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Abstract

The principal objective of this thesis is to determine a basic state, constrained by both
dynamics and observations, for the study of synoptic scale waves in the atmosphere. Such
a basic state may be regarded as the balanced mass and wind fields of a steady flow in
which the synoptic scale waves and other transient features have been removed while cer-
tain dynamically important features of the observed potential vorticity distribution have
been retained.

Isentropic analyses reveal that potential vorticity is nearly uniform in the troposphere and
lower stratosphere away from the polar and subtropical jet streams. Maxima in the magni-
tudes of potential vorticity gradients are found along the tropopause in the vicinity of the
jets. Instantaneous analyses of Ertel potential vorticity (Q) and Montgomery potential (M),
show a tendency for the isopleths of each field to be nearly parallel - suggesting that a
steady component of the flow dominates the instantaneous observed flow. Geostrophic
scatter diagrams of Q and M constructed for individual isentropic surfaces suggest that a
robust functional relationship between Q and M (i.e. Q = Q(M)) may be defined for each
isentropic surface.

While the condition Q = Q(M;0) satisfies the requirement for the basic state to be steady
in the interior, steadiness also requires that the advections of potential temperature at the
both the lower and upper boundary be zero. (i.e. M = M(O)). At the lower boundary, a rela-
tionship between M and 0 is obtained; at the upper boundary, the time mean M is pre-
scribed. The technique used to determine the steady, balanced, basic state essentially
involves inverting the potential vorticity field to determine the Montgomery potential,
while constraining the solution to obey Q = Q(M;0), subject to boundary conditions, one
of which satisfies the aforementioned boundary conditions on M. The resulting nonlinear
problem is solved iteratively. A geostrophic balance condition is used in the inversion.

The technique is demonstrated by solving for a basic state flow for January 1991. The
basic state that is determined is characterized by an equivalent barotropic structure with
ridges over the oceans and troughs over the continents and light winds at the surface.
These are attributes of the so called "thermally equilibrated" or "resonant response."

In addition to determining this basic state flow, a new expression for the refractive index is



derived in isentropic coordinates making use of the geostrophic momentum approxima-
tion. In its simplest form the refractive index is expressed as the gradient of the natural
logarithm of the potential vorticity with respect to the Bernoulli function.

Thesis Supervisor: Kerry A. Emanuel
Title: Professor of Meteorology
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Chapter 1

Introduction

The existence of horizontal wave-like structures in the troposphere has been recog-

nized from the time upper tropospheric synoptic charts were analyzed in the early 1930's.

These analyses reveal a broad spectrum of spatial scales for these wave-like features. The

most prominent observed structures on these charts are associated with planetary waves

which have typical zonal and meridional scales of several thousand kilometers. These

waves are thought to be forced by topographical and thermal zonal inhomogeneities at the

earth's surface (Charney and Eliassen (1949), Smagorinsky (1953), Hoskins and Karoly

(1981), Held (1983)). Embedded within this large scale flow are numerous smaller scale

disturbances, referred to by synopticians as "short waves". These shorter wavelength fea-

tures are ubiquitous features of upper tropospheric analyses and are often associated with

midlatitude cyclogenesis (Petterssen (1956), Sanders and Gyakum (1980)). Transports of

potential vorticity by these waves are believed to be responsible for the formation and

maintenance of persistent anomalies as well as atmospheric blocking (Illari and Marshall

(1983), Shutts (1984, 1986) Neilley (1990)).

The earliest attempts at explaining the existence of these smaller scale fluctuations

focused on attributing them to an instability of the flow in which they are embedded. In

order to determine whether this hypothesis is correct, a three-dimensional flow must first

be identified that is free of these fluctuations (Pedlosky, 1987). This fluctuation free flow is

commonly called a "basic state". The next step is to determine whether the small scale dis-

turbances that arise from this basic state resemble the observed structures seen in the

atmosphere.



The most often used candidate for a basic state has been the time mean flow. A long

time average is constructed from data to filter out the smaller time scale fluctuations, to

yield a statistically steady state. The resulting flow, while free of the instantaneous fluxes

of heat and momentum associated with the "transient" disturbances is not, in general, the

most appropriate flow to use to assess the stability of the basic state, nor is it necessarily

steady. It is often observed in dynamical systems that the disturbances that arise from

instabilities often adjust the flow toward a neutral state. Another disadvantage of using the

time averaged distributions of winds and temperatures as a basic state is that these fields

are not guaranteed to resemble the instantaneous flow felt by the disturbances that are to

be studied.

An alternative to using averaged quantities as defining the basic state, is to simply pre-

scribe the basic state flow. In this way, one is guaranteed to have a flow that is by definition

free of the effects of transients. The problem with this approach, however, is relating the

chosen basic state to the observed flow. Further, the basic states that are chosen are often

chosen to be steady. This raises the questions, "What is maintaining the steadiness of

flow?" and "How does that agent which is maintaining the flow's steadiness, effect distur-

bances to that flow?".

It is clear that while the concept of a basic state is fundamental to the current under-

standing of the dynamics of the atmosphere, the identification and more importantly the

existence of such a basic state has not been clearly established. In this thesis, we address

the questions: "What is an appropriate basic state for the study of the dynamics of synoptic

scale eddies?" and "How might that basic state be determined on the basis of observations

and dynamics?"

The thesis is organized as follows: Chapter 2 provides the observational and dynami-

cal rationalization for the work that follows. In particular, an analysis and discussion of the



distribution of Ertel potential vorticity in the troposphere and lower stratosphere and its

implications for the structure, growth, and propagation of synoptic scale waves is pre-

sented. At the close of this chapter, a clear example of the difficulties in choosing a time or

space average of potential vorticity is presented. In Chapter 3, further motivation for

requiring the basic state to be steady is presented. A description of the date set and its lim-

itations as well as the methodology for determining a basic state is also presented in Chap-

ter 3. Chapter 4 contains a discussion of the implementation of the method used in

determining the basic state. In Chapter 5, the derivation, calculation, and interpretation of

a refractive index for the study of synoptic scale waves is presented. The primary results

of the thesis are summarized in Chapter 6.
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Chapter 2

Motivation

In this section the observational and dynamical motivation for this study is presented.

The chapter is divided into four sections. Section 1 briefly reviews some background

information on Ertel potential vorticity. For a more thorough discussion of potential vor-

ticity (or PV), the reader is urged to refer to Hoskins et al. (1985) (hereafter referred to as

HMR). Section 2 contains a description of the observed characteristics of the distribution

of PV in the troposphere and lower stratosphere and Section 3 discusses the factors which

lead to this distribution of PV. In Section 4 a discussion of the theoretical implications that

the observed distribution of Ertel potential vorticity should have on the quasi-balanced

dynamics of the troposphere is presented. A synthesis of the observations and their

dynamical implications is presented in the summary section (Section 5) at the end of this

chapter.

2.1 Background
The dynamics of synoptic scale motions are governed by the distribution of Ertel

Potential Vorticity, Q, defined as

Q = Ca - V 0,

where p is the density of air, (a is the absolute vorticity, and 0 the potential temperature.

For a hydrostatic atmosphere, the potential vorticity on isentropic surfaces may be written

as

aO
Q = -g . (2.1)



In this expression, p represents pressure, and g the gravitational acceleration. For a value

of the Coriolis parameter in midlatitudes of 104 s' and a stratification of 10K in 100 hPA,

Q is approximately 10-6 m2 s- K kg-'. HMR define this value as a potential vorticity unit

(or PVU). Typical values of PV range from .25 PVU to about 1 PVU in the troposphere, to

several times those values in the stratosphere. Following Danielsen and Hipskind (1980),

a dynamical tropopause is defined as the surface Q = 1.5 PVU. The large values in the

stratosphere relative to those in the troposphere are principally associated with the differ-

ences in stratification between the two regions.

The concepts of invertibility and conservation make potential vorticity a useful diag-

nostic quantity to study atmospheric motions on the synoptic scale. The distribution of

potential vorticity (or vorticity) is related to the streamfunction and geopotential through a

three- (or two-) dimensional Laplacian operator, under certain balance assumptions. Given

a three dimensional distribution of PV, a balance condition, and boundary conditions, the

wind and mass fields consistent with that balance approximation and potential vorticity

distribution may be determined. This is known as the invertibility principle for potential

vorticity.

The Lagrangian time rate of change of Q is given by

- - -.V6+ - (VxF-VO) , (2.2)
dt p a p

where 0 represents diabatic heating, and F is a frictional force. From these relations it is

seen that for flows in which the heating gradients are weak or nearly orthogonal to the

local vorticity vector, and in which friction is negligible, potential vorticity is approxi-

mately conserved. Given a time series of analyses of potential vorticity on a set of isen-

tropic surfaces, the nonconservation of PV may be readily diagnosed.

Integrating the product of density and (2.2) over a a material volume, dV, gives



WtJJfpQdV = J (((a + 0(VxF)) -n)dA , (2.3)

where n is the outward pointing unit normal vector to the material volume. (2.3) states that

the mass weighted integral of potential vorticity over a material volume is conserved in

the absence of heating and a curl of the frictional force on the boundary of that volume.

In isentropic coordinates, the conservation of mass-weighted potential vorticity, takes

on a more elegant form. In isentropic coordinates, the analog to density is the pseudo- den-

sity, o = . Within an isentropic layer, the conservation theorem (Haynes and McIntyre,

1987) states:

(=Q) + V J = 0 (2.4)

where J is given by:

J = - u +kxF (2.5)

and is the total flux of potential vorticity (or the flux of vorticity within an isentropic

layer).

In the next two sections the observed distribution of potential vorticity is discussed

(Section 2.2) and the physical mechanisms that could lead to these distributions are

reviewed (Section 2.3).

2.2 Observations
2.2.1 Potential vorticity distributions on isentropic surfaces

Fig 2.1 (a,b,c) displays the distributions of Ertel potential vorticity and wind on the

350K, 320K, and 285K isentropic surfaces respectively for 1200 UTC 14 January 1990,

for a portion of the Northern Hemisphere. These charts were chosen as they show the

intersections of the individual isentropic surfaces with the subtropical jet, the polar jet, and

the Earth's surface. Figure 2.1 a and 2.1b lie approximately in the "Middleworld" region of



the troposphere, (Hoskins, 1990). The Middleworld region corresponds to those isentropic

surfaces which intersect the tropopause. The 285 K surface is in the "Underworld" (those

isentropic surfaces which intersect the ground).

The 350K surface (Figure 2.la) is characteristic of the upper troposphere at middle lat-

itudes during the winter. The band of strong winds along the lower edge of the figure cor-

responds to the subtropical jet. The most systematic gradients of potential vorticity on this

surface are also associated with the jet. North and south of the jet, closed gyres of both

high and low PV are found , generally associated with relatively weaker cyclonic and anti-

cyclonic winds, respectively.

The 320K surface for this same time is characteristic of the atmosphere in the upper

troposphere and lower stratosphere over midlatitudes. The most striking feature of this

chart is the region of very strong gradients near the polar jet. South of the jet on this sur-

face, the potential vorticity tends to be homogenized - with relatively weak gradients of

potential vorticity in the subtropics. In midlatitudes, there is a systematic increase in the

magnitude of the gradients nearly coincident with the strongest winds at the polar jet core.

Further, the isopleths of PV have a propensity to be nearly aligned with the winds. This

distribution of winds and potential vorticity make assessments of PV advection difficult.

North of the jet, the potential vorticity gradient are weaker in magnitude, and once again,

less systematic in direction. The weaker winds in both the subtropical troposphere and

middle and high latitude stratosphere are associated with nearly homogeneous potential

vorticity.

The 285K is typical of the lower and mid troposphere at middle and high latitudes dur-

ing the winter. This surface intersects the Earth's surface in the subtropics. On this surface

the potential vorticity values are generally around .4 PVU with the exception of the closed
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Figure 2.1 Ertel potential vorticity and winds on the (a) 350K (b) 320K and (c)
285K isentropic surfaces. Contour interval is .3 PVU (light contour) for Q < 1.5
PVU; and 1.5 PVU (heavy contour) for Q 1.5 PVU or greater. Winds in ms' with
short barbs 5 ms' and long barbs 10 mns.



cyclonic gyres within which the PV values are more typical of the stratosphere. Note once

more the correspondence between weaker winds and smaller gradients.

The consistent features on each of these three charts which will be of particular inter-

est to this study are 1) the region of strong lateral gradients of PV separating tropospheric

values of PV from stratospheric values, that is approximately coincident with the polar

and subtropical jets and 2) the fact that the in these regions, winds are nearly parallel to the

isopleths of Q.

2.2.2 Cross Sections
Given that the strongest lateral gradients of PV are concentrated near the polar and

subtropical jets, one would expect that the largest perturbations can be created here

through advection. Attention is now focused on these dynamically significant regions by

constructing cross sections through jets and identifying characteristic features within the

PV distribution near the jets. Figure 2.2 shows a distribution of PV calculated from radio-

sonde data on the 320K isentropic surface for 1200 UTC 24 February 1990. The PV was

calculated from radiosonde data by first interpolating pressure and wind at each station to

isentropic surfaces. The pseudo-density was then calculated as a finite difference of pres-

sure over a layer 10K thick. The vorticity was evaluated using a triangle method. The

fields of pseudo-density and vorticity where then objectively analyzed using the Barnes

scheme, and the PV was calculated using the objectively analyzed fields.

