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Measurement That Transcends Time:
A Lebesgue Integral Approach to Existential Sentences

by

Junri Shimada

Submitted to the Department of Linguistics and Philosophy
on August 27, 2009 in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Linguistics

ABSTRACT

In the study of natural language semantics, sentences that assert the existence of entities
predicated of by noun phrases have traditionally been analyzed with simple usage of the
existential quantifier. In this thesis, I challenge this standard approach through discussion
of sentences whose semantics cannot be correctly captured in this manner, and develop an
alternative, novel approach that employs Lebesgue integration.

The first chapter is centered around Musan's (1995) generalization that states that the
temporal (situational) interpretation of a non-presuppositional (i.e. existential) noun phrase
is obligatorily dependent on that of the main predicate. It defends the view that the sit-
uational dependence is obtained by virtue of being in the scope of some operator and ar-
gues that in order to obtain the correct interpretation of plural non-presuppositional noun
phrases, the numeral part of non-presuppositional noun phrases must be separated and in-
terpreted above the said operator.

The second, and last chapter incorporates the result of the former chapter into Krifka's
(1990) analysis of the readings of existential sentences which Krifka terms event-related
readings. After we observe that Musan's generalization is extended to the situational in-
terpretation of units of measurement, it becomes evident that a proper semantic analysis
of sentences that describe continuous production or consumption of mass entities requires
the capability of treating infinitesimally small time intervals. This leads to a new theory
where the truth conditions of an existential sentence are expressed as a condition on the
value of the Lebesgue integral of an appropriate function defined on situations calculated
over the set of all situations whose projections onto the time axis are contained in a context
time interval. The theory makes a fundamental connection between temporal (situational)
interpretation and existential assertion. Furthermore, our natural intuition of a dichotomy
between discrete (telic) events and continuous (atelic) events are captured by the decom-
position of the measure used in natural language semantics into modified versions of the
counting measure and the Lebesgue measure.
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Prelude

Many sentences in natural language make an existential assertion. For instance, (1) asserts

the existence of an individual predicated truly of by the noun 20-year-old.

(1) Mary kissed a 20-year-old.

On the traditional, standard approach to the semantics of such sentences is make simple

use of the existential quantifier (3). Thus, (1) is usually analyzed as follows:

(2) 3x[20-yr-old(x) A kiss(x)(Mary)]

The main thesis that I put forward is that existential sentences like (1) should not actually

be analyzed with such simple-minded use of the existential quantifier. In the dissertation,

I propose a new semantic theory to replace the traditional approach where the truth con-

ditions of an existential sentence are expressed as a condition of the value of a Lebesgue

integral of an appropriate function from situations into nonnegaitve reals.

One empirical problem that has not been explained before and that is treated here is

the precise semantics of sentences that describe continuous production or consumption of

mass entities.

Imagine the following scenario. Our factory has a machine called Machine P which

is capable of producing liquid XYZ. Machine P is connected to a tank into which the

XYZ produced by Machine P is poured. The tank is further connected to a machined

called Machine C that converts XYZ into another liquid called ZYX. At the beginning of

yesterday, the tank had exactly 1 liter of XYZ, and this was all the XYZ in the world at

that point. At 9 a.m. of yesterday, we ran Machine P, which started producing 0.3 liters of

XYZ per second. At the same time, we also ran Machine C, which started converting 0.3

liters of XYZ into 0.2 liters of ZYX per second. We stopped both machines at 5 a.m. of

yesterday. Then, since Machine P was running for 60 x 60 x 8 = 28800 seconds in total,

we are confident to report our factory's achievement yesterday with the following sentence:

(3) Machine P produced 8640 liters of XYZ yesterday.



Of course, this figure has been calculated as follows:

(4) 0.3 x 28800 = 8640

Consequently, we gained 8640 x (0.2/0.3) = 5760 liters of ZYX in the end yesterday by

the conversion of Machine C.

What are the truth conditions of sentence (3), then? The standard approach would

propose something like the following as its truth conditions:

(5) 3x[XYZ(x) A liter(x) = 8640 A produce(x)(Machine P)]

Is this really the correct analysis of (3)? That is very unlikely to be true. Since the volume

of XYZ that Machine P produced per unit time and the volume of XYZ that Machine C

consumed per unit time were exactly the same, the volume of the XYZ kept in the tank

must have been exactly 1 liter throughout yesterday. Since this was assumed to be all the

XYZ in the world, there was no time point in yesterday when 8640 liters of XYZ existed

in the world. How, then, can (3) be truthfully asserted in this situation?

It turns out that the semantics of sentences like (3) cannot be captured without recourse

to integration, especially when we think of the possibility that the size of an individual

may change as time goes by. The present dissertation develops this theory step by step,

starting from discussion of Musan's (1995) generalization. In Chapter 1, we will first see

that the numeral part of non-presuppositional noun phrases must be raised at LF for the

correct interpretation of plural non-presuppositional noun phrases. In Chapter 2, the results

of Chapter 1 is incorporated into Krifka's (1990) analysis of event-related readings. By

observing that Musan's generalization is extended to units of measurement, the necessity

for integration becomes evident at last. The rest of the dissertation then introduces the

theory of Lebesgue integration and builds a general theory that encompasses the analyses of

measure phrases like three kilograms and temporal measuring expressions like three times

andfor three hours that works for discrete (telic) and continuous (atelic) events uniformly.

0.1 Preliminaries

I assume the following semantic types:



(6) Semantic types

e individuals

w possible worlds

i intervals

s situations

v events

n real numbers

Since n is the type of real numbers, D, = R.

Time intervals are nonempty convex sets of time points. We assume that the time line

is isomorphic to the real line R. Thus,

(7) Di = {(a,b) I a,b E R A a < b} u {(a,b] I a,b E RAa < b}

u {[a,b) I a,b E RAa < b} u {[a,b] I a, beR a < b},

where (a,b) = { p p IR A a < p < b}, (a,b] = {I p p IR A a < p b},

[a,b) = {p Ip E R A a p < b} and [a,b] = {p I p e R A a p < b},

For each semantic type, we can think of the corresponding lattice obtained as the closure

under the join and meet operations of entities of the semantic type.

For a semantic type o-, u. denotes the join operation. Thus, if John e De and Mary e

De, then John ue Mary is also an individual that belongs to De. Similarly, n, denotes the

meet operation for semantic type o-.

Note that given a time interval I = [a, b] and J = [b, c], since time intervals are sets of

time points, I u J = [a, b] u [b, c] = [a, c]. On the other hand, I ui J = [a, b] ui [b, c], and

thus I u J # I ui J. The reader should not confuse these two.

The order given to the lattice for semantic type cr is denoted by E,. For example,

John c 0- John ue Mary.

The bottom of the lattice for semantic type o- is denoted by -L,. 1, is defined as the

element such that for every x e D,-, 1 E- ,- x.

If x e D, and if y E o-x entails y = 1_L, then x is called atomic. The set of all atomic

elements in the lattice for semantic type c- is denoted by AT,. Clearly, AT, e D,.

For any x, y E D,, we say x and y overlap and write x o, y, if and only if there is a

z E D, such that z 0 I, A z , x A z E, y. Obviously, if x e AT, A x o, y, then x = y.

An atomic situation is a pair of an atomic world and an atomic time interval. Thus,

ATs = ATw x ATi. The lattice of situations are the closure of ATs under the join and

meet operations. r and 7ni are the projection maps to the world and the time interval,



respectively. Thus, for a given atomic situation s = (w, I), rw(s) = w and 7ri(s) = I.

Hence, for any atomic situation s, s = (rw (s), 7ri(s)) holds.

Although I have introduced lattices for all semantic types, not all of them are needed

in the end. Particularly, assuming the situation lattice, I sometimes talk about non-atomic

situations, but this is in order to discuss analyses that pluralizes predicates with the * op-

erator. However, I eventually argue for a theory that gets rid of the * operator, and thus it

turns out unnecessary to assume non-atomic situations.
defA = B means that A is defined as B.

FA
In semantic computation, = indicates that the equality is obtained by virtue of Func-

tional Application (Heim and Kratzer, 1998) and indicates that the equality is obtained

by /-reduction.



Chapter 1

A Scope Theory of Non-presuppositional

Noun Phrases

This chapter presents a scope theory of non-presuppositional noun phrases to account for

Musan's (1995) generalization about the obligatory situationally dependent reading of non-

presuppositional noun phrases, and defends this view by providing evidence from bi-clausal

sentences in favor of the scope theory. Nevertheless, it turns out that this scope approach

runs into an apparent scope puzzle when we attempt to analyze plural non-presuppositional

noun phrases which are associated with plural times (events). To solve this puzzle, it is

concluded that the numeral part of a non-presuppositional noun phrase gets separated at LF

and enters into computation after the noun and the main predicate are combined to from a

relation that expresses situational dependence.

1.1 Musan's generalization

1.1.1 Temporal dependence

Since Eng's (1981; 1986) work, it has been known that the evaluation time of a noun phrase

may be different from the evaluation time of the main predicate. For example, in Eng's

sentence in (1), if the evaluation time of fugitive should be the same as the evaluation time

of the main predicate be in jail, the sentence should be asserting that some individuals are

both fugitives and in jail simultaneously, a contradiction.

(1) Every fugitive is now in jail.



However, (1) clearly has a non-contradictory reading which can be paraphrased as "every

individual who was a fugitive is now in jail." This means that fugitive can be evaluated with

respect to some past time, while the main predicate is evaluated with respect to the present

time.

Following the above empirical observation by Enq, Musan (1995) notices that it is not

always possible for a noun phrase to have a different evaluation time from the main pred-

icate. Consider the German setnences in (2) (= Musan's (5) on p.79), where the words in

capital letters are stressed. Sentences (2a, b, d, f) can easily be about individuals who are

professors now but who were not professors in the 60's. With Musan I refer to this reading

as a temporally independent reading in the sense that the evaluation time of the noun

phrase is independent of that of the main predicate. By contrast, sentences (2c, e) may

only be about individuals who were professors and happy simultaneously in the 60's. This

reading is referred to as a temporally dependent reading.

(2) a. Die meisten Professoren waren in den sechziger Jahren gliicklich.
the most professors were in the sixites happy

'Most professors were happy in the sixties.'

b. EINIGE Professoren waren in den sechziger Jahren gliicklich.
some professors were in the sixites happy

'S6me professors were happy in the sixties.'

c. Einige PROFESSOREN waren in den sechziger Jahren gliicklich.
some professors were in the sixites happy

'Sm professors were happy in the sixties.'

d. Einige von den Professoren waren in den sechziger Jahren gliicklich.
some of the professors were in the sixites happy

'Some of the professors were happy in the sixties.'

e. In den sechziger Jahren waren ja doch Professoren glicklich.
in the sixites were (indeed) professors happy

'In the sixties, [some] professors were (indeed) happy.'

f. Professoren waren ja doch in den sechziger Jahren gluicklich.
professors were (indeed) in the sixites happy

'Professors [in general] were (indeed) happy in the sixties.'

Based on data like (2), Musan observes the following generalization (putting aside sen-

tences with what she calls existence-independent predicates):



(3) Musan's Generalization (temporal version, Musan 1995, p. 81)

A noun phrase can be temporally independent if and only if it is presuppositional.

A note is in order on the meaning of presuppositionality here. Essentially, a presup-

positional noun phrase presupposes the existence of individuals predicated truly of by the

noun. It has been commonly assumed that noun phrase with a strong determiner in the

sense of Milsark (1974) such as every, most, etc. and partitive noun phrases (e.g. some

of the rabbits) are presuppositional. Thus, usage of such noun phrase as most rabbits and

some of the rabbits signals that the discourse of the conversation contains a nonempty set

of rabbit individuals.

On the other hand, Diesing (1992) argues that noun phrases with a weak determiner

such as some, many, etc. are ambiguous as to their presuppositionality. According to

Diesing, noun phrases with a weak determiner are presuppositional when they are in a

VP-external position at LF, which can be indicated by being to the left of the particle ja

doch in case of German, whereas noun phrases with a weak determiner which are in a VP-

internal position at LF are non-presuppositional (see Subsection 1.2.1 below). Furthermore,

Musan (1995) notes that stress plays a role in determining whether or not a noun phrase is

presuppositional. When the determiner is stressed, the noun phrase is preferredly presup-

positional, but when the noun is stressed, the noun phrase tends to be non-presuppositional.

If there is no clear indicator such as particleja doch that can tell the presuppositionality

or non-presuppositionality of a noun phrase with a weak determiner, and if the sentence

containing the noun phrase is uttered "out of the blue", that is, without a context that has

established the existence of the sort of individuals predicated truly of the noun, I assume

that the noun phrase is interpreted non-presuppositionally by default. For example, if a

sentence containing the noun phrase some rabbit is uttered in a discourse where no rabbits

have been talked about or assumed to exist, then the interpretation of a rabbit shall be

non-presuppositional. The presuppositionality of noun phrases can be checked with von

Fintel's (1999) test as we see in Section 1.4, but until then, I will go with this intuitively

natural assumption just described.

Now that the concept of presuppositionality has been clarified, one can see that Musan's

Generalization accounts for the distribution of temporally independent and dependent read-

ings in (2). The subject noun phrase is presuppositional in (2a, b, d, e), but not in (2c, e).

Therefore, sentences (2a, b, d, f) can exhibit temporally independent readings, while sen-

tence (2c, e) have only temporally dependent readings. The distinction between (2b) and

(2c) comes from whether the determiner or the noun is stressed. Essentially, (2b) can be



used only when the context has established a set of some professors, whereas (2c) may be

used without such a context. The distinction between (2e) and (2f) is due to the relative po-

sition of the noun phrase with respect to ja doch, which indicates whether the noun phrase

is interpreted in a VP-internal or VP-external position.

Tonhauser (2002) claims that Musan's generalization is not entirely right. According to

Tonhauser, at a reunion of the survivors of the Titanic disaster, the following sentence may

be uttered:

(4) Look, there are even some crew members here.

As the people referred to here are no longer crew members at the reunion, Tonhauser con-

tends that (4) shows that when an appropriate context is provided, even noun phrases that

are syntactically classified by Musan as "non-presupposiitonal" can be interpreted with re-

spect to a time distinct from the main predicate. While I agree with Tonhauser that (4) may

be uttered in the context considered, I do not think that this example is a convincing piece

of evidence for her conclusion.

As David Pesetsky (p.c.) points out to me, if a person held a particular title in some

community or society, he or she might still be referred to with that title even after he or she

has resigned from that position. For example, someone who was the president of the USA

in the past may still be called "president" even if he is not the current president, and if you

were a student representative in your college, your ex-classmates might refer to you as a

"student rep" even though you graduated many years ago. I do not know whether in such

cases people pretend that some propositions that were only true at some past time hold true

at the time of utterance, or the lexical meaning of the relevant noun is somehow altered

and extended. In any case, it is clear to me that when an ex-president of the USA is called
"president", the speaker is "pretending" that he is a president at the time of utterance and

when an ex-student-rep is called "student rep", the speaker is "pretending" that he or she

is a student rep at the time of utterance. Similarly, so long as the speaker is committed to

the assertion in (4), he or she is also committed to the view that the people referred to there

are in some sense regarded as crew members at the time of utterance. After all, it is not

very clear when a crew member of a ship ceases to be a crew member. If we hypothesized

that a crew member ceases to be one when he disembarks the ship, it would have to be the

case that he stops being a crew member and resumes to be one again every time the ship

stops at a port on its way and he gets off the ship and on board again. This is not an usual

interpretation of what it means to be a crew member.



In any case, even if Diesing's (and Musan's) syntactic classification of presuppositional

and non-presuppositional noun phrases is not entirely correct, Tonhauser's observation will

not undermine Musan's generalization per se. The main point of Tonhauser (2002) is that a

specific context must be provided in order to shift the evaluation time of a noun phrase from

that of the main predicate. This means that the existence of entities truly predicated of by

the noun phrase is established by the context, and so the noun phrase becomes presuppo-

sitional. Therefore, even if some syntactic positions that Musan thinks invariably indicate

the non-presuppositionality of noun phrases that are located there turn out to be also able

to host a presuppositional noun phrase, Musan's generalization (3) will still hold.

1.1.2 World dependence

In Chapter V of Musan (1995), Musan discusses the possibility of extending her general-

ization to world interpretation. Musan considers the following pair:'

(5) a. Things would be different if a senator had grown up to be a rancher instead.

b. Things would be different if there was a senator having grown up to be a rancher

instead.

Musan points out that while both (6a) and (6b) are possible interpretations of (5a), (6b) is

the only reading of (5b):

(6) a. For all worlds w such that there is a senator in the actual world that grew up to

be a rancher in w, things are different in w.

(de re reading of a senator)

b. For all worlds w such that there is a senator in w that grew up to be a rancher

in w, things are different in w.

(de dicto reading a senator)

In (5b), due to the existential there construction, a senator is non-presuppositional. On

the other hand, in (5a), a senator is ambiguous as to its presuppotiaionality. Based on

this observation, Musan considers extending her generalization on temporal interpretation

of noun phrases to world interpretation. That is, the world with respect to which a non-

presuppositional noun phrase is interpreted is dependent on the evaluation world of the

main predicate, but a presuppositional noun phrase can be interpreted with respect to a

'Musan cites (5a) from Abusch (1994 p. 104) and attributes (5b) to Kai von Fintel (pc).



different world. The data in (5) can then be explained. In (5), it is not clear whether

the main predicate of the embedded clause is was or having grown up ... , but in either

case, the main predicate is evaluated in a hypothetical world introduced by the if clause.

Since a senator is non-presuppositional here, its world interpretation depends on the main

predicate of the embedded clause, and as a result it only has a de re reading. On the other

hand, in (5a), a senator can be presuppositional (which requires some context involving

some established senators), thus can be evaluated with respect to a different world than

the hypothetical worlds introduced by the if clause. It is thus possible for a senator to be

evaluated with respect to the actual world, resulting in a de re reading.

The two generalizations made by Musan are about intensional interpretation of noun

phrases, and one concerns temporal interpretation and the other world interpretation. In or-

der to integrate these two, I postulate pairs of an atomic possible world and an atomic time

interval, and I refer to them as situations. Given an atomic possible world w e Dw and an

atomic time interval I e Di, s = (w, I) is an atomic situation. Conversely, given an atomic

situation, we can extract the time-interval and the possible world that constitute the situa-

tion by means of projection maps 7rw and 7ri. For the situation s just given, 7rw(s) = w and

hi(s) = I. In general, for any atomic situation s, s = (nw(s),fi(s)). In Montague's (1973)

PTQ, world-time pairs are treated as objects of type s. I follow Montague and use s as the

semantic type of situations, except that I consider time intervals while Montague thought

of time points. The intensional interpretation of a given predicate is then determined when

an evaluation situation is provided. In this sense, intensional interpretation becomes a syn-

onym of situational interpretation, although the latter terminology clarifies that both the

temporal and world interpretations are taken into account. With this terminology, Musan's

two generalizations can be stated in the following single condition:

(7) Musan's Generalization (situational version)

A noun phrase can be situationally independent if and only if it is presuppositional.

In the rest of this chapter, a scopal theory is introduced to account for this generalization

and is discussed.

1.2 A scopal account of situationally dependent readings

In this section, I sketch a theory which associates the availability of situationally indepen-

dent readings with Diesing's (1992) Mapping Hypothesis. The idea is that non-presuppositional



noun phrases have situationally dependent readings because they are in the scope of some

intensional operator located within or at the edge of the VP domain, but presuppositional

noun phrases move out of the VP and thus escapes the scope of this operator. Musan (1995)

in fact considers this scope approach as a possible explanation of her generalization, but

eventually rejects it because she thinks that it is not capable of accounting for certain data.

Instead, Musan develops an alternative approach which utilizes stages of individuals, which

I discuss in Section 1.4.

1.2.1 Diesing's Mappying Hypothesis

To begin with, let us reveiw Diesing's (1992) Mapping Hypothesis, which is cited below:

(8) Mapping Hypothesis (Diesing 1992, p. 10)

Material from VP is mapped into the nuclear scope.

Material from IP is mapped into a restrictive clause.

First, regarding the second sentence of (8), note that if something is in the VP, it is automat-

ically inside the IP above the VP. This sentence should therefore be interpreted as "material

from IP which is outside VP is mapped into a restrictive clause." Second, let us change

Diesing's terminology so as to fit my framework. Since I am adopting TP instead of IP, let

us interpret IP in (8) as TP. Furthermore, it is becoming increasingly common to decom-

pose VP into a VP and a vP above it, which introduces the agent argument respectively

(Kratzer, 1996, to appear). Also, with the recent expansion of functional heads (Cinque,

1999), we might still have other fucntional heads between TP and vP. Let us then assume

that what Diesing refers to as VP in (8) is whatever is the complement of the T head, be it

vP or AspP, and let us refer to this as the VP domain. Then, Diesing's Mapping Hypothesis

is restated as follows:

(9) Mapping Hypothesis

Material from the VP domain is mapped into the nuclear scope.

Material from outside the VP domain is mapped into a restrictive clause.2

The terms nuclear scope and restrictive clause are due to Heim (1982). According

to Heim, indefinites, which had usually been treated as existential quantifiers, do not have

2It is possible for a noun phrase outside the VP domain to be even outside TP if it is in Spec, CP for
example. Therefore, the second sentence of (9) is, strictly speaking, not identical to the second sentence of
(8). I am therefore ignoring CP or any functional projection above TP.



quantificational force on their own. Instead, they merely introduce variables into the do-

main called the nuclear scope, which is then closed off by existential closure that binds

these variables in its scope. On the other hand, genuine quantifying noun phrases such

as every rabbit form a restrictive clause, which serves as the domain of the quantifica-

tion. Unlike Heim, however, Diesing argues that not all indefinites are mapped into the

nuclear scope. Indefinite noun phrases are either bare plurals or noun phrases with weak

determiners such as a, some, many, three, etc. The interpretation of bare plurals is ambigu-

ous between generic interpretation and existential interpretation, and according to Diesing,

bare plurals with generic interpretation are mapped into a restrictive clause, while bare

plurals with existential interpretation are mapped into the nuclear scope. Similarly, noun

phrases with a weak determiner are ambiguous as to whether they are presuppositional or

not, and according to Diesing, presuppositional ones are mapped into a restrictive clause

while non-presuppositional ones are mapped into the nuclear scope. The behavior of such

presuppositional indefinites is the same as that of noun phrases with a strong determiner,

which are all presuppositional and mapped into a restrictive. To sum up, what Diesing's

Mapping Hypothesis says can be restated as follows:

(10) Non-presuppositional noun phrases and existential bare plurals are interpreted in

the VP domain (hence mapped into the nuclear scope).

Presuppositional noun phrases and generic bare plurals are interpreted outside the

VP domain (hence mapped into a restrictive clause).

The Mapping Hypothesis thus determines what kind of interpretation a noun phrase re-

ceives depending on where in the syntactic tree it is interpreted.

1.2.2 Basic idea

To sketch the scope approach, we will focus on the following sentence throughout this

section:

(11) Mary kissed a 20-year-old.

When (11) is uttered out of the blue without context, it claims the existence of an indi-

vidual who got kissed by Mary when he or she was of age 20, as predicted by Musan's

generalization.

If we do not adopt Musan's (1995) stage semantics approach, the only way to capture

the situational interpretation of noun phrases and main predicates, as far as I can see, is



to assume that noun phrases and main predicates are interpreted with respect to evaluation

situations. Technically, there are two different systems for having evaluation situations.

In one system, the denotations of nouns and main-predicates take an evaluation situation

as their argument. In the other system, the denotations of nouns and main-predicates do

not themselves have a situation argument, but instead, the interpretation function I ] is

evaluated with respect to a situation. However, the choice of the system between these two

does not affect the validity of the argumentation made in this chapter, and I will adopt the

first system. Assuming that nouns denote predicates, the noun 20-year-old shall have the

lexical entry in (12a). Likewise, the verb kiss shall have the lexical entry in (12b) assuming

that the agent argument is introduced later by the v head.

(12) a. [20-year-oldl = As e Ds. A x De.20-yr-old(s)(x)

b. [kiss] = As e D. Ax e De. kiss(s)(x)

Given such lexical entires, the temporally dependent reading of a non-presuppositional

noun phrase should be accounted for by feeding the non-presuppositional noun phrase and

the main predicate that it depends on with the same situation variable. Essentially, there

are two conceivable ways to do this, depending on whether this feeding shall be done in the

denotation of some lexical item or in syntax.

The first hypothesis is that some lexical item in a non-presuppositional noun phrase,

say the determiner, takes the denotations of the non-presuppositional noun phrase and of

the main predicate and feeds them with one and the same situation. More concretely, one

can assume a lexical entry like the following for the indefinite article a:

(13) a a = Af E D<s,(e,t>>. Ag e D<s,<e,t. As e Ds. 3x e De[f(s)(x) A g(s)(x)]

The problem of this approach becomes apparent when one considers sentences with more

than one non-presuppositional plural noun phrase like the following:

(14) Three 30-year-olds kissed four 20-year olds.

As observed by Scha (1981), sentences like this have a cumulative reading where neither of

the two noun phrases takes scope over the other. That is, (14) can mean that each of the five

kissers kissed at least one of the three kissees, and each of the three kissees was kissed by

at least one of the five kissers. When (14) is uttered out of the blue, Musan's generalization

takes effect so that what is asserted is each kisser was of age 30 at the time of the kissing(s)

and each kissee was of age 20 at the time of the kissing(s). If the situational dependence

of each noun phrase on the main predicate is obtained as the result of the application of the



denotation of the determiner, each of the two determiners should individually be applied

to create the situational dependence of the nonpresuppositional noun phrase it is part of in

the course of the semantic computation, but then, the noun phrase that enters the seman-

tic computation later would have to take scope over the other one that had already been

processed. This would make it impossible to yield the scope-less, cumulative reading.

Given this difficulty of the lexical approach, I would like to adopt the other, syntactic

hypothesis, and this is what I refer to as the scopal theory. On this approach, the situation

interpretation of a non-presuppositional noun phrase is determined by virtue of being in

the scope of some operator. To begin with, let us suppose that there is an operator at the

edge of the VP domain which manipulates the evaluation situation of the main predicate.

Now, according to Diesing's Mapping Hypothesis, non-presuppositional noun phrases are

always interpreted in the VP domain, and thus are interpreted in the scope of the operator

postulated at the edge of the VP domain. This is illustrated by the following, where Op is

the operator that gives the situational interpretation of the main predicate kiss.

(15) VP domain

Op

Mary

V0  non-presuppositional

I noun phrase
kiss

a 20-year-old

Therefore, if it is the case that the situational interpretation of a non-presuppositional noun

phrase is obligatorily determined by the nearest operator that c-commands it, it follows that

the evaluation situations of the main predicate and the non-presuppositional noun phrase are

simultaneously given by the same operator, and this would yield a situationally dependent

reading, deriving Musan's generalization. This account is very appealing since it very

naturally connects Musan's generalization with Diesing's independently motivated theory.

In the next two subsections, two versions of the scope theory are presented, first with

syntactically overt situation variables, and then without such variables in syntax.



1.2.3 An implementation with situation variables in syntax

The first implementation of the scope theory assumes with Percus (2000) and Kusumoto

(2005) that the situation arguments of predicates are always present as variables in syntax.

Percus (2000) argues that once we assume that the situation argument of the main predicate

is present in syntax, it is constrained to be bound by the nearest A abstractor that can bind it

(Generalization X). Therefore, once we assume that this A abstractor that binds the situation

argument of the main predicate is at the edge of VP domain, the operator postulated in

(15) should be taken to be this A abstractor. The situationally dependent reading of a non-

presuppositional noun phrase is then obtained when this A abstractor also binds the situation

argument of the non-presuppositional noun phrase.

To illustrate this, let us assume the following composite lexical entry:

(16) IMary-kiss = As e Ds. Ax e De. kiss(s)(x)(Mary)

Although I actually hold the view that the agent of the verb kiss is introduced by the v head

above kiss, for the sake of expository simplicity and clarity, I employ the above composite

lexical entry where the agent Mary has already been introduced. Since where Mary enters

the semantic computation does not in the end have any consequences in the interpretation

of the whole sentence unlike in the case of quantifiers such as everyone, utilizing the above

complex lexical entry does no harm. With this lexical entry, the LF of (11) will look like

the following:

(17) VP domain

As e Ds

a Mary-kiss s

28-year-old s

Here, the variable s that is the sister of 20-year-old saturates the situation argument of

20-year-old, and similarly, the variable s that is the sister of Mary-kiss saturates the situ-

ation argument of Mary-kiss. These two situation variables are then bound by the same A

abstractor. With the lexical entry in (18a) of a, (17) is interpreted as in (18b):

(18) a. aj = Af e D(e,t>. Ag e D(e,t>. 3x e De[f(x) A g(x)]

b. [(17)] = As e Ds. 3x e De[20-yr-old(s)(x) A kiss(s)(x)(Mary)]



The complete truth conditions of sentence (11) can then be obtained by closing (18b) with

an existential quantifier over situations in the past. The truth conditions thus obtained can

then represent a situationally dependent reading, since the nominal predicate and the main

predicate have the same evaluation situation.

As explained in the previous subsection, Musan's generalization will then follow from

Diesing's Mapping Hypothesis by ensuring that the situation argument of the non-presup-

positional noun phrase obligatorily gets bound by the A abstractor that binds the situation

argument of the main predicate. This is possible, if we postulate the following:

(19) The variable that saturates the situation argument of a non-presuppositional noun

phrase is obligatorily bound by the nearest A abstractor.

I will return to this in Subsection 1.4.3.

1.2.4 An alternative implementation with situation-variable-free syn-

tax

In the above implementation, the situation argument of a predicate was assumed to be

always present as a variable in syntax. It should be realized, however, that this assumption

is not crucial for the scope theory per se. A scope account is possible without syntactically

overt situation variables.

Keshet (2008) proposes that predicates are in general of type (s, (e, t)) just as we have

above, but that they can combine by means of a special version of Predicate Modification

(Heim and Kratzer, 1998) given in (20) while keeping their situation argument unsaturated.

(20) Intensional Predicate Modification

Let a and p be sisters such that [al and E1 are of type (s, (e, t)). Then,

a A = sDs.Ax e D. [a (s)(x) A E8] (s)(x)

Following Landman (2004), Keshet assumes that indefinite numeral determiners are adjec-

tives that denote properties which are true of individuals that consist of a certain number

of atomic members. For example, the indefinite article a has the following lexical entry,
where I I gives the number of atomic members comprising a given individual:

(21) Ja] = As e Ds. Ax e De. XI = l

Then, with the special Predicate Modification rule, the semantics of [ [a 20-year-old] Mary-

kiss], which does not contain situation variables, can be computed as follows:



(22) As E Ds. Ax e De.

Ixl = 1 A 20-yr-old(s)(x) A kiss(s)(x)(Mary)

As E Ds. Ax e De. As E Ds. Ax e De.

Ixl = 1 A 20-yr-old(s)(x) kiss(s)(x)(Mary)
Mary-kiss

As EDs. Ax e De. As E Ds. Ax De.

Ixl = 1 20-yr-old(s)(x)

a 20-year-old

The top node here will combine with an operator which gives the value of the open situation

variable s at the top node by existential closure. The value of the open individual variable

x will also be given by some existential closure eventually.

In this implementation, the non-presuppositional noun phrase receives its situationally

dependent interpretation by virtue of being interpreted as the sister of the main predicate.

Since the value of the situation variable is given by existential closure at the top node

of (22), it is important that the non-presuppsotional noun phrase stay in the scope of the

operator responsible for this existential closure. Thus, this is also a version of the scope

theory.

In the implementation discussed in the previous subsection, we have situation vari-

ables in syntax, and therefore we have to constrain them by stipulating that the situation

variable of non-presuppositional noun phrases must be bound locally. By contrast, in the

implementation considered here, it is not necessary or possible to make such a stipulation

since we do not have situation variables in syntax to begin with, and thus, Musan's gen-

eralization automatically follows from the structure. Apart from this technical difference,

the two versions of the scope theory make the same predictions as to the interpretation of

non-presuppostional noun phrases.

On the other hand, regarding presuppositional noun phrases, we have seen in Section

1.1 that their evaluation time or world can be different from that of the main predicate. Per-

cus (2000), among others, argues for the view that in order to represent such interpretations

of noun phrases, the evaluation situation of presuppositional noun phrases must be present

in syntax. If Percus is right, and if we also adopt the situation-variable-free approach just

presented, then we would need to postualte completely different syntactic representations



for presuppositional and non-presuppositional noun phrases. To avoid such a complica-

tion that is not readily justified, I adopt the first version of the scope theory, where every

evaluation situation is present as a variable in syntax.

The reader should be aware, however, that the conclusions we reach in this dissertation

do not depend on a specific implementation of the scope theory, but only on the thesis that

the interpretation of both noun phrases and main predicates is evaluated with respect to a

situation.

1.2.5 Are the temporal arguments of predicate the exact times?

I have explained above that in the theory where predicates are interpreted with respect

to evaluation situations, the situationally dependent reading of (11) is analyzed as in the

following (= (18b)):

(23) As e Ds. 3x e De[20-yr-old(s)(x) A kiss(s) (x) (Mary)]

However, close consideration of (23) reveals that (23) per se is not sufficient to guarantee

situational dependence unless we stipulate an appropriate temporal interpretation of the

situation argument of predicates 20-yr-old and kiss. Recall that a situation is defined to be a

pair of a possible world and a time-interval. When a predicate takes a situation argument, it

turns out to be important whether or not the relevant property holds only in some subinterval

of the whole time interval of the given situation argument.

To see this, suppose the following interpretations of 20-yr-old and

kiss:

(24) a. 20-yr-old(s)(x) is true iff x is of age 20 in some subinterval of 7i(s) in 7rw(s).

b. kiss(s)(x)(y) is true iff there is an event of y's kissing x in r,(s) and its running

time-interval is a subinterval of ri (s).

If we assume (24), (23) will not guarantee temporal dependence even though the two pred-

icates take the same situation argument. Consider the following scenario. Mary kissed

only one individual Ann only once, and its running time-interval is Ik. Ann was of age 20

throughout time interval 120, and before 120, and before or after 120, Ann's age it never 20.

Furthermore, Ik precedes 120. Now, let I be a big time interval that contains both Ik and 120.

(25) below depicts this scenario:



(25)
I

Ik I I 120

kissing Ann Ann age 20

Then, letting s = (@,I) (where @ is the actual world), both 20-yr-old(s)(Ann) and

kiss(s) (a) (Mary). Therefore, (23) yields 1 when variable s in (23) is saturated with (@, I).

This means that the analysis in (23) predicts that (11) is true under this scenario. How-

ever, the kissing took place before the Ann turned 20 in this scenario, and thus, there is no

temporal dependence and the sentence is clearly not true.

The above discussion shows that we cannot maintain both of (24a) and (24b). In order

to guarantee situational (temporal) dependence, we should have either the interpretation of

20-yr-old in (26a) or the interpretation of kiss in (26b), or both:

(26) a. 20-yr-old(s)(x) is true iff x is of age 20 throughout 7ri(s) in rrw(s).

b. kiss(s)(x)(y) is true iff there is an event of y's kissing x in r,(s) and its running

time is exactly 7ri (s).

For example, suppose that we have (26a) and we do not have (22b) but (20b), and that!

20-yr-old(s)(Ann) A kiss(s)(Mary)(Mary) holds for s = (@,I). According to (26a),

20-yr-old(s)(Ann) is true iff Ann is of age 20 throughout I. According to (24b),
kiss(s)(Ann)(Mary) is true iff there is an event of Mary's kissing Ann and its running time

interval is a subinterval of I. Therefore, whenever the kissing might have taken place, as

long as ti was within I, Ann must have been of age 20 throughout the time interval of

kissing, as illustrated by (27):

(27) S , 
kissing Ann

Ann age 20

In Section 2.2 of Chapter 2, I show that in order to ensure correct counting of events, the

time interval of the situation argument of the verb must be the exact time interval of an

event that the verb describes. Thus, (26b) should indeed be the required interpretation.

Now, let us take (26b) for granted. Let us furthermore suppose that we do not have

(26a) but (24a), and that 20-yr-old(s)(Ann) A kiss(s)(Ann)(Mary) holds for s = (@,I).



According to (26b), kiss(s)(Ann) (Mary) is true iff there is an event of Mary's kissing Ann

and its running time is exactly I. Now according to (24a), 20-yr-old(s) (Ann) is true iff Ann

is of age 20 in some subinterval of I. Then, (28) should be a possible scenario for this case:

(28)

kissing Ann

Ann age 19 Ann age 20

Here, the event of kissing Ann begins when she is 19, but during the kissing, Ann's birthday

comes and she turns 20. Therefore, it is true that Ann was of age 20 in some subinterval

of the whole kissing time interval. In this case, however, it does not seem right to describe

this situation with sentence (11). I therefore propose that (26a) is needed after all.

