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Chapter 1

INTRODUCTION

Description of the Problem

Dispersive characteristics of low-frequency, shallow water

transmission can destroy a simply-compensated, or electrically-

steered, antenna's ability to detect a sound signal and to infer

its direction.

The problem commands interest because of past sound systems

and present trends in passive underwater sound arrays. The problem

only occurs with antennas that change the direction of their

response patterns by electrically adjusting the phase delay between

the elements before adding all element outputs. If an antenna is

mounted underwater and mechanically turned to "look" in all direc-

tions of interest, the problem in this thesis does not exist. The

short explanation of these conditions rests with improper knowledge

of the sound phase velocity. The exact nature of the problem

follows in chapter three and four.

When passive antenna systems grew large, as did some radar sys-

tems, the mechanical problem of rotating them was solved by rotating

the response pattern instead of the physical configurations. The

German Navy employed a high-frequency array mounted along the length

of a ship. For obvious reasons electrical steering of the response

pattern was mandatory. No problem was encountered because no

dispersive system existed. The antenna was used in a high-frequency,

deep water environment.



After World War II more emphasis was placed on low-frequency

sound propagation. Transmission attenuation (neglecting reflections

and scatter) is proportional to (frequency) 3/2 at lower and middle

sound frequencies. Thus, an obvious way to increase operational

range is to lower the operating frequency. The passive system will

detect a low-frequency signal at a longer range than a high-

frequency signal with all other things equal.

If a low-frequency antenna system is placed in shallow water

and electrically steered, the problem outlined in this thesis will

limit the effectiveness of the antenna. The corresponding problem

would occur in electromagnetic systems if a radar antenna were

operated in a wave guide.

Defining the Low-Frequency, Shallow Water Case

Before commenting on the assumptions, the low-frequency,

shallow water case will be defined. At the end of thapter two

the non-dimensional ratio 7%/H (sound wavelength to water depth) is

used to show dispersion effects. Values greater than 0.2 can surely

be considered as shallow water. (See Figures II-V.) Even the ocean

off the continental shelf can appear quite shallow to a sound wave

of one cycle per second (this corresponds to a wavelength of about

5,000 feet). The following diagram will specify the border between

the high-and low-frequency case in this thesis for a sound propaga-

tion velocity of 5,000 feet per second.
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Defining the Different Sound Velocities

The velocity of sound propagation in constant sound velocity

water would be c1 if A/H P- 0. This condition is satisfied

at high enough frequencies or deep enough depths in accordance to

the preceding diagram. The "deep ocean" sound velocity is then

defined as c1 . The sound velocity in the ocean floor is defined as

c2 . Chapter two will show that the sound phase velocity, or

velocity of wave propagation, is a function of frequency in a

dispersive medium. This velocity as a function of angular frequency



is defined V(4)). In this thesis a deep water antenna refers to an

antenna designed in accordance to a constant sound phase velocity c1 .

Data demonstrates that a fine sand bottom has typical ratios of

c2/c 1 and(2/~ 1 of 1.11-1.16 and 2 respectively. Some mixtures

of bottom material and water result in lower bottom velocities than

2
the deep ocean sound velocity. Marsh and Schulkin point out that

bottom properties are controlling and further state that the

principal problem in calculating the shallow water sound field is

the lack of detailed knowledge of c

Assumptions

Variations in the model parameters will alter local conditions

and change transmission between two points (i.e., intensity, arrival

time, and the exact pattern of the standing vertical wave); however,

these variations do not change the essential and critical feature

of low-frequency, shallow water sound transmission (i.e., the bottom

and surface reflections of sound waves cause dispersion). Therefore,

the usual variations of temperature and salinity, sea-state, and

bottom smoothness were neglected because they are unimportant in

this particular problem. Only a few assumptions were necessary to

facilitate analysis and computation. These are stated below:

1. The water itself has a constant sound propagation

velocity.

1. See pages 4-5 in Reference (5).

2. See page 65 in Reference (7).



2. The ocean bottom density and the velocity of

sound propagation in the ocean bottom were taken

as greater than the sound velocity and density

of the ocean water.

3. The model assumed a "far field" condition where

the distance between the sound source and the

antenna was large compared to the antenna

dimensions. Attenuated sound modes do not reach

the antenna.

