
Personalized Building Comfort Control

by

Mark Christopher Feldmeier

S.M., Massachusetts Institute of Technology (2003)
S.B., Massachusetts Institute of Technology (1996)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHIVES

MASSACHUSETTS INS9TTr7E
OF TECHNOLOGY

OCT 2 6 2009

LIBRARIES

September 2009

© Massachusetts Institute of Technology 2009. All rights reserved.

S/2

Program in Media Arts and Sciences
September 4, 2009

Certified by-
Joseph A. Paradiso
Associate Professor

Program in Media Arts and Sciences
Thesis Supervisor

Accepted by.
Deb K. Roy

Chair
Departmental Committee on Graduate Students

Ant.hnr

e '

Personalized Building Comfort Control

by

Mark Christopher Feldmeier

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on September 4, 2009, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Media Arts and Sciences

Abstract

Creating an appropriate indoor climate is essential to worker productivity and personal
happiness. It is also an area of large expenditure for building owners. And, with rising fuel
costs, finding ways of reducing energy consumption is more important than ever. This idea
is promoted further by the notion that most buildings are currently being run inefficiently,
due to the non-adaptable nature of their control systems. Not just the occupants, but also
the buildings themselves have ever changing needs, for which a single setpoint is inadequate.

This dissertation presents a novel air-conditioning control system, focused around the
individual, which remedies these inefficiencies through the creation of personalized envi-
ronments. To date, the measurement of thermal preference has been limited to either a
complex set of sensors attempting to determine a Predicted Mean Vote (PMV) value, or
to direct polling of the user. The former is far too cumbersome and expensive for practical
application, and the latter places an undue burden on the user. To overcome these limita-
tions, an extremely low power, light weight, wireless sensor is developed which can measure
temperature, humidity, activity and light level directly on the user's body. These data are
used to immediately infer user comfort level, and to control an HVAC system in an attempt
to minimize both cost and thermal discomfort.

Experimental results are presented from a building under continual usage, modified
with a wireless network with multiple sensing and actuating modalities. For four weeks, ten
building occupants, in four offices and one common space, are thermally regulated via wrist-
worn sensors controlling the local air-conditioning dampers and window operator motors.
Comparisons are made to the previous four week period of standard air-conditioning control,
showing an increase in comfort, while decreasing energy usage at the same time. The
difficult problems of control adaptation, comfort determination, and user conflict resolution
are addressed. Finally, the limitations of this format of control are discussed, along with
the possible benefits and requirements of this proactive architecture.

Thesis Supervisor: Joseph A. Paradiso
Title: Associate Professor, Program in Media Arts and Sciences

Personalized Building Comfort Control

by

Mark Christopher Feldmeier

The following people served as readers for this thesis:

i{,J'IA

Thesis Reader
William J. Mitchell

Professor
Program in Media Arts and Sciences

C-)
Thesis Reader , .

Samuel Madden
Associate Professor

Department of Electrical Engineering and Computer Science

Acknowledgments

This thesis could not have been completed without the help and support of many people and

organizations, and for each of these i am deeply grateful. The work was partially funded

by an anonymous donor through the MITEI, and through a fellowship from the Martin

Family Society of Fellows for Sustainability. M.I.T. Facilities, including Greg Tucker, Kevin

Davis, and Alan Legere, were amazingly helpful in allowing the use of their building's

HVAC system, and educating me in the details of its operation. Endless appreciation

goes to Joe Paradiso for creating an incredible research environment, and whose belief

and encouragement brought this project into reality. To Bill Mitchell and Sam Madden,

my gracious readers, for their help and willingness to operate under deadline. To the

entire Responsive Environments Group, whose complicity in acting as test subjects for my

experiments allowed this work to be evaluated. Special thanks are due to Mat Laibowitz,

Bo Morgan, Josh Lifton, Ari Benbasat, and Matt Malinowski, who lent their expertise at

moments when it was most necessary. To Josh Lifton, Zoz, Tinsley Galyean, and James

Patten, your providing, and sometimes withholding, of programming expertise, finally forced

me to overcome my fears of abstraction. The knowledge offered to me by Rosalind Picard

and Vikash Mansinghka made the pattern classification aspects of this work possible. Many

thanks to the whole Galyean family and Nearlife, for allowing me to use their home as a

testbed, and always making me feel at home. And, to the residents and alumni of EAsT

camPUS and Seniour House, this work was completed because of you, and in spite of you,

and for both i am thankful.

hope alls well with you

Contents

Abstract

List of Figures

List of Tables

1 Introduction
1.1 Motivation
1.2 Specific Instantiation
1.3 Contributions

2 Background
2.1 Historical Perspective
2.2 Distributed Sensing and Control of Building Systems .
2.3 Personal Comfort Methodologies
2.4 Building Behavioural Models

3 Hardware Design
3.1 System Overview
3.2 Wireless Networking Protocol
3.3 Portable Node
3.4 Control Node
3.5 Room Node

4 Control System Design
4.1 Control Module
4.2 Location Module
4.3 Window Module
4.4 Outdoor Module
4.5 Thermostat Module
4.6 Portable Module
4.7 Room Module

5 Comfort Algorithm Design
5.1 Selection of Indices
5.2 KNN Distance Metric

101
102
111

-

5.3 Fisher Discriminant 121

6 Evaluation 127
6.1 Experimental Procedure 127
6.2 Energy Metrics 131
6.3 Comfort Metrics 142

7 Conclusions 157
7.1 Design Strategies for Comfort Control 158
7.2 Requirements of Automated Environments 162

A Prototype Wearable Comfort System 167
A.1 Introduction 168
A.2 Methodology 168
A.3 Hardware 169
A.4 Data Analysis 170
A.5 Results 173
A.6 Conclusions and Future Work 180

B Survey Results 181

C Notes on Experimental Data 197

D Hardware Schematics 201

E Hardware PCB Layouts 205

F Portable Node Firmware 209

G Control Node Firmware: Damper Motor 221

H Control Node Firmware: Window Motor 235

I Room Node Firmware 249

J System Control Code 263

Bibliography 273

List of Figures

Floorplan of Sensor Deployment Areas
Detail of All Sensors Deployed on East Side of Building
Detail of All Sensors Deployed on West Side of Building
Network Topology
Network Transmit Packets
Portable Node Circuit Boards: Front and Back
Portable Node on Keychain
Portable Node Worn on Lanyard Around Neck
Portable Node Worn on Wrist
Portable Node Mounted Near Thermostat
Portable Node Mounted on Exterior of Building
Control Node Circuit Board
Control Board Mounted with Window Motor
Control Board Mounted with Damper Motor
Initial Calibration of Wind Speed Sensor
Collimator for In-situ Wind Speed Sensor Test.
In-situ Calibration of Wind Speed Sensor
In-situ Calibration of Shimmed Wind Speed Sensor: Node
In-situ Calibration of Shimmed Wind Speed Sensor: Node
In-situ Calibration of Shimmed Wind Speed Sensor: Node
In-situ Calibration of Shimmed Wind Speed Sensor: Node
In-situ Calibration of Shimmed Wind Speed Sensor: Node
In-situ Calibration of Shimmed Wind Speed Sensor: Node
In-situ Calibration of Shimmed Wind Speed Sensor: Node
In-situ Calibration of Shimmed Wind Speed Sensor: Node
Example Non-linear Wind Speed Sensor: Node 204

3.5.1 Room Node Circuit Board

. 36
. 37
. 38

.. 40
. 41

. 43
.. 43

. 44

. 45
.. 46

. 47
.. 52

.. 53
.. 53

.. 55
. 56
. 57
160 59
176 59
180 60
184 60
188 61
200 61
204 62
248 62
. 63
. 65

Control System Model 69
Control Module Flowchart 71
Control Oscillation for PI Gain Calculations at Kp = 32, 000 73
Overshoot: First Half is Kp = 16, 000, Second Half is K -= 8, 000 74
Example of Final Control Settings in Practice 75
Location Module Flowchart 76
Map of Receive and Transmit Locations for RSSI Tests 78

3.1.1
3.1.2
3.1.3
3.2.1
3.2.2
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11
3.4.12
3.4.13
3.4.14
3.4.15