To sum up, I think that the correct interpretations of 20-yr-old and kiss must eventually

be the ones in (26). However, the important point to bear in mind, which will becomes

crucial in the next section, is that at least one of (26a) and (26b) needs to be accepted in

order to account for situationally dependent readings.

1.3 A scope puzzle with plural noun phrases

Suppose that (29) is uttered out of the blue.3 4 The object noun phrase three 20-year-olds

will then be interpreted non-presuppositionally.

(29) In the last five years, Mary kissed three 20-year-olds.

3It seems that sentences with the perfect have such as (i) below sound more natural than sentences with
the simple past tense such as (29) in describing the meaning which is discussed shortly.

(i) In the last five years, Mary has kissed three 20-year-olds.

However, my informants report that sentences with the simple past tense are also fine. Since I do not want to
complicate the discussion by introducing the perfect have, I stick with sentences with the simple past tense.

4 Szab6 (2006) discusses sentences of the same sort in refutation of presentism. He cites Diodorus Cronus,
who says of the following sentence that it is true because Helen was consecutively married to Menelaus, Paris,
and Deiphobus:

(i) Helen had three husbands.

Importantly, the sentence is true even though there was no single past moment where Helen had three hus-
bands simultaneously. In the analysis of (i) that Szab6 proposes, three takes scope over the past operator,
which in turn takes scope over the noun husband. Thus, the conclusion I draw below is in this sense the same
as Szab6's.



(29) is different from (11) in that the non-presuppositional noun phrase is plural. What are

the truth conditions of (29), then? Now, imagine the following scenario:

(30) Ann was born in 1984, and Mary kissed Ann only once and its was in 2004 after

her birthday.

Bill was born in 1986, and Mary kissed Bill once and its was in 2006 after his

birthday.

Chris was born in 1988, and Mary kissed Chris once and its was in 2008 after his

birthday.

Mary kissed nobody else in the last five years.

Suppose that the running time intervals of the events of Mary's kissing Ann, Bill and Chris

were 11, 12 and 13 respectively. The above scenario is then visually illustrated by the fol-

lowing:

(31)
last five years (2004-2008)

II 12 I 13

kissing Ann kissing Bill kissing Chris

Ann age 20 Bill age 20 Chris age 20

If uttered at the end of the year 2008, (29) is clearly a true statement about this scenario. On

the other hand, if Mary kissed exactly three people in the last five years, but they were not

each of age 20 when they were kissed by Mary, (29) should be false. Therefore, for (29) to

be true, each of the three people must have been of age 20 when Mary kissed him/her. Thus,

the temporal dependence of the non-presuppositional noun phrase on the main predicate

obtains for (29), too, as predicted by Musan's generalization. What is interesting about

this case is that there is no single time-interval throughout which all the three people were

simultaneously of age 20 or in which all the three people simultaneously got kissed by

Mary.

The question is whether the scope theory presented in the previous section can pre-

dict this meaning of (29). Ignoring the temporal adverbial, the scope theory will give the

following LF for (29):



(32)

As e Ds

Mary-kiss s
three

20-year-olds s

We should now ask ourselves how this LF may be interpreted. So far, it has been assumed

that each predicate takes a situation argument and individual arguments, where the situa-

tion argument expresses a situation in which an atomic event of the relevant sort occurs.

Assuming Neo-Davidsonian event semantics (Parsons, 1990, among others), each individ-

ual argument of a predicate bears a thematic relation to this atomic event that the predicate

talks about. Following Landman (1996), I assume that each atomic event is thematically re-

lated to a unique individual or collection of individuals by Landman's collectivity criterion.

Now, for the above scenario, we know that we have the following true formulae:

(33) 20-yr-old((@, I1)) (Ann)

20-yr-old((@, I2))(Bill)

20-yr-old ((@, 13)) (Chris)

kiss((@, I)) (Ann) (Mary)

kiss(( @, I2))(Bill)(Mary)

kiss(<@, 13)) (Chris) (Mary)

However, since 20-yr-old only talks about atomic states of being a 20-year-old, and an

atomic state of being a 20-year-old involves only one person, there is no situation s such

that 20-yr-old(s) (Ann Ue Bill ue Chris) holds. Similarly, kiss only talks about atomic events

of kissing, and as long as we assume that one can kiss only one person in one kissing, there

is no situation s such that kiss(s)(Ann Ue Bill Ue Chris)(Mary) holds. Therefore, in order

to deal with plural individuals, we need to "pluralize" these predicates. One strategy is to

apply the * operator (Link, 1983) to the inidividual arguments so that these predicates take

joins of individuals as their arguments. The other strategy is to pluralize the predicates for

the individual argument and for the situation argument simultaneously, i.e., to turn them

into predicates that talk about cumulative relations between plural individuals and plural

situations. In what follows, I will reveal that (32) cannot be the correct LF by showing that

neither of these attempts at interpreting it can capture the correct semantics of (29).



1.3.1 Attempt I: simple pluralization

In this first attempt, we pluralize the predicates with Link's (1983) * operator. On this

approach, individuals are elements on a lattice, and the join of any collection of individuals

is again on the lattice. Given a property P of individuals, *P is defined as the closure of P

under the join. Thus, for any x, y e De,

(34) P(x) -- *P(x)

*P(x) A *P(y) -- *P(x ue y)

Using the * operator, LF (32) will be interpreted as follows: 5

(35) As e Ds. 3X e De[JXI = 3 A [*Ax e D. 20-yr-old(s) (x)] (X)

A [*Ax e De. kiss(s) (x) (Mary)](X)]

The value of s is given by existential closure. (35) can be compositionally derived, for

instance, by giving the following lexical entry to three:6

(36) [threel = Ap e D(e,t>. Aq E D(e,t>. X e De[IXI = 3 A *p(X) A *q(X)]

Now, suppose that for some situation so, (35) yields 1 as a truth-value, where X1 instan-

tiates the existential quantification. Given the assumption made above that the unstarred

predicates 20-yr-old and kiss are true only of atomic individuals, the starred predicates

with so applied to X, have the following interpretations:

(37) a. [*Ax e De.20-yr-old(so)(x)](Xl) -, Vx[x Ge Xl AX e ATe --- 20-yr-old(so)(x)]

b. [*Ax e De. kiss(so) (x)(Mary)](XI)]

Vx[x 9e X 1 Ax e ATe --- kiss(so)(x)(Mary)]

Thus, there ought to be a plural individual consisting of three people such that each person x

of these three, 20-yr-old(so)(x) and kiss(so)(x)(Mary) hold. The reader should now recall

the discussion in Subsection 1.2.3 that either There, we saw that we should either accept the

interpretation of 20-yr-old in (26a) or accept the interpretation of Mary-kiss in (26b). Now,

if we have the interpretation of 20-yr-old in (26a), all these three people must have been

5It does not matter whether pluralization is done before or after the intersection of the two predicates. (i)
below is thus equivalent to (29):

(i) As E Ds.3X e De[IXI = 3 A [*Ax E De. 20-yr-old(s)(x) A kiss(s)(x)(m)](X)]

6Alternatively, we can assume that the denotations of 20-year-olds and Mary-kiss come with *. In that
case, we do not need * in the denotation of three.



simultaneously of age 20 throughout the time-interval 7ri (so). On the other hand, if we have

the interpretation of Mary-kiss in (26b), it must be the case that the these three people got

kissed simultaneously by Mary in 7ri(so). However, as we saw with scenario given by (30)

and (31) above, in order for (29) to be true, there does not have to be a single time interval

throughout which all the three people were simultaneously of age 20 or in which all the

three people simultaneously got kissed by Mary. The analysis in (35) is therefore incorrect,
as it yields too strong truth conditions even though it predicts temporal dependence.

1.3.2 Attempt II: cumulative relation formation

In the second attempt, we convert predicates into cumulative relations between individuals

and situations. This can be done with the double * operator (Krifka, 1986; Sternefeld,
1998). Let P be a predicate that takes an individual argument and a situation argument.

Then, for any x, y e De and s, t e Ds, **P satisfies the following conditions:

(38) P(x)(s) -+ **P(x)(s)

**P(x)(s) A **P(y)(t) - **P(x L e y)(s u s t)

With the double * operator, LF (32) will be interpreted as follows:7

(39) As e D. 3X e De[jXI = 3 A [**Ax e De. At e Ds. 20-yr-old(t)(x)](X)(s)
A [**Ax e De. At e Ds. kiss(t)(x)(Mary)](X)(s)]]

The value of s is given by existential closure just as before except that s is now a plural

situation.

Because the double * operator must be applied before the plural situation s is provided,
we will need to assume that the lexical entries of 20-year-olds and kiss come with the

double * operator. We should thus assume the following lexical entries:

(40) a. T20-year-old] = As e Ds. AX e De.

[**Ax e De. At e Ds. 20-yr-old(t)(x)](X)(s)

b. [Mary-kiss] = As e Ds. AX e De.

[**Ax c De. At e Ds. kiss(t)(x)(Mary)](X)(s)

c. [three] = Ap e D<e,t>. Aq e D(e,t). 3X e De[IXI = 3 A p(X) A q(X)]

7In the resultant cumulative predicates, the order of the individual argument and the situation argument is
reversed. This is merely to make them look similar to what I have in the theory developed later, and it has no
significance here in and of itself.



With the above lexical entires, (39) is compositionally computed from LF (32).

Given the assumption that the unstarred predicates 20-yr-old and kiss are true only of

atomic individuals, the double-starred predicates have the following interpretations:

(41) a. [**Ax e De.At e Ds.20-yr-old(t)(x)](X)(s)

Vx[x Ee X A x e ATe -- 3t[t E s sA 20-yr-old(t)(x)]]

A Vt[t Es S At E ATs -- 3x[x Ge X A 20-yr-old(t)(x)]]

b. [**Ax e De. At e Ds. kiss(t)(x)(Mary)](X)(s)

SVx[x 9e X A x E ATe - 3t[t E s sA kiss(t)(x)(Mary)]]

A Vt[t , Es At e ATs -+ 3x[x 9e X A kiss(t)(x)(Mary)]]

Now, consider the scenario depicted by the following:

(42)
last five years (2004-2008)

I I 12 I I 13

kissing Bill kissing Chris kissing Ann

Ann age 20 Bill age 20 Chris age 20

Here, Mary kisses Bill when he is a teenager, and the running time of this event is I. Mary

also kisses Chris when he is a teenager, and the running time of this event is 12. Finally,

Mary kisses Ann when she is no longer of age 20, and the running time of this event is 13.

No other kissing takes place. Under this scenario, we have the following true formulae:

(43) 20-yr-old ((@, Ii)) (Bill)

20-yr-old ((@, I2)) (Ann)

20-yr-old((@, 13))(Chris)

Therefore, the double-starred predicate **Ax E De. At e Ds. 20-yr-old(t)(x) should hold of

the join of Ann, Bill and Chris, and the join of the three situations (@, I), (@, 12) and

(@, 13). That is, we have the following true formula:

(44) [**Ax e De.At e Ds.20-yr-old(t)(x)]

(Ann Le Bill ue Chris)((@, II) us (@,12) Us (@,13))

Similarly, the following is also a true formula:

(45) [**Ax e De. At e Ds. kiss(t)(x)(Mary)]

(Ann ue Bill ue Chris) ((@, II) us (@,1 2) Us @, 13))



holds. Then, s = (@, I,) us (@,12) us K@,I2 Us 3) satisfies (39). The analysis thus predicts

that (29) can be truthfully uttered in the scenario depicted in (42). However, this is plainly

wrong as nobody that Mary kissed was of age 20 at the time of the kissing and thus no

temporal dependence holds.

1.3.3 What goes wrong

In order to capture the correct interpretation of sentence (29), we want to be able to describe

the scenario given in (30) and (31). The point is that situational dependence holds for

each of the three people involved, but for each person, a different situation ought to be

considered. The correct truth conditions we seek should then look like the following:

(46) 3X e De[IXI = 3 A [*Ax e De. Is e Ds[7ri(s) is before now A

7ri(s) is in the last 5 years A 20-yr-old(s)(x) A kiss(s)(x)(Mary)]] (X)]

Here, existential closure of the situation variable has already been applied. Using the dou-

ble * operator, we can keep a situation variable open at the top as follows:

(47) AS E Ds. 3X e De[IXI = 3 A [**Ax e De. As e Ds. ri(s) is before now A

7ri(s) is in the last 5 years A 20-yr-old(s)(x) A kiss(s)(x)(Mary)](X)(S)]

Variable S in (47) represents a plural situation. Both in (46) and in (47), variable s repre-

sents an atomic situation (i.e., a situation in which an atomic event occurs).

It should then be obvious why no attempt at interpreting LF (32) succeeds in capturing

the correct interpretation of sentence (29). In order to obtain the correct analysis (46) or

(47), before the meaning of three (the part that says IX = 3) enters into computation, we

first have to state a relation holding between an individual (i.e., x in (46) and (47)) and an

atomic situation (i.e., s in (46) and (47)). This relation is composed of 20-year-old and

Mary-kiss, and in order to obtain situational dependence between these two predicates, it is

necessary to simultaneously bind their situation arguments by an operator. Returning to LF

(32), however, three is located in the scope of the A abstractor that binds the situation vari-

ables. Therefore, one cannot create the sought relation to be combined with the denotation

of three. As long as we assume (32), three is destined to combine with the two predicates

before the situation variables get bound. This is why (32) cannot be the correct LF.

We then seem to have a case of scope paradox. We know that the numeral three ought

to be interpreted above the A abstractor. At the same time, the A abstractor ought o bind

the situation variable taken by the non-presuppositional noun phrase. It then looks as if the



non-presuppositional noun phrase must be simultaneously in two different positions at LF,

above and below the A abstractor. In Section 1.5, I will resolve this paradox by proposing

that the numeral is separated off from the rest of the non-presuppositional noun phrase and

raised at LF.

1.4 Evidence for the scope theory

In the previous section, we have discovered that once the scope approach to Musan's gener-

alization is adopted, we run into a scope puzzle when analyzing plural non-presupoositional

noun phrases. However, if an alternative account of Musan's generalization without re-

course to scope is feasible, the puzzle will become only a theory-internal problem which

does not have to be of interest of all linguists. As far as I can see, Musan's original ap-

proach is the only alternative to the scope theory. In this section, I discuss Musan's theory

and argue in favor of the scope theory by presenting data that Musan's theory has difficulty

in accounting for.

1.4.1 Musan's argument against the scope approach

Musan claims that the scope approach is not tenable, arguing that it cannot account for sen-

tences like (48) (= Musan' s (24) on p. 91). Musan focuses on the temporally independent

reading of Professoren of (48a) described in (48b).

(48) a. In den sechziger Jahren spielten meistens alle Professoren, deren Eltern
In the sixties played mostly all professors whose parents
gerade in Urlaub waren, Federball.
just in vacation were badminton

'In the sixties, most often all professors whose parents were just then on vaca-

tion played badminton.'

b. For most times t, such that t is in the past and in the sixties, all x such that x is

now a professor and x's parents were on vacation at t, x played badminton at t.

Musan identifies the operator that binds the time variables (= situation variables in my

version) of the noun and the main predicate in the scope approach as a temporal adverb

of quantification (TAQ). In (48a), meistens is the TAQ and the Tense and the temporal

adverbial are restrictors to this TAQ. In reading (48b), the presuppositional, quantificational

noun phrase alle Professoren ... is in the scope of the TAQ meistens, since the time of the



main predicate of the relative clause is apparently bound by meistens. We thus have the

following LF for (48a), where RC and NC stands for the restrictive clause and the nuclear

scope respectively:

(49) meistens [RC(meistens) PAST & in-den-sechziger-Jahren]

[NS(meistens) alle [RC(alle) Professoren, deren ... ] [NS(alle) Federball spielten] ]

In the version of the scope approach that Musan assumes, a TAQ obligatorily binds every

time variable in its scope. In (49), because the noun phrase Professoren is in the scope of the

TAQ, its time argument should then be obligatorily bound by the TAQ. This should result in

a temporally dependent reading 'professors in the sixties', but Professoren in (48a) actually

has a temporally independent reading 'current professors'. To recapitulate, meistens takes

scope over the quantificational noun phrase, but at the same time, this noun phrase should

not be in the scope of meistens so as to have a temporally independent interpretation. This

is a scope paradox, and Musan concludes that the scope approach is therefore not tenable.

I do not think, however, that Musan's argumentation is sufficient to reject the scope

approach. Musan's refutation of the scope theory relies on two assumptions. The first

assumption is that the TAQ is the only operator that binds time variables and the second

one is that the TAQ must bind every time variable in its scope. If we do not have these

assumptions, no scope paradox arises as discussed below.

To begin with, let us reject Musan's first assumption and assume that (48a) has another

temporal/situational operator than the TAQ meistens, and this operator is located within or

at the edge of the VP domain. According to Diesing's Mapping Hypothesis, the presuppo-

sitional noun phrase alle Professoren ... should move out of the VP domain to Spec, TP.

Let us furthermore assume that the TAQ meistens comes above the presuppositional noun

phrase. Then, abstracting away from the details, the LF for (48a) looks roughly like (50),8
where Op represents the postulated operator:

8For simplicity's sake, situation variables are not overtly indicated here, but each predicate is actually
accompanied with a syntactically overt situation variable as its sister.



(50)

meistens TP

alle To
Professoren CP Op VP

deren ...gerade ... Federball spielten

Now, let us modify Musan's second assumption as follows:

(51) A situational operator obligatorily binds every situation variable in its scope if and

only if the operator is located in the VP domain.

In (50), since Op is in the VP domain, the situation argument of the verb spielten, which is

in its scope, gets automatically bound by Op. The situation argument of the noun Profes-

soren cannot of course be bound by Op, because it has moved out of its scope. The TAQ

meistens binds a situation variable in the relative clause (which could be identified with

gerade), but unlike Op, being located outside the VP domain, meistens does not obligato-

rily bind every variable in its scope. The situation argument of the noun Professoren may

thus remain free, and when a variable assignment function assigns (@, now) (where now

represents a present time interval) to this free situation variable, the temporally independent

reading 'current (and actual) professors' is obtained.

In the above proposal, then, we were able to obtain the situationally independent read-

ing without inducing a scope paradox. Yet, this is still a version of the scope approach.

Non-presuppositional noun phrases only receive situationally dependent readings, as they

stay in the VP domain according to Diesing's Mapping Hypothesis and get trapped in the

scope of an operator in the VP domain. On the other hand, presuppositional noun phrases

move out of the VP domain, and there, their situation variables do not have to be bound

locally. Thus, (48) is not evidence against the scope theory as Musan claims.



1.4.2 Musan's stage semantics approach

In this subsection, we first review Musans's stage semantics account of Musan's general-

ization. I then present data that cannot be dealt with by Musan's theory, but requires the

scope approach.

On Musan's theory, noun phrases quantify over stages of individuals, and a temporally

dependent reading is obtained when one and the same individual-stage is simultaneously

predicated of by the nominal and main predicates. Musan construes stages of individuals as

pairs of an individual and a time interval. Since I want to deal with the extended, situational

version of Musan's generalization, let us assume that stages of individuals are pairs of an

individual and a situation. On this approach, (29) should then be analyzed as follows:

(52) There are 3 maximal9 stages of individuals xst situated in the last five years such

that [20-yr-old(xst) A kiss(xst)(m)]

(52) per se, however, does not guarantee temporal dependence without ensuring an appro-

priate interpretation of the predicates. To guarantee temporal dependence, it is necessary

to postulate the following principle:

(53) .For every predicate P and for every stage of an individual xst = (x, s), where

x e De and s e Ds, if xst is an argument of P, then the event described by P occurs

in situation s.

With (53), for 20-yr-old(xst) to be true, where xst = (x, s), there must be a (stative) event

of x being of age 20, and this event occurs in situation s. Similarly, for Mary-kiss(xst)

to be true, there must be an event of Mary kissing x, and this event occurs in situation s.

Therefore, when both of these hold, x must be of age 20 when Mary kissed him / her. Thus,

Musan's stage semantics approach can naturally account for (29)'s reading.

It might then appear as if Musan's approach would work better than the scope theory

I advocate, because as I discussed in Section 1.3, the scope approach seems to run into a

scope puzzle in analyzing (29). However, as I present below, Musan's approach has fun-

damental difficulty in accounting for some bi-clausal sentences which the scope approach

can deal with naturally as I discuss shortly.

Imagine that the sentences in (54) are uttered when no 20-year-olds have been contex-

tually established, three 20-year-olds in (54) will then be non-presuppositional.

9For a given individual, we count only the "maximal" stage of that individual that satisfy relevant proper-
ties. This way, we can avoid counting different stages of one and the same individual.



(54) a. When he was young, John promised to marry three 20-year-olds on their 30th

birthday.

b. When he was young, John wanted to marry three 20-year-olds on their 30th

birthday.

What are the truth conditions of the sentences in (54)? Now, consider the following sce-

nario:

(55) When John was young, he met Ann, and when Ann was of age 20, John promised

Ann that he would marry her on Ann's 30th birthday.

After a while, John got tired of Ann and met Bill. When Bill was of age 20, John

promised Bill that he would marry him on Bill's 30th birthday.

After a while, John got tired of Bill and met Chris. When Chris was of age 20, John

promised Chris that he would marry him on Chris's 30th birthday.

All of this happened decades ago when John was young.

Incidentally, Ann is 5 years younger than Bill, who is in turn 5 years younger than

Chris. Thus, none of them have been of age 20 at the same time.

(56) illustrates the scenario:

(56)
when John was young

J promises

to marry A

approx. in 10 yrs

Ann age 20

J promises J promises

to marry B to marry C

app. in 10 yrs app. in 10 yrs

Bill age 20 Chris age 20

Such a story is probable, if for example, John gets attracted to people just about 20 but

gets tired of them when they become a bit older. Under this scenario, (54a) can clearly be

uttered truthfully. Now, imagine a similar scenario, where John made the same promise to

Ann, Bill and Chris respectively, but he made the promise to Ann when she was 21, to Bill

when Bill was 22, and to Chris when Chris was 19, and John made such a promise only in

these three occasions. In this case, it is wrong to describe the story with (54a).

In order for (54a) to be true, then, it must be the case that for each person that John

made such a promise, that person was of age 20 at the time of the promise. This means that

the temporal interpretation of three 20-year-olds depends on that of the matrix predicate



promise. It must be noted, at the same time, that the temporal interpretation of three 20-

year-olds is necessarily independent of that of the embedded predicate marry. In each

promise, the marriage was supposed to take place when John's boyfriend/girlfriend turns

30. Obviously, he or she will no longer be of age 20 at the time of the envisaged marriage.

By altering the above scenario by replacing events of making a promise with events of

John's having a relevant desire, one can easily see that in (54b), too, the temporal inter-

pretation of three 20-year-olds depends on the matrix predicate (viz., want) while being

independent of the embedded predicate marry.

We can then see that Musan's generalization is at work again in (54). Although the tem-

poral interpretation of three 20-year-olds is not dependent on the main predicate of the em-

bedded clause, it is still a temporally dependent reading as it depends on the main predicate

of the matrix clause. Apparently, this is because three 20-year-olds is non-presuppositional.

Can Musan's stage semantics approach account for the temporally dependent readings

in (54), then? In (54), three 20-year-olds is an argument of the embedded predicate marry.

Therefore, on Musan's approach, sentences in (54) assert the existence of three stages of

individuals xst such that marry(xst) holds. Then, the principle in (53) predicts that the

temporal interpretation of three 20-year-olds should depend on the embedded predicate

marry. On the other hand, three 20-year-olds is not an argument of the matrix predicate

promise or want in (54), and hence, Musan's theory cannot express its temporal dependence

on the matrix predicate. However, as'we have just seen above, the temporal interpretation

of three 20-year-olds in (54) is independent of the embedded predicate, and depends on

the matrix predicate instead. The predictions that Musan's theory makes is then exactly the

opposite of the case with (54).

To recapitulate, Musan's theory accounts for the temporally dependent reading of a

non-presuppostional noun phrase by virtue of the fact that the non-presuppostional noun

phrase receives a thematic role from the main predicate it temporally depends on. However,

this association was a mere coincidence which is due to considering only mono-clausal

examples.

To fortify my argument, let us see a few more examples. In (54), we looked at cases

where the temporal interpretation of a non-presuppostional noun phrase originated in an

embedded clause depends on the matrix predicate. This time, we see cases where the world

interpretation of a non-presuppostional noun phrase from an embedded clause depends on

the matrix predicate.

Imagine that the sentences in (57) are uttered when no ugly 20-year-olds have been



contextually established, three ugly 20-year-olds will then be non-presuppositional.

(57) a. In the last five years, three ugly 20-year-olds appeared to Mary to be beautiful.

b. In the last five years, Mary believed three ugly 20-year-olds to be beautiful.

When uttered at the end of the year 2008, the sentences in (57) are true statements given

the following scenario:

(58) Ann, Bill and Chris was born in 1984, 1986 and 1988 respectively.

At some point in 2004 after Ann's birthday, Ann was ugly as a matter of fact, but

Mary saw Ann then and thought that Ann was beautiful.

At some point in 2006 after Bill's birthday, Bill was ugly as a matter of fact, but

Mary saw Bill then and thought that Bill was beautiful.

At some point in 2008 after Chris's birthday, Chris was ugly as a matter of fact, but

Mary saw Chris then and thought that Chris was beautiful.

Such a scenario is conceivable if we assume that beauty and ugliness are somehow absolute

concepts in reality and that Mary has the wrong taste. Now, suppose that Ann, Bill and

Chris were the only people that Mary have had contact with in the last five years and

that Mary found each of them beautiful. Suppose further that none of these three people

was ugly or of age 20 at the time Mary gave her aesthetic judgment to him/her unlike the

scenario above. In this case, the sentences in (57) will be false.

Let us now focus on (57a), the model of which is depicted in (59):

(59)
last five years (2004-2008)

Ann appears Bill appears Chris appears

beautiful to M beautiful to M beautiful to M

Ann age 20, ugly Bill age 20, ugly Chris age 20, ugly

Similarly to the case of sentences in (54), there are three events taking place in the actual

world. These are events of someone appearing beautiful to Mary, and for each event, the

person who appeared so was actually an ugly 20-year-old at the time of the event. It is

then clear that ugly 20-year-olds has a temporally dependent reading here.10 However,

loUgly 20-year-olds actually consists of the adjective ugly and the noun 20-year-olds. When a non-
presuppositional noun phrase is modified with an adjective, the situational interpretation of the adjective
seems to coincide with that of the noun. Thus, both the adjective and the noun have a situational interpreta-
tion dependent on that of the main predicate. See Keshet's (2008) generalization.



unlike in (54), the evaluation times of the matrix clause and of the embedded clause seem

to coincide here when the matrix predicate is the raising predicate appear. We therefore

cannot conclude without careful examination whether the temporal interpretation of ugly

20-year-olds is dependent on the main predicate of the matrix clause or on that of the

embedded clause.

Let us then focus on the world interpretation of ugly 20-year-olds instead. Suppose that

ugly 20-year-olds and the embedded clause's main predicate beautiful would be evaluated

with respect to the same world (i.e., ugly 20-year-olds is interpreted de dicto). As I have

just pointed out above, (57a) asserts the existence of three people each of whom is predi-

cated of by ugly 20-year-olds and beautiful with some identical reference time-interval. It

would then follow that (57a) asserts the existence of three people each of whom is simulta-

neously ugly and beautiful in some world, which is, however, a contradiction so long as we

assume that ugly and beautiful are antonyms. The evaluation world of ugly 20-year-olds

must be the actual world instead (i.e., ugly 20-year-olds is interpreted de re), since (57a)

talks about three people each of whom was actually ugly and of age 20 at some point. Then,

ugly 20-year-olds's situational interpretation, the combination of its temporal and world in-

terpretations, is not dependent on the situational interpretation of the embedded predicate.

Rather, we can conclude that the situational interpretation of three ugly 20-year-olds de-

pends on that of the matrix predicate.

On Musan's approach, (57a) would be analyzed as asserting the existence of three (max-

imal) stages of individuals. Since the matrix predicate in (57a) is a raising predicate, three

ugly 20-year-olds is not an argument of the matrix predicate appear, but an argument of the

embedded predicate beautiful. Therefore, these stages of individuals only saturate an argu-

ment of beautiful. With (53), it is then predicted that the situational interpretation of ugly

20-year-olds should depend on the embedded predicate and nothing else. In fact, Musan's

theory predicts that a non-presuppostional noun phrase can never have a de re interpreta-

tion (be it world-wise or temporal). Musan's theory thus makes the wrong prediction here.

An analogous argument can be made for (57b), except that the matrix predicate is an ECM

verb there.

Before moving on to the next subsection, let me provide some argument that the read-

ings we have considered above are in fact non-presuppostional readings. To that end, I

employ von Fintel's (1998) test to detect presuppositional indefinites. In this test, indefi-

nites to be investigated are embedded in the antecedent of a conditional, which is preceded

by a context to make it clear that the speaker is agnostic as to whether or not individuals



of the relevant sort exist. Because presuppositions from the antecedent of a conditional are

generally projected, if an indefinite in this position is presuppositional, it will clash with

the preceding context. Consider (60) (= von Fintel's (9) on pp. 9-10):

(60) I'm not sure yet whether there are any mistakes at all in this book manuscript, but

we can definitely not publish it

a. if there turn out to be {some / more than a few / a significant number of} major

mistakes in there.

b. if {some / more than a few / a significant number of} major mistakes are found.

c. # if there turn out to be {some / more than a few / a significant number of}

mistakes are major.

(60a) and (60b) are fine because the indefinite {some/more than a few/a significant num-

ber of) major mistakes is non-presuppositional here. As for (60a), this is due to the ex-

istential there construction. As for (60b), the indefinite can be either presuppositional or

non-presuppositional in principle. However, the presuppositional reading would clash with

the preceding text and thus we interpret it non-presuppositionally. On the other hand, (60c)

sounds strange. According to Diesing (1992), the subject of an individual-level predicate

is always interpreted in a VP-external position and presuppositional. Since the adjective

major is an individual-level predicate, the indefinite in (60c) should be presuppositional.

More concretely, it presupposes that some mistakes exist. However, the preceding text says

that the speaker does not know whether there are mistakes at all, which contradicts the

presupposition.

Let us now embed our sentences in (54) and (57) (in a slightly modified form) in the

schema of von Fintel's test. The examples all start with I'm not sure if20-year-old people

are ever ugly ... to make it clear that the speaker is agnostic as to the existence of ugly

20-year-olds. Accordingly, I have changed 20-year-olds to ugly 20-year-olds in (54).

(61) a. I'm not sure if 20-year-old people are ever ugly, but I will certainly conclude

that John has a bad taste, if when he was young, he promised to marry three

ugly 20-year-olds on their 30th birthday.

b. I'm not sure if 20-year-old people are ever ugly, but I will certainly conclude

that John has a bad taste, if when he was young, he wanted to marry three ugly

20-year-olds on their 30th birthday.



(62) a. I'm not sure if 20-year-old people are ever ugly, but I will certainly conclude

that Mary has a bad taste, if in the last five years, three ugly 20-year-olds ap-

peared to her to be beautiful.

b. I'm not sure if 20-year-old people are ever ugly, but I will certainly conclude

that Mary has a bad taste, if in the last five years, she believed three ugly 20-

year-olds to be beautiful.

For instance, if I believe that young people are generally beautiful, I am not sure if there are

any ugly 20-year-olds. Even so, it is clear that I can felicitously utter the sentences in (61)

and (62), which indicates that three ugly 20-year-olds is non-presuppositional here. This

point can be made clearer by comparing the above examples with (63) and (64) below:

(63) a. I'm not sure if 20-year-old people are ever ugly, but I will certainly conclude

that John has a bad taste, if when he was young, he promised to marry three of

the ugly 20-year-olds on their 30th birthday.

b. I'm not sure if 20-year-old people are ever ugly, but I will certainly conclude

that John has a bad taste, if when he was young, he wanted to marry three of

the ugly 20-year-olds on their 30th birthday.

(64) a. I'm not sure if 20-year-old people are ever ugly, but I will certainly conclude

that Mary has a bad taste, if in the last five years, three of the ugly 20-year-olds

appeared to her to be beautiful.

b. I'm not sure if 20-year-old people are ever ugly, but I will certainly conclude

that Mary has a bad taste, if in the last five years, she believed three of the ugly

20-year-olds to be beautiful.

Here, the noun phrases at issue have been replaced with presuppositional ones (viz. parti-

tives), and thus the sentences sound infelicitous.

For (61) and (62), where three ugly 20-year-olds is non-presuppositional, the reader

may confirm the situational dependence of three ugly 20-year-olds on that of the matrix

predicate in each of the above examples. In order to conclude that John has a bad taste, it is

required that there be three people for each of whom, John had a desire to marry him/her,
and furthermore, he/she was actually ugly (and of age 20) at the time John had such a

desire. Whether they might have become beautiful with the help of plastic surgery by

ten years later when marriage was planned to take place would not matter in deciding my

opinion of John's aesthetics. Likewise, in order to conclude that Mary has a bad taste, it is



required that there be three people for each of whom, John thought of him/her as beautiful,
and furthermore, he/she was actually ugly (and of age 20) at the time of the thought. If

ugliness were not these people's real property, I would not be able to be so judgmental on

John's aesthetics.

1.4.3 The meaning of (non-)presuppositionality and binding theory of

situation variables

We have seen above that Musan's stage semantics approach has difficulty in accounting

for bi-clausal exmamplese like (54) and (57), which are repeated below, where a non-

presuppositional noun phrase originated in the embedded clause has a situational interpre-

tation dependent on the main predicate:

(54) a. When he was young, John promised to marry three 20-year-olds on their 30th

birthday.

b. When he was young, John wanted to marry three 20-year-olds on their 30th

birthday.

(57) a. In the last five years, three ugly 20-year-olds appeared to Mary to be beautiful.

b. In the last five years, Mary believed three ugly 20-year-olds to be beautiful.

The question is then whether the scope approach I advocate is able to account for such

sentences. If the answer is yes, then an obvious question to ask is where (i.e. in which

scope) the non-presuppositional noun phrase three 20-year-olds is interpreted.

Assuming that the situational interpretation of every main predicate is subject to an op-

erator (i.e. A abstractor in the implementation with syntactically overt situation variables)

located at the edge of the local VP domain containing the main predicate, bi-clausal sen-

tences as in (54) and (57) have two operators for the main and embedded main predicates

as illustrated below:



(65) TP

... VP domain

Op2

Vo TP

... VP domain

Opi
.. Vo  (...)

Here, Opi is responsible for the situational interpretation of the embedded main predicate,
and Op2 is for the main predicate. The non-presuppositional noun phrase three 20-year-

olds is originated inside the VP domain of the embedded clause. Should it then stay there

and interpreted in the scope of Opl, or should move out and escape this scope?

Let us first see what we would have to say if the noun phrase three 20-year-olds should

stay inside the VP domain of the embedded clause at LF and be interpreted there. Be-

cause the interpretation of 20-year-olds in (54) and (57) is situationally dependent not on

the embedded verb but on the matrix verb, this must be given. by Op2 and not by Opl.

If three 20-year-olds were to stay inside the VP domain of the embedded clause at LF, it

should involve a long-distance dependency between Op2 and the noun phrase. However, it

is not clear what mechanism would ensure this long-distance dependency correctly. Unfor-

tunately, the hypothesis in (51) says nothing about this case, because it does not take such

bi-clausal cases into account. Let us now furthermore consider the scopal interpretation of

the numeral olxthree. The main predicate of the matrix clause in the sentences in (54) and

(57) are attitude verbs that express a relation between events (or states) and propositions. If

three were interpreted in the embedded clause in these sentences, they should be asserting

the existence of an event which is related by the matrix attitude verb to propositions that

concern three 20-year-olds. However, in the readings that we considered in the previous

subsection, these sentences each assert the existence of three events which are each related

by the matrix attitude verb to propositions that concern one 20-year-old. Therefore, three

has to be interpreted outside the embedded clause. Again, if three 20-year-olds were to

stay inside the VP domain of the embedded clause at LF, it would be a mystery how the

desired meaning could be derived.



On the other hand, once we entertain the possibility that three 20-year-olds moves out

of the scope of Opl, but remains in the scope of Op2, it turns out to be possible to account

for its interpretation in the same way as for the situational dependent reading of a non-

presuppositional noun phrase in mono-clausal examples.

In Subsection 1.4.1, I reviewed Musan's argument against the scope approach and con-

cluded that her argument was not convincing because once we assume multiple temporal

(situational) operators in a single clause and the hypothesis in (51), which is repeated be-

low, the scope approach does not lead to a problem contrary to Musan's claim.

(51) A situational operator obligatorily binds every situation variable in its scope if and

only if the operator is located in the VP domain.