4. The impinging sound waves were assumed plane.

5. The model assumed that bottom and surface reflec-

tions from sound ray angles greater than the

critical angle were not attenuated. (The critical

angle is Ocrit = arc sin (cl/c 2)-)

Justification of the Assumptions

The first assumption has no relevance concerning the existence

of dispersion; but, the use of a constant c1 in future calculations

eases computation. If water is free from large salinity variations

and wind mixes the water, an isothermal, isovelocity sound field

can be a very good assumption when the water depth does not exceed

200 feet. The data mentioned previously in Reference (5) justifies

assumption (2). The fourth assumption follows from assumption (3)

since the radius of curving waves approaches infinity in the far

field. The fifth assumption is a property of the dispersive system

covered by Officer and further mentioned in Chapter two.



Past Work Concerning Dispersive Systems

Several authors such as Officer and Tolstoy3 have considered

the shallow water dispersive system. Tolstoy states that if a

medium is bounded by reflecting walls, it will act as a wave guide.

Energy from a sound source gets permanently trapped by a process of

continuing total reflection (unattenuated modes). The guided energy

spreads cylindrically and constitutes the dominant arrival at long

ranges within the guide.

Tolstoy further states that the propagation of guided waves

is dispersive and one must distinguish between phase velocity V(W)

and group velocity U(cW). If k is the wave guide number parallel to

the reflecting surfaces, these two velocities are defined:

V(W~) = W0
k

U(P) = dw (for the transient case)

U(W) gives the energy propagation velocity along the guide of

energy contained in a band width du) centered about a mean frequency

o. The phase velocity V(3) is the "instantaneous" velocity of a

point of constant phase as measured by two detectors.

Clay4 used the work of Tolstoy to investigate array steering

in a layered wave guide. He uses a two element array that takes

See Reference (11).

See Reference (4).



the time average of the square of the sums of the element outputs

and infers the sound source direction when the phase delay is

adjusted to yield a maximum. The cross-term is the covariance of

the two pressure signals. This cross-term contains the directional

information; but it has several maxima and minima (instead of one

maxima for the deep water system) since the group velocity changes

with frequency and mode. The complications of multiple maxima are

caused by constructive and destructive interference of the covariance

functions of several modes. The multiple maxima cause ambiguous

bearing determinations for the sound source.

Clay obtains a numerical solution for a simple source by

further use of Tolstoy's work. This thesis begins its treatment

by considering a system that infers direction by sensing the phase

arrivals of the sound wave. The antenna elements sense pressure

variations (compression and rarefaction), and electrically-steered

antennas are adjusted to sample the same portions of the wave. The

wave front moves with a phase velocity V(W) which is not a constant

in a dispersive system. A bundle of sound energy consisting of many

frequencies moves with group velocity U(4); but the frequency

components move with phase velocity V(W), so the bundle changes

shape since V(Q)>U(co). If the bundle moves far enough, the low

frequencies arrive first, followed by higher frequencies.

This thesis begins analysis with a pure-tone sinusoidally

varying sound signal. The thesis will demonstrate the existence
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and quantitative measurement of the bearing error and loss of

array gain experienced by a deep water, simply-compensated antenna

in a low-frequency, shallow water sound field.



Chapter 2

THE SHALLOW WATER ENVIRONMENT

Types of Dispersion

In shallow water the reflections of sound waves from the ocean

bottom and the air-water interface create a geometrical dispersive

medium. If dispersion is caused by a spatial velocity variation in

a continuous or discontinuous manner across boundaries, it is called

geometrical dispersion. If dispersion is caused by a dependence on

frequency of the physical parameters determining the wave velocity,

it is called material dispersion.

5
The method outlined by Officer will calculate the dependence

of the sound phase velocity as a function of frequency for geometrical

dispersion. The case for material dispersion was stated in Reference

(7). The relaxational absorption in sea water changes sound speed

with frequency. One computation shows a maximum dispersion effect

of 2-4 cm/sec.6 This small effect will not be considered in compari-

son to the larger effects of material dispersion for low-frequency,

shallow water sound.

Normal-Mode Solution

In the deep ocean a normal-mode solution often becomes awkward

(although Carter demonstrates that it may be more useful than previ-

ously thought in Reference (2)). For the shallow water case the

5. See Reference (8).

6. See page 30 in Reference (7).



normal-mode solution can be computed with more ease. In fact the

normal-mode solution is the only acceptable method, since the ray

solution is invalid when a standing wave pattern exists. The condi-

tions necessary for the Eikonal equation to satisfy the wave equation

are violated, and the ray solution cannot be used to predict the

existence of a dispersive wave train.

