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Abstract

The dynamics of steady and unsteady channel flow over large obstacles

is studied analytically and numerically in an attempt to determine the

applicability of classical hydraulic concepts to such flows. The study is

motivated by a need to understand the influence of deep ocean straits and

sills on the abyssal circulation.

Three types of channel flow are considered: nonrotating one

dimensional (Chapter 2); semigeostrophic, constant potential vorticity

(Chapter 3); and dispersive, zero potential vorticity (Chapter 4). In

each case the discussion centers around the time-dependent adjustment

that occurs as a result of sudden obtrusion of an obstacle into a uniform

initial flow or the oscillatory upstream forcing of a steady flow over

topography.

For nondispersive (nonrotating or semigeostrophic) flow, nonlinear

adjustment to obstacle obtrusion is examined using a characteristic

formulation and numerical results obtained from a Lax-Wendroff scheme.
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The adjustment process and asymptotic state are found to depend upon the

height of the obstacle b0  in relation to a critical height bc and a

blocking height bb. For b0 < bc < bb, isolated packets of

nondispersive (long gravity or Kelvin) waves are generated which propagate

away from the obstacle, leaving the far field unaffected. For

bc < b0 < bb, a bore is generated which moves upstream and partially

blocks the flow. In the semigeostrophic case, the potential vorticity of

the flow is changed by the bore at a rate proportional to the differential

rate of energy dissipation along the line of breakage. For bb < b0
the flow is completely blocked.

Dispersive results in the parameter range b0 < bc are obtained from

a linear model of the adjustment that results from obstacle obtrusion into

a uniform, rotating-channel flow. The results depend on the initial Froude

number Fd (based on the Kelvin wave speed). The dispersive modes set up

a decaying response about the obstacle if Fd < 1 and (possibly resonant)

lee waves if Fd > 1. However, the far-field upstream response is found to

depend on the behavior of the nondispersive Kelvin modes and is therefore

nil.

Nonlinear steady solutions to nondispersive flow are obtained through

direct integration of the equations of motion. The characteristic

formulation is used to evaluate the stability of various steady solutions

with respect to small disturbances. Of the four types of steady solution,

the one in which hydraulic control occurs is found to be the most stable.

This is verified by numerical experiments in which the steady, controlled

flow is perturbed by disturbances generated upstream. If the topography is
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complicated (contains more than sill, say), then controlled flows may

become destabilized and oscillations may be excited near the topography.

The transmission across the obstacle of energy associated with

upstrean-forced oscillations is studied using a reflection theory for small

amplitude waves. The theory assumes quasi-steady flow over the obstacle

and is accurate for waves long compared to the obstacle. For nonrotating

flow, the reflection coefficients are bounded below by a value of 1/3.

For semigeostrophic flow, however, the reflection coefficient can be

arbitrarily small for large values of potential vorticity. This is

explained as a result of the boundary-layer character of the

semigeostrophic flow.
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1. Introduction

The world's ocean is naturally divided into a set of basins which are

interconnected by submarine passages, many of them narrow and containing

shallow sills. These passages may play an important dynamical role in the

abyssal circulation by exercising hydraulic control in the same way that a

dam controls the upstream level of a reservoir. This is suggested by the

sharp drop in isotherm level that is often observed downstream of a sill

and which resembles the surface configuration of water flowing over a dam

(see Figure 1.1, for example).

The concept of hydraulic control has a basis in classical (and

primarily one-dimensional) problems in free surface and high speed flow.

A discussion of the hydraulics of open-channel flow can be found in the

textbook of Chow (1959). 'Control' is said to occur when an obstacle or

contraction influences conditions in the far field. In the ocean, the

'far field' refers to the basins which lie upstream and downstream of the

dividing passage. To understand the hydraulics of deep strait and sill

flow, the classical hydraulics theories must be extended to include

complications such as rotation, stratification, friction, and time

dependence which influence the abyssal circulation. Such extensions are

difficult, however, since control is a nonlinear phenomenon and models of

ocean currents which, say, linearize about a mean flow or bottom

topography are inherently unsatisfactory.

A great deal of work has been devoted to the study of geophysical

flows over large obstacles. The subject arises in mountain meteorology

and a review of the associated literature has been given by Smith (1979).



The subject of selective withdrawal from reservoirs is also relevant, and

much of the associated literature has been reviewed by Fandry, et al.

(1977).

However, the problem of deep strait and sill flow presents a feature

unaccounted for in most prior research. In particular, rotation occurs

in combination with side wall effects. The first to investigate this

complication were Whitehead, et al. (1974) who found nonlinear solutions

for a channel flow with zero potential vorticity. A criterion for

hydraulic control of the flow was put forth on the basis of a minimization

principle. Gill (1977) later extended this theory to include finite (but

constant) potential vorticity flows and clarified the use of the

minimization principle. At present, it is possible to describe the

hydraulics of a continuous, steady stream with constant potential

vorticity as it passes through a slowly varying channel. The conditions

for the stability of such a stream are unknown, but the problem is

presently under investigation.+

One aspect of rotating hydraulics (and hydraulics in general) which

has received little attention is time dependence. This is odd, since

time dependence is implicit in the definition of hydraulic control. In

classical hydraulics 'control' implies a permanent response upstream to a

small change in the geometry of the conduit. The response must, of

course, be set up by some sort of time-dependent adjustment. This idea

was established by Long (1954), who towed an obstacle through a tank of

Griffiths, Killworth and Stern (1982), submitted to Geophysical and

Astrophysical Fluid Dynamics.



fluid and measured the response set up ahead of the obstacle. For

obstacle heights less than some minimum height, the fluid away from the

obstacle was disturbed temporarily by the passage of long gravity waves

generated during the initial acceleration of the obstacle. After passage

of these waves the fluid returned to its initial state. For obstacle

heights greater than the minimum height, however, the flow away from the

obstacle was permanently altered by the generation of a bore which moved

ahead of the obstacle, leaving behind an altered state.

Long's results indicate that the presence of the obstacle in a steady

flow is either (1) felt nowhere away from the obstacle; or (2) felt

everywhere away from the obstacle. We would like to know whether or not

such dramatic differences are typical of the way in which deep strait and

sills influence flow in the upstream basin. We would also like to know

how such flows adjust to sudden changes in topography, whether or not

bores are important and, if so, how they alter the initial flow. Finally,

we would like to know what the downstream response is to sudden changes

in geometry. (Historically, it is the upstream response that has been

emphasized.)

Although time dependence is implicit in the classical ideas about

control of steady flows, it is not clear whether these ideas hold if the

basic flow is unsteady. How stable, for example, is the hydraulically

controlled state to time-dependent forcing and how are the forced waves

affected by the strait or sill? How are the unsteady flow fields upstream

and downstream of an isolated obstacle influenced by the height of the

obstacle? These questions are relevant to deep strait and sill flow, as



indicated in the deep current meter records from the Denmark Strait and

Jungfern Passage (Figure 1.2). Both of these deep passages serve as

conduits for the transfer of bottom water between basins, and it can be

seen that the velocity records are dominated by unsteady motions.

The purpose of this work is to explore the influence of time

dependence on the hydraulics of deep strait and sill flow. It is clear

that this subject is important to the understanding of the steady

hydraulics of these flows as well as the response to unsteady forcing.

Two types of problems will therefore be emphasized. The first involves

time-dependent adjustment of a deep current to isolated topography. The

second involves the subjection of a steady, hydraulically controlled flow

to periodic disturbances.

Chapter 2 is devoted to one-dimensional nonrotating flows. The

classical problem of hydraulic control by an obstacle is reviewed and a

characteristic formulation is introduced which allows for an

interpretation of time-dependent hydraulic affects and flow stability.

We next review, through a numerical experiment, the establishment of

steady solutions by time-dependent adjustment to an obstacle. Included

is a discussion of some previously unexplored aspects of the problem

involving the dependence of the solution on the initial data. The

remainder of Chapter 2 is devoted to oscillatory flows which are set up

by some type of unsteady upstream forcing. The applicability of the

ideas of steady hydraulics are explored using both the characteristic

formulation and the numerical model. The reverse problem -- that of wave

propagation in a controlled flow -- is also explored.
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Chapter 3 is devoted to the time-dependent hydraulics of

semigeostrophic flow in a channel. The discussion proceeds along the

same lines as Chapter 2 although the treatment of periodic flows is more

limited due to numerical difficulties. The constant potential vorticity

solutions of Gill (1977) in a channel with both width contractions and

bottom topography are introduced in the first section and some additional

remarks concerning this theory are made. A characteristic formulation of

the semigeostrophic problem is then introduced and this allows for the

same interpretations of unsteady hydraulic effects and stability which

were made earlier. Next, the problem of semigeostrophic adjustment to an

obstacle is treated numerically and we discuss some questions concerning

free surface shocks that are raised by the results. This is followed by

a treatment of the influence of the obstacle on Kelvin waves generated

upstream. The chapter ends with an example in which waves are excited as

a result of the interaction of a steady flow with unusual topography.

Chapter 3 establishes a clear connection between the properties of

semigeostrophic flows and the hydraulics of more classical flows. This

connection is due primarily to the fact that, as in the classical case, a

semigeostrophic flow supports only nondispersive waves. In Chapter 4 we

relax this restriction, and ask how the ideas of control and upstream

influence are altered when dispersive waves are present. The discussion

again centers around time-dependent adjustment of a channel flow to an

obstacle.



2. The Unsteady Hydraulics of Nonrotating Flow

2.1 Background and Governing Equations

In all that follows we make use of the fact that deep strait and sill

flow, like other large scale ocean currents, have depth scales several

orders of magnitude smaller than their horizontal scales, so that the

hydrostatic approximation can be made. Furthermore, we avoid the problem

of continuous stratification by assuming the flow to be confined to a deep

single layer of constant density p1 and that the lighter inactive fluid

above has constant density p2 . Under these conditions the inviscid flow

in the lower layer is described by the shallow-water equations (Pedlosky,

1979):

ut + uu + vuy - fv = -g'hy - gb

v t + y + vvy + fu -g'hy - gby

ht + (uh) + (vh) =0

where g' = g(p1 - p2 )/P 1  is a reduced gravity. Here, x and y are

east and north coordinates and u and v corresponding velocities. The

thickness of the lower layer is denoted by h and the elevation of the

bottom by b.

The flow will be confined to a channel aligned in the x-direction (see

Figure 3.1). The channel bottom will vary in the x-direction on a

horizontal scale L. The width of the channel will have horizontal scale

W while the depth and bottom elevation will have vertical scale D. Based

on these, we choose the horizontal velocity scales as U = (g'D) 1/2 and

V = UW/L. The former scaling implies that the advective terms in the

x-momentum equation are important and is consistent with the observed



scales of many deep strait and sill flows (see Lousdale (1969), for

example).

Dimensionless variables are now chosen as

x' = x/L, y' = y/W, t' =t(g'D)1/2/L,

u' = u/U = u/(gD)1/2, v' = v/V = vL/(g'D) 1/2W$

h = h/D, b' = b/D.

substituting these into the shallow-water equations and dropping primes, we

find the following dimensionless set of equations:

u t + uu x + vuy - Fv = -h X - b x (2.1.1a)

62(v + uv + vv y) + Fu = -hy - by (2.1.2a)

ht + (uh) + (vh)y = 0 (2.1.3a)

where

6 = W/L = (horizontal aspect ratio)

and

F = Wf/(g'D)1/2 (width scale/Rossby radius of deformation)

Solutions to (2.1.1a-2.1.3a) will be discussed according to the

following program:

Chapter 1: 6 << 1, F << 1, =0
ay

Chapter 2: 6 << 1, F = 0(1), b = 0

Chapter 3: 6 = 0(1), F = 0(1)

We start by considering the first parameter range, for which the flow

is one dimensional and nonrotating (see Figure 2.1). The governing

equations are
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db+ uu, + h = - b (2.1.1)

ht + (uh) = 0 . (2.1.2)

Equations (2.1.1) and (2.1.2) have been studied extensively in

connection with open-channel hydraulics (Chow, 1959) and shallow-water

waves (Stoker, 1957). Steady solutions can be found by direct integration

with respect to x, resulting in

2
2 + h + b = B = (flow energy/unit mass) (2.1.3)

uh = Q = (flow rate) , (2.1.4)

and these can be combined into a single equation for the fluid depth:

2
+ h + b = B. (2.1.5)

2h

A family of interface elevation curves are drawn in Figure 2.2 for

flow over an isolated obstacle. The flow rate Q is held constant while

the Bernoulli constant B is allowed to vary. It can be seen that two

distinct solutions exist for each large value of B and that each

maintains the same depth on either side of the obstacle. As B is

reduced, however, a critical value (B = 2.5) is reached at which the two

curves coalesce over the sill of the obstacle. Here it is not obvious

which branch is correct. After moving along the interface curve from Q
to , for example, it is not clear whether one should proceed to G or

G. Based on physical intuition we would likely choose 0 since this

branch resembles the commonly observed configuration of fluid flowing over

a dam or weir.



If B is further reduced the solutions no longer extend across the

entire obstacle. The energy of the flow has been reduced to the point

where the fluid is unable to surmount the sill. The solution for B = 2.5

contains the minimum energy necessary and is therefore 'controlled' in

the sense that a small increase in the sill height would necessitate a

time-dependent change in the upstream conditions for flow to continue.

Such upstream influence would not be necessary for the other continuous

solutions since they contain energy in excess of the required amount.

The steady solutions of Figure 2.2 also have distinguishing properties

in terms of wave propagation. The only small-amplitude waves allowed by

(2.1.1) and (2.1.2) are long gravity waves with speeds

= u * (h)1/ 2  (2.1.6)

At the coalescence point (labeled 0 in Figure 2.2) the Bernoulli constant

B has the minimum for all the profiles, T = 0. It follows from (2.1.3)

and (2.1.4) that the flow there is critical (x_ = 0). Using uchc to

denote the flow at the critical point, it also follows from (2.1.6) that

uc = hc1/2 , (2.1.7)

and from (2.1.4) that

Q = 3/2 , (2.1.8)

so that

X h 3/2 h1/ h12hc 3/2 1x=c -h 1/ 2 =b/ c _
- h h 3/2

It is further evident from the latter relation that the flow is

subcritical (x < 0) for h > hc and supercritical (x > 0) for



h < h. Along interface 0 - 0, for example, the flow is subcritical

between and . The solutions which lie above interface Q - -

are completely subcritical, while those lying below - - are

completely supercritical.

There exists a relation between the principle of upstream influence and

the presence of a critical point and this will be explored in section 2.3.

2.2 Weak Solutions

We would like to know how the steady solutions of the last section

undergo time-dependent adjustment to some sort of disturbance. The

disturbance might take the form of a sudden change in the upstream

conditions or change in the topography of the obstacle. Since the

hydrostatic assumption implicit in Equations (2.1.1) and (2.2.2) permits

nonlinear steepening but not dispersion (Stoker, 1957), it is expected

that this adjustment might result in wave breakage. We seek to describe

the resulting discontinuities, or shocks, as 'weak' solutions in which the

flow fields satisfy (2.1.1) an (2.1.2) at all but a finite number of

points. At these points the height and velocity and their derivatives can

be discontinuous, at least in the shrunken horizontal space of the shallow

water approximation. In reality, the shocks occur over small but finite

regions in which the shallow approximation breaks down. One example is

the common hydraulic jump.

How does one connect the upstream and downstream states across a shock?

Even in the presence of nonhydrostatic and viscous forces, the fluid



contains no internal sources of momentum or mass. We can therefore

integrate the continuity and momentum equations (in their conservation law

form) across the shock. Upon doing so and shrinking the interval of

integration to zero we find the Rankine-Hugoniot conditions (Stoker, 1957):

c[h] = [uh] (2.2.1)
A B A B

c[uh] = [u 2h + h 2/2] , (2.2.2)
A B A B

where [ ] denotes the jump from x = A to x = B and c is the
A B

propagation speed of the shock. The steps leading to (2.2.1) and (2.2.2)

are worked out in Section 3.7 in connection with more general, two

dimensional shocks.

If c, uA, and hA are known then (2.2.1) and (2.2.2) provide two

equations for uB and hB. These can be combined to form a cubic equation

for hB containing at most two real roots -- one corresponding to a drop

in depth, the other an increase in depth. It can further be shown that

the rate of energy dissipation per unit mass of fluid crossing the jump

from side 'A' to side 'B' is as given by (Rayleigh, 1914)

dE m (hA - hB) 3 (
~d ~ hAhB ,(2.2.3)

where m = hA(uA - c) = hB(uB - c).

t The conservation of mass within the shock is, of course, exact. The

fluid may, however, gain momentum from viscous boundary layer or

topographic effects at a rate proportional to the distance over which the

shock is smeared.



Since viscous effects act as energy sinks through the generation and

dissipation of turbulence and small waves, we demand that a fluid parcel

passing through the shock lose energy. Equation (2.2.3) then demands

that the parcel's depth should increase upon passing the shock and this

determines the appropriate root.

2.3 Adjustment of a Steady Flow to Small Disturbances

The remark has been made that hydraulically controlled flows are

distinguished by the way they adjust to changes in obstacle height. We

would now like to ask how this adjustment occurs and what the relevance

of the critical condition is.