Now, instead of this ad hoc hypothesis in (51), let us take (19) seriously and say that the sit-

uation variable that saturates the situation argument of a non-presuppositional noun phrase

is syntactically an anaphor. Being an anaphor, it should obey something like Principle A of

binding theory. I thus propose the following principle:

(66) Principle A of Binding Theory of Situations

A situational anaphor must be bound within the smallest VP domain that contains

it.

Thus, the "binding domain" of a situation variable is the smallest VP domain that contains

it. With this, the part of Diesing's Mapping Hypothesis about non-presuppositional noun

phrases automatically follows. Since the situation argument of a non-presupposinal noun

phrase is a situation anaphor, a non-presupposinal noun phrase always has to be in a VP

domain so that its situation argument may be bound as required by Principle A of Binding

Theory of Situations (66). Essentially, the operator that binds the situation anaphor is the

operator that is responsible for the situation interpretation of the main predicate in the VP

domain, so a situationally dependent reading results as Musan's generalization predicts.

On the above proposal, 20-year-olds ought to move out of the VP domain of the em-

bedded clause and end up in the VP domain of the matrix clause for the non-contradictory

readings of the sentences in (54) and (57), as illustrated by the following:"

II have assumed here that the noun phrase has moved out of the embedded TP. However, it is also possible
to assume that the noun phrase stays inside the embedded TP after moving out of the embedded VP domain.



(67) TP

... VP domain

Op2

Vo TP

... VP domain

Op ... tNP...

If 20-year-olds stayed in the VP domain of the embedded clause, Principle A of binding
theory of situations would dictate that its situation argument should be bound by Opl, which
would result in the contradictory reading of 20-year-olds that is situationally dependent on
the main predicate of the embedded clause. Thus, 20-year-olds has to move out of the
VP domain of the embedded clause. However, if 20-year-olds moves all the way upstairs
to even escape the VP domain of the matrix clause, its situation argument cannot satisfy
Principle A of binding theory of situations, as it is no longer in a binding domain. Hence,
20-year-olds ends up in the VP domain of the matrix clause and its situation argument gets
bound by Op2, and receives a reading that is situationally dependent on the main predicate
of the matrix clause. As a consequence, three is also interpreted outside the embedded
clause, but a scope puzzle of the sort discussed in Section 1.3 obtaines. This is treated
together with the original example presented in Section 1.3 by postulating movement of
the numeral in the next section.

The assumption that the situation variable that saturates the situation argument of a
non-presuppositional noun phrase is an anaphor is not an ad hoc stipulation, but it is ac-
tually motivated by semantic/pragmatic reasons. A non-presuppositional noun phrase is a
noun phrase used to assert the existence of individuals that are predicated of by the noun.
Nevertheless, a noun phrase itself is not the main predicate of a sentence. 12 Instead, a noun
phrase appears as an argument of a main predicate or as the complement of the preposition
in a PP which directly or indirectly modifies a main predicate. Since a declarative sentence

12In the sentences like the following, the noun phrase a 20-year-old may appear to be the main predicate:

(i) There is a 20-year-old.

(ii) John is a 20-year-old.

For such sentences, however, the verb be can be regarded as the main predicate.



asserts the existence of an event of a particular sort, the existential assertion by a non-

presuppositional noun phrase is made indirectly by means of modifying an event whose

existence is asserted by the sentence in which it appears. If some event is asserted to occur

which involves an individual predicated truly of by the noun, then it should amount to as-

serting the existence of an individual predicated truly of by the noun at the same time and

in the same world as the event occurs. For example, when the sentence "Mary kissed a 20-

year-old" is uttered out of the blue, it asserts the existence of a kissing event that occurred

at some time in the actual world. As the non-presuppositional noun phrase a 20-year-old

modifies this event, there must have been some 20-year-old who was involved in this event.

It is then natural that he or she was of age 20 at the time of the event in the actual world.

Thinking this way, it makes sense to assume that a non-presuppositional noun phrase comes

with a situation anaphor, so that it situational interpretation coincides with that of the main

predicate.

By contrast, a presuppositional noun phrase requires that the discourse have established

the existence of an individual or individuals predicated truly of by the noun. This in turn

means that the discourse has already made reference to some situation (time-world pair)

with respect to which that individual is (or those individuals are) predicated truly of by

the noun. Therefore, the situation variable that saturates the situation argument of a pre-

suppositional noun phrase should not be co-bound with the situation argument of the main

predicate, and its value must instead be given independently of the evaluation situation

of the main predicate. In other words, the situation argument of a presuppositional noun

phrase must be a pronoun rather than an anaphor, and its value must be given by a variable

assignment function. The value assigned to the situation argument of a presuppositional

noun phrase ought to be a situation which has been made salient in the discourse and in

which individuals that satisfy the noun predicate are already known to exist. The presup-

position of the noun phrase is thus satisfied. If it happens that no individual satisfies the

noun predicate in whatever situation assigned to the situation argument of the presupposi-

tional noun phrase, a presupposition failure obtains. Just as situation anaphors are subject

to something like Principle A of binding theory, situation pronouns should be subject to

something like Principle B of binding theory, which should look like the following:

(68) Principle B of Binding Theory of Situations

A situational pronoun must be free within the smallest VP domain that contains it.

This actually turns out to be problematic as I discuss shortly.

To recapitulate, I propose the following:



(69) The type of situation argument of (non-)presuppositional noun phrases

a. The situation argument of a non-presuppositional noun phrase is saturated by a

situational anaphor.

b. The situation argument of a presuppositional noun phrase is saturated by a

situational pronoun and not by a situational anaphor.

Ordinary pronouns (i.e. pronouns that range over individuals) obey Principle B of binding

theory, so they must be free in their binding domain, but they can still be bound within a

sentence. Similarly, a situation pronoun may be bound within a sentence. This should be

possible if a presuppositional noun phrase is c-commanded by an operator that is located

outside the binding domain of the noun phrase. Such a configuration will give rise to a

reading of a presuppositional noun phrase that bears no global presupposition. A relevant

example would be the interpretation of the 20-year-old in the following sentence:

(70) If Mary met a 20-year-old, she kissed the 20-year-old when he was 21.

Here, the if clause would bind the situation argument of the presuppositional noun phrase

the 20-year-old, but this clause is located outside the VP domain of the main clause. Notice

that the temporal interpretation of the 20-year-old is independent of the main predicate

kissed, as the kissing would occur when the kissee was no longer 20. We can then propose

the following:

(71) Presupposition of noun phrases

A noun phrase bears presupposition in a given domain if and only if its situation

argument is free in that domain.

Let us now turn to Diesing's Mapping Hypothesis before we can dicuss the problem of
Principle B of binding theory of situations. Below, I repeat the restatement of Diesing's

(1992) Mapping Hypothesis in (10) from Subsection 1.2.1:

(10) Non-presuppositional noun phrases and existential bare plurals are interpreted in

the VP domain (hence mapped into the nuclear scope).

Presuppositional noun phrases and generic bare plurals are interpreted outside the

VP domain (hence mapped into a restrictive clause).

Disregarding bare plurals, which I do not discuss here, this can be restated as the following:

(72) Mapping Hypothesis

If a noun phrase is interpreted in the VP domain, it must be non-presuppositional.

If a noun phrase is interpreted outside the VP domain, it must be presuppositional.



(72) makes clear predictions for mono-clausal sentences, but it does not necessarily do so

for bi-clausal sentences. What shall the Mapping Hypothesis say about LF like (67) that

are postulated for sentences as in (54) and (57)? The noun phrase in (67) (denoted as NP)

has moved out of the VP domain of the embedded clause. Therefore, the second statement

in (72) seems to predict it to be presuppositional. On the other hand, since the noun phrase

remains in the VP domain of the matrix clause, the first statement in (72) seems to predict it

to be non-presuppositional. Thus, the Mapping Hypothesis is not well-defined to deal with

cases where there is more than one VP domain in a sentence. 13 This seems to indicate that

the Mapping Hypothesis may not be a principle but an observation based on a limited set of

data. The reader should be aware that even though the Mapping Hypothesis makes a very

interesting connection between noun phrases' syntactic positions and their interpretations,

it does not explain why there has to be such a connection.

Now, recall that our original account of Musan's generalization resorts to the Mapping

Hypothesis and the hypothesis in (51). However, if we accept that the Mapping Hypothesis

is not a principle, our theory should not ultimately be based on the Mapping Hypothe-

sis. Rather, our desideratum would be to derive the observation called Diesing's Mapping

Hypothesis from some deeper principles. We have already seen above that Principle A

of binding theory of situations derives the part of Diesing's Mapping Hypothesis on non-

presuppositional noun phrases. Also, the proposal in (69a) renders hypothesis (51) un-

necessary for non-presuppositional noun phrases. However, unlike that case, Principle B

of binding theory of situations as posited in (68) cannot derive the other half of Diesing's

Mapping Hypothesis regarding presuppositional noun phrases, i.e., the claim that presup-

positional noun phrases move out of the VP domain. According to (68), there would be

no problem even if a presuppositional noun phrase stayed in a VP domain, as long as its

situation argument remained free there. Therefore, being a presuppositional noun phrase

does not require that it move out of some VP domain.

Moreover, consideration of the Principle B posited in (68) reveals a number of prob-

lems. Once we accept the Mapping Hypothesis, (68) is rather meaningless for mono-clausal

sentences. Since there is only one VP domain in a mono-clausal sentence, once a presup-

positional noun phrase in a mono-clausal sentence has moved out of the single VP domain

13It seems that Diesing does not think of the possibility that a noun phrase moves out of an embedded
clause and stops within the VP of the matrix clause. For one thing, she considers examples with raising
predicates, and claims that when the raised subject is interpreted outside the embedded clause, it has to be
interpreted at Spec, IP (= TP) of the matrix clause (Diesing, 1992, p. 25). My sentences in (54) and (57)
constitute counterexamples to this claim.



of the sentence as dictated by the Mapping Hypothesis, its situation argument can no longer
be in a binding domain, so Principle B is vacuously satisfied. In addition, we might have
a problem with bi-clausal sentences whose embedded sentence is like (70) or (48a) in the
sense that a noun phrase containing a situation pronoun moves out of the VP domain of an
embedded clause but this situation pronoun gets bound by some operator within the embed-
ded clause (the if clause in (70) and the TAQ in (48a)). Then, being in the VP domain of
the matrix clause, this situation pronoun would violate (68), because the situation is bound
within the smallest VP domain containing it. To remedy this, it appears necessary to seek
an appropriate definition of binding domain for binding theory of situations.

Given the above concerns, it is clear that we have not yet captured the real nature of
presuppositional noun phrases. Maybe we need to postulate a principle radically different
from what was posited in (68), which might be able to derive the other half of the mapping
hypothesis. Or, hypothesis (51) might turn out to be necessary after all. Because then,
a non-presuppotiona noun phrase would be forced to move out of a VP domain in order
to avoid getting bound there. For now, I would like to leave these issues for the future
research.

Finally, let us return to Musan's argument against the scope approach again. Recall
that Musan claimes that the scope theory runs into a scope paradox for sentences like
(48a). However, Musan herself actually notes that the scope paradox can be avoided if
one assumes that the time argument of a presuppositional noun phrase does not have to be
bound by the TAQ, unlike the time argument of a non-presuppostional noun phrase. Mu-
san says that such a stipulation would amount to attributing the availability of temporally
dependent readings to some internal property of non-presuppositional and presuppositional
noun phrases, and regards this as the defeat of the scope approach. Musan then goes on
to develop a stage-semantics approach which entirely relies on internal properties of noun
phrases (i.e., different denotations of non-presuppositional and presuppositional determin-
ers). However, I think that this reasoning is misguided.

It may be true that an account of Musan's generalization purely in terms of scope is
not possible. The version of the scope approach I propose here resorts to some intrinsic
difference between non-presuppositional and presuppositional noun phrases. More con-
cretely, I have proposed above that only non-presuppositional noun phrases takes a situa-
tional anaphor. Be that as it may, the scope approach still has theoretical advantages over
Musan's stage semantics approach, as it has a robust association with the independently
motivated Mapping Hypothesis by Diesing, while Musan's stage semantics approach has



nothing to say on this count. We still have not answered why presuppositional noun phrases

move out of the VP domain as the mysterious half of Diesing's Mapping Hypothesis states,

but this cannot be a reason to reject the scope approach and adopt Musan's theory, since

neither does Musan's theory answer this question.

To sum up this section, I conclude that on both empirical and theoretical grounds, the

scope approach fares better than Musan's stage semantics approach.

1.5 Solution to the scope puzzle: Movement of the nu-

meral

I have argued thus far that the scope theory is the most reasonable approach to the sit-

uational dependence of non-presuppositional noun phrases. However, if my analysis is

on the right track, then the scope puzzle revealed in Section 1.3 cannot be marginalized

as a merely theory-internal problem. The problem was that the numeral part of a a non-

presuppositional noun phrase such as three need to take scope over this A abstractor that is

supposed to co-bind the situation arguments of the non-presuppositional noun phrase and

the main predicate, but this appears to require the non-presuppositional noun phrase to be

above and below the A abstractor simultaneously.

1.5.1 Basic account

In order to solve the scope puzzle, I propose that the non-presuppositional noun phrase is

interpreted in the scope of the A abstractor, but the numeral separates off and moves to the

position right above the A abstractor. Thus, ignoring the temporal adverbial, we have the

following LF for the sentence in (29):



(73)

three

As e Ds

Mary-kiss s

28-year-olds s

This LF cannot be interpreted without modifying some lexical entries and/or interpretation

principles, however. This is explained and fixed in what follows.

First, remember that the denotation of the numeral three has been assumed to be of type

((e, t>, ((e, t>, t>> earlier. This was because the numeral was assumed to be interpreted in

the sister position of the noun predicate. If we kept assuming this type for the numeral, (73)

would be uninterpretable unless we assume a higher-type trace and lambda abstraction over

variables of type ((e, t), ((e, t), t)). However, if we did this, the moved element would be

semantically reconstructed, and hence the very idea of raising the numeral would be voided.

We should therefore write a new denotation for three which is of some other semantic type

so that it is semantically interpreted in the top position.
Now, recall that in Subsection 1.3.3, we saw that the correct interpretation of (29)

should be given by (47), which is repeated below:

(47) AS E Ds. 3X E De[IXI = 3 A [**Ax e De. As e Ds. 7i(s) is before now A

7ri(s) is in the last 5 years A 20-yr-old(s)(x) A kiss(s)(x)(m)](X)(S)]

As I discussed there, in order to obtain this interpretation, we first have to have a relation

holding between an individual and an atomic situation before the meaning of three enters

into computation. Ignoring the details that restricts situations to those located in the past

and in the last five years, this relation we are after is the following:

(74) Ax e De. As e Ds.20-yr-old(s)(x) A kiss(s)(x)(m)

Since this relation describes situational dependence, let us refer to such a relation as a

situationally dependent relation. For convenience, given a non-presuppositional noun

phrase whose head noun denotes predicate <p and a main predicate qr, let us notate the

relevant situationally dependent relation with SDR'. Thus,



(75) SDR' = Ax E De As e Ds. p(s)(x) A I/(s)(x)

With this notation, the situationally dependent relation given in (74) is written as SDR 2 yroid

where Mary-kiss is short for As E Ds. Ax e De. kiss(s) (x) (Mary). The crucial assumption is

that situationally dependent relations hold true only of atomic situations. Therefore, even if

SDR yr-i(a)(s) and SDRr os (b) (t) hold true for some individuals a and b and some
n20-yr-0ld ,r b( ur t nee od.Ta .. Mr-old

atomic situations s and t, SDRMarykiss a e b)(s us t) never holds. That SDRr2 0  holds

only of atomic situations can be derived by assuming that kiss holds only of atomic situa-

tions. Note that situationally dependent relations may be true of non-atomic individuals.

Provided that the denotation of the sister node of As in (73) is 20-yr-old(s)(x) A

kiss(s)(x)(m), we expect to obtain SDR o-yroSd if the A abstractor created by the move-

ment of the numeral (A3 in (73)) abstracts over individuals:

(76)

three SDR 20-yr-od

Ax eDe

As e Ds 20-yr-old(s)(x) A kiss(s)(x)(m)

Mary-kiss s

20-year-olds s

Then, since SDRr20yroId is the denotation of the sister of three, what we need to do is to

write a lexical entry for three which takes SDR Myr- l and then yields (47). The lexical

entry of three should then be as follows:

(77) Ithree] = AR e D(e,(s,t>>. AS E Ds. 3X E De[IXI = 3 A **R(X)(S)]

The semantic type of the new denotation of numerals is thus ((e, (s, t)), (s, t)). With (77),

we can compositionally compute the desired interpretaion in (47).

What is now necessary is to arrive at the intersection of the noun predicate and the main

predicate, viz., 20-yr-old(s)(x) A kiss(s)(x)(m). It turns out, however, that without further

adjustment, not only can we not arrive at this, there is a semantic type mismatch when one

attempts to combine the noun and the main predicate, as illustrated by the following:



(78) ?

t (e,t)

(e es,(e,t>) s
e (e,t)
x Mary-kiss s

(s, (e, t)) s
20-year-olds s

When the denotation of numerals was assumed be of type ((e, t), ((e, t), t)), the formation

of the intersection of the noun predicate and the main predicate was encoded in their deno-

tation (see (18a), (36) and (40c)). However, now that numerals do not take two predicates,

the requisite intersection must be performed independently. A semantic type mismatch

arose since nothing in (78) computes this intersection. In order to remedy this, I propose a

new principle of interpretation as follows:

(79) Let a and P be sisters such that ja] is of type e and [~p is of type (e, t). Then,
p 4E D(e,>.- E81 (ua]) A p( a])

With this new principle, the denotation of tree (78) can now be computed as follows:

(80) 20-yr-old(s)(x) A kiss(s)(x)(m)

(by FA)

Ap e De,t>. 20-yr-old(s)(x) A p(x) x' e De. kiss(s) (x') (m)

(by new rule) (by FA)

x Ax' e De. 20-yr-old(s)(x') As' E Ds. Ax' E De. s

(by FA) kiss(s') (') (m)
Mary-kiss

As' Ds. Ax' e De. s

20-yr-old(s') (x')

20-year-olds



We can then see that the correct semantics of sentence (29) can now be computed compo-

sitionally from LF (76).

Instead of adopting a new interpretation principle, one could achieve the same results

only by means of Functional Application if one postulate some functional head which takes

the noun and the main predicate to form their intersection and applies it to the variable

represented by the trace of three. However, this strategy also has to stipulate when one

needs this functional head and when one should not have it. For example, when analyzing

noun phrases such as the three 20-year-olds, one should not have such a functional head

because one need not take the intersection of two predicates, but stipulating the relevant

conditions as to when to have this functional head seems to be an undesirable complication.

The above proposal with the new interpretation principle, on the other hand, does not face

such a problem.

I would now like to dispel a possible worry concerning the solution proposed above.

According to this solution, when a non-presuppositional noun phrase is a subject (as in

(57a)), the numeral will have to be extracted out of a subject. However, extraction out of a

subject is often thought to be impossible (Huang's (1982) CED).

Diesing (1992, pp. 31-41) has already made a point regarding this. She argues that

while extraction out of a subject in Spec, TP 14 is not possible, extraction of a subject in

Spec, VP is possible. 15 In (81) and (82) (from Diesing's (26) p. 32 and (27) on p. 33

respectively), the particles denn andja mark the edge of VP respectively. When the subject

is to the right of the particle, i.e., in Spec, VP, was or Ameisten can be extracted out of it.

By contrast, when the subject is to the left of the particle, i.e., in Spec, TP, such extraction

is not possible.

(81) a. [cP Wasi haben [rP denn [vP ti fiir Ameisten einen Postbeamten
what have 'indeed' for ants a postman

gebissen]]]?
bitten

'What kind of ants have bitten a postman?'

14This is Diesing's IP. I have changed the terminology to make it consistent with the assumption here. The
label TP in (81) was orginially IP.

15Diesing attributes this observation to Angelika Kratzer in her class lectures in 1988.



b. * [cp Wasi haben [TP ti fUir Ameisten denn [vP einen Postbeamten
what have for ants 'indeed' a postman

gebissen]]]?
bitten

(82) a. Ameisteni haben ja einen Postbeamten [NP viele ti] gebissen.
ants have PRT a postman many bitten

'As for ants, many have bitten a postman.'

b. * Ameisteni haben [NP viele ti] ja einen Postbeamten gebissen.
ants have many PRT a postman bitten

The reader is referred to Diesing (1992) for more examples of this kind. We can find more

supportive evidence from German in Haider (2000):

(83) a. [Welches Buch]i hat [ti zu lesen] dir mehr SpaB gemacht?
which book has to read you more fun made

b. * [Welches Buch]i sagte sie [cP [ti zu lesen] [habe [ihr SpaB gemacht]]]?
which book said she to read has her fun made

According to Haider, in (83a), the subject is in a VP-internal position and extraction out of

is possible, whereas in (83b), the subject is in a VP-external position and such extraction is

not possible. Finally, consider the following English sentence:

(84) [Which student]i are there pictures of ti on the table?

Here, wh-movement takes place out of the subject, which is located in the VP-domain due

to the existential there construction.

Given the above examples, I conclude that extraction out of the subject becomes im-

possible when the subject has moved out of the VP-domain, but such extraction is possible

when the subject is in the VP-domain. Then, the extraction of the numeral out of non-

presuppositional noun phrases that I have proposed above should be no problem, since

non-presuppositional noun phrases stay in the VP domain at LF as discussed so far.

1.5.2 Bi-clausal cases

We can now account for bi-clausal sentences like (54) and (57), which are repeated below:



(54) a. When he was young, John promised to marry three 20-year-olds on their 30th

birthday.

b. When he was young, John wanted to marry three 20-year-olds on their 30th

birthday.

(57) a. In the last five years, three ugly 20-year-olds appeared to Mary to be beautiful.

b. In the last five years, Mary believed three ugly 20-year-olds to be beautiful.

The truth conditions of (54a), for instance, can be derived from the following LF:

(85) VP domain

three (e, (s, t))
SDRA s. Ax. 20-yr-old(s)(x)

As. Ax. J promises in s to marry x on x's 30th birthday

Ax c De (s, t)

As c Ds t

((e,t),t) (e,t)
(by new rule)

Ay De t

e (e, t) J promises in s to marry
x y on y's 30th birthday

(s, (e, t)) s
20-year-olds s

John
TP

Vo s

... VP domain
promise

... y ...

Here, three 20-year-olds first moves out of the VP domain of the embedded clause and lands

inside the VP domain of the matrix clause as proposed in (67), creating a A abstraction (Ay).

In order to obtain the reading where events predicated of by the matrix verb are distributed



over three people, the numeral three gets separated and moves further albeit locally as in
(76). The new principle of interpretation is utilized in interpreting the non-presuppositional
noun phrase whose numeral has moved out in the same manner as in (80). Thus, the truth
conditions of the sentence are computed compositionally without addtional assumptions.



Chapter 2

How to Measure Size

This chapter analyzes what Krifka (1990) terms as event-related readings. We will first

see that a novel "pluralization" method such as what Krifka proposes should be adopted to

account for event-related readings. Our result from Chapter 1 is then incorporated into this

theory. It is then argued that units of measurement must be sensitive to a situation, which

discussion reveals the necessity to employ integration to describe the semantics of measure

phrases correctly. The chapter then introduces the theory of Lebesgue integration, under

which the intuition and concepts behind the analysis will be articulated. The theory offers

a unified analysis of discrete and continuous events where existential quantifications over

times are replaced by conditions on integrals.

2.1 Four thousand ships passed through the lock

This section introduces the notion of event-related readings (Krifka 1990). In Chapter 1,

in order to account for plural non-presuppositional noun phrases, I proposed that a relation

between atomic time intervals and individuals is first obtained and is then pluralized using

the (double) * operator. I show that this way of pluralization is inadequate to capture event-

related readings. I will then review Krifka's own analysis of event-related readings.

2.1.1 What is an event-related reading?

Krifka (1990) observes that sentence (1) has two readings which are paraphrased as in (2):

(1) Four thousand ships passed through the lock last year.



(2) a. There are four thousand different ships that passed through the lock last year.

b. There were four thousand events of passing through the lock by a ship last year.

Krifka terms reading (2a) as the object-related reading of (1), as it counts the number

of relevant objects (viz. ships), and reading (2b) as the event-related reading of (1), as it

counts the number of relevant events. These two readings are distinct. Even if there were

less than four thousand ships in the world, if they each passed through the lock many times

last year so that the total number of the lock traversals has reached 4000, (1) should be true

in the event-related reading. However, on the very same scenario, (1) should be false in

the object-related reading, as it requires the existence of four thousand distinct ships (that

passed through the lock). The aim of this chapter it to develop a theory of how to account

for event-related readings. Unfortunately, I have not been able to include my analysis of

object-related readings in this dissertation, but I will talk about those in future writing.

The event-related reading of a sentence concerns the interpretation of a particular noun

phrase in the sentence. In the case of (1), it is the interpretation of noun phrasefour thou-

sand ships which is at issue. In particular, I will focus only on the non-presuppositional

reading of such event-related-reading-inducing noun phrases. As Musan's generalization

predicts, when (1) is uttered out of the blue (i.e. without presuppositions), the situational

interpretation of four thousand ships depends on that of the main predicate passed through

the lock. To see this clearly, let us modify the noun with the stage-level adjective damaged

and embed the whole sentence in a belief context:

(3) Mary believes that four thousand damaged ships passed through the lock last year.

Clearly, this sentence can be uttered felicitously without presupposing the existence of

some damaged ships. Furthermore, the interpretation of four thousand damaged ships is

situationally dependent on the embedded predicate passed through the lock. Let us focus on

the event-related reading now. For (3) to be true, it is necessary that in Mary's belief world,

four thousand events have taken place last year, each of which was an event of passing

though the lock by an entity which was damaged and a ship at the time of the event and in

Mary's belief world. If in Mary's belief world, a ship passed though the lock last year, but

this ship was not damaged at the time of passing (in Mary's belief world), then, this event

will obviously not be included in the four thousand.

Interestingly, in event-related readings, the responsible noun phrase seems to have a

situationally dependent interpretation even when it is presuppositional. Krifka (1990) ob-



serves that event-related readings are possible with quantified noun phrases as in the fol-

lowing (p. 509):

(4) a. Most ships passed through the lock at night.

b. Every ship passed through the lock at night.

The event-related reading of (4a), for instance, asserts that most of the lock traversals of a

ship occurred at night. Due to most and every, which are strong quantifying determiners and

hence presuppositional, (4a) and (4b) presuppose that there have been some lock traversals

of a ship. Now, consider the sentences in (5), where the noun is modified by damaged:

(5) a. Most damaged ships passed through the lock at night.

b. Every damaged ship passed through the lock at night.

In the event-related reading, (5a) seems to mean that most of the events of passing through

the lock by a damaged ship occurred at night. Similarly, (5b) in the event-related reading

seems to mean that every event of passing through the lock by a damaged ship occurred at

night. Then, it seems that situational interpretation of these noun phrases depends on the

main predicate even though they are presuppositional. This contrasts with object-related

readings. The sentences in (5) also have object-related readings. (5a) in the object-related

reading simply means that most of some damaged ships in a given discourse passed through

the lock. Similarly, (5b) in the object-related reading means that every one of some dam-

aged ships in a given discourse passed through the lock. Thus, the sentences in (5) in the

object-related readings may well be talking about some ships that are currently damaged,

and therefore they do not require that ships have be damaged at the time of their passing

through the lock. This is an interesting phenomenon, but I will not discuss presuppositional

noun phrases in event-related readings here, and leave it for the future research. In what

follows, we focus on non-presuppositional noun phrases in event-related readings.

2.1.2 Inadequacy of the (double) * operator

In this subsection, I would like to apply the analysis of plural non-presuppositional noun

phrases developed in Chapter 1 to Krifka's sentence (1), and to show that it does not capture

the event-related reading of the sentence.

In Section 1.3 of Chapter 1, we saw that in order to capture the situational dependence

of a plural non-presuppositional noun phrase, it is necessary to obtain a situationally de-

pendent relation between an individual and an atomic situation before some "pluralization"



for the situation argument is operated. In Section 1.5 of Chapter 1, I proposed that a situa-
tionally dependent relation can be formed by (the A abstraction created by) LF movement
of the numeral of the non-presuppositional noun phrase. In the case of (1), the numeral
four thousand should be split and raised to a position right above the A abstractor that si-
multaneously binds the situation argument of the noun phrase and the main predicate. To
abstract away from unnecessary details, let us ignore the temporal adverbial last year and
also assume that pass through the lock is one lexical item. The LF of (1) should then look
like the following:

(6)

four thousand

Ax

As

x ships s pass-through s
-the-lock

With the lexical entries in (7) and the new interpretation principle proposed in Chapter 1,
the sister node of the numeral four thousand is shown to denote the desired relation as in
(8):

(7) a. [ships = As e Ds. Ax E D. ship(s)(x)

b. pass-through-the-lock =As e Ds. Ax e De. pass-thru-lock(s)(x)



(8)

three SDRs-thru-lockpass-thru-Iock

Ax e De

As E Ds ship(s)(x) A pass-thru-lock(s)(x)

Ap e D<e,t). Ax' E De.

ship(s)(x) A p(x) pass-thru-lock(s) (x')

x ships s pass-through s

-the-lock

SDRs-thru-ock represents the situationally dependent relation obtained with the nominal

predicate ship and the main predicate pass-thru-lock:

(9) SDRship = Ax e De. As e Ds. ship(s)(x) A pass-thru-lock(s)(x)

Let us return to the computation. In Section 1.5 of Chapter 1, I "pluralized" the situa-

tionally dependent relation obtained this way by means of the (double) * operator so that

the pluralized version would take a plural (i.e., non-atomic) situation as its situation argu-

ment. I encoded this in the semantics of the numeral. By replacing 3 with 4000 in the

lexical entry of three given in Section 1.5, we obtain the following lexical entry for four

thousand:

(10) [four thousand] = AR e De,(s,t>. AS e Ds. 3X e De[IXI = 4000 A **R(X)(S)]

The denotation of the top node of LF (8) can then be computed as follows:



(11) AS G Ds. 3X e De[IXI = 4000 A

[**Ax. As. ship(s)(x) A pass-thru-lock(s)(x)](X)(S)]

AR e D(e,(s,t>>. AS e Ds.

3X e De Ax e De
[IXl = 4000 A **R(X)(S)] As e Ds ship(s)() A

four thousand pass-thru-lock(s)(x)

After event closure, the following truth conditions are obtained:

(12) 3S e Ds 3X e De[IXI = 4000 A

[**Ax e De. As e Ds. ship(s)(x) A pass-thru-lock(s)(x)](X)(S)]

Assuming that never has more than one ship passed through the lock simultaneously, this

becomes equivalent to the following:

(13) 3X e De[IXI = 4000 A Vx e De[x _ X A x e ATe -+ 3s e Ds[ship(s)(x) A

pass-thru-lock(s)(x)]]]

According to these truth conditions, (1) asserts the existence of four thousand distinct in-

dividuals that are ships. One can then see that we have computed the truth-conditions of

the object-related reading of (1) (with the non-presuppositional interpretation of the noun

phrase). Thus, the theory developed in Chapter 1 fails to derive the event-related reading

of (1).

The reason for the failure to capture the event-realted reading resides in the simple-

minded use of the (double) * operator for pluralization. This strategy worked fine in Chapter

1, where we considered sentences like the following:

(14) Mary kissed three 20-year-olds.

The success of the stratey has now turned out to be thanks to the fact that the interpretations

of the sentences we considered were their object-related readings indeed, as they happen

to be their most natural readings. However, careful consideration of sentences like (14)

reveals that they also have event-related readings just as does Krifka's sentence (1). Imagine

a scenario where Mary is a professional kisser so she makes her living by kissing her

customers. With that in mind, consider the following sentence:



(15) Mary kissed four thousand 20-year-olds last year.

It is obvious that (15) has both an object-related reading and an event-related reading. On

the object-related reading, (15) asserts that there were four thousand different individuals

who came (at least once) to get kissed by Mary (when they were of age 20) last year. This

reading will be suitable when one wants to brag about how many different 20-year-old

customers Mary had last year. On the event-related reading, on the other hand, (15) asserts

that Mary had four thousand kissing sessions with a 20-year-old customer last year. On this

reading, there may have been less than four thousand 20-year-old individuals who came to

get kissed by Mary. For instance, even if there were only two hundred different 20-year-old

individuals who came for Mary's kissing service, if they each came twenty times during

the time that he or she was of age 20, the sentence will be true. This reading may thus be

suitable when one wants to calculate Mary's last year's earning (from 20-year-olds), which

depends on how many kissing sessions Mary had.

I think that there are a couple of pragmatic factors that affect the matter as to which

of the two interpretations is preferred. Essentially, object-related readings talk about how

many different individuals have been involved, while event-related readings focus on how

many times an event of the relevant kind involving an individual of the relevant sort has oc-

cured. Therefore, when we care about the identity of the involved individuals, we interpret

such sentences in their object related readings. Since we tend to care about the identity of

people more than that of ships, it is more natural to interpret Krifka's sentence (1) with an

event-related reading than to do so with sentences like (14) and (15). On the other hand,

when we focus on the number of the relevant events (such as when we want to calculate

Mary's earnings as in the above example), we interpret these sentences in their event-related

readings. It seems that when the number of the relevant events becomes very large, we tend

to care less about the identity of the involved individuals and to pay more attention to the

number of the events. Thus, it is much easier to interpret (15) with an event-related reading

than to do so with (14). However, an event-related reading is also possible with a small

number. After uttering (15), (16) would be suitable to express the disappointment that

Mary's earning (from 20-year-olds) has significantly reduced this year:

(16) This year, however, Mary has kissed only three 20-year-olds so far.

This sentence concerns the fact that Mary has had only three kissing sessions with a 20-

year-old, regardless of whether some 20-year-old has come more than once.

It is then fair to conclude that the interpretation of sentences with a non-presuppositional



noun phrase are in general ambiguous between an object-related reading and an event-

related reading. Although both readings are logically possible, pragmatic factors such as

the ones discussed above would prefer one or the other, but the details of this mechanism

is not the interest or within the scope of the present dissertation. The important point is

that as long as these sentences can have both object-related and event-related readings, we

want our theory to be able to account for both. As I showed above, however, the theory

developed in Chapter 1, which utilizes the (double) * operator, only derives object-related

readings. This means that we have to revise our "plurization" method in oder to account

for event-related readings.

2.1.3 Krifka's analysis

In order to account for event-related readings, Krifka (1990) developed a new way of count-

ing individuals which is more than simply adopting the * operator. In this subsection, we re-

view Krifka's analysis of object-related readings and event-related readings. To begin with,

Krifka defines measure functions compatible with a lattice sort as follows (p. 494):1

(17) p is a measure function compatible with lattice sort I iff

a. p(x) =n-*(x)AnER

(pi's domain is a subset of Y., p's range is a subset of the reals)

b. p(x) = n --- p(x) > 0 (positivity)

c. p(x) = nA y EZ x --- 3n'[u(y) = n'] (extendability to parts)

d. -x oZ y A p(x) = nA p(y) = n' --* p(x uz y) = n + n' (additivity)

Krifka then assumes that count nouns denote measure relations. For instance, the denota-

tion of ship is the following measure relation:

(18) [ship] = An e Dn. Ax E De. ship'(x) = n

Here, ship' is a measure function compatible with the individual lattice sort. Now, suppose

that Candida and Eleonore are atomic individuals such that the following formulae hold

true:

'Krifka's original notations have been altered to be compatible with the symbols in the present disser-
tation. Krifka uses round symbols such as u, n, c, etc., and these have been replaced with their square
counterparts such as u, n, g, etc. Also, Krifka writes UE for the join operator of events and uo for the join
operator of objects (individuals). My notations for these are uv and ue respectively.



(19) a. ship'(Candida)= 1

b. ship'(Eleonore) = 1

Then, because there is no overlap between these two individuals, that is, there is no (non-

bottom-element) individual that is both part of Candida and part of Eleonore

(i.e. -Candida Oe Eleonore), it follows from the additivity axiom of measure functions

(17d) that:

(20) ship'(Candida ue Eleonore) = ship'(Candida) + ship'(Eleonore) = 1 + 1 = 2

Therefore, assuming that Candida and Eleonore are ships, one can see that ship' can be

understood as a function that yields the number of the ships in that individual.

Let us now look at Krifka's analysis of object-related readings. Krifka gives the follow-

ing truth conditions to the object-realted reading of sentence (1):

(21) 3e3u[pass-through-the-lock'(e, u) A ship'(u) = 4000]

pass-through-the-lock' is a relation between an event on the event lattice and an individual

on the individual lattice. It is a summative relation in the sense defined as follows:

(22) A relation R is summative iffR(e, u) A R(e', u') -- R(e Uv e', u Ue u').