4.0.1
4.1.1
4.1.2
4.1.3
4.1.4
4.2.1
4.2.2

4.2.3 Example of RSSI Values for Unoccupied Period
4.2.4 Example of RSSI Values While Sensor is Worn
4.2.5 Location Algorithm Results for Period Shown in Figure 4.2.4
4.3.1 Window Module Flowchart
4.4.1 Outdoor Module Flowchart
4.5.1 Thermostat Module Flowchart
4.6.1 Portable Module Flowchart
4.6.2 Representative Activity Algorithm Performance (sensor on lanyard around

neck)

4.6.3 Representative Activity Algorithm Performance: Detail
4.6.4 Temperature and Humidity Acclimation Times of Portable Node (node

worn under shirt, and then taken off and placed on desk, twice)
4.7.1 Room Module Flowchart
4.7.2 Example Occupancy and Algorithm Results for a Single Room

5.1.1

5.1.2

5.1.3

5.1.4
5.1.5
5.1.6

5.1.7
5.2.1

5.2.2
5.2.3

5.2.4
5.2.5

5.2.6

5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.2.12
5.2.13
5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

Clustering Comparison for Various Sensor Locations: Node 4
Clustering Comparison for Various Sensor Locations: Node 8
Clustering Comparison for Various Sensor Locations: Node 20
Clustering Comparison for Various Sensor Locations: Node 24
Clustering Comparison for Various Sensor Locations: Node 72
Clustering Comparison for Various Sensor Locations: Node 84
Clustering Comparison for Various Sensor Locations: Node 88
Comfort Boundary Superimposed on User Preferences: Nodes 8, 20, 72, 84,
and 88
KNN Distance Metric, n = 10, G = 0: Node 8
KNN Distance Metric, n = 10, G = .5: Node 8
KNN Distance Metric, n = 10, G = 1: Node 8
KNN Distance Metric, n = 10, G = 2: Node 8
KNN Distance Metric, n = 10, G = 0: Node 20
KNN Distance Metric, n = 10, G = .5: Node 20
KNN Distance Metric, n = 10, G = 1: Node 20
KNN Distance Metric, n = 10, G = 2: Node 20
KNN Distance Metric, n = 10, G = 0: Node 84
KNN Distance Metric, n = 10, G = .5: Node 84
KNN Distance Metric, n = 10, G = 1: Node 84
KNN Distance Metric, n = 10, G = 2: Node 84
Fisher Discriminant Boundary: Node 8
Fisher Discriminant Boundary: Node 20
Fisher Discriminant Boundary: Node 24

Fisher Discriminant Boundary: Node 28
Fisher Discriminant Boundary: Node 84
Fisher Discriminant Boundary: Node 88
Fisher Discriminant Boundary: Node 96

104

105

106

107
108
109

110

112
114
115

115
116
116

117
117
118
118
119
119

120
122
123

123

124
124

125

125

6.1.1 Body Thermal Gradient Test Set-up 129

6.1.2 Body Thermal Gradient 130
6.2.1 Chilled Air Usage by Room 133
6.2.2 Chilled Air Usage by Room: Normalized by Cooling Days 133
6.2.3 Floorplan of Public Space with VAV Boxes Shown 135
6.2.4 Temperature and Chilled Air Usage for Room 44: 7.1 - 7.13 137
6.2.5 Temperature and Chilled Air Usage for Room 44: 7.14 - 7.26 138
6.2.6 Change in Temperature of Rooms from Phase Two 141
6.3.1 Responses to Entrance Survey: "The building I work in is comfortable in

terms of temperature." 143
6.3.2 Responses to Exit Survey: "The building I work in is comfortable in terms

of temperature." 143
6.3.3 Responses to Entrance Survey: "Overall, I am satisfied with the comfort

level in my office." 144
6.3.4 Responses to Exit Survey: "Overall, I am satisfied with the comfort level

in my office." 144
6.3.5 Responses to Entrance Survey: "I feel in control of my local comfort level

in my building." 145
6.3.6 Responses to Exit Survey: "I feel in control of my local comfort level in my

building." 145
6.3.7 Responses to Entrance Survey: "I would like more control over my local

temperature in my building." 146
6.3.8 Responses to Exit Survey: "I would like more control over my local tem-

perature in my building." 146
6.3.9 Average Comfort Levels for Users During Experimental Control 147
6.3.10 Reported Comfort versus Computed Comfort for All Users: Week Two -

Week Four 149
6.3.11 Reported Comfort versus Computed Comfort versus Time: Week Two -

Week Four 150
6.3.12 Example Comfort Distance Used as Control Signal 151
6.3.13 Example Arbitration Between Users 152
6.3.14 Average Responses to Survey Question: "I believe the personalized comfort

system is doing a good job of balancing the thermal comfort needs of all
the people in my workspace." 153

6.3.15 Discomfort Button Presses by User 155
6.3.16 Discomfort Button Presses by User: Entry Presses Removed 155

A.1 Sensor System as Worn by User 170
A.2 Raw Data Logged by Sensors: Temperature, Humidity, Comfort 171
A.1 Data Logging Board (left) and SHT15 Sensor (right) 172
A.1 KNN and Gaussian Accuracies versus Number of Sensors 174

B.1 Entrance Survey: Page One 182
B.2 Entrance Survey: Page Two 183
B.3 Survey for Week 2 of Experimental Control 186
B.4 Survey for Week 3 of Experimental Control 188

B.5 Survey for Week 4 of Experimental Control: Page One 190
B.6 Survey for Week 4 of Experimental Control: Page Two 191
B.7 Exit Survey: Page One 193
B.8 Exit Survey: Page Two 194

D.1 Portable Node Schematic 202
D.2 Control Node Schematic 203
D.3 Room Node Schematic 204

E.1 Portable Node PCB Layout: Top Side (actual size) 206
E.2 Portable Node PCB Layout: Bottom Side (actual size) 206
E.3 Control Node PCB Layout: Top Side (actual size) 207
E.4 Control Node PCB Layout: Bottom Side (actual size) 207
E.5 Room Node PCB Layout: Top Side (actual size) 208
E.6 Room Node PCB Layout: Bottom Side (actual size) 208

3.3.1 Power Consumption Breakdown for Portable Node
3.3.2 Representative Performance of Activity Sensor
3.5.1 XPort Configuration Settings for Room Node

4.2.1 Distance from Portable Node to Room Nodes
4.6.1 Threshold Settings for Portable Node Activity Algorithms

6.2.1 Number of Heating and Cooling Days During Experiment
6.3.1 User Comfort Versus Time ..
6.3.2 Average Room Temperature, Air Usage, and Discomfort by User: Week Two

- Week Four

A.1 Sensor Identification Number, Placement, and Type
KNN
KNN
KNN
KNN
KNN
KNN
KNN
KNN
KNN
KNN

and Gaussian
and Gaussian
and Gaussian
and Gaussian
and Gaussian
and Gaussian
and Gaussian
and Gaussian
and Gaussian
and Gaussian

B.1 Number of Responses
B.2 Number of Responses
B.3 Number of Responses

.ccuracies for 1 Sensor . . .

.ccuracies for 2 Sensors . . .

.ccuracies for 3 Sensors . . .

.ccuracies for 4 Sensors . . .

.ccuracies for 5 Sensors . . .

.ccuracies for 6 Sensors . . .

.ccuracies for 7 Sensors . . .

.ccuracies for 8 Sensors . . .

.ccuracies for 9 Sensors . . .

.ccuracies for 10 Sensors . .

for Question 1 on Entrance
for Question 2 on Entrance
for Question 3 on Entrance

Survey
Survey
Survey

B.4 Number of Responses for Questions 4 - 17 on Entrance Survey . .
B.5 Survey Responses by Node Number For Week 2: Questions 1, 2, 3,
B.6 Survey Responses by Node Number For Week 2: Question 4
B.7 Survey Responses by Node Number For Week 3: Questions 1, 2, 3,
B.8 Survey Responses by Node Number For Week 3: Question 4
B.9 Survey Responses by Node Number For Week 4: Questions 1 - 6 .
B.10 Survey Responses by Node Number For Week 4: Question 7
B.11 Survey Responses by Node Number For Week 4: Question 8
B.12 Number of Responses for Questions 4 - 17 on Exit Survey

48
51
64

78
93

132
148

154

173
175
175
176
176
177
177
178
178
179
179

. 184

. 184

. 184

. 185
5 187
. 187
5 189
. 189
. 191
. 192
. 192
. 195

List of Tables

A.2
A.3
A.4
A.5
A.6
A.7
A.8
A.9
A.10
A.11

. .