On this date, the flow over North America was dominated by a jet (with winds in

excess of 65 ms-1) lying northwest to southeast from central Canada - exiting North Amer-

ica along the southeast coast of the US. On this date, the 320K surface lies in the lower

stratosphere over most of the eastern third of North America.

A mean cross section, Figure 2.3 is taken normal to the jet along the rhumb line shown

in Fig 2.2. The cross section extends in the vertical from 260K to 355K. The various quan-



~. It< 

0

Figure 2.2: Ertel potential vorticity and winds on the 310K surface 24
February 1991. Contour interval is .25 PVU (light contour) for Q < 1.5
PVU; and 1.5 PVU (heavy contour) for Q 1.5 PVU or greater. Winds in
knots with short barbs 5 knots and long barbs 10 knots.

tities plotted have been averaged over a 1000 km region normal to the section. Figure 2.3a

shows the winds normal to the cross section. The jet is readily identified slightly to the left

of center of the domain. The earth's surface is seen to slope upward and to the right in the

figure. Because of the geometry of the section, this sloping surface is associated with a

horizontal temperature gradient at the Earth's surface. Figure 2.3b shows the PV. The

tropopause in this section takes on the appearance of a "wall" near the jet core over a layer

from approximately 280K to 330K. Away from the jet, the tropopause is nearly horizontal

along the 280K and 330K surfaces. The tropospheric values of the PV in this section

(ranging from .2 PVU to about .8 PVU) are seen to be associated with hardly any system-

atic variations. Indeed, Figure 2.3c shows that the gradients in these regions are, in fact,

relatively small. The stratospheric values of PV seen lying along the surface are presum-
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Figure 2.3: Cross sections of (a) wind, (b) Ertel PV, and (c) gradient of
PV taken along rhumb line in Figure 2.2. Contour interval for wind is 5
ms-1, for PV .2 PVU, and for PV gradient, .4 PVU(200km)-'. Horizon-
tal tick marks represent 100 km, vertical tick marks represent 5K.



ably associated with the effects of radiative cooling the previous night. Aside from the

large horizontal gradients associated with the low level PV, the strongest gradients in the

section are confined to the vicinity of the tropopause. The broadest region of high gradient

is associated with the jet.

2.2.3 Composite of Cross Sections
A composite of 14 cross sections taken through 14 different jet events with the tropo-

pause appearing as a wall was constructed to highlight those features seen in the above

cross section, which are consistently observed in all of the cross sections. The procedure

for constructing the composite was as follows: For each cross section, a subjective identi-

fication of where the tropopause was most vertical was made. The cross sections were then

aligned with respect to this reference position. To account for the differing "depths" of the

wall, the mean tropopause height north and south of the wall were normalized and the PV

was then averaged with respect to this normalized coordinate. The resulting distribution

was then transformed back into isentropic coordinates. The resulting PV and its gradient

along the composite section are shown in Figures 2.4a and 2.4b respectively.

In Figure 2.4b the features described in Figure 2.3d are seen. That the horizontal gradi-

ents are nearly zero is evidenced by the "meandering" of the 0.0 PVU (200 km)-1 contour

through the domain. The most coherent feature of the 14 individual cases is the presence

of a large PV gradient associated with the jet extending along the tropopause into the

lower stratosphere.

2.2.4 Composite of the gradient
Another technique to determine the characteristic structure of the PV gradient along

the tropopause is to composite the gradient, rather than the potential vorticity itself. The

approach taken is to construct a "Lagrangian" average of the meridional isentropic poten-

tial vorticity gradient with respect to the location of the tropopause. The twice daily NMC

analyses (described in Chapter 3) were used to construct isentropic analyses of winds and
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Figure 2.4: (a) Composite Ertel PV and (b) the gradient of the
composite PV. Contour interval as in Fig 2.3

pressure from which PV distributions were computed. For the month of January 1991, at

each time, the location of the dynamical tropopause was determined for each longitude.

The meridional PV gradient was calculated and tabulated at the tropopause and at fixed

distance north and south of the tropopause. The results were then zonally and time aver-

aged. The result of this calculation for the 320K and 350K surfaces is shown in Figure 2.5

(a,b) respectively.

The magnitude of the gradient is seen to be maximized near the tropopause. Approxi-

mately 8 degrees latitude north of south of the jet, the gradients are considerably smaller.



Mean meridional gradient of PV for January 1991 (320K) Mean meridional gradient of PV for January 1991 (350K)
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Figure 2.5: Time mean, zonally averaged PV gradient (solid) and the gradient of PV
associated with the gradient of planetary vorticity (see text) as a function of distance
from that contour of PV along which the PV gradient is maximized on the a) 320K and
b) 350K surfaces.

For purposes of comparison, also shown in Figure 2.5 is the meridional gradient in plane-

tary vorticity (P) multiplied by a stratification typical of the lower stratosphere (tropo-

sphere) 0p = .5K hPA~ (Op = .05K hPa-1). Comparing the two curves, it is apparent that

the gradients of PV away from the tropopause are comparable to or smaller than the varia-

tions in PV associated with a typical stratification and P. Sun and Lindzen (1994) note that

while the PV gradients in the troposphere appear to be distinguishable from zero, due to

the resolution of observing systems, these tropospheric gradients might in fact be exagger-

ated.

2.2.5 Time mean cross section
Time and zonal averages of PV tend to smear out the localized, intense gradients of

PV seen on instantaneous maps. Figure 2.6, which shows a climatological, zonal mean

distribution of PV and potential temperature, illustrates this point. While the PV gradients

tend to concentrated near the tropopause in this climatological distribution. The variation

of PV along isentropes suggests that the gradients are considerably weaker than the gradi-



ents seen in the composite cross section (Figure 2.4). Furthermore, the gradients appear to

exist over a much deeper range of the atmosphere.

100 -

10

200 5
0

mb 300
-- 2

0-5
500

700K

1000
NP 60 30 Eq

Figure 2.6: (from Hoskins (1990)) Time and zonally averaged
PV, and isentropes for the Northern Hemisphere. Contour interval
of PV as shown, contour interval for potential temperature, 30K.

2.2.6 Geostrophic scatter diagrams
Given that, as noted in Section 2.2.1, the wind is nearly parallel to isopleths of Q, it is

anticipated that the isopleths of Q and the streamfunction for the non-divergent wind (or

the Montgomery potential) should also be aligned. Figure 2.7a shows the contours of Q

and M for 0000 UTC 1 January 1991. The Q field on this date is indeed nearly parallel to

the contours of M. A compact way of representing this information is the construction of a

"geostrophic scatter diagram" in which the Q values calculated at each grid point are plot-

ted against the corresponding M value (Figure 2.7b).

In this scatter diagram three distinct regions may be identified - a region corresponding

to tropospheric values of PV, a "near jet region" composed of those points sloping upward

and to the left, and a region corresponding to stratospheric values of PV of about 5PVU.

The characteristic features seen on the isentropic surfaces - the near homogenization of
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Figure 2.7: (a) 0000 UTC 1 January 1991 Montgomery potential (con-
tour interval 20 x 102 J kg-1) and Ertel PV (contour interval .75 PVU);
(b) Geostrophic scatter diagram for M and Q. (c) and (d) as for (a) and
(b), except for 1200 UTC 14 January 1991.

PV gradients for tropospheric and stratospheric values of PV are then easily seen in this

diagram, although the geographical information about Q and M is lost. In the correspond-

ing regions of Q-M space, the scatter is largest and the points appear to be scattered about
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nearly horizontal lines (constant Q) in the diagram while the points clustered about the jet

are typically characterized by smaller scatter.

If the points were to collapse onto a single curve in Q-M space, the flow at that level,

would be steady, as a functional relationship, Q = Q(M) could be identified. Under these

circumstances, the flow is said to be of "free mode form", Read et al. (1986). A free mode,

as used in this text, will be defined as a steady, unforced solution to the equations of



motion. The scatter in these diagrams is an indication of the deviation from free mode

form. Read et al., suggest a more meaningful way to construct and interpret these dia-

grams if the points which make up the scatter diagram are selected from points chosen to

lie along a closed curve in physical space. The area enclosed on the resulting scatter dia-

gram is equal to the net geostrophic advective flux of Q across the curve in physical space.

Figure 2.7c shows the Q and M fields for another time (1200 14 January 1991). The

near parallelism of the isopleths of Q and M is not as apparent on this date. The prominent

regions of geostrophic advection seen on the chart are associated with considerable scatter

on the geostrophic scatter diagram (Figure 2.7d).

2.3 Factors which determine the observed potential vorticity distribution
2.3.1 Physical processes affecting the distribution of PV

A natural question to ask is, "Why is the observed distribution of PV (nearly) isentrop-

ically uniform away from the jets?" Rhines and Young (1982) show that homogenization

of pseudo-potential vorticity (or PPV), qp, given by

q= V2W + $y + n PS (2.6)
P psaz N2az

(where T is the streamfunction for the geostrophic flow, Ps is the basic state density, N2 is

the basic state stratification.), may occur within closed mean streamlines provided that the

forcing of the PPV is negligible within that streamline. The physical processes which

affect the distribution of potential vorticity are isentropic mixing, horizontal diffusion,

baroclinic instability, radiation, latent heating, and diffusion of vertical momentum. The

actions of most of these processes tend to drive the potential vorticity to be isentropically

uniform and vertically non-uniform. Each of these process will be briefly considered:

Let q be a conserved quantity along an isentropic surface. Then q obeys the relation:



+ -+v-Vq = S, (2.7)

where v, is the horizontal velocity along the isentropic surface, and S represents sources

and sinks of the q. Define an averaging process," ", which may be either a time or spatial

average, and denote "'as a deviation from that average, then the mean equation for the

variance in q, q' 2,may be derived

(a + v V) 2 = S - vi -V q (2.8)

Under circumstances in which q'2 is increasing following the flow, and the forcing of q is

negligible, (2.7) shows that the eddy flux of q may be down gradient. The eddies act to

mix the q (potential vorticity as an example) so as to decrease the mean gradient of q. Thus

isentropic mixing may act to horizontally homogenize potential vorticity.

By relating (2.8) to the dispersion of fluid parcels from a reference latitude, Bretherton

(1966) demonstrates that baroclinically unstable waves act to destroy gradients of poten-

tial vorticity at the steering level of the unstable wave, as there must be an unbalanced

down gradient flux of PPV at that level.

Both radiation and latent heating act to redistribute potential vorticity in the vertical.

Radiation effects this redistribution by locally adjusting the lapse rates. Radiative effects

are most effective near boundaries - cloud tops (or bottoms) or near the earth's surface.

Latent heating is often observed to redistribute potential vorticity from the upper tropo-

sphere to the lower troposphere in regions of large scale stable ascent. Observational stud-

ies have noted the development of upper tropospheric ridges downstream of large scale

precipitation areas coincident with an increase in lower level cyclonic vorticity. Eliassen

and Kleinschmidt (1959) and Davis (1990) suggest that diabatic processes along warm

fronts lead to the production of a "high level" anticyclone (low PV) ahead of a developing



surface cyclone. This production is attributed to the redistribution of PV. Diagnostic

potential vorticity tendency calculations performed by Davis (1990) for the local genera-

tion of PV by condensation in saturated, stably stratified ascent lend support to this inter-

pretation. Recent modeling studies of moist cyclogenesis and moist frontogenesis

(Emanuel et al. (1987) and Montgomery and Farrell (1991)) have produced results whose

dynamics appear to be consistent with the above observations.

Rhines and Young demonstrate that in flows in which the eddy fluxes of PPV are of

"intermediate strength"

J (W, q) V -v'q' "dissipation"

then the pseudo - potential vorticity within closed mean streamlines of a fluid, , may

become homogenized.

One can infer some of the characteristics of the forcing of statistically steady flows by

consideration of the slope of the curve on a geostrophic scatter diagram (Read et al.). Fol-

lowing the development of Read et al., the time averaged equation for a flow in which the

eddy transport of PPV is approximated by a down - gradient diffusion, and the source of

PPV is represented by S, is given by

J(T~,q) = S+KV2 q, (2.9)

where K, is the Peclet number of the flow. For sufficiently weak sources, (2.10) has a solu-

tion q, = q,(V). An integral over the area enclosed by a mean streamline gives

-KJVq,.ndl = -K f TV T -ndl = JSdxdy

or,



dq JSdxdy (2.10)

dW -Kf v-dl

Observations and modelling studies suggest that there is a positive correlation between the

sign of the areal averages source of PPV (numerator of (2.11) and the circulation integral

taken around the mean stream line (Read et al.), thus from this relationship one can see

that the tendency for the scatter diagrams to have a negative slope (i.e. dQ/dI < 0), fol-

lows. Furthermore, homogenization of Q is consistent with there being only weak sources

and sinks of PPV (Rhines and Holland).

