely Mode 11 stationary equilibria are then a

special subset of these regime-equilibria where the transient

energy is set to zero). In Tables 8a and 9a we list the six

Mode 11 midlevel streamfunction and potential temperature

variables for the regime-equilibria for selected values of the

energy ratio as well as the full model category 7 regimes.

Table 8a lists the regime-equilibria for the model in which

the parameterized effects of ad22 are excluded, while Table 9a

lists the results when such effects are included. In Fig.

15a, we plot the phase space positions of the

regime-equilibria in Table 9a. Each solution listed in Table

9a is denoted by a dot which is labeled by its corresponding

value of the transient to zonal energy ratio.

The first point of note is that the behavior of the

regime-equilibria as a function of the energy ratio, both with

and without the parameterized effects of ad22 are

qualitatively similar. In fact, the phase space positions of

the regime-equilibria for both cases are so close they could

not be conveniently plotted on the same diagram, especially

the trough solutions, which essentially superposed. However,

we can see from Tables 8a and 9a that the two experiments do
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show some quantitative differences, but the primary effect of

including ad22 appears to be equivalent to simply slightly

increasing the transient to zonal energy ratio. The

consequences of ad22 does not, then, appear to have a major

role in the "phase-fixing" properties of the transient

feedbacks. However, we will concentrate on the experiments in

which this effect is retained since these regime-equilibria

are slightly closer in phase space to the full model regimes

than the regime-equilibria calculated without the

parameterized effects of ad22.

In Fig. 15a, we can see that the set of solutions as a

function of the transient to zonal energy ratio form two

branches which more or less "grow" out of the purely Mode 11

stationary equilibria (denoted by triangles) as the ratio is

increased. We shall refer to these two solution sets as the

ridge and trough branch respectively. As the energy ratio is

increased, the wave amplitude significantly decreases, though

the phase of the large-scale feature remains relatively

constant, except at high energy ratios in the ridge branch

where the solution branch curves sharply toward the origin.

The phase of the waves in the trough branch, on the other

hand, remains essentially constant, but the solution becomes

unstable at moderate values (.09) of the energy ratio. In

addition, in both Tables 8a and 9a, we note that the zonal

flow as a function of increasing energy ratio at first shows a
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rather rapid increase in speed for both branches, reaching a

maximum near the point where the trough branch becomes

unstable, and at a ratio of .09 in the ridge branch. At very

high values of the energy ratio, the ridge branch shifts from

having surface easterlies to surface westerlies, while at a

considerably lower energy ratio, the trough branch appears to

go unstable at that point where the sense of the surface flow

shifts from west to east. However, one of the most important

properties of these two solution branches, both with and

without the parameterized effects of ad22, is the fact that

the ridge regime-equilibrium definitely becomes more stable as

the transient energy levels are increased. We have no

quantitative measure of this stability, such as an eigenvalue

analysis, but we note that at higher energy ratios,

convergence of the trajectory to its final state is much more

rapid, in spite of the fact the model is initialized at the

stationary 90 Ridge equilibrium for each experiment, which is

further away from the final state than the low-energy ratio

regime-equilibria. For example, at an energy ratio of .01,

after 2880 6 hour time steps (720 days), the ridge

regime-equilibrium had converged to five decimal places,

whereas at energy ratios of .05, .10, and .50, convergence

occurred after 528, 360, and 156 time steps (132, 90, and 39

days) respectively. The trough branch, on the other hand,

appears to be uniformly stable until the ratio exceeds .07

whereupon there is a definite increase in the time required
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for convergence. For values of the energy ratio greater than

.087, the trajectory always moved to the neighborhood of the

ridge branch, where it rapidly converged. It is not possible,

however, to ascertain whether the trough solution simply

disappears or becomes unstable, since the solutions are

obtained by straight foward time integration, though it

appears that the solution goes unstable since at progressively

higher energy ratios the attractor becomes increasingly more

difficult to find.

We also ran several experiments starting from initial

conditions other than the 5 purely Mode 11 stationary

equilbria and found that the trajectory always converged upon

one of the two regime-equilibria. However, it is difficult to

investigate the boundary between the two attractor basins,

though such a map would be of interest, since we are really

dealing with a six-dimensional phase space.

To compare these regime-equilibria with the full model

regimes, we denote the position of the category 7 trough and

ridge regimes with an asterisk. We can see that the two

branches pass fairly close to their respective full model

regimes. Further inspection of Table 9a shows that the sense

of the surface flow, magnitude of the zonal flow, and phase of

the large-scale wave of the category 7 regimes are well

represented by the regime- equilbria for values of the energy
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ratio around .07. It is then of interest to compare this

value of the energy ratio with a ratio determined empirically

from the full model. However, even if there is a good

agreement between what we observe in the full model and that

indicated by our parameterized model, it does not imply that

the eddy amplitude parameterization is correct, as it does not

check the variation of the eddy amplitude with the large-scale

wave amplitude.

For the purposes of comparison with the full model, we

will consider the energy in just the Mode 21 and Mode 12

components as contributing to the small-scale energy since

these components appear in the most unstable eigenmode. We

then compute the ratio between this small scale energy and the

total energy in the zonal flow at each time step and average

over various time periods. For very long periods of time

(i.e. several months or years), we find that the transient to

zonal energy ratio is about 20%, which is significantly larger

than the 7% indicated by our experiments. The reason for this

rather substantial discrepancy is that the Mode 12 components

of the eigenvector are much greater (by about a factor of four

as mentioned in Chapter 9) than the Mode 21 components, though

in the full model, these components are of comparable

magnitude. Consequently, if we normalize the eigenvector such

that it represents 20% of the zonal energy, the amplitude of

the Mode 12 components will be more than twice their observed



PAGE 122

amplitude while the Mode 21 components will be about half

their observed amplitude. However, with .07 as a

normalization factor, the Mode 12 components of the

eigenvector have the same order as the Mode 12 components of

the full model, which indicates that the Mode 12 components

are the most important.

Since our parameterization appears to work best when the

Mode 12 components of the eigenvector duplicate the Mode 12

components of the full model, it may have been more

appropriate to consider just the ratio between the Mode 12 and

zonal components of the energy for the normalization factor.

This is not an unreasonalble simplification, for as discussed

in Chapter 9, the linear analysis works best for the

prediction of the adl2 components. The ad2l and ad22

components, on the other hand, appear to result from either

secondary instabilities or nonlinear exchange processes, both

of which are not reflected in the structure of the

eigenvector. In any case, the result of our integrations

clearly indicate the organization of the transients and the

resultant feedbacks can lead to a stable self-consistent

solution, which can dramatically alter the state of the purely

stationary Mode 11 equilibria. This result is perhaps the

single most important conclusion of our study.

To further demonstrate the role of the transients in
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stabilizing the large-scale flow in a manner that is somewhat

more convincing, we repeat the above experiment for case *2

with G,=.15. For this parameter set, all the purely Mode 11

stationary equilibria and limit cycles are unstable to Mode 11

perturbations except for the 45 Trough Solution. Thus if

there is to exist two stable regime-equilibria for some finite

value of the transient energy, which we anticipate there must

be since there are two full model regimes for this parameter

set, the transients must have stabilized at least one of the

two solution branches. Then decreasing the transient energy

will result in one of the stable regime-equilibria going

unstable; an event which is perhaps somewhat contrary to our

usual notion of the effects of the baroclinic transients.

In Fig. 15b, we plot the results of our integrations

including the parameterized effects of ad22 for G)=.15 in a

format similar to Fig. 15a. Again we have two solution

branches, but in this case, only the trough regime branch

appears to "grow" out of a stationary equilibrium state as in

Fig. 15a. The ridge regime branch, on the other hand,

introduces a new type of behavior for low-energy ratios. For

ratios somewhat less than .07, the ridge regime- equilibrium

state becomes unstable and develops into a stable,

counterclockwise-orbiting limit cycle whose structure is

similar to those limit cycles of Figure 7. As the transient

energy is further decreased, the limit cycle traces out
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progressively larger orbits in phase space and becomes less

stable, in the sense that its attractor basin markedly

shrinks. At a ratio of .01, the limit cycle is only

marginally stable and has to be approached carefully,

otherwise the trajectory converges upon the trough regime

branch. The purely Mode 11 90 Ridge stationary equilibrium

is, of course, unstable, and if there is a stable limit cycle,

its attractor is so small we have not yet been able to find

it. The individual statistics of the regime-equilibria are

listed in Table 9b in a format similar to Table 9a.

The results of our experiments excluding the

parameterized effects of ad22 were, again, qualitatively

similar. However, the slight role ad22 has in the

stabilization of the regime-equilibria can be noted by the

behavior of the ridge branch solutions at the lower values of

the energy ratio. Unlike the solutions in which ad22 is

included, the limit cycles persist at higher values of the

energy ratio, and at an energy ratio of .01, the limit cycle

is unstable. The statistics of these individual regimes are

listed in Table 8b in a format similar to Table 8a.

RECAPITULATION

We have developed a model where the effects of the

transients upon the Mode 11 tendency equations are
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parameterized by calculating the net transports from the most

unstable eigenmode of the large-scale flow. The amplitude of

these transports were determined by assuming that the total

energy (available potential energy and kinetic energy) in the

transients is a certain percentage of the total energy in the

zonal flow. We then investigated the time dependent behavior

of this model for case *2 with GO=.12 and .15 for several

values of the transient to zonal energy ratio both with and

without the parameterized effects of ad22 and found that for a

large range of energy ratios the model trajectory converged

upon two absolutely stable regime- equilibria or limit cycles;

the final state depending upon the initial conditions.

Investigation of the details of these regime-equilibria

revealed the following important behaviors:

First, as a function of the energy ratio, the stable

regime-equilibria form two branches in phase space, which at

certain values of the energy ratio pass very close to the full

model trough and ridge regimes. If both the 90 Ridge and

45 Trough stationary equilibria are stable to Mode 11

perturbations, these two branches connect with the stationary

equilibria at an energy ratio of zero, and thus we have labled

the two solution sets as ridge and trough branches

respectively.

Second, as the energy ratio is increased from zero in
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both regime- equilibria, the wave amplitude decreases, the

zonal flow increases, but the wave phase remains relatively

constant. At higher values of the energy ratio, the trough

branch becomes unstable while the ridge branch reaches a

maximum zonal flow. At very high values of the energy ratio,

the surface flow in the ridge branch shifts from easterlies to

westerlies and the solution branch curves sharply toward the

origin.

Third, increasing the level of transient energy acts to

stabilize the ridge regime-equilibria, in the sense that the

trajectory converges upon its final state more rapidly. For

most parameter sets then, there will be two absolutely stable

regime-equilibria whereas there is only one stationary

equilibrium that is stable to large-scale disturbances.

Our simple model then shows that the feedbacks induced by

the net transports of the organized transient disturbances by

the large-scale wave can lead to multiple, absolutely stable

solutions. The most important aspect of these solutions is

that the highly baroclinically unstable synoptic waves are an

integral part of the equilibrium dynamics, and thus

demonstrates the mechanism through which the stationary

externally forced wave can equilibrate with its own

instabilities. The primary role of the organized

synoptic-scale disturbances during periods of weather regime
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type behavior is, then, to fix the state of the large-scale

wave. In such a situation, a perturbation in the state of the

large-scale wave induces transients that act against the sense

of the perturbation, forcing the large-scale wave back to its

original state. There may be more than one such stable fixed

point in phase space. The transients can have this important

stabilizing kind of effect regardless of whether they appear

to directly maintain or dissipate the large-scale wave in the

diagnostic budgets, e.g., in the case *1 and case *2 regimes

of Chapter 5 at low values of the driving the transients

directly maintained the large scale whereas at moderate levels

of the driving, the transients acted to dissipate the large

scale.
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11. SYNOPTIC-SCALE TRANSITION MECHANISM

We have shown that the inclusion of the baroclinic

synoptic-scale transient disturbances can interact with the

externally forced large-scale wave to establish an absolutely

stable regime-equilibrium. However, in both the atmosphere

and full model, these regime events do not persist

indefinitely, thus either the regimes are "quasi-stable" or

some other process which we have omitted in the parameterized

model induces "instability" or transition. We shall attempt

to show that the detailed behavior of the transients is, in

fact, responsible for transition, which is similar to the

hypothesis proposed by Charney and DeVore (1979), in the sense

they suggested that the transient disturbances were

responsible for transfering the state of the atmosphere

between the various stationary equilibria.

When we developed the above model, where the effects of

the transients were calculated from the net transports of the

most unstable eigenmode, we assumed that the oscillatory

components of the transports averaged out to zero. On an

instantaneous basis, however, these oscillatory components can

obtain very large amplitudes and thus, on an instantaneous

basis, can exert a powerful influence upon the large scale.

Since in the full model these instantaneous transports are not

uniform oscillations, but aperiodic with highly erratic
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amplitudes, the forcing may become sufficiently intense to

transfer the state of the large-scale flow from the attractor

basin of one stable regime-equilibrium to the attractor basin

of the other stable regime- equilibrium. We hypothesize that

exactly such a mechanism alone is responsible for regime

transition in the full model.

We shall demonstrate the role of the instantaneous

transports in the transition mechanism simply by observing the

magnitudes of the various physical processes which contribute

to the large-scale tendencies. We select as our example the N

tendency equation given below:

AD1l BETA FRIC

' =c n (y -+eG)/a +a n/at -k -)

sum

+(cna 4+ q ")+

3c, (-n )/aI( -2a" + Gge - -

where ADll represents both large-scale vorticity and

temperature advection, BETA is advection of earth's vorticity,

FRIC is frictional dissipation, and "sum" is the combined

transports of the smaller scale transients. (These terms are

related to the terms in the budget study of Chapter 7 with the

same name, but they are not identical, since these terms

involve both thermal and hydrodynamic processes).

We will plot a time series of the magnitude of the
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tendency term 391/at for a period of time which includes both

a regime event and its collapse. We can then compare the

contributions of the individual terms labeled ADil, BETA,

FRIC, and "sum" over this period and attempt to distinguish

the physical process which appears to be most responsible for

the breakdown of the regime event.

We present the results for the demonstration case (as

defined in Chapter 5) since in this case the regimes are

highly persistent and periods of unsteady flow quite rare.

Periods of transition or unsteady behavior then show up

readily. In Fig. 16a, we plot the time series of ADll,

"sum", and the net tendency term ht/at for a period of 8192

time steps (512 days) starting 1000.time steps after

initialization or near the end of the first 75-day regime in

Table 3a discussed in Chapter 5. AD1l is denoted by the heavy

line at one fourth the scale of "sum" and the tendency term

(denoted by light lines). To avoid confusion, "sum" is

plotted on the axis beneath that upon which the tendency term

and AD1l are plotted. We also split the 512 day period into

four sequential 128 day periods.

The most striking aspect of the figure is that the

behavior and magnitude of the tendency term at almost all

times nearly parallels the contribution from "sum". It is

quite clear then that the erratic behavior of the tendency
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term 4/; t, and thus the erratic nature of the large-scale

circulation, is almost entirely a consequence of the

transients. ADll, on the other hand, though of much greater

amplitude, tends to be balanced primarily by BETA with FRIC

taking up some of the small residual (neither BETA or FRIC are

plotted), thus the net contribution of the large-scale

processes to %/, t is generally small.

If we now consider the behavior of the various processes

during a period of transition (which can be identified in the

figure by noting where ADll crosses the zero axis), we see

that the magnitude of both the tendency term and "sum" become

very large and undergo rapid fluctuations. This burst of

highly active behavior is quite distinct from the almost

placid, slow variations of the tendency term which occur

during periods of regime type behavior. We also note that

during the burst of synoptic transports the contribution to

the tendency term from the large-scale processes significantly

increases, which, to a certain extent, is to be expected as

the transients induce fluctuations in the large scales and the

various large-scale processes become unbalanced.

Actually, it is not entirely clear which of the physical

mechanisms triggered the initial imbalances, especially since

there are five other large- scale tendency terms to

investigate. From the rapidly fluctuating nature of the
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tendency term (which we do not observe during periods of

regime type behavior when the contributions from "sum" are

small), it appears that the transient activity was most likely

responsible for upsetting the equilibrium.

We also note, however, that there are periods when the

transient forcing, and thus the tendency amplitudes, become

quite large, yet the regime does not collapse. Apparently,

then, either the tendency and current state of the large-scale

flow is such that the surge of transient forcing is of

insufficient strength to cause collapse, or the transient

forcing itself is in the incorrect sense. For example, if the

current state of the large-scale flow is fairly distant from

its regime-equilibrium state and near the boundary of its

attractor basin, the strength of the transient surge would not

have to be too intense (if it is in the correct sense) to

induce transition. On the other hand, very intense transient

surges may not be sufficient to induce transition when the

state of the large-scale flow is near its regime- equilibrium.

Clearly, we must at least know both the magnitude and sense of

the transient forcing as well as the current state and

tendency of the large- scale flow to be able to predict

transition.

The only conclusion that the previous analysis yields is

that the details of the large-scale tendency term can be
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primarily accounted for by the detailed behavior of the

transient forcing, and consequently, that the degree of

erratic behavior in the large scales during periods of regime

type behavior is a result of the transient disturbances.

Actually, if we had investigated parameter sets that were

more active baroclinically, this correlation between "sum" and

the tendency term would not have been so obvious. For

example, in Fig. 16b we plot "sum" and the tendency term for

a period of 4096 time steps (256 days) for case #2 with

G =.12, 4350 time steps after initialization. In this case,

"sum" always has substantial amplitude and so does the

tendency term, but the rapid vacillations of "sum" induce

vacillations in the large-scale variables which are reflected

in the vacillations of the tendency term. Consequently,

unlike in Fig. 16a, peaks in "sum" do not correspond that

well with peaks in the tendency term. However, on the basis

that erratic behavior is observed in the tendency term in Fig.

16a only during those periods when the transient forcing

becomes active, it seems likely that the instantaneous

behavior of the transients should be responsible for the

erratic behavior of the large scales in all cases. The only

indications we have, then, that the transients initiate the

fluctuations for the more active parameter sets are by

"induction" from the simpler cases (such as the demonstration

case), where there are distinct periods during which the
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transient forcing activity nearly ceases and thus the

tendencies vary both smoothly and slowly, and by the

observation that the variance in the tendency terms and "sum"

are nearly equal in Fig. 16a and reasonably similar in Fig.