We are therefore posed with an initial value problem in which one of

the steady solutions to (2.1.1) and (2.1.2) is perturbed by a sudden

change in topography. A convenient method of solving such a problem is

provided by characteristics and characteristic equations. Multiplying

(2.1.2) by h-1/ 2 and adding the result to (2.1.1) gives

(aL + x a-)u + h-1/ 2 ( + )h = - d
at + a at + ax- h db

where x4 given by (2.1.6). Subtracting the product of h-1/ 2 and

(2.1.2) from (2.1.1) leads to

(a ., a)u - h-1/ 2 (a + x )h = - db
5T _ axu - ha+x dx - .

These equations can be written in the more compact forms

d+U -1/2 d+h -db
+ h =- (2.3.1)

and

du- h-1/2 d h 
(2.3.2)a - If' d 2..2



where the operator

= + (u * h) /2a 
(2.3.3)

t at a

denotes differentiation following a wave with speed dx,/dt = x=
(u * hl 2). The characteristic curves, x,(t), map out the paths of

wavelets as they carry information along the channel.

Equations (2.3.1) and (2.3.2) determine the evolution of u and h

along characteristic curves x,(t). A simpler form can be achieved if it

is noted that h-1/ 2dh/dt = d(2hl/2 )/dt in (2.3.1) and (2.3.2). This

leads to evolution equations for the Reimann functions defined by

d+ 1/2 d+R+ -db
(u + 2h ) = =(2.3.4)

and
d- - 1/2  d R -db

(u t - 2h -1/t dx~ (2.3.5)

The Riemann functions, R., are therefore invariant along appropriate

characteristics if the channel bottom is flat.

If R. are known then height and velocity fields can be determined

from them through

1
u = 1 (R+ + R) (2.3.6)

h = 1- (R+ - R) 2 . (2.3.7)

Given initial data along some line OQ (Figure 2.3a) not a characteristic,

we can integrate (2.3.4, 5) or (2.3.1, 2) along characteristics which

intersect OQ to find a solution in the region POQ. Furthermore, the

information specified along OQ will continue to propagate away from POQ

along characteristics which cross characteristics OP and QP.
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Now consider the general pattern of characteristics for each of the

four types of steady solution. These have been drawn in Figure 2.3. For

subcritical flow the x characteristics tilt upstream and the

x. characteristics downstream, while for supercritical flow both

sets of characteristics tilt downstream. In either case a small

disturbance generated over the sill will propagate away from the obstacle

as two separate packets.

For transitional flow (Figures 2.4 c,b) the slope of the x

characteristics depends upon position relative to the obstacle. At the

sill the flow is critical, so that the x characteristic is vertical

there. In the ( - G case (Figure 2.3c) the neighboring x

characteristics diverge as the sill acts as a source of characteristics

for the far field. The x_ packet synthesized by raising the sill a

small amount therefore spreads out, eventually covering the entire channel.

In the Q - 0 solution, however, the characteristics converge over the

obstacle and x_ waves tend to become focused about the sill. Apparently,

this branch is unstable.

We see that there is a fundamental difference between the way that

transitional and nontransitional solutions adjust, and that this

difference is related to the existence of a critical point. We now

attempt to quantify this idea in terms of the upstream influence that the

disturbance has. Consider the flow at a point P upstream of the

obstacle long after the disturbance has been generated and a new steady

state established (see Figure 2.3a). Let the Riemann functions be

partitioned into undisturbed values R. plus time-dependent deviations ri



associated with the disturbance. The values of R, are determined by the

initial (t = 0) data and r. are zero at t = 0. The upstream influence

of the obstacle is then measured in terms of rp.: the changes in the

Riemann invariants at the point P after a new steady state is reached.

The new values of the Riemann invariants can be translated into new heights

and velocities using (2.3.6) and (2.3.7).

The values of rp* can be obtained by replacing R+ by -R + r.

in (2.3.4) and (2.3.5) and integrating along appropriate characteristics

Q'P and O'P (see Figure 2.4 a,b). Using the fact that r0 '+ = rQI+ = 0,

we obtain

r_ = (E,- - J) - dt' (2.3.8)

'db'
= (R= M, Rs) - j db- dt' (2.3.9)

where d is the slope of the new topography. The integration paths

should be distinguished from the characteristics PQ and PO that would

be appropriate in the absence of a disturbance. Since the channel bottom

is flat between 0' and P, 0 - and fdt' =0. Thus

rp+ = 0 and the upstream influence is entirely due to rp_.

Let us examine (2.3.8) first for the subcritical and supercritical

cases (Figures 2.4 a,b). Since the initial flow is steady, the depth and

velocity on either side of the obstacle is identical. Therefore -,=

RQ = R Q. and (2.3.8) reduces to

r - f db' drP_ = , dx d



in either case. If the flow is supercritical then the characteristic PQ'

lies entirely over flat bottom and this integral vanishes. If the flow is

subcritical, then (2.1.5) implies that the new steady solution that is

established is a single-valued function of b' alone and

P P 0db' db' db'
rp - J t'dX = - f Q dx/dt' 0

Thus, the upstream influence is zero in either case.

The first transitional case (Figure 2.2c) is somewhat more subtle.

First consider (2.3.8) when no disturbance is present (i.e. b' = b, r, = 0,

Q= Q, and Q lies close to the sill). Since rp_ = 0 we have

P - Q = Q dx

both sides being finite.

Now suppose that the flow is disturbed (Figure 2.4c). The x_

characteristic passing through P will still originate from near the sill;

that is, Q > Q' as the point P is moved toward t = - while x is

kept fixed, and R - RQ will remain unchanged. We can therefore rewrite

(2.3.8) as

r _ = dt - Pdb dt' , (2.3.9a)I_ Q d Q d
where dt is taken along the undisturbed characteristic between Q and

P, and dt' is taken along the new characteristic (that also spans Q

and P). For b / b' the above expression will be nonzero in general and

upstream influence will be present.

With slight modification, the above arguments can be made for P taken

downstream of the obstacle. We therefore eschew the traditional term
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'upstream influence' in favor of the term 'far-field' influence so that the

upstream and downstream fields are both considered. Thus far, the 'far

field' includes any point away from the obstacle. That is, the response as

t > c at a point near the obstacle is identical to the response far from

the obstacle. It remains to be seen whether further complications will

cause responses which vary with the distance from the obstacle.

The above analysis assumes that the general pattern of characteristics

remains unaltered by the change in topography. This does not apply to

the second transitional flow (Figure 2.3d) which has been postulated to

be unstable. A small change in the sill height here might lead to large

distortions in the field of characteristics. Upon closer inspection of

Figures 2.3a and 2.3b, we see that circumstances may arise which render

subcritical and supercritical flows unstable as well. Suppose that the

flow is initially supercritical or subcritical but that conditions over

the sill are nearly critical. The corresponding characteristics are

sketched in figure 2.5. In the subcritical case the x_ modes synthesized

downstream of the sill will tend to become focused about the sill. The

same happens in the supercritical case to x modes generated upstream.

Both of these flows appear to become less stable as conditions near the

sill approach criticality.

It should also be noted that no such behavior is possible for the first

transitional flow (Figure 2.3c). This configuration appears to be the most

stable of the four.



2.4 'Far-Field Influence' in Quasi-linear Hyperbolic Systems.

In the previous section we drew a connection between criticality and

the idea of far-field influence. This was made possible by the

characteristic formulation in which solutions to initial-value problems

are obtained through integration along wave paths. A generalization

should then be possible for two-dimensional hyperbolic systems since, by

definition, initial value problems are solved in the same way.

Consider the quasi-linear system of equations

au.
au (x,t) + a .(u.,x,t) (x,t) = b (uilx,t) i = 1,n (2.4.1)

j = 1,n

where a.. and bi are single valued and continuous. Following Whitham

(1974), Chapter 5, we wish to investigate the conditions under which

(2.4.1) can be expressed in the same form as (2.3.1) or (2.3.2); that is,

the form

.d (n)ui
i dt - lb . (2.4.2)

where d(n _ + n Ci.x t) ) is a derivative along some curve
-Ut- = at + (n) (i '~t ax

with real slope x=

It is clear that such a form exists if a vector 1 can be found

such that

1 a = (n)1

for (2.4.1) can then be multiplied by 1 to yield (2.4.2):

a au. au.
1 i(x,t) + 1 a J = 1 u (x,t) + 1 Xia iijiax I tii(n) ax

(2.4.3)

d u.
= 1 t(n) = l.b.dt 1 1



If 1 is a function of ui alone, a Riemann function R which

satisifes

=R 1(2.4.4)

may be found. In this case (2.4.2) can be written in the simplified form

d (n) R
dt 1 1ib.

The Riemann function is invariant along characteristics if the 'forcing'

1. bi is zero.

In order for (2.4.3) to be satisfied the eigenvalue, X(n), must

satisfy

a - (n) 6ij = 0 . (2.4.5)

We note that if a.. is constant and bi = 0 then solutions to (2.4.1)

of the form

u = A ieik(x - X(n)t)

exist, provided that (2.4.5) is satisfied. The X(n) are therefore

called characteristic speeds.

If n real values of x can be found to satisfy (2.4.5) then n

linearly independent equations of the form (2.4.2) can be written and the

initial-value problem solved in the way suggested above. Under these

conditions, the system (2.4.1) is hyperbolic and steady solutions

containing critical points (xn = 0) may display far field influence. This

will occur if the characteristics diverge from the critical point, thereby

connecting the far field to a single point.



In the steady solutions of Figure 2.2c the flow at the bifurcation is

critical. Is this a general property of bifurcations of steady flows

Using (2.4.1) the derivatives of the dependent flow variables can be

expressed using Krammer's Rule in terms of ui and x as

au= a . ,i 
(2.4.6)

where aij is the determinant obtained from a by replacing the

ith column with bg . If the solution bifurcates at some point xc'

either aui/ax or one of its higher derivatives becomes multivalued.

Suppose first that aui/ax becomes multivalued, so that the right

side of (2.4.6) must be also. Yet each element of a.. and bi, and

therefore each determinant, is single valued. The only possibility for

multivaluedness is for

|ajk| = 0 (2.4.7)

and

Iajk i = 0 . (2.4.8)

The first result together with (2.4.5) implies that one characteristic

speed must be zero. The second gives a connection between the bifurcation

point and the inhomogeneous term b .

It is also possible that a higher derivative of ui, and not au1/ax,

is multivalued. In this case differentiation of (2.4.6) yields the

condition that anu./axn is multivalued if and only if an-iu./axn-1 is.

Thus (2.2.1) and (2.2.2) are applicable in all cases.

As an example, let us apply the general theory to the shallow flow

under consideration. Here,



ui = (u h) a = (h ) b = ( d 0)

The characteristic speeds are obtained through the use of (2.4.5):

= u + h1/2

and

x = u - h

Equation (2.4.3) then gives the eigenvectors 1+ and 1_ within a

multiplicative constant. One choice is

1+ =(1,h-1/2 )

1 = (1,-h-1 /2 )

Multiplying equations (2.1.1) and (2.1.2) by these gives the

characteristic equations:

d+U + h-1/ 2 d+h -db

- h- 1/2 dh -db
dt dt dx

Finally, (2.4.7) requires that bifurcations of steady solutions must

occur when c_ = 0, while (2.4.8) further demands that any such point

must occur where

b' -1 u b'
0 u ~ h 0 =0,

that is, when b' = 0.

The steady solutions of this example are subject to far field

influence only if a critical condition exists. We should hasten to add

that this is not a general property of hyperbolic systems. For example,



in a channel flow with quadratic bottom friction (i.e., bi = [-db/dx -

(cf u2/h 0]),t the Riemann functions are nowhere conserved. The

arguments of the previous section indicate that far field influence will be

present for any steady configuration. Physically speaking, any change in

an obstacle's height causes a change in the net frictional force exerted by

the obstacle against the upstream flow.

2.5 Establishment of Steady Solutions

The adjustment of a stable steady flow to a small change in topography

is convenient to analyze because the basic pattern of characteristics

remains fixed. What adjustment occurs when the initial flow is unstable,

or when the change in topography is large?

To answer this we consider an initial value problem which is similar

in concept to the laboratory experiments of Long (19 54).tt The initial

state, shown in Figure 2.6a, consists of a uniform flow with depth h0
and velocity u0. At t = 0, -an obstacle of height b0 is quickly grown

in the channel and the fluid is forced to adjust. The subsequent motion

has been computed numerically using a Lax-Wendroff (1960) scheme which

allows shocks to form and be maintained, insuring that mass and momentum

flux are conserved across discontinuities. The numerical method is

described in Appendix A.

We wish to make comparisons between the numerical solutions and the

steady solutions of Figure 2.2. In the steady solutions, flow over the

t Chow (1959).

tf Houghton and Kasahara (1968) have done a similar problem.
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obstacle is possible only for B > 2.5. More generally, a steady solution

is possible only if the flow energy is greater than some minimum value

determined by the critical condition. When the flow is critical, then

(2.1.5) and (2.1.8) give

B bc+2 +h b+3 Q 2/ 3
B c +.7 - +h=bc +T2h

where bc is the sill height. Alternatively, given Q and B we can

say that steady solutions are possible for obstacles having less than the

critical height given by

3 2/3bc =B - Q2  .

The adjustment depends crucially upon how high the obstacle is grown

in relation to bc. In particular, if b0 < bc the obstacle growth

results in two long gravity wave packets which move away from the obstacle,

one propagating upstream and the other downstream relative to the flow

(Figure 2.6b). These gravity waves leave the steady state unchanged except

for a deformation in the interface over the topography. Thus, the upstream

flow 'feels' the obstacle only temporarily and the asymptotic state resembles

one of the supercritical or subcritical curves of Figure 2.2.

If b0 > bc the adjustment is quite different. After the obstacle

appears, a front is formed which moves upstream and begins to steepen

(Figure 2.6c). The front eventually breaks and forms a bore which leaves

behind a new steady state resembling branch 0 - Q of Figure 2.2. This

branch is realized regardless of whether the initial flow is subcritical or

supercritical; in no case is branch - realized. The downstream

state depends upon whether the initial flow is subcritical or supercritical.



In the latter case a bore and rarefaction wave form which move downstream

leaving behind another supercritical state. If the flow is initially

subcritical, the bore and rarefaction wave leave behind a subcritical flow

with a hydraulic jump on the lee side of the obstacle (Figure 2.6c). A

computer drawing showing the evolution of the bores and hydraulic jump

appears in Figure 2.7.

Once the controlled configuration is realized a further increase in

b0 will cause a new bore to be generated which moves upstream and leaves

behind a new controlled state. Eventually a height, bbs will be reached

at which the upstream flow is completely blockedt (Figure 2.6e). In this

case, the Rankine-Hugoniot conditions (Equations 2.2.1 and 2.2.2), when

applied to the bore, give

c(bb - h0 ) = 0h0

and

-b 2 h 0
c(u0h0) ~-2-- u0  h0 +

These can be combined into an equation for the blocking height in

terms of the initial conditions alone:

b b 3  b b2  2 1 bb
(,F-) -( ) - 2(F02 + ) + 1 = 0 ,

0 0 0

where F0 = U0/h1

Once the controlled state is established (i.e., bb > b0 > bc) it is

interesting to observe the effect of lowering the obstacle to a new

t It is not possible to model complete blockage numerically as the

numerical scheme will not handle zero depth.
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height, b00. If the initial state was subcritical, so that a jump forms

in the lee of the sill after control is established, then the flow returns to

a subcritical state if b00 < bc. In this case the jump moves upstream

over the sill and 'washes' out the critical flow. However, if the initial

flow was supercritical (no downstream jump exists), then the obstacle must

be lowered to a new height, bcc < bc, for the supercritical flow to

become re-established. In this case, a hysteresis occurs which tends to

keep the fluid in its controlled state. The supercritical flow is

re-established when the upstream propagating bore reverses its direction

and moves back downstream over the obstacle. A computer drawing of these

events is shown in Figure 2.8.

The height bcc is the value necessary to maintain a stationary bore

upstream of the obstacle and is calculated from equations (2.2.1), (2.2.2)

and (2.5.1) with c = 0. In particular (2.5.1) gives

b =B 3 2/3
cc 1 2 0

where B1 = -1-- + h1 is computed from

u0h0 = u1h,

and

2 2  2
u02 h0 + ho2 U 2 h + .

0 0 -u 1  h1 2

These can again be combined into an expression for bcc invol ving

only the initial conditions:

cc 0 2 3 2/3 3 21/2
F7= 1/2 ~ 7F 0  , [(1 + 8FO

[(1 + 8F0 2) _ 1
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The hysteresis effect has been predicted by Baines and Davies (1980)

but has not, until this point, been verified numerically or

experimentally.

Figure 2.9 shows how the final steady state depends on the initial

conditions of the experiment. Values of bc, bb and bcc are plotted

for various initial energiest with a fixed flow rate. Given Q0 and I

there are two possible values of bb, one for subcritical and the other

for supercritical initial flow.