A simple catalog of the processes which redistribute PV is not enough to determine

why the distribution of PV is as observed. Processes which act over the shortest time

scales will have a much greater influence on the instantaneous PV distribution than those

processes which act over much longer time scales. For simplicity, consider the free tropo-

sphere (i.e., that part of the atmosphere above the planetary boundary layer). The principal

processes that determine the time rate of change of PV in this region are the advection

across the intense tropopause PV gradient and diabatic processes associated with radiation

and latent heat release. HMR estimate the typical time scale for the modification of PV by

1 PVU by radiation to be 0(5 days to a week), while modification by a similar amount by

latent heating (in their example, latent heating due to convection beneath a cold tropo-

pause anomaly) occurs on a shorter time scale 0(1 to 2 days). Time series of observed dis-

tributions of PV suggest that latent heating associated with large scale condensational

heating my change PV by 1 PVU on a time scale of about a day. Advection of PV at jet

level may change the PV by I PVU on time scales less than I day (Shutts, 1987). Despite

the fact that advections of PV can compete with diabatic changes due to latent heating, the

latent heating is localized in the ascent regions of cyclones. Hence, in a areal averaged

sense, the dominant process which determines the PV distribution at jet level is horizontal



advection. Shutts (1987) demonstrates that "to zeroth order, isentropic wind vectors point

along the isopleths of Q." It must be stressed however that away from the jets, the forcing

of the PV distribution is determined by a balancing of the various mechanisms discussed

earlier.

2.4 Theory
The concept of a basic state is at the heart of the theoretical understanding of the dynamics

of wave systems. The basic states themselves can be characterized in terms of the distribu-

tions of PV associated with them. Motivated by the observed PV distribution, the dynami-

cal implications that such a distribution has on perturbations to basic states in which the

PV gradients are concentrated is addressed.

2.4.1 Wave Propagation and Structure

The early work of Rossby (1939), which introduced the theory of long waves (waves

with wavelengths of several thousand kilometers manifested as large undulations in the

polar jet on synoptic charts), has proven useful in providing a qualitative picture of the

propagation of both the long waves of concern to Rossby and the shorter wavelength fea-

tures referred to as "short waves" or "mobile troughs."

Rossby waves owe their existence and propagation to lateral gradients in the potential

vorticity. In the simplest framework to consider their basic dynamics - that of horizontally

nondivergent flow on a $ plane, with a constant zonal wind U the existence of the waves is

due solely to the variation in the planetary vorticity. Their dynamics is governed by the

conservation and invertibility of absolute vorticity. The dispersion relation for these waves

is obtained by linearizing the equation for conservation of vorticity about the basic state

zonal flow, assuming a plane wave perturbation, y = exp (i (kx + ly - ot) ) (where k



and I are the zonal and meridional wave numbers respectively, and co the wave frequency)

to obtain

0 = Uk - k (2.11)
k2 +1l

The phase speed of the wave, c, is given by c = k-1. From (2.10), it is apparent that waves

are dispersive - with long wavelengths waves travelling westward relative to the basic

state zonal wind faster than those with shorter wavelengths waves. Furthermore, it is seen

that for a fixed zonal wave number, and wave frequency, the mean flow determines

whether or not lateral propagation of the wave is allowed. This is demonstrated by rewrit-

ing (2.2) as

l2 -12
U-c

The meridional wave number must be real for there to be lateral propagation of

Rossby waves. The "tilt" of the phases line of the wave on the S plane is determined by the

basic state winds and vorticity gradient, $.

That the structure of Rossby waves is intimately related to the structure of the mean

flow can be seen in the following example. Consider steady, non-divergent, barotropic

flow,

J(W, q) = 0

Divide the total flow into basic state and a perturbation

T = +W' and q=q+q'

then,



J (W, q) = J (, q') + J (', q) + J (', q') = 0

If one considers "weakly" nonlinear waves then,

J(, q) ~ J (, q' - AOW') = 0

which has a solution

q' - A I' = 0

where

A = - dq (2.12)0 UO dy

AO is known as the trapping potential (Butchart et al., 1989). It is a function of the basic

state gradient of vorticity and the basic state wind. If the trapping potential has a mini-

mum, there is the potential for locally meridionally trapping a perturbation to the basic

state. As there are basic state variations in the y direction, the assumed form of the solution

is

T = exp(ikx) (y)

then

4 + (-k -AO) = 0

Waves are meridionally confined if

2>-A dq
k - 0 -Uody

From this relationship, it is seen that the basic state may confine perturbations pro-

vided that the trapping potential has a local minimum and provided that the zonal scale of



the disturbance is sufficiently small. Ioannou and Lindzen (1986) emphasize the impor-

tance of meridional shear in meridionally confining instabilities.

If one assumes that the vorticity gradient in the atmosphere is piecewise constant on an

f - plane (as a crude model of the tropopause potential vorticity distribution) (Figure 2.8),

with the discontinuity at some latitude y = yo, and then solves the linearized relation for

conservation of vorticity about this basic state, one finds that the waves in this simple

model have a streamfunction, , given by

I = exp(i(kx-0t))exp(-ky-y0|). (2.13)

a) b) y

q = q2  (y-yo)

q= q,

qy

Figure 2.8: (a) An idealized flow in which the vorticity is piecewise constant, (b)
the gradient of vorticity for this flow.

The waves are seen to be trapped at the discontinuity and evanescent away from the lati-

tude y = yo. The dispersion relationship for the waves (considering the case k > 0) is

Aq
= U(yo)k 2 (2.14)

where Aq is the jump in vorticity in the domain. The waves are seen to be dispersive, but

their energy (i.e. group velocity), cgx = = U (yo) propagates with the wind at the

discontinuity.

It is reasonable to question whether the nature of the solution of the barotropic vortic-



ity equation on a beta plane (2.10) smoothly transitions into the solution (2.13) in the limit

in which the width of the region having a gradient in the planetary vorticity shrinks to zero

and the vorticity gradient, 1, increases. To address this question, solutions are sought to

the following problem

[$+U )V 2 + (H(y+Y) -H(y-Y))} V = 0

where H(y) it the Heaviside function. Assume solutions of the form

W = y (y) (exp (i(kx -ot)))

and get 
kFor y > Y, V (y) = Aeky

V (y) = For -Y < y < Y, V (y) = BeIY + Ce IY, where (12=9 _ I-2
U-c

For y < Y, V (y) = Deky

Requiring continuity of the streamfunction and velocity fields at -Y and +Y, gives the dis-

persion relation for the problem,

21k
tan2lY = - 2 12- (2.15)

For small I << (2Y)- 1,

tan2lY~2lY

Substituting for 2 into (2.5) and simplifying gives

- Y
c=U- 2

A 2k2Y+k
Now let 13Y = -, which gives

2
Aq

c= U- 2
2kY Y+k

Now keeping Aq constant and letting the width of the propagation region go to zero



results in

- Aq
lim c = U -

Y -> 0 2k

which is the result previously derived (2.13).

The preceding suggests that as the width of the region supporting wave propagation

becomes smaller, the propagation characteristics of waves in the region supporting wave

propagation will change.

The distribution of potential vorticity plays a role in the vertical propagation of sta-

tionary waves as well. Charney and Drazin (1961) determine criterion for the propagation

of stationary waves from the troposphere into the stratosphere. They find that waves are

trapped in a mean easterly flow, or in flows in which the vertically averaged westerlies

exceed a critical value determined by the magnitude of the PPV gradient, the total hori-

zontal wave number, and the mean stratification. Lindzen (1994) has expanded upon the

work of Charney and Drazin in his examination of the effect of concentrated PPV gradi-

ents on the dynamics of stationary waves. Linzden (1994) finds that the concentration of

the PPV gradients at the tropopause leads to a significant enhancement of the stationary

wave response at the tropopause due to forcing at the surface. Lindzen interprets this

amplified response to a partial reflection of waves tunneling between the surface and the

tropopause.

2.4.2 Instability of zonal flows
In addition to its significance in wave propagation, the structure of the PV gradient is

important in terms of the assessment of stability of atmospheric flows. Just as one can

view the stability of unstratified sheared flows as the mutual intensification of counter-

propagating vorticity waves (Lighthill, 1963), one can view the stability of quasi-geo-



strophic flows as the mutual interaction and intensification of counter propagating Rossby

waves (HMR). For a quasi-geostrophic fluid, the stability criterion for perturbations about

a zonal flow can be phrased in terms of the PPV gradient (Charney and Stern (1962)): Sta-

bility is assured if the meridional gradient of the generalized pseudo - potential vorticity

(qp) is of single sign. The generalized PPV is given by:

qP = V2+ 0 (F a N Pz ) (8(z) - (z -z)) (2.16)

where zt represents an upper boundary (the tropopause perhaps) in some previously

defined domain. The delta function contributions at the boundaries represent the inclusion

of boundary thermal contributions to the definition of the PPV. Bretherton (1966) demon-

strated that horizontal variations in potential temperature along a horizontal boundary may

be incorporated into the definition of PPV as a delta function sheet of PPV located near the

boundary. For a flat lower boundary, Bretherton showed that positive potential tempera-

ture perturbations are associated with cyclonic circulations and negative potential temper-

ature perturbations are associated with anticyclonic circulations. Conversely, on an upper

boundary, cold perturbations are associated with cyclonic circulations and warm perturba-

tions with anticyclonic circulations.

A relatively simple analytical model of baroclinic instability, in which the basic state is

a crude representation of the atmosphere, is the Eady model (Eady, 1949). Eady consid-

ered the stability of a vertically confined rotating Boussinesq fluid on an f - plane with no

internal gradient in the basic state PPV. The basic state consisted of a zonal wind U = U(z).

Normal mode solutions to the Eady system (Eady modes) exhibit exponential growth for

wavenumbers less than a critical value. The most unstable mode has its phase tilting west-

ward with height and a propagation speed equal to the mean speed of the current in which



it is imbedded. For shorter wavelengths, the solutions consist of two independent "edge

waves" - each of which propagates along the vertical boundaries of the domain as a

Rossby edge wave. The characteristic horizontal scale of the disturbances is the Rossby

deformation radius (Ld), typically about 1000 km in the atmosphere. The characteristic e -

folding time of the most unstable mode is a few days. Rivest (1990) solved simple Eady

like models to study the dynamics of the maintenance and excitation of upper waves.

Using simple basic states typical of the troposphere and lower stratosphere, Rivest showed

that the Eady modes share many of the characteristics of upper mobile troughs discussed

in the observational studies of Sanders (1988) and Davis (1990). The maximum stream-

function for the modes is found at the tropopause and the magnitude of the deformation of

a flexible tropopause was of a magnitude comparable to observations.

The dynamical implications of an interior meridional gradient of PPV on instability

has been addressed by Charney (1947), Bretherton (1966), and Hyun (1981) who found

that an internal qpy of a given sign destabilizes a boundary having a qpy of opposite sign.

Rivest (1990) showed the existence of slowly decaying short wave disturbances (referred

to as "quasimodes") in basic states possessing potential vorticity gradients in the interior

and at boundaries. These disturbances, which are superpositions of the singular modes of

the Eady (1949) problem, appear as a sharply peaked distribution when viewed in the

phase speed domain. Quasimodes were found to erase midtropospheric PV gradients and

enhance tropopause potential temperature gradients through their downgradient fluxes of

PV and heat. The rate of decay of the "quasimodes" was found to increase with the latitu-

dinal gradient in the planetary vorticity distribution.

The lack of gradients of PV on isentropic surfaces in the interior of the atmosphere can

be exploited to determine a condition for the baroclinic neutrality of the atmosphere. Con-

straining the meridional wavenumber by the width of the subtropical jet, Lindzen (1993)



uses the Eady model's total wavenumber cutoff to determine a maximum tropopause

height below which instability can occur. Lindzen suggests that since the calculated tropo-

pause height is close to the observed, this suggests that the atmosphere tends toward baro-

clinic neutrality.

2.4.3 Arnol'd's theorems
As the Charney - Stem criterion is only a necessary condition for instability, there are

cases in which the Charney - Stem criterion is violated, and yet the observed flow is sta-

ble. A set of stability theorems was developed by Arnol'd (1965) and has been recently

applied in the study of planetary atmospheres (Dowling, 1993). These theorems, known as

Arnol'd's first and second stability theorems (hereafter referred to as Al and A2, respec-

tively), provide additional necessary conditions for (for linear and non-linear) stability of

zonal and non-zonal flows (McIntyre and Shepherd, 1987). These theorems are stated

below:

Arnol'd's First Theorem:

For a steady, unifunctional flow in which Q = Q(W), if

dV0 < c<-!5C< oo,
dQ

where c and C are constants, then the flow is stable. This theorem may be interpreted for

dW
flows in which > 0 (i.e. Rossby wave propagation is in the same direction as the basic

dQ

flow in which they are embedded). Under these circumstances, Rossby waves cannot be

"held in step" and consequently may not phase lock - instability is prevented. Al is essen-

tially a restatement of Fjortoft's Theorem.

Arnol'd's Second Theorem:

For a flow in which Q = Q(V), if



dW
0<c< -- 5 C < oo (2.17)

dQ
2where cK 0 > 1 and where K is the smallest eigenvalue to the problem,

V2 W+K 2W = 0

dW
with appropriate boundary conditions, then the flow is stable. The upper bound on -- , C,

dQ
dqf

simply requires that -be finite.
dQ

dW
In our atmosphere, because -- <0, A2 is the appropriate stability criterion to apply.

dQ

-< 0 corresponds to the well known phenomena of Rossby wave propagation westward

relative to the basic flow. In these situations, Rossby waves may propagate against the

basic current and consequently there exists the possibility that the waves may be held sta-

tionary with respect to one another. The interaction time between the two counterpropa-

gating waves under such circumstances would then be essentially infinite and an

exponential growth due to their mutual interaction could occur. McIntyre and Shepherd

note that boundary constraints (used in the solution to the eigenvalue problem mentioned

above) can reduce the intrinsic phase speed of the upstream propagating waves and

thereby suppress the instability.