In a dispersive medium the velocity of wave propagation, or

the phase velocity, depends on the frequency and modes of vibration

in which the sound signal is propagating. This dependency is shown

for a specific set of parameters in Figure I. The phase velocity

V(o) = cl/sin 0. The critical angle 0 crit = arc sin cl/c2 is

defined as the angle where complete reflection begins for

0 crit 4 0 K 17/2. Plane waves more incident than 0 crit are

attenuated. The expression V(w) applies only to angles of 0 greater

than 0 crit.

In general a sound wave striking a density and propagation

velocity discontinuity will divide into a reflected and a refracted

wave. Examples of these discontinuities are the sea-ocean bottom

interface and the air-sea interface at the ocean surface. When a

plane wave in the ocean strikes the air-sea interface, the sound

wave is completely reflected with a phase change of Tor 1800.7

7. See page 31 in Reference (9).



Figure I

DISPERSION CURVE: Phase Velocity vs. Frequency

for c2/c = 1.15 (n - mode number)
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ocean
crit

1crit reflected rays
1 1 0reflected rays

c

E2c2 ocean floor c2  refracted ray

At all angles of incidence equal to or greater than 0 crit

there is no attenuation of the reflected plane sound wave since no

sound energy is refracted into the bottom. Reflected sound waves

with 0 < 0 crit are attenuated and thus neglected in this far field

model. The impinging sound wave will undergo a phase change upon

reflection according to8

- - arc tan __1 sin 20 _ (cl/2) 2

2 c, Cos 0

8. See page 79 in reference (8).



The phase change I depends on the angle of incidence 0 and varies

between 0 and Tradians for 0 crit and 0 = 11/2 radians respectively.

The multiply-reflected rays will form standing waves in the

vertical direction because of the phase additions of the sound waves.

The vertical patterns of these standing waves show the modes of

sound propagation. The relation between the angle of incidence 0

of a group of multiply-reflected rays and the set of prominent

discrete frequencies associated with this angle is given by9

27Tfn H cos ( 7T
c ~ = (2n-1) ,

and n is the mode number where

n = 1, 2, 3,---.

Interpreting the - Plots

Four graphs were prepared to show the effects of dispersion.

Each graph has a different c2/cl ratio, but the 2 ratio was

held constant at 0.5. The expressions showing the dependence of

phase velocity on frequency were altered to obtain a non-dimensional

ratio /H (n refers to the mode) to plot versus K(W) _ cW -1-

Now Nn V(.)
fn

9. See pages 117-122 in Reference (8).
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Using the expression giving fn, we can get

(2n-1)r -c

fn
2 TH cos ,

Thus in terms of the angle of plane wave incidence on the ocean floor

and surface 0, the quantities

Xn 27 cot 0(w)

H- and c 1 S -i'(2n-1) + I
can be calculated for plotting.

The ratio of c c2 specifies the critical angle for unattenuated

wave propagation as 0 crit = arc sin (cl/c2 ). This condition then

in part with the water depth specifies the cut-off frequency since

fn is not calculated for 0 < 0 crit. In the graphs the plot ends

when K(w) c2/c-l) since the greatest value of V(W) for any given

case is c2 . The ratio of for each mode at K(W) = c2/c-l

specifies the cut-off frequency for each mode of unattenuated propa-

gation. The wave duct acts as a high-pass filter.

An
Approximating the Versus K(W) Curve

The calculations for Figures II-V were very time consuming and

laborious. For engineering work where graphs of this type could

show the magnitude of dispersive effects and the number of allowable

modes, an approximation would be valuable. If the ratio of cl/c 2

and the water depth H can be measured, the cut-off points can be



calculated and the range of V(w) known. Since a relation between

0 and exists, the 0 terms may be eliminated. The phase

change Z ranges from 0 to 1800. If V(W) is specified as 2

an intermediate range approximation for can be made.H

From before

tan
2

C2

sin2  - (cl/Q2) 2

cos 0

(1

22

Using V(LL) = 2 '

tan -
2

Use this value for obtaining

N V~) 
2

~c2

V(W) 2

cl 2 cl
3 - ( ) - 2(- )

c2 c2

c 22
ci )

c 2+ 2 3
cl

2



Now taking 2x 2~Tcot 0

(2n-1) 1+ 12n-1

rearrange to get

r- 2

/n\2 [(2n-1) 12+ 2
+ = K(W)