For large Bo, the asymptotic behavior of the solutions is as

follows:

B 3 Q2/3
= B0 - 2

= B0

bb=23/4 B01/4 Q01/2

b = 23/4 B 0 4 Q 1/ 2

cc 0 0

(initially subcritical)

(initially supercritical)

3_ 2/3
2 0

Since

curve will

the flow i

bb for initially supercritical flow is only 0(B0 1 4 ), this

intersect the curve bc(BO) at some point. Past this point

s completely blocked before control occurs.

t It is traditional

Froude number, F0,

later in experiments

parameters B0 and

to display this type of information using the initial

rather than B0. However this will prove difficult

with rotating flows. We therefore use the initial

Qo which prove to be convenient in later results.

lim
B0  -* 00

lim
B0 -*

lim
B0 , 00

lim
B0 + 00
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2.6 Unsteady Flow

The discussion of steady flow has centered around the role of the

obstacle height in the establishment of upstream influence. Now consider

an unsteady stream which passes over an obstacle and oscillates with time

but does not reverse the flow (i.e. u is always > 0). This is

typically the case in many deep oceanic straits (see Figure 1.2, for

example). How important is the height of the obstacle in determining the

far field flow? Since analytic solutions for nonlinear unsteady flow

over topography are generally unavailable it becomes difficult to make

interpretations using bifurcations and branches. The characteristic

formulation used earlier, however, still provides an intuitive tool in

evaluating the role of the obstacle height.

Consider the wave-like flow shown in Figure 2.11. The flow is set up

(numerically) by oscillating the depth of an initially steady, controlled

flow periodically at a point upstream of the obstacle. The oscillatory

forcing results in a train of waves which propagate downstream and are

partially transmitted across the obstacle. The waves can be considered

'large' in the sense that their amplitude and length are of the same scale

as the obstacle. After the passage of several waves the flow field over

the obstacle became nearly periodic and the characteristics (Figure 2.10)

take on a wavey appearance while retaining the same general geometry as

the ones in Figure 2.3a. Conditions at the sill alternate from a

subcritical (x < 0) to supercritical (x+ < 0) in a periodic fashion.

Upstream of the obstacle the unsteady flow is subcritical at all times,

while a region in which the flow is always supercritical exists between

the sill and hydraulic jump.
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In the steady, controlled flow of Figure 2.3c, far field conditions can

be traced back to the sill through integration of (2.3.5) along x_

characteristics. In Figure 2.10 the x characteristics diverge from a

dividing characteristic (marked x0) rather than from the sill. Such a

characteristic must exist by virtue of the fact that the sill is bordered

upstream by a region of subcritical flow and downstream by a region of

supercritical flow.

Suppose that the obstacle height is suddenly increased by a small

amount. What is the far field effect? We first note that if R, are

taken to represent the unperturbed unsteady fields and R* + r, the

perturbed unsteady fields, then rp, measures the response at point P to

the change in height, as in Section 2.3. In particular, if P lies away

from the obstacle then the arguments leading to (2.3.9a) continue to hold

and

r = 1P dt - dt' . (2.6.1)

The integration path is now a characteristic which extends from P to a

point Q lying on x0  at the initial instant. The value of rp

depends in a complicated way on the new topography, b'(x), as well as the

integration paths.

Equation (2.6.1) links the far field to the dividing characteristic.

How is the dividing characteristic related to the geometry of the obstacle?

Suppose that the flow is periodic with longest period T, so that

R+(x,t) = R+(x,t + T). Integration of (2.3.5) along the dividing

characteristic over one period then yields



R_(x,t + T ) - R (x,t) = - db dt = 0
t dx

Thus, the dividing characteristic must spend an equal time on either side

of the sill as weighed by the bottom slope; if the slope is steeper on one

side the curve must hug the sill more closely on that side or spend less

time there.

How far from the sill can the dividing characteristic stray? In

Figure 2.10 the downstream and upstream extremities of the dividing

characteristic are labeled a and b respectively. Since the flow is

critical at a and b (x 0 is vertical there) the dividing

characteristic must occur within the envelope of the curve along which the

flow is critical (shown as a dotted line in Figure 2.10). Although the

critical curve is of less dynamical significance in the unsteady case, its

geometry gives information concerning the confines of the dividing curve.

At a', where the upstream excursion of the critical curve is maximum,

c~ = ac~/at = 0 so that

-dR_ -aR- ah1/2  ac- ah1/2  db
dt ~ at at at ~ at -fx > 0 (2.6.2)

Thus the depth increases with time at a' (and decreases at b').

Equation (2.6.2) also indicates that obstacles with sharp crests will tend

to confine the critical point more so than obstacles with rounded crests.

Furthermore, as the height of the forced wave grows larger the excursion

of the critical point only increases as the square root of this height,

assuming that changes in the shape of the wave can be neglected.

If the flow is initially subcritical, the periodic state set up has

wavy characteristics which are similar in appearance to those of



Figure 2.3a. Despite this, upstream influence can be exerted by the

topography, as a reexamination of Equation (2.3.8) will show. Again we

consider the influence r'_ at a point P upstream of the obstacle long

after the adjustment has occurred and a new unsteady state established.

The response depends on the initial conditions as well as an integration

along an x characteristic from P to a point Q' downstream of the

obstacle. Unlike the steady case, however, it is no longer true that

RQ = RQ,. Nor is x_ a function of db/dx alone, and the symmetry

property that caused the steady integral to vanish no longer holds.

Therefore, upstream influence may be present in the unsteady subcritical

case for obstacles of any height because of the wave response to

topography.

At this point the meaning of the term 'hydraulic control', as applied

to unsteady flows, should be clarified. Traditionally a flow is said to

be controlled if far field influence is exercised by some discrete

topographic point. This is a meaningful concept when applied in steady

situations but becomes vague in the unsteady case due to the fact that

influence is exerted by a continuous distribution of points. We therefore

reserve the use of the term 'control' for steady situations.

This is not to say that upstream conditions in the flow of Figure 2.7

are equally sensitive to changes in the sill elevation as to elevation

changes elsewhere. We have seen that all x_ characteristics originate

from a dividing characteristic that is tied to the sill through Equation

(2.6.2). Figure 2.12 shows the result of a numerical experiment in which

an obstacle is grown in a periodic flow over an initially flat bottom.



The time-average upstream height (measured after the adjustment occurs)

is plotted for various obstacle heights. The result is compared to the

result of doing the same experiment using an initially steady flow whose

velocity and depth equal that of the time-average initial periodic flow.

In both cases there is little or no upstream influence until the critical

obstacle height for the steady flow, bc, is reached. However, when

b0 > b c a dividing characteristic appears in the forced flow and this is

followed by a change in the mean upstream height.

2.7 Disruption of Control

The characteristics of Figure 3.10, although wavelike, are similar to

those of a steady controlled flow, with a dividing characteristic playing

the same role that the critical characteristic does in Figure 2.3c.

Suppose now that the oscillations become larger in relation to the mean

fields. Will the dividing characteristic remain, or will some new

characteristic regime be established? As long as subcritical flow is

maintained upstream and supercritical flow downstream of the sill, a

dividing characteristic will continue to exist. Therefore some change in

these conditions is necessary in order that the dividing characteristic

be swept away.

The dividing characteristic might be swept away if the incident waves

contained regions of supercritical flow. However, such waves would

rapidly break and the situation would probably not be typical of deep

strait and sill dynamics. However, if a hydraulic jump exists in the lee

of the obstacle, then the incident wave may be able to cause the jump to
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move upstream across the sill and establish subcritical flow everywhere.

In this case the dividing characteristic would be swept away.

Consider the flow shown in Figure 2.13b. Over the obstacle the fields

are steady and controlled and a hydraulic jump exists in the lee of the

sill. Upstream, an isolated wave approaches. This wave collides with the

obstacle and displaces the hydraulic jump. If the jump is displaced

upstream past the sill, creating a flow that is everywhere subcritical,

then we say that control has been disrupted. Numerical results which

show the amplitude of the incident waves required to disrupt control will

be discussed presently, but we first try to develop some intuition into

the effects of waves on jumps.

Consider a jump which lies at position q(t) in a flow over a flat

bottom. The position is determined by the Rankine-Hugoniot conditions

(2.2.1) and (2.2.2) with c = dn

dt (h - = h- h (2.7.1)

and

dh2 h 2 h 0
T (uh -u0h0) = hi + - u0 2h0 ~ ~2- (2.7.2)

where h0  and h, are the depths immediately upstream and downstream.

If the jump is stationary then

u1hi = u0 h0  (2.7.3)

and
22

2 h1  2 h0
u 1 h +- = u0 h0 + . (2.7.4)

It can be shown from these that

hl/h0 [(1 + 8F1
2 1/ 1] = (F1 2 + 1)/(F2 + ).10 2 [( 1 /21 Z 2 -T



Thus hi/h 0 > 1 implies that the upstream flow is supercritical and

downstream flow is subcritical.

Suppose that a train of small amplitude waves now passes through the

jump. The linearized flow fields become

u = u0 + R [A0 0 (x - c0t)

x < 'n
A0  ik0(x - c0t

h = h 0 + R, [h A- 1/2 e k0( -c0t

h0

and

u = u1 + Re [A1eikI(x - c1t)

x > n

A1  ik1(x - c t)h = hi + R, [ 1/2 e

(No reflected waves are allowed by the supercritical upstream flow.)

We also expand the jump position in powers of the amplitude A1, say:

n = n(0) + Al q(1) + --- (2.7.4)

Equations (2.7.1) and (2.7.2) are now applied at x = n. Since the

first order fields satisfy (2.7.2) and (2.7.3) n(oI = 0. To next

order, we find

k1ci = c0k0 ~

A0  'M(h0 - = ( - c )e-it (2.7.5)

and

[2uOh0( A 01/2 ~A 1-/7) (u02 + h0 )A0 ~ ( 12 + hI)A 1]e-iut = 0

h0 h1



From the latter, we find

(u02 + 2u0h01/ 2 + h0)A0 12 + 2u0 01/2 + h 1)A
2 1

= (u12 + 2u1 h 1/2 + h1)A

in view of (2.7.3). Therefore,

A1  - 0
2  

(6.7.6)
A 

000 c1

Combining (2.7.4), (2.7.5) and (2.7.6) gives the jump position

A0(1 -n0)
k0(h0 ~ 1 sin(wt) + 0(A 2)

Recalling that the upstream depth near the jump is h = h0 + A0coset,

we see that the wave crests tend to push the jump downstream while the

troughs tend to pull it back upstream. It is also evident that the

maximum excursion of the jump is proportional to the length of the

incident wave. Based on these results we expect low frequency waves of

depression (h' < 0) be more effective in disrupting control.

If the incident wave approaches from downstream then the same analysis

can be carried out with

U = 00
x < aJ

h =h
0

and

ikI(x - cIt) ikR(x - CRt)

Re ikI(x - cIt) ikR(x - cRt) x > rJ
h= h 11/2[-Ae +ARe
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In this case we find

U= cIk1 = cRkR

AR c1 2

I CR

and

A (1 - )

1 I = k1(h - O sin(wt) + 0(A1 2)

Since k, < 0 and c, < 0 for the subcritical downstream flow, the

amplitude of - is also negative. This implies that the crests of the

waves push the jump upstream while the troughs pull it downstream.

The conclusion is that, for upstream forcing, a wave of depression

(h' < 0) is needed to disrupt control. For downstream forcing, a wave

of elevation (h' > 0) is required.

The results of the numerical experiment are summarized in Figure 2.9a

in terms of the forced wave amplitude and period needed to disrupt

control. Results are considered only for the cases in which the incident

waves do not break. The figure bears out our earlier predictions that

lower frequency forcing is the most effective in destroying control. We

further note that the amplitudes required for disruption are the same

order as the upstream depth, despite the fact that the basic flow was

established using an obstacle with height only slightly greater than bc'

2.8 Semi-Steady Flow

In connection with problems involving upstream forcing, questions

also arise concerning the local behavior of the waves near the obstacle.
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For example, how much wave energy is reflected back upstream and how much

is actually transmitted across the sill? Although it is difficult to

describe the unsteady fields over the obstacle analytically, it is often

possible to approximate the far field transient motion. This is made

possible by the strong dynamic balance that is induced by the obstacle.

Consider, for example, the momentum balance for the flow shown in Figure

2.14a. Away from the obstacle the balance is 'weak' in the sense that

all momentum terms vanish identically. Over the obstacle, however, each

term is finite.

Suppose now that a transient is generated upstream (Figure 2.14b).

The dynamic balance within the wave is completely unsteady in the sense

that a/at a a/ax. Over the obstacle, however, the wave loses its

identity as the unsteady terms are dwarfed by the advective and surface

slope terms (Figure 2.14c).

The above remarks can be formalized by considering the two length

scales of the problem. The first is the scale of the topography, 2a,

while the second is the scale of the wave,

L = T/C,

where C0 is the characteristic speed scale of the upstream flow and

T is the period of the upstream forcing. If we let c = 2a/L, then the

fields can be written in the form

h = h(et,ex) |xf > a (2.8.1)

h = h(et,x,ex) lxi < a

If e << 1, the lowest order fields will be unsteady away from the

obstacle but steady over the obstacle. At x = a the fields must be

matched according to equation (2.5.1):



B(et) Q (et) bC (2.8.2)

where

B(et) = 2 (EteX)) + het,eX)2 lxi =a

Q(et) = u(et,ex) h(Et,sx) Ixf =a

One matter which can be investigated conveniently using the

semi-steady approximation concerns the affect of the obstacle on waves.

Suppose a train of small amplitude waves of length 2w/k, >> L and

frequency w, is generated upstream of the obstacle. A reflected wave of

length 2 r/kR and frequency wR is produced as the incident waves

encounter the topography. The linearized upstream fields are then

u = U + u' = U + AIeikI(X - cIt) + AReikR(X - cRt)

h = H + h' = H + H1 /2[A e ikI(x - cIt) - AReikR(X - cRt)

where U and H are the unperturbed upstream fields while

c, = U + H1/2

and cR = U - H1 2.

Substituting U and H into (2.8.2) gives, to lowest order,

U+ H - 3(UH) 2/3 =bc22

or

Fd F2/3 + 1 = bc (2.8.3)d IT2dR-3

where Fd = U/H1/ 2  is the Froude number of the upstream flow.

To second order we find

u'U + h' = (UH)-1/ 3 (u'H + h'U) .
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Substituting the expressions for u' and h' and evaluating at

x = -a gives

1  CR
R I

and

[(UH)1/3 U - H](AI + AR) = [U - (UH)1/3 ] H1/ 2 (AI - A R)

The reflection coefficient is then

F 4/3 1/3
A dF +

cR=~ 4/3dd1/3 d. (2.8.4)

Figure 2.15 contains a plot of cR vs. bc/H based on Equations

(2.8.3) and (2.8.4). For values of bc/H close to unity the upstream

Froude number i s ti ny and fl ui d barely trickl es over the sill . In this

case all wave energy is reflected. For small bc/H, the flow is nearly

critical and both the numerator and denominator in (2.8.4) vanish.

Applying L'Hopitals rule gives

lim Cr 4/3 Fd 1/3+ 1/3 F-2/3_1
F - 1 4/3 Fd 3- 1/3 Fd 2/3 + 1

Thus, a substantial amount of the incident wave energy is reflected even

when the obstacle is vanishingly small.+

2.9 Summary

Before proceeding to rotating hydraulics, we pause to summarize some

of the ideas that have emerged from the discussion of one-dimensional,

+ However (2.8.1) becomes in valid for 0(bc/2a) < e.



time-dependent adjustment. The characteristic description of this

process paints an intuitive and unifying picture of hydraulic control,

and provides a tool for understanding the hydraulics of more complicated

systems.

One idea central to the adjustment process is the notion of upstream

influence. In a stable, steady flow, upstream influence and criticality

are intimately related by the fact that all upstream points communicate

directly with the critical point through connecting characteristics. It

has further been shown that criticality is possible only for obstacles

with a minimum height determined through energy considerations.

The unsteady case is somewhat different, as upstream influence is

possible for obstacles of all heights. However, this influence is more

pronounced if a dividing characteristic exists over the topography since

the far field again communicates directly with the dividing characteristic.

Although this curve no longer lies at the sill, it must oscillate about

the sill. Thus the upstream fields are tied to the sill in a time average

sense. The critical point is no longer dynamically important but does

give information concerning the geometry of the dividing curve.

The final idea that deserves mention is the relative stability of the

steady controlled state to time-dependent disturbances. This property is

implied by the diverging pattern of x_ characteristics (Figure 2.3c)

along which disturbances are spread (rather than focused). It is also

present in the hysteresis effect (section 2.5) which tends to maintain the

controlled state. Finally, the stability is enhanced by the sheltering

effect of the obstacle as manifested in the strong dynamic balance and the

ability to reflect appreciable (cr > .33) amounts of energy upstream.



Chapter 3 Semigeostrophic Flow

In this and the following chapter we explore some extensions of the

ideas developed in Chapter 2 to rotating channel flows. It will be natural

to divide the discussion into two parts; the first dealing with a

nondispersive system in which only Kelvin waves are present, the second

with a system containing both Kelvin and Poincar'e waves. The nondispersive

case is treated here while the dispersive problem is left for Chapter 4.

3.1 The Model

As described earlier, the geometry to be considered is that of a

strait or channel with rectangular cross section (Figure 3.1). The

bottom elevation b and width w are functions of x, the downstream

direction. We will be interested in a single layer of fluid which flows

beneath a deep inactive upper layer.