16b.

The exact details of the processes which lead to

transition are undoubtedly complex, most likely involving some

triggering mechanism which, under appropriate conditions,

leads to a critical imbalance in the large scales. Though the

time series does not conclusively indicate that the transients

provide the critical triggering mechanism, the fact that the

qualitative behavior of the tendency term reflects the

qualitative behavior of the synoptic-scale forcing suggests

that such is the case. However, there are a couple of

experiments and observations which we have considered

previously that provide further evidence that the

instantaneous forcing by the mobile disturbances initiates

regime transition.

One argument is that in our simple model of Chapter 10,

where only the uniform, non-oscillatory components of the

transports are included in the large-scale dynamics, we obtain

two absolutely stable, initial-condition dependent,

regime-equilibria or limit cycles. In this model, we have

specifically made the effort to remove the instantaneous,
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rapidly varying, oscillating component of the transients, and

without these components, the model is never observed to

switch between its two states or undergo aperiodic and erratic

vacillations within a given state. But our strongest argument

comes from observing the detailed behavior of the full model

regimes themselves.

In Chapter 5, where we discuss the time dependent

behavior and the occurrence of multiple regimes, a very

important observed aspect of these regimes is their highly

variable durations. In spite of this variability, the

statistics of the individual regimes of a given type are

nearly identical (see Table 3a and 3b), i.e., most properties

of the regimes are independent of persistence. In addition, a

given regime event is observed to undergo transition at a very

rapid rate (in the order of a day or two), regardless of its

previous persistence, to either a period of unsteady behavior,

another regime, or to re-establish a regime of the same type.

This behavior is especially apparent for those parameter sets

where the regimes are highly persistent, as in the

demonstration case. A given event could last for several

years before suddenly, in a single day, undergoing transition

to the opposite regime. Since there is no variation of any of

the external parameters in our model, the transition process

must be internal to the model atmosphere, and such rapid rates

are consistent with our hypothesis that the instantaneous
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component of the baroclinic synoptic-scale forcing under

appropriate conditions transfers the state of the large-scale

flow from the attractor basin of one stable regime-equilibrium

to the attractor basin of another.

The assumption that regimes undergo transition as a

consequence of the surges from the instantaneous component of

the transient forcing also would explain the highly arbitrary

nature of regime persistence. Without the instantaneous

transient forcing, a given regime would persist indefinitely,

but as one increases the relative strength of the aperiodic

high-amplitude transport surges, the likelihood a regime will

be disrupted increases. We can then conclude that a given

regime will essentially persist indefinitely or until the

occurrence of a transient of sufficient magnitude or sense

causes it to collapse. The probability of such a

transient-surge event is then reflected in the slope of the

cumulative persistence distributions (Fig. 10) discussed in

Chapter 5.

RECAPITULATION

We have hypothesized that the instantaneous component of

the transient forcing provided the mechanism through which the

state of the large-scale flow could be bounced between the

attractor basins of the various stable regime- equilibria. To
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investigate this hypothesis we first plotted time series of

the physical processes that contribute to the 94 tendency

equation during periods of both regime type behavior and

transition. In one case we found a distinct correlation

between erratic behavior in the tendency terms and increased

activity in the transient forcing which occasionally led to

transition. In more baroclinically active cases, however, it

was not clear which process or processes were actually

responsible for the erratic behavior or transition since the

flows at all times underwent rapid flutuations. Consequently,

to provide further support for the notion that the transients

were responsible for both the erratic behavior of the flow on

an instantaneous basis and transition, we considered two other

arguments.

First, in our simple model, in which the oscillatory

components of the transports were eliminated, but the net

transports retained, only stable regime-equilibria or limit

cycles were possible. No erratic behavior or transition

between the two states was observed. Second, and most

important, the observed arbitrary persistence of regimes and

rates of transition in the full model (which were on a

synoptic time scale regardless of the previous duration of the

regime) were consistent with the synoptic-surge mechanism.

The probability a given regime would persist then appeared to

be directly related to the probabilty of sufficiently intense
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synoptic-scale surges, which more or less determines the slope

of the cumulative distributions discussed in Chapter 5.

These observed properties, as well as the implications

from our simplified model and time series plots, then support

our hypothesis that the transients are responsible for the

process of transition. The aperiodic character of the

transient surges then provide an internal mechanism which is

responsible for two important observed characteristics of the

regimes. First, the rapid variations in the transports appear

to be responsible for the degree of fluctuation of the

large-scale component of the flow during periods of regime

type behavior. (Occasionally, the fluctuations in the large

scale become so small, that is the large-scale flow becomes

so steady, we defined such periods as examples of Regime type

II behavior or "blocks"). Second, the surges in the

transports induce the state of the flow to aperiodically

vacillate between the two stable regime-equilibria. This

event can occur so rarely that regimes will persist for

centuries, or so frequently that the state of the flow is

almost always "unsteady", making it next to impossible for

regimes to get established' but for either extreme, the rate

of transition is on a synoptic time scale.
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12. ATMOSPHERIC REGIMES

We have shown that weather regimes in our simple model

are manifestations of the stable equilibration of the

large-scale topographically forced wave with the organized

feedbacks from its own structurally modulated baroclinic

instabilities. For a given set of external parameters, we

find that there are generally two such absolutely stable

solutions which we have referred to as regime-equilibria. The

state of the flow is then driven by the instantaneous

component of the synoptic-scale transients from the attractor

basin of one of the stable synoptically forced equilibria to

the attractor basin of the other. Our experiments then

demonstrate that the synoptic scales provide an internal

mechanism which is responsible for both the stabilization and

the disruption of the model weather regime events, and thus

the inclusion of the synoptic events in our model is essential

for determining the qualitative behavior of both the

instantaneous and time mean components of the large-scale

flow.

We have developed a fairly comprehensive theory of the

weather regime phenomenon as it occurs in our simple, highly

truncated, two-layer, topographically forced spectral channel

model. Clearly, the limited horizontal resolution and

vertical truncation of our quasi-geostrophic two- layer model
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eliminates several physical processes' in addition to the

approximations inherent to a dry, two-layer quasi-geostrophic

atmosphere, by maintaining a fixed static stability, we have

eliminated the process of static stabilization via the release

of baroclinicity (Lorenz (1960b)). By not retaining a

sufficient number of degrees of freedom we have also not

allowed for the occurrence of "strong" wave-wave interaction,

e.g. the interaction of two zonal wavenumber 2n waves with a

zonal wavenumber n wave. Consequently, it is entirely

possible that we have documented and achieved a partial

understanding of an interesting event that is merely an

artifact of the highly simplified model. However, comparison

of our model results with those of the observed phenomenon

suggest that the model regimes qualitatively resemble the

atmospheric phenomenon in several respects. To provide a more

comprehensive measure of both the successes and shortcomings

of the model and the implications of our theory, we will

compare, on a point by point basis, the results of our study

with the results obtained by Dole (1982) in his observational

analysis of atmospheric persistent anomalies.

As discussed in Chapter 5, Dole's persistent anomalies

are defined by carefully tested selection criteria and

composited by type similar to our regimes. Dole specifically

does not obtain his data by considering averages over

pre-selected, arbitrary periods of time, e.g., a week, month,
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the horizontal length scale I L to be 5000 km.) while the

ridge regime possesses an upper level ridge about 700 west of

the orographic ridge (about 23 of longitude). These

statistics indicate several interesting characteristics about

the model flow which can be summarized as follows: First, the

antinodes of the two regimes are nearly co-located in space

which indicates that certain regions of the model experience a

much greater temporal variance in the large scales, associated

with the switching between the two regime states, than other

regions. Second, the occurrence of a given regime is denoted

by one of two wave structures whi-ch is always similar in both

phase and shape every time that said regime recurs, and third,

since the two regimes are not purely antisymmetric pairs in

either phase or amplitude, and one regime usually has a

tendency to occur more frequently than the other, the

climatological state of the model flow is generally non-zonal,

and thus possesses what is often referred to as a "stationary"

wave. All of these above characteristics are also apparent to

some degree in the statistics of Dole's persistent anomalies.

Instead of one "regime", however, Dole finds three

regions in the wintertime Northern Hemisphere where the

frequency of persistent anomalies is a maximums the

central-eastern Pacific, eastern Atlantic, and the Urals. But

on the other hand, in each of these three regions, he finds

that the occurrence of an anomaly event is nearly uncorrelated
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with the occurrence of an anomaly event at any of the other

two regions, which suggests that the anomaly events, though

planetary in scale, are regional in character. Since our

simple two zonal wave model cannot possibly simulate this

regional characteristic, we must consider the model as

"representative" of only one of these three regions at any

given time.

At any one of these three regions Dole finds that both

positive and negative anomalies occur with about equal

frequency and magnitude, though they do not form purely

antisymmetric pairs. This asymmetry is even further enhanced

by recombining the anomaly field with the climatological flow,

which, for convenience, we shall refer to as the "net

anomaly". This two-state atmospheric flow behavior is highly

reminiscent of the behavior exhibited by our full model trough

and ridge regimes, though the resulting net anomaly fields in

the atmospheric cases do not always possess the distinct

trough and ridge patterns apparent in the model. This is

especially true in the Atlantic region where the two states

are so highly antisymmetric that one state possesses a highly

amplified ridge while the other state is nearly zonal. The

Pacific region, on the other hand, possesses net anomaly

fields which are well represented by the model in the sense

that the two atmospheric states are characterized by either a

large amplitude ridge or a deep trough over the west coast of



PAGE 144

North America. Dole's "Pacific positive" and "Pacific

negative" events can then be reasonably well compared to our

model trough and ridge regimes, respectively. (The fact that

the model qualitatively resembles the Pacific net anomalies

much more so than the Atlantic and Urals net anomalies is

perhaps a consequence of the fact that the simple model

orography represents the North American Corrdilleria much

better than it represents either the complex European or

Eurasian topography.) In the Pacific and Atlantic regions,

then, and perhaps the Urals region as well, similar to our

model, the antinodes of the net anomaly fields are located

somewhat west of major mountain ridges, which Dole also finds

to be the regions of maximum temporal variance.

Perhaps one of the most important results of Dole's

analysis of the anomaly characteristics in the three regions

is the fact that he finds the horizontal structure of a given

type of anomaly event at each region to be remarkably similar

from case to case, in the sense that one pattern is highly

correlated spatially with the anomaly patterns of most of the

cases in that region. The systematic reproducibility of these

anomaly structures led Dole to arrive at the important

conclusion that the anomalies have both a regional preference

and a distinct recurrent structural preference at each of the

three preferred regions. The systematic recurrence of these

anomaly structures is highly consistent with the recurrent
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phase and spatial structure of the model regimes. This

behavior suggests that the principal external forcing

mechanisms present in the atmosphere may not need to change

significantly with time in order for recurrent, persistent

anomaly patterns to occur. The atmospheric anomalies, then,

consistent with the model regimes, would appear to be multiple

flow states for a (roughly) constant external forcing.

Though Dole finds that the anomalies recur with a

preferred structure, the actual shape of the atmospheric

anomalies, including the Pacific cases, differ significantly

from the model regimes in that the atmospheric anomalies

possess distinct 2nd y-mode structure, as well as more

complicated structures, whereas the model regimes possess

purely first y-mode structure. These differences are

especially apparent in Dole's empirical orthogonal function

(EOF) analysis of the anomalies.

Though one EOF accounts for more than half the variance

of the anomaly patterns, four EOFs are required to explain

slightly more than 80% of the variance, whereas one EOF in our

model (which would have Mode 11 structure centered slightly

west of the orographic ridge) would account for almost all of

the large-scale variance. It is still significant, however,

that Dole finds only a few EOFs are sufficient to account for

the bulk of the variance in a system with as many degrees of
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freedom as the atmosphere. This observation suggests that the

number of regime-equilibria in the actual atmosphere may be

quite limited, in spite of the complexity of the external

forcing.

In any case, the presence of the second y-mode in the

anomaly structure, at sufficient amplitude, gives the net

atmospheric anomaly the "split-flow" configuration so often

associated with blocking. Such structures in the model are

always transient and never observed in the time mean. This

model behavior is suspected to be a consequence of our simple,

purely Mode 11 topography, although we have not examined the

model flows with Mode 21 topography.

We have also mentioned the fact that the model

climatology possesses stationary waves, which simply represent

the weighted average of the regimes. It then seems plausible

that the stationary waves of the atmosphere are also the

weighted average of the various types of atmospheric regimes.

Thus the amplitude of the stationary waves are, for all

practical purposes, a measure of the asymmetries between the

regime statistics and frequency of unsteady flow. To a

certain extent, then, this view suggests that the so-called

stationary waves represent the unoccupied average, except in

those regions such as the eastern Asian-western Pacific

trough, which Dole finds to be one of the most persistent



PAGE 147

features in the Northern Hemisphere. (Perhaps this feature is

an example of a regime which is nearly 100% dominant.) The

relevence of these stationary waves in budget studies and

atmospheric energetics, then, in many regions, is subject to

some question, as the properties of the various regimes and

periods of unsteady flow may be sufficiently unique to render

their net average statistics meaningless.

2. Vertical Structure

The two layer approximation severely limits the types of

vertical structure our regimes can possess, and thus we can

only discuss these structures in the grossest sense. Though

we have only two layers, the two- layer approximation is

equivalent to a three dimensional atmosphere with constant

shear. We can then define a flow field at any intermediate

pressure level as some linear combination of the fields in the

two layers. If we do this, we find that the phase shift in

the time mean state wave changes very little above 700 mb. or

so, and possesses maximum amplitude at the highest defined

level. Below 700 mb., on the other hand, the wave shifts

rapidly eastward as one approaches the surface. In this

sense, the time mean regime states of the two layer model are

essentially trying to represent a feature that is equivalent

barotropic, with maximum amplitude in the "upper levels" and

maximum westward phase shift with height in the "lower
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levels". Clearly, however, this construction is extracting a

maximum amount of interpretation from a minimum amount of

information.

Dole finds qualitatively the same type of structure,

equivalent barotropic with maximum amplitude at the tropopause

and maximum westward phase shift with height near the surface.

However, our model regimes definitely appear to develop a

greater westward phase shift with height at "lower levels"

than indicated by Dole, and the ridge regimes consistently

have greater "lower level" westward phase shifts than the

trough regimes, also not indicated in Dole's analysis.

Apparently then, the model regimes have a greater role in

transporting heat than the corresponding events in the

atmosphere. This property may be a consequence of the fact

that there are an insufficient number of smaller scale

features in our severely truncated model to accomplish these

transports.

3. Time Dependent Behavior

Our theory indicates that the general circulation of our

model can be understood as a flow which is driven by the

instantaneous component of the synoptic-scale forcing from the

attractor basin of one stable regime- equilibrium to the

attractor basin of another. The erratic, aperiodic nature of
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this forcing accounts for the observed highly variable

durations of the individual regimes, periods of unsteady

"non-regime type" behavior, the degree to which the

large-scale component of the flow fluctuates during periods of

regime type behavior, as well as the rapid rates at which the

state of the model flow can undergo transition between the

various types of behavior. Since the external parameters are,

at all times, held fixed, the time dependent behavior of the

model regimes is then entirely a result of internal processes.

Consequently, a very important implication of our theory is

the suggestion that the very different short-range atmospheric

climates, or anomaly states, occur as a result of processes

which are primarily internal to the atmosphere; seasonal cold

anomalies, warm anomalies, periods of unsteady flow, as well

as the occurrence of abruptly shifting persistent anomalies

within a given season, are, then, all possible solutions to

the atmospheric dynamic system for a given fixed set of

external parameters. There are several aspects of Dole's

results which support this concept.

First, he finds that both positive and negative anomaly

events can occur within his given 90-day season. For example,

in the winter of 74-75, a 14-day Pacific negative event, a

20-day Pacific positive event, and a 11-day Pacific negative

event occurred in sequence (though not necessarily immediately

following one another), and in the winters of 64-65 and 67-68,
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two Pacific positive events were followed by a Pacific

negative event. Second, as discussed in Chapter 5, the

duration of these individual anomaly events is highly

variable, and appears to have no preferred time scale, as

shown by the cumulative persistence distribution of Fig. 10.

This type of distribution suggests that for durations beyond

about 5 days persistence the anomalies can be modeled by a

red-noise process, i.e., events which begin and end at random

times. Third, three-fourths or more of the total variance of

the low-pass (10 days or longer) anomaly fields is accounted

for by variations within a given season, and furthermore, much

of the season to season variance may simply be a consequence

of sampling, since individual anomaly events persist (on the

average) for 15 days (though some persist up to a month), and

a season is defined as only 90 days. Fourth, and last, the

rates at which the individual anomaly events both develop and

collapse is very rapid, i.e., on a synoptic time scale,

regardless of the previous duration of the anomaly event.

This last property is illustrated in Figs. 17a,b (from Dole),

which consist of two plots each of the time series of the

magnitudes of Dole's composite Pacific positive and Pacific

negative anomalies at both the onset (17a) and collapse (17b)

of the said events. The composites are constructed such that

day zero corresponds to the time when each individual anomaly

event first meets (or last meets) Dole's 10 day-lO decameter

criteria.



PAGE 151

From the figures we can see that the rate of onset (and

collapse), especially for the Pacific negative composite

event, is strikingly rapid, happening primarily in less than

two days. We can also see that the change in amplitude during

the periods of transition is remarkably large, going from

nearly zero to about 300 meters, or vice-versa. The onset of

these events is, then, not only rapid but of substantial

amplitude, and since Figs. 17a,b consist of composites, these

high-amplitude, abrupt shifts in state represent the average

and not a single, perhaps rather unusual, extreme event.

This apparently rapid rate of transition and consequent

possibility of abrupt switches from one anomaly state to

another, are the two aspects of the anomaly behavior that are

the most consistent with the behavior observed in our model.