H) 32(1+K() (2n-1) 2

The final form using the chosen value of V(Wj) for 1 + 2 becomes

-2 -- 2

2 (2n-1)
K~~~x)2n =1- ).r

32[3ci + c2 
(2-1

324c,

c2/ el/
A curve using c = 1.15 and f2 = 0.5 and this approximation

was drawn in Figure VI. As the mode number n increases, the

approlgimation becomes better because the term containing -
becomes smaller. Comparing Figure IV with Figure VI will demonstrate

the accuracy of this approximation.



Figure II

NON-DIMENSIONAL DISPERSION EFFECTS CURVE:

Wave Length to Water Depth Ratio ( ) vs.

Fractional Change of Phase Velocity to Deep

Ocean Velocity (K(W)) for c2/c =1.05,e 2/ =2

(n - mode number)
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Figure III

NON-DIMENSIONAL DISPERSION EFFECTS CURVE FOR

c2/c= 1.10 , (2/ 2

(n - mode number)
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Figure IV

NON-DIMENSIONAL DISPERSION EFFECTS CURVE FOR

c2/c,= 1.15 , e2/ i = 2

(n - mode number)
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Figure V

NON-DIMENSIONAL DISPERSION EFFECTS CURVE FOR
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Figure VI

APPROXIMATED NON-DIMENSIONAL DISPERSION EFFECTS CURVE FOR

c2/c= 1.15, P2/ = 2

(n - mode number)
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Chapter 3

THE ANTENNA SYSTEM

Antenna Description

A directive receiving array, or antenna, is designed to detect

the presence of a sound signal and to infer the direction of the

signal from the array in an underwater sound field. The antenna

system of interest consists of hydrophones (transducers capable of

transforming sound in water into electrical signals) arranged in a

line along the ocean floor.

Before proceeding with the discussion some variables must be

defined:

9 - the angle between the ray in the direction

of sound propagation (this ray is perpendicular

to the plane waves) and the perpendicular to

the array line

ray

plane waves

hydrophones/. array axis

L

(When 9 = 0 the signal is approaching from

"broadside" and at 9 = the signal is2

located at "endf ire"l to the array.)



W = 2rrf - the angular frequency of the sound signal

x - the position along the antenna (The center

of the antenna is taken as x = 0.)

d - the spacing distance between hydrophones

in the antenna

L - the total length of the antenna

k = - the wave number in a deep ocean
ci

Y= sin 9 - the trace wavelength in a deep ocean
ci

Antenna-Signal Processing Analogy

A close analogy between the antenna system and electric signal

processing terminology can be exploited to explain the functions

and characteristics of the underwater antenna. The antenna detect-

ing a sinusoidal sound signal in a noise field will be explained

as the analog of a periodically-spaced,unit-impulse train cross-

correlated with an electric noise signal to detect the presence of

a sinusoidal electrical signal. The antenna performs spatial

filtering as the counterpart to time filtering in the electrical

signal processing analog. The principal analogous terms must now

be defined:

Antenna System

trace wavelength
position on the array x
sensitivity at a point
radiation pattern
sensitivity function h(x,w)
sensitivity spectrum H(r ,w)

Electrical Signal Processing

angular frequency 4
time t
voltage at a time
power spectral density
unit-impulse response h(t)
system function H(W)



The sensitivity function h(x,w) gives the antenna response to

a pure-tone pressure signal of angular frequency > at the point x

on the antenna. A common set of units are volts per unit pressure

per unit length of the array.10 It now becomes important to see

how the sensitivity of the array to sound signals varies in space.

Consider an n-element antenna of equally-sensitive hydrophones

equally-spaced a distance d apart. The total length of the array

is L = (n-1) d.

The sensitivity spectrum is the Fourier transform of the

sensitivity function:
cc

H (a',w) E h(x, exp (-jrx) d x

h(x,)j) H (tW) exp(jgx) dJf

The response function H( r',4) 2 plotted against T and normalized

gives the directive pattern of the antenna. The equally-spaced,

equally-sensitive hydrophones correspond to the unit-impulse train

periodically-spaced in time. The equivalent linear system that

performs spatial sampling for the detection of a sound signal in a

noise background must have a unit response

h(x,w) = u(x) + u(x-d) + u(x-2d)+---+u [x-(n-l)d .