Stamp and Dowling (1993) observe that stationary waves play a key role in the stabil-

ity of the Jovian atmosphere which has been determined to be neutrally stable (Dowling,

1993). Stamp and Dowling conclude that slow moving waves are expected for systems

near neutral stability with respect to A2. This result would seem to naturally follow

directly from the stability criterion. For a finite --- , neutrality would correspond to

d 1 d
-- -. For a zonal flow, -is the reciprocal of the square of the total wavenumber
dQK 2 dQ

0
(i.e., the wavenumber of the stationary wave, Ks):



dW
d __d U (2 m 2- _

dWf - U_ = k2+l(-) = (K ) (2.18)
dQ dQ dQ Ld)

dy dy
Ks corresponds to the wave number gravest mode for this domain, and would conse-

quently be expected to be the slowest eastward propagating mode - thus, in an atmosphere

near neutral stability, slow moving westward waves are anticipated.

2.5 An illustrative example

The chapter is concluded with an illustrative example which demonstrates that time

and space means of potential vorticity (or vorticity in the barotropic case) are not suitable

as basic states for the study of synoptic scale waves.

We reconsider horizontally nondivergent barotropic flow on an f plane with piecewise

constant vorticity. If we consider a purely sinusoidal displacement of amplitude 2Y of the

dividing contour between the two PV region, the resulting disturbance will propagate

westward relative to the flow as a sinusoidal oscillation, of amplitude 2Y (Figure 2.9a).

If one were to live on a world in which this were the vorticity distribution, the time

mean distribution of vorticity as a function of latitude would be given by:

q, for y Y

q (y)= (q 1Tl+q 2 T2/(T1 +T 2 ) for -Y !y !Y

q2 for y -Y



Figure 2.9: (a) Wave propagating along vorticity discontinuity with
q2 = 2 to the north and gq - 1 to the south of the discontinuity, (b)
time averaged vorticity for the situation depicted in (a)

where T, and T, represent the amount of time a given location 'observes' a value of vor-

ticity equal to q, and q, respectively. This distribution is shown in Figure 2.9b. The time

mean distribution of q for y > IY1 is constant at either q, or q2, while the distribution for y

< 1Y1 smoothly varies between q and q1. Based on the discussion of the previous section,

it is apparent that if one were to define a basic state as the time averaged vorticity, the

spectrum of waves supported on this basic state is much greater - non-zero meridional

wave numbers and hence meridional propagation of waves is allowed. The time averaged

flow (for this example) is not representative of the basic state upon which the wave we

were considering propagated. While the atmosphere does not possess a delta function gra-

dient in potential vorticity at the jet, this example serves to illustrate the inherent problems

in using time averaged flows as basic states. In the next chapter, we develop a technique



which would allow one to recover the basic state for the above example and for observed

atmospheric flows.

2.6 Summary
In this chapter, analyses of the PV distribution in the troposphere and lower strato-

sphere as well as the dynamical implications of these observations were presented as a

foundation for work in the succeeding chapters. A clear example of why it is inappropriate

to use a time mean or zonal mean flow as a basic state has been presented. In this section

we present a synthesis of the observations and dynamics.

The key observations:

- Potential vorticity is nearly homogeneous along isentropic surfaces away from the

surface of the earth, and away from the polar and subtropical jets.

- The gradients of PV away from the jets are smaller than, or at most comparable to,

the gradients in PV associated with the latitudinal gradient of the Coriolis parameter,

D~.

- Near the polar and subtropical jets, the PV gradients are several (4 to 6) times

those associated with D, and are concentrated within approximately 80 latitude of the

jets.

- The observed wind and streamfunction fields are nearly aligned with the isopleths

of PV in regions in which the flow is strong.

- Near jets, time and zonal means of gradients of Ertel PV are weaker and much

more widely distributed in space than are instantaneous distributions of these fields.

The factors that influence the time mean distribution (eddy fluxes and non-conserva-

tive effects) tend to render the PV isentropically uniform (away from the jets) and verti-

cally non-uniform with a local minimum in the mid-troposphere. A comparison of the



time scales of the varying processes which determine the time mean PV distribution sug-

gests that the "advective control" of the PV dominates near the jets, while non-conserva-

tive effects such as latent heat release, radiative effects, and frictional forcing balance in

regions away from the jets.

The dynamical implications of these observations:

- The tight gradients of PV near the jets suggest that the polar and subtropical jets

may trap propagating wave disturbances in the vicinity of the jets.

- The concentrated gradients of PV along the tropopause influence both the structure

of surface forced stationary waves (Lindzen, 1994), as well as the structure of synoptic

scale transients.

- The negative slope on the Q - M scatter diagrams suggests that Arnol'd's second

stability theorem may be relevant to the atmosphere.

* Despite the significant eddy and viscous transports of PV and the non-conservative

forcing of PV, consideration of idealized conservative flows may be more relevant to

the atmosphere (Read, 1986).

The dynamical / diagnostic quantity that links many of the above ideas is the relation-

ship between Q and T or M. This relationship, which is in large measure determined by

the eddies and the forcing of PV, appears to be fundamental in characterizing the observed

flow. In subsequent chapters, this relationship is used in the determination of a basic state

and a refractive index.



Chapter 3

Determining a Basic State

In the previous chapter, a description of the instantaneous distribution of Ertel PV was

presented. The key features of the observed distribution were the near homogenization of

PV along isentropic surfaces away from the polar and subtropical jets and the coincidence

of strong winds with the strongest PV gradients. At the conclusion of Chapter 2, it was

demonstrated that the time mean of an idealized distribution of vorticity (with all the gra-

dient at the jet axis) could lead to an unrealistic basic state - the nonhomogeneous nature

of the observed vorticity and wind distribution prevents one from determining a basic state

from time (or space) averaging.

One of the earliest attempts at defining realistic basic states for studying synoptic

scales waves based on the observations that the PV gradients are concentrated at the jets

was by Platzman (1949). Motivated by the observational work of Palmen (1948) and col-

laborators, Platzman modeled the upper tropospheric flow as barotropic with a piecewise

constant vorticity distribution (as described in Section 2.2, except in physical coordinates).

Platzman's results are essentially those described in Section 2.4.1 - that the waves are dis-

persive while the energy of the waves moves at the speed of the wind at the vorticity dis-

continuity.

Verkley (1994) attempts to simplify the description of the dynamics of the atmosphere

by assuming equivalent barotropic dynamics and that the description of the atmosphere

might be limited to a single isentropic surface which intersects the tropopause. As with

Platzman, Verkley considers a piecewise constant vorticity distribution, with the higher

values poleward of the tropopause. The work of Verkley differed from that of Platzman in



that Verkley sought to obtain nonlinear waves by applying contour dynamic techniques.

Verkley found that the assumption of a single line of discontinuously leads to sharp zonal

velocity profiles peaked at the tropopause. The waves that are supported in Verkley's basic

state are neutral and resemble Rossby-Haurwitz waves.

There are two problems with Verkley's work: the neglect of the underlying surface

baroclinity that may interact with the wave motions along the tropopause, and the neglect

of the second jump in potential vorticity on higher isentropic surfaces (associated with the

subtropical jet) along which another set of waves may propagate.

The basic state that will be determined should be characteristic of the flow through

which synoptic scale eddies propagate. As both the observed instantaneous and time mean

flows are nearly balanced (Davis, 1990), the basic flow should be balanced as well. Two

balance assumptions that are most relevant to consider for synoptic scales are geostrophic

balance and non-linear balance (Charney, 1955). A final requirement is that the basic state

flow be steady. This last requirement is chosen because we have observed that the instan-

taneous flow has an underlying robust tendency to be nearly steady and because this

allows the resulting state to be used for linear stability analyses. We return to this idea in

Section 3.2.

In this chapter, a technique used in the determination of a three dimensional basic state

is presented. In Section 3.1 we continue our motivation for the method to be presented

later in this chapter by first demonstrating a technique to obtain a basic state for the piece-

wise constant problem discussed in Section 2.5. The method requires that a frame of refer-

ence be found in which the wave field is steady. As we are seeking a steady basic state, in

Section 3.2 previous techniques used to determine steady flows are discussed. In Section

3.3 a description of the data set used is presented, followed by a discussion of the method-

ology developed to determine a steady, balanced, basic state.



3.1 Determining a basic state for the "model problem"
3.1.1 Returning to the Illustrative Example

The first model problem to be considered was first discussed in Section 2.5 where it

was found that the time mean flow was not a suitable choice to describe the basic state for

the propagation of waves on a piecewise constant potential vorticity flow on an f - plane.

The observations of the near parallelism of PV contours with streamfunction contours

suggests that a significant portion of the observed flow is slowly evolving or, in fact,

steady.

This one observation allows a functional relationship between q and W to be defined.

Aq
For the present problem, viewed in a frame of reference moving at speed c = U - ,

2k

the wave of Figure 2.9 is stationary. The streamfunction contours and the isopleths of vor-

ticity then are (by definition) aligned - the flow, in this frame of reference, has been ren-

dered steady. A geostrophic scatter diagram for the flow is schematically shown in Figure

3.1. The relationship between vorticity and streamfunction takes on a step function distri-

q
Figure 3.1: Geostrophic scatter
diagram for the piecewise constant
vorticity distribution seen in the
frame of reference of the wave
(shown in Figure 2.9a). T, repre-
sents that value of streamfunction
at which the vorticity jumps for a

m m value of vorticity q2 north of the
vorticity discontinuity to a value q,
south of the discontinuity.

TST

bution

q, for T 2 Vs
q( q) = for T MJT

qfor W XPs



- with high values of vorticity (q2) north of some dividing streamfunction contour, Is, and

low values (q,) south of the contour. We also recall that from the simple time averaging,

there exist two latitudes - one north and one south of the contour I = Ts, at which the vor-

ticity field is undisturbed, at y = ±Y. With this information, the basic flow vorticity field

may now be reconstructed.

The reconstruction of the two-dimensional basic state vorticity field involves "map-

ping" (affixing geography to) the scatter diagram of Figure 3.1. This task is accomplished

by solving the equation

V2 I = q (I) , (3.1)

subject to the boundary conditions W(-Y) = TB and '(Y) = VT. This nonlinear equation

is rather simple, and may be solved analytically for the streamfunction. Equation 3.1

maybe written as

V2 2 q (IF). (3.2)
dy

We solve the problem separately in the two regions in which q is uniform and then apply

boundary conditions at ±Y, as well as matching conditions at the interfaces of the two

regions.

The solution in both regions may be written as

1
1 =-I-2Y +CJy+C 2

(3.3)
q2

2 T2Y +C 3y+C 4

The boundary and matching conditions are



T I(-YB) TB

V 2 (YT) T3

1i - 2 aty=ys 
(3.4)

u 1 = U2 = Us aty=ys

The solution to this system (3.2) - (3.4) is given in Appendix A. This problem may also be

solved numerically using an iterative procedure.

3.1.2 Uniqueness of solutions
In this subsection, the uniqueness of solutions of (3.2) with boundary conditions is

addressed by means of another model problem. We consider a flow characterized by a lin-

ear q - T relation:

2
q (T) =-a + b, (3.5)

where the relationship was chosen to have a negative slope to mimic observed geophysical

L
flows. We solve for the flow in a region bounded by y = + The solution to (3.1) with q

as given in (3.5) is

b
T = A sin (ay) + Bcos (ay) + , (3.6)

a

where A and B are arbitrary constants. The boundary conditions

L L L b
SA (-)= =Asin (-a ) +Bcos (-a ) +

a
(3.7)

() = 2 = A sin (a ) +Bcos (a) +(

are used to fix the constants.

The solutions to the system (3.7) are not unique if the determinate of the matrix of

coefficients for the variables A and B is zero. That condition is

sin (a ) cos (a) = 0

or



2itn (2n + 1)7(
a = L'- L (3.8)

where n is an integer, greater than or equal to zero. The smallest value of a for which the

2
solution is unique is a2 <- . This condition may be rewritten in the form

L

0< ( a) < = - < oo. (3.9)

This form is identical to that of (2.16) (Arnol'd's Second Stability Theorem). This result

suggests that those flows which are unique solutions to (3.1) with the q - IF relation (3.5)

and satisfying the boundary conditions (3.7) are stable. Pedlosky (1987) suggests that the

instability of a flow is related to the ability of the flow to find more than one solution to q

= q (IF) while simultaneously conserving PV and satisfying the boundary conditions.

The essential elements of the procedure to be outlined in section 3.3 have been pre-

sented. In order to determine a steady, balanced basic state we require a relationship

between q and W (to ensure steadiness and to produce ,a flow which is dynamically similar

to the observed flow), _a balance assumption, and boundary conditions which ensure the

spatial distribution of the PV is consistent with the observed distribution.