However, we cannot rule out the possibility that some of this

erratic behavior, which we attribute to internal processes,

occurs in response to changes in the external forcing

mechanisms (such as the seasonal cycle, sea surface

temperature anomalies, and continental heat sources and

sinks), though it appears difficult to account for the rapid

rates of transition and abrupt shifts of anomaly states by

external processes alone since the external processes appear

to vary relatively slowly in time, though radically different

behaviors for small changes in the external parameters have

been documented in simple forced nonlinear systems (see
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Lorenz, 1962, 1963, and Yao, 1980). We hypothesize, on the

other hand, that the presence of the changing external forcing

mechanisms simply alters the structures of the possible

regime- equilibria in some quantitative manner. The

atmosphere then aperiodically vacillates between the various

regime-equilibria (which may be changing slowly with time) in

response to the instantaneous component of the forcing by the

transients. Consequently, as in our model, the time dependent

characteristics of the anomalies will be "erratic", persisting

for highly variable lengths of time and undergoing abrupt,

apparently random, transitions.

RECAPITULATION

We have shown that the model weather regimes possess

several qualitative characteristics which have been found by

Dole (1982) in his study of atmospheric persistent anomalies.

The most important of these aspects are as follows:

1. Both the model regimes and the atmospheric persistent

anomalies are characterized by large-amplitude

positive or negative departures from climatology,

which form nearly antisymmetric pairs. We referred

to the two model states as the trough and ridge

regimes which appeared to best resemble Dole's

Pacific positive and negative net anomalies,
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respectively.

2. Both the atmospheric and model regimes are observed

to systematically recur with similar structure and

phase just west of major orographic ridges, which

then defined the regions in both the model and

atmosphere of maximum large-scale variance.

3. The time mean regime states are nearly "equivalent

barotropic", within the limitations of the two-layer

model as discussed earlier, with maximum amplitude at

the "upper levels" and maximum westward phase shift

with height at the surface, though the model regimes

appear to be far more baroclinic in structure than

the observed anomalies.

4. The persistence of individual weather regime events

is highly variable, and there does not appear to be a

dynamically preferred time scale.

5. The onset and collapse of regime events is both

rapid, e.g., on a synoptic-time scale, and

independent of persistence.

6. Regimes of either type are observed to occur in a

"random" sequence.
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The qualitative agreements between many of the observed

features of the model regimes and Dole's persistent anomalies,

especially the details of the time dependent behavior,

strongly suggest that the state of the atmospheric flow,

similar to the model flow, is being driven by the

instantaneous component of the synoptic-scale forcing from the

attractor of one stable regime-equilibrium to the attractor of

another. This behavior suggests the possibility that the

extreme variability of the short-range atmospheric climatic

states may be determined by processes which are primarily

internal to the atmosphere.



PAGE 155

13. CONCLUSIONS

We have shown that the externally forced large-scale wave

can establish a unique type of equilibrium with the feedbacks

from its own structurally modulated highly baroclinically

unstable synoptic-scale waves. Unlike the purely stationary

equilibria, the net forcing from the transients is an

essential component of the equilibrium dynamics and thus the

solution implicitly contains mobile synoptic-scale

disturbances. We have referred to this unique type of

equilibrium situation as a "regime-equilibrium".

To demonstrate the possible existence of this

regime-equilibrium, we considered only the Mode 11 externally

forced large-scale tendency equations of our full model and

parameterized the net effects of the smaller scale transient

disturbances by calculating the net transports from the

baroclinically most unstable eigenmode that developed upon the

given large- scale Mode 11 circulation. The integration of

this system, where the organized feedbacks of the transients

were implicitly determined from the large-scale flow, then

resulted in two absolutely stable regime-equilibria which were

very close in phase space to the corresponding full model

composite regime states, in spite of the fact the

parameterization scheme could not account for all of the eddy

transports obtained in our budget study of Chapter 7. A very
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significant result of our calculation with the parameterized

effects of the transients is that there are two absolutely

stable self- consistent solutions, whereas the Mode 11 system

alone has generally only one purely stationary equilibrium

that is stable to Mode 11 perturbations, and this solution is

always unstable to synoptic-scale disturbances.

We could then conclude that the role of the organized

transports in the regime dynamics is to stabilize the

large-scale circulation, that is when the model flow is in

this equilibrium situation, a small perturbation in the state

of the large-scale wave will induce net transports which act

against the sense of the perturbation and force the wave back

to its original state. However, the transient-feedback

stabilization process alluded to above considers only the

organized net transports of the synoptic disturbances. Our

parameterization scheme explicitly excludes the forcing by the

rapidly varying, vacillating component of these mobile

features which, on an instantaneous basis, can obtain

substantial amplitude, and consequently, on an instantaneous

basis, could significantly influence the state of the large-

scale flow.

Clearly, in both the full model and the atmosphere, the

regimes do not persist indefinitely, so something must

eventually disrupt the regime- equilibria. In Chapter 11, we
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argued that this disruptive mechanism was the instantaneous

component of the transient forcing omitted in our

"parameterized" model. The aperiodic, occasionally violent

surges in these erratic transports then accounted for the

sporadic time dependent characteristics of the observed full

model and atmospheric weather regimes, e.g., the highly

variable durations of the individual regime events, the rapid

rates at which regimes establish and or collapse, periods of

unsteady behavior when no regime can get established, the

random sequencing and abrupt transitions between periods of

the various types of regime and unsteady behavior, and the

degree to which the large-scale component of the flow

fluctuates during periods of regime type behavior. These

transient disturbances then provide an internal mechanism

which is responsible for both the disruption and stabilization

of the weather regime events.

We have shown that not only can the transients act to

stabilize the large-scale wave, but the effects of the

transients in this process significantly alter the state of

the large-scale wave from any type of equilibrium that may

exist when the synoptic-scale baroclinic instabilities are

artificially excluded. Likewise, the solution of the

stability problem upon the zonally asymmetric time mean regime

states and work by Niehaus (1980) demonstrates that the

presence of the large-scale wave significantly alters the
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behavior of the synoptic disturbances from that which would be

observed if there were only a zonally symmetric basic state.

The mutual coupling between the large scales and the synoptic

events then significantly alters the characteristics and

behavior of each other from what would be observed if

considered "alone", and although it has often been assumed in

meteorology that the large scale influences the synoptic

scales, a very important implication of our study is that the

synoptic events are also of extreme importance in determining

the qualitative behavior of both the instantaneous and time

mean components of the large-scale flow.

Consequently, we view the quasi-stationary features of

the atmosphere as integrally coupled to an organized behavior

in the synoptic-scale disturbances, and thus we cannot

understand or predict the behavior of the quasi-stationary

features without considering the behavior of the associated

transients. We then suggest that this mutual coupling between

the externally forced large scales and the mobile synoptic

events defines a unique dynamical process which we have

referred to as a weather regime. We feel that if there is any

hope for extended range forcasting by dynamical processes, it

relies upon the quantitative understanding of the weather

regime phenomenon.
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FIGS. A-F

Limited contour analyses; 552 decameter contour each day at

500 mb. for selected periods of time. A) 18 days from

January 26, 1980 to February 15, 1980. Asterisks (*) refer to

surface "bombs" as defined by Sanders and Gyakum (1980). B)

16 day period from February 5, 1977 to February 20, 1977. An

example of Pacific Negative associated with Atlantic Negative

(see Dole). C) Collapse of regime in Figure B: 15 day period

from February 22, 1977 to March 8, 1977. D) 16 day period

from December 31, 1980 to January 15, 1981. A second example

of Pacific Negative but associated with Atlantic Positive. E

and F) 21 day and 11 day Pacific Positive regimes; the

"reverse" of the cases plotted in Figs. B and D. Periods are

from March 14, 1977 to April 2, 1977 and March 26, 1979 to

April 5, 1979, respectively.

FIG. 1

Graph of the M component of the 5 case #2 equilibria as a

function of O'(heavy lines). The coordinates (ordinate and

abscissa) are given by 4 and G, respectively. All units are

nondimensional.
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FIG. 2a,b

Graph of the nondimensional e-folding times $ for the various

modes of the case #2 equilibria as a function of O . a)

45 Trough, (heavy lines), 90*Ridge (light lines) and b) Hadley

Solution (heavy lines), Near Hadley Solution (light lines) and

306Ridge (dashed lines). Negative Z corresponds to a stable

solution.

FIG. 3a,b,c

Plots of the 9's - 91 component of the phase space trajectory

each day for varying periods of time for the demonstration

case. The coordinates (abscissa and ordinate) in each of the

figures are given by Y3 and W% respectively and all are

plotted to the same nondimensional scale. The five equilibria

are denoted by triangles. a) Climatological plot: first 17

years of integration. b) Trough regime: plot each day for

175 day period from time step 20765 to 23564. c) Ridge

regime: plot each day for 580 day period from time step 23564

to 32855.

FIG. 4

Identical to Fig. 3a except wave-wave interaction has been

removed.
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FIG. 5

Scatter diagram in phase space of the time mean Mode 11 upper

level (instead of midlevel) wave for each of the regimes

listed in Tab. 3a. The coordinates (abscissa and ordinate)

are given by 9 and ',. The five equilibria are denoted by

circles (0) and those with a subscript 1/2 are plotted at one

half their actual amplitude. The time mean 205 year

composites are denoted by a line and a number which represents

the category. Categories 3 and 4 in the ridge and 3 in the

trough contain only 5 regimes or less and are not very

representative of the regime statistics.

FIG. 7

Plot in phase space of the case *2 Mode 11 and Mode 21

midlevel stream- function limit cycles for selected values of

el. Selected composite regimes (denoted by *) and stationary

equilibria (denoted by A ) are also shown. Mode 11 limit

cycles are heavy lines and Mode 21 limit cycles are light

lines. At 9, =.15 the Mode 11 limit cycle is unstable and

spirals into the stable 450Trough Equilibrium state (dashed

line). All limit cycles have counterclockwise orbits. The

coordinates are given by 9- and (not le and 4)

FIG. 6a,b

Two phase space plots of the midlevel - L's component of the
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trajectory each day for selected periods of time during the

4th regime in Tab. 3a. a) Steady 18-day Regime type II

behavior, b) More erratic 24-day period starting two days

after the last day in Fig. 6a. Notation and units identical

to Figs. 3a,b,c, and 4.

FIG. Ba,b,c,d and FIG. 9a,b,c,d

8 plots of the phase and amplitude of the upper level Mode 11

wave stream- function for the various composites and the

corresponding equilibria for case *1 and case *2 as a function

of (9. The abscissa is G, and the ordinate either amplitude

or degrees (A) with respect to the orographic ridge (not to be

confused with degrees longitude on the Earth). "8" refers to

case *1 and "9" to case *2. "a" and "c" refer to the

amplitude of the trough and ridge regime respectively and "b"

and "d" refer to the phase of the trough and ridge regime

respectively. The corresponding equilibrium states appear as

continuous heavy curves while the 7 regime composites are

plotted for every value of Grin Tables 5a and b and connected

by light lines. In Figs. 9a and c the amplitude of the

corresponding equilibrium state becomes so large for

increasing 6the curves are displaced downward.

FIG. 10
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Cumulative persistence distributions for case *2 with G,=.12

and .14 and Dole's 5 dm. positive and negative persistent

anomalies. The ordinate is the total number of events which

persist for n days or longer on a log scale and the abscissa

is in days. The model ridge regimes and positive anomalies

are denoted by crosses (+) and the trough regimes and negative

anomalies by circles (o).

FIG. lla,b,c,de,f,g,h

8 "weather maps" of the midlevel (500 mb.) and lower level

(850 mb.) height field and lower level potential temperature

(dashed lines) for case *2 with G =.12. The Near Hadley,

90 Ridge, 450 Trough, and 30ORidge Equilibria are plotted in

Figs. a,b,c, and d respectively, while the mean state

category 7 trough and ridge regime composites are plotted in e

and f respectively. "g" and "h" are two instantaneous weather

maps taken during a trough and ridge regime occurrence

respectively. The height contours are every 6 decameters and

the temperature isotherms (stretched) every 18C. The units

in the x-direction are given in degrees with respect to the

orographic ridge (not to be confused with degrees longitude on

Earth).

FIG. 12
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Plot of the phase and amplitude of the transient forcing terms

adll, ad2l, adl2, and "sum" of the upper level vorticity

equations for case #2 with G1 =.12 composite trough and ridge

regimes. The ordinate is the 'f, forcing component and the

abscissa is the ,i forcing component. "adll" is denoted by

0 , and "ad2l" by x, "adl2" by * and "sum" by *. The

subscripts next to the symbols refer to the categories, and

each group of terms is circled and labled. The subscript "R"

refers to the ridge and the subscript "T" to the trough. Also

plotted are the forcing terms during periods of Regime type II

behavior. The solid triangles (A ) correspond to a 31-day

ridge and the solid squares ( N ) to a 46-day trough. The

subscripts 11, 21, 12 and s refer to adll, ad2l, adl2, and

"sum" respectively.

FIG. 13a,b

Balance of forces. Plot of the various budget terms and upper

level Mode 11 wave in vector form for the 7 categories of a)

trough regimes and b) the ridge regimes for case #2 with

G,=.12. The ordinate and abscissa are the same as in Fig.

12 except multiplied by a factor of 4.

FIG. 14a,b

Plot of the phase of the nonlinear transport terms nlns, time
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mean upper level Mode 11 wave, and corresponding equilibrium

state upper level wave for the 7 categories of the composite

a) trough regimes for case *1 and b) ridge regimes for case *2

as a function of G,. Ordinates and abscissa are the same as

in Figs. 8b and 9d.

FIG. 15a,b

Phase space plot of the midlevel streamfunction wave of the

regime- equilibria for selected values of the transient to

zonal energy ratio for case *2 with a) G%=.12 and b) e*=.15.

In both figures the parameterized effects of ad22 have been

included. The ordinate and abscissa are given by 9+, and 9k,

respectively. The stationary equilibria are denoted by

triangles ( A) and the individual regime-equilibria for those

values of the energy ratio listed in Tables 4a and 4b

respectively are denoted by enlarged points and labled by

their corresponding value of the energy ratio. In Fig. 15a,

the category 7 full model trough and ridge regimes are denoted

by asterisks (*) (note the close pass of the regime-equilibria

to the full model regimes at energy ratios near .07). In Fig.

lb, selected limit cycle trajectories are plotted for those

values of the energy ratio where the regime-equilibria are

unstable.

FIG. 16a,b
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Time series of selected physical processes in the - tendency

equation. a) Demonstration case: 512-day period beginning

1000 time steps after initialization; the 512-day period is

broken into four 128-day periods. On the upper axis, ADll

(heavy line) and the tendency term > /. t (light line) are

plotted, and on the lower axis "sum" (light line) is plotted.

The tendency term and "sum" are plotted on the same scale, but

ADll is first divided by four. b) Case *2 with G=.12: The

tendency term (heavy line) and "sum" (light line) are plotted

for a total of 256 days beginning 4350 days after

initialization. Each axis segment then represents 64 days.

Both terms are plotted to the same scale.

FIG. 17a,b

(From Dole (1981)) Time series plots of the amplitude of

Dole's composite Pacific positive and Pacific negative

anomalies. The ordinate is in meters and the abscissa is in

days. Day zero is alligned in a) to correspond to the time

when each individual anomaly first meets Dole's 10 day-lO

decameter selection criteria, while in b) it corresponds to

the time when the individual anomaly last meets the

aforementioned criteria. In each figure, the Pacific positive

event is denoted by dots and the Pacific negative event by

open circles (o). Note the rapid rate of onset and collapse

for both anomaly types, in spite of the fact each individual
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anomaly event persisted at least 10 days.

TAB. 2

The 5 equilibrium solutions and their respective stabilities

to the 4 modes of the model for the demonstration case. The

equilibria are given in terms of the midlevel streamfunction

4-' and potential temperature 9 . The asterisk * to the right

of the growth rates (in units of hours) indicates that the

instability is non-propogating (orographic).

TAB. 3a

The type, length in days, start and finish time step, and the

time mean upper and lower level streamfunction of the regimes

as they occur in the demonstration case for the first 28 years

of integration. A "-l" and "+l" refer to the trough and ridge

respectively.

TAB. 3b

The 7 categories of the 205 year composite trough and ridge

regimes for the demonstration case. Column 1 is the category,

column 2 is the sum total of days of regime of said category

that contribute to the composite, and column 3 is the number

of regime events that fell into said category. The mean
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composite state is given in upper level zonal flow ,'

amplitude and phase of the upper level wave and ditto for the

lower level. For comparison, the upper and lower level

streamfunction in phase and amplitude form for the 5

equilibria are also listed.

TAB. 4a,b

Stability of the equilibria as a function of G for a) case *1

and b) case *2. Growth rates are given in hours, and an

asterisk * indicates a non-propogating instability

(orographic). The Mode 22 wave is always stable and thus is

not listed. In Table 4b "S" indicates solution is stable.

TAB. 5a,b

Statistics of the regimes for select values of the driving

e7 a) case *1 and b) case *2. The total number of days of

each experiment (6250) is given in row 1, the total number of

days the state of the model flow was in the ridge regime,

trough regime, both the ridge and trough regime, and neither

the ridge or trough regime (unsteady) are given in rows 2, 3,

4, 5, respectively. The ten most persistent ridge and trough

regimes in each experiment are then listed in the next 20

rows. The units are in days. In Table 5b, the dashes

indicate that there were less than 10 regimes during the
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course of the experiment.

TAB. 6a,b

Budget terms for a) case *2 with G,=.12 category 7 composite

regimes and b) Regime type II behavior during a single regime

event in case #2 with G*=.12. The units are the tendencies

of the upper and lower level equations (times 1000) in the

first 6 columns' the last three columns are the contributions

to w. Individual terms explained in text, equations also in

text.

TAB. 7a

Comparison of phase and relative amplitudes of the transport

terms from the stability calculation with the full model

regime budgets for the tendency equations (7.1) in Chapter 7

in phase and amplitude form. = amplitude of upper level

wave tendency, A=phase of upper level wave tendency,

6 =amplitude of lower level wave tendency, O< =phase of lower

level wave tendency, w, =zonal w contribution, w. =amplitude

of wave w contribution, w. =phase of wave w contribution. The

experiments were conducted for case *2 with G=.12 for two

periods of Regime type II behavior. Amplitudes from stability

calculation (Theory) are divided by the corresponding terms in

the regime budgets (Full model).
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TAB. 7b

Comparison of the vector sum of the transport components

predicted by Theory to that observed in the budgets for

periods of trough and ridge regime type II behavior.