As described in Section 2.1, the dimensionless shallow-water

equations governing the lower layer are

ut + uux + vuy - Fv = h - db (3.1.1)

62 (vt + uvx + vv y) + Fu = -hy (3.1.2)

ht + (uh) x + (vh) = 0 (3.1.3)

where

6 = W/L (horizontal aspect ratio)

F = Wf/(gD) 1/2  (width scale/Rossby radius of deformation)

Here U and V are velocity scales and L, W, D length scales for

the lower layer. We will assume that the channel width scale is equal to
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the deformation radius so that F = 1. The scaling U = (gD) 112 , which

has already been introduced (see Section 2.1), together with the

assumption F = 1 implies that the Rossby number RO = U/fW of the flow

is 0(1). Based on observations (e.g., Worthington (1969); Stalcup, et al.

(1975)) of deep oceanic overflows, we estimate that RO = 0(1) is indeed

typical. Since nonlinearity was essential to control of the more

classical flow discussed earlier one might anticipate that the scaling

RO = 0(1) is essential in obtaining controlled solutions to the present

problem.

3.2 The Semigeostrophic Limit

Many of the deep passages in the ocean are characterized by small

aspect ratios, 6 << 1, one example being the Ecuador Trench. In this

case equations (3.1.1-3) become 'semigeostrophic':

ut + uu +vu - v = -h - db (3.2.1)t y x-Tx

u = -h + 0(62) , (3.2.2)
y

ht + (uh) + (vh) = 0 . (3.2.3)

As will be seen shortly, the cross-channel geostrophic balance in (3.2.2)

plays a role similar to that of the hydrostatic balance in preventing

dispersive waves. This will allow semigeostrophic hydraulics to be

discussed using the characteristic tools developed earlier.

From (3.2.1)-(3.2.3) follows the conservation law for potential

vorticity:

1- u
(1 + u + v )hy) = 0 . (3.2.4)at ax ayl



Although general solutions to the semigeostrophic equations and their

stability properties are unknown, we can find a special set of solutions

to work with by assuming that the potential vorticity of the flow at some

upstream section is constant. Equation (3.2.4) then implies that the

potential vorticity is constant everywhere:

1- u

h = 0 , (3.2.5)

say. This expression can be combined with (3.2.2) to form an equation

for the cross-stream structure of h:

h - Oh = -1 . (3.2.6)
yy

Thus, for 0 >'0:

h = 1 + A(xt) sinh(O1/2y) + B(xt) cosh(O1/2 (3.2.7)
sinh(# w(x)) cosh(d w(x))

and

u = -01/ 2[A(x,t) cosh(O1/2yI + B(x,t) sinh(O/ ] (3.2.8)
sinh(# 1/w(x)) cosh(# 1/2w(x))

In analyzing the x and t-dependence, it will be convenient to

introduce the following dependent variables (Gill, 1977).

h(x,w,t) + h(x, - w,t) - + B(x,t) (3.2.9a)
2

6h = h(x,w,t) - h(x, - w,t) -= A(x,t) (3.2.9b)2

_ u(x,w,t) + u(x, - w,t) 1/2 12T 1(x)A(xt) (3.2.9c)2

u(xwt) - u(x, - w,t) _ 1/ 2T(x)B(x,t) , (3.2.9d)

From (3.2.9) it follows that



D = - #1/2d16h (3.2.10)

6u = #1/2T(#~1 -1 ) (3.2.11)

To find the x and t-dependence in the problem we evaluate

Equation (3.2.1) on either side wall and apply the boundary condition

= u dw (3.2.12)

Taking the sum of the results and using (3.2.12) gives

2t + (2 + 6u2 + 2) -2 db + 0(u+h+ - u dh_) w (3.2.13)

while the difference yields

26ut + 2(iu6u + 6h), = O(uh+ + uh_) dw (3.2.14)

Equations (3.2.10) and (3.2.11) can now be used to eliminate 6u

and u in favor of h and h:

ht (01/ 2T 1 6h)6h + [#1/ 2T3 (0 1- fi) _ T-1/2

dT-1/2x - (u+h - u_h_) $] (3.2.15)

t ~ (0 1/ 2T~1i)6h - (01/ 2T~ 1 h)h =- #1/2T~ (u h+ + u h ) (3.2.16)
X -- 2+ dx

We now have two time-dependent equations for the two unknowns 6h

and ~i. These equations take the quasilinear form (2.4.1) and may

therefore be analyzed using the methods of section 2.4. We note that

Gill's (1977) approach was somewhat different, as the emphasis was on

steady solutions. Gill applied a steady Bernoulli equation (rather than a

momentum equation) on each wall in order to obtain an algebraic expression

for h and h.



3.3 Characteristic Equations and Riemann Functions

For the purposes of eigenvalue analysis it will be convenient to

express (3.2.15) and (3.2.16) in the form

au. au.
1+ a. = b. (3.3.1)

at ij ax

where

u. = (6h h)

(:=g1/2T -1h ;1/2T3-1- h) - T1/2 (3.3.2)

a (= 1/2 1 f 1/2 uh dw..2

b 1 / x- 2 h+ - - - ]

'VT -u 1/ 1(u+h+ + uh_) dw (3.3.3)

The characteristic speeds are the eigenvalues of Aij, namely:

X+= 1/ 2r 16h A+ h 1/2[1 - T2(1 - Ofi)]1/ 2  (3.3.4)

= . 61/2[1 _ T2 (1 _ 1/2

Here x_+ can be interpreted as the speed of a Kelvin wave being advected

at rate u and propagating at rate 4.i1/2[1 - T2(1 - Oh)] 1/2 relative to

the current. Since T < 1 and 0 > 0, the latter term is always real

and (3.1.17) therefore hyperbolic.

To obtain the characteristic forms of (3.3.1) we proceed as in

section 2.4 and look for eigenvectors 1. such that

l a = X.+

By inspection of a.. we see that one choice is

1. = (-01/ 2T~1 01/2r 16h + x-+) . (3.3.5)



The characteristic equations are determined from

au. a u.

1 [E +t a iia ] = 1 b

which, after substitution of (3.3.2), (3.3.3), and (3.3.5) and some

rearrangement, can be written as

-41/2- 1 W- h + (#1/2T16h + D*fi) = -b + [K4 (u h+
Ut -d-

- (1/2 1A6h + x (1 #1/2T 1 )(u h+ + u h_ dw

where + x .

To obtain the Reimann form, the above equation is divided by h and

the term containing D+ h/Dt integrated by parts with the aid of (3.3.5).

This yields

Dt J 1/2[1 - T2(1 - C) 11 2 di}= - + L[(u h+ --

fdx 2 +0u~~ u h

-41/2T 1 W-1( 1/2-1h + x)(u+h+ + u+h dw (3.3.6)

The integral on the left hand side can be evaluated in closed form,

the result being

-1/2 [1 - T2 (1 - #h)]1/2 dh = [F(1 - T2 ) + T2 N21/2

+ T~1d-1/2(1 - T2)ln {2T01/ 2[h(1 - T2 ) + T2 Oh2]1/ 2 + 2T2 dh +

The Reimann functions are thus

= d 1/2 A - [(h(1 - T2 + T2 2)1/2 + 0-1/2(12

in {2T 0 1/2 [1 ( - T2) + T 2 Ah2J 1/2 + 2T 2 Of + (1 - T2 )

(1 - T2 )1

- u-h_ )

T2 ),



It is further possible to simplify the bracketed term on the

right-hand side of (3.3.6). This requires a considerable amount of

algebra which is relegated to Appendix B. However the result allows

(3.3.6) to be simplified to

-. db 01/2 1 T)] - dw
tR = - - (T- T3A + (T3- T)] (3.3.7)

If both db/dx and dw/dx are zero then the Riemann functions are

conserved along characteristics.

3.4 Steady Solutions

The steady solutions to (3.2.15) and (3.2.16) have been discussed by

Whitehead, et al. (1974) for 0 = 0 and later by Gill (1977) for finite 0.

We now review this theory using a slightly different derivation and make

some additional comments concerning its application.

If the flow is steady, then a streamfunction exists for the mass

transport:

$ = vh (3.4.1)

y = - uh . (3.4.2)

2
It can further be shown that the Bernoulli function B = u + h + b

and the potential vorticity are conserved along streamlines. From (3.2.1)

it follows that

= - 9P (3.4.3)ax ax

so that

dB (3.4.4)



With the aid of (3.4.4) and (3.2.10,11) the momentum equations,

(3.2.15) and (3.2.16), can now be written as exact differentials:

2 2 ) = (T 2 Ah2 Tx2 1 _ f 2 + 2 )

-2 dw
= -2 db + 0 (u h - u-h_) d

db + + + )
= -2 db + 0-dx ax

= (-2b + B+ + B_)

and

(f6u + 6h) x = 0(6hli)x = 0( +- *x

Integration with respect to x yields

T 2o h2 + T2 (0-1  2 + 2h = -2b + B+ + B_ (3.4.5)

and

6hl= (i$ - ) (3.4.6)

We can combine (3.4.5) and (3.4.6) into a single equation for h in

terms of the averaged Bernoulli function B = (B+ + B_)/2 and

the mass flux Q:

#T2 (0- 1 _ )2 -2 + 2(b - I)h2 + T2 Q-2 = 0 (3.4.7)

Some sample solutions for the interface elevation along the channel

wall at +w are sketched in Figure 3.2. The channel contains an obstacle

followed downstream by a side contraction, and solutions are drawn for

various values of B.

The similarities with the non-rotating solutions (Figure 2.2) are

clear. For B > 4.35 the interfaces maintain the upstream and



downstream elevations. At B = 4.35 the solutions again coalesce,

although the bifurcation now lies slightly downstream of the sill.

Finally, the solutions lose continuity for B < 4.35.

By (2.4.7) the flow at the bifurcation is critical:

X- = c~1T~1Q1/2 _ c 1/2[1 - T2  c- 1/2 = 0 (3.4.8)

Again the upper curves are subcritical and the lower ones supercritical

with respect to the Kelvin wave.

Gill (1977) further explores the properties of the solutions to

(3.4.7), including the conditions for stagnation, flow reversal, and

separation from the channel wall. Let it suffice to say here that,

despite these interesting features, the solutions seem to possess the same

hydraulics properties that are present in more classical solutions. It

remains to see how the adjustment to a controlled state occurs and how

restrictive the assumption of constant potential vorticity is. Before

these questions are taken up, we mention some further results not

discussed by Gill pertaining to the steady flow near the critical point.

3.5 The location of the Critical Point and Multiple Bifurcations

One feature of controlled flow over a dam or wier which is of great

practical benefit is the critical condition,which gives a relation between

the mass flux and the depth (e.g., Equation 2.1.8). Such wier formulas

allow for measurement of the flow rate in an open channel without need for

a current meter. The same sort of relation is obtained by setting x_ = 0

in Equation (3.4.8):

Q = -1/2T hc3/2[1 - T2(1 - dhc 1/2 (3.5.1)
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It has been suggested by other authors that 'wier formulas' such as

(3.5.1) might be used to measure some of the deep ocean's overflows.

To apply (3.5.1) one must know the location of the critical point.

Setting x = 0 in (3.3.2) (or applying Equation 2.4.8) gives

dbc 1- dw
_c 1 01/2 [0- 1(T ~1- T 3)h + 0-2(T 3- T )] dc (3.5.2)

dx -2 c c c c c dx

If the channel contains no side contractions (dw/dx = 0), then the

critical point occurs at the sill, where db/dx = 0, as in flow over a dam.

Similarily, if the channel bottom is flat the critical point occurs at

minimum width. If, however, both side contractions and bottom topography

are present, as is generally the case in deep oceanic straits, the critical

location will depend upon both the geometry and the bracketed term in

(3.5.2). Since this term contains dependent flow variables the critical

point may no longer be associated with a particular geometric feature,

such as the sill. It can further be shownt that the bracketed term is

greater than zero provided that no separation from the walls occurs.

Given a channel with a single width contraction and single obstacle, as

in Figure 3.3a, critical flow must therefore occur between the sill and

the minimum width. Given more complicated geometries (Figure 3.3b), it

is possible to find a number of candidates for critical flow.

If (3.5.2) contains multiple roots it is possible that several

critical points exist. In Figure 3.4, for example, steady solutions with

the same parameters as in Figure 3.2 have been computed for slightly

different channel geometry. The transitional curves now contain two

bifurcations: one near the sill and the other between the sill and the

t See Appendix B.



minimum width. The problem of branch selection is now more complicated

and will be taken up in a later section.

The situation is even more complex if the fields vary slowly with

time. In this case (3.5.2) continues to hold with h a parametric

function of time. If both bottom topography and side contractions exist

then the critical point is free to move about between the sill and the

minimum width.

The conclusion is that isolation of the critical point may be

difficult in deep straits, where complicated geometry is the rule.

Caution is therefore advised to those who would apply wier formulas to

deep overflows.

3.6 Establishment of Steady Solutions

The fact that the semigeostrophic equations (3.2.1-3) are hyperbolic

for constant potential vorticity allows us to discuss adjustment to small

disturbances in the same manner as Chapter 2. In particular, the Riemann

form (3.3.7) can be used to show that our ideas about stability and

upstream influence under steady and unsteady conditions remain unchanged.

The problem of adjustment to large changes in channel geometry is

more subtle, however, as will be seen presently. We attempt to study

this problem as before; through numerical solutions for the flow that

results from obtrusion of an obstacle. The initial state consists of a

geostrophically balanced stream with velocity u0(y) and depth h0(y)

over a flat bottom. At t = 0 an obstacle is quickly grown to a height

b0 and the adjustment to a steady state is observed. The solution is

computed using a modified version of the Lax-Wendroff scheme (Appendix A)



which integrates the full set of two-dimensional equations. The

horizontal aspect ratio, w/L, of the channel is 1/5.

The first set of experiments carried out were done using an initial

state with constant potential vorticity. In this case the critical

obstacle height, bc, is given in terms of the initial parameters #0'

00, and B0 by (3.4.6), (3.4.7) and (3.4.8). Combining the latter two

gives an equation for the critical value of h in a flow with upstream

parameters g0'. Q00. B0, and the obstacle height bc'

00Tc2( 0-_ 1 c)(0 0~- 2hc) + 3c = 2(B0 - bc) (3.6.1)

A relationship between Q0 00 and hc can also be derived by

combining (3.4.6) and (3.4.8):

fic 4 + 1c300- 1(Tc- 2- 1) - Tc 4 0 2 = 0. (3.6.2)

Equations (3.6.1) and (3.6.2) give the maximum obstacle height, bc'

over which a steady flow with upstream parameters Q0, 00 and B is able

to flow. In the numerical experiments the adjustment again depends

crucially on how high the obstacle is grown in relation to bc. If b0 < bc
the adjustment is similar to that shown in Figure 3.5. After 20 time

steps, the obstacle has caused a bulge in the interface. After 60 time

steps, the bulge has split into two Kelvin waves moving upstream and

downstream relative to the flow. Finally, after 100 time steps, the

Kelvin waves have moved completely away from the obstacle leaving a

subcritical dip in the interface.

If b0 > bc the adjustment is quite different, as shown in Figure 3.6.

Instead of isolated Kelvin waves, the bulge has now developed into two

fronts. After 80 time steps, these fronts have moved completely away from



the obstacle leaving behind a transitional steady flow with a hydraulic

jump in the lee of the sill. The upstream front steepens and eventually

forms a breaking bore.

Unfortunately the stability properties of the numerical method are

much worse than those of the one-dimensional scheme used in the previous

chapter (see Appendix A). In Figure 3.6, some numerical instabilities

appearing as small parasitic waves can be seen on the crest of the

hydraulic jump. Long after the adjustment is complete (400 or 500 time

steps) these instabilities grow large enough to invalidate the

computation. Because of this, some of the experiments done in Chapter 2,

such as the hysteresis problem and the experiments with periodic flows,

were impossible.

Numerical solutions were also obtained for initial states having

nonconstant potential vorticity. Because of the lack of an analytic

theory for such flows, the dependence of the asymptotic state on a

critical obstacle height is more difficult to formulate. However, the

results display the same qualitative behavior as those discussed above.

For b 0 less than some (unknown) critical height bc, the adjustment is

similar to that of Figure 3.5; the asymptotic state is symmetric about the

sill and no upstream influence is present. If b0 > bc the situation is

similar to that of Figure 3.6. Apparently, classical hydraulic properties

apply to semigeostrophic flows in general, at least over the time scales

modelled numerically. It is possible that another process, such as

barotropic instability, might affect the flow on longer time scales.

In the initial flow, the potential vorticity typically increased

monotonically by a factor of two from y = -w to y = +w.



T=100

T=60

T=20

Taw
Topography

b < be

Figure 3.6
Semigeostrophic adjustment to obstacle.



,-RAREFACTION
& WAVE

T=80

U

T=60

T=20

Topography

Figure 3.5
Semigeostrophic adjustment to obstacle.



3.7 Free-surface shocks

It is not surprising that breaking waves play an important role in

semigeostrophic adjustment to a controlled state and in the asymptotic

state itself. We now make a closer examination of these free-surface

shocks and try to determine how the upstream and downstream states are

connected.

Let us first relax the narrow channel approximation and consider a

shock which exists in a channel flow of arbitrary width. Although the

interior of the shock is a complicated region in which the shallow-water

approximation breaks down, we again may attempt to connect the upstream

and downstream states through mass and momentum continuity. The

conservation laws for momentum flux are obtained by multiplication of

(3.1.1) and (3.1.2) (with 6 = RO = 1) by h and integration by parts.