3.2 Determining steady flows

As was first noted in Section 2.2, and reiterated in subsequent sections, the observed

flow tends to be characterized by contours of q and W being nearly parallel - a situation

which implies an approximate functional relationship between q and , in other words a

nearly steady flow. The existence of steady flows or stationary states in the atmosphere has

been shown to influence the dynamical response of modeled atmospheric flows to weak

forcing (e.g. Charney and Devore (1979), Pierrehumbert and Malguzzi (1984), and Bran-

stator and Opsteegh (1989)). In situations in which an unforced, steady solution could be



obtained for barotropic flow on an f or $ plane, Pierrehumbert and Malguzzi demonstrate

the existence of local multiple equilibrium states - both a high zonal index (low amplitude)

steady flow and a low zonal index (high amplitude) steady flow when the flow was sub-

jected to weak Ekman damping.

Given the importance of steady flows, many attempts have been made to determine the

structure and conditions for the existence of these steady flows both analytically and

observationally. Most extant studies have sought steady solutions to the barotropic vortic-

ity equation, as this equation has been assumed to capture the essential "slow dynamics"

of the atmosphere (Branstator and Opsteegh, hereafter BO).

Analytical solutions of the barotropic vorticity equation on a sphere fall into two

classes - the Rossby - Haurwitz waves and modons. Rossby - Haurwitz waves are exact

analytic solutions of the barotropic vorticity equation on a sphere in the case that the

streamfunction is a single spherical harmonic mode. BO note that the existence of Rossby

- Haurwitz waves of the same total wavenumber would be characterized by a linear rela-

tionship between q and I. Modons, on the other hand, may be analytically constructed by

allowing the trapping potential to change discontinuously on moving from closed to open

Q or T contours (Butchart et al., 1989). On a geostrophic scatter diagram the signature of

a modon structure would be the existence of two distinct linear relationships between Q

and T.

Attempts at identifying free or steady solutions in atmospheric data have relied on

either diagnostic techniques in which a qualitative comparison between the observed dis-

tribution of points on scatter diagrams to the signatures of the known free mode solutions

is made (Butchart et al., Illari (1984), Ek and Swaters (1994)) or by attempting to quantita-

tively find the solutions to the unforced barotropic vorticity equation (BO, Anderson

(1992)).



BO and Anderson sought solutions, WS to

J (W s, f+ V 2s = 0

by seeking to minimize a functional F(s)

2

F(W s sf+V 2 s)) (3.10)
S i 1T' )

(where 'i' is an index for the sum over complex spectral coefficients of the Jacobian) with

respect to Ts. F represents the degree to which the observed flow departs from free mode

form.

Using observed instantaneous flows at 500 hPa as an initial guess, BO were able to

find minima to (3.10) which closely resembled their initial guess. The relationship

between absolute vorticity and streamfunction was observed to be nonlinear or piecewise

linear and therefore not characteristic of the known analytic solutions discussed above.

The solutions BO find were characterized by a decrease in variance of relative vorticity at

relatively high wave numbers (approximately greater than 10) generally associated with

synoptic scales. BO argue that the distribution of free modes is not uniform. BO suggest

that the part of phase space in which the atmosphere resides (determined from the initial

guesses) is highly populated with the distinct states they found being a comparable dis-

tance apart as individual observed flows.

Anderson also obtains minima to (3.10) for 300 hPa-flow which have characteristics

similar to those found by BO. Figure 3.1 a (taken from Anderson) shows the distribution of

300 hPa streamfunction averaged over 0000 and 1200 UTC for 14 January 1987. The cor-

responding scatter diagram is shown in Figure 3.1c This distribution was used as the initial

field in the solution to (3.10). The solution to (3.10), (Figure 3.1b), which Anderson refers

to as a nearly steady state (NSS), and its corresponding scatter diagram are shown in Fig-
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Figure 3.2: (a) Average of 0000 and 1200 UTC observed 300 hPa streamfunction
for 14 January 1987 (contour interval 107 m2s-1), (b) Streamfunction of the NSS
corresponding to time in (a), (c) and (d) geostrophic scatter diagrams for (a) and
(b) respectively with ordinate absolute vorticity (units s-'). (from Anderson (1992))



ure 3.ld. Note the similarities in both the streamfunction fields, the apparent "filtering" of

smaller scale structures in the streamfunction fields, and more importantly the q - T scat-

ter plots (although the scatter has been considerably reduced in (Figure 3.ld). The labels

identify on the scatter plots Figures 5.1 (c and d) various flow regimes. The labels A, B, D,

and E point out regions in which blocking flows are observed. The differing functional

relationships between q and T found in the blocked flow regimes have a signature charac-

teristic of a modon-like flow. Anderson additionally finds that all identified nearly station-

ary states found are barotropically unstable.

The work of BO and Anderson, coupled with the observations presented in the Section

2.2 lend credence to the idea that the instantaneous observed flow is dominated by a low

wavenumber, nearly steady component. That the flow is dominated by such a component

supports the primacy of the relationship between q and W.

Finally it should be noted that while the barotropic solutions obtained by BO and

Anderson are steady (or nearly so), they would not necessarily be appropriate as basic

states as they may not be balanced.

3.3 Data set and methodology

In this section, the data set and methodology used to determine a steady, balanced,

basic state from observed data are described. The order of the discussion is as follows: first

a description of the data set used is provided, second a description of how the Q and T

relation is determined from the data is presented, and finally a discussion of the balance

and boundary conditions that are employed in the solution is provided.



3.3.1 Data set and isentropic analysis
The data used in this work were from the NMC Global Analyses available from

NCAR on 145 x 37, 2.5 degree grids. The analyses are based on synoptic observations

(surface reports, aircraft observations, soundings, and satellite derived fields) taken at or

near 0000 UTC and 1200 UTC and run through the Global Data Assimilation System as

part of the analysis and forecast cycle for NMC's global spectral model. The particular

fields used include the surface temperature, geopotential height, temperature, and wind (u-

and v-components) at mandatory levels from 1000 hPa to 100 hPa. Except where other-

wise noted, in the presentation to follow the data used were taken for the month of January

1991.

Isentropic analyses of wind, pressure, and Montgomery potential was performed on

the data by linearly interpolating mandatory level data to the desired isentropic level. Sta-

bility, used in the calculation of PV, is calculated using a vertical finite difference of pres-

sure over a 10 K thick layer.

Two points must be made with regard to this data set: while this data set is suitable for

studying the evolution of synoptic scale disturbances, its vertical and horizontal resolution

may be too coarse to resolve the concentrated vertical and horizontal gradients of potential

vorticity in the atmosphere. This is not a severe limitation - the data set is of sufficient res-

olution to capture many of the features seen in isentropic analyses constructed from radio-

sonde observations. The second point is of more concern - Davis and Emanuel (1991) note

that in the NMC analyses, the temperature at the surface is based on a downward extrapo-

lation of stability just above the surface, while heights are extrapolated downward based

on a standard atmosphere profile. The resulting distribution of mass and temperature are

not in hydrostatic balance.



3.3.2 Obtaining a unifunctional Q and T (or M) relationship
As has been discussed in previous sections, the relationship between the potential vor-

ticity and the streamfunction (or the Montgomery potential) will be of fundamental

dynamical importance in determining and characterizing the basic state. The observations

and diagnostic tools discussed in previous sections provide some hints at how such a rela-

tionship might be determined.

As this study is primarily concerned with the propagation of synoptic scale waves, the

wavy part of the flow (i.e. that part of the flow in the vicinity of the jets and their concom-

itant concentrated PV gradients) is of particular interest. Typically the weak flow sur-

rounding the subtropical gyres and the lower stratospheric circulations is not wave-like

and we can therefore assume that the PV in these regions is homogenized. For the flow to

be truly steady and continuous, the Q -I relationship must be global. To determine such a

Q - T relationship, for each 12 hour period in the data set, we average Q along those T (or

M) contours which are continuous around the globe. The average values of Q values from

each day are then averaged over a time period longer than the periods of the wave motions

of interest (the averaging is performed over a month). The resulting set of points, M vs. QM

(where the overbar followed by 'M' indicates an average of a quantity along a correspond-

ing contour of M), are then fit with either a first, fourth, or fifth degree polynomial. The

scatter diagrams of this averaged data is shown are given in Appendix B. For isentropic

surfaces which intersect the earth's surface in middle and high latitudes, no suitable set of

M contours could be found to perform the aforementioned averaging. For these surfaces, a

linear fit to the scatter diagram of the data was performed.

3.3.3 Balance Assumptions
In this section two balance approximations which may be used in the determination of

the basic state are presented - geostrophic balance and non-linear balance.

Geostrophic Balance



Geostrophic balance is derived from balance between the Coriolis force and the hori-

zontal pressure gradient forces. On an isentropic surface, this balance may be expressed in

terms of the Montgomery potential

u - kxVM,
f0

where ug is the geostrophic wind, and k is the local unit upward normal. An expression

relating the potential vorticity to the streamfunction is required. To determine this expres-

sion, (2.1) is written in terms of M. The absolute vorticity on an isentropic surface, (aO,

may be written as

(a = f+ V2M.

The pseudodensity, a, may be written as

CF - =dp a~

O -di a

Recognizing that

M = On+gz ,and = 0.

and with some further manipulation, (2.1) may be rewritten as

f+ I V2M
fo

Q =1 (3.11)

PO aM (7-1)

j (5) MeeK
\Kgcp

where po = 1000 hPa, K =2/7, c, = 1004.7 J kg K- 1, andy '= .287.



(3.11), which may be rewritten as

1

1 M- P 0  Q 9( m) M 9 = (3.12)-VM I-I IQ a-9

fKg C go
is the "definition" of Q, (the geostrophic potential vorticity). Given the distribution Qg

Qg(x,y,O) in some domain, together with boundary conditions, (3.12) may be solved to

determine the three dimensional geostrophically balanced flow within that domain. In this

problem, rather than knowing Qg = Q,(xyO), Qg = Qg(M;O) is known, and so a typical

inversion of PV cannot be undertaken. Solutions to this problem are determined by start-

ing with an initial guess for M, evaluating Qg, inverting in the "normal" fashion to solve

for M. This new value of M is then used to start the process again. The cycle continues

until a value of M satisfying (3.11) and the Qg = Qg(M) relationship is found. Appendix D

contains a brief description of the numerics of the solution.

Nonlinear Balance

To derive the nonlinear balance relation, the horizontal velocity field, u, is partitioned

into a nondivergent (uV = k x V W ) and an irrotational component (u = V X) (i.e. u =

U, + uX). The horizontal momentum equations are then scaled such that terms of order a

Rossby number determined by the irrotational part of the velocity field are neglected com-

pared with terms of order Rossby number determined by the nondivergent part of the

velocity field. The divergence of the scaled horizontal momentum equation may then be

written

V- (uW-VuW)+V 2 M-fV2  -kxVf-uly=O

or as,



2

V -2V M + V ( (V - (I x ul (f + V ))) 3.13)
2

Using the Bernoulli energy, B, B M + U2 , (3.13) may be rewritten as
2

V 2 B = -(V- (f+ V2 ) V T)) . (3.14)

The potential vorticity scaled in a similar manner is given by

-(f+ V 2I'

Q (3.15)

PO aM ('Y-1)

iKg C)

Steadiness in the system (3.13) and (3.14) requires that Q = Q(W) and Q = Q(B).

Given the relationships between Q, T, and B, the system (with appropriate boundary con-

ditions) may be solved in an iterative manner to determine W.

In this work a solution scheme assuming geostrophic balance is presented. In the next

section the boundary conditions are discussed.

3.3.4 Boundary Conditions
The boundary conditions for this inversion are chosen to satisfy two assumptions: that

the basic state be steady and that the shape of the basic flow pattern be characteristic of the

flow for the time period over which the basic state is deemed relevant. As with the stan-

dard three dimensional inversion problem, (3.11) requires lateral and vertical boundary

conditions. The solution will be determined on a hemisphere, consequently no zonal

boundary conditions are required. While no northern boundary conditions are required, for

the convenience of a solution on a rectangular grid, the northern boundary is chosen to be

at 87.5 N, where the time mean Montgomery potential is specified. The southern boundary



condition is determined by first finding the mean position (for a given longitude, the mean

latitude), on each isentropic surface, of a Q contour. Given the Q value, the M value for

this contour is known. For each isentropic surface, this M value is then set at the mean

position of its corresponding Q contour and these values of M are used as boundary condi-

tions.

The lower boundary is taken to be at the lowest level of the data set, 1000 hPa. Recall-

ing that the surface thermal distribution is dynamically equivalent to a delta function of

PV near the surface, in order that there be a truly steady flow, we must require that the

advection of potential temperature be zero at the lower boundary. This may be accom-

plished by either requiring the surface geostrophic wind to be wind be zero (i.e. requiring

the 1000 hPa geopotential height to be a constant) or requiring the Montgomery potential

to be parallel to the isentropes at the lower boundary (i.e. M = M(0) at 1000 hPa.). The lat-

ter requirement is utilized in this work. The relationship between M and 0 is shown in Fig-

ure 3.3 below.
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Figure 3.3: Relationship between Montgomery potential
and potential temperature at the lower boundary (1000 hPa).
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While a more appropriate upper boundary condition would be one analogous to the

boundary condition chosen for the lower boundary, the upper boundary condition is cho-

sen to be the time mean M on the 365K isentropic surface. The choice of a time mean field

would seem to contradict the basic idea of this work - that time means of quantities char-

acterized by inhomogeneous distributions will have less concentrated gradients than

instantaneous realizations of the quantity.

At the 365K level, the sharp gradients of PV are concentrated along the subtropical jet.