Given an arbitrary relation between an atomic event and an individual, the relation obtained

by applying the double * operator to that given relation will be summative. In other words,

Krifka's event relation pass-through-the-lock' could be understood as the result of the

application of the double * operator to a relation holding between an atomic lock-traversal

event and an individual. To see how Krifka's analysis works, instead of sentece (1), let us

consider Krifka's simpler example with the following little scenario (p. 497):

(23) Ship Candida passes through the lock once (called event el ), and Ship Eleonore

passes through the lock twice (called events e2 and e3).

Under this scenario, the following sentence is true on its object-related reading:

(24) Two ships passed through the lock.

Krifka's analysis gives the following truth conditions to the object-related reading of (24):

(25) 3equ[pass-through-the-lock'(e, u) A ship'(u) = 2]

Let us confirm that (25) is indeed the correct truth conditions. First, under the scenario in

(23), we have the following true formulae:



(26) a. pass-through-the-lock'(ei, Candida)

b. pass-through-the-lock' (e2, Eleonore)

c. pass-through-the-lock'(e 3, Eleonore)

Because of the summativity of pass-through-the-lock', the following is obtained:

(27) pass-through-the-lock'(el uv e 2 UL, e 3, Candida ue Eleonore ue Eleonore)

= pass-through-the-lock'(el LJv e2 Uv e3, Candida uL Eleonore)

Then, we can see that e = el uv e2 u, e3 and u = Candida ue Eleonore will instantiate

(25) (c.f. (20)). Krifka's analysis thus gives the correct truth conditions to the object-related

readings of sentences like (1) and (24).

Let us now move on to event-related readings. Krifka's analysis of event-related read-

ings is based on the notion of iterativity which is formulated with the the meta-predicate

ITER as follows:

(28) ITER(e, R) *+ 3u, e', e"[e' Ev e A e" Ev e A e' # e" A R(e', u) A R(e", u)]

In words, ITER is a relation that holds between an event and an event relation (i.e. re-

lation which holds between an event and an individual) such that ITER(e, R) is true if

and only if there is some individual u and there are distinct sub-events e' and e" of e such

that R(e', u) and R(e", u) both hold. Note that because Kfifka's event lattice does not have

a bottom element, e' and e" in the above definition are assumed to be non-bottom ele-

ments. Take Krifka's little scenario in (23) for example. We can see that ITER(el Uv e2 Uv

e3, pass-through-the-lock') holds. This is because el uv e2 Uv e 3 has e2 and e3 as its dis-

tinct sub-events, and there is an individual u such that pass-through-the-lock'(e 2, u) and

pass-through-the-lock'(e 3, u) both hold, namely, Eleonore. The event e = el Uv e 2 Uv e3

is thus an iterative event with respect to relation pass-through-the-lock'.

Krifka presents two approaches to event-related readings that differ in details regarding

the implementation. However, the essential idea behind the two approaches are common.

Suppose we are given an event e and we want to count how many ships passed through the

lock in e in the sense of the event-related reading. If e is not an iterative lock-traversal event

(i.e., ITER(e, pass-through-the-lock') is false), all we need to do is to simply count the

number of the distinct ships that passed through the lock in e, as each passed through the

lock only once in any case. On the other hand, if e is an iterative lock-traversal event (i.e.,
ITER(e, pass-through-the-lock') is true), it means that some ship passed through the lock

more than once. If that ship passed through the lock n times, for each of these n events,



we need to add 1 to the counter. Then, the correct counting can be done by dividing e into

non-iterative subevents and adding the number of the ships that passed through the lock in

each of those subevents.

To capture this intuition, Krifka's first approach utilizes what he calls Object-induced

Event Measure (OEM) functions, which are defined with the operator OEM, whose defi-

nition is given as follows (p. 500):

(29) Let 6 be a measure relation and a an event relation. Then,

OEM(6, a) = the smallest measure function p such that:

i. (Standardization): -ITER(e, a) -- [Ip(e) = n -+ u[6(n, u) A a(e, u)]]

ii. (Generalization): -e ov e' A p(e) = nA p(e') = n' --+ p(e uv e') = n + n'

Let us now see how this works with Krifka's little scenario (23). Under the scenario in

(23), the following sentence is true on its event-related reading:

(30) Three ships passed through the lock.

To capture the truth conditions of (30), one first defines the following OEM function by sub-

stituting the denotation of ships, viz. An. Au. [ship'(u) = n], for 6, and pass-through-the-lock'

for a in (29):

(31) OEM (An. Au. [ship'(u) = n], pass-through-the-lock') is the smallest measure func-

tion p such that:

i. (Standardization): -ITER(e, pass-through-the-lock')

--+ [p(e) = n +- 3u[ship'(u) = nA pass-through-the-lock'(e, u)]]

ii. (Generalization): -e ov e' A /p(e) = n A p(e') = n' -- p(e uv e') = n + n'

With this OEM function, (30) is analyzed as follows:

(32) 3e [OEM (An. Au. [ship'(u) = n], pass-through-the-lock') (e) = 3]

It turns out that e = el uv e2 Uv e3 instantiates (32). To see this, we want to compute the

value of OEM(An. Au. [ship'(u) = n], pass-through-the-lock')(el uv e2 uv e3). First of

all, as we saw above, e is an iterative event (i.e. ITER(e, pass-through-the-lock') holds).

Therefore, we cannot use (31i) and are forced to apply (31ii). Let us then do so and split e

into el uv e2 and ee. As -(el uv e2) ov e3 , it follows that



(33) OEM (An. Au. [ship'(u) = n], pass-through-the-lock') (e)

= OEM(An. Au. [ship'(u) = n], pass-through-the-lock') (e1 u, e2 uy e3)

= OEM (An. Au. [ship'(u) = n], pass-through-the-lock') (el uv e2 )
+ OEM (An. Au. [ship'(u) = n], pass-through-the-lock') (e3)

Now, notice that el uve2 is not an iterative event (i.e. -ITER(el Lve2, pass-through-the-lock')

holds), since el is an event of lock-traversal of Candida and e2 an event of lock-traversal

of Eleonore. Therefore, we can use (31i) to obtain the value of OEM (An. Au. [ship'(u) =

n], pass-through-the-lock') (el uv e2). Because of the summativity of

pass-through-the-lock, we have:

(34) pass-through-the-lock'(el uv e2, Candida ue Eleonore)

Since ship'(Candida ue Eleonore) = 2, we have:

(35) ship'(Candida ue Eleonore) = 2 A pass-through-the-lock'(el uv e2, Candida ue

Eleonore)

According to (31 i), this means that we have the following:

(36) OEM (An. Au. [ship'(u) = n], pass-through-the-lock') (e uv e2) = 2

Now, e3 is obviously not iterative. In an analogous reasoning to the above case, it follows

from (3 1i) that:

(37) OEM((An. Au. [ship'(u) = n], pass-through-the-lock') (e3) = 1

Then, it follows from (33) and (36) and (37) that

(38) OEM (An. Au. [ship'(u) = n], pass-through-the-lock') (e)

= OEM(An. Au. [ship'(u) = n], pass-through-the-lock') (el uv e2)
+ OEM (An. Au. [ship'(u) = n], pass-through-the-lock') (e3)

=2+1=3

Hence, (32) is indeed the correct truth conditions of the event-related reading of (30).

Krifka's second approach employs what he calls Object-induced Event Measure Rela-

tions (OEMR), which are defined with the operator OEMR.2 For sentence (30), OEMR

(pass-through-the-lock') is defined as follows:

2For the definition of OEMR and the details of the second approach, the reader is referred to Krifka's
(1990) original paper.



(39) OEMR(pass-through-the-lock') is the smallest measure relation o- such that

i. (Standardization): -,ITER(e, pass-through-the-lock') --

[or(e,P,) *+ 3u[pass-through-the-lock'(e, u) A P(u)]]

ii. (Generalization): -e o, e' A cr(e,/p) A cr(e',,p') - cr-(e uv e',/ +e P')

Here, p8 and p' are quantized predicates, which means that they are functions such as

Au. [ship'(u) = 3], Au. [ship'(u) = 4000], etc., where a concrete number is already given.

The addition operator +e is defined so that for any numbers n and n', the following holds:

(40) Au. [ship'(u) = n] +e Au. [ship'(u) = n'] = Au. [ship'(u) = n + n']

Now, with OEMR(pass-through-the-lock'), Krifka analyzes (30) as follows:

(41) 3e [OEMR(pass-through-the-lock') (e, Au. [ship'(u) = 3])]

A consideration analogous to the one made in the first approach reveals that this indeed

gives the correct truth conditions of (30). The reader should be aware that the differences

between Krifka's two approaches are only superficial and that they merely implement the

same idea in slightly different fashions.

As reviewed above, Krifka's theory nicely captures the meaning of event-related read-

ings. This was made possible because Krifka did not simply utilize the * operator for

pluralizing event relations, and developed a new way of counting individuals by defining

OEM functions or OEMRs. However, Krifka's analysis still leaves the following problems.

First, as mentioned in the beginning of this chapter, we want to think of the situationally

dependent reading of event-related-reading-inducing noun phrases. However, Krifka's the-

ory simply does not take the situational interpretation of noun phrases into account, and is

hence unable to address the question of how or whether the situationally dependence fol-

lows. The next section remedies this problem. Second, when considering the meaning of

measure phrases with a unit such as three liters,forty-nine kilograms, it turns out that mea-

suring should be sensitive to the time of events. This is discussed in Section 2.3. Finally, I

show in Section 2.4 that in analyzing event-relating reading where events are continuous,

OEM functions or OEMRs or their modified versions are insufficient and that integration

becomes necessary.



2.2 Basic proposal

In Chapter 1, I argued that in order to account for the obligatory situational dependence of

non-presuppositional noun phrases, a situationally-dependent relation should be obtained.

However, since the analysis utilizes the (double) * operator in the end, it fails to capture

event-related readings, as shown in Subsection 2.1.2. On the other hand, although Krifka's

theory accounts for event-related readings nicely, it does not talk about the situational inter-

pretation of noun phrases at all. Therefore, in the present section, I attempt to incorporate

these two. After that, I will rewrite the obtained truth conditions in a more refined form and

prepare for the discussion to follow.

2.2.1 Situational dependence in event-related readings

In my analysis, in order to explain the situationally dependent interpretation of the noun

ships in sentences such as (1) or (30), situationally dependent relation SDRhiP be-

tween an individual and an atomic situation, which was given in (9) and is repeated below,

ought to be formed:

(9) SDRs-thru-oip = Ax e De. As e D. ship(s)(x) A pass-thru-lock(s)(x)pass-thru-Iock

Since we have learned that something like Krifka's OEM function or OEMR needs to be

employed, let us apply this "pluralization" method of Krifka's to our relation SDRisPthrulock-

For this purpose, I will employ Krifka's first approach with OEM functions.

In Krifka's first approach, an event relation pass-through-the-lock' was used in order

to obtain the OEM function in (31), which is repeated below:

(31) OEM (An. Au. [ship'(u) = n], pass-through-the-lock') is the smallest measure func-

tion p such that:

i. (Standardization): -ITER(e, pass-through-the-lock')

--+ [(e) = n -+ 3u[ship'(u) = n A pass-through-the-lock'(e, u)]]

ii. (Generalization): -e o, e' A p(e) = nA p(e') = n' -- p(e uv e') = n + n'

Here, what is "pluralized" is relation pass-through-the-lock'. The problem is that nei-

ther ship' nor pass-through-the-lock' is evaluated with respect to a situation, and hence

the situational dependence of the noun ships on the main predicate passed through the lock

cannot be expressed here. Now that we have constructed relation SDR shiP  to accountpass-thru-ock ou
for the situational dependence, instead of Krifka's pass-through-the-lock', we should use



SDRshP k to define an appropriate object-induced measure function. Notice, how-
pass-thru-lock

ever, that while pass-through-the-lock' is a relation between an event and an individual

(i.e. of type (v, (e, t), SDRshithrulo is a relation between an individual and a situa-

tion (i.e. of type (e, (s, t))). Recall that in my terminology, situations are pairs of a world

and a time interval, and are thus a different kind of entities than events are. Therefore,

we cannot obtain the desired measure function by directly substituting SDRP spsthru lock for

pass-through-the-lock' in (31). Rather than an Object-induced Event Measure function,

what we should need is now an Object-induced Situation Measure (OSM) function.

Let us then define a new operator OSM which will define OSM functions by adapting

the definition of operator OEM in (29). First, the relevant notion of "iterativity" to be used

to define OSM functions should now concern situations instead of events. So, let us adapt

ITER to define ITER(s) as follows: 3

(42) ITER(S)(s,R) - 3x, s', s"[s' Es sA s" Es S A S' # S" A R(x)(s') A R(x)(s")]

Remember that in the definition of Krifka's ITER, e' and e" were assumed to be non-

bottom elements of the event lattice. Therefore, being a direct translation of ITER into

situation talk, s' and s" in the above definition are assumed to be non-bottom elements of

the situation lattice. Similarly, the second clause of the definition of operator OEM in (29)

should be translated in terms of the situation lattice. The following would then be obtained

as a possible candidate for the definition of operator OSM by means of direct translation

from event talk into situation talk:

(43) Let 6 be a measure relation and R a relation between an individual and a situation.

Then, OSM(6, R) is the smallest measure function p such that:

i. (Standardization): -ITER(S)(s,R) -- [p(s) = n -- 3u[6(n, x) A R(x)(s)]]

ii. (Generalization): -s Os s' A p(s) = n A p(s') = n' -- p(s us s') = n + n'

In the current context, we are only interested in cases where the relation R to be fed to OSM
is a situationally dependent relation of the form SDR , where <p is a nominal predicate and

i is a main predicate. We should thus focus on OSM (, SDR ):

3Krifka used u as the variable for individual arguments. Here and henceforth, variable x is used instead
so that it will be consistent with my use of variables in the rest of this dissertation.



(44) OSM (6, SDR ) is the smallest measure function p such that:

i. (Standardization): -ITER(s) (s, SDR )

L[p(s) = n +-> 3u[6(n,x) A SDR (x)(s)]]

ii. (Generalization): -s os s' A p(S) = nA u(s') = n' --* p(s us s') = n + n'

As I have established in Chapter 1, situationally dependent relations hold true only of

atomic situations. For a given atomic situation s, s itself is the only non-bottom situa-

tion that is part of s, and thus it is not possible to find non-bottom situations s' and s" such

that s' C s A s" Es sA s' # s". Therefore, for any situationally dependent relation SDRI

and for any atomic situation s, -ITER(s) (s, SDR ) trivially holds. Then, from (44i), we

can deduce the following:

(45) se ATs -- [OSM(6,SDR )(s) = n +- 3u[5(n,x) A SDR (x)(s)]]

Now, turning to (44ii), one can see that for a non-atomic situation s, the value of OSM

(6, SDR ) (s) will be computed by dividing s into its atomic subsituations and then taking

the sum of the value of OSM (6, SDR') for each of them, which is expected to be given by

(45).

It turns out that (45) is not well-defined, unfortunately. This in turn means that (43) and

(44) are not well-defined. To see what the problem is, let us compare OSM with OEM. For

any relation a between an event and an individual, if e is an atomic event, -ITER(e, a)

automatically holds. Therefore, according to (29), the value of OEM(6, a) for e will be

given by the following:

(46) OEM(6, a)(e) = n +~ 3u[6(n, u) A a(e, u)]

For a given atomic event e, if a(e, u) holds for some individual u, then u is the unique such

individual, since a in fact expresses a thematic relation. If pass-through-the-lock'(e) (u)

holds, u is the unique individual which bears the theme role of event e, namely, the unique

ship that passes through the lock in event e.4 Now, recall that 6 is a measure function

represented as An. Au. [M(u) = n], where M is a measure function compatible with the

individual lattice sort. Thus, for an atomic event e, if there is some individual u such that

a(e, u) holds, OEM(6, a)(e) is uniquely determined as M(u). On the other hand, a similar

situation does not obtain for (45). Now, let us remember Krifka's little scenario in (23)

and assume that this scenario is about what happened in the last week in the actual world.

40r, the unique ships that pass through the lock in event e, if multiple ships collectively receive the theme
role of atomic event e.



Suppose further that el and e2 took place simultaneously, i.e., the running time intervals of

el and e2 happen to be exactly the same. Let 19 be this time interval, and 137 be the running

time interval of e3. Suppose that no other lock-traversal events of a ship occurred in the last

week. The following depicts this scenario:

(47)
last week

19 137

el: Candida passes e3: Eleonore passes

through the lock through the lock

e2 : Eleonore passes

through the lock

For s = (@, 19), there are two individuals x such that SDRs"th lo (s)(x) holds, namely,
pass-thruIock

Candida and Eleonore. Therefore, even though (@, 19) is an atomic situation, we cannot

determine the value of OSM (6, SDR sthruok) ((@, 19)) according to (45), because we do

not know whether to measure Candida or Eleonore.

Obviously, we want to count both Candida and Eleonore, for situation (@, 19). The

solution I propose is to take the join of Candida and Eleonore here. In general, for a

given situationally dependent relation SDR', let us define a function SDIC', from (atomic)

situations into individuals as follows:

(48) SDIC~ E AS e Ds. Ue{x SDR (x)(s)}

We call functions obtained this way situationally dependent individual concepts. For a

given atomic situation s, SDIC'(s) gives the join of every individual x such that SDR"

(x)(s) holds. In order for OSM(6, SDR') to yield the desired value for an atomic situation

s, all we need to do is measure SDIC (s) by the measure function given by 6. Thus, for

s e ATs and a measure relation 6 = An. Ax. [M(x) = n], let us define OSM (6, SDR') (s) as

follows:

(49) OSM(6, SDR) (s)def M(SDIC,(s)) = M (U{x I SDR,(x)(s)})

Let us now consider non-atmoic situations. For any atomic situation s # Is, if s os t

and s 4 t, then t = Is. Therefore, for any atomic situations Sl, s2  Is, if sl : s2 then

-sl os s2. It then follows from (44ii) that for any atomic situations s, s2 Is, we have:

(50) OSM(6, SDR ) (s l uL S2) = OSM(6, SDR)(si) + OSM(6, SDR)(s 2)
V/ V/ ,)(S2),,V,~/ 3Z



Let us generalize this to define the value of OSM(6, SDR') for s 0 ATs. Given a situation

s 0 ATs, {t I t E s A t e ATs} is the set of all atomic situations that are part of s. Now, let

{ si}iey be a family of atomic situations indexed by y such that { siiE,, = {t I t E s A t e ATs }
and si / s1 -- i # j. Then, let us generalize (50) and define OSM , SDR) (s) as

follows:

(51) OSM(5,SDR) (s) def OSM (, SDR) (si)
iey

Since si is atomic for any i e y, we can use (49) and finally obtain the following definition

of OSM:

(52) Let 6 = An. Ax. [M(x) = n] be a measure relation and SDRI a situationally depen-

dent relation between an individual and an atomic situation. Then,
OSM(6, SDR ) (s)oef Z M(SDIC (si)) = M (Ue{x SDR(x)(si)}),

Eiy iEy

where {si}iy is a family of atomic situations indexed by y such that

{si}iz, = {t t S Ate ATs} and si # sj -- i : j.

Notice that this definition works even if s is an atomic situation, in which case {t J t c

Ate ATs } = {s} and thus OSM(6, SDRP) (s) = M (e {x SDR (x)(s)}).

Let us now discuss the treatment of the noun. In Krifka's analysis, count nouns such as

ship are treated as denoting measure relations (see (18)). In the present analysis, however,
the noun in a non-presuppositional noun phrase must denote a predicate of type (s, (e, t))

and together with a main predicate constitute a situationally dependent relation. In the

case of sentence (1) or (30), we consider situationally dependent relation SDRs-thru-lopass-thru-lock"

If the measure relation with which the relevant OSM function should be defined (i.e., the

measure relation to substitute 6 for in (52)) were An. Ax. [ship'(x) = n] as Krifka claims,
it would mean that the noun ship should be contributing to the semantic composition of

the sentence twice, and what is more, once as a predicate and the other time as a measure

relation. This would pose a serious problem in semantic compositionality. It should be

realized that now that the semantics of ship has been incorporated to the relation to be

pluralized, we need no longer have ship as a measure function. For count nouns such

as ship, I therefore postulate a measure function compatible with the individual lattice

sort ATOM. ATOM is the function that yields the number of atomic elements in the given

individual. For example, ATOM(Candida) = 1 and ATOM(Candida uL Eleonore) = 2.

Instead of An. Ax. [ship'(x) = n], the measure relation An. Ax. [ATOM(x) = n] should be

used for count nouns in general. Then, the relevant OSM function for sentences like (1)



and (30) is OSM (An. Ax. [ATOM(x) = n], SDR phs-thrulock).
Finally, let us return to Krifka's truth conditions of event-related readings. According

to Krifka, sentence (30) has the truth conditions in (32), which are repeated below:

(32) 3e [OEM(An. Au. [ship'(u) = n], pass-through-the-lock') (e) = 3]

Now, if we replace the OEM function here with the above OSM function, we obtain the

following:

(53) 3s[OSM(An. Au. [ATOM(x) = n],SDRsPs.thrulock) (S) = 3]

Let us confirm that (53) is indeed the correct truth conditions. Think of the model (47) and

the scenario considered there. We need only show that s = (@, 19) Us (@, 137) instantiates

the existential quantification in (53). Since (@, 19) and (@, 137) are both atomic situations,

it follows form (52) that:

(54) OSM (An. Ax. [ATOM(x) = n], SDRsps-thrulock) ((@, 19 Us , 137))

- ATOM (Lx I SDR sthruip lock) (@) )

+ ATOM (Le{x SDR thrulockX) (@,137))})

We know that SDR (Candida) ((@, 19)) and SDRw (Eleonore) ((@, 19)) hold and that there

is no other individual x such that SDR'(x) ((@,19)) holds. Therefore,

(55) ATOM ([ex SDR thruiock(X) (@,19})

= ATOM (e {Candida, Eleonore}) = ATOM (Candida ue Eleonore) = 2

Similarly, we obtain:

(56) ATOM(Ux I SDIhip
(56) ATOM e{ SDRss-thru-lock(X) ((@, 137))})

= ATOM (e {Eleonore}) = ATOM (Eleonore) = 1

From (54), (55) and (56), we obtain:

(57) OSM(An. Ax. [ATOM(x) = n], SDR hs-thru-lock) (@, 19) Us (@,137)) = 2 + 1 = 3

which proves (53). Returning to our LF in (8), we would like to derive the truth conditions

in (53) compositionally. This is indeed possible by assuming the lexical entry for three in

(58), as shown in (59):

(58) [three] = AR e D(e,(s,t>>. 3s e D[OSM(An. Ax. [ATOM(x) = n],R)(s) = 3]



(59) Is e D, [OSM(An. Ax. [ATOM(x) = n], SDR i.thrulock) (s) = 3]

AR e D(e,(s,t.- SDRshPu-lockpass-thru-Iock

[OSM(An. Ax. [ATOM(x) = n],R)(s) = 3] Ax eDe

three As e Ds ship(s)(x) A

pass-thru-lock(s)(x)

This completes the exposition of a sketch of the theory obtained by applying Krifka's plu-

ralization to our result in Chapter 1.

2.2.2 Refinement

By now, the reader may have been overwhelmed by the apparent complexity of the the-

ory. Iideed, the obtained truth conditions in (53) appear to be somewhat hard to grasp

intuitively. This point may become even clearer when one considers sentences like the

following:

(60) a. Exactly three ships passed through the lock last week.

b. At most three ships passed through the lock last week.

Under the current analysis, in order to capture the truth conditions of the above sentences,
one has to know the maximum number m such that 3s[OSM(An. Ax. [ATOM(x) = n],

SDRPs-thru-ock)() = m], where s ranges over the set of all atomic time intervals in the

last week and their joins. Let k be this number:

(61) k = sup m Is[s sE U {t I te ATs A t is in last week}

A OSM(An. Ax. [ATOM(x) = n], SDRhisthruock)(S) = m]}

With k, (60a) and (60b) will have the truth conditions in (62a) and (62b) respectively:

(62) a. k=3

b. k 3

Now, these truth conditions look very hard to comprehend.



Fortunately, the complexity of these truth conditions can be simplified greatly once we

notice that k in (61) can be directly computed as the sum of the values of OSM function

OSM (An. Ax. [ATOM(x) = n], SDRshPthrulok) for all atomic situations in the last week.

Let A be the set of all atomic situations in the last week:

(63) A = {s I sEATs A s is in last week}

Then, k must be given by the following:

(64) k = OSM(An.Ax. [ATOM(x) = n],SDR s.thru.ock) (UeA)

= ATOM (SDICps-thru-lock(Si)) = ATOM (Uex I SDpass-thru-iockX)S i

iey iey

where {si e,,y is a family of atomic situations indexed by y such that

{si}iEy = A and si # sj --- i = j.

This strategy encounters a problem, however. When we look at model (47), we see that for

all s E A such that s K (@, 9> (@137) in the last week, there is no individual that is a ship

and passes through the lock in s. Therefore, for those situations s, we have:
(65) SDICship SDRs P
(65) SDICpass-thruock(S) = e{X ISDRpass-thru-lock(X)(S) = e0 = le

This means that in order to calculate ATOM (SDICsp sthrulok(S)) for all se A, ATOM(le)

has to be defined, and its value is furthermore expected to be 0. According to Krifka's

definition of measure function, however, a measure function is not defined for the bottom

element, and always yields a positive value as stated in (17b). This is because Krifka

assumes that lattices to be considered should have no bottom element. Now that we should

add the bottom element, the definition of measure functions must be revised accordingly.

Because I will introduce measures defined on o--algebras later, in order to avoid confusion,

I will refer to the functions defined below as lattice-measure functions. Also, I reserve

the greek letter symbol p for measures on cr--algebras. Below is the definition of lattice-

measure functions, but this is actually soon revised in the next section so that they will be

modified to be sensitive to a situation:



(66) M e D<e,> is a lattice-measure function iff

i. x e dom(M) --+ M(x) 2 0 (non-negativity)

ii. M(le) = 0 (the bottom element is mapped to 0)

iii. x e dom(M) A y 9e x -- y e dom(M) (extendability to parts)

iv. If x, e dom(M) for all n e N and if {x,} is a pairwise non-overlapping set, i.e.,

for any i, j e N, i j -- i ne Xj = -Le, then M e x) = M(x,)
n=1 n=1

(countable additivity)

The last clause might strike as significantly different from the additivity axiom in (17).

Here, I am proposing that the additivity of measure functions is countable additivity, which

means that the additivity holds of any countable set of non-oeverlapping individuals. Ac-

cordingly, the individual lattice is assumed to be complete, so that any collection of el-

ements on the individual lattice has a unique join (supremum). The countable additivily

proves to be useful in Subsection 2.6.2. Since that the bottom element is added to the lat-

tice, the condition xi ne xj = le says that xi and xj do not overlap, so it expresses the same

condition as -xi oe x j .

ATOM is a lattice-measure function. (64) will now compute the correct value 3 in the

case of our model (47). It follows from (62) and (64) that we have (67a) and (67b) as the

truth conditions for (60a) and (60b) respectively, given {sili-y such that {silic, = A and

si # sj -- i # j:

(67) a. ZATOM (SDICp~thru-lock(Si)) = 3
iey

b. Z ATOM (SDICpass-thrulock(Si)) 3

Furthermore, sentence (30), or rather, sentence at least three ships passed through the lock

last week, will have the following analogous truth conditions:

(68) ATOM (SDICpsthrulock, Si)) 3
ie-y

These truth conditions do not differ empirically from the ones in (53) and (62), but in this

fashion, we can treat sentences with exactly n, at most n and at least n all uniformly and

understand their truth conditions much more intuitively.

Here, a note on the ontology of situations is in order. In (53) and (61), the existentially

bound situation variable ranges over both atomic and non-atomic situations. However, now



that our truth conditions are expressed as in (67) and (68), we need no longer think of non-

atomic situations (i.e., joins of situations). Therefore, from now on, we will not be dealing

with lattice of situations, and Ds can simply be assumed the set of pairs of a world and a

time interval.

Although (67) and (68) are the truth conditions we want, it turns out that the correct

counting is not guaranteed unless we give a specific temporal interpretation of the ver-

bal predicates. This is a problem I have neglected so far. In Section 1.3 of Chapter

1, we briefly debated whether kiss(s)(x)(y) should mean "an event of y's kissing x oc-

curs in rrw(s) and its running time interval is within 7ri(s) (i.e., a subinterval of iri(s))"

or "an event of y's kissing x occurs in 7rw(s) and its running time interval is exactly

Ki(s)" . There, how this question should be answered per se did not affect the discus-

sion and the conclusion drawn there. However, in the current discussion, it becomes

important. Suppose that pass-thru-lock(s)(x) means "an event of x's passing through

the lock occurs in rw(s) and its running time interval is within 7ri(s)". In model (47),

pass-thru-lock((@, 137))(Eleonore) obviously holds. However, in addition to this, for any

time interval I in the last week such that 137 c I, pass-thru-lock((@, I)) (Eleonore) will

also be true, and in turn, ATOM (SDICssthrulock((@,I))) = ATOM(Eleonore) = 1.S

Since there are infinitely many such time intervals in the last week,

Y ATOM (SDICshi-thrulock (Si)) would be infinite. One should then be able to truthfully ut-

ter "One million ships passed through the lock last week", etc. for the scenario depicted in

(47), which is clearly the wrong prediction. This means that the correct interpretation of

pass-thru-lock(s) (x) must be "an event of x's passing through the lock occurs in rw(s) and

its running time interval is exactly ri(s)". Then, for any time interval I in the last week

such that 137 c I, there is no individual x such that pass-thru-lock((@, I)) (x) holds, and

thus ATOM (SDICpass-thru-ock ((@, I))) = ATOM(le) = 0. To conclude, in order to ensure

the correct counting, the situation argument of a verbal predicate always provides the exact

time interval of the event described by the predicate.

To end this section, let me hint at how the theory developed so far leads to integration.

Above, A was defined to be the set of all atomic time intervals in the last week. We assume

that the time line is isomorphic to the real line. Thus, the time line is continuous and any

given time point corresponds to a unique real. Now, let Po and pi be the beginning time

point and the ending time point of the last week respectively. Then, A can be represented

5This holds only if I does not include 19. If 19 c I, (SDIChsPsthrulock (<@,I))) = ATOM(Candida ue

Eleonore) = 2.



as follows:

(69) A = {(p,p') Ipo p < p' p } u {(p,p'] I po P < P'  p}

u {[p,p') I Po P < p' < Pl} u {[p,p'] Ipo I p p' pP }

Since there are uncountably many points in [Po, Pi], set {[p, p'] p I < P' < Pl }, for

instance, is clearly an uncountable set. It is then immediate that A is an uncountable set.

At this point, one might argue that the above assumption that the time line is isomorphic

to the real line is wrong. Now, suppose, for instance, that there are only a finite number of

time points in the last week. Then, assuming that time points are totally ordered, for any

given time point tl in the last week which is not the final time point in the last week, one

will always be able to find the succeeding time point t2 in the last week. Recall now that we

are committed in looking at exact time intervals in which events of the relevant sort occur,

as discussed right above. Because events may begin at (or "right after") any random time

point and end at (or "right before") another random time point,6 we can imagine events

beginning at tl and at t2. However, since there is no time point between tl and at t2, we

should not be able to think of events beginning between tl and t2, but this is extremely odd

intuitively. The order of time points should thus be dense at least. Given this, it seems

natural enough to assume that the time line is isomorphic to the real line. In any case, it

will become clear in Section 2.4 that the time line should actually be continuous so that we

may perform integration on it.

Given that A is an uncountable set, the index set y that appeared in (67) and (68) must

also be an uncountable set, and that the summation in (67) and (68) must be taken over

uncountably many values. It should now be recalled that integration was devised to take

summation over uncountable sets rigorously. To see the connection somewhat heuristically,
let us think of Riemann integration of a continuous function f(x) defined on the closed

interval [a, b]. Let xo, xl, x2, ... , x, be points in [a, b] such that a = xo < xl < x2 < .. <

x,_- < x, = b. For i = 1, 2,..., n, let Axi = xi - x i l and let i be an arbitrary point such

that xi- 1 < Xi < xi. If lim max Axi = 0, then the definite integral of f(x) over the closed
n--oo

interval [a, b] is given as follows:n
(70) lim f( (i) Axi = f(x) dx

6If the exact running time interval of an event is an open interval (a, b), then, the event has not begun at a
yet, but it is to begin "right after" a, and similarly, it does not end at b, but "right before" b. Whether or not
such events should indeed be considered is an empirical matter.



The reader may recall that Gottfried Leibniz created the integral symbol J from the elon-

gated initial letter of the word "sum". Now, comparing (67) and (68) with (70), one might

wonder if the summation in (67) and (68) might also be expressed as some kind of integral.

In fact, as will become clear in Section 2.6, it is equal to a Lebesgue integral of function

ATOM (SDIChisPs-thru-lock(s)) over A:7

(71) ATOM(SDIC s.thruock(Si)) = (s e Ds.)ATOM (SDIC s-thru-lock(s)) d
iEYpass

Here, u is the counting measure defined on a o--algebra over A. It is then expected that the

event-related reading of sentence (30) would be computed as follows:

(72) ATOM (SDICsssthru.lock(s)) di > 3

= [ ATOM (LeX SDRps-thru-Iock(S)(X) }) dl 3

AR e D(e,(s,t)>. SD s-thru-lock

fA ATOM (U e{x R(x)(s)}) dp 3]

three

In Section 2.5, the theory of Lebesgue integration is formally introduced, where the present

analysis's insight will be illuminated. Before that, I discuss a couple of remaining problems

in Krifka's analysis in the next two sections.

2.3 Units of measurement and its situation-sensitivity

In addition to sentences like (1) with a count noun such as ship, Krifka (1990) also discusses

sentences involving mass nouns like the following:

(73) Sixty tons of radioactive waste {passed / were transported} through the lock.

7The "As e D,." part in the parentheses on the right hand side of the equation is there to make it explicit
that the function being integrated is a function of s. This is usually omitted, and in the case of Riemann
integration, having this would in fact be superfluous as the dx part makes it clear that x is the relevant

variable. One may note, however, that f f(x) dx is equivalent to f Ax. f(x) dx.



Here, the size of the entity denoted by the mass noun radioactive waste is described by the

phrase sixty tons. I refer to phrases like sixty tons as measure phrases, which consist of

a numeral8 and a unit of measurement like ton. This section discusses the event-related

reading of sentences where the event-realted-reading-inducing non-presuppositional noun

phrase contains a unit of measurement as in (73), and concludes that the lattice-measure

function denoted by a unit of measurement must be sensitive to time (situation).

2.3.1 Units of measurement

In the previous section, we reached the conclusion that the event-related reading of sentence

(30) (on the "at least" reading) is analyzed as in (68), which is repeated below:

(68) ATOM (SDICsh sthrulock (si)) > 3
icy

Here, {si}iy is a family of atomic situations indexed by y such that {sili,, = A and si -

sj -- i # j, where A is the set of all atomic situations in a given context time interval such

as the last week, the last five years, etc. Let us assume for the moment that A is properly

supplied by the context. To analyze (73), let us assume the following lexical entry for

radioactive waste:

(74) Tradioactive waste] = As e Ds. Ax e De. RA-waste(s)(x)

Krifka assumes that a unit of measurement such as ton represents a measure function com-

patible with the individual lattice. By analogy with (68), (73) on the "at least" reading is

then expected to be analyzed as follows:

(75) ton (SDICRA-wa locki)) 2 60
ieY

To derive this compositionally, let us also consider the following sentences:

(76) a. Exactly sixty tons of radioactive waste passed through the lock.

b. At most sixty tons of radioactive waste passed through the lock.

(76a) and (76b) will be analyzed as in (77a) and (77b) respectively:

(77) a. ton(SDICRA-wastelock i)) =60

iey

8It could be phrasal such as at most three. Worlds such as some, many, etc. may also find themselves in
this position.



b. ton (SDICRA-waste lo ()) 60
iEy

By the definition of SDIC in (48), we have:

(78) ton (SDICRA- steock(Si)) = ton
iey ieY

- RA-waste lock
(LJe{X SD pass-thru-Iock W (SO 5

With this, from (75) and (77), we can extract the denotation of the measure phrases as

follows:

a. [at least sixty tons] = AR e D<e,s,t. ton
iey

b. [exactly sixty tons] = AR e D<e,<s,t>> . Eton (
iEy

(Le {x I R(x)(s)}) > 60

Ue {x I R(x)(si)}) = 60

c. at most sixty tons]= AR e D<e,(s,t>>. Eton (Le {x I R(x)(si)}) 60
iey

To derive (79), I posit the following lexical entry for unit of measurement ton:

(80) [tonj = Av e D(n,t>. AR e D<e,(s,t>>.

3n e Dn v(n) A ton
(e {x I R(x)(si)}) = n]

The first argument of ton, p, is the characteristic function of a set of numbers in a certain

range, and this is saturated by the denotation of the numeral phrase such as at most sixty.