10. See Reference (1) for an outline of this treatment.



The sensitivity spectrum can be evaluated as

H(eW) = h(x,w) exp (-jrx) d x

5u(t-kd) exp(-jrx) d x exp (-j k d ^)

k = (1, 2,---(n-1)).

Thus

H(2,)= 1 + exp (-jdd ) + exp (-j2d -) + --- exp [-j(n-1)d f

1 - exp (-jnde) 11
1 - exp (-jd ) .

exp(jnd) _ exp (-jnd)

exp(]dI -jdJ-
2 ) exp 2

(nd~
sin (2 )

s in (d)

The normalized directional response pattern is written

K(9) =
nkdsin( 7-sin 9)

kdn sin( - sin Q)

In this analysis the frequency of the sound wave signal was held

constant for a particular K(e).

11. See pages 315-318 in Reference (6).



Antenna Response

The positions along the antenna for maximum response to a

sound signal occur when K(9) = 1, the condition for a major lobe.

Since n has an integral value, the major lobes occur when kd sin 9 =0.
2

Complete nulls for signal response occur along the antenna when

n kd2sin 9 = m2T m = (1, 2, 3,---n). Between kd sin 9 = 0 and

kd sin 9 =7T (the condition for the next major lobe), there are
2

(n-1) nulls. The minor lobes between each null decrease as n (the

number of hydrophones) increases according to the expression for

K(9). The signal response between major lobes can be made small

with the result that the signal is only received at a point on the

antenna corresponding to a major lobe.

Since the major lobes are equal, reception of signals will

be ambiguous with respect to location along the array if more

than one major lobe exists. The major lobes are located at (n-1)

kd sin 9G k_ n or using a maximum value of Oat 9 = the

2-f
first ambiguous major lobe occurs at L . So for k Z r

. 2W-n 27;r
and no ambiguous lobes, we require L >k - or a

maximum spacing at broadside of - <A . Since we desire to steern

the array so that the major lobe is not always pointing to broad-

side, the condition allowing the major lobe to be steered to

endfire without ambiguous modes requires

L 12
n 2

12. See pages 23-24 in Reference (1).



In the preceding paragraph the concept of steering the major

lobe was mentioned. This is done by timing the hydrophones to

add their outputs as a plane wave successively sweeps past them.

For a plane wave coming from an angle 9 the time delay between

hydrophone addition must be d sin G =. in a completely homogeneous,
ci

deep ocean.

ray

plane sound waves

d

Array Gain and Directivity

The array gain is defined as the signal to noise ratio of

the antenna divided by the signal to noise ratio of one hydrophone.

If the background noise is homogeneous (invariant with changes in

position and time), an n element array has an array gain n (not in

decibels).

An isotropic wave field results from uncorrelated plane

sound waves incident on the antenna from all directions with equal

intensity. The directivity D of an array is the array gain when

the signal is a plane wave coming from the direction producing

maximum output in an isotropic wave field. The directivity equals

the reciprocal of the average value of IH(X,)g1 2 in the range



of r corresponding to incident plane waves (-k< r< k) when the

pattern is normalized.

|2
l[H (r y)| max

k 2

IH ( ,)1 d r

In a later section the approximations

D kL

and D 2k

will be used as an antenna parameter.

(not endfire)

(endf ire)

Beamwidth

It should be mentioned that the major lobe in the directional

response pattern has a finite beamwidth. Some authorities define

the beamwidth between the -3db or -6db levels of the major lobe.

The beamwidth changes with 9, frequency and n. All changes in 9

referred to in this paper are in reference to the axis of the major

lobe.

13. See page 13 in Reference (1) and Reference (10).



Equivalence of Continuous and Point Arrays

In future discussions a knowledge that the n-element array

can be equivalent to a continuously sensitive line array is useful.

An equivalent n-element array has the same sensitivities at its

n-element locations as a continuous array of the same length. The

n-element array has an equivalent length of nd, where d is the

hydrophone spacing, in comparison to its physical length of L=(n-l)d.

This means that an n-element array of L=(n-l)d is equivalent to a

continuous line array of length L=nd. In the limit of the directional

response pattern as n-+**, this difference will make no change in

the final result.