Because observations reveal that the "subtropical jet is characterized by great steadiness,

both in wind direction and in geographical location" (Palmen and Newton, 1969), it is

anticipated that the time mean flow and PV in the lower stratosphere would serve as a sat-

isfactory surrogate for the basic state flow in that region.



62



Chapter 4

Application of the Technique

In this chapter, the results of a determination of a basic state through the application of

the technique outlined in the previous chapter is presented for the month of January 1991.

Section 1 contains a description of the basic state. For the purposes of comparison, the

time mean fields of Montgomery potential, potential vorticity, and wind are presented and

discussed in Section 2. In Section 3, a comparison of both the basic state and time mean

vorticity flux fields is presented.

4.1 Basic state

As discussed in the previous chapter, the basic state for January 1991 is determined by

solving the system

S2 m PO aM 'y-1)
fo I Q ( ) M g = 0 f,

SKgC

with

Q = Qg(M;O),

determined from observations and

0 = 9(M) at 1000 hPa,

at the lower boundary (Figure 4.1). The January 1991 time mean M is specified at 365 K

(Figure 4.2), the time mean M at the northern lateral boundary at 87.5 N, and
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Figure 4.1: Lower boundary condition: Potential temperature at 1000 hPa. a)
(western half of Northern Hemisphere), b) eastern half of Northern Hemi-
sphere. Contour interval 5K.

M = M (0)

is specified along the January 1991 time mean position of a set of Q contours (for a list of

the contours, see Appendix B, Table 2).

Rather than discuss the results of the calculation on each isentropic level, three repre-

sentative levels have been selected for discussion. Except where otherwise noted, the

results to follow are displayed in the following format - the upper chart (a) corresponds to

results for the western half of the Northern Hemisphere (12.50 N to 700 N, 1800 W to 00
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Figure 4.2: Upper boundary condition: Time mean 365K Montgomery
potential. Contour interval 20 x 102 J kg1 . (a) western half of Northern
Hemisphere, (b) eastern half of Northern Hemisphere.

W), while the lower diagram (b) corresponds to the eastern half of the Northern Hemi-

sphere (12.50 N to 700 N, 00 E to 1800 E).

The irregular structure in the Montgomery potential fields is related to the discretiza-

tion of the mean location of the mean Q contour which defines the southern boundary of

the domain of the solution.

4.1.1 Basic state flow on the 350K surface

Figure 4.3a shows the Montgomery potential and isotachs for the geostrophic wind on

the 350K isentropic surface for the basic state. The strongest jets at this level are found

along and to the east of the east coast of North America and eastern Asia and the western
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Figure 4.3: Basic state Montgomery potential (thin contours, contour inter-
val 20 x 102 J kg-') and isotachs of geostrophic wind (heavy contours, con-
tour interval 25 ms') at 350 K.

Pacific with maxima in excess of 50 ms-1 and 100 ms' respectively. The flow is nonzonal,

with ridge axes located at the basic state jet entrance regions over the eastern Pacific at

approximately 1400 W and over western Europe along the Greenwich meridian. The flow

becomes diffluent as it moves into the ridges. The basic flow over the western portion of

the Northern Hemisphere at high latitudes is dominated by a large cyclonic gyre centered

near 750 W 750 N. Over the eastern half of the Northern Hemisphere, (Figure 4.3b) with

the exceptions of the ridge over Europe and a trough over the east central Asia, the flow is

markedly zonal.



The geostrophic PV and the geostrophic winds are shown in Figures 4.4a and 4.4b. As

with the instantaneous fields, the PV gradients are concentrated near the jets, and by con-

struction the winds are seen to blow parallel to the isopleths of PV. North of the subtropi-

cal jet, in regions in which the basic state winds are light, the PV gradients are weak.

Further evidence of the steadiness of the solution is found in the scatter diagram (con-

structed by using all of the points in the domain of the solution) in which we see the points

collapsing towards a curve (Figure 4.4c).

4.1.2 Basic state flow on the 320K surface
The 320 K basic flow Figure (4.5a, b) resembles the flow described on the 350K sur-

face. As with the 350 K surface, the ridges axes are found near 1400 W and the Greenwich

meridian, a large cyclonic gyre is located over northern Canada, and an nearly zonal flow

lies over much of southern Asia along 300 N). The jet maximum along the East coast of

North America at this level is in excess of 75 ms', while the maximum south of Japan is

weaker - at about 55 ms-1. There is some indication of a ridge in the Montgomery potential

over eastern Mongolia.

The PV and wind fields for this level are plotted in Figure 4.6 (a,b). The gradients are

seen to be concentrated near the jet cores and are weaker elsewhere. Regions in which the

magnitude of the PV gradients is small correspond to the weak cyclonic flow in the circu-

lation centers over northern Canada and Russia. The geostrophic scatter diagram for the

flow, Figure 4.6 (c), shows that the flow is essentially steady at this level.

4.1.3 Basic state flow on the 290K surface
The 290K surface intersects the 1000 hPa surface in the subtropical part of the domain.

North of this intersection, the gradients of the Montgomery potential are weak compared

with the rest of the domain (Figure 4.7 (a,b)). The maximum in geostrophic wind found on

this level is in association with the jet observed at higher isentropic layers along the east
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Figure 4.5: As in Figure 4.3, except for the 320K surface

coast of North America (speed of nearly 30 ins-). The "shape" of the flow is quite similar

to the flow seen at higher levels - with ridging found over the ocean basins and low Mont-

gomery potential (troughs) found over the continents. The flow over the eastern part of the

solution domain is wavier than at higher levels - with the suggestion of a trough elongated

northeast - southwest over western Russia, a small amplitude ridge over Mongolia, and a

trough oriented northwest - southeast over the eastern Asia.

The PV distribution (Figure 4.8 (a,b)) at the 290K level is much "flatter" than the PV

distributions at high levels. The gradients are weaker, and the winds are lighter. The tropo-
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Figure 4.7: As in Figure 4.5, except for the 290K surface

spheric values of PV are seen to be well mixed in the ridges over the ocean basins. The

geostrophic wind field for the solution is also seen to be lighter - particularly nearest that

portion of the domain that intersects the 1000 hPa surface.

In summary, the basic state flow is characterized by equivalent barotropic structure -

with the large-scale flow ridges and troughs of the flow being identifiable in the vertical on

each of the isentropic surfaces and with the low level PV and Montgomery potential in

phase with the 1000 hPa temperature field. The equivalent barotropic structure is antici-

pated, as tilting of the trough or ridge axes with height, could lead to thermal advections at
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the surface or PV advections in the interior, either of which could result in an unsteady

flow.

It has been demonstrated that there is a distinction between a basic state and a time

mean state. In order to distinguish the results of this basic state calculation from the time

mean flow, a discussion of the time mean Montgomery potential, PV, and winds is pre-

sented in the following section.

4.2 Time mean flow

The time mean flow for January 1991 is described in this section. The time mean flow

is defined as the flow derived from time averages of the height, wind, and temperature

fields on isobaric surfaces. Thus when the term "time mean PV" is used, it is taken to

mean the PV calculated from the time averaged wind and temperature. The mean flow will

be discussed for the 350K, 320K, and 290K surfaces.

4.2.1 350K surface time mean M
A comparison of the Montgomery potential fields for the basic state and the time mean

fields at 350K shows that there are in fact many similarities between these two fields in

terms of their large scale structure. In the time mean (Figure 4.9 (a,b)), ridges are located

near the over the central and eastern basins of the oceans, which there are troughs located

over central and eastern North America, eastern Asia and Eastern Europe/western Russia.

The time mean subtropical jet extends along 300 N from northern Africa to the Central

Pacific with a jet maximum southeast of Japan. A second, though weaker maximum, is

associated with this jet located over the southeastern U.S., extending east-northeast into

the Atlantic. Finally two areas of diffluence in the flow are seen in the central Pacific and

the central Atlantic.
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Figure 4.9: As in Figure 4.3, except for the time mean flow on the 350K
surface.

The differences between the basic state and time mean flow fields (i.e. basic state -

time mean) as well as the implied geostrophic wind are presented in Figure 4.10. On the

350K surface (figure 4.10 a and b), the biggest difference in the geostrophic wind is found

along the southern periphery of the domain where the subtropical jets lies. For all of the

surfaces, over the continents (oceans), the sense of the circulation implied by the differ-

ence in geostrophic winds between the two states is cyclonic (anticyclonic).

While the wind field for the time mean averaged flow (Figure 4.11) is quite similar to

the wind field for the basic state geostrophic flow, the PV fields are noticeably different.

The time averaged PY field is quite noisy - particularly over the eastern Northern Hemi-



sphere where there are several closed contours of PV. The wind barbs are most nearly

aligned with the contours of the time mean PV, where the flow is strongest. North of the

subtropical jet, in the lower stratosphere, the wind blows across the PV contours.

The non-steady nature of this flow is best depicted in the geostrophic scatter diagram

constructed for this level (Figure 4.11 c). A comparison of the scatter diagram for the basic

state flow (Figure 4.6c) indicates that the slopes of the curve suggested by the points in the

time mean flow is shallower than of the slope of the cluster of points composing the basic

state curve.
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Figure 4.10: Difference field (basic state less time mean) for 350K Montgomery
potential (contour interval 3 J kg-') and implied geostrophic winds associated with
the differences in Montgomery potential, in ms'1 .
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Figure 4.10 continued (c) and (d) for 320 K surface

The time mean 320K Montgomery potential (Figure 4.12) differs from the basic state

in a few regions. The time mean ridge in the Pacific is slightly further to the west of the

ridge in the basic state, the mean geostrophic winds are weaker in the jet cores, the mean

(analyzed and geostrophic) winds at high latitudes (north of the subtropical jet) are stron-

ger than the corresponding geostrophic winds, and the mean jets are found at higher lati-

tudes than the basic state jets.

Gradients in the time mean PV (figure 4.13) away from the jets are weaker than at the

location of the jets. Horizontal gradients of time mean tropospheric PV are not nearly as

small as those of the instantaneous distributions described in Section 2.2. The scatter dia-
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Figure 4.12: As in Figure 4.9, except for the 320K surface

Over the domain, the time mean wind fields are comparable in both magnitude and

direction with the geostrophic winds of the basic state with the notable exception being the

wind field associated with the east Asian trough. Because the trough is almost "cut-off" in

the time mean, the associated cyclonic wind field produces easterlies south of the Kam-

chatka Peninsula (north of the time mean cyclonic circulation center). The areal domain

averaged PV for this surface is smaller in the time mean compared with the basic state.

On the 290K surface the PV is nearly uniform in the eastern part of the Northern

Hemisphere, while there do appear to be systematic gradients of PV colocated with the
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Figure 4.14: As in Figure 4.3, except for time mean flow on the 290K
surface. Contour interval is 7 x 102 J kg.

polar jet (or a reflection of the poiar jet at that surface) over the western hemisphere (Fig-

ure 4.15a).

In summary, the gross characteristics of the time mean flow are similar in structure to

the basic state flow, with the exception of the subtle shift westward with height of the

zonal nonhomogeneities (ridges and troughs) of the flow in the time mean flow. The time

mean PV distribution is rather noisy, with several maxima and minima in regions in which

the flow is weak. The gradients of PV distribution in the time mean are not as intense as

those of the instantaneous flows, nor is the PV distribution away from the jets nearly as
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uniform. The strongest gradients in the time mean are located along and just east of North

America and eastern Asia. Despite the fact that the winds and temperatures have been

averaged, the PV distribution in the time mean is rather "noisy". This noisy field may be

due, in part, to the fact that PV is calculated as the product of differentiated quantities -

resulting in an amplification of small scale structure in the data. Another reason may be

attributed to the fact that the averaging has not been over a sufficiently long period of time

so as to phase average over all of the transient eddies. North of the subtropical and polar

jets (particularly over eastern Asia (Figures 4.3b and 4.5b), there are several local maxima

and minima in the PV distribution. These extrema in the PV are not dynamically signifi-

cant (in terms of their contribution if this time mean distribution were inverted) as they are

generally much smaller than a typical Rossby deformation radius. While the flow is nearly

parallel to the isopleths of PV, there are regions of significant advection (not shown) near

the jets - even for this time mean flow.

4.3 Bernoulli's theorem and the total flux of potential vorticity

In this section, a further distinction is made between the basic state flow and the time

mean flow. In anticipation of the discussion to follow in the next chapter, a set of diagnos-

tic calculations is presented which may be used to characterize both flows.

The calculations rely on a generalization of Bernoulli's theorem developed by Schir

(1993). Bernoulli's Theorem states that for a steady, inviscid, and adiabatic flow

dB 0
= 0

(i.e. the Bernoulli energy, B, is constant along streamlines of the flow). In isentropic coor-

dinates, the Bernoulli function is given by



1 1
B = cpT+gz+iu-u = M+ -u.u.

For an adiabatic flow, the flow is by definition along an isentropic surface, if the flow

is also steady and inviscid, Bernoulli's Theorem applies and the flow must also lie along a

surface of constant Bernoulli energy. Thus, a streamline for steady flow is defined as the

intersection of an isentropic surface with a surface of constant Bernoulli energy (Figure

4.16 (a)).