The numeral phrases in (79) thus have the following denotations:

(81) a. lat least sixtyl = An e Dn. [n > 60]

b. [exactly sixtyl = An e Dn. [n = 60]

c. lat most sixty] = An e Dn. [n < 60]

Let us see, for example, how (79a) can be derived from (80) and (81a):

(82) A[ tonj ([at least sixty])at least sixty tons

= Aive D<n,t>.AR e D<e,<s,t>>.n e Dn v(n) A Zton (Lie {x I R(x)(si)})

(An e Dn. [n 2 60])

AR e D<e,(s,t>>

In e Dn [An e Dn. [n 60]] (n) A ton (Ue {x I R(x)(si)}) = n

= nl

(79)



SARe D<,<s,t>>.n e D[n n 60 A Zton (Le { R(x)(s)} =n

= ARe D<e,(s,t. [Eton (Le {x I R(x)(s)}) 60
icy

The measure phrases in (79), whose semantics is thus computed, take situationally depen-

dent relation SDRRAwass-thru-loe to yield the truth conditions in (75) and (77). SDRRA-thru-lock

is obtained in almost the same way as SDRshi ock. Unlike the case of count nouns suchpass-thru-lock e
as three ships, however, not only the numeral, but the whole measure phrase containing the

unit of measurement gets raised at LF to a position right above the situation A abstractor.

This movement strands of + Noun. The partitive of is then treated as semantically vacuous.

The following illustrates the LF and the semantic computation:

(83)

(at least) SDR RA-waste
pass-thru-Iock

sixty tons

Ax e De

As e Ds RA-waste(s)(x) A

pass-thru-lock(s)(x)

Ap e D(e,t>. /X' e De.

RA-waste(s)(x) A p(x) pass-thru-lock(s)(x')

X As' e Ds. AxE De. s
of /x' De .

pass-th ru-lock(s') (x')
pass-through

As' E Ds. Ax' e De. s

RA-waste(s') (x')

radioactive waste

Thus, syntactically speaking, in sentences where the event-realted-reading-inducing non-

presuppositional noun phrase contains a unit of measurement, the whole measure phrase



such as sixty tons corresponds to the simple numeral such as four thousand in sentences

like (1).

2.3.2 Measurement of individuals of unstable size

Let us consider the following sentence:

(84) Sixty tons of 20-year-olds {passed / were transported} through the lock last year.

If (73) is to be analyzed as in (75), this sentence should be analyzed analogously as follows:

(85) ton (SDIC tru-ock (si)) > 60
iEY

However, there is a problem. Unlike the weight of radioactive waste, people's weight

naturally fluctuates quite a bit even within a single year. For example, even if Mary weighed

70 kg9 on her 20th birthday, it is possible that half a year later, she only weighed 50 kg as a

result of her successful diet plan. Then, if a measurement of an individual is to be given in

some unit of measurement, it should matter when the measurement was taken. Reflecting

the meaning of (84), when uttered out of the blue, or embedded in an appropriate context

as in von Fintel's test (see Section 1.4) to ensure the non-presuppositional reading of sixty

tons of 20-year-olds), what it asserts is clearly that the sum of the weight of every 20-year-

old person who passed through the lock last year which is measured at the time of his/her

lock-traversal is 60 tons (or more). If someone passed through the lock twice last year

while he was of age 20, his weights at both times (which may be different) should each be

added to the sum. Furthermore, notice that if (84) is a statement about the actual world, the

relevant weight to be considered is people's weight in the actual world, and not in any other

hypothetical world or belief world where they could be thiner or fatter than they actually

are.

To see this point more clearly, let us think of a concrete and small scenario, which goes

as follows: Last year, Ann passed through the lock twice while she was of age 20, and the

exact running time interval of each of the two events was 112 and 155 respectively; Bill and

Chris each passed through the lock only once while being of age 20 last year, at 120 and 131

respectively; There was no other lock-traversal of a 20-year-old last year. (86) illustrates

this scenario:

9Here, I am using kg to mean kilograms-force, following the usual practice of our daily language. Mass
and weight are distinguished in the subsequent discussion of the story of Mary as an astronaut, however.



(86)

112

Ann

passes

through

the lock

The weights of Ann, Bill and

(87)

(@, 152) ( 20 ,

Ann 52kg
52kg

55 kg 55

55 kg

last year

120 131 155

Bill Chris Ann

passes passes passes

through through through

the lock the lock the lock

Chris at various situations are given by the following table:

(@, now)

55 kg

Bill 94kg 95kg 98 kg 97 kg

Chris 77 kg 75kg I 74kg 75 kg

A shaded cell indicates that a person's weight given there is measured in the very situa-

tion in which an event of a lock-traversal of that person occurred. Now, imagine that the

following sentences are uttered our of the blue:

(88) a. Two hundred and sixty-four kilograms of 20-year-olds passed through the lock

last year.

b. Two hundred and eighty-two kilograms of 20-year-olds passed through the lock

last year.

As the sum of the weights in the shaded cells in (87) is 49 + 92 + 72 + 51 = 264 kg, (88a)

correctly describes the above scenario. If, on the other hand, for each of the four events

of lock-traversals of a 20-year-old in the last year, one adds up the current weight of the

person who was of age 20 and passed through the lock in the event, 55 +97 + 75 + 55 = 282

kg will be obtained. However, when (88b) is uttered out of the blue, one cannot imagine

the above scenario as a possible story compatible with what is asserted. Thus, what matters

is how much a 20-year-old weighed at the time he/she passed though the lock, and his/her

weight measured at other times do not count.

The measurement of individuals does not always change due to their intrinsic changes

as in the above scenario where individuals get fatter or thinner as time goes by. Even

when an individual's intrinsic properties remain constant, its measurement could vary if it

is measured in different situations. Suppose the following scenario:



(89) Mary is an astronaut, and she has two boxes of apples. Box #1 contains apples

whose mass is 12 kg, and Box #2 contains apples whose mass is 30 kg. While

on the Earth surface, Mary threw the apples in Box #1. She collected the thrown

apples in Box #1, and then flew to the moon as an astronaut with her two boxes

of apples. On the moon surface, Mary threw the apples in Box #2. In no other

occasion did Mary throw apples.

Let 1201 be the exact time interval in which Mary threw the apples in Box #1 and 1245 the

exact time interval in which Mary threw the apples in Box #2. Assuming that the mass of

an object never changes, the mass of the apples in Box #1 is always 12 kg. Likewise, the

mass of the apples in Box #2 is always 30 kg. On the other hand, the weight of an object

is the gravitational force acting upon the object, which is determined by its mass and the

gravitational field in which it is located. In situation (@, 201), the apples in Box #1 are on

the Earth surface, and thus their weight is 12 kgf ( = 12g N, where g is the gravitational

acceleration on the Earth surface). In situation (@, 245), the apples in Box #1 are on the

moon surface, and as the moon's surface gravity is 1/6 of that of the Earth, their weight is

12 x (1/6)g N = 2g N = 2 kgf. Likewise, the apples in Box #2 weighted 30 kgf in (@, 1201o)

and 5 kgf in (@, 1245). This is summarized in the following table:

(90) (@(90) 01o) (@, 245)

apples mass: 12 kg mass: 12 kg

in Box #1 weight: 12 kgf weight: 2 kgf

apples mass: 30 kg mass: 30 kg

in Box #2 weight: 30 kgf weight: 5 kgf

Now, imagine that the following sentences are uttered out of the blue:

(91) a. On the earth and on the moon, (in total,) Mary threw forty-two kilograms of

apples.

b. On the earth and on the moon, (in total,) Mary threw seventeen kilograms-force

of apples.

c. On the earth and on the moon, (in total,) Mary threw forty-two kilograms-force

of apples.

It is clear that (91a) can be used to correctly describe he above scenario. As the apples

Mary threw on the Earth weighed 12 kgf at that time, and the apples she threw on the moon

weighed 5 kgf at that time, (91b) can also be used to correctly describe the scenario as



she threw 12 + 5 = 17 kgf of apples in total. On the other hand, if (91c) is uttered out

of the blue, the hearer cannot imagine (89) as a possible scenario compatible with what is

asserted, even though the apples she threw together weigh 42 kgf if measured on the Earth

surface. Thus, what matters here is only how much the apples weighed at the time Mary

threw them.

Given the discussion of the above examples, it is clear that when a noun phrase with a

measure phrase involving a unit of measurement is interpreted non-presuppositionally, the

relevant measurement of an individual that matters must be the one that is measured in the

situation in which an event of the sort described by the main predicate that involves that

individual occurrs. Put shortly, the situational interpretation of the unit of measurement

in a non-presuppositional noun phrase is dependent on the situational interpretation of the

main predicate. This makes a contrast with the interpretation of units of measurement in

presuppositional noun phrases. Consider the following sentence, where the object noun

phrase with a unit of measurement is headed by the definite article:

(92) On the earth and on the moon, Mary threw the forty-two kilograms-force of apples

in the two boxes.

Imagine that after the scenario in (89), Mary collected all the apples she threw on the

moon back in Box #2 and returned to the Earth with both boxes of apples. Looking at the

two boxes in front of him, a speaker may easily utter (92) truthfully. In this case, 42 kgf

will be the weight of the apples in the two boxes measured at the time of the utteracne.

What we have observed here reminds us of Musan's generalization, according to which,

the situational interpretation of the descriptive part of a non-presuppositional noun phrase

(e.g., 20-year-olds), depends on that of the main predicate. In fact, one can regard this

observation as an extension of Musan's generalization to the unit of measurement in the

measure phrase of a non-presuppositional noun phrase. This generalization is stated as

follows:

(93) Extension of Musan's generalization to units of measurement

The situational interpretation of the unit of measurement in a noun phrase can be

independent of the main predicate if and only if the noun phrase is presuppositional.

Let us now return to the analysis of (84). The truth conditions we gave to (84) in the

beginning of this subsection were (85), which is repeated below:

(85) ton (SDIC 2o-yr-olok(sd))
pass-thru-loek " ) > 60

iEy



The problems is that the measure function ton is not sensitive to a situation, and thus the

obligatory situational dependence of the unit of measurement on the main predicate dis-

cussed above cannot be expressed. In Chapter 1, I postulated a situation argument for pred-

icates in general in order to account for the situational dependence of non-presuppositional

noun phrases. Likewise, I propose here that the lattice-measure functions such as ton in

general also take a situation argument, which specifies in which situation the measurement

is taken.

Before we modify the definition of lattice-measure functions, let us discuss one more

complicating factor. Imagine that the following sentence is uttered out of the blue:

(94) Exactly sixty-six tons of 20-year-olds {passed/were transported) through the tunnel.

Suppose that a train runs through the tunnel and transports people through it every day. So

this sentence is about what amount of people the train transported last year. Suppose further

that the tunnel at issue is a really long one, so it takes two hours for the train to run through

it. According to the generalization in (93), the situation in which the weights of the 20-

year-old passengers are measured must be dependent on the situations in which they were

transported through the tunnel. However, now that each event of a train ride is two hours

long, the question arises at which point of the riding their weight should be measured, as

it is possible for a passenger to increase his/her weight significantly during the two hours'

ride if he/she kept eating all the while. Now, let rl, r2, ... , r, be the events of train rides

through the tunnel that transported at least one 20-year-old in the last year. Let wi and W

be the collective weight of the 20-year-old passengers in ri at the beginning of ri and at the

end of ri respectively. Suppose that all 20-year-old passengers had a very big lunch in the

train and they each gained a couple of kilograms during the ride. As a consequence, it turns
n n

out that W - wi = 2 tons. We should then ask ourselves the following questions:
i=1 i=1

n n n

If wi = 66 (and thus Wi = 68), can one utter (94) truthfully? Or, if W, = 66
i=1 i=1 i=l

n

(and thus X wi = 64), can one utter (94) truthfully? I think that in such cases, (94) would
i=1

simply be an inappropriate utterance. The absurdity of making a statement like (94) in
such cases would become perhaps most clear if one imagined that the size of individuals

get doubled or tripled during the relevant events. In order to be able to utter (94) felicitously,

it seems to be required that for every i such that 1 < i < n, the collective weight of the

20-year-old passengers in ri was constant during ri. I thus propose that a sentence with a



non-presuppositional noun phrase containing a unit of measurement in general has such a
presupposition of regarding the obligatory constancy in size of relevant individuals during
relevant events.

I would now like to translate the discussion so far on the interpretation of units of
measurement into our semantic formulae. To that end, I will first modify lattice-measure
functions so that they will be situation-sensitive. However, they are actually defined only
when the time interval of their situation argument is momentary. To analyze a sentence with
a non-presuppositional noun phrase containing a unit of measurement, by using the lattice-
measure function given by the unit of measurement, a relevant function from situations into
reals is defined. Unlike the original lattice-measure function, this function may yield values
for situations whose time interval has a positive length.

To begin with, let us define situation-sensitive lattice measure functions as follows:

(95) M e D<s,<e,n>> is a situation-sensitive lattice-measure function iff

i. (s, x) e dom(M) -, 3p[pe IRA 7ri(S) = [p, p]]
ii. (s, x) e dom(M) -* M(s)(x) > 0 (non-negativity)

iii. M(s)(le) = 0

iv. (s, x) E dom(M) A y -e x --- (s, y) E dom(M) (extendability to parts)

v. If (s, x,) e dom(M) for all n e N and if {x,} is a pairwise non-overlapping set,
i.e., for any i, j E N, i j -- xi e xj = IL, then,

M(s)( ie Xn M(s)(xn)
n=1 n=1

(countable additivity)

[p, p] is a closed time interval which contains only one time point p: [p, p] = {p}. The first
clause thus says that a situation-sensitive lattice measure function is defined only on situ-
ations whose time interval is actually a moment. For example, ton is a situation-sensitive
lattice-measure function, and ton ((w, [p, p])) (x) gives the weight of individual x in tons
as measured at time point p in world w. Now, given a situationally dependent individual
concept SDIC', we want to define a function which, if the size of SDIC (s) is constant
during 7ri(s) in 2rw (s), yields the constant measurement in s, and would otherwise be unde-
fined. For this, I define operator p, which yields the relevant such function from situations
into reals when provided a situation-sensitive lattice-measure function and a function from
situations into individuals as follows:



(96) Given a situation-sensitive lattice-measure function M e D<s,(e,,>> and a function

from situations into individuals e e D(s,e), PM() E D<s,n> is a function from situa-

tions into reals such that

QM(,) df As E Ds : inf M((rw(s), [pp,p])) ((s)) = sup M((rw(s), [p, p])) ((s)).
peri(s) pEni(s)

inf M(<w (s), [p, p])) ((s))
pEri(s)

For a given situation s, eM(e)(s) is defined only when inf M((rw(s), [p, p])) (f(s)) =
pEni(s)

sup M((rw(s), [p, p])) (e(s)), that is, only when the size of the relevant kind of individual
pEyri(s)

c(s) is constant during time interval 7ri(s). In that case, pM(l)(s) gives the infimum of the

size during 7ri(s), but of course the significance of using infimum (as opposed to supremum,

etc.) is trivialized here. If g(s)'s size ever changes during 7ri(s), gM() (s) is undefined, and

the associated sentence ends up failing to have a truth value. The analysis thus captures the

obligatory constancy presupposition discussed above.

A brief note is in order on what "constant" is supposed to mean. Strictly speaking, in

actuality, almost nothing has a stable size during a time interval. Even if people do not

eat while in a train ride, if the air is dry inside the train, for instance, water might keep

evaporating from their body surface, which would keep reducing their mass/weight during

the ride. However, the amount of the water which evaporates from people's body surface

would be so minute that it would be practically negligible. Consequently, if this is the

only change of their mass/weight during the train ride, their mass/weight will be normally

regarded as constant all the while. We should be aware that the numeral in a measure

phrases is a rounded number in general, and that it is only meant to show the significant

figures. The numeral in measure phrase "49 kg", for instance, has only two significant

figures, and the weight expressed by it actually ranges between 48.5 kg and 49.5 kg. Thus,

even if Ann's weight fluctuated between 48.5 kg and 49.5 kg during some time interval,

it is correct to say that Ann's weight was "constant" and 49 kg during the time interval.

Similarly, depending on the usage, the numeral in measure phrase "50" kg might have only

one significant figure, in which case the weight it expresses would range between 45 kg

and 55 kg, a much wider range than in the previous case. Thus, the concept of "constancy"

depends very much on the precision with which the associated lattice-measure function

assigns values to individuals. Contextual dependency of the granularity of measurement

has been discussed in the literature, and thus I will not persue this issue further here.

Let us now see how the proposed theory works with the scenario we considered earlier

with (86) and (87). In situation (@, I12), Ann's weight was constant and it was 49 kg. In this



case, the relevant situation-sensitive lattice-measure function is kilogram, and the relevant

function from situations into individuals is SDIC2 y0-r- ' d Following the definition inpass-thru-Iock"
(91), we obtain the function Qkilogram (SDIC ;-hru-locik) as follows:

(97) Qkilogram (SDIC20 asu-lock

= As E Ds : inf kilogram ((rw(s), [p, p])) (SDIC 20-yr-old (
PE(S(s) 

pass-thru-lock(S))

sup kilogram((rw(s), [p, p])) (SDIC20-yr-old (s)).
peiri(s)

inf kilogram ((rw (s), [p, p])) (SDIC20-yr-old (
pE(I(s) pass-thru-lock(S)
peiri(s)

Let us compute the value that this function yields for situation (@, 112). For s = (@, I12,

the presupposition of (97) becomes the following:

(98) inf kilogram ((rw ((@, I12)), [p, ]>) (SDIC20-yr-old , 112))
pE(i(<@,1>) 

'pass-thrulock ( @

= sup kilogram (<(rw ((@, 112)), [p, p])) (SDIC20-yr-oldu-lock
pEri(@,12>)

Here, ri ((@, 112)) = 112 and rw ((@, I12)) = @. Also,

(99) SDIC o k-yr-oldock 12 = e { SDR -oid (K@112))

= e {Ann} = Ann

(98) is thus equivalent to the following condition:

(100) inf kilogram((@, [p, p])) (Ann) = sup kilogram ((@, [p, p])) (Ann)
PEl12 PE112

As Ann's weight was constant in (@, I12 (viz., 49 kg), both sides of this equation is equal

to 49 and hence this equation actually holds. This means that (@, I12) is in the domain of

kilogram (SDIC ~-lock). The value it yields for (@, I12) is 49:

(101) kilogram (SDIC20-yr-od @, 12))= inf kilogram((@, [p, p]))(Ann) = 49
passthrulock P-12EI

Now that g has been defined, we can finally give the correct truth conditions to (84).

What was expressed by ton (SDIC'(s)) in the old analysis, where ton was not situation-

sensitive, should be replaced by Qton (SDIC') (s) in the new analysis, where ton is situation-

sensitive. Hence, the correct truth conditions of (84) can be obtained by rewriting (85)

accordingly as follows:

(102) Qton (SDIC 20 "-y r -k)ld  Si) 60
iEy

By the definition of SDIC in (48), this is equivalent to the following:



(103) 9Qton (As e Ds. Le{x SDR lu-ock )(S)}) (si) 60

This can be compositionally computed in the same way and with the same syntax as we

computed (75) earlier. All we need to do is to rewrite the lexical entry of ton given in (80)

in the way explained just above as follows:

(104) [tonj = Av e D(n,t>. AR e D(e,<s,t>.

n Dn[v(n) ^ A5Oton (As e Ds. ie X I R(x)(s)}) (si) = n]
iE)Y

2.3.3 Count nouns and classifiers

In the previous section, following Krifka's OEM operator, we defined the OSM operator,

utilizing a sum operator. There, in analyzing count nouns, this OSM operator was encoded

in the lexical entry of numerals as in (58). In the analysis developed in the present section,

however, the corresponding sum operator is now in the semantics of units of measurement

as in (104), and numerals simply denote a property of numbers. For example, at least three

has the following lexical entry:

(105) lat least three] = An e Dn. [n _ 3]

It then appears most reasonable to assume that the numeral that precedes a count noun is

actually a measure phrase consisting of a numeral and a silent unit of measurement. The

relevant lattice-measure function for count nouns is ATOM. I will thus notate this silent unit

of measurement for count nouns as OATOM. The structure of a non-presuppositional noun

phrase with a count noun should then look like the following:

(106)

measure phrase ships

(at least) three 0 ATOM

The whole measure phrase containing 0 ATOM here move to a position right above the rele-

vant situation A abstractor just as in (83). Unlike noun phrases with an overt unit of mea-

surement, the noun phrase does not have the partitive of, which is semantically vacuous in

any case.

Now, if we are to follow the theory proposed in previous subsection, ATOM should

be modified so that it will be situation-sensitive, and gATOM should be utilized accordingly



to account for the semantics of count nouns. (30), which is repeated below, will then be

analyzed as in (107), similarly to (102) above.

(30) Three ships passed through the lock.

(107) ATOM (SDIC t20oiy r- ok () 3ld

ieY

The question arises here as to whether ATOM should really be sensitive to a situation. An

individual's weight, height, etc., may naturally change as time progresses, but it is not clear

whether an individual's atomicity may change similarly. One could think of some obscure

examples. For instance, suppose that individual x is a big stone. If this stone is broken into

five smaller pieces, should we think that the same individual x counts as 5 afterwards? Or,
suppose that individual y is a planarian. Planaria are known for their extraordinary ability

to regenerate. If Mary cut planarian y into three pieces, and each piece has regenerated into

a full planarian, should we think that the same individual y now counts as 3? I do not know

if these questions should be answered with a yes or no. As Irene Heim (p.c.) suggests,
perhaps it is most reasonable to assume that the identity of the individuals is not retained

in such cases. On this view, after the cut pieces of the original planarian have regenerated,

none of the new planaria is identified as y, and each of them is a new individual with its own

identity. I will not go into this philosophical discussion further here, but in any way assume

that ATOM is situation-senstitive and maintain -the analysis in (107), just so that all units

of measurement will be analyzed in a uniform fashion. If one thinks that an individual's

atomicity should never change, one can simply assume that for any individual x, the value

of ATOM(s)(x) never varies with s, or in other words, As e Ds. ATOM(s)(x) is a constant

function. In order to be able to compute (107), we need only posit the following lexical

entry for OATOM.

(108) [(ATOMI = Av e D(n,t). AR e D(e,(s,t .

n e Dn [v(n) ^ e ATOM (As e Ds. U {x I R(x)(s)}) (s) = n]

This is identical to the lexical entry of ton except that ton is replaced with ATOM.

The assumption that count nouns have a silent unit of measurement is not an implausible

idea. In languages like Japanese, the numeral in count nouns is always followed by a

classifier:



(109) a. [ san-nin ]-no gakusei
three-CL -GEN student

'three students'

b. [ yon-t6 ]-no tora
four-CL -GEN tiger

'four tigers'

c. [ go-hiki ]-no neko
five-CL -GEN cat

'five cats'

Nin, t6 and hiki seen here are classifiers. Which classifier should follow the numeral is

determined by the noun. Nin is used to count human beings, t0 is for large animals or beasts

such as tigers or cows, and hiki is usually used for small animals such as cats or mice.10

What is important is that classifiers have the same distribution as units of measurement in

Japanese. Compare (109) with the following noun phrase with a unit of measurement:

(110) [ ni-rittoru ]-no mizu
two-liter -GEN water

Given this parallel, it is natural to assume that classifiers in Japanese are units of measure-

ment. It is then not a strange idea to propose that English count nouns also have a unit of

measurement, but it is simply silent unlike Japanese classifiers. What is different between

Japanese classifiers and its silent counterpart in English is that Japanese classifiers are more

finely grained in the sense that they specify what kind of atomic element they count.

How shall we analyze classifiers semantically, then? The semantics of a classifier

should essentially be the same as that of OATOM in (108), but it restricts what kind of objects

it counts. We see that OATou takes the sum of the size of e {x I R(x)(s)} for all atomic

situations s in the context, but nin, for instance, will pick only the human individuals from

ie {x I R(x)(s)}, and take the sum of their size for all s. To do this, let us define NIN

to be the individual concept (i.e., function from situations into individuals) which, given a

situation, yields the individual obtained by taking the join of every individual that is human

in that situation:

(111) NIN(s) def e j x X is a human(-like) being in situation s}

loSuch a classification is not as clear-cut as stated here. For example, if we are to count extraterrestrial
intelligent beings, we might as well use nin rather than hiki, even though they are not human beings. Dogs
may be counted with either t6 or hiki. The correct usage of classifiers is often idiosyncratically prescribed.
For example, butterflies are supposed be counted with tO, although many people might rather use hiki.



Then, the desired restriction can be achieved by taking the meet (greatest lower-bound)

of NIN(s) and Ue {x I R(x)(s)}. The lexical entry of nin should thus be given by the

following:

(112) ininj = Av e D<n,t>. AR E De,(s,t>>. In E Dn

[v(n) ^ ATOM (As e Ds. NIN(s) ne e {x R(x)(s)}) (s) = n
icy

The lexical entries of t6 and hiki can be given by defining appropriate individual concepts

TO and HIKI similarly.

I would like to end this section by analyzing an interesting example involving classifiers

in Japanese. Imagine that Taro was playing a video game in which the player is supposed to

defeat enemy characters, which are comprised of human soldiers, large animals and small

animals. The following sentence can be used to describe what Taro did in such a scenario:

(113) Taro-wa [ [ [ [ san-nin ]-to yon-t6 ]-to go-hiki ]-no teki ]-wo taosi-ta.
Taro-ToP three-cL -and four-cL -and five-cL -GEN enemy -Acc defeat-PAST

'Taro defeated three human enemies, four large-animal enemies and five small-

animal enemies.'

What is interesting here is that measure phrases are conjoined to make up a complex mea-

sure phrase. This can be accounted for in the current system once an appropriate lexical

entry for to 'and' is given. Notice that the denotation of measure phrase san-nin is com-

puted from (105) and (112) to be the following, which is of type ((e, (s, t)), t):

(114) Isan-nin] = AR e D(e,(s,t>.

[~e M (As e Ds. NIN(s) m, e {x I R(x)(s)}) (si) 3]

Thus, the denotation of to must be a higher-type conjunction Partee and Rooth (1983) of

phrases of type ((e, (s, t)), t), which is given by the following:

(115) [to] = AQ e D((e,(s,t>>,t>. AQ' e D((e,(s,t,t>. AR e D(e,(s,t. Q(R) A Q'(R)

The semantics of the whole complex measure phrase [[[san-nin]-to yon-t6]-to go-hiki] is

then computed as follows:



(116) AR e D(e,(s,t>.

[san-nin](R) A [yon-t8 (R) A [go-hiki (R)

AQ' e D((e,(s,t>>,t>. [go-hiki

AR e D(e,(s,t)>.

[san-nin](R) A [yon-t6](R) A Q'(R)

AR e D<e,(s,t)) AQ D<(e,(s,t)>,t). AQ' e D((e,(s,t),t>.

[san-nin (R) A [yon-t6 (R) AR E D<e,<s,t>.
Q(R) A Q'(R)

AQ' e D<e,s,>>,t>. Iyon-t] to

AR e D(e,(s,t)).

[san-nin](R) A Q'(R)

[san-nin] AQ e D(<<es,t>>,t). AQ' e D(<<e,(s,t>>,t).
AR e D<e,(s,t>>.

Q(R) A Q'(R)

to

This complex measure phrase as a whole undergoes movement to a position right above

the relevant situation A abstractor as usual, and then takes the situation dependent relation

made up of the nominal predicate and the main predicate. For (113), the appropriate situ-

ation dependent relation is SDReefeat 1. The truth conditions of (113) are obtained by
plugging SDReeat into the top node of (116):

(117) jsan-nin] (SDRendem feat) A [yon-t6] (SDRendefea ) A [go-hiki] (SDR en efeat)

Here, we can for instance compute [san-nin] (SDRenem y), using (114), as follows:11~1~ VV~ CUI II 111C~ll~ ~VIIYULCIU3CUL~L V-" =U'\defeat /' U'6 1I/ U'"W

"Taro-defeat = As e D,. Ax e De. [there is an event of Taro defeating x in ,r(s) whose running time
interval is exactly 7ri (s)]



(118) [san-nin (SDR efeat)

- [(s DNIN(s) e R aro-defeat(x)(s)) (si) ]

[PATOM (As e D. NIN(s) SIC feat(s) () 3]
iEy

SDICTefeat(s) is the collection of the individuals that are enemies and are defeated by

Taro in s, and NIN(s) ne SDIC rdefeat(s) picks only the humans in it. [san-nin] thus

counts only humans as desired.

2.4 Continuous production and consumption of mass en-

tities

2.4.1 Limitations of the approach based solely on summation

Based on the definition of the OSM operator (52), the truth conditions of event-related

readings have so far been translated into formulae with a sum operator. In this section, it

is finally shown that the current theory does not work for sentences that describe events

of continuous production or consumption of mass entities and that integration must be

employed.

To begin with, consider the following sentence with a production verb:

(119) Machine P produced (exactly) 2.7 liters of XYZ yesterday.

Imagine that Machine P is a special machine in a laboratory designed to produce a mysteri-

ous liquid called XYZ, and that the XYZ produced by Machine P enters a long pipe (which

is itself not part of Machine P) connected to Machine P and pours into a tank in which XYZ

(and only XYZ) is kept. If (119) is uttered out of the blue, what truth conditions shall it

have?

Initially, one might think that one only needs to check the volume of the XYZ in the

tank at 12 a.m. of yesterday and at 12 a.m. of today, and that the sentence is correct if the

increase in volume is 2.7 liters. This, however, works only if the produced XYZ never

expanded or contracted in volume after the production. As a matter of fact, most liquids

expand when heated and contract when cooled. Suppose that the long pipe connected to

Machine P is refrigerated all along, and thus the temperature of the XYZ in it goes down as

it runs through it towards the tank. Suppose, for example, that Machine P produces XYZ at
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90 'C, but the XYZ gets cooled down to around 10 'C by the time it comes out of the pipe.

We can imagine that this mysterious liquid changes its volume in an unusually large scale

and that its volume is reduced to exactly a third when its temperature falls from 90 oC to 10

'C. If the temperature of the XYZ always becomes exactly 10 'C at the end of the pipe, and

if the XYZ in the tank is always kept at exactly 10 'C, all we need to verify (119) is to check

whether the volumetric increase of the XYZ in the tank is 0.9 (= 2.7 x 1/3) liters. However,
XYZ actually only comes out of the pipe around 10 'C, sometimes below it, and sometimes

above it. Worse yet, the power of the refrigeration might fluctuate a lot so that the terminal

temperature might range so widely as between 0 'C and 30 'C. It should then be realized

that the idea of attempting to know how many liters of XYZ Machine P produced from the

volume of the XYZ in the tank is fundamentally flawed. To see this more clearly, imagine

that John was drinking XYZ from the tank while Machine P was running. At the end of

yesterday, it may be the case that no XYZ was left in the tank if John had drunk it dry. If in

that case, there was 1.5 liters of XYZ at the beginning of yesterday, should we then say that

Machine P produced minus 1.5 liters of XYZ yesterday? I think not. Regardless of whether

or not John was drinking XYZ from the tank, it is possible that Machine P produced 2.7

liters of XYZ. How, then, would one know whether (119) is a correct assertion?

The point of the above discussion might perhaps be more intuitively understood if one

considers a case of consumption. Suppose that there is a tank which was filled with 2.7 liter

of XYZ at 90 'C at the beginning of yesterday. A long, refrigerated pipe is connected to

this tank, and John drank up all the XYZ in the tank through this pipe yesterday. Imagine

that the temperature of the XYZ always came down to exactly 10 'C at the end of the pipe,

where it entered John's mouth. Then, the total amount of XYZ that entered John's mouth

ought to be 2.7 x 1/3 = 0.9 liters. Then, consider the following sentences:

(120) a. John drank (exactly) 0.9 liters of XYZ yesterday.

b. John drank (exactly) 2.7 liters of XYZ yesterday.

Clearly, (120a) may be uttered out of the blue to describe this scenario, but intuitively,
(120b) may not. One might object to this and claim that (120b) is also possible. However,
I have the impression that (120b) can make sense only when the pipe is regarded as part of

John, in which case, the moment XYZ enters the pipe, it is considered to have been drunk

by John. Still, if you ask John whether he drank 2.7 liters of XYZ yesterday, I think that he

would most certainly say no. Things would be different, of course, if the noun phrase with

the measure phrase is headed by the:
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(121) John drank the 2.7 liters of XYZ yesterday.

This is perfectly fine to describe the above scenario. When (121) is uttered felicitously,

the context must provide a salient time, which, in this case, should be the beginning of the

yesterday, and thus the measurement is taken at that time of a contextually salient individual

which is the XYZ in the tank at that time.

Obviously, what is necessary to account for (119) and (120a) is to measure the volume

of the XYZ at the very moment it is produced by Machine P or drunk by John, and to

calculate its total amount. This is exactly what was discussed concerning the interpretation

of the unit of measurement in an event-related-reading-inducing non-presuppositional noun

phrase in the previous section. Let us then apply the theory developed there to sentence

(119). (119)'s truth conditions are then expected to look like the following:

(122) liter (SDICpproduce) (Si) = 2.7
iey

{si}ic, is the set of atomic situations in yesterday in this case. XYZ is a predicate such

that XYZ(s)(x) is true if and only if x is XYZ during 7ri(s) in 7rw(s). The problem is the

meaning of the main predicate which is written as P-produce here. Supposedly, P-produce

should be a predicate such that P-produce(s)(x) is true if and only if there is an event of

Machine P producing x in rw(s) and its running time is 7ri(s). Now, suppose that Machine

-P was running during time interval 17, which was 10 seconds long, yesterday. Let x44 be

the individual which was the XYZ that Machine P produced during 17 in total. One might

then expect P-produce ((@, I7)) (x44) to hold true. This naive expectation turns out to be

problematic, however. Assume that P-produce((@, 17)) (x44) holds true. Then, assuming
also that XYZ((@, 17>) (x44 ) is true, SDRproduce ( 4 4 ) ((@, 17)) holds. As x44 is all the XYZ

produced by Machine P during 17, we have

(123) SDIC oduce ((@, SDR de() (@,17>) = X44

Let us now think what the value of Iter (SDICxpzoduce 7) should be. According to
0Piter(SDI~o-proouce) ((@, I7)) should be. According to

the definition (96), Qliter (SDICXpproduce) ((@,17)) will be defined only if

(124) liter((@, [p, p]>) (SDIC-produce ((@, 17>)) = liter((@, [p, p])) (x44)

is constant when p ranges within 17. However, liter((@, [p, p])) (x44), i.e., the volume of

x44 in liters at time point p, is not constant obviously. First of all, one should be aware

that in the beginning of the 10 seconds of 17, no part of x44 with a non-zero volume ex-

ists as XYZ yet, as it has not been produced yet. The whole of x44 as XYZ exists only at
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the end of 17. Furthermore, no part of X44 which is produced as XYZ within the 10 sec-

onds has a constant non-zero volume, because its temperature decreases as it travels down

the refrigerated pipe, and as a result, it keeps contracting till the end of 17. Generalizing

this, one can conclude that for any time interval I, as long as I has some positive length,

Pliter (SDICpp oduce)((@, I)) is not generally defined. This means, in turn, that the left hand

side of the suggested truth conditions in (122) is not generally defined, either.

What the above discussion has revealed is that we should not be considering time inter-

vals with a positive length in analyzing sentences as in (119) and (120). Indeed, what these

sentences describe is continuous events, or put differently, (uncountable) collections of mo-

mentary events. By contrast, the earlier sentences we considered in the previous sections

describe discrete events each of which take some length of time to occur. Therefore, I will

refer to the type of event-related readings that describe continuous production or consump-

tion of some mass entity as in (119) and (120) as continuous event-related readings, and

distinguish these from discrete event-related readings, which are the type of event-related

readings that describe discrete events as considered earlier.