Amplitudes of the theoretical calculation were obtained by

setting B2=.75 in the trough regime and setting B2=1.03 in the

ridge regime. Notation otherwise the same as Table 7a.

TAB. 7c

Same as Table 7a for category 7 composite regimes.

TAB. 8a,b and 9a,b

List of regime-equilibria mid-level streamfunction and

potential temperature in spectral component form for selected

values of the energy ratio for case *2 with a) 15=.12 and

b) e,=.15. In Table 8 the parameterized effects of ad22 are

not included whereas in Table 9 they are.
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FIGURE A: Limited contour analysis. 552 dm. contour at 500 mb.

level. Period consists of 18 days from January 26, 1980 to

February 15, 1980. Asterisks refer to surface "bombs" as defined

by Sanders and Gyakum (1980). Note steady behavior in Eastern

United States and Atlantic as well as East Asia and western Pacific.

Note unsteady behavior over the western North American continent.
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FIGURE B: Same as Figure A except for the 16 day period from

February 5, 1977 to February 20, 1977. This is the last 16 days

of the now infamous winter regime of 1976-1977. According to

Dole (1981), this is an example of Pacific Negative and Atlantic

Negative.



FIGURE C: Sudden collapse of the 1976-1977 regime shown in Figure

B. This plot consists of the 15 day period from February 22, 1977

to March 8, 1977. Note complete disappearance of the high amplitude

ridge over the Rockies. Notation otherwise the same as in Figures

A and B.
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FIGURE D: A second example of Dole's Pacific Negative event but

this time associated with Atlantic Positive. The plot consists of

the 16 day period from December 31, 1980 to January 15, 1981.

Notation the same as in the previous figures.



FIGURE E: A regime with the reverse type of flow pattern as shown

in Figures B and D, e.g., troughing over the Rockies or Pacific

Positive. This plot consists of the 20 day period from March 14,

1977 to April 2, 1977. Notation otherwise the same as in the

previous figures.
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FIGURE F: Another example of a late season Pacific Positive event

of rather short duration. Period consists of the 11 days from March

26, 1979 to April 5, 1979. Notation same as previou.s-figures.
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CASE #2 EQUILIBRIA vs 6*

FIGURE 1: Graph of the T, component of the 5 case #2 equilibria as

a function of 6-, (heavy lines). The coordinates (ordinate and abcissa)

are given by 9 and G, respectively. All units are nondimensional.
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FIGURE 2a: Graph of the nondimensional e-folding times ' for the

various modes of the case #2 equilibria as a function of The

heavy lines correspond to the 450 Trough and the light lines to

the 9 0 Ridge. Negative Y corresponds to a stable solution.
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FIGURE 2b: Same as figure 2a except for the Hadley Solution (heavy

lines), the Near Hadley Solution (light lines) and the 30* Ridge

(dotted lines). The lines labled "orographic" correspond to solutions

that grow in place. (See Charney and Straus (1980)).
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FIGURE 3a; Plot of the * - component of the phase space trajectory

each day for 17 years for the demonstration case. The coordinates

(abscissa and ordinate) are given by * and I-i respectively. The

5 purely stationary equilibria are denoted by triangles. The units

are nondimensional.
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FIGURE 3b: Plot of the "trough" regime, a 175 day period from

time step 20765 to 23564. The scale and units are otherwise the

same as Figure 3a.
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FIGURE 3c: Plot of the "ridge" regime, a 580

step 23564 to 32855. The scale and units are

Figure 3a.
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FIGURE 4: Identical to Figure 3a except that the wave-wave interaction

has been removed.
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FIGURE 5: Scatter diagram in phase space of the time mean Mode 11

upper level (instead of midlevel) wave for each of the regimes listed

in Table 3a. The coordinates (abscissa and ordinate) are given by 'e-

and i, respectively. The five equilibria are denoted by circles ( G )

and those with a subscript 1/2 are plotted at one half their actual

amplitude. The time mean 205 year composites are denoted by a line

and a number which represents the category. Categories 3 and 4 in the

ridge and 3 in the trough contain only 5 regimes or less and are not

very representative of the regime statistics.
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FIGURE 6a: Phase space plot of a period of Regime type II behavior.

The plot consists of the 9', - Y. component of the trajectory each

day for an 18 day period during the 4th regime in Table 3a. Notation

and units are the same as in Figures 3a,b,c and 4.
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FIGURE 6b: Plot of a more erratic period during the 4th regime in

Table 3a. The plot consists of the 24 days starting two days after

the last day plotted in Figure 6a. Notation otherwise the same as

in Figure 6a.
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CASE * 2 LIMIT CYCLES

FIGURE 7: Plot in phase space of the case #2 Mode 11 and Mode 21

midlevel streamfunction limit cycles for selected values of G7.
Selected composite regimes (denoted by *) and stationary equilibria

(denoted by 4 ) are also shown. Mode 11 limit cycles are heavy

lines and Mode 21 limit cycles are light lines. At &f=.15, the

Mode 11 limit cycle is unstable and spirals into the 45* Trough

Equilibrium state (dashed line). The coordinates are given by , and

-v, (not g and 4'. ).
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FIGURE 8a: Plot of the amplitude of the upper level Mode 11 wave

streamfunction for the various composites and the corresponding

equilibria for case #1 as a function of oj. The abscissa is given

by &' and the ordinate by the amplitude P . The above plot is

for the trough regimes (light lines) and the 450 Trough equilibrium

(heavy line). *The composites are plotted for every value of G*listed

in Tables 5a and b. The numbers below (or sometimes above) the plotted

points are the respective categories. This is true for Figs. 8a-d and

9a-d.
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FIGURE 8b: Plot of the phase (A) of the case #1 trough regime

composites (light lines) and the 45* Trough Equilibrium (heavy

line) as a function of 67. The abscissa is given by G and the

ordinate by degrees with respect to the orographic ridge (not to be

confused with degrees longitude on earth).
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FIGURE 8c: Plot of the amplitude ( 4( ) of the case #1 ridge regime

composites (light lines) and the 90* Ridge Equilibrium (heavy line)

as a function of G*. The scale and coordinates are the same as in

Figure 8a.
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FIGURE 8d: Plot of the phase (A) of the upper level wave streamfunction

for the case #/1 ridge regime composites (light lines) and the 90*

Ridge Equilibrium (heavy line) as a function of e . The ordinate and

abscissa are the same as in Figure 8b.
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FIGURE 9a: The same as Figure 8a except for the case #2 trough

regime composites. At higher values of 0, , the 450 Trough Solution

obtains such large amplitude, the curve had to be displaced downward

by first -. 05 and then by -. 01.
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FIGURE 9b: The same as Figure 8b except for the case #2 trough

regime composites.
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FIGURE 9c: Same as Figure 8c except for the case #2 ridge regime

composites. As in Figure 9a, the amplitude of the Equilbrium

Solution had to be displaced downward at higher values of Gto

keep it on the figure.
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FIGURE 9d: Same as Figure 8d except fot the case #2 ridge regime

composites.
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FIGURE lla: A "weather map" of the midlevel (500 mb) and lower

level (850 mb) height field and lower level potential temperature

(dashed lines) for case 7#2 with - .12. The height contours are

every 6 decameters and the isotherms every 180 C (stretched). The

units in the x-direction are given in degrees with respect to the

orogr aphic ridge (00 corresponds to the mountain peak). These

units of degrees are not to be confused with degrees longitude on

earth.
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90* RIDGE EQUILIBRIUM (b)

Same as Figure 11 a except for the 900 Ridge Solution.

2.01

FIGURE llb:



102

00 180* O . 180, 0

450 TROUGH EQUILIBRIUM (z)

FIGURE 11c: Same as Figure lla except for the 450 Trough Solution.
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30* RIDGE EQUILIBR;UM (d)

FIGIRE lid: Same as Figure lla except for the 30* Ridge Solution.
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CATEGORY 7 TROUGH REGIME (e)

FIGURE lie: Same as Figure Ila except for the category 7 trough

regime.
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FIGURE llf: Same as Figure lla except for the category 7 ridge

regime.
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FIGURE Ilg: Same as Figure la except for an instantaneous

period during a trough regime. All the smaller scale features of.

the full model are present.
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FIGURE llh: Same as Figure lla except for an instantaneous period

during a ridge regime. As in Figure lhg, all the smaller scale

features of the full model are present.
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FIGURE 12: Plot of the phase and amplitude of the transient forcing

terms adll, ad2l, adl2, and "sum" of the upper level vorticity

equations for case #2 with g=. 12 composite trough and ridge regimes.

The ordinate is the I forcing component and the abscissa is the %
forcing component. "adll" is denoted by 0 , and "ad2l" by x, "adl2"

by 0 and "sum" by *. The subscripts next to the symbols refer to the

categories, and each group of terms is circled and labled. The subscript

"R" refers to the ridge and the subscript "T" to the trough. Also

plotted are the forcing terms during periods of Regime type II behavior.

The solid triangles ( A ) correspond to a 31-day ridge and the solid

squares ( M ) to a 46-day trough. The subscripts 11, 21, 12, and "s"

refer to adll, ad2l, adl2, and "'sum", respectively.
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FIGURE 13a: Balance of forces diagram for the trough regime composites

for case #2 with O,=.12. The various budget terms for the upper level

Mode 11 waves are plotted in vector form. The numbers next to the

points refer to the respective categories. The ordinate and abscissa

are the same as in Figure 12 except that the units are multiplied by

a factor of four. For comparison, "sum" is plotted in both figures.
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FIGURE 13b: Same as Figure 13a except for the ridge regime composites.



/

/1,, 7

S

I II -

(o)

~6
4

5
2

Phase non linear forcing

7

- MOUNTAIN VALLEY

4
2
5 5
3 2

3 4
2 4 4 2
3 6 2 6 5
4 7 3 53
5 6 6 Phose

5 7 ere

45* Trough Solution

of trough
gime wave

FIGURE 14a: Plot of the phase of the nonlinear transport terms nlns,

time mean upper level Mode 11 wave of the trough regime and the

corresponding 450 Trough Equilibrium for case #1. The ordinate and

abscissa are the same as in Figure 8b. The trough regime composites

are denoted by light lines and the 450 Trough Solution by a heavy

line. The numbers above and below the dots refer to the categories.
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FIGURE 14b: The same as Figure 14a except for the case #2 ridge

regimes and the corresponding 900 Ridge Equilibrium. The ordinate

and abscissa are the same as Figure 9d.
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FIGURE 15a: Phase'space plot of the midlevel streamfunction wave

of the regime-equilibria for selected values of the transient to

zonal energy ratio for case #2 with =.12. The parameterized

effects of ad22 have been included in these solutions. The ordinate

and abscissa are given by ie. and 4', respectively. The stationary

equilbria are denoted by triangles ( A ) and the individual regime-

equilbria for those values of the energy ratio listed in Table 4a

are denoted by enlarged points and labled by their corresponding

value of the energy ratio. The full model category 7 trough and

ridge regimes are denoted by asterisks (*). Note the close pass of

the regime-equilibria to the full model regimes at energy ratios

near .07.
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FIGURE 15b: Same as Figure 15a except for case #2 with 0,=.15.

Again, the parameterized effects of ad22 are included, but the

full model composite regimes are not. Note that at low values of

the energy ratio in the ridge branch the regime-equilibria become

unstable and develop into limit cycles.



FIGURE 16a: Time series of selected physical processes in the

tendency equation for the demonstration case. The time series

starts 1000 time steps after initialization and lasts for 512 days.

The 512 day period is broken into four 128 day segments. On the

upper axis, ADll (heavy line) and the tendency term Y+/3 t

(light line) are plotted, and on the lower axis "sum" (light line)

is plotted. The tendency term and "sum" are plotted to the same

nondimensional scale, but ADlI is first divided by four.



FIGURE 16b: The same as Figure 16a except that ADl1 is not plotted,

for case #2 with O, =.12. In this example, the time series starts

4350 days after initialization and lasts for 256 days. Each axis

segment then represents 64 days. The tendency term is denoted by

the heavy line and "sum" is denoted by the light line. Both terms

are plotted to the same nondimensional scale as "sum" and the

tendency term are in Figure 16a.
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FIGURE 17a: (From Dole) Time series plot of the amplitude of Dole's

Pacific Positive and Pacific Negative anomaly composites. The

ordinate is in meters and the abscissa is in days. Day zero is

alligned to correspond to the time when each individual anomaly

first meets Dole's 10 day-10 decameter selection criteria. The

Pacific Positive event is denoted by solid circles and the Pacific

Negative event by open circles. Note. the rapid rate of onset for

each of the anomaly events.
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BREAKDOWN OF

COMPOSITE ANOMALY
(From Dole)
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FIGURE 17b: (From Dole) Same as Figure 17a except for the fact

that day zero is now alligned to correspond to the day when each

individual anomaly event last meets Dole's 10 day-10 decameter

selection criteria. Note that as in Figure 17a, the collapse of

these events is also very rapid.
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EQUILIBRIUM Y3

1) HADLEY .095745 .000000 .000000 .095745 .000000 .000000

2) NEAR HADLEY .089248 -.007507 -.000997 .095324 -.005549 .000950

3) 900 RIDGE .057368 -.000115 -.038418 .074070 -.017091 -.033066

4) 450 TROUGH .067815 -. 040352 .039344 .064646 -.015504 .038329

5) 300 RIDGE .077456 .054795 -.024950 .067787 .027851 -.028048

STABILITY OF DEMONSTRATION CASE EQUILIBRIA

MODE HADLEY NEAR HADLEY 900 RIDGE 450 TROUGH 300 RIDGE

MODE 11 443.13 122.45* 370.83 STABLE 114.07*

MODE 21 334.08 337.84 699.30 STABLE STABLE

MODE 12 44.64 45.45 54.45 60.61 54.74

NODE 22 495.05 499.17 370.83 STABLE STABLE

TABLE 2: The 5 equilibrium solutions and their respective stabilities to

the 4 modes of the model for the demonstration case. The equilibria are

given in terms of the midlevel streamfunction u and potential temperature

0 . The asterisk (*) to the right of the growth rates (in units of hours)

indicates that the instability is non-propogating (orographic).



Start Finish
-1

-1l
-l1
-1

1
-1

1
-l1
-1
-l1
-1

1
1
1

-1
1

-1
-1

1
-l1

1
-l1
-1
-1

1
-1
-l1
-1
-1
-1
-l1

1
-1
-l1
-1
-1
-1
-1
-1

1
1

75.6
87.1
78.8

111.5
363.4
46.1

232.8
81.4
74.3
70.8

174.9
580.6

68.0
227.4

32.5
141.9

70.2
55.1
66.7
86.1

215.8
94.8

197.1
149.2
273.4

69.1
83.9
61.2
68.0

123.1
81.1
75.3

141.4
86.8
78.8
53.5
78.1
67.2
71.3

244.1
1099.8

188
1616
3115
4409
6194

12009
12797
16522
18264
19479
20765
23564
32883
33997
37637
38158
40518
41836
42807
44019
45397
48851
50380
53690
56082
60494
61708
63095
64099
65227
67207
68505
69710
71981
73486
74796
75888
77165
78264
79406
83323 100920

56.9 100920 101831
272.0 101988 106341
278.4 106341 110796
481.6 111037 118744

61.1 118808 119786
208.8 119847 123189

65.6 123324 124375
173.7 124435 127215

1399
3011
4377
6194

12009
12748
16522
17825
19453
20613
23564
32855
33972
37637
38158
40429
41642
42718
43857
45397
48851
50368
53535
56082
60458
61600
63051
64075
65188
67198
68505
69710
71974
73371
74747
75653
77139
78241
79406
83313

108.8 127215 128944 .. 13450 -. 02630 .03877 .00238 -. 01277 .00079
81.1 1.28972 130270 .13590 -. 02649 .03705 .00174 -. 01234 .00084
66.0 1303W) 131387 .13686 -. 02257 .03472 .00253 -. 01164 .00102
67.4 131424 132503 .13952 -. 02199 .03131 .00151 -. 01047 .00053

Continued

Type Length
.13380 -. 02689 .04059 .00225 -. 01300 .00088
.13485 -. 03309 .04549 .00200 -. 01502 .00083
.13827 -. 02294 .03228 .00138 -. 01094 .00039
.13535 -. 02624 .03764 .00197 -. 01219 .00090
.13517 .01245 -. 03903 -. 00416 .01118 -. 00138
.13731 -. 02402 .03418 .00149 -. 00545 .00069
.13370 .01057 -. 04231 -. 00545 .01180 -. 00174
.13939 -. 02621 .03624 .00125 -. 01202 .00038
.14113 -. 02118 .03075 .00191 -. 01045 .00053
.13749 -. 02464 .03539 .00155 -. 01147 .00067
.13889 -. 02106 .03218 .00206 -. 01043 .00068
.13429 .01030 -. 04219 -. 00549 .01182 -. 00177
.14023 .01515 -. 02722 -. 00106 .00879 -. 00040
.13783 .01504 -. 03262 -. 00227 .01012 -. 00077
.13980 -. 02073 .02992 .00166 -. 01023 .00081
.13259 .01007 -. 04093 -. 00521 .01131 -. 00171
.14095 -. 02483 .03326 .00131 -. 01116 .00063
.13538 -. 01965 .03228 .00258 -. 01041 .00115
.13839 .01513 -. 03196 -. 00194 .00988 -. 00077
.14025 -. 02193 .03238 .00163 -. 01043 .00058
.13613 .01373 -. 03541 -. 00307 .01047 -. 00104
.13849 -. 02271 .03295 .00157 -. 01074 .00053
.13496 -. 02745 .03891 .00210 -. 01297 .00070
.13584 -. 02277 .03422 .00241 -. 01154 .00086
.13552 .01351 -. 03798 -. 00379 .01123 -. 00124
.13635 -. 02133 .03271 .00178 -. 01033 .00089
.13987 -. 02424 .03522 .00152 -. 01140 .00047
.13706 -. 02400 .03351 .00150 -. 01145 .00050
.13508 -. 02622 .03590 .00103 -. 01161 .00067
.13725 -. 02730 .03756 .00147 -. 01233 .00048
.13480 -. 02403 .03627 .00296 -. 01237 .00109
.13607 .01349 -. 03300 -. 00243 .00993 -. 00112
.13452 -. 02328 .03531 .00223 -. 01132 .00079
.13711 -. 02463 .03578 .00196 -. 01170 .00074
.14099 -. 02211 .03210 .00117 -. 01044 .00044
.13807 -. 02194 .03287 .00180 -. 01099 .00080
.13901 -. 02214 .03170 .00146 -. 01070 .00039
.13416 -. 02837 .04105 .00203 -. 01339 .00096
.13801 -. 02184 .03098 .00137 -. 00995 .00050
.13667 .01558 -. 03507 -. 00267 .01072 -. 00084
.13516 .01215 -. 04078 -. 00471 .01162 -. 00153
.13503 -. 02599 .03721 .00149 -. 01220 .00067
.13567 -. 02502 .03578 .00195 -. 01187 .00063
.13381 .00887 -. 04190 -. 00579 .01145 -. 00191
.13583 .01195 -. 03935 -. 00444 .01132 -. 00146
.13468 -. 01998 .02821 .00092 -. 00948 .00071
.13572 .01258 -. 03678 -. 01086 .01086 -. 00130
.14213 -. 01826 .02738 .00165 -. 00925 .00044
.13567 .01229 -. 03966 -. 00442 .01141 -. 00147