(a) (b)
Figure 4.16: (taken from Schar (1993)). (a) For steady, inviscid, and adi-
abatic flow, Bernoulli's theorem requires that the Bernoulli energy, B, be
constant along streamlines. The flow must also lie along an isentropic
surface, 0. A streamline of the flow is then defined as the intersection of
the B and 0 surfaces. The total flux of PV is indicated by the dark vector.
(b) For statistically steady flow, with diabatic and frictional effects
present, the total flux of PV (grey arrow) is still aligned along the inter-
section of B and 0 surfaces, however the mean streamline of the flow is
no longer necessarily aligned with the 0 or B surfaces.

Schar has derived a relationship between the total flux of vorticity within an isentropic

layer and the Bernoulli function. The derivation of this relationship proceeds as follows:

The equation of motion in isentropic coordinates,

du +6 Du
ji+%a+fkxu = -VM+F (4.1)

may be rewritten as

(+ )u+kxua=-VB+F
(at oA V+F



+kxJ = -VB, (4.2)

where J is the total flux of vorticity defined in (2.5). (4.2) may finally be rewritten as

av
J = kx (VB+ ) . (4.3)

For a steady flow, (4.3) may be interpreted as saying that the Bernoulli energy is the

streamfunction of the total flux of PV on isentropic surfaces. Further, the total flux of PV

(now with advective and non-advective contributions included) is still aligned with both

the B and 0 surfaces - even for flows in which diabatic and frictional effects are still

present (Figure 4.16b).

Figure 4.17 shows isopleths of M on the 320K surface overlaid with the total PV flux

evaluated from (4.3) for the western part of the Northern Hemisphere. The degree to

which the advective flux of potential vorticity dominates the total PV flux is apparent, as

the flux vectors are nearly parallel with the M contours. A close inspection of Figure 4.17

reveals that there is a component of J normal to the isopleths of M for both the basic state

and time mean flows. In order to isolate this non-advective component of the flux, the

component of J normal to the M contours, i.e.

J- VM
normal =V 2

is plotted (Figures 4.18). The component of the flux normal to the M contours is domi-

nated by a rotational component. Schar and Wernli (1994) relates this rotational compo-

nent to a local maximum in the kinetic energy of the flow. As anticipated, the component

of the flux is non-divergent (not shown) for the basic state flow - implying that the basic

state flow is unforced. For the time mean flow however; the flux of PV away from the
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vective flux of potential vorticity (for scale of vector, see upper right of
figure, scale i0- rn 2 s-') for (a) basic state and (b) time mean flow.
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Chapter 5

Refractive Index

A complete description of the wave propagation characteristics of the atmosphere is

necessary, as wave motions constitute an important means of "communication" between

remote locations within the atmosphere. The concept of wave motions forced in one

region influencing the atmospheric flow in another has long been a topic of interest in syn-

optic and dynamic meteorology. Vertical wave propagation from stationary sources has

been used to explain the structure of the observed upper tropospheric and stratospheric

large scale wave structure (e.g. Charney and Drazin, Matsuno, 1970). Attempts at linking

the dynamics of the tropical atmosphere with middle latitude responses have focused on

the lateral propagation of Rossby waves from a source in the tropics into higher latitudes.

The ability of waves to propagate from one region to another depends on the structure of

the medium through which the waves propagate. The present chapter begins with a brief

review of the theory of the propagation of waves in a nonhomogeneous medium. One

diagnostic quantity that may be used to study the wave propagation in such a medium is

the refractive index. A refractive index in isentropic coordinates is derived and then

applied to describe the basic state determined in Chapter 4.

5.1 Theory and interpretation
5.1.1 Wave propagation in an nonhomogeneous medium

That the propagation of waves will be affected by nonhomogeneities of the medium

through which the waves pass has been understood for some time. Analytical analyses of

the propagation characteristics of waves in inhomogeneous medium rely on the assump-

tion that the properties of the medium vary slowly over the length scale of the waves. This



assumption will be rather loosely termed the "WKB" assumption in the discussion to fol-

low.

A rather general analysis of the effects of variations in a medium's character on the

propagation of waves has been provided by Lighthill (1987) based upon the earlier work

of Whitham (1960). Lighthill considers a wave packet described by

V = W (x1 , x2' X3 , t) exp (i$ (x, x 2, x 3, t) )

where 4 is the streamfunction amplitude, and $ is the phase of the wave. The phase satis-

fies

ao-k. o=-3
ax. at

(5.1)

where w, the wave frequency (a function of position), is related to the wavenumber vector

k = (k,,k 2,k3), through the dispersion relation

(k , k2' k3' 1 x2' x3)-

The group velocity of these waves is given by

eg9 (k I, k2, k3 , x IIxDx 3 )

Taking a spatial derivative - of the second relation in (5.1) yields
aJxi

a( a)axi j
- ~G

ak axi axi

+ c - .

gi _J x.

The left side of (5.4) is the time rate of change of the wavenumber component k, moving

with the group velocity of the wave packet; that is

(5.2)

(5.3)

(5.4)

aw
aki*



dki a
d -- . (5.5)

The above system of equations, (5.6) and (5.3) describe the refraction of the wave

packet (the rate of change of wavenumber along a ray path (defined as the local direction

of the group velocity vector of the wave packet under consideration)). Given a description

of the basic state, the initial values for the position and composition (wave vector) of the

wave packet, the system may be integrated forward to study the evolution of the wave

packet.

Using relationships (5.3) and (5.6), one may further show that

d0
= 0 . (5.6)

(5.6) indicates that o is constant along a ray path. If the basic flow is homogeneous in a

direction, xi, the wavenumber component in that direction, k,, is also constant.

5.1.2 The concept of a refractive index
In a study of the vertical propagation of tropospheric disturbances into the strato-

sphere, Matsuno (1970) introduced the notion of a refractive index for the propagation of

planetary waves. Recognizing that the conservation of PPV equation linearized about a

zonal flow U = U(y,z) could be written in the canonical form of a wave equation

1

yy 2 zz U -c

Matsuno identified the term in parentheses, as being the equivalent of a refractive index

squared for the lateral and vertical propagation. In numerical solutions of the linearized

wave propagation equation, Matsuno observed that minima in the distribution of this

refractive index acted as a barrier to wave propagation.



Karoly and Hoskins (1982) (hereafter KH) relate the concepts of ray tracing to the

index of refraction for vertical planetary wave propagation. Using the ray equations, (5.2)

and (5.5), KH demonstrate, for WKB conditions, that waves are refracted. towards gradi-

ents in the total wave number, K.. KH show that regions of local maxima of K. focus the

paths of rays and act as a wave guide and demonstrate the importance of the curvature of

the flow in determining the structure of the refractive index. KH further suggest that, at

least for their study, the applicability of WKB techniques in realistic basic states may still

be valid.

The form of the quasi-geostrophic refractive index, n2G, is approximately,

2 eff
nQG - U-c

where ,eff is the effective PPV gradient - including horizontal and vertical shears of the

basic wind, suggests that the refractive index may be maximized near jets where the con-

tribution to the horizontal shears to the PPV gradient can be large due to the large curva-

ture in the jet profile in the vicinity of the jets. The index wouldn't necessarily be large at

the jet axis as the wind contributes inversely to the refractive index. As noted in Chapter 2,

jets may act as wave guides for waves with sufficiently small zonal wavelengths. Bransta-

tor (1983) demonstrates that wave energy emanating from wave sources placed within or

near regions of the atmosphere in which the refractive index is maximized about a jet, may

be ducted. The proximity of a critical line near the wave guide may also lead to over-

reflection of waves within the guide.

5.2 Derivation of a refractive index



In this section, a refractive index is derived for the study of waves propagating along a

zonal flow in thermal wind balance with a basic state meridional temperature distribution.

The quasi-geostrophic assumption that the static stability be only a function of height does

not apply to flows such as the one shown in Figure (2.3). Rather than utilizing the quasi-

geostrophic refractive index to study the derived basic state, higher order balance relations

(which make no assumptions on the lateral variation of stability, or the relative sizes of rel-

ative vorticity to the Coriolis parameter) are used to derive an index of refraction. The

index is derived making use of the geostrophic momentum approximation in pseudo-

height coordinates (Hoskins and Bretherton 1972) as well as in isentropic coordinates.

5.2.1 Semi-geostrophic refractive index
The derivation begins with the definition of potential vorticity within the semi-geo-

strophic equations for a Boussinesq fluid (Hoskins, 1972). The form of the PV in this sys-

tem, the geostrophic potential vorticity (GPV), is simply the potential vorticity evaluated

using the geostrophic wind, Qg. Qg satisfies,

-v OD%+ D = 1, (5.7)
2 X gQZZ

where <D is the geopotential height in geostrophic coordinates, all capital letter express the

fact the horizontal derivative are taken along a surface of constant height in geostrophic

coordinates.

For convenience, redefine Qg

gQg V9+~=

Qof- = QV + -- CDZZ=1.

Separate the flow into basic state and perturbations

<D = <D +<D' = <-D(Y, Z) +<D' (X,Y, Z, T), and (5.8)



(5.9)Qo = Q 0 (Y, Z) + Q'(X, Y, Z, T).

The overbar terms satisfy

v2-

J01+- zz = Q0,

so that

Q = M v2 v
O'-Z j420 + O'zz).

(5.10)

(5.11)

At this point we derive the dispersion relationship for the Rossby waves. The linear-

ized conservation equation for GPV about a zonal flow is

(5.12)(a Ua) Q v' D

Assuming that the perturbations are geostrophic,

1 a8i'
v ' = O X (5.13)

An expression is needed to relate w' to the geopotential perturbation. That expression is

the thermodynamic equation which may be solved for w' to get

w- 1 U1) @+ g .00/ - a)* (5.14)

Substituting (5.13), (5.15), and (5.16) into (5.14), regrouping terms and noting that

0- zz = ((5.15)

gives

+W w' - = 0-.



9 S0

+~ZZJ =-ozj. (5.16)
' -

0

Hoskins (1976) recognizes the term in parenthesis on the right hand side of (5.18) as just

the meridional gradient of GPV along an isentropic surface

Oz
Hence,

( U ) (D
a - am f gi

Simplifying gives

a+ aV2'+ Z

aQ0
-(

~QfaxtYO 00= const. (5.17)

_o 90

-2 aX
Q0

O = const
(5.18)

Rewriting the above expression in terms of Q,, and identifying the term on the right

hand side multiplying the meridional velocity, as an "effective ", $eff, obtain

eff Q dnQg)
eff 6Y0= const

(5.19)

The above result indicates that, unlike in the QG system, the important gradients of PV

are those along isentropic surfaces, and that the gradient is not of GPV itself, but rather the

GPV gradient weighted by its reciprocal.

5.2.2 A refractive index in isentropic coordinates

Given that ff may be expressed in terms of a gradient of GPV on an isentropic sur-

face, it would seem natural to re-express the refractive index in isentropic coordinates. To

(T ax
-O QOy -

( ) .)dY = const

+ ('zz )



that end, the derivation for this form starts from the a development of a set of equations

attributed to Eliassen (1983).

Eliassen considers an adiabatic, inviscid, zonal flow on a $ plane. Let H = H(p), be the

Exner function, then the equations for the geostrophic and hydrostatic relations in isen-

tropic coordinates for the flow are

-fU and = [ (p).

The basic state density, p, is

p (y, 9) = (9!) = (9F) - (5.20)

The equations of motion linearized about such a basic state flow are

DtU' - CaeV'+ M'? = 0 (5.21)

Dtv' +fu' + M', = 0 (5.22)

where

D, =a-+Ua
at ax

The equation of continuity in isentropic coordinates is

(In ()) +V-u = 0
dt 0 V*=

Linearized about the basic flow, this equation becomes

Dt (P') +p0 U'x+ (v'pO) = 0 (5.23)

where

p = pOOM' 0



If the geostrophic momentum approximation (Hoskins, 1975) is made (wherein the

advected momentum is replaced with the geostrophic momentum). (5.22) and (5.23)

become

Dtu ' - CaOv' + M'X = 0 (5.24)

Dtv' +fu' + M', = 0 (5.25)

(5.25) and (5.26) may then combined into a single expression for the conservation of

the inverse of potential vorticity (Eliassen).

DR (m') = 1 ) (5.26)

where the operator g is given by

( - (ao xx + + (M'n, (5.27)(M f fQ) gT g

and Qg is the potential vorticity, Q, = ga 0 -o

Assuming a sinusoidal perturbation of the form

M' = M'(y, 9)exp(i(kx+ ly+mO -cot)) , (5.28)

substituting (5.28) into (5.27), and making the WKB assumption that the variations in the

basic state are much slower than that of the perturbation, yields the following dispersion

relation

kaQg

CaeQ Og a
o (y, 0) ~ Uk - (5.29)

k2+ f12+ m2

Here, the effective $ is very similar to that derived within the semigeostrophic framework.

Now a refractive index, n2 is derived



2 f 2 CaQ 2 nQ
n2 = k2+Ll2 + JPm2= =Q . (5.30)

Z gal' U-c =()a(U-C)

The expression for the total wave number (or refractive index) may be written in a

more compact form. The key step in rewriting this expression relies on Schir's generaliza-

tion of the Bernoulli Theorem. Recall that for steady flow, the Bernoulli energy is the

streamfunction for the total flux of vorticity in an isentropic layer. For a zonal flow, this

expression is

- = U a (5.31)

If one were to perform a Galilean transformation to a frame of reference moving with the

wave at a phase speed c, then above relation may be written as

DBC
- = (U-c)(a (5.32)

where Be satisfies.