Given the distinction between discrete and continuous events, in order to analyze (119),

which describes a continuous event, its main predicate P-produce must be defined so that

it is true only of momentary time intervals as follows:

(125) P-produce = As E Ds. Ax e De. [there is a time point p such that i(s) = [p, p]
and there is an event of Machine P producing x in 7rw(s) whose running time is

7ri(S) = [p, P]]

Given this, for no time interval I with a positive length, does P-produce((@, I)) (x) hold

for any individual x. Given a time interval I with a positive length, we have

(126) SDIC oduc e ( SDR oduce(X) ((@, >)} = e0 = le

Qliter (SDICpr oduce) ((@, I)) will thus be defined, since for any p e I,

(127) liter((@, [p, p]>) (SDICxyzoduce ((@, I)) = iter((@, [p, p))(le) = 0

We thus have liter (SDICpproduce) ((@, I)) = 0. Now, let a and f be index sets such that

a u f = y and an 8 = 0, and {si}ie, is the set of all situations whose time interval is a

moment, i.e., of the form [p, p] for some time point p, and {si}i , is the set of all situations

whose time interval is not a moment but has some positive length. What I have shown just

above is that for any i e p, Qiiter (SDICpoduce) (si) = 0. Then,
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(128) ZQliter (SDICproduce) (Si)- Z = liter (SDICpproduce) (S)
iey ieauP

S Qliter (SDICpProduce) (Si) + E iter (SDICp oduce) (s)

iea ieP

Z &liter (SDICXpZoduce) ( Si )

ieca

Thus, (122) becomes equivalent to the following:
(129) 2 XYZ

(129) liter (SDICpproduce) (Si) = 2.7
ie-a

For i e , what is the valueof XYZ
For i a, what is the value of liter SDICP-produce)(Si), then? If i E a, then with some
time point p in yesterday, si is written as si = (@, [p, p]). Suppose that Machine P was
in fact running and producing XYZ at p. Then, SDICxzoduce(S) # Ie. So, let x 1 o7

SDICPproduce (Si) - _ e . Because s i is momentary, Qliter(SDICpproduce) (si) is obviously

defined, and its value is given by liter((@, [p, p]))(xi 07 ). However, liter((@, [p, p])) (x 107 )
is necessarily 0, because if liter((@, [p, p])) (x107) > 0, then it means that Machine P can
produce some positive amount of XYZ literally in no time. This is obviously not correct,
and furthermore, if Machine P can do this at any moment, since there are uncountably many
moments in yesterday, the summation in (129) will diverge to the infinity. This means that

&liter (SDICpproduce) (si) = 0 for any i e a, and hence we obtain

(130) ier (SDIC duce) = 0 = 0 2.7
iecr iCa

It should then be concluded that (119) is necessarily wrong. This is clearly not the desired
concludtion. One can then see that in general, the theory developed so far faces difficulty
in dealing with continuous event-related readings.

2.4.2 Prelude to integration: Eating of volume-changing bread

What, then, should the correct truth conditions of (119) look like? Suppose that f(p) gives
the rate of the volume of the XYZ that Machine P produces per unit time at time point p,
where the volume in question must be measured at the very same time point p. Then, the
relevant volume of the XYZ we seek to evaluate shall be given by the definite integral of
f from the beginning to the end of yesterday (i.e., from 12 a.m. of yesterday to 12 a.m. of
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today). Letting a and b be the beginning and the end of yesterday respectively, the truth

conditions of (119) should then be given by the following:b
(131) f dp = 2.7

It should now be clear that Krifka's analysis or its variants is insufficient for continuous

event-related readings. First of all, Krifka's original analysis cannot deal with rates of any

sort, since it does not talk about times to begin with. This inadequacy has been fixed in

the previous sections, but a problem has still remained. That is, in spite of the fact that

integrals are defined by taking limits of sums (c.f. (70)), Krifka's approach is simply based

on summation without taking limits.

Let us now see yet another, more concrete example, with which I demonstrate how an

integral can calculate a relevant volume for a continuous event-related reading, albeit by

means of Riemann integration. The scenario considered here will be used in Subsection

2.6.2 again so as to demonstrate how the Lebesgue integral approach proposed there may

be applied to a concrete example. In the earlier examples, what expands or shrinks is some

liquid, and hence the reader might simply think that in such cases, it is actually not the case

that the same individual that is XYZ is expanding or shrinking in volume, but rather, new

individuals that are XYZ come into being when the liquid appears to expand, and some

individuals that are XYZ disappear from the world when the liquid appears to shrink. I will

therefore consider consumption of a solid entity.

Suppose that there is a piece of magic bread. Because of a magic cast on it, this piece

of bread continually keeps on expanding and shrinking. It has the shape of a long cylinder

with a fixed length of I cm. Its cross section is thus a circle, and it is its radius that keeps

changing. Assume that for a given time point p, the radius is given by r(p) cm. Then, the

volume of the whole bread piece is given by 7r{r(p) }2 1 cm 3, which is a function of p. If one

is to give a name to this piece of bread, say Bill, one can see that this scenario is parallel to

the one where Ann's body volume fluctuates over time as she gets fatter and thinner. Thus,

even though the piece of bread gets bigger and smaller, its identity as Bill shall remain the

same. The same goes for any parts of the piece of bread. If one is to focus on some proper

part of the whole piece, one can give it a name, say Clinton. Then, Clinton shall be keeping

on expanding and shrinking as well, but that does not alter the identity of Clinton.

Now, imagine that John begins eating this piece of bread at time point po, starting from

one end of the cylindrical shape. After a while, he reaches the other end and finishes eating

the whole piece of bread. Then, how many cm 3 of bread has John eaten after all, should
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we say? Or rather, if one hears a sentence like the following out of the blue, how can one

know whether or not the sentence is true under this scenario?

(132) John ate (exactly) 666 cubic centimeters of bread.

Sr{r(po) }2 1 cm 3 is the volume of the whole piece measured just when John's meal is about

to commence, but this is not the volume in question we are after. Clearly, the size of

the piece never matters while it is expanding and shrinking outside John's mouth; it only

becomes important how big it is the moment it enters the mouth. Hence, we must look at

every infinitesimal time span during John's meal, and measure how big the piece John eats

during each infinitesimal time span is at that very moment, and collect those amounts.

Let us see how the volume in question can be calculated by means of Riemann inte-

gration. First, assume that the position of the bread is fixed, so only John's mouth moves

forward to continue the meal, and its speed at time point p is given by v(p) cm/s. Let pi be

the time point at which John finishes eating the whole bread. pi is then the time point that

satisfies the following:

(133) 1 = v(p) dp

Now, given a time point p such that Po < P < Pi, consider a tiny time span [p, p + Ap].
The distance that John's mouth travels during this time span is given by v(p)Ap cm. As a

consequence, the part of the bread that enters John's mouth in this time span has the shape

of a cylinder with a length of v(p)Ap cm. Since the radius of this cylinder at this moment is

given by r(p) cm, the volume of the part of the bread that John eats in [p, p + Ap] is given

by r{r(p)}2 v(p)Ap cm3 . Hence, the rate of the volume of the bread that John eats per unit

time at p is obtained by taking the quotient of said volume by Ap s, which is 7r{r(p)}2 v(p)
cm3/s. 12 Then, the sought volume V of the bread that John has eaten in the end can be

calculated as the definite integral of ir{r(p) }2 v(p) from Po to pi:

(134) V = 7r{r(p)}2 v(p) dp

Notice that the calculation has succeeded because the relevant rate of a size per unit

time has been provided. By contrast, Krifka's approach only looks at sizes for different

times (or events, originially), but just as seen in the discusstion of the earlier examples,

12In the present discussion, I have assumed that r(p) and v(p) are continuous as functions of p. This is a
natural assumption, given the physical truth that an object may expand or shrink only gradually and that the
speed of an object cannot just leap in no time.
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the size for each infinitesimal time is always 0 (the volume of bread that John can eat in

an instance is of course 0). Therefore, collecting this amount does not give rise to any

positive value. This is why it is necessary to employ integration in order to capture the

truth conditions of sentences like (133).

The integration used in (134) is Riemann integration, but in the next section, I introduce

a more general sort of integration called Lebesgue integration, which enables us to treat

discrete and continuous event-related readings in a unified manner. As briefly mentioned

in Section 2.2, once the theory of Lebesgue integration is introduced, the sum operator is

replaced by an integral. It is thus expected that in the end, the correct truth conditions of

(132) are given be the following:

(135) Qcubic-centimeter (SDIC reat) d = 666

Here, A = {sili,,. However, we have already seen that this integrand is equal to 0 for all

situations, and hence the above truth conditions do not work. We would thus like to make

cubic-centimeter (SoICJhn-eat) yield the relevant rate for situations that are momentary. Thus,

we would like to have the following:

(136) Ocubic-centimeter(SDICjohnfeat) ((@, [p, p])) = 7r{r(p)}2 v(p)

In Section 2.6, p is redefined for momentary situations so that for a situation-sensitive

lattice-measure function M and an individual concept , p M( ) defines an appropriate rate

for situations whose time interval is a moment.

2.5 Measure theory and Lebesgue integration

This section is a very cursory introduction of measure theory and Lebesgue integration. I

cannot give a detailed and rigorous discussion of this subject here, as the goal of this section

is to provide tools for the analysis of event-related readings and temporal expressions and

provide the insight behind the analysis. The reader is referred to such textbooks as Halmos

(1974), Rudin (1987) and Wheeden and Zygmund (1977) for full and detailed exposition

of the subject.

2.5.1 Limitations of the Riemann integral

Integration is a method of finding the "area" under the graph of a given function. Given a

non-negative continuous function f(x) from reals into real defined on the closed interval
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[a, b], the area between the graph of f(x) and the x axis is given by its Riemann integral

f dx. Riemann integration is known to have some limitations, which can in fact be over-

come by Lebesgue integration. Therefore, let us briefly see those limitations of Riemann

integration here.

To begin with, let us review the definition of the Riemann integral. Let f be a function

defined on the real line R with bounded, nonnegative values. We want to find the area under

the graph of f over a closed interval [a, b]. Think of a partition of [a, b] into n subintervals,
and let xo, xl, x2,..., xn be points in [a, b] such that a = xo < x, < x 2 < ... < ,nl <
xn = b. For 1 i _< n, let

(137) Mi= sup f(x), mi = inf f(x).
xi-1<x<xi xi-1 <x<xi

Then, for each interval [xil, xi], think of a rectangle whose base is [xil, xi] with a height

of Mi. Then, it is the smallest rectangle that contains the graph of f(x) over [xi- 1, xi].

Similarly, if we think think of a rectangle whose base is [xi-_1, x] with a height of mi for

each interval [xi-, xi], this is the biggest rectangle that is under the graph of f(x) over that

interval. Now let
n n

(138) Sn = Mi(xi-xi-1), Sn = mi(xi -xi-1).
i=1 i=1

Then, one can see that if the graph of f(x) over [a, b] has an area, it is sandwiched by s, and

Sn. Let us assume that the graph of f(x) over [a, b] has an area of S. Then, s, S Sn.
Now, if we think of finer and finer partitions of [a, b] so that lim max (xi - xi-1) = 0,

n---oo 15<in
the limits of s, and S,, are expected to be equal to S. If these two have a single limit, the

Riemann integral of f(x) over [a, b] is defined to be that unique value. Thus,

(139) f dx = lim Sn = lim s,.
n---oo n---oo

The Riemann integral is capable of determining the area under the graph of many "nor-

mal" functions. However, it turns out to be unable to deal with a greater variety of functions.

A representative example is the Dirichlet function XQ, which is defined as the characteristic

function of rationals:

(140) XQ(x)= 1 ifx Q

0 if x0Q

The Dirichlet function is peculiar in the sense that it is nowhere continuous. The question is
whether we can find the area under the graph ofX over [a, b]. Since the rational numbers
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are dense on the real line, no matter how small a subinterval I = [a, P], a < Pf of [a, b] is

taken, it contains many rationals, and thus supxQ(x) = 1. Similarly, for any subinterval
xEl

I = [a,f], a < P of [a, b], it contains irrationals and thus infXQ(x) = 0. Therefore, if we
xel

consider the corresponding S, and s, defined forXQ, we see that for any n,
n n n

(141) Sn= Mi(xi-xi-l)= Z 1(xi-xi-_) l(xi-xi)=xn-xo = b - a,
i=1 i= 1 i=1

and
n n n

(142) s, = mi( -xii-1) = (xi - xi-1) = 0 = 0.
i=1 i=1 i=1

Thus, lim S, = b - a and lim sn = 0 and the Riemann integral of XyQ over [0, 1] is not
n---0 n-+00

defined.

Another limitation of the Riemann integral lies in the fact that it can be defined only for

functions whose domain is a subset of the real line. Removing such a restriction enables

application of integration to many cases. A prime example is probability theory. When

there are only a finite number of possible events to be considered, one may be able to

discuss probabilities etc. without resorting to something like integration. However, we

sometimes want to consider cases with infinitely many possible outcomes, such as when

a die gets thrown infinitely many times. By considering functions whose domains are

events, relevant probabilities; etc. can be calculated by means of Lebesgue integration. In

the context of the present dissertation, Lebesgue integration is applied to functions whose

domains are situations.

2.5.2 Basic ideas

How does Lebesgue integration overcome the above limitations of Riemann integration?

When one looks at the definition of the Riemann integral, one can notice that it relies on

two factors.

The first is that calculating the Riemann integral begins with partitioning the domain of

the integrand function into subintervals by the order intrinsically given to the real numbers.

However, if one is to consider functions whose domains are not a subset of the real line

such as functions defined on events, the domain of functions are in general not ordered,
and hence this strategy is insufficient. When we deal with a set of situations whose world is

fixed to one world, because time intervals are pairs of time points, the reader may think that

it is possible to define an order to the set of situations by using the beginning and ending
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time points of time intervals. This is true. However, there is no linguistic motivation to

impose such an order to begin with, and even if such an order is provided, we still need to

give an appropriate function that measures the size of sets of situation as discussed right

below.

The second factor is that how to measure the length of intervals on the real line has been

granted in Riemann integration. After having partitioned the domain into subintervals, the

area of rectangles that have these subintervals as their base is considered. The heights are

given by the supremum and infimum of the function on each interval, but how does one

get the length of the bases? In Riemann integration, it has naturally been assumed that

the length of an interval of the from [a, b] is given by b - a. Since an interval is actually

a set of elements on the domain of the integrand function, what is done here is actually

assigning values to subsets of the domain. For intervals, the above assumption may be fair

and sufficient, but we would now also like to treat functions defined on a set that is not a

subset of the reals. Even so, we should somehow still be able to assign appropriate values

to subsets of the domain of the integrand function.

Lebesgue integration solves these problems as follows. To begin with, we consider

partitions of the domain of the integrand function not by the order given to the domain,

but according to the range of the function. Let f be a function defined on a set X with

nonnegative values. Given an interval [a,8), one can-consider the set of all elements in X

that is mapped by f to an element in [a,/f). This is called the preimage of [a, f) by f, and

written as f-' ([a,fl)). Thus,

(143) f-' ([a,fl)) = {x Ia < f(x) < f}.

If we think of a "rectangle" whose base is f- 1 ([a, p)) with a height of a, this is a "rect-

angle" that is certain to be under the graph of f on f-1 ([a,/3)).13 When f is defined on

reals, this "rectangle" (although disconnected) looks like the following (in this case, the
"rectangle" actually consists of three rectanbles).

'3 The reason that "rectangle" is in quotation marks is that the domain of the integrand function is in general
not on the real line, and therefore it is in general inappropriate to imagine a certain geometric figure. Even
when the domain is on the real line, f-' ([act,)) could be a collection of disconnected intervals as in the case
in (144).

110



(144)

Now, if it is possible to measure the size of the set f- 1 ([a,fl)), it will give the length of

the base of this rectangle. Let us suppose that M (f-' ([a, P))) gives this size. The "area" of

the rectangle is then calculated as a . u(f- ([a,))). By partitioning [0, oo] into mutually

disjoint subintervals, we can consider the preimage by f of each interval and the area of the

biggest "rectangle" on it under f. Then, by taking the sum of the area of these rectangles,

we can have an approximation of the whole "area" under the graph of f. By taking the

limit of this sum as the partition gets finer and finer, we can expect to approach the exact

"area" under the graph of f. This is essentially the main idea of Lebesgue integration.

In order to be able to find the Lebesgue integral of a function f, it is thus crucial to

have some function p that assigns nonnegative values to subsets of the domain of f, and

furthermore, it is important that the preimage by f of any subinterval of the range of f

be in the domain of the function p. Put conversely, if these conditions are met, Lebesgue

integraion can enable us to calculate the integral of various functions. In what follows, we

will be first introduced to some notions necessary to define the Lebesgue integral.

2.5.3 cr--algebra and measure

For a function f with domain X, we would like to think of a collection of subsets of X on

which a function p called measure may be defined. Such a collection is called a c--algebra.
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(145) Definition.

A collection ' of subsets of X is called a c--algebra if and only if the following

conditions are met:

i. X E 3.

ii. If E e 3, Ec e 3, where Ec is the complement of E i.e., E = X - E.

(closed under complementation)
co

iii. If Ek e a for all k e N, then U Ek .
k=1

(closed under countable unions)

It is immediate that by virtue of de Morgan's laws (viz., A n B = (AC u bC)c), o--algebras

are closed under countable intersections as well.

Example.

For any set X, its power set V(X) of X is a c--algebra.

Example.

Let DAY = { Mon, Tue, Wed}. Then,

m = {0, {Mon}, {Tue, Wed}, {Mon, Tue, Wed}}

is a c--algebra. Note that 2 # o(DAY).

(146) Theorem.

Given a collection W€' of subsets of X, there is a smallest c--algebra 5 over X such

that W c S.

Proof.

Since s c p(X), there is at least one c--algebra containing W (namely, p(X)). Now, let 6

be the intersection of all c--algebras containing a/. It is easy to verify that the intersection

of c--algebras is itself a c--algebra. Therefore, 6 is a c--algebra, and since any c--algebra

that contains d contains 6, 6 is the smallest c--algebra containing d. Q.E.D.

The smallest cr--algebra 6 containing W is called the c--algebra generated by d.
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(147) Definition.

For a topological space X, let 93 (X) denote the cr-algebra generated by the collec-

tion of all open sets in X. The elements of 9 (X) are called Borel sets of X.

By definition, all open sets belong to 9(X) and are thus Borel sets. Besides open sets, all

closed sets are Borel sets of X as well, since every closed set is the complements of some

open set. There are many more Borel sets other than open and closed sets. For example,

[a, b) is neither open or closed, but it can be represented as a union of two Borel sets:

[a, b) = [a, a] u (a, b). Thus, [a, b) is also a Borel set.

(148) Definition.

If 3 is a c--algebra over X, (X, a) is called a measurable space, and the elements

of a are called a-measurable sets.

For example, (DAY, 27) and (Rn, 9 (Rn)) are measurable spaces. The singleton set {Mon}

is a 22-measurable set, but {Tue} is not. The term "measurable" suggests that for a c--

algebra, one can think of a set function (i.e., function whose domain is a collection of sets)

defined on the o--algebra called measure, which assigns nonnegative values to the elements

of the o--algebra.

(149) Definition.

A function p with the domain a is called a measure if and only if the following

conditions are met:

i. O <; p(E) < +oo for all Ee .

ii. p (0) = 0.

iii. If {Ek} e 1 for all k e N and {Ek} is a pairwise disjoint collection, i.e., for any
0000

i, je N, if i # j -- E E = 0, then pl U Ek = p(Ek)
k=I k=1

Note that a measure is allowed to take oo as its value. The third property is called countable

additivity or c--additivity.

Example.

The counting measure, which I notate as cCT, is the set function that yields the number of

the elements in a given set. Therefore,
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#CT({Mon}) = 1

IPCT({Mon, Tue, Wed}) = 3

I'CT() = 0

If the given set is not finite, its value is oo. Hence,

PUCT({n In e N}) = oo00

PCT ([O, )) = CT({xI 0 : x< 1}) = 00

Example.

The Lebesgue measure, which I notate as PLBG, assigns a volume (length, area) to subsets

of Euclidean space IRn. For a "half open" interval I in Rn of the following form

I= [al,bi) x [a2, b2) x .. x [an, bn)

= {(x, x2,...,xn) ja l  x < bl ^ a2  x 2 < b2 A^ An I xn < bn),

let us define its "volume", written as III, as follows:

Ill = (bl - al) x (b2- a2) x -.. x (bn - an).

For any subset E of Rn, define

PLBG(E) = inf ~I I,
n=1

where the inf is taken over all coverings of E by a countable collection of half open intervals
oo

In, i.e., E g U I,. It can then be proved that for any half open interval I, 'LBG (I) is actually
n=1

equal to IIl. Furthermore, it can be shown that IULBG(E) is indeed a measure on (Rn, Z (R"))

(see the aforementioned textboos for details).

Let us now focus on the 1-dimentional case, that is 93(R) and the Lebesgue mea-

sure defined on it. An important fact is that for any set consisting of only one point {a},

/PLBG({a}) = 0. To see this, observe that {a} c [a, a + e) for any positive number 6.
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Therefore, PLBG ({a}) inf [a, a + e)1 = inf e, and because e is an arbitrarily small positive

number, the right hand side becomes 0.

As mentioned above, LBG ([a, b)) = I[a, b) = b - a. Since [a, b) = {a} u (a, b) and

/ILBG({a}) = 0, one can see that PLBG((a, b)) = b - a. Similarly, we have PLBG((a, b]) =

PLBG ([a, b]) = b - a.

With the Lebesgue measure, we can now measure the set of all rationals contained in

the interval [a, b], i.e., Q r [a, b]. Since the rationals are countable, we can enumerate all
oo

the rationals in [a, b] as r, r2 , r3, ... Then, Q n [a, b] = Urk }. It then follows from the
k=1

countable additivity of the Lebesgue measure that

PLBG(Q n [a, b]) = PLBG UIrk}) = Z LBG({rk}) = 0 = 0.
k=1 k=l k=1

Likewise, the Lebesgue measure of any countable set is 0.

(150) Definition.

When p is a measure on (X, ,), (X, 1, p) is called a measure space.

Example.

(DAY, 0J, PCT) is a measure space. This is easy to verify.

Example.

(Rn, 93 (Rn), PLBG) is a measure space.

2.5.4 Measurable functions and the Lebesgue integral

A function's Lebesgue integral is most straightforwardly defined when the function only

takes nonnegative values. Therefore, in what follows, we first consider functions with

nonnegative values For the sake of generality, we would not like to confine ourselves to

bounded functions, and thus, we allow functions to take the value o. We thus think of

functions from X into [0, oo]. The topology of [0, ao] is such that its open sets are [0, a),

(a, b), (a, co], and their unions.

The functions of which we can think of a Lebesgue integral must be measurable func-

tions, which notion is defined as follows:
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(151) Definition.

Let f be a function from X into [0, 00], and let a be a o--algebra on X. If for every

V E 93([0, oo]), its pre-image by f is in 5, i.e.,

f-'(v) = {x If (x) E V} E ,

then, f is said to be a a-measurable function.

An important fact is that the preimage is closed under complementation and countable

union and intersection. That is, for any set V and any collection of sets {Vk},

f-'(V) = (f-'(V))c

00

f-1 U Vk = f-' (Vk)
k=1 k=1

0oo

f-1n Vk = - (vk)
k=1 k=1

Therefore, if f- (V) e a holds for every open set V in [0, oo], since by definition any

Borel set of [0, o] can be obtained through applications of the above operations to open

sets in [0, cx], the preimage by f of any Borel set of [0, co]. is in a, and thus f shall be

a-measurable.
I would like to note a couple of properties of measurable functions without proof.

(152) Theorem.

If f and g are a-measurable functions on X, then so are f + g and fg.

(153) Theorem.

If {fn } is a sequence of a-measurable functions on X, then sup f,, inf fn, lim sup f,
n--oo

and lim inf fn are all a-measurable.
n--4oo

Here, sup f,(x) is a function that returns sup{fi (x), f2 (x), f 3 (x),... } for each x. Similarly

for inff,(x). lim supfn is a function that returns lim sup{fn(x), fn+l (x), fn+2 (x),... } for
n--oo n- oo

each x. Similarly, for each x, (liminf f,)(x) = lim inf {fn(x), fn+ (x), fn+2(x),... }. Notice
n---oo n--oo

that if f is a function that is obtained by the limit of a sequence {f,} of S-measurable

functions, then since f = lim fn = lim sup fn = lim inf fn, f is a-measurable by the above
n--*oo n-oo n--oo

theorem.

116



For a given measurable function f, if one can find a suitable sequence of measurable

functions that converges to f such that the "area" under the graph of each of the functions

in the sequence can be calculated, one can expect that the "area" under the graph of f may

be obtained as the limit of these areas. To that end, we consider functions that are called

simple, which are constructed with characteristic functions.

(154) Definition.

For any subset E of X, the characteristic function of E, written asXE, is a function

from X into {0, 1} such that

if x E EXE(X>=I ifxE
0 ifx E

Given a measure space (X, 7, p), it is obvious that the characteritic function of E is a 5-

measurable function if and only if E is a a-measurable set. With a characteristic function,

the graph of the "rectangle" in (144), which has f- 1 ([a,P)) as its base and whose height

is a, can be represented as aXf-l([a)). Assuming that f is a-measurable, f- 1 ([a,Pf)) e a

since [a,,p) e 9([0, o]), and thus f-' ([a,P)) is in the domain of p. Interpreting that

pi(E) gives the "length" of any subset E of X, the "area" of this "rectangle" shall be

(155) Definition.

A function s from X into [0, 0o) is called a simple function if and only if for a

finite number of disjoint disjoint measurable subets El, E2, ... , En of X, and a finite

number of distinct nonnegative values al, a 2, ... ,,

s(x) = akXE,().
k=l

n

That is, s(x) = ak when x e Ek for each k, and s(x) = 0 when x U Ek.
k=1

Note that oo is excluded as a value of simple functions. Since each of the characteristic

functions used to define a simple function is measurable, one can easily see that any simple

function is measurable. The "area" of the graph under a simple function is the sum of the

"area" of the "rectangles" each of which has Ek as its base and a height of ak for some k.
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n n

Thus, for simple function s(x) = ak E(x), its area is given by kl p(Ek). Based on
k=1 k=1

this, the definition of the Lebesgue integral of simple functions is given as follows:

(156) Definition.
n

Given a simple function s(x) = akXEk (X), for any E E 5, the Lebesgue integral
k=1

of s over E is defined by

s(x) dp = ak P(Ek n E).
E k=1

The Lebesgue integral of arbitrary nonnegative functions is defined as follows:

(157) Definition.

Let f be a measurable function from X into [0, oo]. Then, for any E e , the

Lebesgue integral of f over E is defined by

f (x) dp = sup s(x) dp,

where the supremum is taken over all simple functions s such that 0 s < f.

The reader might wonder how such a supremum may be obtained. It is known that for a

given measurable function f, one can find a sequence of monotone increasing sequence

of simple functions, and that the sequence constructed by the Lebesgue integral of each

simple function in the sequence then converges to this supremum. Roughly speaking, this

can be done by partitioning the range of f and thinking of the simple function whose
graph consists of the biggest rectangles under that graph of f whose bases are given by the

preimage by f of the partitioned intervals, and then making the partition finer and finer.

We would now like to talk about functions that can take negative values as well.

(158) Definition.

Given a measure space (X, 5, p), for any 3-measurable function f from X into

[-oo, oo], the norm of f, written as Ilfll, is defined as follows:

Ilfl = fxIf I dp

Note that the notion of measurable function here is based on the preimage of Borel sets of

[-oo, 00].
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(159) Definition.

For a measure space (X, 3, p), the space L' (X, ', p) is the collection of functions f

such that Ilfll < oo. If fe L' (X, a, p), then f is called an integrable function.

For a function f from X into [-eo, co], let

(160) f (x) = max{f(x),0} and let f -(x) = min{-f(x),0}.

f+ and f- can be understood as the nonnegative part of f and the mirror image of the

negative par of f, respectively. Then, f+ and f- are both nonnegative measurable functions

and

(161) f = f+ - f-, Ifl = f+ + f-.

Therefore, if fe L' (X, , p),

(162) IIfIt = IfIdp =  ff + f- dp = f f+dp+ ff- d < co,

and thus, both f dp and f - dp are finite. For any subset E of X that belongs to ,

clearly,

(163) f f+di f' dp <oo, ff-dp < f- dp < oo.

The Lebesgue integral of f over E is then defined to be the difference of these two.

(164) Definition.

For a f e L' (X, 3, p), the Lebesgue integral of f over E e 3 is defined as follows:

fd = ff+ dp - f- d

Let me comment briefly on the relation between the Lebesgue integral and the Riemann

integral. It is known that if a bounded function defined on a closed interval is Riemann-

integrable, it is also Lebesgue-integrable, and furthermore, its Riemann-integral is equal

to its Lebesgue-integral with respect to the Lebesgue measure. Moreover, some functions

that are not Riemann-integrable may be Lebesgue integrable. The Dirichlet function XQ

is such an example. The integral of the Dirichlet function over [a, b] can be calculated by

Lebesgue integration with respect to the Lebesgue measure. Since XQ is a characteristic

function,

(165) QdPLBG =ILBG(Q n [a, b]).
J [a,b]
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In the explanation of the Lebesgue measure in the previous subsection, we have seen that

PLBG(Q n [a, b]) = 0. Hence,

(166) fab] xQ dLBG = 0.

The reader may see, then, that Lebesgue integration is more general and useful than Rie-

mann integration.

We should now familiarize ourselves with the concept of "almost everywhere". For

that, let us first see the following theorem.

(167) Theorem.

IlflI = 0 if and only if f(x) = 0 except on a set of measure 0.

Proof.

(=>): For any a > 0, the "area" of the rectangle whose base is {x I If(x)l > a} with

a height of a is fit under the graph of Ifl. Since the "area" under the graph of Ifl over

{x I If(x)l > a} is given by its integral over {x I If(x)l > a},

a I(x If(x)I > a}) Tf If Id< If Idl = IlfIlI = 0.
J{x I f (x)l> a} Jx

Then, since the set of all x such that f(x) 4 0 is given by U x If(x)I > , which is a
k=1

countable union of sets of measure 0, its measure is 0.

(4): Let A = {x I If(x)l > 0}. A is the set of all x such that f(x) 0 O. We have to show

that jp(A) = 0 entails Ilfl = 0. Since If(x)l = 0 when x e X - A,

I = f f= ldl= I d- + fI dP = fx-A OdPl + fA IfIdP = fAIfdp

Because p(A) = 0, for any simple function s such that 0 s < f, s < f d d = 0. By the

definition of the Lebesgue integral, If If d is the supremum of s dp where 0 s < If .
Hence Ilfl[ = 0. Q.E.D.

When some property holds on the entire domain except on some subset of it that mea-

sures 0, we say that the property holds almost everywhere. When we want to make the

relevant measure p explicit, we write almost everywhere [pu]. "Almost everywhere" is of-
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ten abbreviated as a.e. In this way of talking, the above theorem can be stated as follows:

Ilfll = 0 if and only if f(x) = 0 a.e.

Now, let f and g be functions in L' (X, 5, p) such that f = g a.e. Then, since f - g = 0

a.e., it follows from the above theorem that Ilf - gll = 0. Then,

(168) f dp -fg dp = f -gdp < flf - gI dp = lf -gl = 0,

and thus, f f dp = Ifg dp. Therefore, Lebegue integration absorbs any differences in

the value of integrands as long as the differences are seen only on a set of measure 0.

Conversely, even if the integrals of two functions f and g coincide over every set, that only

tells that f = g a.e. and thus f and g may be taking different values on a set of measure 0.

2.5.5 Differentiation

Suppose that f is a function from Rn into R and that f e L' (Rn, 3 (R) ) , /LBG), where p/LBG

is the Lebesgue measure for Rn. Let F be the indefinite integral F of f:

(169) F(E) = ffdPLBG

Let C(x, h) denote a cube centered at x whose edges are parallel to the coordinate axes and

have a length of 2h. If the quotient of F(C(x, h)) by the volume of the cube C(x, h),

1
(170) F(C(x,h))

PLBG(C(x, h))

has a unique limit as the cube shrinks towards x, that is, as h tends to 0, we call the limit

the derivative of F at x and write it as DF(x):

1
(171) DF(x) = lim F(C(x, h))

h--O P0LBG(C(x, h))

Lebesgue's differentiation theorem is the generalized version of the fundamental theorem

of calculus in Lebesgue theory.

(172) Lebesgue's differentiation theorem

If f e L' (Rn, 93 (Rn), /LBG), its indefinite integral is differentialbe with derivative

f(x) a.e. [PLBG]. That is, for almost every x e R,

1 U
lim C f dLBG = f(x).
h*O PLBG(C(x, h)) (x,h)
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(173) Definition

If fe L1'(Rn, !(Rn), ILBG), any point x at which the following holds is called a

Lebesgue point of f:

lim Ax' . f (x') - f(x) d-LBG = 0
h-O0 LBG(C(x, h)) C (x,h)L

For example, every continuous point of f is a Lebesgue point of f. It is known that the

equality in Lebesgue's differentiation theorem holds at every Lebesgue point of f, and thus

almost every x e IR is a Lebesgue point of f.

2.5.6 The Radon-Nikodym theorem

The Radon-Nikodm theorem is a fundamental, important result of measure theory, and

this theorem will be made use of in the next section when continuous event-related are

analyzed.

Let (X, 5, p) be a measure space. Given a nonnegative-valued function f defined on X,
let D(E) be the integral over E e i.

(174) D(E)= f dp

It is easy to see that 0 is a measure on (X, 5) by confirming that it satisfies the conditions

of measure as follows. First, since f > 0, for any E e 3, D(E) = f fdp Ody = 0.

Second, (0) = f dp = 0. Finally, if {Ek} is a mutually disjoint collection of elements

in 5, then, ( E = f dp = f dy. = (Ek). A natural question that
k=1 Uk=1 E k=1 k=1

arises is this: when a measure D on (X, 5) is given first, can D be represented as the integral
of some function on X? The Radon-Nikodfm theorem answers this question positively,
provided that (D satisfies certain properties, namely, -cr-finiteness and absolute continuity.

(175) Definition

Let p be a measure defined on a o-algebra 5. A set Ee is said to have a cr-finite

measure if and only if E is a union of a countable collection of sets {Ek}keN such

that p(Ek) is finite for all k e N.

Example.

The Lebesgue measure PLBG is a cr-finite measure on 3 (R), since R can be represented as
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a countable union of intervals of the from [Z, Z + 1) with Z being a whole number, each of

which is of measure 0 with respect to IPLBG-

Example.

The counting measure/ICT is not a c--finite measure on 93(R). To see this, assume to the

contrary that there is a countable collection of sebsets {Ek}keN of R such that U Ek R
k=1

and PCT(Ek) is finite for each k. Since PCT(Ek) is finite, Ek has only a finite number of
00

elements. Then, being a countable union of finite sets, Ek must be countable. However,
k=1

co

since Ek = R and R is uncountable, a contradiction obtains.
k=1

(176) Definition

Let p and v be measures on (X, 3). v is a absolutely continuous with respect to p

if and only if for all E c5, a,(E) = 0 - v(E) = 0. In this case, we write v << p.

It is easy to see that the function ( in (174) which is given the integral of f is absolutely

continuous with respect to p. Now, the Radon-Nikodym theorem is given below:

(177) The Radon-Nikodym theorem

Let p be a c--finite measure on a measurable space (X, a), and let v be a c--finite

measure on (X, 5) and v << p. Then, there is a function f from X into [0, co) such

that for any E e 3,

v(E) = f dp

For the proof, the reader is referred to the aforementioned textbooks.

Finally, I would like to end this section by introducing the concept of singular measure.

(178) Definition

Two measures Po and pIl on a measurable space (X, ') are mutually singular if

and only if there are disjoint sets Eo and El in 3 such that E u E = X and

Po(EI) = pi(Eo) = 0. In this case, we write po ptl.
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2.6 Application of Lebesgue integration to measure phrases

In Sections 2.2 and 2.3, we analyzed discrete event-reatled readings with truth conditions

involving the summation of the following form:

(179) QM(SDIC ) (si)
iey

In Section 2.4, I showed that this does not work for continuous event-realted readings,

and that an integral method is necessitated. In this section, I will thus analyze continuous

event-realted readings with integration, but I will also adopt this approach to discrete event-

reatled readings. There are a couple of reasons for this move. First, we must realize that

index set y in (179) is not something prescribed by the sentence. What the earlier analysis

says is merely that when A is the set of all atomic situation contained the sentence's context

(like yesterday), if there is an index set y such that A = {si}y and si 4 sj -+ i : j, then

the sentence can be analyzed with (179). At the end of the day, however, the context time

interval (such as yesterday) that generates A must be abstracted over, especially because the

abstracted context time variable can be quantified over as observed by Pratt and Francez

(2001). Therefore, y cannot be predetermined before the context time variable is provided,
and thus the precise formulation of the analysis must have y existentially bound locally.

The correct analysis of discrete event-related readings should then in general look like the

following:

(180) Al. 3y { s }i~e is the set of all the situations within the context time interval I

A [si sj - i # j] A pM(SDIC )(si) > 4000

Despite the fact that the value of the sum of (179) is not affected by the choice of y, in this

formulation, the value of the sum appears to depend on y. Furthermore, y is not rendered
any meaningful linguistic interpretation. Thus, (180) is a very awkward way of formulating

the analysis and is hence undesired. When integration is employed, however, this undesired

variable y is eliminated from our truth conditions. The second reason is that by analyzing

both discrete and continuous event-related readings with integration, we achieve a unified

view of event-related readings. By virtue of Lebesgue integration and measure theory on

which it is built, the analysis provides an insightful view to our understanding of non-

presuppositinoal noun phrases and temporal expressions.
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2.6.1 Discrete (telic) events

Let us begin our analysis with discrete event-related readings. What we would like to do

is to translate the summation of the form (179) into a Lebesgue integral. The function

to be integrated here is eM (SDIC'), a function from situations into (non-negative) reals.