Type Length Start Finish 3 95 2 9
-1 46.1 132514 133258 .13677 -.02924 .04097 .00101 -.01342 .00059
-1 48.8 133328 134110 .13779 -.02697 .03654 .00079 -.01129 .00032
-1 33.9 134317 134861 .14975 -.00771 .01391 .00023 -.00402 .00021
1 195.7 134861 137993 .13453 .01094 -.04240 -.00537 .01200 -.00179
1 126.6 138036 140062 .13399 .01130 -.04153 -.00499 .01163 -.00164
-1 76.4 140062 141286 .14093 -.02166 .03148 .00109 -.01019 .00049
-1 70.3 141441 142566 .14004 -.02141 .03136 .00173 -.01059 .00054
-1 106.1 142599 144298 .13729 -.02412 .03627 .00204 -.01161 .00073
1 110.2 144298 146062 .13483 .01497 -.03527 -.00269 .01060 -.00088
1 644.9 146080 156399 .13571 .01385 -.03742 -.00359 .01105 -.00117
-1 66.3 156581 157643 .14162 -.01920 .02700 .00107 -.00928 .00021
1 25.3 157755 158161 .14112 .00651 -.01867 -.00237 .00698 -.00100
1 259.9 158422 162582 .13676 .01414 -.03655 -.00325 .01076 -.00105
1 54.5 162597 163468 .13932 .01937 -.03185 -.00100 .01066 -.00060

-1 39.8 163468 164105 .13886 -.01754 .02762 .00194 -.00910 .00079

TABLE 3o. continued

TABLE 3a: The type, length in days, start and finish time step, and the

time mean upper and lower level streamfunction of the regimes as they

occur in the demonstration case for the first 28 years of integration. A

"-l" and "+1" refer to the trough and ridge regime respectively.



Composite Ridge

Cat. # days

2

111

134

43

394

2593

47683

Composite Trough

Cat. # days

114

724

3869

10849

6995

Regimes

# reg.

5

5

1

7

30

114

Regimes

#/ reg.

5

3

4

19

71

127

38

EQUILIBRIA

#1 lHadley Solution

#2 Near Hadley Solution

#3 900 Ridge

#4 450 Trough

#5 30* Ridge

amp. phase

.14090

.14050

.14393

.13724

.13718

.13531

.14781

.14260

.14130

.13868

.13704

.13730

.13646

9P,
.19149

.18457

.13144

.13246

.14524

.02063

.02562

.01693

.03742

.03585

.04147

amp.

.00095

.03354

.03684

.04047

.04113

.04190

.04348

amp.

.00000

.01306

.07353

.09567

.09818

-76.1

-69.5

-77.0

-67.8

-67.9

-72.4

phase

23.6

118.7

124.7

124.3

124.2

124.6

124.5

phase

0.0

-179.8

-103.5

125.7

-32.7

TABLE 3b: The 7 categories of the 205 year composite trough and ridge

regimes for the demonstration case. Column 1 is the category, column 2 is

the sum total of days of regime of said category that contribute to the

composite, and column 3 is the number of regime events that fell into said

catecory. The mean composite state is given in upper level zonal flow ,

amplitude and phase of the upper level wave and ditto for the lower level.

For comparison, the upper an- lower level streamfunction in phase and

amplitude form for the 5 equilibria are also listed.

-. 00243

-. 00259

-. 00219

-. 00305

-. 00276

-. 00435

9,

.00016

.00288

.00141

.00174

.00189

.00180

.00199

.00000

-. 00608

-. 01670

.00317

.00967

amp.

.00000

.00276

.01780

.02487

.02712

amp.

.00675

.00842

.00582

.01074

.01012

.01148

amp.

.00022

.00916

.01023

.01118

.01135

.01139

.01180

phase

-13.3

-7.9

-11.8

-5.9

-5.7

-7.1

phase

67.4

172.8

175.6

176.0

176.3

176.6

176.7

phase

0.0

-135.2

-17.7

177.7

6.6



-22-3

Case #1

DRIVING

11
HADLEY 21

12

NEAR 11
HADLEY 21

12

900 11
RIDGE 21

12

450 11

TROUGH 21
12

300 11

RIDGE 21
12

TABLE 4a

CASE #2

DRIVING .07 .075 .0775 .08 .09 .10 .11 .12 .13 .14 .15

11
HADLEY 21

12

NEAR 11
HADLEY 21

12

90* 11
RIDGE 21

12

450 11

TROUGH 21
12

300  11
RIDGE 21

12

S S 4710*
S S S

248 199 181

901 *

S
167

250*
S

127

17 0
S

103

152
S
87

190*
1429
75

S 1149 240
457 273 194

67 60 54

S S 310* 94* 61*
S 1136 474 304 224
68 69 68 66 63

S S
S S

169 147

S S
S S

205 222

S
S

113

S S S 1200
S S S S
96 84 76 69

499 294
S 2113
64 59

S S S S S S
S S S S 5952 1149

216 184 155 132 114 100

S
645
89

164* 95* 78* 68* 62*
S S S S S
62 57 53 50 48

TABLE 4b
*

Stability of the equilibria as a function of 81 for a) case #1 and b) case #2.

Growth rates are given in hours, and an asterisk (*) indicates a non-

propogating instability (orographic). The Mode 22 wave is always stable and

thus not listed. In Table 4b "S" indicates the solution is stable.

.07

STABLE
STABLE
153.06

.08

272.73*
STABLE
108.70

.09

172.41*
STABLE
84.27

874.64
STABLE
85.71

STABLE
STABLE
107.91

.10

205.48*
613.50
68.65

STABLE
609.72
66.08

300.00
STABLE

73.75

STABLE
STABLE
90.36

106.38*
STABLE
60.73

STABLE
STABLE
104.90

STABLE
STABLE
133.93

.11

467.29*
285.71
57.80

124.48
294.12
59.88

177.51
539.57
63.83

STABLE
STABLE
78.33

83.10*
STABLE
55.76
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CASE #1/

DRIVING .07 .08 .09 .10 .11

# DAYS 6250 6250 6250 6250 6250
#t RIDGE 5130 3228 3082 2099 1510
# TROUGH 442 2016 1886 2466 2225
# REGIME 5572 5244 4968 4565 3735
# UNSTEADY 678 1006 1282 1685 2515

TOP TEN RIDGE
1 379.8 144.9 77.6 77.3 62.9
2 269.7 137.9 76.9 70.2 42.0
3 260.0 94.3 66.8 65.2 40.4
4 209.8 89.4 64.4 62.1 37.1
5 199.4 85.4 62.7 58.9 36.6
6 189.8 83.2 62.6 52.3 33.1
7 179.2 80.6 60.7 50.1 32.7
8 163.1 80.2 60.6 49.4 31.9
9 160.2 78.1 59.0 49.1 30.4

10 143.3 74.2 56.1 46.6 30.3

TOP TEN TROUGH
1 32.9 116.3 79.8 80.6 52.2
2 32.6 95.6 68.3 66.1 51.9
3 29.8 90.6 67.6 65.3 51.9
4 27.0 89.1 66.8 59.2 42.4
5 26.8 67.3 55.3 53.3 42.2
6 25.3 58.4 54.9 51.6 40.6
7 23.6 51.9 47.5 50.4 35.9
8 23.6 50.9 44.3 49.8 35.6

9 23.4 48.3 44.1 48.6 35.6
10 22.6 47.9 43.6 47.5 35.1

TABLE 5a: Statistics of the case #1 regimes for the 5 select values of the
*

driving 61. The total number of days of each experiment (6250) is given in

row 1, the total number of days the state of the model flow was in the

ridge regime, trough regime, both the ridge and trough regime, and neither

the ridge or trough regime (unsteady) are given in rows 2,3,4,5, respectively.

The top 10 ridgesand troughs are then listed in the next 20 rows. The top

10 refer to the 10 most persistent regimes of each experiment. The units

are in days.



.07 .075 .0775 .08 .09 .10 .11 .12 .13 .14 .15

# DAYS 6250
# RIDGE 4593
# TROUGH 79
# REGIME 4672
# UNSTEADY 1578

TOP TEN RIDGE

1 507.0
2 243.3
3 203.3
4 176.0
5 174.2
6 161.3
7 158.3
8 152.4
9 151.6

10 146.6

TOP TEN

1
2
3
4
5
6
7
8
9

10

TROUGH

21.1
19.5
19.4
19.4

TABLE 5b: Identical to Table 5a except

between the two tables is the appearence

for case #2. The major difference

of the dashes in the listings of

the ten most persistent trough regimes. The dash indicates that there

were fewer than 10 trough regimes during the entire 6250 day experiment;

a clear example of ridge-regime dominance in some cases.

CASE #2

DRIVING

6250
5908

239
6147

103

1131.8
947.8
805.0
509.0
381.4
319.8
289.1
203.1
183.4
167.9

45.2
39.6
35.3
28.1
26.9
26.3
19.3
19.1

6250
5703

221
5924

326

755.8
676.4
602.6
430.6
417.5
346.6
328.9
290.9
275.9
265.9

45.2
41.6
35.0
34.3
22.0
21.6
21.3

6250
6053
82

6135
115

607.9
602.1
577.1
507.1
493.4
427.2
384.8
380.1
321.1
308.5

46.6
35.2

6250
5749

257
6006

224

410.4
341.1
287.7
263.1
253.7
238.6
208.2
195.7
193.1
187.1

257.4

6250
5348

595
5943

307

202.9
172.8
256.6
151.8
145.3
141.1
139.4
137.9
132.1
128.5

142.6
134.4

91.4
80.2
73.7
38.1
34.9

6250
4103
1460
5563

687

106.1
91.8
86.3
85.6
81.5
81.1
80.9
80.4
77.4
76.6

99.5
92.4
81.5
79.9
73.7
59.4
58.8
54.8
48.1
47.7

6250
3030
1708
4738
1512

116.6
85.5
79.4
77.5
74.0
70.3
66.9
62.4
57.6
51.6

170.9
66.5
61.5
60.5
58.4
56.5
53.4
51.6
50.4
49.0

6250
2989
1217
4206
2044

68.6
68.5
65.5
59.6
54.1
50.0
49.6
48.8
48.6
48.0

84.2
66.1
53.1
48.1
42.7
40.1
39.9
34.3
33.4
33.4

6250
2255
1086
3341
2909

54.6
52.9
51.6
51.3
47.5
43.9
42.8
42.1
41.8
41.1

45.8
40.6
39.8
35.6
35.1
34.5
34.4
32.3
29.6
26.1

6250
2240

548
2788
3462

102.3
44.9
44.8
43.1
41.4
40.7
39.8
38.9
37.6
37.6

30.6
28.4
26.4
26.1
25.0
24.8
23.0
21.6
19.8
19.7

.12 .13 .14 .15



CATEGORY 7 RIDGE REGIME

WAVE
adll
ad2l
adl2
ad22
sum
ADl
BETA
BEAD
TOP2
DISS
INT
wn in
WLIN
LINS
nlns

Y,

0.1685

-0.87 47
-5.7487

6. 5335
5. 6589

-5.7 487

CATEGORY 7 TROUGH REGIME

I AMP. PHASE

WAVE 0.1735 0.0788 134.6
adll - 0.2873 47.3

ad2l - 0.3751 39.9

ad12 - 0.5033 57.2
ad22 - - -

sum - 1.1557 49.2

ADl - 11.9768 -135.4

BETA - 8.5003 44.6

BEAD - 3.4765 -135.4

TOP2 - - -

DISS - - -

INT -0.8531 0.3258 -58.4
wnin -3.6535 1.4531 -92.7
WLIN 4.7916 4.0514 60.9
LINS 3.9385 0.8885 112.2
nins -3.6535 0.8971 -40.0

to I AMP. PHASEAMP.

0.0467
0.4212
0.0225
0.2099

0.5830
6.8937
5.0372
1.8566

0.2309
1.6927
2.1293
2.2198
2.2356

amp. phase

0.0029

0. 2946
-0. 2290

0. 8531
3. 6535

-4. 7916
-3. 8729

3. 6535

PHASE

-84.4
138.9
-41.2
174.1

150.9
5.6

-174.4
5.6

77.7
126.~2

-102.0
-49.0
132.4

W, AMP. PHASE

0.0222 178.2
0.0125 -168.1 0.8666 0.3364
0.0609 26.9 0.9148 1.8192
0.1174 32.1 1.5059 1.6961

- - 0.3662 -

0.1663 31.6 3.6535 3.6159
0.0530 -91.8 5.6142 17.1318
2.2812 88.2 - -
2.2282 88.2 - -

0.5055 -90.0 - -
1.6920 -1.8 -10.4058 9.7732
0.3258 121.6 - -
1.4531 87.3 - -

4.0514 -119.9. - -
1.6388 -103.4 -4.7916 10.0814
1.5531 82.2 3.6535 3.6159

51.5
73.7

108.9

87.3
-89.3

121.6

-119.1
87.3

TABLE 6a: Budget terms for case #2 with 81=.12 category 7 composite

regimes. The units are the tendencies of the upper and lower level

equations (times 1000) in the first six cloumns; the last three columns

are the contributions to the w field. Individual terms explained in

text, equations also in text.

-0.0064

-0. 595 6
0.5132
0. 8747
5.7487

-6.5 335
-5.7413

5. 7487

amp.

0.0144
0.0153
0.0292
0.0945

0.1232
0.0810
1.5553
1.6363
1.1327
1.1535
0.2309
1.6927
2.1293
1.7281
1.7040

phase

-5.4
-156.3

-99.2
-144.0

-140.6
-95.4
-95.4
-95.4

90.0
174.6

-102.3
-58.3

78.0
121.8
-58.0

1.1994 -83.3
1.7124 -54.1
1.5825 -31.2

4.2120 -53.8
12.2250 77.9

6.9266 -102.3

5.2985 78.0
4.2120 -53.8

0.9481
0.5975
2.6667
1.5364
5.7487
3.2271

-9.7606

-6.5335
5.7487



22-Z

REGIME TYPE II BEHAVIOR: RIDGE

amp. Dhase

WAVE
adll
ad21
ad12
ad22
sum
ADl
BETA
BEAD
TOP2
DISS
INT
wnin
WLIN
LINS
nlns

0.1582

-0. 843 6
-7. 2933

8. 1614
7. 3178

-7. 2933

Wo. AMP. PRAqR

REGIME TYPE

WAVE 0.1739
adll -
ad2l -
ad12 -
ad22 -
sum -
ADl -
BETA -
BEAD -
TOP2 -
DISS -
INT -0.8496
wnin -3.5625
WLIN 4.1025
LINS 3.2529
nins -3.5625

II BEHAVIOR: TROUGH

AMP. PHASE

0.0811 132.4 0.
0.2124 46.3
0.3435 56.8
0.4362 48.4

0.9892 50.9
12.3515 -137.6
8.7473 42.4
3.6043 -137.6

- - 0.

- - -0.

0.3389 -61.4 0.
1.5031 -88.2 3.
3.9258 65.7 -4.
1.2292 136.2 -3.
0.9952 -47.6 3.

0

1
3
8
5
1~
4I

5

amp.

040 0.0223
- 0.0206

- 0.0528

- 0.1411

- 0.1880

- 0.0772

- 2.4011

- 2.3239

591 0.6986
165 1.7809
496 0.3389
625 1.5031
025 3.9258
103 1.6859
625 1.6169

phase

179.1
138.8

35.3
28.4

36.2
-90.9

89.1
89.1

-90.0
-0.9

118.6
91.8

-114.3
-88.5

86.3

W1 AMP.. PHASE

0.4927
0.7064
1.7766
0.5869
3.5625
6.4109

-10.5134

-4.1025
3.5625

0.0291
2.1130
1.7951

3.7408
17.8558

10.1679

9.7688
3.7403

-63.7
77.8

108.8

91.8
-87.3

118.6

-114.3
91.8

TABLE 6b: The same as Table 6a except for periods of Regime type II
*

behavior during a single regime event in case #2 with 01=.12.

AMP.