. .

. .

Chapter 1

Introduction

1.1 Motivation

Our urban landscape is dotted with thousands of buildings which remain fixed in our lives

like the features of a mountainside. This long time scale of architectural evolution can

create a comforting and stable environment in a world where the rest of our lives seem to

be changing faster than we can adjust. Perhaps there are areas where a more flexible and

responsive physical environment could aid our lives, and even protect us from the rapid

change of the outside world. This reactive, or proactive, architecture could tend to its own

needs in a more efficient and less obtrusive fashion than currently available. It could also

meet the needs of its occupants in a way which is far more personalized than previously

possible.

This problem of a static architectural landscape is particularly noticeable in the urban

workplace. In our homes we have a certain level of freedom to modify and control our

surroundings, allowing them to morph to fit our needs. By contrast, commercial spaces

have locks on light switches and thermostats to keep the environmental control systems

from being tampered with. Granted, this level of Draconian building control is required

in most cases to keep the systems dynamically stable and improve efficiency, but this is

not to be taken as the only method available to achieve these goals. Considering the eight

hour work day, resulting in some one third of our lives spent in these spaces, the individual

should have more control over the variables determining his or her comfort.

Not just the occupants, but also the commercial buildings themselves have ever-changing

needs, for which a single setpoint is inadequate. With the average job turnover rate for

American adults being a change once every six years [1], the type of work, and who is doing

it, will vary with time for a given space. The arrangement of office furniture, and even the

placement of walls and windows changes with time. And this is in addition to the usual

seasonal waxing and waning of needs. The holiday rush in a department store is not the

same environment as it is on some Tuesday evening in March. These changing needs are also

seen in the domestic environment, where summer vacations can leave a home unoccupied

for weeks on end.

To achieve this state of proactive architecture, buildings must become aware of their own

needs, and the needs of their occupants. Fortunately, this task is becoming ever more

attainable through the increasing availability of low-cost and low-power sensing. Wireless

monitors of many kinds [2, 3, 4, 5, 6, 7, 8] can be purchased for home and office use,

collecting continual streams of data for the home owner or building maintenance professional

to use. These dense sensor networks are capable of creating their own ad-hoc communication

connections and can be battery powered for months at a time.

The main issue with deploying these dense sensor networks is not a technological barrier, as

the wireless communication, sensing, and actuation technologies have all been in existence

for decades. Instead, the programming of such a large network of nodes becomes the

complicating issue. The user of the building should not have to make all the direct mappings

between inputs and outputs in the system. Furthermore, the user may not be capable of

applying the fine level of control that is required to realize added efficiency bene rom the

system. Therefore, an agile control scheme is required to handle the complex and constantly

changing inputs and outputs.

This dissertation presents one solution to this mapping problem, and demonstrates the

improvements that can be achieved through the application of dense sensor networks to

architectural environments. Specific sensor hardware advancements will be shown, which

make the task of installing and operating these systems easier. Adaptive pattern recogni-

tion and control algorithms will be presented, along with their efficacy in increasing the

personal comfort of building occupants, and reducing building operational costs. By no

means complete or optimal, this work gives insight into what can be realized through a

proactive architecture.

1.2 Specific Instantiation

There are many aspects of human comfort that a building provides, but first and foremost is

protection from the elements. Creating an appropriate indoor climate is essential to worker

productivity [9] and personal happiness. It is also an area of large expenditure for building

owners [10]. Over the past four years, energy consumption has become an increasingly

important topic at both the national and international level. Within the United States

alone, the average petroleum price has risen over 200 percent in the past four years [11].

This is a marked increase over the previous 21 year average, which had a peak deviation of

39 percent [11]. With these rising fuel costs, finding ways of reducing energy consumption

is more important than ever.

The largest consumer of energy in the United States is buildings. Residential stock accounts

for 21 percent of the total energy usage, and commercial stock accounts for 18 percent,

combining to 39 percent [12]. Within buildings themselves, the largest energy sinks are the

basic support systems, the lighting and heating, ventilation and air-conditioning (HVAC)

systems. In residential applications, HVAC accounts for 26.1 percent and lighting 8.8 per-

cent of the total energy usage [13], whereas in commercial applications, HVAC accounts for

53.4 percent and lighting 13.5 percent [14]. This makes building support systems, especially

in the case of commercial buildings, a prime target for energy savings.

But, what can be done to reduce costs in these areas? Either more efficient lighting and

ventilation technologies can be developed, or the existing technologies can be used more

efficiently. Considering the long life span of buildings, and the fact that most commercial

buildings are more than 15 years old [15], the latter proposition seems more cost effective,

as merely adding a new control and sensing layer would be far less expensive than replacing

a whole ventilation system. This idea is promoted further by the notion that most buildings

are currently being run inefficiently due to the non-adaptable nature of their control system,

and that savings of 35 percent are possible [8]. For these reasons, a novel air-conditioning

control system, focused around the occupant, is developed for this thesis as a prime example

of this proactive architecture.

The system has its foundations in the learning building concept put forth by Michael Mozer

in 1992 [16]. The requirements placed upon the user will be minimal, merely a press of

a button to indicate the direction of discomfort (too hot or too cold). The system will

track general location within the building, and accommodate the needs of the person at

that location. This has the added benefit of informing the building of where people are

absent, allowing the system to be shut off when they are not around, effectively creating a

scenario much like that of the light bulb in the refrigerator: from the user's perspective, it's

always on. A larger unifying control structure will be informed by preassigned knowledge,

e.g. which dampers and windows affect which rooms. Eventually, this could be done by the

system as well, as the system could choose a time when users are not present, and apply a

local step change in damper position, and locate which sensors respond. The building could

eventually build a model of itself.

1.3 Contributions

Although the individual components of personalized climate control have been well doc-

umented, very little work has been done to put all the pieces together in a real-world

experiment. This thesis seeks to fill that gap, with the addition of novel, on-body, comfort

sensing hardware, and a reduced set of comfort indices. To date, the measurement of ther-

mal preference has been limited to either a complex set of sensors attempting to determine

a Predicted Mean Vote (PMV) value, or to direct polling of the user. The former is far

too cumbersome and expensive for practical application, and the latter places an undue

burden on the user. To overcome these limitations, an extremely low power, light weight,

wireless sensor is developed which can measure temperature, humidity, activity and light

level directly on the user's body. These data are used to immediately infer user comfort

level, and to control an HVAC system in an attempt to minimize both cost and thermal

discomfort.

Despite the commercial availability of distributed sensor networks for HVAC retrofits [8],

the majority of comfort research is carried out in climate controlled chambers, or individual

HVAC research rooms. In contrast, this thesis presents experimental results from a building

under continual usage, modified with a custom wireless sensor network. For four weeks,

ten building occupants, in four offices and one common space, were thermally regulated

via wrist-worn sensors controlling the local air-conditioning dampers and window operating

motors. Comparisons are made to the previous four week period of standard air-conditioning

control, showing an increase in comfort, while decreasing energy usage at the same time. The

difficult problems of control adaptation, comfort determination, and user conflict resolution

are addressed. Finally, the limitations of this format of control are discussed, along with

the possible benefits and requirements of this proactive architecture.

Chapter 2

Background

This thesis presents a complicated system, which takes its inspiration from many different

aspects of the research field of comfort control. This system must necessarily be able to

apply distributed environmental sensing, actuation, and control. It must also understand

the factors involved in human thermal comfort, and successfully apply pattern recognition

algorithms to detect an occupant's current state. Finally, the entire system needs to be

adaptive with time to maintain high efficacy under changing circumstances. To cover these

broad topics, a historical perspective on the current state of HVAC control is first given.

Next, advances in HVAC control theory are shown to present the range of solutions to the

multiple-input and multiple-output (MIMO) control problem that distributed sensor/actu-

ator networks entail. This is followed by a discussion of personal comfort determination

and actuation methodologies. Finally, previous attempts at the difficult task of creating a

learning environment are shown as an influence for the work herein.