Therefore, we have to consider the measure space (A, a, p), where p is an appropriate

measure of situations. What becomes crucial is what kind of measure p should be. In the

present discussion, the world of situations is always fixed (to the actual world @). and as

a consequence, what we need to consider in effect is to provide an appropriate measure

to time intervals. This means that in order to develop a correct analysis of discrete event-

related readings, we must first develop a correct theory of the temporal interpretation of the

main predicate that describes discrete events.

Let us thus start with the following simple sentence that describes discrete events but

has no event-related-reading-inducing noun phrase:

(181) John jumped exactly three times last week.

Suppose that John actually jumped exactly three times during the time period of the last

week, and the running time interval of these three jumping events are 132, 150 and 148. Under

this scenario, (181) is a correct statement. Therefore, to capture its truth conditions, the set

of all time intervals that are the running time intervals of John's jumping in the last week,

namely {132, 150,148}, should be measured as 3. Thus, the counting measure PCT is the

measure we need:

(182) PCT({132,150,148}) = 3

Now, let f(1) be a function from time intervals into {1, 0} such that f(1) = 1 iff I is the

exact running time of an event of John's jumping:

(183) f = AI e Di. [there is an event of John jumping in @ whose running time is I]

Under the above scenario, f(I) is represented as follows:

(184) f (I) if I = 132 , 150 , 148

(184) f()= otherwise

The characteristic set of f is thus {132, I50, 148}. Then, according to the definition of Lebesgue

integration, (182) is written as a Lebesgue integral of f with the counting measure over the

set of all atomic time intervals in the last week:
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(185) f dcT = CT({132,150, I48}) = 3(185) illleATi A Icthe-last-week}

Essentially, this is the truth conditions of (181). However, our assumption is that predi-

cates have a situation argument, rather than a time interval argument. We should therefore

translate the above truth conditions in terms of situations. In the case of (181), the VP will

provide the property of situations As E Ds. jump(s) (John), whose characteristic set is given

by the following:

(186) {s I jump(s)(John)(s)} = {(@,132), @,150>, @,148)}

Then, we can actually obtain the set of time intervals {I132, 150, 148} by applying the projec-

tion map 7ri to the members of the above set of situations:

(187) {132,150,148} = {7ri(K@,32)),7ri(K@,I50o),7ri((@,148))}

Now, given a function p from domain D and into codomain C, for any subset X of D, let us

adopt the writing convention:

(188) p(X) = {p(x) I xeX}

In this notation, o can then simultaneously be regarded as a map from subset of D into

subsets of C. With this notation, (187) can be written as follows:

(189) {132,150,148} = ri({(@,132>,(@,150,(@,148>})

Then,

(190) PCT ({132, 150 ,148) = CT(ri({(@,132), (@,50),(@, 148)}))

= (PCT o 7ri) ({(@, 132>, (@, 1o50>, @, 148))

Regarding 7ri as a map from sets of situation into set of time intervals, we can see that the

composite function /CT o 7ri gives the sought measure for situations.14 We thus obtain the

following equation:

(191) f diCT = As e Ds. jump(s)(John) d(PcT o ri)

Here, A is the set of all situations whose time interval is an atomic time interval within the

last week and whose world is the actual world @. This in fact yields the correct result:

14Actually, we could adopt PCT instead of /cT ori and obtain the same results. The reason we adopt PCT o0ri
is to make is clear that we are concerned with time intervals, and also to make the analysis consistent with
the analysis of continuous events, which is presented shortly.
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(192) As e Ds. jump(s)(John) d(PcT o 7ri) = (PcT o 7r i ) ({<@, I32), @, I50>, K@, I48>})

= ICT(7ri(({@,I32), @,I50), @,148)})) = PCT({132, I50, 48}) = 3

To derive these truth conditions by compositional semantic computation, we need only

assume the following denotation for the adverbial exactly three times:

(193) [exactly three timesl= AXc D<s,t>. [XAd(#cT o ri)= 3]

The semantic computation is shown below:

(194)
[A As Ds. jump(s)(John) d(PcT o ri) = 3]

Ax e Ds,t>. [f A
exactly t

d(PcT o 7i)= 31

ee times As e D jump(s)(John)hree times

John Axe De.

John jump(s)(x)

As' E Ds. Ax De. s

jump(s')(x)
jumped

Assuming as before that numerals denote properties of numbers, the lexical entry of times

is given by the following:

(195) [times]= Av e D(n,t>. A e s,t>. In e Dn [v(n) A fX d(cT o 7ri) = n]

Having provided an appropriate measure for analyzing discrete events, let us return to

the discussion of event-related readings. Let us consider the following sentence:

(196) Mary hit exactly eleven 20-year-olds last week.

According to the analysis in Section 2.3, the event-related reading of (196) is analyzed as

follows:

(197) PeATOM (SDIC Mar-d(si) 11
iEy
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Now that we have determined that discrete events are counted by the measure pCT o 7ri, this
is straightforwardly translated as follows:

(198) QATOM (SDIC r ) d(,ucTo li) = 11

Let us confirm that this in fact gives the correct truth conditions. To that end, consider the

scenario described below:

(199) Let IM, IT, IRw, IF and Is be a time interval on Monday, on Tuesday, on Wednes-

day, on Thursday, on Friday and on Saturday of the last week respectively.

There was an event whose running time was IM, which was an event of Mary hitting

Ann.

There was an event whose running time was IT, which was an event of Mary hitting

Bill and Chris simultaneously.

There was an event whose running time was lw, which was an event of Mary hitting

Dave.

There was an event whose running time was IR, which was an event of Mary hitting

Ann.

There was an event whose running time was IF, which was an event of Mary hitting

Ed, Fred, George and Henry simultaneously.

There was an event whose running time was Is, which was an event of Mary hitting

Ann and Bill simultaneously.

Ann, Bill, Chris, Dave, Ed, Fred, George and Henry were all of age 20 throughout

the last week.

Thus, the individuals hit by Mary are 8 different people, namely, Ann, Bill, Chris, Dave,
Ed, Fred, George and Henry, but Bill was hit twice and Ann was hit three times. Under this

scenario, (196) should be true on its event-related reading. We should thus verify whether

(198) actually holds. To begin with, note that we have the following true formulae under
this scenario:

(200) SDIC20 ((@, I)) = Ann

SDI 20-yr-o ld ( IT)) = Bill Ue Chris-- ''Mary-hit ((@' = hi
SDIC 2 y d (@, w)) = Dave

SlDIC 20-yr-oldSD Mary-hit ((@' IR)) = Ann

SDIC20-yr (@, I)) = Ed ue Fred ue George ue Henry

SDICMary-hit@ Is)) = Ann uL Bill

For any other situation s e A, SDIC2 ys) = I e
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Hence 15

(201) ATOM (SDIC Mary-hitd IM)) = infpe, ATOM((@, [p, p])) (Ann) = 1

QATOM(SDIC Mary-hit ( @ I)) = inf p , ATOM ((@, [p, p])) (Bill ue Chris) = 2

QATOM\ (SDIC Maryhtd @ Iw)) = infpElw ATOM((@, [p, p])) (Dave) = I

QATOM (SDIC i) ((@, IR)) = infpeR ATOM ((@, [p, p]))(Ann) = 1
QATOM(SDI 20-yr-old

ATOM (SD Mary-hit) (@, IF)) = infp ,F ATOM((@, [p, p]))
(Ed ue Fred ue George ue Henry) = 4

OATOM M(SDIC yr-od ((@Is)) = infpls ATOM((@, [p, p]))(Ann ue Bill) = 2

For any other situation s e A,

ATOM (S Mary-ohit )(s) = infperi(s) ATOM ((@, [p, p])) (le) = 0

Hence

(202) {s c A I rAToM (SDIC t)(S) = 1} = { @,IM,@,IW>, @,IR)}

{sEA I eAroM (SDICMaryitd)(s) = 2} = {@, I), (@, Is>

{s e A AI ATOM (SDIC rt rd)(s) = 4} = {(@, IF>)

For any positive number n : 1,2, 4, {s e A I ATOM (SDICMyr-td) (S) = n = 0

ATOM sDICLMaryhit) is thus a simple function, taking only three positive values 1, 2 and 4,

and is represented as follows:

(203) AToM (SDIC2rit) = 1 X(- l@,M),@,JIw,(@,IR } + 2 X{(@,JT>,(@,Is> + 4 -X<@,IF

Its integral over A is thus calculated as follows and yields the desired value:

(204) PATOM (SDIC~2"od) d(pcT o ri)

(204) MrhATOM ) .. Mary-hit0

= 1 -X{<@,IM>.<@,w>.<(@,R>} + 2 -X{<@,ITr).><@,Is>} + 4 -X{@,i>} d(pcT o ri)

= 1- (P'CT o i) ({(@, IM), (@, Iw), (@, IR)}) + 2. (PCT O 7i) (((@, IT), (@, Is)))

+ 4- (.CT o ri) (((@, IT)})

= 1 JUcrT({I, Iw, IR}) + 2- IlT({IT, IS}) + 4 -/CT({IF))

=1-3+2.2+4-1

= 11

'sSince the atomicity of these people never changes, the presupposition of eATOM (SDIC2-ar) is auto-

matically satisfied.
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To compositionally derive these truth conditions, we need only modify the lexical entry

of OATou in (108) accordingly as follows:

(205) [- ATOM = Av e D<n,t>. AR e D(e,<s,t>>.

n e Dn [v(n)A ATOM (As e Ds. e {x I R(x)(s)}) d(/CT7ri) = n]

With this, the very same syntactic structure as assumed earlier computes the truth condi-

tions in (198). First, it combines with the numeral to yield the following:

(206) [exactly eleven OATOM FA [0OATOM (exactly eleven])

=-AR e D<e,<s,t>. AATOM (As e Ds. { R(x)(s)}) d(cT o i) = 11]

This in turn takes the situationally dependent relation SDR rd (x) (s), which has been
Mary-hit (X)(S), which has been

created as the result of the movement of the measure phrase to the position right above the

situation A abstractor, and yields the desired truth conditions. 16

As shown just above, the translation from (197) to (198) works just fine. I would now

like to show that this is not a lucky coincidence, but it is because the following equation

generally holds:

(207) Me (SDIC) (si) = fM(SDICW) d(~cT o ri)
iE y

If this is shown, it means that our earlier analysis with summation of discrete event-related

readings can always be translated into the new integral approach. This equation actually

follows from the fact that any summation can be translated into a Lebesgue integral with

the counting measure, and vice versa. This is more or less intuitively obvious. For each

positive value, the integral with the counting measure counts the number of the elements

that are mapped to that value and multiplies the value by the number, but this is the same

as if this value got added that number of times. I state this as a form of a theorem below,
which concludes the present subsection:

(208) Theorem

Let A be a set of atomic situations: A c ATs, and (A, 5,lCTTori) be a measure space.

Let f be a function from Ds into nonnegative reals. If f d(PcT o ri) < +oo, and

if there is a family of atomic situations indexed by y such that A = {si}iEy and

si = si --- i j,

16Recall that SDIC Mary-hit (x)(s) = As D . e {x I SDR ar-d
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f fd(cT o 7ri) = f (si)

Proof.

Let S0 = {seA I f(s) }and S = {seA - < f(s) < - for 1 < n. Note that
n+ 1(- n

1  1f d(JCT o 7"i )  f d(PCT O 7 i ) - d(PCT o 7"i) - I X(CcT o i ) (Sn)-

A i Si n+l n+l

If Sn contained infinitely many elements, then (PCT o Ii)(Sn) = oo, and thus we would1
obtain f d(pT o 7ri) - x co = co, which would contradict the assumption that

f is integrable. Hence, for each n, Sn is at most finite. IU 1' S, gives the support of f,

written as supp(f), viz., {s e A I f(s) > 0}. supp(f) is countable because it is a countable

union of finite sets. This in turn means that f(supp(f)) is countable, i.e., f yields at most

countably many positive values.

If supp(f) = 0, i.e., f = 0, then the theorem trivially holds. Therefore, let us assume

that supp(f) - 0, i.e., for some situation in A, f yields a positive value. Because f is

integrable, f is bounded in A, and thus has a maximum value in A. Let al = max f(A). For

k > 1, let ak = max(f(A) - {a1 , a 2, ... , ak-1}). This way, we obtain the sequence {jk} Of

the positive values that f yields, such that al > a 2 > a3 > .... For any positive value a

that f yields, there must be some number k such that ak = a. This follows from that fact

that {s e A I f(s) > a} is at most finite for any a for the same reason that Sn is at most

finite, and that as a result, f({s e A I f(s) > a}), viz., the set of the values grater than a

that f yields, is at most finite as well.

Now, suppose f yields only a finite number of positive values a 1, a2, ... , an. Since

f-' (ak) is finite for each k, let o-(k) < co be the number of the elements in f-' (ak). Then,
for each k, we have (CT o 7ri)(f-l(ak)) = o-(k). Therefore,

n n

f d(cT o ri) = ak CTo ri) (f'(ak)) = k - (k).
k=1 k=1

Let us now construct a subfamily {sij}l<j<:(1)+ (2)+...+o(n) of {sii,,y as follows. The first

-(l) members are the o-(l) members in f-'(al): {Sil,Si2 . .. , si( 1)} = f- 1 (al). The next

o-(2) members are the 0-(2) members in f-'(a2): {Si,,()+, Si(1)+2,..., Si,(1)+(2 ) = f-1( 2)

And in general, {sio-(+...+(k)+1, Si,(1)...+(k)+2, .' , Si,(1)+---+(k)+(k+1)k ) = f-1' (k+1). If i {ij I
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1 _ j _ c-(1) + or(2) + -- -+ o-(n)}, then f(st;) = 0. Therefore,

o-(1)+o-(2)+--+o-(n)

Zf(si)= f(s) + f(si)
iEy j=1 iey, i { ijll ijo-(1)+o-(2)+.--+o-(n)}

o-(1)+r(2)+.-.+or(n)

= f (s)+ 0
j=1 iEy, if{ij 1 jo-(1)+o-(2)+-..+o-(n)}

o-(1) +o-(2) +---+o-(n)

Z f (si)
j=1

0-(1) o-(2) o-(n)

Z f (st;) + f (s ) + f (s,)
j=1 j=o-(1)+1 j=o-(n-1)+l

or(l) o-(2) o-(n)

=Z a+ Z a 2 +"+ , ak

j=1 j=o-(1)+l j=o-(n-1)+1

= a- o-(1) + a 2 o-(2) +-.. + ak- o-(k)
n

= ak - o(k).
k=I

Hence, we obtain:

f d(cT o 7ri) = Eak o-(k) = f (s).
A k=1 iey

When f yields infinitely many (but countable) positive values,

n n

f d(PcT o ri) = lim ak '(ICT o ri) (f-' (ak)) = lim ak o-(k).
A n--0 1 n--+oo00

k=l k=l

We can then construct a subfamily { sji)jeN of {siliy in the obvious way, and by taking the

limits, the theorem is proved similarly for this case as well. Q.E.D.

2.6.2 Continuous (atelic) events

Before we tackle continuous event-related readings, let us begin with a simple sentence that

describes continuous events but does not contain an event-related-reading-inducing noun

phrase, in order to determine the appropriate measure for situations when dealing with
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continuous events.

Consider the following sentence:

(209) John ran for exactly seventeen minutes yesterday.

Imagine that yesterday, John ran from 6:03:00 a.m. through 6:08:00 a.m and also from

4:11:00 p.m. through 4:23:00 p.m. and did not run at any other time. Then, the set of all

the time points at which John was running yesterday is represented as the union of two

intervals as follows: 17

(210) J = [6:03:00 a.m., 6:08:00 a.m.] u [4:11:00 p.m., 4:23:00 p.m.]

The time interval [6:03:00 a.m., 6:08:00 a.m.] has a length of 5 x 60 = 300 seconds, and the

time interval [4:11:00 p.m., 4:23:00 p.m.] has a length of 12 x 60 = 720 seconds, and thus,

J has a length of 300 + 720 = 1020 seconds in total. This is actually what the Lebesgue

measusre gives to J, provided that the time line is isomorphic to the real line and its unit is

the second. The truth conditions of (209) are then expected to be given by the following:

(211) IPLBG(J) = 1020

In the case of (209), the property of situations given by the VP is As e Ds. run(s) (John).

Since running is a continuous event, this is true only of momentary situations, i.e., for

situations of the form (w, [p, p]), where p is some time point. For example,

run((@, [6:06:06 a.m., 6:06:06 a.m.])) (John) is true, because John was running at 6:06:06

a.m., but run((@, [6:03:00 a.m., 6:08:00 a.m.])) (John) is false. The characteristic set of

the function As e Ds. run(s)(John) is thus given by the following:

(212) {s I run(s)(John)(s)} = {(@, [p,p]) I p J}

Because this characteristic set is a set of situations while the Lebesgue measure takes mea-

surement of sets of time points, we have to convert sets of situations to corresponding sets

of time points, just as we converted sets of situations to sets of time intervals in analyzing

discrete events in the previous subsection. For situation (@, [6:06:06 a.m., 6:06:06 a.m.]),

we can first apply the projection map ,ri to yield a corresponding time interval:

(213) iri((@, [6:06:06 a.m., 6:06:06 a.m.])) = [6:06:06 a.m., 6:06:06 a.m.]

Although [6:06:06 a.m., 6:06:06 a.m.] is momentary, it is still an interval (i.e., a singleton

set containing only one time point), and not a time point. We thus define the map t as

' 7Suppose that the times here refer to the times in yesterday only.
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follows:1 8

(214) For any intervals of the form [p, p], where p is a time point, t([p, p]) f p

t is a bijective map between momentary time intervals and time points. Applying t to mo-

mentary time interval [6:06:06 a.m., 6:06:06 a.m.], we can obtain the corresponding time

point as follows:

(215) t([6:06:06 a.m., 6:06:06 a.m.]) = 6:06:06 a.m.

We can then see that the composite map t o iri gives the sought conversion from situations

into time points, and pLBGotolri gives the sought measure for situations. The truth conditions

of (209) can then be expressed by the following:

(216) f s e Ds. run(s)(John) d(pLBG o ri) = 1020

Here, B is the set of all momentary situations in yesterday, i.e., {(@, [p, p]) I p E yesterdsy}.

Since t is not defined for intervals that are not momentary, pLBG Ot Ori is not defined for situ-

ations that are not momentary. Accordingly, the domain of the integral must be restricted to

sets that contain only momentary situations. The above truth conditions are indeed correct

as confirmed by the following:

(217) As Ds. run(s)(John) d(,PLBG ot o i)

= (pLBG ao oi T)({s I run(s)(John)(s)})

= (PLBG Ot o 7ri)((@ P, [,) I P E J})

= (PLBG 1) (iri({(@, [p, p]) I P e J}))

= (PLBG 0 1) ({[P,P I P J))

= PLBG( ({ [p, p] pe J}))

= /ILBG({P I P J})

= ILBG(J)

= 1020

To derive these truth conditions by compositional semantic computation, we can as-

sume the following denotation for the adverbialfor exactly seventeen minutes:

18This may be identified with the description operator usually notated with L, since with it, the function
defined here can be represented as AI.tp[p e I].
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(218) [for exactly seventeen minutes]

= G D<s,t>. [Xd(pLBG O iri) = 1020

The semantic computation proceeds just in the same fashion as in the discrete case with

three times in the previous section. Assuming as before that numerals denote properties of

numbers, the lexical entry of minutes should then be given by the following:

(219) [minutes = Av e D<n,t>. AX e D<s,t>. 3n e Dn [v(n) A^ X d(ILBG O O 7ri) = 60n]

Having established the measure for situations used in analyzing continuous events, let

us now discuss continuous event-related readings. We would like to analyze (132) from

Section 2.4:

(132) John ate (exactly) 666 cubic centimeters of bread.

In the analysis of discrete event-related readings, we only needed to integrate the relevant

function defined with g with the measure used in analyzing simple sentences describing

discrete events. If that strategy would carry over into continuous event-related readings,

(100) would be expected to be analyzed as follows:

(220) {cubic-centimeter (SDICbeat) d(PLBG do 7ri) = 666

Unfortunately, this does not work. In Section 2.4, we saw that Qcubic-centimeter (SDICeat)

0 for all momentary situations, since for a time point p, it is given by fr{r(p') }2 v(p') dp'.

The integral then becomes 0, and hence the above truth conditions are not correct. This is

merely a restatement of what was discussed in Section 2.4. As suggested there, what needs

to be integrated is the rate of the volume of the bread eaten by John. Therefore, in what

follows, I construct the relevant function that gives the relevant rate for continuous event-

related readings.

In general, for a given situation dependent individual concept SDIC', where/ is a

predicate for continuous events, how can we find the relevant rate to be integrated? To

answer this question, let us consider the individual given by e SDIC ((w, [p, p])).
pEl

SDIC" ((w, [p, p]>) is the individual which bears a relevant thematic role to an event de-

scribed by V/ at the momentary time interval [p, p] in world w. For instance, SDICbread

((@, [p, p])) gives the individual which is bread and is eaten by John at the moment p in

the actual world. Assuming that individuals constitute a complete lattice,
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Ue SDIC" ((w, [p, p])) defines an individual, which is the collection of all the individu-
pel

als that were involved in the momentary events during time interval I in world w. Thus,

SDIC ea (@, [p, p])) is the individual which is the collection of all the bread that
pel

was eaten by John during I in the actual world. Consider the scenario considered in Sec-

tion 2.4, where John was eating the bread during the time interval [P0, p1]. Assuming

that I = [a, b] c [Po, p,], this is the part of the bread that begins from the point that

is { v(p) dp cm away from the original end of the piece of bread where John's mouthPo
started and ends at the point that is v(p) dp cm away in the same sense. 19 In other

Po

words, it has the shape of a cylinder of a length of v(p) dp cm. If I n [po, pl] = 0, then

e SDICbea (@, [p, P])) = le, as John did not eat any bread in I.
pel

Recall that one important difference between event-related readings and object-related

readings is that in event-related readings, one and the same individuals could be counted

multiple times in case they get involved in multiple events of the same sort, while object-

related readings never count one and the same individuals more than once. Since we are

discussing continuous event-related readings, we should in general take into account the

possibility that the same individuals get involved in multiple events of the relevant sort.

The type of the events we are considering is production and consumption. While it is

very hard to imagine that one and the same individual gets produced more than once, it is

possible to think of scenarios where one and the same individual gets consumed multiple

times in some fashion. For example, one could imagine that while John is drinking XYZ,

some XYZ that John has drunk can somehow get out of John's body (maybe a catheter is

inserted to John's stomach and drains its contents out) and enter John's mouth again. In

this case, some individual that is XYZ gets drunk by John again, and the volume of this

body of XYZ at the time of John's drinking it should be counted for each time, if one is to

describe this scenario by the event-related reading of a relevant sentence. Or, imagine that

John's work is to spread XYZ over the windows.20 Suppose that John spread some XYZ

over the windows and then somebody collected the XYZ off the windows. If John spread

this XYZ over the windows again, the volume of this XYZ at the time of John's spreading

19Recall that P0o is the time point where John started eating, and v(p) is the speed with which John's mouth
travels.

201 thank Irene Heim for suggesting this story.
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it should be counted for each time, if one is to describe this by the event-related reading of

a relevant sentence.

However, if one and the same individual is to be "consumed" (eaten, spread over the

windows, etc.) more than once, practically, there will always be some time span between

the consumption events. Before being able to drink the same XYZ, John has to wait for it to

first go through his oesophagus, his stomach, and the catheter. Similarly, before being able

to spread the same XYZ over the windows again, someone has to spend time on collecting

it. Therefore, I think it is safe to assume that if one looks at a sufficiently short time interval,

no individual ever gets "consumed" more than once. I thus make the following claim about

the models of worlds we have in our mind:

(221) Claim

For any time point p, there is an open time interval G containing p such that

Vp, P2 E G [p, : P2 - SDIC ((w, [Pi, P])) ne SDIC ((w, [P2, p2)) = e]

Then, our goal is to construct the relevant rate function to be integrated for a short enough

time span that satisfies the above conditions. Once we obtain a series of such rate functions

for a series of short time spans, the rate function for any longer time span can be obtained

by "stringing them together".

Now, let G be an open time interval that satisfies the condition in Claim (221). We

define Ew,q from time intervals contained in G into nonnegative reals such that for any

EcG,

(222) Ow,qE) M((w, [q, q])) (Le SDIC ((w, [p,p]))
pEE

ew,q is a function that, given a time interval E, yields the measurement of the individual

le SDICw ((w, [p, p])) at time point q in world w. When (p = bread, r = John-eat,
pGE

M = cubic-centimeter, O@,q(E) is the volume in cubic centimeters at time point q of the

bread eaten by John during E in the actual world. Under the scenario considered in Section

2.4, no part of the bread was eaten more than once by John. Therefore, for any open time

interval G : [Po, P], the conditions in Claim (221) is met. E = [a, b] ; [Po, Pi], Ow,q(E)

gives the volume of a cylinder of a length of v(p) dp cm. Since the radius of this cylinder

at time point q is given by r(q) cm, 0@,q(E) = 7r{r(q)}2  v(p) dp. If E n [po, P] = 0,

then O@,q(E) = cubic-centimeter(Ie) = 0. For convenience, let us refer to the size of

something measured at time point q as q-size. Let fq(p) denote the rate of q-volume of
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bread that John eats per unit time at p. From the scenario, we know that fq(p) is given by

(223), and so its graph looks, for instance, like (224):

(223) fq (p) = 7ri r (q ) }2 v ( p )

0(224)

(224)

if P [P0, P1]
if p [Po, Pl]
if p 4[po, pi]

Po a b pl

Obviously, ®@,q(E) is given by the area (i.e. integral) of fq(p) over E:

(225) @,q(E) = f fq(p) dPLBG

In the case of the bread-eating scenario, the relevant rate function fq was provided by

the scenario as in (223) above. In the general case, however, the concrete form of the

relevant rate function is unknown. Instead, we are only given Ow,q by the compositional

semantics in (222). Therefore, in order to obtain the relevant rate function, it is necessary

to differentiate Ew,q. According to the definition of derivatives, the derivative Dw,,q at time

point p is given by the following:

1
(226) DOw,q(p) = lim h w,q(C(p, h))

h--0 /ILBG(C(p, h))

Here C(p, h) is a cube centered at p with an edge length of 2h. Since G is a subset of R',

the cube C(p, h) here is 1-dimentional and hence C(p, h) = [p - h, p + h]. Therefore,

1
(227) DOw,q(p) = lim Ow,q([p- h,p + h])

h-O PLBG([p - h, p + h])

1
= lim -Ow,q([p - h, p + h])

h-0O 2h

= lim M ((w, [q, q])) U SDIC ((w,[p', p]))
p'E[p-h,p+h]
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If this limit exists, it will give us the rate of q-size of the the individuals which is consumed,

etc., per unit time at almost every p e G. Then, by integrating this rate over a given time

span, we should be able to calculate the total amount of consumption, etc.

For the bread-eating scenario, 0@,q is already expressed as the integral of fq in (223).

Therefore, it follows from Lebesgue's differentiation theorem that DE@,q(p) exists a.e.

[ILBG] and that it is equal to fq a.e. [tLBG]. Let us confirm this by actually calculating
DO@,q(p). If p e (P, Pi),

(228) DO@,q(p)

= lim
h-lim - cubic-centimeter((W, [q, q]))\ Ue

p'e[p-h,p+h]

SDICbreat (w, [p',

-*-John-eat ((W, [P I, >')

1 p+h

lim-i 7r{r(q) 2  v(p') dp'
h--+0 2h J-h

= ,r{r(q)}2 lim v(p') dp'
h--o 2h Jp-h

= 7r{r(q)} 2v(p)

In the last equality, I have used the assumption that v(p) is a continuous function. If p

[Po, Pl], DO@,q(p) = 0 because O@,q(p) = 0. If Po e G,

(229) DO@,q(po)

= lim (O@,q ([po - h, po)) + ®@,q([PO, P + h]))

= lim 1(0 + e,q ([Po, Po + h]))

= lim O@,q ([o, po + h])
h-.o 2h

1 Po+h
= lim - h v(p') dp'

h->o 2h Po

- r{r(q)}2v(p)
2

1
if Pl e G, DEO@,q(P) = - j{r(q)} 2 v(pl) is obtained. Putting these together,

is defined for all p e G as follows:

ir{r(q)}2 v(p)

(230) D9@,q(p)= - 7r{r(q)}2 v(p)

0

if p (Po, P1)

if p = Po, P

if p [Po, Pl]
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Notice that if 7r{r(q)}2 v(PO) # 0, then at p = po, D®@,q(p) is not equal to fq(p), even
though ®@,q is obtained by integrating fq (see (225)). This is because in that case, fq is not

continuous at po, and thus po is not a Lebesgue point of fq. That po is not a Lebesgue point
of fq when 7r{r(q)}2 v(po) 0 can be confirmed as follows:

(231) lim 1
h-O ILBG(C(pO, h)) (po, h)

1
= lim

hO LBG([po - h,

= lim p
h--O 2h j[po-h, po+h]

=lim (f Ap.
h-*O 2h [po-h, po)

+ {[po,o +h]

Ap. jfq(p) - fq(po)l dILBG

Ap. ]fq(p) - fq(Po)J dLBG
Po + h]) fpo-h,po+h]

. fq(P) - fq(Po)I dLBG

fq,(p) - f(Po)I dPLBG

Ap. fq(p) - fq(po)I dPLBG

= lim f Ap. fq(p) - fq(Po)I dLBG
h--,O 2h [po-h, po)

+ li p. If q(p ) - fq(po)I dPLBG

The first term is calculated as follows:

(232) lim ATho2h [po-h, po)

= lim -I
h* 2h j [po-h, po)

= lim
h--O 2 po-h,Po)

. fq,(P) - fq(Po)I dpLBG

Ap. 10 - 7r{r(q)}2 V(PO)I dIPLBG

Ap. 7r{r(q)}2 v(po) dPLBG

= lim -r{r(q)} 2 V(Po)LBG([Po
h-+ 2h

= lim - 7r{r(q)}2 v(po) h

h-+O 2I i r{r(q) }2 v(po)

2
Let us now evaluate thr(q)}2e seond term.)

Let us now evaluate the second term.

- h, po))
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(233) lim -p. f(p) - fq(Po)I dULBG
h-,O 2h [ p(oPo+h]

= lim f ,Ap. I{r(q)}2 v(p) - 7r{r(q) 2 v(po)I d LBGh--,O2h [Po, Po+h]

= 7r(q) }2 opo+hl p. Iv(p) - v(po)I dP.LBG

Since v is continuous by assumption, for any small positive number e, there is some 6 such

that if Jp - Pol < 6, then [v(p) - v(po)I < E. Then, when h < 6,

(234) J1 Aip. Iv(p) - v(Po)I dPLBG

SAp] . 6 dPLBG = LBG ([Po, Po + h]) = h = -
2h poPo+h] 2 h 2h 2

Since e is an arbitrarily small positive number, this means that

(235) lim f Ap. Iv(p) - v(po)I dPLBG = 0
h-+O 2h [Po,po+h]

Therefore,

(236) lim - Ap. Ifq(P)- fq (Po) d/LBG
h-O 2h [P, po+h]

= {r(q)2 im v() - v(o) dpLBG = 0h-o 2h [o, po+h]

It follows from (231), (232), and (236) that

(237) lim I Ap. fq(p) - fq(po) d/ILBG
h-+O IPLBG(C(po, h)) C(po, h)

1 1
= r{r(q)}2 v(po) + 0 = - r{r(q)}2 v(po) : 0

2 2
A parallel remark goes for pi as well, that is, Pl is in general not a Lebesgue point of fq.

However, we can see that D®@,q(p) = fq(p) always holds except at po and pl and the set

{Po, Pl } is of measure 0, as Lebesgue's differentiation theorem has asserted.

For the bread-eating scenario, we were able to calculate the derivative, since we had

given a good, specific model. For the general case, however, we need to check whether

the derivative of ®@,q is defined. Below, I will show that it is actually defined a.e. with the

help of the Radon-Nikod'm theorem, but to that end, we should make a couple of natural

assumptions about our models of worlds.

To begin with, notice that Ow,q is a set function, as its domain consists of intervals,

which are sets of time points. We can now observe the following:
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(238) Theorem

Let G be an open time interval that satisfies the conditions in Claim (221). w,q is

then a measure on (G, f (G)).

Proof.

We verify that ®w,q satisfies the three conditions of the definition of measure (149).

(i) The nonnegativity of w,,q directly follows from the nonnegativity of situation-sensitive

lattice-measure function M.

(ii) ®w,q(0) = M((w, [q, q])) ( e SDIC ((w, [p, p])) = M(w, [q,q]) (e) = 0.

(iii) Let {Ek}kEN be a pairwise disjoint collection of elements in fB(G). Then,

w,q ( Ek = M((w,[q,q]>) e SDIC ((w,[pp]>)
k= peU Ek

= M(Kw, [q, q]>) ( e Le SDIC (w, [p]).
0k=l peEk

Given that G satisfies the conditions in Claim (221), no two elements of

{ e SDIC (Kw, [p, p])) overlap. Therefore, it follows from the countable additivity

of M that

M ((w, [q, q])) ( L e SDIC (w, [p, p]>)
k=1 pEEk

k=1 peEk

00

= O w,q(Ek)"

k=1

Hence,

®w,q ( Ek) - ®w,q(Ek).
k=1 k=1

Q.E.D.

I would now like to make a couple of natural claims.
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(239) Claim

®w,q is a o--finite measure on (G, 9 (G)) for any w and q.

Given any bounded time interval E, it is normal to assume, for example, that the bread that

John eats in w during E cannot have infinite volume regardless of when its volume is to

be measured. For instance, under the scenario considered in Section 2.4, for E = [a, b],

this volume is given by @,q ([a, b]) = Ir{r(q)}2  v(p) dp. For this to be infinite, either

the diameter must be infinite at q or John must have eaten an infinite length of bread in

this bounded time span, but neither is imaginable. Given any open time interval G, one

can express G as an at most countable union of bounded intervals.21 0@,q in this case is

then a o--finite measure on (G, 9(G)). In general, the 0w,q that is defined for any nominal

predicate <p and a main predicate tf of production / consumption is expected to be a--finite

since one cannot produce or consume an infinite amount of something in a bounded time

span. Therefore, the above claim is a very natural assumption of the models we have in

mind.

(240) Claim

ew,q is absolutely continuous with respect to IULBG-

Let E c 93 (G) such that PLBG (E) = 0. That is, E is a collection of time points in G whose

collective length is 0. It is then obvious that one cannot produce or consume any positive

amount of something in E and thus ®w,q(E) = 0. Therefore, this claim as well is a very

normal assumption of our models.

Summing up the above two claims, Ow,q is a a--finite measure on (G, 9(G)) and ab-

solutely continuous with respect to the Lebesgue measure /LBG. Recall now that pLBG is

a also a--finite measure on (G, 93(G)). Then, by applying the Radon-Nikod'm theorem to

Ow,q, we can obtain the following result:

(241) There is a 9(G)-measurable function Ow,q from G into [0, +oo) such that for any

Ec G,

w,q(E) = fOw,q(P) dPLBG-

In the case of the bread-eating scenario, function fq in (223) qualifies as 0 @,q for the 0@,q

defined with bread, John-eat and cubic-centimeter. By applying Lebesgue's differentia-

tion theorem to the equation in (241), we can then obtain the following result, just as we

have seen for the model of the bread-eating story above:

21If G is itself bounded, we do not even have to consider this.
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(242) ®w,q is differentiable a.e. [PLBG] on G and its derivative DOw,q(p) is equal to Ow,q(p)

a.e. [pLBG] on G.

By applying the Radon-Nikodym theorem to ®w,q for all q e G, we can obtain a col-

lection of functions {Ow,q}qeG that each satisfy the equation in (214). For each q, we expect

Ow,q(q) to give the rate of the q-size of something consumed or produced per unit time at

q. Thus, we can think of the function Ap. Ow,p(p) (= Aq. Ow,q(q)). For the bread-eating

scenario, Ap. 0@,p(p) = Ap. fp(p) gives such a function. The truth conditions of continu-

ous event-related readings of production or consumption are then in general expected to be

expressed as a condition on the value of an integral of Ap. w,p (p), where the corresponding

,,(p) is defined with appropriate predicates. Unlike in Section 2.4, the integral should

now be given as a Lebesgue integral with the Lebesgue measure. Then, the truth conditions

of (132) should then look like the following:

(243) Ap. O@,p(p) d/ILBG = AP. fp(P) d/ILBG = 666
JLoI [poPl]

Since q varies within G, Ow,q(p) can be regarded as a function defined on the open square

G x G. Then, calculating the integral of Ap. Ow,p(p) can be understood as calculating the

integral of Ow,q(p) on the diagonal {(q, p) I q = p} of this square.