0.0498
0.0810
0.1234
0.3885

0.3900
6.8985
5.3710
1.5275

0.2608
1.6120
0.1493
1.5878
1.9233

PHASE

-110.2
112.3
-74.7

-178.9

-172.4
-20.2
159.8
-20.2

58.3
146.6

-108.4
-16.4
154.2

-0.0106

-1. 0372
0. 8454
0. 8436
7.2933

-8. 1614
-7. 5097
7. 2933

0.0105
0.0087
0.0756
0.2692

0.3255
0.0972
1.1320
1.2292
1.8657
0.8396
0.2608
1.6120
0.1493
1.4165
1.5279

-13.0
-114.0
-100.6
-156.1

-144.1
-103.0
-103.0
-103.0

90.0
167.0

-121.7
-33.4

71.6
146.7
-44.9

-63.3
-38.0
-28.9

-33.4

-121.7

71.6
-33.4

0.1424
0.2476
4.6079
2.2954
7.2933

-10.6925

-8.1614
7.2933

0.2210
1.1965
2.6351

4.0112

7.8248

0.3715
4.0112



REGIME TYPE II

Theory.

ad2l adl2

Y .2209
A 58.1*

TROUGH

ad

1.4603.
49.1

#.1345 1.3146
cc 9.20 10.70

to, .5492
£V .1339
ce 121.00

1.3115
1.2590
110.0*I

ll1

Full model

ad2l ad12

.2124 .3435 .4362
46.3* 56.80 48.40

.0206 .0528 .1141
138.80 35.3* 28.4*

.4927 .7064 1.7766

.0291 2.1130 1.7951,
-63.70 77.80 108.8

RIDGE

Theory I Full model

ad2l ad12 adli ad2l ad12

.3258 1.1326 .0810 .1234 .3885
-151.0" -179.0 112.3* -74.7*-178.9*

.8770 .9216 .0087 .0756 .2691
-151. 0* -168. 0* -114. 0* -101. 0*-156. 0*

.9774 .8811 .1424 .2476 4.6079

.3025 .9563 .2210 1.1965 2.6351
-42.7* -53.0* -63.3" -38.0" -28.9*

TABLE 7a

CATEGORY 7 COMPOSITE REGIME

TROUGH

Theory I
ad21 ad12 I ad

C .1917
A 59.4*

.0870
13.40

4,.3848

toe.1330
Wc 122.00

1.2520 I
50.7'1

1.1925.1
12.5*

1.5605
1.2853
110.0*|

11

Full model

ad2l ad12

.2873
47.3

.3751
39.9*

.5033
57.20

.0125 .0609 .1174
47.30 39.9* 57.20

.8666 .9148 1.5059

.3364 1.8192 1.6961
51.10 73.7* 108.90

RIDGE

Theory

ad2l ad12

2.0000 2.3373
-150.0* -152.0*

Full model

adll ad2l ad12

.4212 .0225 .2099
138.90 -41.20 174.1*

2.6918 2.7619 .0153 .0292 .0945
-142.0* -153.0'1 156.3* -99.2-144.0*

.6594 1.5973 .9481 .5975 2.6670

.3259 1.9210 11.1994 1.7124 1.5825
-42.6* -39.2*1 -83.8* -54.1* -31.2*

TABLE 7c

TABLE 7a: Comparison of phase and relative amplitudes of the

transport terms from the stability calculation with the full model regime

budgets for the tendency equations (7.1) in Chapter 7 in phase and

amplitude form. f = amplitude of upper level wave tendency, A=phase of

upper level wave tendency, #= amplitude of lower level wave tendency, cX=

phase of lower level wave tendency, w, = zonal w contribution, w. =

amplitude of wave w contribution, w, = phase of wave w contribution. The
*

experiments were conducted for case #2 with 01=.12 for two periods of

regime type II behavior. Amplitudes from stability calculation (theory)

are divided by the corresponding terms in the regime budgets (full model).

Further explanation of the "theory" amplitude ratios is provided in the

text. Table 7c is the same as Table 7a except for the category 7

composite regimes.

11



REGIME TYPE II

Theory Full model
sum sum
.53
50.3 0

.12
9.9

1.90
111.2 0

.989
50.9 0

.188
36.2

3.74
91.8

TROUGH

Theory
sum
.49

-176.7 0

.32
-164.4 0

2.97
-52.3 0

Full model
sum
.390

-172.40

.326
0

-144.1

4.010
-33.40

RIDGE

TABLE 7b

Comparison of the vectorsum of the transport components predicted by

theory to that observed in the budgets for the pericds of trough and

ridge regime type II behavior mentioned in Tables 6b and 7a. Amplitudes

of the theoretical calculation were obtained by setting B =.75 in the

trough regime and setting B =1.03 in the ridge regime. Notation otherwise

the same as in Table 7a.

-2 z
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CASE #2 REGIME-EQUILIBRIA e = .12

RIDGE BRANCH

.00

.01

.02
.03
.04
.05
.06
.07
.08
.09
.10
.11
.12
.15
.20
.50
1.00
1.50
2.00

.0644

.0677

.0693

.0711

.0732

.0756

.0783

.0811

.0838

.0860

.0870

.0869

.0862
.0837
.0802
.0695
.0628
.0587
.0547

.0115

.0110

.0103

.0094

.0082

.0066

.0045

.0019
-. 0012
-. 0046
-. 0075

-. 0091

-. 0099

-. 0110

-. 0118

-. 0128

-. 0120

-. 0103

-. 0081

Y3
-. 0520

-. 0494

-. 0461

-. 0426

-. 0387

-. 0342

-. 0290

-. 0232
-. 0169

-. 0106

-. 0056
-. 0030

-. 0019

-. 0007

-. 0001
.0011
.0022
.0029
.0035

.0804
.0816
.0829
.0843
.0858
.0874
.0890
.0905
.0915
.0919
.0914
.0903
.0891
.0857
.0810
.0655
.0545
.0489
.0453

(ad22 = 0)

-. 0109
-. 0107

-. 0105

-. 0102

-. 0099

-. 0095

-. 0090

-. 0084

-. 0079

-. 0076

-. 0075

-. 0076

-. 0077

-. 0081

-. 0087

-. 0105
-. 0124

-. 0138

-. 0148

-. 0494

-. 0466

-. 0436

-. 0402

-. 0364

-. 0320

-. 0271
-. 0215

-. 0155
-. 0095

-. 0048

-. 0024

-. 0014

-. 0003
.0001
.0004
.0007
.0012
.0017

TROUGH BRANCH

.00

.01
.02
.03
.04
.05
.06
.07
.08
.09
.10

.0792

.0801

.0810

.0819

.0829

.0839

.0850

.0862

.0876

.0891
.0910

-. 0535

-. 0520

-. 0504

-. 0487
-. 0468
-. 0447

-. 0424

-. 0397

-. 0366
-. 0324

-. 0241

.0471

.0459

.0447

.0433

.0417

.0400

.0380

.0356

.0326

.0284

.0190

G
.0740
.0748
.0757
.0766
.0777
.0788
.0801
.0815
.0832
.0853
.0891

-. 0240

-. 0230

-. 0220

-. 0210

-. 0199

-. 0187

-. 0175

-. 0161

-. 0146
-. 0127

-. 0097

.0461

.0450

.0437

.0423

.0408

.0391

.0 371

.0347

.0318

.0277

.0187

TABLE 8a: List of the regime-equilibria midlevel streamfunction and

potential temperature in spectral component form for selected values
*

of the energy ratio for case #2 with 81 = .12. The parameterized effects

of ad22 are not included.
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CASE #2 REGIME- EQUILIBRIA

RIDGE BRANCH

.00

.01

.02

.03

.04

.05

.06
.07
.08
.09
.10
.15
.20
.50
1.00
1.50
2.00

.0664

.0678

.0695

.0714

.0737

.0763

.0792

.0820

.0843

.0850
.0844
.0794
.0755
.0642
.0567
.0517
.0475

.0115

.0111

.0106

.0097

.0085
.0066
.0039
.0003

-. 0037
-. 0070
-. 0084
-. 0102
-. 0107
-. 0112

-. 0096
-. 0073
-. 0053

-. 0520
-. 0488

-. 0452
-. 0412
-. 0364
-. 0309
-. 0243
-. 0169
-. 0095
-. 0042

-. 0021
-. 0002

.0003

.0015

.0025

.0030

.0031

TROUGH BRANCH

.00

.01

.02

.03

.04

.05

.06
.07
.08
.085
.087

41
.0792
.0801
.0809
.0819
.0828
.0839
.0850
.086 2
.0876
.0884
.0888

%3
-. 05135
-. 0517
-. 0499
-. 0478
-. 0456
-. 0430
-. 0401

-. 0365
-. 0317
-. 0281

-. 0260

Y3
.0471
.0457
.0443
.0426
.0408
.0386
.0361
.0328
.0281
.0243
.0219

CATEGORY 7 REGIMES

TROUGH:

.0882 -. 0382

RIDGE:

.0810 .0095 -. 0239

.0284 .0853 -. 0171 .0277

.0875 -. 0049 -. 0226

TABLE 9a: Same as Table 8a except that the parameterized effects of ad22

are included. This table is plotted in Figure 15a. For comparison, we

have also included the category 7 full model composite regimes in

spectral component form.

G. =.12

.0804
.0815
.0827
.0839
.0853
.0867
.0881
.0891
.0893
.0885
.0872
.0806
.0757
.0604
.0502
.0451
.0419

e,
.0740
.0748
.0757
.0767
.0777
.0789
.0803
.0819
.0839
.0854
.0862

-. 0109

-. 0104

-. 0098
-. 0092
-. 0086

-. 0079
-. 0072

-. 0067
-. 0065
-. 0066
-. 0068

-. 0076

-. 0081
-. 0099
-. 0115
-. 0124

-. 0128

-. 0240

-. 0229
-. 0218
-. 0206

-. 0193
-. 0180
-. 0165

-. 0148

-. 0126
-. 0112
-. 0104

-. 0494
-. 0463

-. 0428

-. 0389

-. 0343

-. 0290

-. 0227
-. 0156
-. 0086

-. 0036

-. 0016

.0001
.0003
.0008
.0014
.0018
.0020

92
.0461
.0448
.0433
.0417
.0398
.0377
.0352
.0320
.0274
.0237
.0214



CASE #2 REGIME-EQUILIBRIA

RIDGE BRANCH

.00

.01
.02-
.08
.09
.10
.11
.12
.15
.20
.50
1.00
1.50
2.00

.0631 -. 0023 -. 0637
Unstable limit cycle

.07 Stable limit cycles
.0803 -. 0013 -. 0378
.0835 -. 0023 -. 0328
.0866 -. 0038 -. 0275
.0896 -. 0055 -. 0220
.0921 -. 0074 -. 0166
.0955 -. 0126 -. 0046
.0922 -. 0143 -. 0013
.0793 -. 0153 .0004
.0720 -. 0149 .0015
.0684 -. 0139 .0023
.0655 -. 0124 .0030

e, = .15

.0867

.0989

.1004

.1017

.1026

.1030

.1012

.0952

.0752

.0615

.0545

.0500

(ad22 = 0)

-. 0313

-. 0196

-. 0177

-. 0159

-. 0142

-. 0127

-. 0103

-. 0102

-. 0113

-. 0130

-. 0145
-. 0159

G 3
-. 0594

-. 0344

-. 0297

-. 0247

-. 0196

-. 0146

-. 0035

-. 0008

-. 0003

-. 0004

-. 0002

.0002

(unstable)

TROUGH BRANCH

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.11

.12

.13

.14

.15

.l0

.0801

.0808

.0816

.0825

.0834

.0843

.0853

.0863

.0874

.0885

.0898

.0911

.0926

.0943

.0961

.0986

-. 0719

-. 0706

-. 0693

- .0630
-. 0666

-. 0651

-. 0635

-. 0618

-. 0599

-. 0580

-. 0558

-. 0533

-. 0505
-. 0473

-. 0431

-. 0366

.0600

.0591

.0582

.0572

.0562

.0551

.0540

.0528

.0514

.0499

.0483

.0464

.0441

.0413

.0376

.0311

.0741

.0747

.0754

.0762

.0770

.0778

.0787

.0797

.0807

.0819

.0831

.0845

.0861

.0880

.0904

.0940

-. 0329

-. 0320

-. 0310

-. 0301

-. 0291

-. 0280

-. 0270

-. 0259

-. 0247

-. 0234

-. 0223

-. 0209

-. 0194

-. 0177

-. 0158

-. 0131

e3
.0589
.0580
.0571
.0561
.0550
.0540
.0528
.0516
.0502
.0487
.0471
.0452
.0429
.0402
.0365
.0302

TABLE 8b: Same as Table 8a excep.t for case #2 with 01 = .15. The

parameterized effects of ad22 are not included.
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CASE #2 REGIME-EQUILIBRIA

RIDGE BRANCH

.00 .0631 -.0233 -.0637

.01-.06 Stable limit cycles

Q

.0867

.07 .0779 .0010 -.0393 .0955

.08 .0811 -.0000 -.0336 .0968

.09 .0843 -.0016 -.0275 .0979

.10 .0873 -.0037 -.0210 .0986

.11 .0898 -.0062 -.0147 .0988

.12 .0915 -.0037 -.0092 .0984

.13 .0921 -.0106 -.0053 .0975

.14 .0917 -.0116 -.0033 .0961

.15 .0909 -.0122 -.0023 .0947

.20 .0866 -.0133 -.0007 .0384

.30 .0802 -.0136 .0001 .0795

.50 .0730 -.0137 .0008 .0639
1.00 .0651 -.0128 .0020 .0562
1.50 .0606 -.0111 .0029 .0499
2.00 .0563 -.0088 .0034 .0345

TROUGH BRANCH

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.11

.12
.13
.135
.136
.137

.0801

.0808

.0816

.0825

.0833

.0843

.0852

.0863

.0874

.0886

.0899
.0913
.0929
.0948
.0961
.0965
.0969

-. 0719

-. 0704
-. 0689

-. 0674
-. 0657
-. 0639
-. 0620
-. 0600
-. 0578

-. 0553
-. 0525

-. 0492
-. 0453
-. 0397

-. 0352
-. 0337
-. 0313

.0600
.0590
.0579
.0568
.0556
.0543
.0530
.0515
.0498
.0479
.0457
.0431
.0397
.0345
.0299
.0283
.0257

.0741

.0747
.0754
.0762
.0770
.0778
.0788
.0799
.0809
.0821
.0835
.0851
.0871
.0897
.0918
.0925
.0935

-. 0313

-. 0181

-. 0160
-. 0139
-. 0122
-. 0108

-. 0099

-. 0094
-. 0093

-. 0093

-. 0095

-. 0100

-. 0109

-. 0126
-. 0140

-. 0151

-. 0329

-. 0319

-. 0309

-. 0298

-. 0287

-. 0275
-. 0263

-. 0251
-. 0238
-. 0224
-. 0208

-. 0192
-. 0172

-. 0147
-. 0130
-. 0124
-. 0116

-. 0594

-. 0361

-. 0308
-. 0250
-. 0190
-. 0131
-. 0079
-. 0043

-. 0025

-. 0016

-. 0004
-. 0000

.0001

.0004

.0009

.0016

.0589

.0579

.0568

.0557

.0545

.0532

.0518

.0503

.0486

.0467

.0446

.0419

.0386

.0336

.0291

.0276

.0251

(unstable)

TABLE 9b: Same as Table 8b except the parameterized effects of ad22

have been included. This table is plotted in Figure 15b.

e =.15
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APPENDIX I

HOW TO WRITE A HIGHLY TRUNCATED SPECTRAL MODEL

Since the nonlinear interaction between externally forced

planetary scale waves and travelling baroclinic disturbances

appears to be essential for the occurrence of weather regimes,

we wish to develop a model which retains its nonlinearity, yet

is sufficiently simple to provide understanding of the

important mechanisms. The model which best appears to satisfy

these criteria is the highly truncated spectral two-layer

model, first developed for study of atmospheric phenomena by

Lorenz (1960a), and also used by Lorenz (1962,1963), Young

(1966), Yau (1977,1980), Charney and DeVore (1979), and

Charney and Straus (1980) for further studies. We shall use

the approach devised by Lorenz (1960a) to formulate the

simplest possible model which contains the necessary physics

and degrees of freedom, as postulated by our hypothesis, to

establish weather regimes. The model must have zonally

inhomogeneous external forcing, be able to represent both the

planetary and synoptic scale waves, and be capable of

baroclinic instability (which requires some vertical

structure). Since weather regimes are primarily large-scale

phenomena (planetary and synoptic scale), their dynamics will

be approximated by the quasi-geostrophic system of equations

which consist of the quasi-geostrophic vorticity equation,
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conservation of potential temperature, the hydrostatic

approximation, and continuity. For frictionless, adiabatic

flow they may be written as:

I
A*/a t + J(4 , ft) + /Z 4V/x + f 4 = 0

/6 t + J(',e ) +'796e+ w e/Ap 0

p= -o= -c~ ~/4p(p/p, ) &

D w/) p +VZ = 0

where * is the geostrophic streamfunction gz/f, ?Cis the

velocity potential, 4 is the geopotential or gz, eis the

potential temperature, p, a reference pressure (usually 1000

mb.),X the ratio R/c,=2/7, w the change of pressure following

the motion (dp/dt), cthe heat capacity at constant pressure, O

the specific volume, f the coriolis parameter 2C4sin 0, where #

is some specified latitudep the gradient of f, 1/a,(df/do )

where 'a.' is the radius of the earth, and J(M,N) is the

jacobian aM/;x AN/4y- A M/4yc<A N/6x. The quantities VI* and

are the vorticity and divergence, respectively, thus V* and

Vyare proportional to the magnitude of the nondivergent and

irrotational winds. The quantity 7'X36+ w iG/c) p is the three

dimensional advection of G by the irrotational wind.

The simplest possible model which is capable of

baroclinic instability is the two-layer model. The two-layer

approximation is made by representing the atmosphere as two

vertically stacked homogeneous fluids of different density of

equal depth with lighter fluid on top, or equivalently, a
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three dimensional fluid with constant vertical shear. The two

layer equations are obtained by writing the vorticity and

thermodynamic equations for each layer where one assumes a

linear vertical profile of the dependent variables ', e ,

and )6. The surface will be designated by a subscript 4, the

middle of the lower layer by subscript 3, the interface

between the layers (or halfway through the depth of the model)

by subscript 2, the middle of the upper layer by subscript 1,

and the top by 0. The corresponding pressure levels are

somewhat arbitrary depending upon whether the top of the model

is chosen to be at 0 mb. or 200 mb. The surface is usually

chosen to be 1000 mb. With the above conventions, the

frictionless, adiabatic, two-layer quasi-geostrophic system of

equations become:

-av/At + J( 4', W 4) + [yve/x + f = 0

t + J(M-, W) + 4/3x + f V?= 0

'L63/ t + J(t43,63) + 7(GV') = 0

'aG,/(t + J(4 ,(,) +7( G1) = 0

where the three dimensional advection by the irrotational wind

\V-)CG+ w )G/ 'p has been written as 7 ( G 7). ) via continuity

where 7 is the horizontal del operator and 7 is the three

dimensional del operator.