2.1 Historical Perspective

Distributed control of HVAC systems for greater efficiency and comfort is by no means

a new topic. Although today we have more robust and accurate sensors, actuators, data

communication lines, and computers, the main control schemes in use have not changed

significantly since the early 1900s. A central unit still produces energy and distributes it

to the rest of the building where it is locally controlled in a closed loop fashion. There are

different ways of accomplishing this task (schedule control, fixed volume control, and VAV

control), and even some that incorporate functions to minimize energy (Air-bypass control,

reset control, setback control, economizer control, and CO 2 control), but the majority still

don't take the entire plant state into consideration when making energy production and

distribution schedules. This is further hampered by the lack of down-stream damper control

to effect the fine grained level of distribution scheduling required to make this happen.

The main reasons for this lack of efficiency in HVAC systems is not technological, as the

control theory has existed since the 1960s to deal with MIMO systems, and the sensing

and actuation hardware has been around for much longer. The limitations are a function

of economics. The cost of computation did not fall to a reasonable level until the mid

1980s, at which point an economic recession was beginning. No one was willing to invest in

developing a new technology, especially when the demand for new architecture was drop-

ping [17]. It wasn't until the mid 1990s, with the financial resurgence of the computer and

telecommunication industries, that building investment would increase and the networking

infrastructure would be inexpensive enough to implement such systems. Indeed, a number

of research projects came out at this time showing how new control schemes could reduce

energy costs and maximize human thermal comfort [18, 19, 20, 21, 22, 23]. These projects

detail the implementation of a truly distributed control.

Until recently, however, the implementation of these systems still remained an academic

pursuit. New building owners are extremely apprehensive about installing these sorts of

infrastructure. Because of the long life expectancy of a building, it is very risky to invest

in untested ideas which may not produce the energy savings claimed, or worse yet, may

not be robust enough to last the decades required and instead need replacing in the near

future. The cost of a new technology is generally higher to begin with, and with the

installation cost of HVAC systems already being 16 percent of a building's total cost and

40 percent of its recurring cost [24], the decision to implement a new system is difficult

to make. This is further compounded by the fact that building operating costs are far

outweighed by personnel costs for commercial buildings, usually by a factor of 1:100 [10],

so implementing something that might reduce worker efficiency by as little as one percent

would already discount any energy savings gained. For this reason, we still saw papers in

2002 that describe internet-controlled HVAC systems as novel [25].

Two recent developments have the potential to end this trend of energy efficient technolo-

gies being overlooked for initial investment avoidance. The first is the increase in fuel

prices, which has driven the recurring costs of energy inefficient systems higher (as energy

represents 40 percent of all recurring costs of a building [10]). The second is the devel-

opment of distributed sensor networks, which are just starting to leave the laboratory [8].

Their promise of implementing sensing at a reduced cost over current systems will eliminate

the initial investment fears of building owners. They will also allow for the retrofitting of

old buildings, which represent the largest percentage of building stock. Distributed sensor

networks accomplish this by using extremely low cost wireless transmitters, which can es-

tablish mesh networks, rather than requiring wires to be run. The running of wires has been

quoted as costing anywhere from ten percent to 90 percent of total HVAC installations [26].

With the dense sensing provided by these networks, more efficient control schemes can be

implemented, and as result, there is renewed research in this area [27, 28, 29, 30, 31, 32].

2.2 Distributed Sensing and Control of Building Systems

It seems that almost every paper on either distributed sensor networks or distributed control

theory lists HVAC systems as one of their main application areas. Gerard Guarracino et al.

give an excellent overview of the work in these fields [33]. In order to reduce the scope of

the background, references will mostly be made to research where an actual HVAC system

was controlled with the algorithms described. This will provide grounding for the results

discussed, and a better comparison point for the system which was built and tested in this

body of work. Not surprisingly, the amount of real world experience is limited, mostly due

to the cost and extremely long validation time required to thoroughly test a system (a full

year is preferred to assess both heating and cooling).

Initial efforts into the MIMO control problem utilizing distributed control via sensor net-

works have been focused on fuzzy logic controllers [19, 20, 29]. Alcala shows very good

results for a control scenario of a single room with two vents, a CO 2 sensor, and multiple

temperature sensors, where energy savings of up to 30 percent are cited [29]. This is aided by

the fact that not just the dampers, but also the energy production device is under control of

the system. Despite the large savings, fuzzy logic controllers require pre-programming with

expert knowledge of the system, and are not very tolerant of changes in system parameters

with time, a critical component to system longevity.

These limitations of fuzzy logic control are addressed by genetic algorithms and neural

networks, which evolve with time to limit the amount of pre-information required, and

make the system robust to the ever-present devolution of the physical components. Kajl et

al. show energy savings of 16 percent with the use of a genetic algorithm based controller for

an air handling unit servicing 70 offices [30]. The system leveraged the pre-existing sensors

and actuators, and did not seek to retrofit the building. Similarly, Curtiss et al. have shown

power savings of 15 percent [23] with the addition of neural networks in the control loop.

The results are from an ideal laboratory test environment with no human occupancy, and

do not use wireless distributed sensing. In comparison to these rather complicated adaptive

techniques, auto-tuning of a control system is a simpler way of achieving these gains, and

can be applied to a variety of controllers. An example of this is demonstrated by Wang et

al. [34], but unfortunately only time response performance values are given, and no efficiency

data were collected.

Current research trends have focused on hybrid controls [32] and multi-agent controls [35].

In these systems, the control problem is broken down into small sections that are handled

on a somewhat distributed basis. With hybrid controls, there are multiple levels of control

in a hierarchical structure, with information flowing in both directions, but with each level

maintaining its local status given current information. In the multi-agent systems, the

individual nodes bid on shared resources to maximize global efficiency while minimizing

local costs. Results for these systems seem to still be in the simulation phase for the area

of HVAC controls, although they are being applied elsewhere.

One of the few examples of an HVAC system being controlled by an actual distributed

sensor network is shown by Kintner-Meyer [28] for two office buildings. The first building

was retrofitted with 30 battery powered, wireless temperature sensors. The sensor update

rate was once every ten minutes, which is not fast enough for use in a continuous control

loop, but did allow the building maintenance staff a better view of the current state of

the system. This new view led to the identification of key problems in the HVAC system,

and once these were addressed, reduced the total energy consumption by seven percent.

The second building used 120 of these temperature sensors and allowed the use of set-

back control, which was previously unavailable due to concerns over extreme temperature

excursions. These savings ended up being approximately 6,000 $US annually for a 150,000

square foot building (estimated equivalent of four percent).

This trend of using sensor data to give insight into a plant's operational state is quite

effective at solving the inefficiency problems. Most buildings undergo a balancing procedure

when they are first commissioned. This entails setting dampers and flow controls within

specified limits to maximize the effectiveness of the HVAC system. Unfortunately, this

is usually the last time this balancing occurs. Slow degradation of the mechanisms, and

dramatic shifts in usage of the building, lead to the initial balancing being completely

inappropriate for its current situation, causing gross inefficiencies.

To combat this, the concept of 'continuous commissioning' was developed [36]. Companies

such as Infometrics [37] constantly gather data from networked sensors (usually part of the

original HVAC system) and analyze these data to look for anomalies or areas of improve-

ment. A large portion of the process is automated, in a sense implementing the self aware

building concept, but at a time lag, and with human involvement required to alter the

various setpoints.

2.3 Personal Comfort Methodologies

Ultimately, the majority of the HVAC control work is focused on energy savings and tem-

perature regulation, not human comfort. Although the control algorithms and adaptive

strategies are directly applicable, the determination of personal comfort is not a solved

problem. Multiple factors have been studied in their relationship to comfort, with the

PMV [38] being the most common metric. The PMV attempts to average over large pop-

ulations for the following factors: temperature, humidity, wind speed, thermal radiation,

activity, and clothing. This is shown to work well in practice [39], but being a statistical

quantity, does not fit all needs. A variety of other factors have been shown to influence

comfort, including age [40], local climate and culture, and the availability of natural venti-

lation [41]. This led to the creation of the adaptive PMV, which begins to account for these

variations as subsets given a certain operating point.