The results are

uh)t + (u2h + h2/2)x + (uvh) = -h db + hv (3.7.1)

Cvh)t + (uvh) v + (v2h + h 2/2)y = -uh (3.7.2)

The continuity equation,

ht + (uh) + (vh) = 0 , (3.7.3)

is already in conservation law form.

Without any loss in generality, we can align the y-axis perpendicular

to and the x-axis normal to the shock at some point P. Upon integration

across the shock and shrinkage of the interval of integration to zero, only

contributions from the x and t-derivatives will remain finite. For

example, integration of the continuity equation (3.7.3) from A < x(P) to

B > x(P) gives



B {ht + (uh) + (vh) I dx = fA htdx + J h tdx + uBhB - UAhA + Avh)dx,

where a is the x-position of the shock.

Applying Leibnitz's rule to the first two terms on the right hand

side of the above equation and letting A + n_, and B - U+, we

find

(h - h ) d + uBhB ~ UAhA = 0.A B dt BB AA

or

c[ h ] - u (n)h] = 0 (3.7.4)
A B A B

where c =t $ is the velocity of the shock normal to itself and

the velocity normal to the shock.t Integrating (3.7.1) and (3.7.2) and

applying the same notation yields:

c[u (n) h] - [u(n)2 h + h2/2] = 0 (3.7.5)
A B A B

c[u(s) h] - [u (n) u(S) h] = 0 (3.7.6)
A B A B

where U(S) is the velocity tangent to the shock.

Equations (3.7.4) and (3.7.5) are the familiar conditions on mass and

momentum flux that apply to one-dimensional shocks. The third relation

can be simplified to

[u(s)] = 0 (3.7.7)
A B

upon combination with (3.7.4). Therefore the tangential velocity is
(s) (n)

continuous, implying that the potential vorticity, (1 + au - us )h,

We equate u and v with u(n) and u(s) to avoid future confusion

between rotated and nonrotated x,y coordinates.



of a fluid parcel crossing the shock must remain finite -- though not

necessarily conserved.

If u(s) / 0, then (3.7.7) further implies that the velocity vector

must change direction upon passing the shock. This demands that the shock

become perpendicular to any solid boundary at the point of that contact,

otherwise the shock would induce a flow normal to the boundary. More

generally, the shock must become aligned perpendicular to x as v/u * 0.

In enealgivn (n), u(s)
In general, given u n uA , and hA one can compute the

downstream fields u n), us) , and hB using (3.7.4), (3.7.5), and

(3.7.7), provided that c is known. The narrow channel case is

apparently simpler since v/u * 0 and the entire shock should be

described by a single velocity, c. Under these conditions, it is

tempting to describe the shock as a weak solution to the semigeostrophic

equations (3.2.1)- (3.2.3). In such a description, the flow would be

semigeostrophic at all points not on the shock. Such temptation should be

resisted, however, since Equations (3.7.4, 5, and 7) make no allowance for

geostrophy. That is, given a geostrophically balanced upstream state,

there is no guarantee that the state immediately downstream of the shock

(as computed using (3.7.4, 5, and 7)) will be geostrophic.t  The shock

must be bordered by a dispersive region in which the terms 62 (vt +

uv + vvy) becomes as large as u and hy. The width of this dispersive

region is 0(6) (the deformation radius) and its role is to adjust the

shock to the semigeostrophic flow on either side.

t Being proportional to velocity (and not its derivative) rotation must

act over a finite distance. Thus, rotational terms do no appear in the

Rankine- Hugoniot conditions (3.7.4-7).



Figure 3.7 shows how the y-momentum balance changes as a front

steepens into a bore. The information is taken from the upstream moving

front in Figure 3.6. Initially the flow is semigeostrophic (Figure 3.7a)

but the geostrophic balance weakens as the front steepens. This is due to

the Kelvin wave dynamics which are decreasing the slope of the interface.

Meanwhile, the term 62vt is becoming significant over an 0(6) interval

about the front (Figure 3.7b-d).

Is it possible to connect the flow upstream of the dispersive region

to that downstream without resolving the complicated region in between?

In general, the answer is no. However it is possible to derive

approximate formulas for special cases. One such case is typified by the

shocks observed in the numerical experiments. These shocks and their

surrounding dispersive region translate with little change in form at a

fixed speed, cx, along the channel. The translation speed is related

to the normal speed, c, through

c = c xcose

where e is the inclination of the shock with respect to the y-axis (see

Figure 3.8). We would like to investigate the conditions under which the

momentum flux gained in the translating dispersive region is negligibly

small.

First consider the momentum flux at the bore itself. From (3.7.5)

and (3.7.6) we can write

[(c - u (n) )u (n)h - h2/2] cose + [(c - u(n) )u(s)h]sine = 0
A B A B

as both terms are identically zero. From this it follows that

[(c - u(n))hu n)cose + U(s)sine) - h2/2 cose] = 0
A B
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(c - u(n))uh - h2 /2 cose] = 0 (3.7.8)

We next write the x-momentum flux Equation (3.7.1) in a frame

translating with the bore. The result is

-c (uh) + (u2h + h2/2) + (uvh) = -h(db - v)x x x y dx
or

V - {(u - c )uh + h 2/2,uvh} = -h(d- - v)x d

Integrating over the upstream dispersive region (labeled RA in

Figure 3.8) and applying the divergence theorem gives

9RA
{(u - c )uh + h2/2,uvh} - dn = - rf h($ - v)da

A

where dhi is the unit normal to aRA. Along each wall, where n = j

and v = 0, the contour integral vanishes. Along the upstream border of

RA, where x = A', we have n = i. Therefore

f {(u - Cx )uh + h2/2,uvh} - dn
aRA

w h2  s(w)
=f { (u - c )uh + h} dy - f

-w A' s(-w)

w )u 2 s(w)
=f { (u - c )uh + h dy - f

-w A' s(-w)

h 2
{Mu - c)uh + T- )coso + uvh sine} ds

{ (u(n)- c)uh + h2 } ds = - ff h(db -v)da
A RA dx

(3.7.9)

with s measured along the bore.

Following the same procedure in RB, it can be shown that

w {(u - c )uh + h} dy - S {w) un) c)uh + h2 } ds = ff h( v)da
-w 2B' s(-w) 2 B RB



from (3.7.9) and applying (3.7.8) finally gives

[ f {(u - c )uh + h dy] =-
A' -w B' RA+ RB

h(db v)dadx

Since the area of RI+ R2  is 0(62), the right-hand side of

(3.7.10) is 0() less than the left-hand side. Thus, for narrow

channels we have

Sf
A -w

{(u - cy )uh + 2  dy] = 0(a2
B

This is simply a statement that a translating narrow-channel bore can

be treated to 0(6) error as if it were a weak solution. The same

procedure can be used to formulate the mass balance between A' and B'.

In this case, the connection formula is

Sf
A' -w

(u - cy )h dy] = 0
B

Suppose uA'(y), hA'(y) (and thus OA'(y)) and cx are

Are uB'(y) and hB'(y) then uniquely determined by (3.7.11)

(3.7.12)? Since the flow at A' and B' is semigeostrophic,

(3.2.2) and (3.2.5) can be combined into a single equation for

ShBI -
0BhB = -1

ay

(3.7.12)

given.

and

Equations

hB':

(3.7.13)

t An alternate form of (3.7.11) which is accurate to the same order can

be derived through integration along the side walls, rather than over Rl
and R2. Taking advantage of the fact that v = e = 0 at the wall, we

find

C (u& - c ) u+h + h_2/2], = 0(6)
A' B

(3.7.l1a)

(3.7.10)

(3.7.11)

Subtracting this



For suitably well behaved d B.(y), solutions will exist and contain

two arbitrary constants. Equations (3.7.11) and (3.7.12) provide two

equations for their downstream values, provided that (3.7.13) can be

solved. However, the solution depends on the potential vorticity at B',

which is yet unknown. If 0(y) does not change from A' to B' by more

than an 0(6) amount, it is self consistent to set 0A'y) = OB'(Y)

Recall that Equations (3.7.4)-(3.7.7) say nothing about continuity of 0

at the shock, but only that it remains finite. We therefore return to the

equations of motion and the numerical model in an attempt to gain insight

into the behavior of # near a discontinuity.

3.8 The change in potential vorticity across a shock

Again consider a shock and dispersive region which translate along

the channel with speed c . In a reference frame moving with the shock

the vector momentum equation for the flow becomes

-c - + (u - V)u - kxu + V(h + b) = 0 . (3.8.1)xax.

As before, we rotate the translating coordinates (x,y) into new

coordinates (n,s) such that s is tangent to the shock at a point P.

Thus

= coseo- sine - , (3.8.2)

where e is measured between the shock and the y-axis.

The change in potential vorticity across the shock ist

[n] /as + au s)/an (3.8.3)

It is understood that [ ] denotes [ ], where A and B lie
A B

immediately on either side of the shock.



Suppose conditions upstream of the shock are given. Since

s-derivatives are allowed, the first two terms on the right of (3.8.3) can

be evaluated directly using Equations (3.7.4) and (3.7.5). It remains to

find an expression for au(s)/an in terms of s-derivatives alone. Such

an expression is provided by the tangential component of (3.8.1):

-c cose au(s) + c sine + u(n) au(s) + U(s) au(s) + u(n) A + ab 0anx as an as as as

This equation can be rearranged to form

au 'an 1 ( (c sine + uau (as) + U(n) + + )h(c - u(n) ) n as a un as

where c = c cose is the velocity of the shock normal to itself. The

term h(c - u(n)) is conserved in view of (3.7.4). Taking jumps and

using (3.7.7) to eliminate the first two terms on the right hand side, we

find

[au 1/an1 (Eu n)] + - [h])
h(c - u (n)) as

It follows that from (3.8.3) that

[1+ au _ au~n 1 n +h 7 _Fahn)a(s) u (n) n(n)ah a s as + as

-[un + A+ (c - u(n)) ahAN)

(n)

-[(u(n) a ) + ah

S(n) as as (3.8.4)
h(u - c)



There are several special cases in which (3.8.4) can further be

simplified. If the shock forms a straight line (c = constant), then

-[(u(n) - c) a (U (n) - c) + 3has as

h(u(n) - c)

a 1 (n) - c)2  1 (S)2
3SI U c) T u + h]

h(u - c)

- [B]a-s (3.8.5)

where V = (n)- c is the normal fluid velocity seen in the moving frame,

an B= 1V2 + ()2and B = }(V + us) + h is the Bernoulli function based on this

velocity. Vh is thus a conserved quantity.

The change in potential vorticity is thus related to the rate of

energy dissipation within the shock. It is possible to express this

change in terms of the jump in height alone. We first note that

Vh[u] = -[h 2/2] (3.8.6)

in view of (3.7.5). Therefore

[B] = [ (V2 , (s)2) + h] = [T2 + h]

= VB - A )(VB + VA) + hB - hA

S(uB A )(VB + V + h A2AB ABB hA

From (3.8.6) it follows that



[B] = 1 (hA2 - hB2) ( + 1) + hB - hA
B A

= 4hihA [(hA2 - hB2) (hA + hB) + 4hB2hA - 4hA2hB]

=4h h (h A - h B3B A

Substitution into (3.8.5) finally gives

1[0 (3.8.7)

It is interesting to observe the values of [0] in the numerical

solutions of Figure 3.6. This information is displayed in Figure 3.9,

which contains potential vorticity profiles at three sections along the

channel. The first (labeled 'A' in Figure 3.6) is taken upstream of the

bore. Here 0 = constant, as this was imposed as the initial condition.

The second section (labeled 'B') was taken between the bore and the jump.

Here 0 has decreased by a small amount which is probably within the

limits of numerical error. The final section (labeled 'C') is taken

downstream of the jump, and the potential vorticity here increases by a

significant amount.

Are these results consistent with Equation (3.8.7)? First consider

the hydraulic jump, for which Vh = uh. This jump is essentially a

breaking Kelvin wave which is frozen in the supercritical flow downstream

of the sill. The largest values of [h] thus tend to occur on the left

side of the channel, that is

a [h]3 > 0
as hBhAJ
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The change in potential vorticity is therefore positive, as verified by

the numerical results. This change is most intense on the near side of

the channel where the boundary layer contribution to [h]3 is greatest.

Analysis of the bore is also possible since the angle e was

observed to remain approximately zero throughout the upstream propagation.

Equation (3.8.6) is then allowed with V = uA - c = uA - cx. Since

c < 0, the term Vh will be larger in general than the corresponding

value for the jump. Furthermore the upstream depths hB and hA are

somewhat larger and the change in depth, [h], somewhat smaller.

Therefore, the magnitude of [0] is less than above and this is again

verified in Figure 3.9.

A more precise verification of the magnitude of [0] is difficult

owing to the difficulty in measuring [h] from numerical data. (The

numerical model smears the shocks over five or six grid points and it is

difficult to judge which portion of the surface breaks and which simply

has a steep slope.) However, using values of [h] taken from the jump

at x = 100 in Figure 3.7d we can estimate

[] 1 a [h] 3

1 [h]+3 h3
4(.6 h A+hB+ hA- h

4(.6) (.5)(.8) - 0 = .03

which agrees with the order of magnitude of change shown in Figure 3.9.



The changes in 0 plotted in Figure 3.10 are small compared with 0

itself. Hence, the connection formulas (3.7.11) and (3.7.12) can

accurately be applied in conjunction with (3.7.13) by assuming that

[0] = 0. It is not known whether larger jumps produce larger changes in

0, since the numerical experiments in which they arise tend to be

numerically unstable. This is a question which may have to be settled

experimentally.

It is also natural to ask how the changes in 0 affect the

stability of the flow. Semigeostrophic instability is a problem which

has only begun to be explored (see Orlanski (1968) and Griffiths et al.

(1982)). However, we envision the flow downstream of the obstacle

emptying into a large basin and the dynamics becoming quasigeostrophic

there. The barotropic stability of the flow will then depend on the

Fjortoft (1952) criterion that do/dt must vanish for instability to

occur. However, #(p ) is set at the hydraulic jump.

By varying the initial potential vorticity distribution, it is

possible to find flows numerically which satisfy the Fjortoft criterion

upstream but not downstream of the jump and vice versa. Unfortunately,

it is impractical to study the growth of possible instabilities because

of the time limits imposed by the growth of numerical instabilities.

Again, this is a problem more suitable for laboratory experimentation.

3.9 Total Blockage by the Obstacle

As in the nonrotating case, we expect that a semigeostrophic channel

flow will be completely blocked if the obstructing obstacle is high



enough. Although this situation is difficult to model numerically, we

can piece together a scenario describing the blockage and predict the

required obstacle height by extrapolating the numerical results for

partial blockage. The following discussion assumes the change in

potential vorticity across the blocking bore to be 0(), as occurs in

the numerical results. Although there is no guarantee that [0] will

continue to be small for large bores, it is hoped that the following

analysis will provide a starting point in the theory of total blockage

and spur experimental investigation into the problem. We will limit the

discussion to initially subcritical flows.

As before, we assume that the blockage will be accomplished through

formation of a bore which moves upstream from the obstacle, leaving behind

a stagnant region (Figure 3.10). If the flow in the stagnant region

(labeled B) is steady, then

f B Bdy = (h 2- h 2) = 0,
-w uhd B+ B-

in view of (3.2.2).

The depth on either wall is therefore the same:

hB+ = hB- . (3.9.1)

Since no fluid passes the sill, the streamline at +w connects with

that at -w. Therefore, the Bernoulli law demands that

2 2
uB+ = uB (3.9.2)

away from the obstacle. Furthermore, since u = 0 at the sill the obstacle

must have height



2 2

b B + hB+ _ + hB- .(3.9.3)

If the change in potential vorticity across the bore is 0(6) then

Equations (3.2.7) and (3.2.8) continue to hold in the stagnant region.

In this case

= -0 1/2T6h = 0

so that negative root of (3.9.2) is appropriate

uB- -~B+ . (3.9.4)

Using (3.9.4) and (3.9.2) it can be shown that

hB 0- 1+ (h.x) 1) cosh( 1/2y)
cosh(0 1/2w)

and

uB _ 1/2(0 1- h.(x)) sinh( /2)

cosh(O 1 2W)

The circulation in the stagnant region therefore consists of a cyclonic

eddy that is symmetric with respect to y. Away from the obstacle the

flow is uniform with respect to x, implying that v = 0. The

recirculation is fed over the topography, where approaching fluid is

turned to the left and develops an 0(6) cross-channel velocity.

Under these assumptions, it is possible to predict the blocking

height, bb, given the initial flow rate, Q0 , and energy B0 . Applying

(3.7.12) across the bore gives

c (h - hAw uAh = (hA 2 - h 2
-w B A -w AA A+ A-

while (3.7.11a) gives
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2 h2
-c (uA+hA++ uAhA) = 2u h+ h 2 u 2 h + 2 +UA2h A-

xAA+ AA- B+ B+ B+ A +A +-7 A- hA- - -)

These can be combined to form an equation for hB+ in terms of

the initial state:

hB + -1 (I T 2- 2)- [0h3+ 0-2 - T AB+ 2 2~ AhB+2 A hB+AB+ (.f 22 -)I Jh L AhB+

+ -T-2 Q2 A- T1Q Q1 01/2 = 0 (3.9.5)2 2A 2 01

where

Q1 = uA+hA+ + uA-hA

h 2 h 22 h +A+ u2 h A-
Q2 = uA+hA+ 2 A- A- ~T

Once hB+ is found from (3.9.5) then bb is computed from (3.9.3) as

u 2 2
bb = + hB+ = 1 T2(01- hB+) + hB+

Again, the result will depend on whether the flow is subcritical or

supercritical.