It is essential for this study to include heating,

topography (or some other source of zonal inhomogenity),

frictional dissipation, and heat transfer. These processes
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will be added to the frictionless, adiabatic equations through

the following parameterizations: Frictional dissipation will

be modelled by Ekman pumping, thus the drag on the lower layer

will be proportional to the vorticity of the lower layer and

the vorticity difference between the layers. The constants of

proportionality at the surface and between the layers are not,

however, assumed to be the same. The heat transfer will be

approximated by Newtonian cooling, a simple proportionality

constant times the temperature difference between the layers

as well as the temperature difference between the lower layer

and a prescribed surface temperature. Again, the

proportionality constants will not be assumed to be the same.

The effects of topography will be to induce a vertical motion

proportional to the magnitude of the surface (lower layer)

velocity times the slope of the terrain which acts to stretch

or compress vortex tubes, and thus will be incorporated in the

Jacobian. The driving mechanism (or heating) for the model is

taken into account by fixing the surface radiative equilibrium

temperature profile, which will simulate the earth's radiative

equilibrium equator to pole temperature gradient. The

additional terms representing the parameterized effects of

external forcing are:

G /t= -2h'' G + 2h''e + h'''(G-e)

= -h'''( -3 )

t = -J( A, ff /H) - 2k''V + k )

3v +34 k ' e
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where 2h'' is the coefficient of heat transfer between the

lower layer and the surface, h'' is the coefficient of heat

transfer between the lower layer and the upper layer, 2k'' is

the coefficient of frictional dissipation between the lower

layer and the surface, k''' is the coefficient of frictional

dissipation between the lower layer and the upper layer, E is
3

the prescribed radiative equilibrium surface temperature, 1%,is

the topographic height profile, -h= ,(x,y), and H is the

depth of each layer. The Jacobian J( (4 , f 1,/H) is accurate

only if ti./H<<l. The actual nonlinear expression

J(4, fiih /(H-1 ,)) has been linearized with the assumption

that the height of the topography is small.

It is convenient to rearrange the dependent variables

, and G, into variables representing

mean vorticity q ' = V ( kl, + )/2

vertical shear 9 j = ( 41, - 4' )/2'3

mean potential temperature e = ( el + G )/2

static stability G' = ( , - /2

mean divergence = 0 v = - .

The system can be closed by relating t and G via the

geostrophic thermal wind relation for a two layer model and a

perfect gas. This transformation produces the system of

equations used by Lorenz (1963) with the addition of the

beta-effect and topography. The system is as follows:
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G /-t + J(-,e ) + J('t,& ) -7(G'7/) = h''(e"-6)

/G '/t + J( 4,-c) + J(^r,G) - (97X') =

-h''(d*-G ) -2h'''

/ht + J(V4, v ) + J( ,V7-) +03 +/ x =

-.5 J( 4, ftri/H) + .5 J(, fV6 6 /H) + k

av'-/ t + J( Y ,-'4 ) + J( 't, v 4) +fa-/' x - 7Y =

.5 J( Y , fli, /H) - .5 J( 2 , f4e /H) - k''Y?- 2k'''9 L

Z C = -(cb*/2f )IG (thermal wind)

where b*=(p,/p, ) - (p 3 /p, ) which then depends upon the

specified pressure of the model top.

We shall simplify the system by approximating the static

stability as a constant. The primary reason for doing such is

mathematical simplicity. Fixing the static stability does not

allow for the occurrence of static stabilization through the

release of baroclinicity, Lorenz (1960b). Assuming C' to be

constant, the system simplifies to:

4G /c t + J(MW T G) -T G = h'( e -G)

vT/t + J( M , Y) + J( T, ') + (GW/)x

-.5 J( t, f% /H) + .5 J( , fi6 /H) + k '4(

arT/st + J( v , ) + J( t, W ) + f~Wr/'x - f LY =

.5 J( -, flio /H) - .5 J(7, f-fh /H) -k'*- 2k'''' t -

t = -(cyb*/2f) 9'e

(Note that when the static stability is assumed constant, the

heat transfer coefficient between layers drops out).
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The Spectral Equations

The variables 1i6 , T, (D, T, and V Xare non-

dimensionalized and expanded in an appropriate set of

orthogonal functions F;, given by (2.3). These series are

substituted back into the original equations. The major

mathematical difficulty aries in the nonlinear terms where one

obtains products of eignefunctions. However, these products

can also be further expressed in a series of identical

eigenfunctions;

L J(F- , F) c F

where cL /27J JJ F J(F , F) dx dy.

The quantities c' are referred to as interaction coefficients

which are calculated in Appendix II.

Likewise for the beta term:

LQ F; /ix= x b.. F.

where b = L/2t F F - /FF )x dx dy.

With the above definitions, the general system of equations

are then given by (2.4). The equations can be further

simplified by eliminating wibetween the two 9Oequations. The

system of equations becomes:
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(c+ 1/a.) = c C(1 + c(a -L)). +

((a -a )c - 1) +' + , (t -G) + 1 (e-*)I/a.+

G; /a b . e + h/a Gi-G;) + k - S- (k + 2k')O,

+ /a - k(e;-G )

pt * k

The actual form of the eigenfunctions depends upon the

geometry of the model and the boundary conditions. If there

is a boundary, we require that there be no flow across the

boundary (no flow through the walls) or, defining s as the

boundary,

~F.j /;s 0 at boundary.

We also require that there be no net torque or momentum drag

on the boundary,

J F.; /a s ds = 0 along boundary.

Ideally, one should choose a spherical domain for the model,

but we shall approximate the earth's sphericity using the

beta-plane approximation and choose as our domain a periodic

channel whose north and south walls are separated by a

distance -XL or 'n non-dimensionally. The eastward coordinate

will be in the x-direction and the northward coordinate in the
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y-direction. The eigenfunctions for such a rectangular

geometry are the simple two- dimensional harmonic functions.

The boundary conditions of no flow through the walls and

no net torque along the wall determine which of the complete

set of harmonic eigenfunctions can be used. What has yet to

be determined is the level of truncation.

In order to test the hypothesis, a sufficient number of

degrees of freedom must be retained so that the planetary and

synoptic-scale waves are represented and can interact directly

with each other. These minimum requirements will be met if

the model is truncated at two waves in both the meridional

direction (y) and the latitudinal direction (x). The

relationship between the meridional and latitudinal scales

will be determined by the parameter n, whose scaling is

discussed in Chapter 3. The eigenfunctions which will be

retained are given by (2.5).

Zonally inhomogeneous topographic forcing will be applied

only in the largest possible scale (F ), as discussed in

Chapter 2, while all other forms of zonally inhomogeneous

forcing, such as heat sources and sinks, will not be

considered. Driving wil be accomplished by fixing a zonally

homogeneous radiative equilibrium temperature profile from the

south to north wall.
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Programming the Model

The following is the basic FORTRAN program for the model

used in this study:
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C

C Set parameters

C

DELT=. 135

FK= .04

FK1=.005

BETA=. 22

TOP2=. 15

H=. 045

SIG=. 15

TlF=. 12

RN=1.22

(time step)

(surface friction)

(internal friction; between layers)

(beta parameter)

(half the topographic parameter)

(heat transfer coefficient)

(static stability)

(equator to pole radiative equilibrium temperature)

("zonal" wavenumber)

C Interaction coefficients

C

Cl=-8.*(2.**.5)*RN/(3.*3.141592654)

C2=CI*4./5.

C3=Cl*2.

C4=C2*2.

C5=C4*2. -pt .. ... I

C6=RN*3. /2. wre osre- 4 r 4

C 3: aA caces ~TI CO TIC 40

C Eigenvalues

C

El=l./(RN*RN+l.)
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E2=1./(RN*RN+4.)

E3=1./(4.*RN*RN+1.)

E4=1./(4.*RN*RN+4.)

E5=-RN*RN

E6=3.*E5+3.

E7=E5-3.

E8=-E5-3.

E9=3.*E5

E10=4.*E5

Ell=ElO-3.

E12=SIG*E5

E13=SIG*E6

E14=SIG*E7

E15=SIG*E8

E16=SIG*E9

E17=SIG*ElO

El8=IG*El

C

C Topography, frictional, and SIG combinations that occur

frequently

C in equations and can therefore be preset to save computing

time

C

TOS2=SIG*TOP2

TOS7=SIG*TOP7

Fl=SIG* (FK+2. *FKI)
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F2=SIG*FK

SIGO=1./(SIG+1.)

SIGI=1./(SIG+El)

SIG2=1./(SIG+E2)

SIG3=1./(SIG+E3)

SIG4=1./(SIG+E4)

RO=EI*C6

Rl=E2*C6

R2=3.*SIG+1.

R3=3.*SIG-1.

C

C Time stepping (Lorenz N-cycle scheme where N=4)

C Y(I) contains variables

C

DDELT=DELT*4.

RD=1./DELT

RDD=l./DDELT

DO 30 K=1,ISTEP

WRITE(9,200)Kl,(Y(I),I=1,20)

200 FORMAT(lX,I7,lX,10(F7.4,1X),/,9X,10(F7.4,1X)/)

Al=0.

Bl=RD

DO 35 J=1,4

C

C SYSTM subroutine contains model eqautions
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C

CALL SYSTM

DO 36 I=IL,IM

Z(I)=Al*Z(I)

Z(I+10)=Al*Z(I+10)

Z(I)=(Z(I)+F(I))/B1

Z(I+10)=(Z(I+10)+F(I+10))/B1

Y(I)=Y(I)+2(I)

36 Y(I+10)=Y(I+10)+Z(I+10)

Bl=B1-RDD

35 Al=Al-RDD

30 CONTINUE

END

**

SUBROUTINE SYSTM

Sl=Y(1) = 9,

S2=Y(2) = 4'1

S3=Y(3) = '3

S4=Y(4) = 41tt

S5=Y(5) =

S6=Y(6) =

S7=Y(7) = .'

S8=Y(8) =

S9=Y(9) =

S1O=Y(1o) = ,

Tl=Y(11) =
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T2=Y(12) =

T3=Y(13) = 63

T4=Y(14) =G

T5=Y(15) =

T6=Y(16)

T7=Y(17) =G

TB=Y(18) =e

T9=Y(19) =e

TlO=Y(20) =

C

C Model Wave 1

C

B=BETA*El*RN

F(1)=Ci*TOP2*(T3-S3)-FK*(Si-Ti)

F(2)=-El*Cl*E5*(Sl*S3+Tl*T3)+B*S3-FK*(S2-T2)

F(3)=El*Cl*(E5*(Sl*S2+Tl*T2)+TOP2*(Si-Tl))-B*S2-FK*(S3-T3)

F(11)=Cl*(T2*S3-S2*T3+TOS2*(S3-T3))+H*(TF(1)-Tl)+F2*Sl-Fl*T1

F(l1)=F(ll)*SIGO

F(12)=(El*(-Cl*(T1*S3*(Ei2+1.)+Si*T3*(E12-1.))+H*(TF(2)-T2))+S

IIG*B*T3+F2*S2-Fi*T2)*SIG1

F(13)=(El*(Cl*(Tl*S2*(E12+1.)+Sl*T2*(E12-1.)+TOS2*(T1-S1))+H*T

1TF(3)-T3))-B*SIG*T2+F2*S3-Fl*T3)*SIG1

IF(MM.EQ.1) GO TO 100

C

C Mode 2 Wave 1

C
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B=BETA*RN*E2

F(2)=F(2)-EI*C4*E5*(S4*S6+T4*T6)

F(3)=F(3)+El*C4*E5*(S4*S5+T4*T5)

F(4)=.25*C4*(3.*(S3*S5+T3*T5-S2*S6-T2*T6)+TOP2*(T6-S6))-

1FK*(S4-T4)

F(5)=E2*(C4*ES*(S3*S4+T3*T4)-C2*E7*(SI*S6+Tl*T6))+B*S6-FK*(S5-

1T5)

F(6)=E2*(C2*E7*(Sl*S5+TI*T5)-C4*(EB*(S2*S4+T2*T4)+TOP2*(T4-S4)

1))-B*S5-FK*(S6-T6)

F(11)=F(11)+C2*(T5*S6-S5*T6)*SIGO

F(12)=F(12)-El*C4*(T4*S6*(El2+1.)+S4*T6*(EI2-1.))*SIGI

F(13)=F(13)+El*C4*(T4*S5*(El2+1.)+S4*T5*(EI2-1.))*SIG1

F(14)=(.25*(C4*(R2*(S3*T5-S2*T6)+R3*(T3*S5-T2*S6)+TOS2*(S6-T6

1))+H*(TF(4)-T4))+F2*S4-Fl*T4)/(SIG+.25)

F(15)=(E2*(C4*(T3*S4*(EI5+1.)+S3*T4*(El5-1.))-C2*(Tl*S6*(EI4+1

1.)+SI*T6*(El4-1.))+H*(TF(5)-T5))+B*SIG*T6+F2*S5-Fl*T5)*SIG2

F(16)=(E2*(C2*(Tl*S5*(EI4+1.)+Sl*T5*(El4-1.))-C4*(T2*S4*(El5+.

1.)+S2*T4*(El5-1.)+TOS2*(S4-T4))+H*(TF(6)-T6))-B*SIG*T5+F2*S6-

Fl*

2T6)*SIG2

IF(MM.EQ.2) GO TO 100

c

C Mode 1 Wave 2
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B=BETA*E3*2.*RN

F(1)=F(I)+C3*TOP7*(TS-S8)

F(2)=F(2)+RO*(E6*(S5*SB+T5*TB-S6*S7-T6*T7)-TOP7*(S6-T6))

F(3)=F(3)-RO*(E6*(S5*S7+T5*T7+S6*SB+T6*TB)+TOP7*(S5-T5))

F(5)=F(5)+Rl*(E9*(S3*S7+T3*T7-S2*SB-T2*TB)-TOP2*(TS-SB)+TO

lP7*(S3-T3))

F(6)=F(6)+Rl*(E9*(S3*SB+T3*TB+S2*S7+T2*T7)+TOP2*(T7-S7)+TO

1P7 * (S2-T2) )

F(7)=E3*(C6*(3.*(S2*S6+T2*T6+S3*S5+T3*T5)-TOP2*(T6-S6))-C3*El

10*(Sl*SB+Tl*TB))+B*SB-FK*(S7-T7)

F(8)=E3*(C6*(3.*(S3*S6+T3*T6-S2*S5-T2*T5)+TOP2*(T5-S5))+C3*(El

10*(SI*S7+Tl*T7)+TOP7*(Sl-Tl)))-B*S7-FK*(SB-TB)

F(11)=F(11)+C3*(SB*T7-S7*TB+TOS7*(SB-TB))*SIGO

F(12)=F(12)+RO*((EI3+1.)*(T5*SB-T6*S7)+(El3-1.)*(S5*TB-S6*T7)-

ITOS7*(T6-S6))*SIG1

F(13)=F(13)-RO*((EI3+1.)*(T5*S7+T6*SB)+(EI3-1.)*(S5*T7+S6*TB)-

1TOS7*(T5-S5))*SIG1

F(15)=F(15)+Rl*((EI6+1.)*(T3*S7-T2*SB)+(El6-1.)*(S3*T7-S2*TB)-

1TOS2*(S8-TB)+TOS7*(T3-S3))*SIG2

F(16)=F(16)+Rl*((El6+1.)*(T2*S7+T3*SB)+(El6-1.)*(S2*T7+S3*TB)+

ITOS2*(S7-T7)+TOS7*(T2-S2))*SIG2

F(17)=(E3*(C6*(R2*(S3*T5+S2*T6)+R3*(T3*S5+T2*S6)-TOS2*(S6-T6))

1-C3*(TI*SB*(El7+1.)+Sl*TB*(El7-1.))+H*(TF(7)-T7))+B*SIG*TB+F2

*S7-F

21*T7)*SIG3
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F(18)=(E3*(C6*(R2*(S3*T6-S2*T5)+R3*(T3*S6-T2*S5)+TOS2*(S5-T5))

I+C3*(Tl*S7*(El7+1.)+Sl*T7*(EI7-1.)+TOS7*(TI-Sl))+H*(TF(B)-TB)

)-B

2*SIG*T7+F2*SB-Fl*TB)*SIG3

IF(MM.EQ.3) GO TO 100

c

C Mode 2 Wave 2

c

B=BETA*E4*RN*2.