The major use of the PMV is to set boundaries on temperature, humidity, and wind speed

to a comfortable level within a building. Distributed sensor networks have been employed

in an attempt to assess comfort by measuring PMV values in real-time. Ivanov et al.

developed a wearable sensor [42] for measuring PMV which contained a temperature sensor,

humidity sensor, CO 2 sensor, and wireless transmitter. Calculated PMV values from the

sensor are shown for a three day period, but no air-conditioning control is shown, nor

is the data correlated to the user's actual comfort level. Tse and Chan report a set of

six wired PMV sensors [43] which were deployed in an office setting and used to gather

data for a simulation of PMV based control, but no actual closed loop tests were run.

Federspiel and Asada demonstrated a full control loop operating on a single room with a

single occupant based on PMV values [44], but these were directly polled from their user

at regular intervals, creating a cumbersome interaction. This all points to a much more

personalized view of comfort that is about local variables and a given person's perspective,

not a fixed temperature point on a wall.

These previous works, with the exception of Federspiel, attempt to assess the PMV as a

global variable: a fixed standard for all people. Megri et al. take a different approach [45].

Using PMV sensors similar to Chan's, they poll the user as Federspiel does, but instead use a

support vector machine algorithm to determine the indices of the occupant's comfort, rather

than looking up the comfort index from a PMV table. They show 99 percent accuracy at

predicting comfort in this manner, which points to the possibilities of automatic recognition

of comfort, on a person-by-person basis. The major downside of this work is that it involved

large, tethered sensors which are required in three locations in close proximity to the user.

This sort of infrastructure is prohibitively expensive and bulky for real-world deployment.

Previous work by the author (see Appendix A) shows that it is possible to predict comfort

from a relatively smaller set of parameters in comparison to those in the PMV, without

the need to correlate to a fixed index of any kind. The system is also lightweight and low

power, making it a good candidate for office use. The system learns the meaning of various

temperature and humidity points via reinforcement from the user, similar to Megri. The

main advantage is the wearable nature of the sensors, obtaining direct skin temperature

and humidity, wherever the person is located. 74 percent predictability is shown with a

k-nearest neighbor (KNN) algorithm for a single sensor, and 82.5 percent predictability

with two sensors, with marginal gains for increasing numbers of sensors.

This form of on-body sensing has a long history in comfort research, often referred to as

Standard Effective Temperature (SET) [46] or the 'rational indices', as it attempts to take

a physiological approach to understanding the conditions of comfort. Large environmental

chambers are used to set particular conditions, and skin temperature and humidity readings

are taken at multiple points on the body. Rate of moisture loss from the body can be

measured by placing the subject on a scale. Radiative absorption and wind speed are

also measured with local photometers and anemometers. Unfortunately, the methodologies

entailed in deriving these indices are extremely cumbersome, and do not lend themselves to

real time usage.

However, the problem is not only one of assessing an individual's personal comfort level.

An effective control system must also be able to locate the person and effect that proximate

temperature. As temperatures can vary greatly, even within the same room, this proves

a difficult task. On-body sensing solves the first portion of this task, and a number of

solutions have been derived to solve the second portion. These present some of the most

commercially available solutions to personal comfort.

Forced air distribution systems, particularly underfloor methods, can be tapped at points

along the run to allow air to circulate locally. Many companies make systems which imple-

ment this, usually under the name Task Ambient Conditioning (TAC). Johnson Controls

made a particularly extravagant model called the Personal Environmental Module which

also included acoustic and lighting controls [47]. These systems allow the user to adjust the

air flow, and sometimes temperature, at a local vent. Not only is the availability of fresh

air shown to give greater comfort, it is also more efficient [48] as air is only chilled where

needed, and larger sections of the building can be allowed to drift out of normal comfort

zones.

TAC systems, although efficient and effective, are rather expensive and difficult to install

after initial construction. A commercial solution for the residential market deals with some

of these issues by placing small inflatable bladders in local ductwork for localized control [7].

This relatively easy to install system is supplemented with wireless temperature sensors that

act as thermostats for the room they are set in. They can be moved around the room to

regulate where needed, but still are fixed per room and not small enough to be considered

wearable. The programming interface is quite cumbersome, involving a series of menus for

inputting temperatures and setback times for various rooms. However, it does herald a new

era of retrofittable personalized building comfort control.

This concept of localized control brings up an even more important factor, the psychological

parameters of comfort. It is found that given certain environmental conditions, a person

will be more comfortable if he or she has set those conditions [49, 50]. Things such as

operable windows and settable thermostats will increase comfort, even if they do little to

change temperatures. This is both a positive and negative realization for the majority of

personal comfort research, as it becomes difficult to distinguish actual comfort gains from

placebo gains.

2.4 Building Behavioural Models

In the not too distant future, when dense distributed sensing and actuation has finally pen-

etrated the market, a far more difficult question will need to be answered: how does the

building become aware of itself and its occupants in a meaningful manner? The program-

ming of these large systems will be crucial to their success, as each failure will be keenly

perceived by their occupants. Learning from these failures will allow the buildings to better

understand how to react to the conflicting needs of all involved. The following examples

point to an answer to this question. They suggest that first and foremost, the system be

robust, and provide basic functions regardless of state. They show that multiple forms of

control can be leveraged to perform tasks particularly suited to their skills, each acting as

an autonomous agent in a larger structure. And finally, they insist the system and occupant

both be capable of learning from and adapting to one another.

Although the idea of a responsive architecture predates even "The Jetsons" [51], the work

to create these environments began in earnest with the beginning of ubiquitous computing

in the late 1980s [52]. At Xerox PARC, offices were equipped with radio-frequency identi-

fication (RFID) and light, temperature, and occupancy sensors which were allowed to turn

off outlets, adjust HVAC systems, and control lighting [53]. Portable devices allowed users

to edit preferences wherever they were in the building. The design philosophy was one of

reliability, invisibility, and simple control layers on top of the pre-existing control, which

would only react when needed. They could be completely removed and the system would

still operate as normal. This philosophy is particularly relevant in an experimental setting,

as long-term validation is not possible, and failures will occur often.

A current example of this sort of work tackles a very difficult question in shared office

environments: whose comfort is being optimized? Lee et al. use temperature, humidity,

light, and sound data to evaluate the comfort state of occupants [54]. In simulation, light

levels and thermostat settings are modified to improve this comfort or save energy. The

space is divided into public and private spaces, with users being tracked with RFID tags to

localize their position. Comfort is registered with local lighting and temperature controls

that the occupant can move, updating a data base which keeps track of preferences. This

rule base changes in the public versus private spaces, with personal goals such as comfort

weighted more heavily than others for the owner of a private space, and preference averaging

in the public space. There are also privileges, so that occupants with higher social status

will be have their comfort optimized over others.

These very programmatic responses are challenged by Mozer [16], who asserts that the

building can learn from its occupants with only mild intrusion, essentially learning from

the mistakes. His neural networked house would purposefully turn lights off in order to

understand whether they were wanted on or not. He sensed the status of light switches,

the thermostat, ambient indoor and outdoor light levels, ambient indoor and outdoor tem-

peratures, human motion, door positions, and window positions. The system is also made

aware of its energy consumption and current setpoints on all heating, water supply, and

lighting appliances. In this manner, it can monitor the habits of the occupants and make

predictive control decisions to minimize energy costs. Time of day and time of year are

also taken into account, and passive solar gains are included in its model. Although this

creates a longer learning curve than preassigned knowledge, it is capable of adapting over

time without intentional user input. This also reduces the level of sensing required. The

sensors are the environment, the normal inputs an occupant would use anyway.

This sort of adaption is evaluated by a number of researchers. Rutishauser [55] takes a

unique approach of modeling the building as a multi-agent system, where each actuator is

its own independent agent. These actuators use a fuzzy logic rule base that links them to

various sensors. The rules are adaptable with time, with user input being seen as negative

reinforcement: if the building is acting appropriately, no user action is required. The

system incorporates automated blinds and lights, and it monitors light switches and blind

switches, along with presence and light detectors. There are fixed rules at the lowest level

which ensure that every light switch operates the light assigned to it, so even under extreme

failure modes the basic comfort systems will still operate.