Once again, it is worthwhile mentioning the conditions under which

this theory is accurate. First, the stagnant region must be in a steady

state and no streamline must cross the sill. Second,- the bore and its

bordering dispersive boundary must have settled into an equilibrium state

characterized by a single velocity cx. Finally, the change in potential

vorticity across the bore must be < 0(), as in the solutions of

Figure 3.6.

Figure 3.11 shows the behavior of bc as a function of the initial

energy, B0. Also shown is a plot of the corresponding values of critical

obstacle height, Bc. The qualitative appearance of the figure is the

same as that of Figure (2.6) for nonrotating flow.



3.10 Kelvin Wave Reflection From the Obstacle

Numerical investigation into problems associated with time-dependent

forcing of semigeostrophic flow prove difficult. This is primarily due to

the growth of numerical instabilities over the long computation time that

is required. However, one matter which can be dealt with analytically is

the reflection of Kelvin waves by the obstacle. We again rely on the

semi-steady approximation introduced in section 2.8.

The unsteady fields immediately upstream of the obstacle or

contraction are matched to the parametrically unsteady flow over the

obstacle or contraction by Equations (3.6.2) and (3.6.1):

hc4 + hc3 0-1 (Tc-2 - 1) = Tc-4 Q2(Et) (3.10.1)

OTc 2-1 - c)(O~ - 2hc) + 3 hc = 2(B(et) - b) . (3.10.2)

where

Q(et) = - Iish (3.10.3)

2B(et) = B+ + B_ = 26h 2 + T2 (- 1 - T)2 +2 , (3.10.4)

and the upstream representations of 6h, h, and T are used.

Upstream of the obstacle, where the channel is uniform, the flow is

partitioned into mean and a time-varying perturbations. The linearized

fields are then

f = R + h1' = I + AIeI(x->it) + AR e ikR~Rt), (3.10.5)

Ah = AH + 6h' = AH + BRexik -x it) + BReikR A-xRt) (3.10.6)

where I and R denote incident and reflected waves.
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The matching conditions (3.10.1) and (3.10.2) are somewhat more

complex than their nonrotating counterparts as the critical depth h(

appears explicitly. We therefore set

hc =Rc + h'c(Ect) (3.10.7)

to recognize that the depth at the critical point oscillates about a

steady value Hc'

The waves speeds in (3.10.5) and (3.10.6) are given by

XI -01/2r1H - 1/2 [1 - T2(1 1/2
R

(3.3.4):

(3.10.8)

The amplitudes A1 and BI are related through (3.2.15) and (3.2.16)

B1 = 4 Ayd-1/ 2 f1/2[1 - T2  1/2

R R

Substitution of (3.10.5)-(3.10.6) into (3.10.1) then gives

Rc4 + Hc3 -1(T c-2 1) = Tc-4 2

(3.10.9)

(3.10.10)

to first order and

4Bc3h' c + 3Bc 2 -1(Tc- 2 - 1)hc = 2T~ 4 %M6H(6H0'+ Bh') (3.10.11)

to 0(W).

The same can be done with (3.10.2), the first order result being

#T 2 (1_ C) (0 1- 2BC ) + 3Rc = T- 26H 2+ OT2(I 1- R) 2+ 2R - 2bc (3.10.12)

and, to next order,

OTc2 , c [4Bc + 30- - 1)] = 20T 26H6h'- + 2V' (3.10.13)



Equations (3.10.10) and (3.10.12) relate the basic fields

to the geometry at the control Tc and bc. To evaluate the wave fields

we eliminate between (3.10.11) and (3.10.13):

20Tc-2 HAHRc 2 (1'6H + h'R) = 20T-2 H6h'- 2T2(0-F1- i)h'+ 2h'

= 2OT- 2H6h'+ 2[1 - T2 (1- 1/2

Substituting for sh' and h' using (3.10.5), (3.10.6), and

(3.10.9) gives

k x1 = kRXR
and

diHT c-2 c-2 AH(Aj+ AR)

(3.10.14)

+ 1/2T-1/2[1 - T2(1 _ Op)]1/ 2(-A1+ AR)]

= #1/2T' W 1/2[1 - T2(1 - OR)] 1/2 f6H(-AI+ AR)

+ 0-1/2.l1/2[1 - T2(1 - OR)] 1/2(A1+ AR) ) (3.10.15)

This expression can be simplified if it is noted that (3.10.10) can

be rewritten as

RAHT c-2H -2 = 01/ 2Tc c-1/2[1 - T2( _ OH)] 1/2

Equation (3.10.15) then becomes

HT [1-T c (1O ~

H T[1-T (1-011 .
I hc c

1 -
-1/2 -1r'w'1/26HE1 - T 2(1 - ORcd] 2(A A+ AR)+(AI- AR)

= 01/ 2T~1 R-1/2H[1 - T2(1 _ C) -1/2(-AI+ AR) - (AI+ AR) (3.10.15)

The notation can be further simplified by introducing the Froude

number of the upstream flow

F = = #1/2T-1 -1/2 6H[1 - T2 (1
u-

-F 1/2 (3.10.16)

H and AH



and the quantity

RTc[1 - Tc2 ( c
G cc c 2R c T~l - T 2(1 d 0f i]

Equation (3.10.15) can then be written as

C R F + 1 GG (3.10.17)

There are a number of ways of displaying the information contained in

(3.10.17). To make comparison with the results for the nonrotating case

(Figure 2.11) we first study Cr as a function of h/bc using a channel

with no width contractions. This information has been plotted in

Figure 3.12 for various potential vorticities. The most striking change

that rotation induces is that Cr can have arbitrarily low values,

whereas the lowest value of Cr in Figure 2.11 is 1/3. This behavior is

particularly evident for large values of 0. Apparently the obstacle is a

less effective reflector of wave energy, and the sheltering effect spoken

of in Chapter 2 is lessened as 0 grows.

To understand this result we must first understand the differences

between the basic flows upon which the waves propagate. In the

nonrotating case the basic flow energy is partitioned between potential,

h + b, and kinetic, u2/2. Upstream of the obstacle, the greater part

of this energy is potential. However, the contraints imposed by (2.1.5)

demand that this potential energy be sacrificed in favor of kinetic

energy as the fluid passes over the obstacle. It can do so only by

decreasing its depth, and this constricting effect accounts in part for

the wave reflection. If the Froude number of the upstream flow is very



(.~)

t4~

0
(~)

K
(21

LaJ

BUMP HEIGHT/UPSTREAM DEPTH. bc/H
Figure 3.12

Reflection coefficients for channel with isolated obstacle and width,

2 3 4 5 B 8 9

w = 2.45. The mean flow rate is
15.5

15.4

15.2

15.0

14.8

14.6

14.4

li.z

14.0

13.8

13.6

13.4

13.2

13.0

12.8

12.8

12.4

Q = 1.

Figure 3.13
Cross-sectional interface profiles for controlled flow over obstacle

with bc/H = 1. The flow parameters are the same as those of the upper
(0 = .2) curve in Figure 3.12.

- AT SILL-

SILL ELEVATION

UPSTREAM OF
SILL

.1 1.2 1.0 .8 .5 .4 .2 0 -. 2 -. 4 -6 -. 8 -L.0 -1.2 -t.4



1.0

IiI

Lk

(~b)

Q)

W a .1 .2 .3 .4 .s .5 .7 .8 .9 1.0

(T- TC)/T

PLAN

A R

AIW Wc

Figure 3.14

Reflection coefficient for channel containing width contraction.

T = tanh(41/ 2w(x)), Q = 1, b = 0.



small, then a huge change in depth is necessary to generate the required

kinetic energy to satisfy the critical condition, implying a high wave

reflection coefficient.

The rotating case is quite different. It is no longer true that the

upstream state is dominated by potential energy. This is implied by

Equation (3.2.11):

6u = 01/2 T((1- )

which stipulates a balance between velocity and depth for upstream flows of

any depth. The basis for this result is the boundary layer effect, which

concentrates the mass flux in streams of width -1/2 along each wall.

Figure 3.13 shows cross sections of surface elevation at and upstream

of the sill for a controlled flow with Q = 1 and bc = 13.56. At the

upstream section, the Froude number (based on 3.10.16) is tiny;

u = .01.
X-Iu

However, boundary layers are present on either wall and the local Froude

number at y = -w is much higher;-

u /h 1/2 = .89 .

The fluid along the right-hand boundary (where the incident Kelvin wave

propagates) has high kinetic energy and can surmount the obstacle with a

'running start'. The result can be seen in the surface elevation at the

sill, which is actually greater than that upstream. The constricting

effect is therefore decreased, as is the reflection coefficient.

The results for a channel containing side contractions but no bottom

topography is shown in Figure 3.14. The reflection coefficients are



plotted for various potential vorticities as functions of the relative

contraction (T - T )/T. Again, the boundary layer influence causes less

wave energy to be reflected for large potential vorticity. Unlike the

previous case, however, the fluid is constrained on two sides, rather than

one, and complete reflection is realized as the channel width goes to zero

(i.e., as (T - Tc)/T * 1).

3.11 Self-excited Oscillations

The oscillatory flow treated in the previous section was set up by

periodic forcing away from the obstacle. There also exist situations in

which the oscillations are produced in the vicinity of the obstacle as a

result of a destabilization due to topography. Consider a steady solution

containing a double bifurcation (e.g., Figure 3.4). Which choice of

branches gives a stable solution? Intuitively, we might start upstream on

the upper (subcritical) branch and proceed through the first bifurcation

onto the supercritical branch. As the second bifurcation is approached,

however, the flow becomes unstable according to the geometry of the

characteristics. A quick inspection of other choices of branches reveals

that they too are unstable.

Under these conditions we might expect a hydraulic jump to form

between the two bifurcations. However the fluid downstream of the jump

would not have sufficient energy to flow steadily through the second

bifurcation. It appears that no stable, steady, controlled solution

exists.

Further investigation through the use of the numerical model is

difficult owing to numerical instabilities. However, it is possible to



model a similar nonrotating flow using the more stable one-dimensional

Lax-Wendroff method (see Appendix A).

Consider the double-silled obstacle shown in Figure 3.15. Steady,

transitional solutions for flow over the obstacle will display the same

sort of dual bifurcation discussed above. What solution results from the

sudden obtrusion of such an obstacle into an initially uniform flow

Figure 3.15 shows the adjustment that results from the experiment

suggested above. The obstacle is grown to a height b0  such that

bc < b0 < bb. Part 'a' shows the initial adjustment that takes place

including a bore which propagates upstream away from the obstacle. The

surface configuration left behind contains a small jump in the lee of the

downstream sill. This configuration is not a steady solution, however,

and another upstream-propagating bore is formed along with a packet of

waves with positive phase speed (Figure 3.15b). After these transients

move way from the obstacle, a new, larger hydraulic jump is formed in the

lee of the downstream sill (Figure 3.15c). However, this configuration

is unstable as before and events repeat themselves on a time scale that

is much longer (by a factor of 10 or 15) than the time scale of initial

adjustment.

It should be mentioned that destabilizing geometries, such as the one

shown in Figures 3.4 and 3.15, are the exception rather than the rule.

The topography must be fine tuned to produce two bifurcations.
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Chapter 4 Rotating Hydraulics and Dispersive Waves

4.1 Introduction

The semigeostrophic, constant potential vorticity solutions of the

last chapter bear great similarity to the one-dimensional solutions

discussed in Chapter 2. In particular, the adjustment that results from

a sudden change in topography is in both cases accomplished by two

non-dispersive waves, one moving upstream and the other downstream

relative to the flow. If the topography has a certain minimum height, bcs

then a critical condition is created at the sill with respect to the

upstream-propagating wave and the flow far away is permanently affected by

the change in topography. The critical condition causes the sill to act

as a source of information for the far field (see Figure 2.3c). If on the

other hand the sill height is less than bc, the only fields permanently

affected are those immediately above the perturbed topography.

It was shown in section 3.3 that the semigeostrophic limit (6 * 0)

allows only nondispersive (Kelvin) modes. Suppose that the channel has

an 0(1) horizontal aspect ratio and that the flow consists of a uniform

stream with velocity U and depth H. In addition to the Kelvin mode the

stream now supports linear Poincare waves with (dimensionless) frequency

[1 ( 2 n 2 +
Uk + [1 + (k2 + n 2) H = 1,2,3,...)

4 w2

(using the notation of the previous chapter). What are the hydraulic

properties of this dispersive flow? In particular, what role do the

+ c.f. Equation (4.2.18).



Poincare modes play in the adjustment that would result from the obtrusion

of an obstacle? Is it necessary to grow an obstacle to a certain minimum

height before upstream influence occurs, or does an arbitrarily small

obstacle cause an upstream response? Also, what is the nature of this

response -- does it decay away from the obstacle or is it felt infinitely

far away? Finally, is there any difference between the upstream

influence and the downstream influence?

At this point we might seek a further clarification of the affects

of dispersion using the characteristic tools developed earlier. However,

the characteristic formulation of problems with two spatial dimensions is

more complicated and consideraly less useful than the one-dimensional

formulation (see Whitham, 1974, section 5.9). Wave fronts now propagate

along characteristic surfaces whose geometry depends on the initial

orientation of the front. Since a continuum of fronts is generated by an

initial disturbance, it is no longer practical to integrate along

characteristics to obtain solutions. Thus, it becomes difficult to make

statements about the upstream influence of obstructions. The numerical

model is also of limited use in this problem because of the large expense

involved in resolving two dimensions with s = 0(1) and, more importantly,

because the stability problems associated with the Lax-Wendroff scheme

seem to worsen as the channel width is increased.

Because of these difficulties, we attempt to clarify the dispersive

adjustment process by seeking analytic solutions to a linearized version

of the adjustment problem discussed in Chapters 1 and 2. In this problem

we consider the obtrusion of an obstacle into a channel flow characterized
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by 6 = 0(1). The solutions are obtained from time-dependent equations

which have been linearized about the height-of the obstacle. This

approach runs contrary to our earlier observation that linear models are

inherently unsatisfactory in describing hydraulic control. In the steady

solutions of Figures 2.2 and 3.2 the controlled solution is associated

with a bifurcation (point (0 in Figure 2.2). This bifurcation is a

consequence of the nonlinearity of the governing polynomial. Away from

the bifurcation, however, there is no reason that a linear model might

reproduce the basic physics of the solutions. We therefore proceed in

anticipation of studying steady solutions which correspond in some way

with the subcritical or supercritical nondispersive solution studied

earlier.

4.2 Adjustment in a wide rotating channel

Consider a channel with uniformly sloping bottom and width 2w

(Figure 4.1). The channel contains a steady two-layer flow with interface

slope identical to the bottom slope. The upper layer is again inactive

and the (dimensional) velocity in the lower layer is

gdb
U = -dy = constant

and

H = constant.

Now consider perturbations Uu', Uv', and Hn of this uniform state

that result from the obtrusion of an obstacle of height b(y) + Hb' (x,y).

The velocity and height fields are written as



u = U [1 + U'

v =U

n = H [1 + Ti

(x,y,t)]

(x,y,t)].

Substituting these expressions into the shallow-water equations and

linearizing about u' and q we obtain

Fv' = -

d
(N I, + b',,)

Fu' = - (n ,a

u' X1+ vi , = 0

+ b'y ,)

F = wf/(gH) 1/2 = w/(Rossby Radius)

= + Fd aTt- at ax

t= t (gH) 1/2/L

x= x/w ,

[Fd = U/(gH)1/2 = initial Froude number],

y ' = Y/w .

The notation in (4.2.1) - (4.2.3) is now simplified by replacing

n/F and b'/Fd by T and b and dropping primes.

u - Fv = - -n - b

d0T
dtv + Fu = - y - by

d n
dt x y

The result is

(4.2.4)

(4.2.5)

(4.2.6)

dt

d
0-VI +

d 
Fd T+

(4.2.1)

where

(4.2.2)

(4.2.3)

and



The linearized potential vorticity equation can be obtained by taking

the curl of (4.2.4) and (4.2.5) and adding the result to (4.2.6). The

result,

CuY - v, + F-) = 0

implies that*

u - v + F7= (x - Fdt) . (4.2.7)

We assume that the obstacle is grown quickly but continuously, so

that the fluid interface initially bulges with the same shape as the

obstacle and no velocity perturbations are initially present. The initial

conditions are therefore

q(x,y,0) = u(x,y,0) = v(x,y,O) = 0

from which follows

O(x - Fdt) = 0

Before proceeding further, it is worthwhile recognizing the status of

the problem under consideration in relation to the string of geostrophic

adjustment problems that have been solved since the pioneering work of

Rossby (1936). This subject has been reviewed by Blumen (1972). We note

that the present problem differs from the archetypical geostrophic

adjustment problem in two respects. First, the solution will not adjust

* Equation (4.2.7) implies that an initial disturbance in the potential

vorticity is advected away from the obstacle and plays no role in

determining the asymptotic state over the obstacle. However, we will

have no occasion to use this fact as 0 is zero everywhere for our

initial conditions.



to a geostrophically balanced state unless v = 0, as indicated by

Equations (4.2.4) and (4.2.5). (More typically, the advective terms are

absent and a final steady state will be geostrophic.) Second, the domain

of solution is bounded by solid, vertical walls. The only progress made

on the latter complication has been by Gill (1976) who found linear

solutions to a dam-break channel flow problem in which the initial state

is stagnant but contains a discontinuity in the free surface.