From before L = (n-l)d, but we shall now use the equivalent

length and write L = nd. Then

K(G) = lim K(9)
continuous n-+00 point array

arrgy

K'( )
continuous
array

K(G)
continuous
array

= lim
n-o.'c

(nkd .
sin \2 sin )

n sin ( kd sin 9)2

= lim sin kL sin
n sin (kL sin C)

kL .sin 2 sin 9

kL sin9



Chapter 4

THE EFFECTS OF DISPERSION ON ANTENNA PERFORMANCE

Plan of Attack

In chapters two and three the variations of the phase velocity

and the principles of antenna operation were presented. Since an

antenna must detect a signal and infer direction, we should now

look for the effects of the phase velocity on array gain and bearing

determination. First the effect of using the wrong phase velocity

for turning the directional response pattern will be investigated.

Finally the conditions for array gain fall-off will be investigated

as a function of phase velocity and antenna directivity.

Array Steering and Phase Velocity

In order to steer an array electrically the phase velocity of

the sound signal must be known. In the previous description of the

antenna system the deep ocean sound propagation velocity was used.

Now the errors caused by improper knowledge of the phase velocity

can be derived.

In a general case the time delay between adding the outputs of

the successive hydrophones to detect a signal propagating toward

the array at an angle G to broadside is - d sin 9. This

expression demonstrates how the determination of 9 depends on the

value of the phase velocity:

9 = arc sin (--) .



Obviously, if the value taken as c1 is incorrect, the computed

direction of the sound source is incorrect also.

Now an expression for the correct angle 9 will be derived in

terms of the incorrect angle 9l, the incorrect phase velocity cl,

and the correct phase velocity V(w).

d sin 91  d sin 9

V(w) sin 91 = c1 sin 9

Since the correct phase velocity always exceeds or is equal to c ,

the correct angle 9 always exceeds or equals the incorrect 9 .

Therefore, express 9 = 91 + AG where A 9 is the error in direction

determination of the axis through the major lobe of the directional

response pattern. Thus

Vcsin 9, = sin (9 +A9)

Subtract sin 01 from each side and divide each side of the resulting

equation by A9. Using the general definition for the derivative

of a function, the result becomes

d 9 = K(w)tan 9 where K(M) V(U)
1 1



Using sample data where c2/c = 1.15, the maximum error at 9 =450

131
is

A 9 = .15 rad. or

80 35 .

Figure VII shows the relation between K(W) and G for errors of

3.50 and 70

Array Gain Loss

When the sound source is really located at endfire, there is

no value of 9 to correlate with the incorrect time delay between

hydrophones. When the sound source is at endfire and the antenna

system "thinks" it is looking at some 9 less than 90 0, the array

gain falls off because the hydrophones are not adding coherently.

In the dispersive medium the true representation of the sound

signal in space and time is

xsin 9-
p(x,t) = p cos (Qt -1x sin )

In a non-dispersive medium this was previously written

p(x,t) = p cos (wt - r x) where

t= k sin 9

The phase error is contained in the spatial component of p(x,t).

The phase error at any point x0 is

=Cexosin9 - £xosin9Phase Error = i V(CD)

= kx0 (1-v ) sin 9



Figure VII

THE BEARING DETERMINATION ERROR CURVE:

As A Function of Steering Angle 9 and K(co)

A. 0.

0 .1 l] .2 . 3*0 .40 .50 0 . 70 .80 .90 l .C

K(CW) = ( 1)Cl
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Assume that the peak value of the sound signal strikes the first

hydrophone. If the time delay was correct, this peak portion of

the signal would be sampled by successive hydrophones. Each hydro-

phone must add the same part of the signal to give an array gain

of n (for an n-element array). If the length of the array and the

hydrophone spacing were such that each hydrophone added a part of

the sound signal from compression through rarefaction, the hydro-

phone outputs would completely cancel the signal in the noise field.

The loss in array gain for the entire array equals the integral

of the phase error over the array length.

L

Array gain loss (in db) = 20 log KScos kx(-cl/Ws±nq

(normalized)0

sin VL(1-cl/V()sin 9

20 log

kL(l-cl/V(w))sin 9

The 20 log s in X form was plotted in Figure IX. When X = 0
X

there is no array gain loss. This happens when the phase velocity

equals c . (The other cases for 9 = 0 & L = 0 do not apply.)