This is similar to the ideas put forth by Sterk [56], where the whole system is built up upon

smaller pieces - an example of hybridized control. Smaller agents within the system deal

with local problems while exchanging information and updating state through interactions

with larger agents, which do the same from their interactions. This manages the complexity

of the many sensor and actuator streams by breaking it down into repeatable tasks, yet

allowing the individual repeatable tasks to modify based on new information. This also

leaves the entire system capable of functioning if a small portion breaks. And perhaps most

importantly, the local control can be simple enough for the occupant to understand what

is occurring - to have a mental model of his or her environment.

This last point is critical, as it is not only important that the building understand what the

user is doing, but also that the user understand what the building is doing. As Vastamiiki et

al. clearly describe in their analysis of thermostat usage [57], the fundamental efficiency of

the building and the comfort of the occupants both suffer when the occupant does not under-

stand the behaviour of the building. Users are shown to consistently turn thermostat dials

in response to uncomfortable conditions, and to continue turning them until a comfortable

state is reached. From the user perspective this seems completely reasonable: increase an

action until the desired result is reached. From the building perspective, however, the time

lag due to the thermal mass of a room is usually on the order of hours. Furthermore, most

cooling systems are limited to excursions of one degree per hour according to the American

Society of Heating, Air-conditioning, and Refrigeration Engineers (ASHRAE) standards.

This means that over turning of the thermostat will drive the temperature too far in one

direction, at which point it will be driven back again when the user is uncomfortable. This

sort of oscillation wastes energy and creates a thermally unstable environment.

Vastamiki et al. propose a model of human behaviour with respect to wants, actions, and

outcomes. The building must provide appropriate feedback, such that the user creates

a mental model that shows the wants being eventually satisfied, so the user interprets

the building's actions as signal and not noise. This sort of symbiotic relationship is also

promoted by Kroner [58], who describes the two-way communication required for the cre-

ation of intelligent architecture. Peter Anders and Michael Phillips, with their ARCHOS

project [59, 60], are testing these ideas with real hardware. Their system uses a relatively

simple set of sensors (cameras, microphones, HVAC and lighting data, network data traffic,

and elevator location) to infer the general state of the building/occupant unit. In their work,

the line between the building and the person becomes blurred, and the line between the

physical and virtual worlds becomes irrelevant. All of these collected data are streamed via

the internet and FM radio to occupants and nonoccupants alike, altering their immediate

sense of space. Although the majority of the applications are merely data sonifications or

visualizations, the 'random lift button' gives a good example of a more tangible interface

to the network. Just as it sounds, pressing the button within the elevator will take you

to a random floor. Sometimes predictability and control are not what we want from our

buildings.

Chapter 3

Hardware Design

The applications for distributed sensor networks are extremely varied, and they are also

extremely demanding. Size, cost, and power consumption constraints constantly limit what

can be done with individual sensor nodes. As a result, generic wireless sensing platforms

have not left the research laboratories. Although they offer a standard platform by which

various algorithms can be benchmarked, and usually allow for a wide range of applications,

they often fail at doing any particular application effectively enough to allow for continued

usage in a real-world deployment. This shortcoming of available sensor nodes necessitated

the design of the system used herein.

3.1 System Overview

At the heart of this system is the building occupant. This is where the comfort information

resides. To best assess the occupant's comfort level, a wearable sensor node was developed

(herein referred to as the 'portable' node). This sensor node needs to be lightweight and

small to remain almost unnoticed by its user. If it becomes too cumbersome to use, it

will be left on the table and forgotten about. Ultimately, the user's comfort is being

optimized. If the portable node is obtrusive, the user will not be comfortable even if the

ambient temperature is perfect. Similarly, the portable node must also have a low power

consumption, as constant battery recharges or large battery size will be a nuisance to the

user.

This portable node senses the local temperature, humidity, light level, and inertial activity

level of the user. It sends these data wirelessly, at one minute intervals, to the central

network hub. The portable node also has three buttons on the side which allow the user

to input current comfort state (one button each for hot, cold, and neutral). These buttons

must be held down for at least two seconds to guarantee a successful transmission of data.

This delay eliminates false transmissions due to jostling or bumping of the device.

These portable nodes are also given to the building itself, so it can be aware of its own

temperature and not just that of the humans. The exterior of the building has two portable

nodes (one east-facing, one west-facing) to gather local climate data. Each room has a

different portable node, which only senses temperature and humidity, mounted near the

conventional thermostat. In spaces where the thermostat could not be found, the portable

node is mounted away from areas where humans would come in contact with it, but still in

the general vicinity to gather proximate data.

The actuation of the various air sources (windows and air-conditioning dampers) is achieved

via 'control' nodes. These nodes are tethered to a 24VDC power source, and have a motor

which can open or close the associated mechanical element via wireless commands. They

also monitor local wind speed, temperature, humidity, and light level. These data, along

with the current state of the motor, are sent off wirelessly at one minute intervals to the

central network hub. The motor can also be actuated locally with a set of pushbuttons,

allowing the user direct control of the air source. The aim of the system is to enable the user

to improve his or her climate, not confine the user to some externally controlled concept of

comfort.

The backbone of the system is comprised of 'room' nodes. These nodes receive the data

from the portable and control nodes, and act as network coordinators, ensuring that each

proximate node is only talking to one device. Since each room has at least one room

node, the locations of the portable nodes can be inferred from the received signal strength

indicator (RSSI) of the RF device. They also assess the local temperature, humidity, light

level, and activity level and send these data to the central network hub at thirty second

intervals. Communication to the central network hub is accomplished via an on-board

ethernet module. This ethernet module not only routes all sensor data back to the central

network hub, but also transfers motor control commands from the central network hub to

the room boards, where they are sent off wirelessly to the control nodes.

The sensor network is deployed on the third floor of the M.I.T. Media Laboratory building

(E15). A map of the various sensor nodes and their locations can be seen in Figure 3.1.1.

Four offices and one common space are outfitted, encompassing the workspace of 10 people.

Two operable windows exist in this space, and they are equipped with control nodes and

motorized openers. There are also seven variable-air-volume (VAV) dampers which have

control nodes and motors.

This deployment provides a particularly challenging and relevant scenario. The usage of the

space is mostly by graduate students who have ever-varying schedules, so an adaptive control

scheme will be required, as compared to a typical office environment where 9AM to 5PM

work is common. The mixed usage of space - offices versus common space, with frequent

transitions between them - is a good test of the location abilities of the system. Finally,

with multiple occupants per office, and multiple control points per office, the granularity

of both temperature demands and temperature actuation allows for thorough evaluation of

the system's agility at scheduling conflicting requirements.

WEST SIDE DETAIL

(48'n. I

44 I

32

EAST SIDE DETAIL

Figure 3.1.1: Floorplan of Sensor Deployment Areas

S24240
S180

240

36 2

232 1603 224 48

S184

I00
1 5 6 w

228 188 148

200*A

LEGEND: Each node is labeled with its corresponding node number

SRoom Node 0 Window Control Node

SThermostat Node A Damper Control Node Outdoor Node

Figure 3.1.2: Detail of All Sensors Deployed on East Side of Building

S192

196 216
204

LEGEND: Each node is labeled with its corresponding node number

Room Node * Window Control Node

SThermostat Node A Damper Control Node Outdoor Node

Figure 3.1.3: Detail of All Sensors Deployed on West Side of Building

3.2 Wireless Networking Protocol

The main topology for the network is a tree, with the central network hub acting as the

trunk, room nodes acting as branches, and control and portable nodes acting as leaves. The

full network topology is shown in Figure 3.2.1. All data is sent to the central network hub

before being processed and distributed back to the relevant leaf nodes. This organization was

chosen for its ease of implementation, as a stable network routing table could be established

once for the duration of the work. It also reduces network overhead, as nodes do not spend

much time establishing connections. A single RF channel is used, as collisions are low

enough not to warrant the extra power demand on the portable nodes of keeping aware of

the network's current channel. The RF unit, however, is capable of detecting open channels

and switching frequencies.