A simplified drawing of Gill's solution is shown in Figure 4.2. The

initial discontinuity in the free surface lies pependicular to the axis of

the uniform, infinite channel (Figure 4.2a) at x = 0. The initial

potential vorticity is higher to the right of the discontinuity than to

the left, owing to the greater depth on the left. Since Gill's linear

solution conserves potential vorticity pointwise, the discontinuity in

potential vorticity remains fixed at x = 0 throughout the adjustment,

despite the fact that the depth and velocity fields become continuous there.

The initial distribution of potential vorticity is responsible for

determining the character of the final steady state (shown in Figure 4.2b).

After the 'dam break' there is a flow of fluid from left to right due to

the pressure gradient associated with the discontinuity in depth. Thus,

Region B experiences a general increase in depth while Region A

experiences an decrease in depth. The fluid flows from Region A into B in

boundary layers with Rossby deformation scale thickness. In Region A the

relative vorticity must decrease to accommodate the decrease in depth,

implying that the flow must lie along the north boundary (for northern

hemisphere rotation). In Region B the depth increases and the boundary

layer must lie along the south wall.



Because of the boundary layer locations imposed by the pointwise

conservation of initial potential vorticity, there must exist a southward

cross flow in the final steady state (Figure 4.2b). The position of this

cross flow is the same as that of the initial discontinuity in depth.

Fluid parcels in the cross flow change their potential vorticity upon

passing the line x = 0. It is difficult to see whether or not the cross

flow would exist if the fluid parcels conserved their potential vorticity.

We note that this difficulty is avoided in our adjustment problem since

the potential vorticity is everywhere uniform. We will be curious to see

whether or not the obstacle can induce a cross stream flow similar to

Gills.

An equation for v alone can be obtained by taking the x-derivative of

(4.2.7) (with 0 = 0) and applying (4.2.4) and (4.2.6):

- = uxy - Fn

=v + dt0 y + F (d u Fv + b

Equation (4.2.5) can now be used to substitute for the terms

containing n and u, the result being

d 2v d2
v + v = 0 + -- b + F2v -F b,xx yy dt2  dt y x

or

S V2v + F2 v = Fb - F b . (4.2.8)
dt 2  x o xy

A similar procedure can be used to obtain the following equation for n:

d_ 2
d 0 -2n + F2 2b (4.2.9)
dt2



First consider steady solutions to (4.2.8) and (4.2.9). If the

channel width is much smaller than the Rossby radius (F << 1) then the

steady version of (4.2.9) simplifies to

(Fd2 - 1) n2 - = V2b . (4.2.10)

If the obstacle is one-dimensional, so that no y-dependent modes are

synthesized in the initial disturbance, then steady solutions will depend

only on x. Integration of (4.2.10) then yields

n = 21 b (4.2.10a)
(Fd - 1)

This equation simply gives the linear version of the non-controlled

solutions found in Chapter 2. The surface (or interface) elevation is

Fd2

H + + b = 2 d b + H
(Fd ~ 1)

As before the surface rises/dips over the obstacle for supercritical/

subcritical flow. As Fd * 1, this deformation grows without bound and

the linear approximation becomes inadequate for finite b.

If the topography is two-dimensional, solutions to (4.2.10) again

depend upon the value of Fd relative to unity. If F2 < 1, then (4.2.10)

is elliptic and a cross-channel mode will have exponential behavior in x.

This suggests a decaying response away from the obstacle. If F2 > 1 thend

(4.2.10) is hyperbolic and the solution can be obtained by integration

along characteristics X_+, where

d X= X_ (F 2 _ 1)1/2
dTy d



These characteristics reflect off of the channel walls in a periodic

manner and it is readily verifiable that the solutions away from the

obstacle are periodic in the y-direction. Finally, (4.2.10) becomes

parabolic for Fd = 1. In this case integration of (4.2.10) across

the channel gives

an an+ +W 2bdy

Since (by 4.2.5) an_+/ay = - ab/ay, the above equation implies that

b dy = 0
ax -w

which, for isolated topography leads to b = 0. No solution to the

parabolic equation exists unless the obstacle causes no net change in

bottom elevation.

If F = 0(1), the classification of (4.2.8) or (4.2.9) with respect to

Fd remains unchanged and solutions can be expected to maintain the general

behavior outlined above. We now compute a specific solution with F = 1.

Because of the anisotrophy that rotation introduces, it is no longer

necessary to use y-dependent topography to synthesize y-dependent modes.

We therefore choose an obstacle with elevation

0 (lIxi > ir)
b = (4.2.11)

1 + cos x ( I xi < w )

Because of the boundary conditions,

v (x,+ 1,t) = v-+ = 0

it is easiest to work with Equation (4.2.8). However, the Kelvin mode is

characterized by v = 0 and will have to be added later. In view of the

above boundary condition, we express the solution as a cosine series:



~ (2n + 1)v v (xt) cos [ 2 ir y]
n=o

(4.2.12)

Multiplication of Equation (4.2.8) (with F = 1 and ab/ay = 0) by
(2n + 1)co [- 2 w y] and integration of the result across the channel yields

2 2 - 1
n 2 n-I

dt a x

d 2

dt

dy cos [(2n + 1) 1 y) Vy

2a n +
a x2

2 - db
n n = an U

2 (2n + 1) r 2+
n ~2

and

a 4 (-1)nn " (2n+1T

is the coefficient in the Fourier Series

*0 (2n + 1) y (lyl > 1)
I a n cos [ 7r 1 ] =n=0 to (|jy = 1)

We will express the solution to (4.2.13) as the sum of particular

and homogeneous parts:

vn = H n (x,t) + Pn (x)

Since the nonhomogeneous term in (4.2.13) is an odd function of x,

we write Pn(x) as a Fourier sine integral :

Pn(x) = An (k) sin (k x) d k (4.2.14)

It can readily be verified upon substitution that the Fourier coefficient

where

+ =

(4.2.13)



An (k) = Eln2a+ k 2 0 's (x'k) d x'

where x 1 - Fd2

For the topography given by (4.2.11) this integral can be evaluated

in closed form:

2 dbsin (xt) d x' sin [(1-k) 7] _ sin [(1+k) i]

d0 sinr 1xt d xk 1 + k

1-cos ir si2n k cos sin rk

= (1 ) si n irk = 2 ' 7~
1TTW(

(1 k1

and the Fourier coefficient is therefore

2a n sin irk
A (k = 2ansnA(4.2.15)
An n + k2 x2)(1 - k2)

The transient (homogeneous) solution Hn (x,t) will be expressed

as a Fourier integral of Poincare waves. The initial condition v (x,y,O)

=V n (x,O) = 0, implies that

H n (x,0) = n (x) . (4.2.16)

In view of this condition and the form of the particular solution, we

write

Hn (x,t) = Bn (k) sin [nx - w_ (k) t] dk (4.2.17)

The frequency w_ (k) is constrained by (4.2.13) to obey the

dispersion relation

W, (k) = Fd k *- (k2 + 1n2)1/ , (4.2.18)



which is just a renormalized version of (4.1.1).

The Poincare waves will therefore occur in pairs, each member

identified by the '+' or '-' sign in (4.2.18). Thus

Hn (x,t) =
2 1/2

Bn(k) {sin [kx - (Fd k + (n2+1n2) ) t]} dk

+ sin [kx - (F d k - (n2+1 n2 )1/2 ) t] }d

=co Bn ( sin (kx - Fd k t) cos [(k 2+1n271/2 t] dk .

Combining this expression with the particular solution (4.2.14) gives

vn (x,t) = {A(k) sin nx + B (k) sin (kx-Fdkt) cos [(k 12 1/2t } dkn ndn

and application of the initial condition (4.2.16) leads to

An = - Bn '

so that the solution simplifies to

~ O

vn(x,t) = An(k) {sin kx - sin (kx -

2 an f sin 7r k
- (in + x2k2 )(1 - k2)

2+ 21/2
Fd k t) cosC[(k2+1n2) t]}dk .

[sin kx - sin (kx - F kt)]d

- Cos [(k2 + 2 1/2
t] dk . (4.2.19)

The behavior of this integral depends crucially on the singularities

due to expression (12 + x2k2 )(1 - k2). The apparent singularity k = 1 isn

actually removable, as sin irk * 0 for k * 1. However, a singularity does

exist at k2 _ 2 2/X. If the initial flow is characterized by F

> 1 then x = (1 - F2)1/2 is imaginary, k is real, anddimgnrkirelan



_ = Fd k- (k2 +1 )1/2

The singularity thus occurs when the flow is critical with respect to

phase speed. On the other hand, F < 1 implies that the singularity

will occur at imaginary k.

First consider the steady part of the integral in (4.2.19). It is

convenient to rewrite this as follows:

p W 2 an f co sin (k) sin (kx) dk 2 an
n il _ C n2 + x2k2) (1 - k2 )2 + x2)

ro sin irk sin kx + sin irk sin kx dk
J) L 1- k2 (1 n2A 2) + k2J

These integrals can be evaluated using residues or simply

them up in the tables of Gradshteyn and Ryzhik (1965). For x2

F2d > 0, the solution is

an x ln ir-xI n/A 21 n 0
S~ 22 e -2 2(1 2 x)ln [ sin(x)

(x2>0) n n

by looking

(4.2.20)
|x r

For x2 = 1 - Fd2 < 0, the solution is

pn W
(x 2 <O)

0 (x < -ir)

2an [sin x + X sin n (x+r)] (I x < i)
x2 + l2 1 n x

n

-2an 1 . n
n2 2 sin (-x) cos (- x) ( x > 1)

1 (x +1 )n n

(4.2.21)

= 0 .



If L2 = -l2, then the dispersion relation for a Poincare wave

propagating upstream relative to the flow becomes

W- = Fd k - (k2 _ 2)1/2 = Fd k - (k2 - 1 + Fd2 1/2

In particular, if the phase speed is zero (u = 0) then k = 1 and the wave

has the same length as the topography. Thus x = 1n implies that a wave

whose phase is frozen can resonate with the topography, as indicated by

the presence of (x2 _ 2)-1 in the above solution. The resonant (x = 1

version of (4.2.21) is

0 (x <-U

pnx) = n [x cos x - sin (x+7r) - 7 cos (x+7)] (lxi < 7) (4.2.21a)

(x2 1 2<0) n

- 2 a

[sin (x-7) + w cos (x-7)] (x > 1).
1 n

Figure 4.3 contains some sample steady solutions for the three cases:

x > 0, x = 0, and x < 0 which correspond to Fd < 1, Fd = 1, and Fd > 1
respectively. These results are compared to Figure 4.4 which shows some

semigeostrophic solutions in the corresponding parameter range. If

Fd < 1, the initial flow is subcritical with respect to the Kelvin

mode and the solution decays away from the obstacle in either direction

(Figure 4.3a). According to (4.2.20), the length of this decay is x/lne
Therefore the decay scale varies from a value of 1/ln for highly

subcritical+ flows to zero for nearly critical flows. Upstream influence

is felt, but within at most a few obstacle lengths of the topography.

+ Unless indicated otherwise the terms subcritical, supercritical and
critical are used in connection with the Kelvin wave speed.



If Fd = 1, the initial flow is critical with respect to the Kelvin

mode and the Fourier integral (4.2.19) blows up, as expected. If Fd > 1,

the initial flow is supercritical and the steady solutions contain lee

waves (Figure 4.3b). According to (4.2.21) these waves have length

2 r x/ln and are phase frozen in the supercritical flow. They resonate

with the obstacle if x = ln and will grow linearly with distance over a

series of obstacles of comparable length. They depend on the ability to

align their crests obliquely to the channel axis so as to achieve zero

phase velocity in the supercritical flow.

The unsteady part of (4.2.19) is more difficult to evaluate in closed

form. However, some progress can be made by inspection of its asymptotic

properties for large time. Using the standard arguments of stationary

phase (Copson, 1965), we note that as t ->o the major contribution to the

integral at points x and t will arise from wave numbers ks which satisfy

2 2-1/2
x/t=C = ' (ks = d - ks (ks + 1 )

For points close to the obstacle, x/t is tiny and wave numbers ks which

contribute most will be those for which C (ks) is nearly zero. The

Poincare modes with near zero group velocity can therefore be expected to

play a major role in the establishment of the decaying region which flanks

the obstacle when Fd < 1. (If Fd > 1 then C > 0 for all ks, and such

behavior is not possible.)

The stationary phase approximation to (4.2.19) decays like

[W''(ks) t]- 1/2 as t -> o.+ Therefore the adjustment takes place somewhat

+ This is a standard result which can be found in Copson (1965). If

''(k s) = 0 then the decay rate is ('''(kS) t-1/3 . However it

is easy to verify that ''(ks) 4 0 in our case.



slower than in the nondispersive case. There the adjustment time is simply

2 r/ 1-Fd : the time necessary for a Kelvin wave to cross the obstacle.

The Kelvin mode is not needed to satisfy the initial conditions on v.

However, it is needed to satisfy the initial condition

n (x,y,O) = 0,

and this synthesis is described in Appendix C. In particular, it is shown

that the Kelvin mode satisfies the same time-dependent equation and

initial conditions that a long gravity wave would in the nonrotating

analog of the problem. Therefore, Kelvin waves will propagate away from

the obstacle as isolated packets for Fd 4 1 and will contribute to

upstream influence in the steady state left behind.

We have seen that the addition of dispersive waves adds interesting

complications to the adjustment and that these features are associated

with the idea of criticality. When the flow is subcritical with respect

to the group velocity of a dispersive mode the topography causes a

response which decays away upstream and downstream. When the flow is

critical with respect to phase, the obstacle excites (possibly resonant)

lee waves. Despite this, the global upstream influence that is basic to

hydraulic control remains possible only when the flow is critical with

respect to the Kelvin mode.

It is also interesting to compare the results in Figures 4.3 and 4.4

to Gill's (1976) solution to the dam-break problem (Figure 4.2). As noted

earlier, the most striking feature of Gill's solution is the crossing of

the boundary flow from the north to the south wall. We first observe

that the subcritical solutions shown in Figures 4.3a and 4.4a exhibit no
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net crossing of streamlines from one side of the channel to the other.

This is evidenced in each case by the symmetry of the cross stream

transport, vh, with respect to the sill of the obstacle. In the

transitional semigeostrophic flow of Figure 4.4b, however, the flow does

exhibit a net transfer of mass flux as evidenced by the asymmetry of vh

with respect to the sill. We might therefore associate the crossing of

the stream in Gill's solution as evidence of hydraulic control and

determine the crossing point as the position of the controlling obstacle.+

It is important to note, however, that the cross flow implied in Figure

4.4b is opposite in sense to that in Gill's solution. The downstream

boundary layer structure of the flow is determined in a complicated way by

the upstream fields and is not, as in Gill's solution, sensitive to the

initial potential vorticity distribution.

It does not seem appropriate to make comparison between Gill's

solution and the supercritical solution of Figures 4.3b as Gill's flow

was subcritical.



5. Summary

In an attempt to understand the far field effects of deep straits and

sills on unsteady abyssal currents, we have studied two problems: the

adjustment of a steady current to a sudden change in bottom topography,

and the oscillatory upstream forcing of a steady flow over topography. In

the analysis special interest has been paid to the applicability of

classical hydraulics concepts to the unsteady flows.

We first summarize the conclusions obtained from the results of

adjustment problems, in which one of three basic flows is forced to adjust

to a sudden change in the height of an obstacle. In the first case

(Chapter 2) the basic flow is nonrotating and one-dimensional, while in

the second (Chapter 3) the flow is semigeostrophic with constant potential

vorticity. Both flows are described by quasilinear, hyperbolic systems

of equations in one spatial dimension, allowing the adjustment to small

topographic perturbations to be studied conveniently using

characteristics. For large changes in topography, a Lax-Wendroff

numerical scheme was used to obtain solutions. The third flow considered

was a fully two-dimensional, rotating-channel flow and analytic solutions

were obtained using equations linearized about the topography.

The adjustment problems reveal how far field influence is established

by a topographic feature, such as an obstacle. The results depend to a

certain extent on whether the flow is dispersive or nondispersive. In the

nondispersive case (the flow is either one-dimensional or semigeostrophic)

the obstacle must grow to a certain minimum height before any influence is

felt in the surrounding flow fields. If the obstacle height is less than



the minimum required, then obtrusion results only in the generation of

isolated wave packets which radiate away and leave the neighboring flow

unaffected. If the obstacle is grown to a larger height than the minimum,

then bores are generated which propagate away from the obstacle and

permanently change the neighboring flow fields, partially blocking the

upstream flow. This blockage is eventually felt at infinity. Subsequent

obstacle growth results in the generation of new bores which alter the

neighboring fields, and we say that the obstacle exerts far field

influence. Eventually the obstacle reaches a height at which the

upstream flow is completely blocked.