F(4)=F(4)+.25*C5*(3.*(SB*S9+TB*T9-S7*SIO-T7*TIO)+TOP7*(TIO-S1)

1))

F(7)=F(7)-C5*E3*ElO*(S4*SlO+T4*TlO)

F(B)=F(B)+C5*E3*EIO*(S4*S9+T4*T9)

F(9)=-E4*Ell*(C4*(Sl*SIO+Tl*TlO)+C5*(S4*SB+T4*TB))+B*SlO-

IFK*(S9-T9)

F(10)=E4*(C4*(Sl*S9+TI*T9)*Ell+(TOP7*(S4-T4)+Ell*(S4*S7+T4*T7)

1)*C5)-B*S9-FK*(SIO-TlO)

F(11)=F(11)+C4*(SlO*T9-S9*TlO)*SIGO

F(14)=F(14)+.25*(C5*(R2*(SB*T9-S7*TlO)+R3*(TB*S9-T7*SIO)+TOS7*

l(SlO-TlO)))/(SIG+.25)

F(17)=F(17)-E3*C5*((EI7+1.)*T4*SlO+(El7-1.)*S4*TIO)*SIG3

F(18)=F(18)+E3*C5*((El7+1.)*T4*S9+(El7-1.)*S4*T9)*SIG3

F(19)=(-E4*(C4*((ElB+1.)*TI*SlO+(El8-1.)*Sl*TIO)+C5*((ElB+I.)*

IT4
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1*S8+(El8-1.)*S4*T8)-H*(TF(9)-T9))+B*SIG*TlO+F2*S9-Fl*T9)*SIG4

F(20)=(E4*(C4*((E18+1.)*Tl*S9+(E18-1.)*Sl*T9)+C5*((E18+1.)*T4*

1S7

1+(El8-1.)*S4*T7+TOS7*(T4-S4))+H*(TF(1)-TIO))-B*SIG*T9+F2*SIO

2Fl*TIO)*SIG4

100 RETURN

END

Have fun and kiss many guinea pigs. Especially cute

black ones like Gyannea piggy.
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CALCULATION OF THE INTERACTION COEFFICIENTS

The interaction coefficient cj kis defined as

1/27 j F F./ x ' /aY - Fi / y

where ci- =-cj =cv. etc. If we first consider wave-wave

interactions only, F,, F-, and F take the following possible

forms:

[cosdx -
F-= 2 sinmy [sindx]

(cosex]
F.= 2 sinay [sinex]

[cosfx]
F = 2 sinby [sinfx]

where m, a, b = 1 or 2 and d, e, f = n or 2n.-

possible Jacobians

[cosex] [cosfx]
J( 2 sinay [sinex], 2 sinby (sinfx])

which can be expanded into the following forms:

This gives four

4 F / )x)
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M 1 J( 2 sinay cosex,

4(-be sinay cosby

sinfx)

-r2 J( 2 sinay cosex,

4(-be sinay cosby

cosfx)

113 J( 2 sinay sinex,

4( be sinay cosby

sinfx)

44 J( 2 sinay sinex,

4( be sinay cosby

cosfx)

2 sinby cosfx)

sinex cosfx + af cosay sinby cosex

2 sinby sinfx) =

sinex sinfx - af cosay sinby cosex

2 sinby cosfx) =

cosex cosfx + af cosay sinby sinex

2 sinby sinfx) =

cosex sinfx - af cosay sinby sinex

The interaction coefficients are given by c i =

cosdx
1/27C JJ8 (sinmy sindx) %

0 a

cosex sinfx -sinex cosfx
-cosex cosfx -sinex sinfx

(af cosay sinby sinex sinfx + be sinay cosby cosex cosfx)
-sinex cosfx cosex sinfx

Only three possible integrals over x are non zero in the

limit from 0 to 2 C and likewise for integrals over y from 0

tol-when m, a, b are 1 or 2 and d, e, f are n or 2n.
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1) cosnx cosnx cos2nx dx = t/2
e 7t

cosy cosy cos2y dy = 7X/4
1.7 0

2) fcosnx sinnx cos2nx dx =7/2

0 _x

I cosy siny sin2y dy = -/4

3) sinnx sinnx cos2nx dx =-7t/2

0 -lc

f siny siny cos2y dy =- 7/4
0

We consider only those combinations which are non zero

over the x integration first. From the #1 Jacobian, we have

cosdxI 2)2 sinmy sindx J(2 sinay cosex, 2 sinby cosfx)

which gives:

cosdx
#1 8/27t [af sinmy cosay sinby (sindx cosex sinfx)-

cosdx
be sinmy sinay cosby (sindx sinex cosfx)]

where d, e, f are determined from the eigenfunctions F., F-,

F9. (Care must be taken to remember that the Jacobian takes

derivatives of the eigenfunctions F. , F. , F when seeking

non-zero combinations of i, j, k). Since all permutations

change only the sign of the interaction coefficient and

non-zero combinations are such that two of d, e, f are equal

while the remaining constant is double, we will choose d=e=n

and f=2n. Then there is no combination of eigenfunctions
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whose x-dependent part for i, j, k corresponds to

cos-cos-cos2, respectively, that leads to non-zero

interactions, but sin-cos-cos2 combinations do. They are:

3 5 7 3 5 9 6 2 7 6 2 9.

In Jacobian $2, we have

cosdx

f(,/2k)2 sinmy sindx J( 2 sinay cosex, 2 sinby sinfx)

which gives

cosdx
M2 8/2x [r)(-be sinmy sinay cosby (sindx sinex sinfx)-

cosdx
af sinmy cosay sinby (sindx cosex cosfx)].

Cos-cos-sin2 gives:

2 5 8 and 2 5 10

Sin-cos-sin2 gives no non-zero combinations.

In Jacobian #3, we have:

cosdx
(/2r)2 sinmy sindx J( 2 sinay sinex, 2 sinby cosfx)

which gives
27r

cosdx

:03 8/2-9JJ (be sinmy sinay cosby (sindx cosex cosfx) +

cosdx
af sinmy cosay sinby (sindx sinex sinfx)].

Cos-sin-cos2 gives:
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2 6 7 2 6 9 5 3 7 5 3 9

Sin-sin-cos2 gives no non-zero combinations.

In Jacobian :04, we have:

cosdx
1L/2)2 sinmy sindx J( 2 sinay sinex, 2 si-nby sinfx)

which gives

-M 72 cosdx

-4 8/27t J [be sinmy sinay cosby (sindx cosex sinfx)-

00
cosdx

af sinmy cosay sinby (sindx sinex cosfx)J

Cos-sin-sin2 gives no non-zero combinations. Sin-sin-sin2

gives:

3 6 8 3 6 10.

The final set of non-zero i, j, k for the 4 possible

interaction integrals are:

# 1) 3 5 7 3 5 9 6 2 7 6 2 9

4 2) 2 5 8 2 5 10

# 3) 2 6 7 2 6 9 5 3 7 5 3 9

0 4) 3 6 8 3 6 10

We can then use the corresponding integrals to calculate the

interactions. For all cases, integrating over x we obtain

(where e=n and f=2n)
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i 1 8/27C jaf sinmy cosay sinby (rc/2)
0

- be sinmy sinay cosby (-7/2)] dy

It 2 -8/27j (be sinmy sinay cosby (7/2)

+ af sinmy cosay sinby ( /2)) dy

i 3 8/27j ) [be sinmy sinay cosby (7t/2)
0

+ af sinmy cosay sinby ( 7r/2)] dy

if 4 8/27c f[be sinmy sinay cosby (7T/2)

- af sinmy cosay sinby (-T/2)] dy.

Now we integrate over y from 0 toltfor the values of m,

a, b given by the sets of i, j, k that survive the

x-integration done above. This eliminates several other

combinations. Since m, a, b comes in only sin-sin-cos or

sin-cos-sin only i, j, k that give m, a, b of the form 1 1 2

1 2 1 and 2 1 1 will be non-zero.
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l1 3 5 7 3 5 9 6 2 7 6 2 9 gives

1 2 1 1 2 2 2 1 1 2 1 2

thus only 3 5 7 and 6 2 7 survive.

*2 2 5 8 2 5 10 gives

1 2 1 1 2 2

thus only 2 5 8 survives.

#3 2 6 7 2 6 9 5 3 7 5 3 9 gives

1 2 1 1 2 2 2 1 1 2 1 2

thus only 2 6 7 and 5 3 7 survive.

J4 3 6 8 3 6 10 gives 1 2 1 1 2 2

thus only 3 6 8 survives.

The integration over y gives:

S1) 3 5 7 = 8/27E [4n (- r/4) (It/2) - n ( 7E/4) (-7r/2)1 =

-3n/2

6 2

# 2) 2 5

3n/2

#3) 2 6

-3n/2

7 = 8/2 71 [2n ( 7t/4) ( 7T/2) - n ( 7C/4) (-X/2)] = 3n/2

8 = 8/2 7E [-n (7E/4) ( 7/2) - 4n (- 7/4) (7 /2)] =

7 = 8/2 71 [n (7Z/4) ( X/2) + 4n (- -/4) ( f/2)I =

5 3 7 = 8/2 I [n ( TC/4) ( 7r/2)

#4) 3 6 8 = 8/27 [n ( 7C/4) ( 7c/2)

-3n/2

Thus 2 5 8 = - 2 6 7 = - 3 5 7 = -

# 3 simply duplicates #1 ).

2n ( 7C/4) (7C/2)1 = 3n/2

4n (- tC/4) (- 7/2)1 =

3 6 8 = 3n/2. (Note that

The interaction coefficients that involve zonal flows are

considerably simpler since the integral only involves double
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products in the x-dependent components. The general form for

these integrals are:

cosex cosfx

1/2-K ]J cosmy J( 2 sinay sinex, 2 sinby sinfx).
0 0

(All integrals with two zonal components are zero since the

Jacobian involves x derivatives). The expanded form of the

integral is

J2 4/27L fcosmy X
0 6

cosex sinfx -sinex cosfx
-cosex cosfx -sinex sinfx

(af cosay sinby sinex sinfx +be sinay cosby cosex cosfx)
-sinex cosfx cosex sinfy

Non-zero values in the x-integration occur only for the

squared functions

f sinx sinx dx = 7C and cosx cosx dx = 7, which states

that e must equal

f. This eliminates two of the four possible integrals above.

The two remaining integrals are then identical except for

sign. The j, k eigenfunctions which lead to the sin sin

cos cos in the above integral have sin, cos x-structure,

respectively. Combinations i, j, k which satisfy this

requirement are:
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1 2 3, 1 5 6, 1 7 8, 1 9 10, 4 2 3,

4 5 6, 4 7 8, 4 9 10 where a=b

and

1 2 6, 1 5 3, 1 7 10, 1 9 8, 4 2 6,

4 5 3, 4 7 10, 4 9 8 where a=b.

Performing the x-integration gives:

2F2 /7r e(a cosmy cosay sinby + b cosmy sinay cosby) dy

Non-zero combinations of the cos-cos-sin integrals where a

equals b are;

£cosy cosy siny dy = 2/3

fcosy cos2y sin2y dy = 4/15

Therefore 4 2 3, 4 5 6, 4 7 8, and 4 9 10 are zero.

Non-zero combinations of the triple integral for a not equal

to b are:

fcos2y cosy sin2y dy = 4/15 (same as above)

fcos2y siny cos2y dy = 14/15.
C

The final set of non-zero zonal-wave interaction

coefficients are:

1 2 3 = -8F2 n/37r 4 2 6 = -64F7n/157

1 5 6 = -322 n/157 4 5 3 = -6442~ n/157C

1 7 8 = -16,' n/31t 4 7 10 = -12842n/157t

1 9 10 = -644n/157- 4 9 8 = -128fT'n/157

The final set of wave-wave interaction coefficients are:
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2 5 8 = 3n/2

2 6 7 = -3n/2

3 5 7 = -3n/2

3 6 8 = -3n/2



APPENDIX III

OBTAINING THE MODE 11 EQUILIBRIA

The Mode 11 equations given by (4.1) of part

follows:

O=ci ( .G 3 ) )-k( '+I - G, )

O=cn ( 4,'+j + Qe3)+ n *, -k (n'+1)( + - )

O=-cn2 (M j + et )- nM -k (n' +1)( 4 -

0 ~ ~ ~ ~ ~ c = c, -c, )t- IL(o,-eO=c( 9'-% - MG )+c a-fl ( W' - G )+h( -,)

+k g+ -(k+2k' ),c,

O=-c1 (1- (n ) 3 -(1+ u nz ) tG 1+ /S nc- -h G2

+k (n +1) -(n +1) c-(k+2k')e

O=c[ (1- G n* ) C-,T -(1+ a n' 4V ]- n g -h G,

+k G,(n +1), -(n2+1) G,(k+2k'), +cfG(G,-

where c=-8(2)2 n/37.

I are as

(a3. 1)

(a3. 2)

(a3.3)

(a3. 4)

(a3. 5)

(a3.6)

If the values of the variables and G, are prescribed

or taken as known constants, the system defined by (a3.2),

(a3.3), (a3.5), and (a3.6) constitute a linear system in the

wave variables , ' ,O, and e . Using (a3.1) to

eliminate the term ( M - G, ), we obtain a homogeneous system

in the wave variables which is given by the following:
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-KT + A + + K

-A Y - T w3 -

L W, + CG-3

-C LPW + ST
Z *

G + Be G =0

B, + TG =0

-MG + DG3 =0

3

where

A=n 2 cy" + An C=-c(l- %n') T=k((n1-l)+(c Z /k

B=n c D=c (1+ cn7 )9 + an PM+G(c) /k

K=k (n2+1) M=h+ (n 2+1)(k+2k')

L=G k(n +1) R=k/(c?1 ).

In order to have a solution with nonzero wave variables (a

non-trivial solution), the determinant of the coefficients

must then be zero, which places a condition on the variables

L, and , .

Setting the determinant of the coefficients to zero gives

a fourth degree equation in Q,given by the following:

z2 '4 2 a
B C (, + (BCMT + C KT + B LS + BCKP - 2ABCD) 9,

+ (ACMT + BDLT + 2CDKT + ABMS + BDKS + ABLP + ACKP) 0,

+ (KLST - KMST + KMPT - KLPT + ADLT + D KT + ADKS

+ A MP + A D)

or

Al + Bl + C1G, + D1 =0

which has an analytic solution. By solving the quartic

equation, we can get GI = f ). Thus to obtain all the

equilibria, we select a value of ', and solve for the four

possible roots G . The only useful roots are G, both
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positive and real. For each of these values of e, , we then

compute the corresponding wave variables by using (a3.1) with

any three of (a3.2), (a3.3), (a3.5), and (a3.6). Using

(a3.1), (a3.2), (a3.3), and (a3.5), we obtain

I I~

'4 =-X(B CG + BMT, + CKTG,- ABDG + AMT + DKT)/V

=-X(B CK G + ABLe, + ACKG, + KMT - KLT + A M)/V

= X(ABCG - BLT, - CKT, -ALT - DKT - A D)/V

9=x + G,

where V = (BQ + A)(BL Qk + CKE3,+ AM + DK) and X =R( , -,).

We then have to satisfy

c( M -- G) + h( ) - 2k'sG g(MW)

such that g( 4-,) becomes zero. These values of WV are found

numerically by using the binomial chop.

We select a value of 9, and an increment Nt and compare

g( ' ) to g('+,-k6M) to see if the value of g has changed sign

(crossed zero). We then converge on the equilibrium value of

,that makes g identically zero by halving the interval

64- and performing a similar check on g, shown

symbolically below:
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We can then obtain all the equilibria provided we choose

6b, small enough and cover a sufficiently large range of values

of , .



APPENDIX IV

STABILITY CALCULATION

The stability of the various equilibria are calculated by

the standard process of introducing a perturbation about the

equilibrium state and solving an eigenvalue problem for the

growth rate of this perturbation. The first step in such an

analysis involves writing the dependent variables W-; and 1. as

', = c';+ 4', and Q; ;+G; where M'.and G; are the

equilibrium values. We substitute this form of the dependent

variables into the system of equations and linearize about the

equilibrium values 4le; and G, , e.g., we neglect terms

involving products of perturbations,'r;. We then look for

solutions of the linearized system of equations by assuming

the perturbations have the form 4' = Real +-;e where both

'+and I may be complex.

If we do this calculation for our model equations, we

obtain a system of 20 homogeneous simultaneous equations with

20 unknowns, ±4 and G, , where 7= 1,2,..., 10. The only

nontrivial solution ( 41 , G # 0) occurs when the determinant

of the coefficients are zero, which gives us a condition on

the values of 'S . Since there are 20 independent equations,

there will be, in general, 20 different values of

Y (eigenvalues) which are roots of the system. Fortunately,
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since the equilibria possess only Mode 11 structure, the

perturbation matrix obtained from the 20 linearized model

equations breaks down into three submatices as discussed in

the text. The solution of the eigenvalue and eigenvector

problem can then be obtained by solving each of the three

submatrices independently. The actual solutions were obtained

by using the EIGRF routines of the Goddard NASA Space Flight

Institute in Maryland. The three perturbation matrices are as

follows:

AAcvE it MoDE 2. + Me-CE 12.

C;, C,
Cc

1MAcPE 22-
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MOOc- I t

C, ( I + 3 IC 14- G.Ll4i )

0 - Cl c (i4JA~ +0~~~jfi.-(4+))

O43-1 C, Ajo

C131

OL34

Gs -S

c 53 j

Ck

CX35  C

1<i ItP /c+

ctil

-q~ tL

cILM

C13 (

cxf6

.0

k

IC,

-C, W9~4 ctj~.) /0'.+,

A/C g i(T+I)
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6 1 ce = 0c.03 / AVl+ 1

b6 s = Co. ( 1+ 3,T.) 43 /( 1+e(l)
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3C49

-k
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as= cs .23)i)4 /(S.(t/+.)4+I)
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APPENDIX V

THE BREAKDOWN OF TRANSPORTS BY STABILITY THEORY

The differences between the transports obtained

diagnostically from the full model and those obtained

theoretically from the stability analysis appear to be a

consequence of the finite amplitude Mode 22 wave. We were

able to ascertain this result by conducting a few simple

experiments.

We integrated the full model as usual (initializing the

Mode 21 and Mode 12 variables with the real part of the most

unstable eigenmode), except that we held the time mean Mode 11

variables fixed. In this manner we hoped to investigate the

series of events which led to the breakdown of the linear

theory, eliminating the effects of the time variability of the

large-scale terms themselves. After certain intervals of time

had elapsed, we calculated the budgets of this "fixed" model

diagnostically for comparison with those predicted

theoretically by the linear analysis.

As expected, the agreements were at first exact since we

were still in the linear domain (the Mode 21 and Mode 12

variables were still small). The agreements continued to be

exact until the Mode 22 wave grew (suddenly) to finite
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amplitude. After this time, the differences between the

budgets calculated from the "fixed" model and that predicted

by linear theory had the same qualitative characteristics as

the differences between the full model regime budgets and that

predicted by linear theory. Though the breakdown of the

prediction of the ad2l and ad22 components in the "fixed"

model by the linear theory appears to be associated with the

sudden amplification of the Mode 22 wave, we do not know

whether it is a result of nonlinear processes or secondary

instabilities, however, we are confident that the appearance

of the finite amplitude Mode 22 wave is a major factor in the

descrepancies between the full model ad2l and ad22 observed

budgets and that predicted by stability theory.