V2 BC = V - ((U- C)(a) (5.33)

Substituting (5.34) into (5.32) results in

n J29  nQ (5.34)

The elegance of this expression is that it relates the refractive index to two conserved

quantities for steady, inviscid, adiabatic flows. Additional calculation is involved, in order

to evaluate (5.33) for different phase speeds, c. (5.34) may be applied to conventional

analyses by making use of the following approximation

VlnQ - VB
n - VlnB - VB (5.35)



5.3 Evaluation and interpretation of basic state refractive index

The refractive index is evaluated for phase speeds c = 0 ms-' and c = 10 ms-1. The

results are presented on the 305K surface for the basic state flow. The expression (5.30) is

approximated by

2 f 2 _ VlnQg -VM VlnQ -n
n2~ 2 ( 25.36)

a 0 (U- c)|VMI (a (U - C)

where the vector n, is locally normal to the isopleths of the Montgomery potential.

To demonstrate the utility of the approximation (5.35), we compare a calculation of the

refractive index for (c = 0) using both (5.35) and (5.36). Figure 5.1 shows the calculation

using (5.35) while Figure 5.2 show the corresponding calculation using 5.36). Following

Thorncroft et al. (1993). the quantity plotted is

Kc = an (5.37)

where a is the radius of the earth. The advantage of plotting K allows one to apply the

charts for more than one value of k (the zonal wavenumber).

The similarities of Figure 5.1 and Figure 5.2 provides a partial verification of the

expression (5.35). The figures show a band of maximum nondimensional wave number

(refractive index) for waves of phase speed c = 0 ms-1, located just to the north of the sub-

tropical jet of the basic state. The largest maxima in K are located in regions characterized

by ridges in the Montgomery potential. The large scale minima in this quantity correspond

to the cyclonic gyres in the M distribution.
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Figure 5.1: Nondimensional wave number, K=an), see text. Contour
interval 2. (top) western hemisphere, (bottom) eastern hemisphere.Evalu-
ated using (5.35)

The distribution of Kc.o suggests that stationary waves generated in regions where

Ke_ is a maximum (over the eastern Atlantic and over Central and eastern Pacific) may be

trapped. The response to the forcing over northern Canada and northern Russia might tend

to propagate away from the regions of forcing.

Figure 5.3 shows the total wave number for c = 10 ms'. The refractive index for this

value of c is a maximum over the major oceans, and Hudson's Bay. There is also a local

maximum just north of the subtropical jet, that extends from the Pacific northwest of the

United States southeastward to the southeast United States coast. Over Asia, there is a
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Figure 5.2: As in 5.1, except calculated from expression (5.36)

local minimum in the refractive index over middle latitudes. The maximum values to the

north and south of this region are associated with critical lines of the waves.

Over North America, The distribution K=10 suggests that mobile troughs of phase

speed c = 10 ms-1, would be tend to be trapped meridionally through the waveguide-like

region extending over the United States.

Over Asia, the interpretation of these plots is complicated by the existence of critical

lines on either side of channel of minimum values in K.

Due to the rather complex structure of K for non-zero phase speeds, a more complete

set of diagnostic calculations, such as ray tracing or wave activity diagnostics (Plumb,
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Figure 5.3: 305K nondimensional total wavenumber for c=10, contour
interval 2

1986) should be performed to quantitatively understand the characteristics of waves in this

basic state.
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Chapter 6

Conclusions and Summary

6.1 Summary of principal results

The primary goal of this thesis was the development of a set of diagnostic tools to be

used to further the current understanding of the dynamics of synoptic scale systems in

middle latitudes. The tools that have been developed are a new definition of a basic state -

based on observations of the instantaneous flow, and constrained by dynamical principles,

and a new expression for the refractive index of waves that may be used to characterize

the propagation of waves.

Basic states are the fundamental tools used to understand various phenomena includ-

ing wave propagation, the instability of flows, and the initial value development of pertur-

bations. The traditional definitions of basic states, which have relied on the space or time

averages of a flow, have been shown to be inappropriate given the highly nonhomoge-

neous distribution of potential vorticity in the atmosphere. Furthermore, simple time mean

flows may not in fact be steady - if the period over which the averaging takes place is not

sufficiently long enough to remove transient features. The presence of non-steady compo-

nents of the flow may allow for interactions between the components. The interaction of

these nonsteady components of the time mean flow with the phenomena being studied

may obscure the results.

The key observations used to determine the basic state are that potential vorticity is

nearly uniform in the troposphere and lower stratosphere away from the polar and sub-

tropical jet streams and that analyses of Ertel potential vorticity and Montgomery potential

show a tendency for the isopleths of Q to be aligned with the isopleths of M in regions in
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which the flow is strong. Geostrophic scatter diagrams of Q and M constructed for individ-

ual isentropic surfaces suggest that a functional relationship between Q and M (i.e. Q =

Q(M;0)) may be defined for each isentropic surface. Within the limitations of the data,

scatter diagrams of M and 0 at 1000 hPa suggests that there is a tendency for the geo-

strophic wind at the surface (in the time mean) to be along isentropes.

The technique used to determine the steady, balanced basic state essentially involves

inverting the potential vorticity field subject to a geostrophic balance condition, constrain-

ing the solution to obey Q = Q(M), and satisfying certain boundary conditions (including

the constraint on M and 0) at the lower boundary. The resulting nonlinear problem is

solved iteratively.

The basic state that is found should be regarded as the balanced mass and wind fields

of a steady flow in which synoptic scale waves and other transient features have been

removed while certain dynamically important features of the observed potential vorticity

distribution have been retained. That the flow in any way resembles a time mean field,

while being more than coincidental, is unimportant. The basic state is that state character-

istic of the one in which synoptic scale waves propagate.

The technique is demonstrated by solving for a basic state flow for January 1991. The

basic state that is determined is, by construction, characterized by an equivalent barotropic

structure with ridges over the oceans and troughs over the continents. Surface winds are

light. These features appear to be related to what is known as a "thermally equilibrated"

response. (Marshall and So, 1990).

If the thermal forcing, H, in the atmosphere is of a Newtonian form, H = y(T - T*)

(where y represents a thermal relaxation time scale and T* is a three-dimensional equilib-

rium temperature distribution), and the spectrum of T* projects onto free stationary.

Rossby-Haurwitz waves, then the possibility exists that the thermal pattern, T*, might
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"lock on" to a free Rossby wave solution, and result in the thermal forcing being "turned

off." The resulting flow regime is characterized by zero surface winds and an equivalent

barotropic response. Marshall and So suggest that thermal equilibration is a mechanism by

which the atmosphere may approach a free-mode state.

In addition to determining this basic state flow, a new expression for the refractive

index is derived in isentropic coordinates making use of the geostrophic momentum

approximation. The refractive index is expressed as the gradient of the natural logarithm

of the potential vorticity with respect to the Bernoulli function. The attractiveness of this

form of the refractive index is that it relates two conserved properties of steady, inviscid

adiabatic flow to a quantity that is significant in terms of characterizing wave propagation.

6.2 Limitations

There are limitations with this work. Perhaps one of the most significant limitations is

the fact that the data set is hydrostatically inconsistent at the lower boundary (1000 hPa).

One would anticipate that the greatest discrepancies between the extrapolated height and

temperature fields would be observed over mountains. This may change the results men-

tioned in the preceding paragraphs. There is some hope; however, that since time means

fields were used to determine the M = M(0) relationship, in the time mean, one might

expect that the atmosphere profiles of temperature might approximate a standard atmo-

sphere, and the hydrostatic inconsistency between the geopotential and temperature fields

may have been reduced. In any case, more study must be done to determine what effect (if

any) the NMC extrapolation of heights and temperatures may have on the results.

While geostrophic balance is, for the most part, applicable to middle latitude, synoptic

scale systems, in the subtropics and in particular the tropics, it is not the best balance con-
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dition to be used. In Chapter 4, the nonlinear balance condition of Charney (1948) was

developed in isentropic coordinates. A similar technique could be envisioned to solve that

system of equations.

One of the central objectives of this work was to determine a realistic basic state for

the study of the dynamics of synoptic scale waves. It was noted that the movement of the

principal tropospheric jets (in particular the polar jet) prevents time averages of quantities

such as potential vorticity to be smeared out. A comparison of the basic state flow with

instantaneous flows reveals that the magnitudes of the basic state flow PV gradients are

not nearly as concentrated as the instantaneous gradients. This difference may be attrib-

uted to the method used to determine the Q-M relation. The technique involved determin-

ing a mean value of Q along contours of M. The assumption made was that there exists a

distinct functional relationship between Q and M. However, as was noted earlier, the rela-

tionship between Q and M is determined, in part, by the synoptic scale eddies. Depending

upon the amplitude of these synoptic scale waves, the Q-M relationship may in fact be

steeper that the one determined from the technique of averaging along the contour. A

steeper Q-M relationship will lead to sharper jets and more concentrated PV gradients.

An alternative way to determine a global Q-M relationship for each isentropic surface,

would be to determine a Montgomery potential using the data from the composited cross

section (Figure 2.4), and then for each isentropic level identify the corresponding Q for

that M.

6.3 Extensions

Given the "realistic" basic state that has been determined, and a refractive index which

characterizes wave propagation on this state, there are number of possible directions to be
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taken. The most obvious are stability and wave propagation studies. Many studies of the

stability of three-dimensional time mean or climatological flows have been undertaken

(e.g. Frederiksen, 1983). Given that time mean flows are not the most appropriate to use as

basic states for the study of the dynamics of waves, the use of a basic state determined

using the technique motivated and outlined in this work, may reveal some interesting

results concerning the stability of the observed flow.

While the technique used to determine a basic state yields a realistic flow pattern, an

important but unanswered question is "Is this solution unique?" Given that there is a rela-

tionship between the uniqueness of flows and their stability, if the stability of the flow

were assessed, on could then determine whether the solution described in Chapter 4 is

unique.

In addition to stability studies, the basic state could be used to test the ideas of the ini-

tial value development of perturbations. It has been recognized that the deformation of

eddies may lead to their transient development if the effect of the deformation is to make

the eddies more isotropic, (Farrell, 1989). The initial growth of the perturbations is highly

dependent on the initial structure of the eddy and the orientation of the eddy with respect

to the basic flow. The largest regions of deformation tend to be found along the jets associ-

ated with shearing deformation, (Dole, 1993), and at the exit and entrance regions of the

jets in the associated with stretching deformation. The most optimally configured pertur-

bations for this basic state could be determined.
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Appendix A Solution of system of (3.1)
The solution to the system in Section 3.1 is given by

C = -qZ-us

C2 =YBq1ys + B 1 + 2
C 2 2 = Y~

C3 = -q 2ys -Us

C I 1Y 2 +
C4 = YTq2Ys+TT~ 27+YTus

where TS satisfies,

2 T 2(-A&q) T + 2 (Y~q2 -Y~q I) TW- q2 YT + q IyB + 2 (TJJT -WB) + 2us (YT YB) =0
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Appendix B Q - M relationships
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Appendix C

Isentropic surface q M

315 .3 315774.204

320 .3 320160.534

325 .4 323814.307

330 .4 328148.823

335 .5 331676.402

340 .5 337966.981

345 .5 339239.826

350 1.25 341373.497

355 1.25 344650.254

360 1.25 347976.011

Table 3.1: Southern lateral boundary contours values



116



Appendix D Numerics
In this section the numerical technique used in obtaining a solution to the system

IV2M-

fo
_ Q ( a) M oo =f
K

KgcP

with

Q =Q (M)

and

0 = 0 (M)

is outlined.

(C.1) is discretized using a centered difference:

+Mi-1,j,k- 2 Mi,j,k)

8x2

(Mi,j+1, k+Mi,j- 1, k - 2 Mi,j k)

('-1) (Milj, k+I - Mij, k - 1) 2.5

280

(Mij, k+1 + Mij, k - 1 ~ 2 Mij, k)
~ 280

(D.3)

(DA4)

where Sx = Ss*cos$, Sy = Ss (where 8s = 277.5 km and $ is latitude), and 80 = 5K. We

define

(Mij,k+1 -Mij k-1)

280
(D.5)

(C. 1) may then be rewritten using (C.2) through (C.5)
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V2 M~
(Mi+ 1,j, k

(D.2)

S=fo POgQi, ,k (Mi, j,' k' 0)(

K
SKgcP



Sy2
Res~J (- (M. 2ij, k ) (Mi+1,jk+Mi1,jk- 2 Mi,J, k) +

(Mi,j+ 1, k + Mij- 1, k - 2Mij, k) +

y 2 2
( 0) (Mi+1I, j, k + Mi _ 1, j, k - 2Mij, k) +fofj Y

where Resij,k is the residual (the difference between the discretized left and right hand

sides of (C.1)) at the grid point (i,j,k), and fj is the value of the Coriolis parameter at grid

latitude j.

The solution begins with an initial guess for Mij,k. This initial guess for M is used to

determine a value of Qijk = Q(Mij,k). Given a local value of Q, the scheme proceeds to

modify the value of Mijk in a method quite analogous to successive over-relaxation

Mnew =Mold +a - Resj, k 2 (D.6)

2+2( ) +2(( )

where the superscripts new and old indicate whether the new or old values of Mijk are to

be used (Note here a > 1).
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