In the nondispersive case, the blocking bore provides the means by

which the obstacle exercises influence over the far field. If the basic

flow is two-dimensional, as in the semigeostrophic case, then the bore can

change the potential vorticity of the flow: this change is proportional

to the differential rate of energy dissipation along the line of surface

discontinuity. Because the bores are essentially breaking Kelvin waves

which are banked against the solid channel boundaries, the magnitude of

the surface discontinuity (and therefore the energy dissipation) normally

decreases with distance from the wall. This allows predictions of the

location and sign of potential vorticity change which are verified by

numerical results.

If the flow is dispersive (supports Poincare waves) then the far

field influence of a small obstacle differs somewhat from the

nondispersive. Because of the limitations imposed by the linear

approximation, it is not possible to consider obstacles with height



greater than the critical height. In place of varying the obstacle height

we vary the Froude number (based on the Kelvin wave speed) of the initial

flow. If the initial flow is subcritical with respect to the Kelvin mode,

then the obstacle causes response in the neighboring fluid which decays

away from the obstacle. The decaying regions are set up by dispersive

modes with near zero group velocity. If the flow is supercritical with

respect to the Kelvin wave speed then the upstream response is nill but

lee waves are formed behind the obstacle. In either case the obstacle

exerts no influence over conditions far upstream, a property that is

shared with the nondispersive flows over small obstacles.

The results suggest that it is always necessary to grow the obstacle

to a certain finite height in order for upstream influence (hydraulic

control) to occur. Based on the asymptotic states that were observed we

can list some distinguishing features of controlled flows that might be

used in observation work to decide whether or not a given sill exercises

control over upstream conditions. In particular, the following are

indicative of hydraulic control:

1. The flow is critical with respect to a nondispersive mode.

2. The upstream state is subcritical and the along-stream structure

of the flow exhibits strong asymmetries with respect to the

bottom elevation. Examples would be the crossing of the stream

from one bank to the next or a change in the interface from its

upstream basin level to a new downstream basin level.

3. A hydraulic jump downstream of the sill.
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The second set of problems involves the oscillatory forcing at some

upstream point of a steady, controlled flow. Since analytic solutions for

oscillatory flows are generally unavailable, the investigation of this

problem involves the use of characteristics and numerical results.

Discussion is limited to nondispersive flows.

First considered is the situation in which the oscillations fail to

disrupt the general configuration of the characteristic curves of the

initial controlled flow. This configuration is distinguished by the x_

characteristics, which diverge from the sill and connect the sill to all

upstream and downstream points. When the flow over the obstacle becomes

oscillatory, the divergence of x characteristics occur about a dividing

characteristic which oscillates about the sill (see Figure 2.10). The far

field flow can now be traced back to the sill through x_ characteristics

which emanate from the neighborhood of the dividing characteristic.

Numerical results verify that the far field influence of the obstacle, as

computed in terms of time-averages, is similar to the influence the

obstacle would have if the flow were steady.

The next question addressed concerns the ability of the forced

oscillations to destroy the initial characteristic configuration by

sweeping away the dividing characteristic. Numerical experiments suggest

that the most effective way to accomplish this is to force the hydraulic

jump (which normally exists in the lee of the sill) back upstream over the

sill, so that subcritical conditions are created everywhere. Since jumps

respond slowly (compared to the forced wave speed) to variations in

upstream or downstream conditions, waves with low frequencies are required



to move the jump the required distance. Thus, low frequency waves were

found to be the most effective disrupters of control.

An idea which deserves further mention is the relative stability of

the steady controlled state to time-dependent disturbances. This property

is implied by the diverging pattern of x characteristics (Figure 2.4c)

along which disturbances are spread (rather than focused). It is also

present in the hysteresis effect (section 2.5) which tends to maintain the

controlled state. Finally, the stability is enhanced by the sheltering

effect of the obstacle as manifested in the strong dynamic balance and the

ability to reflect appreciable (c r > .33) amounts of energy upstream.

Because of numerical modeling difficulties (Appendix C) numerical

tests with oscillatory flows were made only in the one-dimensional,

nonrotating case. Although the general interpretations concerning far

field influence are the same in both nonrotating and semigeostrophic

systems, we can expect that local behavior of the waves near the obstacle

will be quite different. For one thing, the reflection coefficients in

the semigeostrophic case (section 3.10) can be much smaller than in the

nonrotating case. Thus a greater amount of Kelvin wave energy can be

expected downstream of the sill. Competing with this effect, however, is

boundary layer effect, which places the transmitted Kelvin wave on the

opposite wall as hydraulic jump. The jump is therefore protected from

upstream forcing.

Based on the results from the work on nondispersive, oscillatory

flows it is possible to make some observations concerning the

applicability of classical hydraulics concepts to deep, unsteady strait



and sill flows within the assumed dynamical framework. If the flow is

subcritical in the upstream basin and supercritical (with respect to a

nondispersive mode) at some point within or downstream of the dividing

strait, then the geometry of the strait is crucial in determining the

flow in the neighboring basins. This is true whether or not the flow is

unsteady, as the basin flow can in either case be traced back to a

dividing characteristic within the strait. Furthermore, the flow

configuration will be stable, even in the presence of violent upstream

forcing, unless a jump exists near the dividing characteristic or the

strait contains multiple sills or contractions of similar elevation or

width. Therefore, the use of wier formulas is advisable only if the

strait contains a single sill or side contraction.



Appendix A Numerical Method

The numerical method used to model the one-dimensional flows of

Chapter 2 is a finite-difference scheme introduced by Lax and Wendroff

(1960) and discussed in the textbook of Roache (1972). The scheme is

designed to simulate systems of equations written in conservation law

fom:

+ + K =0. (Al)at ax

Where w, G, and K are vector-valued functions of the dependent and

independent variables. Lax and Wendroff showed that the quantities

conserved in (Al) will also be conserved in their difference equations

(obtained from Al through a Taylor expansion), even in the presence of

shocks. If shocks occur in the solution, they are smeared over three or

four grid points. Because of these features, the Lax-Wendroff method has

been used successfully by a number of authors to compute solutions

containing shocks. Roache (1972) gives an excellent review of the

literature as well as a derivation of the difference equations.

The one-dimensional version of equations (3.7.1)-(3.7.3) are of the

form Al. As we have seen, the conserved quantities implied by (3.7.1)-

(3.7.3) are mass and momentum flux. The Lax-Wendroff scheme then tends

to insure that the Rankine-Hugonoit conditions (2.2.1)-(2.2.2) will be

satisfied across the free-surface shocks of Chapter 2.

The initial value problem described in Section 2 was posed in the

following manner: uniform values of the dependent variables were

specified along 2,000 grid points. An obstacle centeredbetween grid

points 950 and 1050 was then grown quickly (within 20 time steps). The



resulting time-dependent motion was then computed with the end conditions

(at grid points 1 and 2000) held constant. The computation was terminated

before wave reflections from the end points reached the obstacle.

In the numerical solutions involving upstream or downstream forcing,

the initial state consisted of a steady flow. The depth of fluid at one

boundary was then varied sinusoidally about the initial depth. The

corresponding velocity (or flow rate) at the boundary was then calculated

using the values of the Riemann invariants carried to the boundary from

the interior on characteristics. At the left boundary, for example, the

Riemann invariant R_ = u - 2h112 is specified by the interior.

The velocity corresponding to forced values of h(t) is thus

u = R_ - 2h1/2(t). As above, the computation was terminated before

reflections from the opposite end of the channel could affect the

solution.

Solutions that are obtained using the Lax-Wendroff scheme frequently

contain numerical oscillations that are due to nonlinear dispersive

effects that result from the discretization. In the solutions of

Chapter 2, these oscillations remained small, although the oscillations

formed in the adjustment to a double sill (Figure 3.15 (b) and (c)) are

close to being unacceptably large. The stability criterion (based on

linear analysis) for the time step of the numerical scheme is

At < Ax/X + max (A2)

where Ax is the grid spacing and X+ max is the maximum value of

= u + hl/ 2. The value of At/Ax used was typically between .2

and .4. Satisfaction of A2 prevented the computation from blowing up but

did not prevent the short oscillations from forming.
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It is possible to extend the original Lax-Wendroff method to two

spatial dimensions, however the numerical scheme is extremely cumbersome

and time consuming (Roache, 1972). A more economical version is a

two-step variation of the Lax-Wendroff method introduced by Richtmeyer

(1963). Instead of direct time stepping, the method requires an

intermediate calculation to be done between each time step. Although

less is known about the properties of the two-step difference equations,

the method has been tested successfully in connection with shallow-water

wave problems (Sielecki and Wurtele, 1970) and aerodynamic shock

computations (Rubin and Burstein, 1967).

Unfortunately, the stability properties of two-dimensional, two-step

Lax-Wendroff methods are worse than those of the one-dimensional method

(Roache, 1972). For example, the numerical oscillations that occurred

downstream of the free-surface shocks in the adjustment experiments of

Chapter 3 initially proved to be unacceptably large. For this reason an

artificial damping term of the form

v-(h - ) (A)ax ax ax
was added to the x-momentum balance in order to damp disturbances with

short wave lengths. The constant v is a pseudo viscosity which

typically had a value between 0.5 and 1.

Although A3 acts as a potential source of momentum, test runs showed

the error in the x-momentum balance due to A3 to be negligible away from

This form was suggested by E. Isaacson (unpublished manuscript) in

connection with a similar computation.
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the shocks. Figures A1-A3 show a comparison between an artificially

damped solution and an undamped solution obtained using identical initial

conditions. In Figure Al we show the undamped, one-dimensional adjustment

of a subcritical flow to an obstacle. The solution is shown shortly after

the obstacle appears and contains short numerical oscillations. Figure A2

shows the same problem, with the solution recomputed using v = 1. A

superposition of the two results is shown in Figure A3.

Comparing the first two figures, we see that artifical damping has

smoothed the shortest oscillations (which appear in Al between grid points

150-200). The oscillations that trail the wave lying between x = 300 and

x = 350 are somewhat longer and remain undamped in Figure A2. Also, the

hydraulic jump that lies between x = 170 and x = 180 is smeared by the

damping term as indicated by the higher surface elevation at the base of

the jump in Figure A2. Finally, the basic structure of the flow away

from the bump appears in Figure A3 to be unchanged by the damping. The

two solutions are practically indistinguishable in most places.

The addition of the damping term A3 rendered the computation stable

for 400 or 500 time steps, a period sufficient for adjustment to become

complete within several obstacle lengths of the topography. For longer

times, medium-length numerical oscillations grew without bound. These

oscillations appear to be associated with the two-step method but not the

original one-step method. It may be possible to use the one-step method

without damping to compute solutions requiring long computation times.

The initial value problem was posed in the same manner as in the

one-dimensional case, with a 15 x 400 grid forming the channel and the
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obstacle centered between rows 250 and 300. The side wall boundary

conditions were imposed by setting v = 0 at side wall grid points and

extrapolating from the interior values of u and h through a second

order Taylor Expansion.

Appendix B Proof That

G = u+h+ - u-h_ + QT-2 2 (u+h+ + uh ) = 2[Ed-1/2 (-1- T3) + 0-3/2(T 3- T)]

Recall the identity derived in section 2.1:

6u = 01/ 2T(~ 1 - f) , (B.1)

along with the critical condition,

c1/2Tc 1 0c 1 = ic1/2[1 - Tc2U A c) 1/2 (B.2)

and the continuity condition

6h h = -Q . (B.3)

We first note that

u+h+ - uh_ = 2(6u + 6h)

u+h+ + u_ h = 2(du6h + Uh)

so that

G = 2[6uh + i6h + QT-2 -2( su6h + 5i6)] (B.4)

If the flow is critical, (B.1)-(B.3) can be used to express G in

terms of hc alone. We first note that

6uf + Udh = 01/ 2 Tc c (f1 c - TCi-1/2 hc[1 - T c2 (1 c)]

= 0-1/2Tc 3 c _ 1/(Tc + Tc . (B.5)
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Also

Qr2 hc-2 (6uh + 5h) = 0 1 /2T c- c-1/2[1 - T 2(1 - c )]1/2

(-01/2Tc(#-1 - he c -)(T 1/ /2 2)1 ~ c2( ~ c) 1/2

+ 1/2[1 ~ c2 U A 1/2 c

- T~-10 3/2[1 - Tc2 (1 d] [0c - Tc 2 (1 c

- T- 1/ 2T -1 fi + 1/2T 2 _ 0- 3/ 2T + 0-3/2T 3 - 21-1/ 2T 3 f

+ 01/ 2Tc3 h c 2 (B.6)

Combining B.5 and B.6 gives

G = 2[hc -1/ 2 (T- 1 - T3) + 0-3/2(T 3 - T)]

Since T < 1, the sign of G depends on the magnitude of hc. We only

consider flows which are not separated, so that

h+ = h + 6h = Ii- Q/fi < 0,

in implying that h> Q1/ 2. This can be used in B.2 to show that

7 (T~- - T3 -> 3 / 2 (T 3 - T)

Therefore, G(hc) > 0 for non-separated flows.

Appendix C Computing u and v from v

Since linear Kelvin waves are characterized by v 0, the solutions

of Chapter 4 to (4.2.8) contain only Poincare waves. To synthesize the
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Kelvin mode we must compute either n or u. Following Gill (1976) we

partition the dependent variables into odd and even parts. For example,

n (x,y,t) = nodd + nev

where

nodd (xyst) = n(x,y,t) - n(x,-y,t)

ev (x,y,t) = n(x,y,t) + n(x,-y,t)
ev 7

The fact that both b'(x) and v(x,y,t) are even functions of y

provides a great simplification. We start by breaking Equations (4.2.4)-

(4.2.7) (with F = 1 and # = 0) into odd and even parts: this yields

d0 uev a v n ev db (Bi)
dt ax ~ ,(

d0 uodd a nodd (B2)
dt - ax

(from 4.2.4);

ddtv + a odd 
(B3)

7t Uev= ay

u ~a -ne M
uodd=~ ayev , (B4)

(from 4.2.5);

Sev ev = (B5)
dt ax 0,

(from 4.2.6), and

a Ue
ay u ~ "odd (B6)

a Uodd av T ~7)
ay a 4ev

(from 4.2.7).
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If nev and uev can be found, then nodd and uodd can be computed

directly using (B4) and (B6). We therefore start by finding nev and uodd'

Combining (B4) and (B7) gives the following equation for nev:

2
n - n = - v (B8)~ev ~ev a

while (83) and (B6) give a similar expression for uev:

a32 u d v
uev u ev ~ dt (B9)

(2n+1)Using the fact that v = v (x t) cos [ 2 i y], we can find
n=0 n

the following solutions to (B8) and (89):

"ev Z avn [(2n+) 2 ,2 11 cos (2n) wy] + N(x,t) cosh (y) (B1O)
n=0

Sdv (2n+1)2 2 + 1] cos (2n+1) wy + U(x,t) cosh (y).(B11)
n=0

At t =0, we have v = vn = u = n =0. It follows that uev and nev

as well as uodd and nodd must be initially zero. Hence,

N (x,0) = U (x,O) = 0 . (B12)

Substituting (B10) into (81) and (85), applying the result at either

wall (where cos (2n+1) iry] = 0) and combining the result leads to a wave

equation for N (x,t):

d02 N a2N d2b
2 ~ 2 ~ 2 (B13)

dt ax dx

The same procedure can be followed to obtain a single equation for

U, the result being
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d 02 U 2 d2bo 
-U F d 7

dt - - ~ dxg
(B14)

B13 and B14 are the same equations that govern the nonrotating,

one-dimensional analog of the adjustment problem, with N and U the

total depth and velocity perturbations. The solutions can be written

2
N(x,t) = b/(Fd -1) + 00 G2(k) [cos k (x- (Fd1)t) (B15)

+ cos k (x-(Fd+1)t)] dk

U(x,t) = - Fdb/(Fd2-1) + G2 Ecos k (x- (Fd-1)t)
d d - f 0 -- d (B16)

+ cos k (x-(Fd+1)t)] dk

where GI(k) and G2(k) are determined in terms of the topography by (B12)

and (4.2.11):

G2(k) = 1 2
n(Fd2-1)

Fd

G 2(k ) = d 2 _)

I
-0

-- 

cos (kx) b

cos (kx) b

(x) dx = -2k sin wk
ir(Fd -_1)(1-k2)

(x dx = 2Fd 2 nk
(Fd -1)(1-k')

and where the integrals have been evaluated with the aid of Gradshteyn

and Ryzhik (1965).

Finally, the odd parts of n and u can be computed from (B4) and (B6)

aue v

ay
d vn [(2n) 2n+1)2 r + s]i 2n wy]

n= dt 2 4 2 (B19)

- U (x,t) sinh y

(B17)

(B18)

Todd
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uod - aev (2n+1) I (2n+1)2 ,2+ 1]-1 si(2n+1) y] (B20)
odd ay n=0 ax 24

- N (x,t) sinh y

The complete solutions are obtained by combining (B19) and (B20) with

(B10) and (B11). It is easy to varify that n and u satisfy the

boundary condition

U (x=1)

implied by (4.2.5) with v = = 0. Taking odd and even parts of the

above equation, we find

uodd ~~ay ev

uev -ay- nodd

However these are identical to B4 and B5, which have been used to

calculate nodd and uodd. Hence, the boundary conditions are

automatically satisfied.
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