The physical (PHY) layer of the wireless transceivers is based on the ZigBit module [61]

by Meshnetics. It comes prepackaged with an Atmel ATmegal281 microcontroller [62],

Atmel AT86RF230 2.4GHz radio [63], and dipole chip antenna. It automatically implements

the critical aspects of the 802.15.4 medium access control (MAC) layer, including clear

channel assessment, random exponential back-off, successful receipt acknowledge, and cyclic

redundancy check (CRC) calculation and checking. Additionally, the radios do not respond

to packets with a different personal area network (PAN) ID or destination ID (except in

the case of broadcast packets which do not require receipt acknowledge).

Each node is hard-coded with an ID when deployed, so the locations of room nodes and

users of portable nodes can be tracked. Upon wakeup, leaf nodes request a branch node to

communicate with. The first branch node to respond becomes the destination ID for that

leaf node until the leaf node is no longer in contact. At this point, the leaf node will retry

the transmission process and request another branch node from the network upon failure.

A leaf node can only communicate with its allocated branch node. In this manner, the low

power leaf nodes do not spend an appreciable amount of time finding optimal connections,

but rather stay joined to their primary branch node for as long as possible.

Each RF packet that is sent contains a preamble, the ID of the transmitting node, the ID

CONTROL
NODES

4

ILEGEND:
Wired data sent over ethernet

-- - - -- - -- Wireless data or command transmission

Figure 3.2.1: Network Topology

of the receiving node, the PAN ID, the packet type, the packet length, payload data, and a

CRC. When a room node receives an RF packet, it strips the CRC and PAN ID, adds RSSI

data, a header, and two footer bytes before sending it over Ethernet to the network hub.

The network hub uses the header, packet length, and footer to determine valid packets, and

uses the same format for transmissions to the room nodes. Currently, the only available

commands the network hub can send over the network are motor control commands, and

they are shown in Table 3.2.2.

Successful branch node acknowledgement packets are not sent over the network, but failed

packets are sent over the network, so the system can be aware of whether a command was

; :::;r ~-- ~- --- -- I---~~-- ~;;-~--;;~j . ~ ..~,i~r~~;-;~- --w- ---~-~-~-i~r -- ir- ~~~~ -I~:-;~~-~-~

Network Transmit Command Packet [Ox]

Open Motor Full ff 06 08 DES 08 08 ff fe fd
Close Motor Full ff 06 08 DES 08 06 ff fe fd
Open Motor n-Steps ff 06 08 DES 08 08 n fe fd
Close Motor n-Steps ff 06 08 DES 08 06 n fe fd
Stop Motor ff 06 08 DES 06 Oa ff fe fd

Network Receive Command Packet [Ox]

Data From Portable Node ff Od 02 SRC BTN HUM TEMP ACT1 LITE LQI RSSI DES fe fd
Data From Room Node ff 07 03 LITE TEMP HUM ACT2 SRC fe fd
Data From Control Node ff Od 07 SRC MOTR HUM TEMP WIND LITE LQI RSSI DES fe fd
Join Request ff 05 01 SRC LQI RSSI DES fe fd
Join Request Fail ff 03 06 DES SRC fe fd
Location Beacon ff 05 00 SRC LQI RSSI DES fe fd

SRC = Data Source Address (2 bytes, LSB first)
BTN = Button Press Information (1 byte)
HUM = Humidity Data (1 byte)
TEMP = Temperature Data (2 bytes, LSB first)
ACT1 = Inertial Activity Data (2 bytes, LSB first)
LITE = Light Level Data (2 bytes, LSB first)
LQI = Link Quality Indicator (1 byte)
RSSI = Received Signal Strength Indicator (1 byte)
DES = Data Destination Address (2 bytes, LSB first)
ACT2 = PIR Motion Data (1 byte)
MOTR = Motor State Information (1 byte)
WIND = Wind Speed Data (2 bytes, LSB first)

Figure 3.2.2: Network Transmit Packets

received or not. For example, if a motor command is sent, but the receiving node is down,

that packet will get returned, and the system will be aware of the failure.

3.3 Portable Node

The portable nodes represent the main hardware contribution of this thesis. The require-

ments on these nodes are the most strict, subsequently leading to the development of novel

sensing techniques. The main goals for these nodes are:

* Small in size and weight, so as to be unnoticed by the user (on the same order as

other wearable devices such as wristwatches and key chain fobs).

* Long battery life to make the usage seamless (years if possible).

* Sense parameters relevant to human temperature comfort (temperature, humidity,

light level, activity level).

* Transmit these data via a wireless link at a rate frequent enough to enable closed loop

control with the data.

* Allow for user input of current comfort level.

The portable node internals are shown in Figure 3.3.1, and an assembled node is shown in

Figure 3.3.2. It weighs 30 g, and measures 54mm by 40 mm by 14 mm. The enclosure for

the node is taken from another wearable electronic device, a keychain picture viewer, so its

form is particularly suited to this application. The device comes with a clip, so it can be

attached to clothing, keys, or merely placed in a pocket. They can be attached to lanyards

and worn around the neck (as shown in Figure 3.3.3), or to wrist straps and worn like a

watch (as shown in Figure 3.3.4).

4 , A ..

Figure 3.3.1: Portable Node Circuit Boards: Front and Back

Figure 3.3.2: Portable Node on Keychain

Figure 3.3.3: Portable Node Worn on Lanyard Around Neck

Figure 3.3.4: Portable Node Worn on Wrist

Portable nodes are also used to monitor room climate and outdoor environmental condi-

tions. Indoors, they are mounted below the standard thermostat in the space, as shown

in Figure 3.3.5. These nodes only have temperature and humidity sensing, as light and

vibration information are not necessary. The outdoor nodes are modified to be protected

from excessive moisture. The penetration in the case for the humidity sensor is covered

with a long tube, and the remainder of the case is sealed with silicone, as can be seen in

Figure 3.3.6. The top of the node is covered with a four stop, neutral density filter, to

bring light levels down into the range of the light sensor. This has the unfortunate side

effect of absorbing a large amount of thermal radiation, and heating up the unit, causing

the temperature and humidity readings to no longer reflect the ambient conditions.

Figure 3.3.5: Portable Node Mounted Near Thermostat

Figure 3.3.6: Portable Node Mounted on Exterior of Building

A data update rate of once per minute is chosen in order to minimize the RF unit power

consumption time, but still allow for a responsive control system. Since the thermal and

humidity time constants of the sensors are on the order of minutes, finer resolution data

would not lead to substantial improvements. As will be shown in Table 3.3.1, the sensor

sampling procedures and RF transmissions account for 20 percent of the total power con-

sumption, so slight increases in sampling frequency could be attained without exorbitant

sacrifices in battery life.

The battery for the device is a lightweight, rechargeable, 150 mAh, lithium polymer battery.

This is the battery that came with the keychain picture viewers, and it has battery pro-

tection circuitry to ensure that the users can not be hurt by battery shorts. Although the

battery is rechargeable, no recharging circuitry is placed on-board, as the expected battery

life is two years.

The extended battery life of the portable node is achieved via extremely low power sensing

elements, and minimization of processor and RF unit on-times. A full breakdown of these

can be seen in Table 3.3.1. All of these items are powered by a 2.7V low quiescent current

voltage regulator, the TI TPS780270200 [64]. At 500 nA, it places minimal load on the

battery, but has poor transient response, with excursions up to 150 mV when high power

sections such as the RF unit turn on. All voltage sensitive operations, such as ADC readings,

are performed at times when such excursions do not happen. The digital operations remain

unaffected.

Device on-time [per 60 s] current total [pAs]
Real Time Clock 60 s 6 pA 360

Voltage Regulator 60 s .5 p/A 30
Activity Sensor 60 s 2.8 pA 168

ADC 12 ms 700 /A 8.4
Comparator 10 ms 700 MA 7

RF Unit 4 ms 20 mA 80
Light Sensor is 5 pA 5

SHT15 55 ms 600t A 36
TOTAL 11.5 MA average

Table 3.3.1: Power Consumption Breakdown for Portable Node

The 9.3 pA current during sleep mode is dominated by the real-time-clock (RTC) module

on the Atmel ATmegal281 microcontroller unit. This utilizes a 32kHz crystal to keep track

of time and wake up the unit every minute. By using this built in module, the lowest

sleep state available is 'power-save' mode, which has a base current draw of 2.5 pA at 2.7 V

Vcc and 25 OC. The remaining 3.5 /A come from the power required to vibrate the crystal.