There is a problem, however. In general, when some q e G is fixed, what we know

is only that DEw,q is defined almost everywhere and that Ow,q is equal to DOw,q almost

everywhere. If Dew,q(q) is not defined for some q e G, Ow,q(q) will have a random value

that does not have to do with the rate. In general, when q is not a Lebesgue point of Ow,q,

Ow,q(q) can be any random value. We know from (242) that the set of non-Lebesgue points

of Ow,, is of measure 0 for any q e G. However, it is in theory possible for the set of points

q such that q is not a Lebesgue point of 0 ,,q to be of positive measure, that is, it is possible

that all such "misbehaving" points on the diagonal constitute a set of positivie measure. If

this were the case, we would not be able to obtain the correct total amount of consumption

or production by integrating Ap. 9,,,(p).

To avoid this problem, I would like to make the following claim.

(244) Claim

Let {Ow,q}qeG be a collection of functions whose existence is asserted in (241). If p

is a Lebesgue point of Ap'. Ow,q(p') for some q e G, then, p is in fact a Lebesgue

point of function Ap'. Ow,q (p') for every q e G, and Aq. O,,q(p), a function of q where

p' is fixed to p, is a continuous function of q.
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This claim is not an unreasonable one. To begin with, let us consider the first half of

the claim, namely, the claim that if p is a Lebesgue point of Ap'. Ow,q(p') for some q e

G, then, p is a Lebesgue point of function Ap'. Ow,q(p') for every q e G. This could be

violated if, for instance, for some points qo, q1 e G, Ap'. Ow,qo(p') is continuous at p while

Ap'. 0 ,,q (p') is not continuous at p. However, since Ap'. w,,q(p') is a function that gives

the rate of q-size of something consumed or produced per unit time at p' for almost all

p' e G, functions Ap'. Ow,q (p') and Ap'. 0 w,q, (p') shall essentially be the same thing (almost

everywhere) except that the size on which the rate is based on is measured at different

time points. Thus, if Alp'. w,qo (p') is continuous at p, Ap'. Ow,q (p') is also expected to be

continuous at p and vice versa. Hence, it does not seem to make sense to think of models

where the first half of the claim does not hold. Let us now consider the second half of the

claim, namely, the claim that Aq. Ow,q(p) is a continuous function of q when p is a Lebesgue

point of Ap'. 0,,q(p') for some (in fact, every) q e G. This is also a very natural assumption

as what it says is just that the rate of q-size of something produced or consumed per unit

time at p gradually varies as q varies. 22

Now, pick some qo e G. Since we are assuming that ew,q(E) is finite for any bounded

interval E, Ap. Ow,qo is locally integrable on G. Therefore, almost every point of G is a

Lebesgue point of Ap. 0w,qo. Let G be the set of all Lebesgue points of Ap'. w,qo (p'). Then,

by Claim (244), if p e 0, p is a Lebesgue point of Ap'. Ow,qo (p') for every q e G. Thus,

(245) G = {p I peG A Vq[q E G -- p is a Lebesgue point of Ap'.Ow,,q(p')]}

By Claim (244), for each p e G, Aq. Ow,q(p) is a continuous function of q. Therefore, for

any qi e G, we can obtain the value of Ow,q, (p) by virtue of taking the limit of O,,q(p) as q

moves from q0 to ql. It can then be concluded that for all p e G, i.e., for almost all p e G,

Ow,,(p) gives the relevant rate. By integrating AIp. Ow,p(p), we should be able to calculate

2 2Let (p, h,) = [e SDIC heat (<w, [p', p'])). That is, e(p, h,) is the individual which is the

p'E[p-hn,p+h,]

bread that John ate during time interval [p-h,, p+h,,]. When p and h, are fixed, e(p, h,) defines an individual
which had different sizes at different time points as it kept expanding and shrinking, but this change ought
to be gradual. It is thus natural to assume that the q-size of e(p, h,) is continuous as a function of q for any
p and h, > 0. To understand this, it might be helpful to think of people's weight. For instance, in order
for Ann's weight to increase, she has to eat a lot of food, which is a time-consuming process. Her weight
cannot just rise from 49 kgs to 52 kgs in a moment. Now, assuming that lim h, = 0, Ow,q(p') is given as the

limit of (q-size of e(p, hn))/2h, as n -- co. If p is a Lebesgue point of Ow,q, this is actually the rate of the
q-size of the bread John ate per unit time at p. Since (q-size of 4(p, hn))/2h, is continuous for all n, it seems
fair to expect that the limit of (q-size of (p, hn))/2h,, is also continuous as a function of q. This does not
follow mathematically. It will, however, provided that (q-size of e(p, h,))/2hn, as a function of q, uniformly
converges on G when n -+ oo.
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the total amount consumed or produced. It should be now recalled, however, that whatever

function to be integrated must be measurable to begin with. Therefore, it is important that

Ap. Ow,p(p) is indeed a measurable function. This can actually be shown to be the case.

Here, let us consider bounded open intervals.

(246) Lemma

Let G be a non-empty bounded open time interval that satisfies the condition in

Claim (221). Then, there is a 9(G)-measurable function 6 defined on G such that
6 (p) = ,O,p(p) for all p E 6, and thus almost everywhere on G.

Proof.

Assume that G = (a, b), a < b. For a given n E N, divide G into 2" number of intervals

{E }, 1 k 2n such that

En = a, a + -(b - a) E2 = a + (b - a), a + (b-a), .
(b - a), a + (b - a)E 2n 2 n 1, 2

E 2 ) = a + 2 -(b - a), a + 2 (b - a) , En= a + (b - a), b

For all n and k such that 1 k 2", let qk be an arbitrary point in Ek, qk e En . For all

q E G, let Ow,q(p) be a (G)-measurable function whose existence is guaranteed by the

Radon-Nikodfm theorem as stated in (241). Since we vary q, let us write , (q)(p) rather

than Ow,,q(p) for the sake of better legibility. Define (6,} to be a sequence of functions

defined on G such that

S,(p) = O(qn)(p) if p E, 1 I k < 2.n

Put differently,
2n

6n(p) = C O(qn)(P)XE
k=1

Being a characteristic function of a measurable set, XEk is 9 (G)-measurable for any n and k.

Then, 6, is a sum of products of 9(G)-measurable functions, and hence 3 (G)-measurable

(see ). Now define 6 as follows:

6 = lim inf 6 n
n--+oO

6 is then a function whose existence is asserted by the theorem. First, observe that 6 is
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9(G)-measurable since it is the limit inferior of a sequence {6n} of 3 (G)-measurable

functions (see). Now, given any p e 6, one can find a unique sequence of intervals {En }nEN

such that p e En for all ne N. Clearly, E D E 2 DE 3  ... and Ekn = {p}. Then,
n=1

according to the definition of S~, we have

6n (p) = Ow ( n(p)

Since q e En, for all n, it follows that lim q e n Ek = {p}, which means that {qn
n= I

converges to p. Because p e 6, Aq. Ow(q)(p) is a continuous function of q by assumption.

Hence,

lim 6n(p) = lim Ow(qn )(p) = Ow(p)().
n-+oo n-n.oo

As lim ,n (p) = lim inf 6n (p) = lim sup 6n (p), this means that 6(p) = Ow,, (p). Since p was
n-oo n---0 n--ao

an arbitrary point in 0, the theorem has been proved. Q.E.D.

Recall that in the discussion so far, time interval G has been assumed to satisfy the

condition in Claim (221). In the case of bread-eating scenario, since no part of the bread

was eaten more than once by John, any bounded open interval G that contains [P0, Pl]

satisfies the conditions in Claim (221). Therefore, by integrating a function 6 obtained as

in the above lemma for this case will correctly calculate the total amount of bread that John

has eaten. However, we would now like to deal with cases where the same individuals get

consumed more than once, as in the story where John drinks the same XYZ more than once

by use of a catheter inserted into his stomach. In this story, if Idrink = [P5, P6], where Ps

and P6 are the time at which John started drinking XYZ and the time at which John stopped

drinking XYZ, respectively, then, no open time interval G that contains Idrink satisfies the

condition in Claim (221). We would thus like a more general version of the above lemma

that is stated without the condition on G. Now, let I be a closed time interval which is

exactly the running time interval of some consumption. By Claim (221), I can be covered

with a collection of small enough open time intervals that each satisfy the condition in

Claim (221). For each of these small open time intervals, the above lemma asserts the

existence of an appropriate measurable function defined on it. Then, by connecting these

measurable functions, we expect to obtain a relevant measurable function defined on the

whole of I.
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(247) Theorem

For any bounded closed time interval I, there is an open interval G and a function

6 such that I c G and 6 is a (G)-measurable function defined on G whose value

is given by the following for almost all p e G:

6(p) = Dw,p(p) = lim' w, [ ) SDIC ((w, [p
p'e[p-h,p+h]

Proof.

By Claim (221), for each p e I, one can find an open time interval Gp that satisfies the

condition in Claim (221). Then, Upel Gp gives an open cover of I, i.e., I c Upel G,. Since

I is a closed bounded interval, I is compact (the Heine-Borel theorem), and hence, I can be

covered by a finite subset {G, GP2 ,..., Gp, of {Gp }pI. Let G = Un= GPk. Then,

Ic UGpk =G.
k=1

Now, for each k = 1,2,..., n, apply Lemma (246) to GPk and let 6 k be a function whose

existence is asserted by the lemma. Thus, for each k, Sk is a 93(Gk)-measurable function

defined on GPk such that 6k(P) =Ow,p(p) for almost all p e Gk. Because 1k is 9(Gp,)-

measurable, for any V e 9([0, co]),

Sk- (V) = lp I p E GPk A 1 (p) e V} e 9(GPk)

Since Gpk c G, 93(Gk) c 9(G). It then follows

now define a function 6 on G as follows:

6 2 (P)

6(p) = 6 3(p)

6n(P)

if p

if p

if p

e Gpl

e GP2

e Gp2

if pE Gpn r)

that k - 1 (V) E 9(G) for each k. Let us

Gp1 c

(GI u Gp) c

(Un Gp)(U=IP
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Then, for any V e 3 ([0, oo]),

6-'(V) = {p Ipe GA 6(p)e V}

= P n / [Gk - 1 j jcp ]

= p GPk UGj)A6k(p),V
k=1 j=1

n k-1 c

= Utp pE GPk n (Gpj A 6k (p) G V1

U=(0 k1(V) n (U7GP,),c)
k=1 j=1

Since Gpj e 9(G) for any j, the complements of their unions are also in 93(G). Because
6 k- (V) e 9(G) for each k as seen above, 6-'(V) is then a union of intersections of

members in 3(G), and thus it is itself a member of 9(G). Hence, 6 is 9 (G)-measurable.

Since 6k(p) = Ow,p(p) for almost all p E Gpk, 6(p) = O,p(p) for almost all p e G.

According to (215), whenever DOw,p(p) is defined, it is given by the following:

DOp=lim I
DOW(p) = lim M((w, [p, p)) Le SDIC ((w, [p', p]))

h- 2hp'e[p-hp+h]
P [pP-h,+h]

By (227), we see that this gives the value of Ow,p(p), and thus 6(p) for almost all p e G.

Q.E.D.

Thus, we have finally obtained a measurable function that yields the rate of p-size of the

relevant stuff produced or consumed per unit time at time point p in w. By integrating 6(p),
the total amount of the relevant stuff produced or consumed will be calculated!

Let us now return to the starting point of our discussion. Originally, we had hoped that

the following would give the correct truth conditions for (132):

(220) Oecubic-centimeter (SDICneat) d(LBG o t o i) = 666

This did now work since the integrand is equal to 0 for momentary situations. Let us

then redefine o so that for momentary situations, it will give a relevant rate function to

be integrated for the given continuous event-related reading. In other words, for momen-
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tary situations, gM (SDIC') is a function 6 whose existence is asserted by Theorem (247).
For situations that are not momentary, the definition of p remains unaltered. To define Q,
let MO (for MOments) denote the set of all momentary situations, MO = {(w, [p, p])
w is a world and p is a time point} and let SP (for time SPans) denote the set of all situa-
tions whose time interval is not momentary. Here is the final definition of Q:

(248) Given a situation-sensitive lattice-measure function M e Ds,(e,n>> and a function
from situations into individuals e D<s,e>, gM(') e D<s,n) is a function from situa-
tions into reals such that

(i) if s e MO,
M( defi 1 ( U /

m (M) (s) [ M(s) Krw (s), [p', p'])) a.e.
h-O 2h

p'e[(tolri)(s)-h, (tori)(s)+h]
(ii) if s E SP,

QM() e As e Ds : inf M((rw(s), [p, p]) )((s)) = sup M((7w(s), [p, p])) (T(s)).
p E~i() penr (s)

inf M((w(s), [p, p])) ((s))
peri(s)

The clause (i) does not speak of the values that QM( ) when the limit does not exist. Since
the set of those points is of measure 0 by Theorem (247), they have no effect when QM(')

is integrated. gM ( ) is thus allowed to take any values at those points.23 Let us see how this
definition works in the case of the bread-eating scenario. By substituting SDICJ bneat for
5, we have

(249) Ocubic-centimeter (SDICea eat) ((@ [p, p]))

= lim cubic-centimeter((@' [p, p]))( HbDeat P I A ))i=( SDICjohneat(@, pP)
p'e[p-h,p+h]

= DO@,p(p)

We have already calculated D®@,q(p) in (230). Since p = t(iri((w, [p, p]))), we can obtain
the following:

(250) Ocubic-centimeter (SDICbrJheat) (s)

2{r(t(Vi (s1)))}2VL(ri(s))) if se ((@, [p, p]) E (po, P)}
= 7 r (t(ri(s))) }2 V (t(i(s))) if s =(@, [poPo]),(@, [PI, PI])

0 if se {(@, [p, p]) I p [Po, Pi])

23Assuming that As : s e MO.QM(f)(s) is integrable, (248I) determines a unique equivalence class of
functions as an element of L1 .
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Therefore, the integral in (220) is calculated as follows:

(251) cubic-centimeter (SDICbr eat) d(LBG ot o ri)feubie-eentimeter. John-eat) o 0 1

r(= As e Ds. r {r(t(ri(s))) }2 v (t(7i(s))) d(PLBG o t o 7ri)

+ As e Ds. r{r(t(ri(s))) }2 v(Lt (ri(s))) d(pLBG ot 0 7ri)
Bn {P0o.P 2

+ Bn{( @,[p,p]>jpl[po,pi]}
0d(pLBG O t o 7ri)

= P As e Ds. r{r(t(ri(s))) }2 v(t(ri(s))) d(LBG t o i)

If the sentence is a description of what happened yesterday, B is the set of all momentary

situations in yesterday, and [po, pi] c B. Therefore, B n {(@, [p, p]) I P (po, Pl)} =

((@, [P, P]) I PE (po, P) }. Furthermore, ri ((@, [p, P]) PE (Po, Pl) }) = { [P, P] IP

(Po, pi) } and t ({ [p, p] I p e (po, Pi))) = (P I P (Po, P) } = (Po, pi). Therefore,

(252) fBn<@,[pp])lpe(poPl)}
As e Ds. r{r(t(7i (s))) }2 v(tL(i(s))) d(pLBG O o 7i)

- J@As e Ds. 7r{r(t(7ri(s))) }2 v(t(ri(s))) d(pLBG o l o i)
f{<@,[PP)>1pE(po,PI)}

= f AI e Di. r{r(t(I)) }2 v((I)) d(LBG o t)
I{[PP] pe(po,Pj)}

= f, Ap e Dn.1r{r(p)}2v(p) dllLBG
(Po, PI)

This Lebesgue integral is equal to the Riemann integral Ir(p) }2 v(p) dp, which we

had in Section 2.4, provided that 7r{r(p)}2v(p) is Riemann-integrable.

Since we have derived the truth conditions only by redefining p, the lexical entry for

cubic-centimeter looks very similar to that given to 0ATOM in the end of the previous sub-

section. The differences are only obvious. First, cubic-centimeter has cubic-centimeter

instead of ATOM as the situation-sensitive lattice-measure function. Second, rather than

the set of all situations in a given time interval, the domain of integration is now the set

of all momentary situations in a given time interval (i.e. B above and below). Finally, the

measure is now PLBG o t O 7i. Thus, the lexical entry for cubic-centimeter is given by the

following:
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(253) [cubic centimeter] = Av E D(<,t>. AR e D<e,(s,t)>. In e Dn

[v(n) A BQocubic-centimeter (As e Ds. {x I R(x)(s)}) d(LBG 0 0 i ) = n]

2.6.3 Decomposition of the measure

We have seen right above that when cubic centimeters is in the measure phrase of a continuous-

event-related reading-inducing noun phrase, it has the lexical entry in (253), where the

relevant measure is (JLBG o t o 7ri) and the domain of integration is a set of momentary sit-

uations. However, if cubic centimeters is in the measure phrase of a discrete-event-related

reading-inducing noun phrase, such as (254) below, the measure ICT o ,i should be used,

and the domain of integration should be the set of all situations in a context time interval,

just as we saw in Subsection 2.6.1:

(254) Mary threw 65535 cubic centimeters of apples.

The lexical entry of cubic centimeters should now be the following in this case, where A is

the set of all situations in a context time interval:

(255) [cubic centimeterl = Av e D(n,t>. AR D(e,(s,t)>. 3n e Dn

[v(n) ^ fAcubic-centimeter As e Ds. e {xI R(x)(s)}) d(PcT 0 ri) = n]

This is problematic, since it is not desirable to conclude that units of measurement in gen-

eral have an ambiguous lexical entry. Furthermore, it is not clear how the lexical semantics

of units of measurement could be sensitive to the type of the main predicate. Ideally, we

would like an analysis of a unified form for all cases.

To achieve this goal, first, recall that the problem of the domain of integration has

arisen from the fact that 'LBG oto I7i is not defined for sets containing situations that are not

momentary. So, let us replace t with a function tMO defined below, which takes sets of time

intervals and returns sets of time points.

(256) tMO is a function from sets of time intervals into sets of time points such that for

any set T of time intervals,

tMO(T) def= {the unique p such that p eI I e n ri(MO)}

When S c MO, tMO does the same job as our old t did. When S c SP, on the other

hand, JPLBG O LMO O Ki(S) = /ILBG(0) = 0. Thus, P/LBG o LMO O iri can now take sets

152



that contain situations that are not momentary as well, but it "ignores" non-momentary

situations entirely. Therefore, if we use PLBG o LMO O ri instead Of ILBG OLo ri for continuous

event-related readings (i.e., if /LBG OLMO o7ri is used in (253)), the domain of integration can

now always be the set of all situations in a context time, be they momentary or not. One

difference between (253) and (255) can thus be eliminated (i.e., B in (253) can be replaced

with A).

Next, notice that any discrete events we think of seem to have a running time of some

positive length. For instance, an event of John's jumping begins at the moment John's

feet leave the ground and ends at the moment they touch the ground again. Let us therefore

assume that discrete events always take a positive length of time to occur. Then, we need no

longer count momentary situations with the counting measure when we consider discrete

event-related readings. Therefore, let us define tsp as follows:

(257) Lsp is a function from sets of time intervals into sets of time intervals such that for

any set 7 of time intervals,

Sp( 'f 7ri(SP)

When S c MO, /ICT o LSP o iri(S) = /pcT(0) = 0. When S c SP, tsp does nothing, so

I/CT o tSp o 7ri(S) = PCT o 7ri(S). Thus, I/CT o tsp o 7ri does the same job as pCT o 7ri(S) for

non-momentary situations while "ignoring" momentary situations entirely.

To recapitulate, MO n SP = 0 and MO u SP = Ds, and PLBG o tMO o ri(SP) =

PCT O tSP O ri (MO) = 0. Thus, PLBG O tMO O 7i and /CT o tsP o 7i are mutually singular

measures.

(258) p/LBG o LMO O 7 i I P1CT o LSP O 7 i

Let us now define a new measure p as the sum of these two.

def
(259) /1 = PLBG o LMO O 7ri + PCT o LSP O 7 i

Let (Ds, , p) be a measure space. For any E e , and a non-negative-valued function f

defined on E,

(260) f d = f fd(PLBG O LMO ori +PCT oLSpo7ri)

= f d(pLBG 0 LMO 0 ri) + ff d(PT 0 tSp 0 ri)
JE JE
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f d(/LBG O LMO O ri) +
JaEnMO)u(EnSP)= EnMO)u(EnSP)

fd(pLBG o LMO o 7ri) + I
SJEnMO

+ EnMO

SEnMO

JEnSP

fd(cT o tsp o 7i) + sP

f d(pLBG o LMO o ri)

f d(PcT o ISP O ri)

fd(pLBG o LMO o 7ri) + Ln 0 d(pLBG 0 LMO o I7i )

+ nM0 d(PcT o tSP o i) +fLs fd(pcT o LSP o 7ri)

= EnMOf d(LBG 0 LMO o 7ri) + f fd(PCT 0 Lp o ri)JnMO EnSP

If f = e (SDIC'), where the main predicate V/ describes discrete events, then for any

s E MO, f(s) = gu (SDIC,) (s) = 0. Therefore,

(261) fEf dp = fEn f d(PLBG a lMO O 7i) + SfE f d(PcT o tSP o ri)
JE J nMO JEnSP

= M Od(PLBG LMO o ir) + S f d (tcT 0 ISP o 7ri)
fEnMO rSP

= f d(PCT 0 tSp 0 ri)
JEnSP

- oE M (SDIC ) d(PCT o LSp o0 i)

We have thus obtained the integral of gM(SDIC ) only over non-momentary situations,

and this is as desired since it is for discrete event-related readings. On the other hand, if

f = eM(SDIC ), where the main predicate i describes continuous events, then for any

s E SP, f(s) = pM (SDIC') (s) = 0. Thus,

(262) f dp = fE fd(PLBG o LMO oi)+ri fd(PcT o SP o 7ri)
JE JEnMO JEnSP

fd(LBG 0 LMO ri) + fSE P

f d(/LBG O LMO O 7ri)

QM (SDIC') d(pLBG o 1 MO o 7i)

d(PCT o LSP O ri)
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This time, we have obtained the integral of pM (SDIC') only over momentary situations.

Again, this is as desired since it is for continuous event-related readings. Thus, we need

no longer choose an appropriate measure depending on whether the sentence describes

discrete or continuous events. Thus, in our lexicon, we need only one measure /1, and the

other difference between (253) and (255) is now eliminated. cubic centimeter thus has a

unique lexical entry given below:

(263) Icubic centimeter] = Av e D(<n,t>. AR e De,(s,t>>. n e Dn

[v(n) ^ fAiecubic-centimeter (As e Ds. He {x I R(x)(s)}) dpl = n

In general, units of measurement (including ZATOM) have a lexical entry of the above from

where cubic-centimeter is replaced by an appropriate situation-sensitive lattice-measure

function. The analysis thus neatly captures our intuition that for continuous events, we look

at relevant momentary time intervals and thus measure those by considering the length of

the interval they constitute together by means of the Lebesgue measure, while for discrete

events, which are necessarily have positive length, we simply count the number of relevant

time intervals by means of the counting measure.

Let me summarize my analysis of event-related readings in general. A unit of mea-

surement with a situation-sensitive lattice-measure function M combines with a numeral,

which denotes a property of numbers, to yield a measure phrase:

(264) AR e D(e,(s,t>>

[IA QM (As e Ds. Ue {x I R(x)(s)}) dp N] etc.

measure phrase

An e Dn. [n N] etc. Av E D(n,t>. AR e D(e,(s,t>>. 3n e Dn

numeral Iv(n) A QM (As e Ds.Le {x I R(x)(s)}) dp = n]

unit of measurement

The measure phrase moves out of the event-related-reading-inducing non-presuppositional

noun phrase, and its sister forms a situation-dependent relation from the nominal predicate

and the main predicate:
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(265)

measure phrase SDR,

Ax E De

A DsE D p(s)(x) A O1(S)(X)

Ap e D(e,t>. Ax' e De.

p (s)(x) A p(x) /(s) (X')

x As' e Ds. Ax' e De. s
(of) Ix' e De.

((s) (x)
main predicate

As' e Ds. AX' EDe. s

(s')(x')
noun

At the top node, the measure phrase takes the situation-dependent relation as its argument,

and as a result, the following is obtained as the truth conditions of the sentence:

(266) [fAQM (As e Ds. [e{x I O(s)(x) A i/(s)(x)}) dp N]

= [IAgM (As c Ds. e{x I SDR (x)(s)}) dp < _ N

= [fLUM(SDICv) d ; N]

Here, A is the set of all situations in some world contained in a context time interval.

2.6.4 Tense

So far, I have argued that sentences that assert the existence of entities described by a noun

phrase are analyzed not with a simple existential quantification, but with an integral of an

appropriate function over situations. In so doing, I have already analyzed how the temporal

interpretation of the main verb should be done as well. In the tradition of Prior's (1957;
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1967) tense logic, simple declarative sentence like (267) are analyzed with an existential

quantification over times. Under this view, (267) will be analyzed as (268).

(267) John jumped once.

(268) 3I[jump(I) (John)]

In the analysis I developed above, however, (267) is analyzed as follows, where A is the set

of all situations in a context time interval:

(269) fAs.jump(s)(John) dl > 1

If one is only interested in analyzing (267), (268) seems to suffice, but then, the deep

connection between simple sentences describing discrete events without an event-related-

reading-inducing noun phrase such as (267) and discrete event-related readings cannot be

captured. Krifka's original analysis manages to account for simple cases of discrete event-

realted readings, but it did not provide this insight. This point can most clear be seen when

we consider continuous cases. A simple existential quantification approach would analyze

(270) as (271).

(270) John ran for seventeen minutes yesterday.

(271) 31[Iis 17 minutes long A run(I)(John)]

In my approach, (270) receives an analysis parallel to the analysis of discrete events as in

(269):

(272) As. run(s)(John)d > 60 x 17

Again, if one is only interested in (270), (271) may suffice, but it does not give any hint

at how continuous event-related readings should be analyzed, where John drinks XYZ that

keeps expanding and contracting, of which some part is drunk twice, or where John eats a

piece bread that keeps expanding and shrinking. Moreover, the simple existential quantifi-

cation approach already faces difficulty when we attempt to analyze (270) with exactly:

(209) John ran for exactly seventeen minutes yesterday.

(271) does not work, since we look at the total of John's running time. On the other hand,

the integral approach can straightforwardly analyze (209) just by replacing the inequality

in (272) with an equality:

(273) fIAs. run(s)(John)dp = 60 x 17

157



For all of these sentences, my analysis provides truth conditions of a unified form,
where our intuitions are formally articulated from a view point of measure theory. It is

somewhat odd that I am discussing tense in the very end after I have discussed various

event-related readings, which are much more complex. However, it must be realized that it

is through the discussion of event-related readings that we have reached this new treatment

of tense.

Let us now turn to Partee's (1973) referential theory of tense. Partee, who considered

the following sentence, objected to the existential analysis of tense as in (268).

(274) I didn't turn off the stove.

Let us say that turn-off-the-stove is an unanalyzed predicate, and the speaker of the sen-

tence is Partee herself. (275) is the positive counterpart of the Partee sentence, and under

the approach with the existential quantifier, it will be analyzed as in (276).

(275) I turned off the stove.

(276) 3I[turn-off-the-stove (I)(Partee)]

Since the Partee sentence (274) can be regarded as being obtained by adding not to (275),

the following two possible analyses suggest themselves for the Partee sentence.

(277) a. -3I[turn-off-the-stove (I)(Partee)]

b. 31- [turn-off-the-stove(I) (Partee)]

As Partee correctly points out, neither captures the correct meaning of her sentence. (277a)

entails that Partee has never turned off the stove in her life, while (277b) will almost trivially

true, presumably unless Partee keeps turning off the stove forever. Partee then proposes that

when the speaker utters sentences like (274), she has a specific time in mind and therefore

that the sentence should be evaluated with respect to that time. On this view, the time of

the main predicate is like a pronoun like he, whose extension is determined by the context,

and hence the time of the main predicate is not quantified over by an existential quantifier.

As Ogihara (2003) and von Stechow (to appear) point out, however, Partee's analysis

does not work as long as one is committed to the view that turn-off-the-stove(I)(Partee)

is true if and only if I is the exact time interval of an event of Paree's turning off the stove,
because according to Partee's analysis, the speaker then needs to know the exact time in

which the stove might have been turned off. In uttering sentences like (274), however, the

speaker would not have such a specific time. She would have a rather longer time span
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in mind. Suppose that the time span that Partee had in mind when uttering the sentences

is between the 1pm and 2 pm on August 27 of 1973. Since turning off the stove does

not take an hour to accomplish, the sentence merely asserts that there is no time interval

between 1 pm and 2pm on August 27 of 1973 at which the stove is turned off. Ogihara

and von Stechow thus both conclude that the analysis with the existential quantifier must

be retained, although the domain of the quantification should now be properly restricted.

My answer to this controversy is the following. Under my theory, Ogihara's and von

Stechow's conclusion that Partee's anslysis does not work is inevitable, since in my analy-

sis, it is crucial that the time interval of the situation argument of the main predicate be the

exact time interval in which an event described by the predicate occurs, in order to ensure

correct counting (see Subsection 2.2.2). Therefore, we do not have an option of encoding

a temporal inclusion relation in the semantics of the main predicate itself. In my analysis,

however, existential quantification is replaced with a condition on the value of a relevant

integral. Partee's reference time then actually corresponds to the domain of integration in a

sense. In my theory, the positive counterpart of the Partee sentence is analyzed as follows:

(278) [I turn off the stove once]

= As[A Ds. turn-off-the-stove(s)(Partee) dp >

If the sentence is uttered in the context described above, the domain of integration A here.

is the set of all situations whose time interval is contained in Partee's reference time.

(279) A = {(@,I) I 1 [lpm on Aug 27 of 1973,2 pm on Aug 27 of 1973]}

In order to obtain (278) compositionally, let us assume with Biuerle (1979) that when a

sentence does not have an adverb such as once or three times overtly, there is an invisible

adverb meaning "'(at least) once". Under my theory, the meaning of this hidden adverb is

given as follows:

(280) [(at least) once = Ax e D<s,t>. [f dp >

Assuming the following obvious semantics for not in (281), we can calculate the truth

conditions of the Partee sentence as in (282).

(281) [notj = At E Dt. -t
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(282) I didn't turn off the stovej

FA [not ([I turn off the stove (at least once)j)

= [At e Dt.-t](I turn off the stove (at least once) )

S-~ turn off the stove (at least once)

A As e DEs.turn-off-the-stove(s)(Partee) dlp> 0

= As e Ds. turn-off-the-stove(s)(Partee) dlp  0]

= As e Ds.turn-off-the-stove(s)(Partee) dp = 0
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Summary and Prospect

I hope to have shown the following main points convincingly through my discussion in the

dissertation.

Chapter 1:

* Bi-clausal examples where a noun phrase originated in the embedded clause exhibits

obligatory situational dependence on the matrix predicate strongly argues for the

scope theory of non-presuppositional noun phrases.

* The scope theory helps develop a binding theory of situation variables under which

what is means for a noun phrase to have existential presupposition can be articulated.

* To interpret plural non-presuppostional noun phrases correctly, a situationally depen-

dent relation holding between an individual and an atomic situation must be formed.

* The numeral part of a non-presuppostional noun phrase must be separated and enters

into computation after the formation of a situationally dependent relation.

Chapter 2:

* To account for event-related readings, situationally dependent relations should not be

"pluralized" with the (double) * operator, and Krifka's (1990) strategy is called for.

* Musan's (1995) generalization is extended to the interpretation of units of measure-

ment.

* Consideration of sentences that describe continuous production or consumption of

mass entities reveals the necessity of employing integration.

161



* Using Lebesgue integration, I developed a new semantic theory where an existential

statement is expressed as the condition of the value of a Lebesgue integral of an

appropriate function from situations into non-negative reals.

* Discrete (telic) events are measured with the counting measure, and continuous (atelic)

events are measured with the Lebesgue measure. This is expressed as a decomposi-

tion of the measure used in natural language semantics.

I suspect that the reader might feel as if this dissertation ended abruptly in the midst of

a story, as I have left many questions and problems unanswered and even unmentioned. In

particular, I have not discussed how to deal with object-related readings. For object-related

readings, I propose with Musan (1995) and Szab6 (2006) that we can count the maximal

time intervals in which the state described by the relevant noun holds.

The reason that this dissertation falls short of a more complete and satisfactory story

is that I had originally hoped to write about four times of the present amount, but I unfor-

tunately did not have enough time to accomplish this as it started very late. The semantic

theory developed in the present dissertation was going to be embedded in the new theory of

head movement whose outline was presented in my generals paper (Shimada, 2007). In this

theory, the derivation of a sentence begins with the formation of a complex head consisting

of the heads that are going to be in the spine of the sentence. For instance, the derivation of

a sentence with C, T, v, V starts with the formation of following head complex:

(1) Vo

Vo VO

VO To

To C°

From this, head complexes successively move out and get projected. This is the head

movement in this theory. Unlike the standard theory of head movement, this theory does

not violate Chomsky's (1995) extension condition. Furthermore, Baker's (1985) mirror

principle can be derived by compositional morphological computation.

The crucial proposal of this theory is that head movement creates a relevant A abstrac-

tor. Throughout the dissertation, I have postulated a A abstractor that binds the situation

argument of the main predicate (and the situation argument of a non-presuppositional noun
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phrase). I was going to argue that this A abstractor is in fact created by head movement of

Asp'. The account of object-related readings was going to be given in the general theory

of aspect entertained in this new framework of head movement that accounts for Pratt and

Francez's (2001) observation on sentences with nested temporal quantification. This is the

reason that I could not include my analysis of object-related reading. The theory has an ad-

vantage of deriving Percus's (2000) generalizations on the constraint of situation variables

in syntax directly from the well-known locality of head movement.

Despite its evident importance to the theory of natural language semantics, it seems

to me that Krifka's (1990) observation and theory of event-related readings have more or

less been ignored, as nobody has seriously tried to incorporate it into the "main" theory

of natural language semantics as far as I know. I suspect that this was due to two fac-

tors. One is the apparent complexity of Krifka's analysis. The other is that Krifka did

not explain why two radically different analyses are needed for object-related readings and

event-related readings. In Krifka's proposal, a noun phrase simply comes equipped with

different kinds of determiners depending on whether the sentence has an object-related

reading or an event-related reading. I feel that for these reasons, people have marginalized

event-related readings as some "exotic" epiphenomenon that requires special complicated

treatment that Krifka devises, while considering object-related readings to be the basic case

as they seem to only require simple usage of the existential quantifier.

However, such a view must be abandoned, since we quite normally use sentences with

an event-related reading and it is not that only English exhibits event-related readings.

Event-related reading should then be at least as central to the analysis of existential sen-

tences as are object-related readings. In the present dissertation, I hope to have developed a

theory of simple cases of event-related readings. Once an analysis of this sort is accepted,
as alluded to briefly above, the analysis of object-related readings should be given by con-

structing a more complex integrand function using Asp, and thus, object-related shall ac-

tually be derived from a more complex structure than are event-related readings. Hence, it

shall not be object-related readings, but the seemingly complex event-related readings that

turn out to represent the basic case of existential sentences. If this is the case, we can no

longer marginalize event-related readings as an "exotic" epiphenomenon. I am aware that

I have not shown any of the above claim in detail yet, and I regret I have not had enough

time to accomplish my original goal to include this all in this dissertation. Nevertheless, I

intend to work on this project and to keep posting my writing on the web in the near future.
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Finally, I would like to mention an expected application of the Lebesgue integral ap-

proach to possible worlds. Given that existential claims are in general translated with an

integral, it is expected that sentences that have been taken to assert the existence of certain

possible worlds like (2) are treated analogously:

(2) It is possible that Mary likes John.

This is typically analyzed roughly as follows, where acc(@) represents the set of possible

worlds accessible from the actual world.

(3) 3w[w e acc(@) A like(w) (John) (Mary)]

Under the integral approach, this would be translated into something like the following:

(4) Aw. like(w)(John)(Mary) dp > 0

Here, the measure p is a suitable measure defined on sets of possible worlds. Let a be

a o--algebra over acc(@). If we succeed in defining an appropriate measure p so that the

measure space (acc(@), j, p) becomes a probability space, the integral in (4) is expected to

directly give the probability of Mary liking John. This opens up a possibility of capturing

the difference between the sentences in (5) by simply comparing the values of the inte-

grals, whereas the standard approach with simple usage of the existential quantifier might

translate all these sentences as in (3).

(5) a. It is very probable that Mary likes John.

b. Perhaps Mary likes John.

c. It is 40 percent likely that Mary likes John.

To this end, it is probably necessary to define an appropriate topology and metric to the set

of possible worlds. This is not an outlandish idea at all. The classic analyses of counter-

factual conditionals by Stalnaker (1968) and Lewis (1973) already talk about the nearest

possible world(s) to the actual world, and thus this line of approach seems necessary in any

case. Since Lebesgue integration has been put in the fundamentals of probability theory,

this line of approach seems to be promising.
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