Since the phase error only becomes important as a loss in array

gain when 9 = 7/2 (he phase error was not considered except as

the error in direction AG for 91+A9<l . ), the expression

simplifies to

Loss (db) = 20 log sin [k(l-cl/V()

kL(1-c1/V((dI))



The loss becomes infinite when kL(l-cl/V(W))

m = (1, 2, 3,---).
-p2kL

A useful antenna parameter was introduced previously as D =

(directivity at endfire).

Thus, Loss (db) = 20 log

The complete loss condition can now be written

D(l-cl/V(4')) - 2 m m = 1, 2, ---

This, characteristic requires the definition of a critical angle, 9crit,

where further electronic steering towards endfire causes array gain

loss.

9crit + 9 = 7
2

Ocrit 2
A G

crit 2
K(w)

Gcrit(rad)
Xktu)

This expression may be solved graphically as the intercept of the

tangent curve and a line of vertical intercept KX.) and negative

= M Tr

sin (lc (3

Dr( 1- ci/ y(w



Figure VIII

GRAPHICAL SOLUTION SHOWING THE CRITICAL STEERING
ANGLE 9crit FOR LOSS OF ARRAY GAIN: Line and Curve

Intersection Projected on the Horizontal Axis Gives Ocrit

tan 9
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Figure IX

PLOT OF 20 LOG SINX versus X
x

0-

x -10-

0

C

I I 1 I
- 3" 2W 5Tr 3Tr

2 2

X (radians)

.30 -

3Tr - 5 - 2r - 317
2 2



LOSS OF ARRAY GAIN FUR sUUNU ULUxTs i-a LAut-k±K:

Function of Antenna Directivity and K(co) for
the First 20 log SINX Lobe from Figure IX
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slope K.) (radians). The point of interception projected on the

horizontal axis gives the 0crit value. This graph and a graph

showing array gain loss as a function of directivity and K(w) are

presented in Figures VIII and X. The graph in Figure X only

gives the array gain loss to the first condition of complete loss.

The peak value of array gain after this condition is approximately

-13db from the peak as seen in Figure IX.

Conclusions

The discussion has only dealt with sound sources of one discrete

frequency. The problems of an antenna system in shallow water

increase when the sound source spectrum is comprised of several

frequencies. There are essentially five characteristics predicted

by this model.

1. Since the phase velocity differs with frequency,

"parts" of the sound signal corresponding to the

component frequencies travel with different phase

velocity.

2. The change in phase velocity with frequency causes

different values of AG, and this causes the sound

signal to appear at many bearings from the array

simultaneously.

3. Since modes travel with different velocities,

the same frequency (if it is high enough to

travel in more than one mode) appears at different

bearings.



4. The sound source may seem to disappear and

reappear at a particular angle (this angle is 9,

just greater than 9crit where loss in array

gain begins) if the array has a sufficiently

high directivity and the sound signal moves

across endfire from 9crit to 180-9 crit*

5. If a frequency analysis is performed on the

antenna output, it follows from (4) that some

frequencies may vanish while others remain.

This occurs since 9crit varies with frequency

and mode.

Using Figures II-V with knowledge of the operating frequency,

water depth, and 2 and cl/c2 ratios, the effects of dispersion

can be found by reading the corresponding K(w) value for the

allowed modes of propagation. The possible bearing determination

errors and the array gain loss at endfire can then be found from

Figures VII and X. Before considering the use of simply-compensated

arrays over frequency ranges that will yield n . 0.2, the oceanH

floor velocity should be experimentally determined to allow the

estimate of possible dispersion effects.

The approximation, however, drawn in Figure VI demonstrates

that an assumed value of c2/c 1 can give values of K(GO) when values

of An/H are chosen. This approximation can be used for estimating

performance when c2/c 1 is not definitely known; but, the designer



must remember that the cut-off frequency for unattenuated propagation

cannot be found (except by later operation of the antenna system)

unless this ratio is known and the depth H is known.

Finally, errors in bearing determination vanish when 9 = 0

or when the antenna is set for broadside detection. This means

that no electrical delay is used before adding the hydrophone out-

puts. A dispersive medium has no effect on a mechanically-steered

array since the array always is looking to broadside in the electrical

sense. In other words the array is no longer simply-compensated.



APPENDIX

Illustrating the Importance of the Velocity

Profile on Some Aspects of Ray Acoustics

The SOFAR channel is characterized by a sound velocity minimum.

This minimum occurs when the temperature profile is steadily

decreasing with depth and the pressure is steadily increasing. The

pressure increase raises the sound speed as the temperature decrease

lowers the sound speed. If the origin is taken at the velocity

minimum, the rays representing the propagation direction of plane

sound waves can be specified by their angle 9 with the horizontal

through the origin.

14-
Several types of curves are used to represent the velocity

profile surrounding the minimum. These profiles must be examined

to see if they give the same type of sound field.

Consider a linear gradient c(z) = c (1+ PIzI ) where c0 is the

minimum velocity, and z is the vertical distance from the axis.

c(z)=ce(1-+ 13z1 )

LO

r

14. See Reference (2) for a more complete description.



If the source is taken at the origin, the ray is an arc of a circle

of radius = sec 0 When 0 the circular arc bends

upward and the curvature K = -p cos 9 0 The rays represent a

family of circles which pass through(r,z)= 0 and whose centers lie

on the line z = -l/@ . If the velocity gradient cop is positive,

the ray returns to the surface (z = 0) in time to.

t 1
0 cots

log 1 + sin 9o
l - sin 9o

If the ray path follows the line z = 0, the travel time is

t =L
H co

Now the general expression for the ray path is

r-tanG 2 2 sec 2 gon0 ) + (z + 0/) =G For the horizontal ray (z = 0)

2 tan go 1 _____

the distance L = 2 tn _ Comparing t 0 log 1-sing0 with

t H=
Hog i

2 tan 9 , it takes longer for a ray to travel the same
0

distance over the horizontal path than by a curved ray path.

In a second case the profile

this is approximated as c(z) = c

is c(z) = c0 (1- dz 2 -

(l+ ). In this caseA 2

r = c(z)
2-c 2- (2 )

where =

z

z = 0
2

c(z'ol )

cos Go go

and

I"

co0



The equations for ray paths are z = (lP sin 90) sin (P r sec 9 )

This is a sinusoidal wave of amplitude l/P sin 90 and a cyclic

distance ( r = A) of 21T= A sec 9c' where

A = 2Tr Cos 9

In general t = r
A co P

2 0
1 - sin 90 so that travel time decreases

2

as 90 increases; but the distance of travel A is decreasing with

increasing 9 . The horizontal path travel time is

A = 2-rcos 9o
H 0 co (9

2
Comparing the two cases, it is obvious since 1-sin 9  cos 90

that the horizontal path is always faster than any curved path.

This is an opposite effect from case (1).

The third case is a combination of a minimum isovelocity area

with a linear temperature gradient.

c=c (i+ (tz

z=O

c0 d
H A H

r

"'77 - = cos 9o

GO



From before, the time to travel DA is

tlt = log
A OP

1 + sin Go
1 - sin 9o

and the time for horizontal travel

t = 2 tan 00

DA co9

The time necessary to travel the inclined isovelocity paths is

t =2H
s cocose0

portions is t

while the horizontal time of travel for these

_2H

2 = . Thus

t curved c
1 + sin 9o

log l- sin 9g
2H

+ cocoso0

t 2 tan go 2H
h= co 

+

2 tan g0  1
co co O

where tan 9 d0 FT

1 + sin 90
o 1 - sin g0

and o2H
cOcosO0

and

Now



The travel times are equal if

2 tan eo 1

cO p co
log + sin 9

1i - s'fin 90
_ 2H

cocos90

2 tan 9o - log 1 - sin Go

- -s n g

2tan90 -2 sin90 + sin 39O
3

2H 1
C0 C0G9o

- 1

-2 0~~ 242H l+ +
Co__

If G < 1,

2(9 O )-2( 3
0+ t3 !

+ go3) 2H ( )
~~3~

and

-. = H (902g

Excluding the uninteresting case of 9o = 0,

9 = L for equal travel time by curved and horizontal
o 3

paths.

Now

2H
Co

1
co

and

Co



Now the straight horizontal path takes longer if 90p H9 ,
3

where H = d cot 9 .

d(cot 9o)1

3

( 1
3 go

C3
- +

With 9 taken as small
0

9 _ d 1
o 3 9Q Go

or9 for equal travel times.

If 9> the horizontal travel time is longer. These three
o 3

examples show that the relative travel times of horizontal and

curved ray paths vary with the chosen SOPAR profile velocity

pattern.
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