External RTC modules can run under 1 pA [65], which would both reduce the crystal drive

signal and allow for 'power-down' sleep mode, which only consumes 0.2 uA at 2.7 V Vcc and

25'C. This would more than halve the sleep current consumption, and double the battery

life. This particular direction was not chosen for ease of implementation, as the two year

battery life already exceeded the needs of the system.

_ jji;iiijjjlijii;___;=i~i^-l -_. -- .---~.i~.~l-. .-~i-----liti^-lt-iIIIX i_--i-~i-i~i_~--~:-- liii..i-^-iF.1--ii. i I~i .._ __..l;.~~~_;llli~.-lL1_T^lliYiii~.l~^-)~ -- .lil i--l-llliiii;~.l-.~LilL~ii;il i

The remaining 2.2 pA are a result of computation, sensing, and RF transmissions. Since the

microcontroller is being run at 1 MHz from its internal RC oscillator, the power consumption

is fairly low (1 mA), and the processor sleeps for most of the sensing time, making it quite

negligible in comparison to the 4 ms the RF unit is on for at 20 mA. The next biggest power

consumer is the SHT15 [66] temperature and humidity unit, which requires 55 ms at 600 pA

to accomplish its task. The ADC and comparator units operate at 700 pA for 12 ms and

10 ms, respectively. The light sensor is awake for a full second due to its long start up time,

and its current consumption varies with light level. On average it draws only 5 PA, though,

which is small in comparison to the other sources. This gives 133 ltAs of current draw for

each wakeup cycle. These cycles come once a minute, averaging to 2.2 pA.

The temperature, humidity, and light level senors are all off-the-shelf components. The

Sensiron SHT15 temperature and humidity sensor is run in 8-bit humidity and 12-bit tem-

perature mode to save power. Higher resolution would allow for tighter feedback control

loops around the room temperature, but the device is not accurate much past 12 bits, and

this still allows for less than 0.1 'F resolution. The light sensor is the ISL29102 [67] by

Intersil, which has an integrated human eye response filter and an analog compressor at the

output, allowing for its reading to be taken by the ADC unit on the microcontroller. With-

out this compression, the six orders of magnitude of light levels could not be represented

by the 12 bits of the ADC.

The final sensing modality is especially designed for this application. Traditionally, inertial

activity level is measured with a MEMS accelerometer, but these tend to draw approx-

imately 180uA at their lowest [68]. Considering that the activity sensor needs to run

continuously so as not to miss any relevant motion, this would increase the device's current

consumption by an order of magnitude - without even accounting for the processor time

necessary to sample an ADC or send values over a digital bus. Luckily, this application

does not require the full frequency range of MEMS accelerometers. Specifically, the 0 Hz

attitude information is not needed to determine if the user is moving around a little or a

lot. Instead, a vibration integrator is developed around a Murata PKGS [69] passive piezo

shock sensor. Usually employed in hard disk drive and air bag deployment sensors, these

small devices are very sensitive in all directions (1:2:4 x:y:z sensitivity ratios), mitigating

the need for multiple axis integration for some applications.

The piezo ceramic is biased with high value (200 MQ) resistors to keep the low frequency

response of the sensor. Since the capacitance of the sensor is approximately 450 pF, this

gives a lower cutoff of 3.5 Hz. The remainder of the gain stages pass 0.1 Hz to 10 Hz, with the

second stage being a second order low pass filter to eliminate 60 Hz pickup. An active peak

detector and integrator follow to give an output which is dependent on the total activity

over the past period. A reset function is implemented by the microcontroller to drain the

charging capacitor between samples.

The op-amps used in this circuit are the OPA2369 [70] from TI, which run at 700 nA

per channel, and have very low crossover distortion. Since the passive components draw

negligible power, this gives approximately 2.8 p/A for the entire circuit. The low crossover

distortion is helpful in reducing errors in the active peak detector. An active peak detector

is required due to the low power supply rail of 2.7 V, causing losses due to a diode drop to

become too large a portion of the full range.

To further keep power down, the integration charging currents are kept under 100nA. This

poses a difficult problem as reverse leakage in standard rectifiers is usually on this order

or greater. To solve this issue, the low leakage FDLL300A [71] from Fairchild is used. At

50 pA of reverse current, it exhibits low leakage for its relatively low forward voltage drop

of 0.3 V.

The activity sensor is extremely sensitive to slight movement. However, as it has a one

minute integration time, these movements must be maintained for the output to show

significant change. The output values for various activities can be seen in Table 3.3.2.

Although these values are representative, there is variation amongst circuits, as small leakage

paths discharge the integration capacitor differently. To help prevent this, each board is

thoroughly cleaned with flux remover before commissioning. Other factors such as light level

and temperature contribute to variations over time. The rectifier is light sensitive, having

greater reverse leakage under higher light levels, and the charging capacitor and piezo

i _I ____(;_ I__ __ ___ -ill-~ll.- - ii iii ~~i i----i --(---~-~ _ .___i~l - ~.--~~..~- ^.~~..i..i---- ii-iltl i---ll;~---il~i~-^ -C--(II---^II_~--~_C. ___W_._.~r~~s__~_~ji .

element are temperature sensitive. Fortunately the temperature and lighting conditions

remain fairly consistent in an indoor environment, and these are both measured on-board,

and can therefore be compensated for in firmware. Future revisions could reduce the light

effects by placing a metal shield over the circuit, eliminating electromagnetic interference

as well.

sensor usage (ten sample average) mean value standard deviation

on desk with no one at desk 47.9 4.6
on desk with person working at desk 39.8 6.2
worn around neck by person sitting still 46.7 6.0
worn around neck by person sitting and working 191 121
worn around neck by person walking 1015 19.8

Table 3.3.2: Representative Performance of Activity Sensor

It is interesting to note that extremely low vibration levels exhibit lower readings than no

vibration levels. It is not clear exactly why this happens, but is hypothesized that a low level

of excitation keeps the diode in the active rectifier forward biased more often, reducing the

number of transitions made by the nonlinear circuit as it tries to maintain stability. These

transitions can transfer current via the capacitance across the diode, as they happen very

quickly. Ultimately, the difference is within a standard deviation of the samples, making

it difficult to distinguish between the cases in practice, although some of the nodes are

sensitive enough to perform this task.

3.4 Control Node

Since the system is intended to allow for retrofitting of existing buildings, one requirement of

the control boards is that they accommodate many different actuators. To accomplish this,

the LMD18200 PWM motor controller [72] is used. It can handle up to 3 A of continuous

current, and will operate 12 V to 60 V motors. As 24 VDC is a common power supply in

the control industry, this is deemed adequate for the situation. 24 VAC supply is the most

common in the control industry, but AC voltage does not allow for easy reversibility of

motors, so DC is used. There is also an over-current comparator attached to the LMD18200,

so the microcontroller can automatically shut off the unit if a motor has hit the end of its

travel. An assembled control node is shown in Figure 3.4.1.

Figure 3.4.1: Control Node Circuit Board

The motors used depend upon the application. For operating the windows, a 24 VDC motor

from Wintrol [73] is used. It is designed for this application and comes with the appropriate

mating connectors. The full window opening time is two minutes. The VAV box dampers

are controlled with Belimo CM24-3-T [74] actuators. They have automatic over-current

shutoff, and variable hard stops to set the end of travel. They also have a magnetic clutch,

which allows them to be disengaged quite easily. This feature allows for quick switching

between the normal control system and the experimental control system. The full damper

opening time is 30 s. The mounting scheme for these motors can be seen in Figure 3.4.2 and

Figure 3.4.3. The control node is mounted nearby in both scenarios to capture accurate

wind speed, temperature, and humidity data.

The control nodes have the same light, temperature, and humidity sensing as the portable

nodes. In comparison to the portable nodes, the control nodes are kept on continuously as

they have a direct power source, eliminating the need to maintain any sort of battery life.

The nodes also use the same ZigBit module for their communications and sensor sampling

tasks. An external header is supplied which allows for a manual pushbutton control board

Figure 3.4.2: Control Board Mounted with Window Motor

Figure 3.4.3: Control Board Mounted with Damper Motor

to be attached, and also provides for future expansions of functionality.

The control node also has a wind speed sensor based upon a spinning impeller design. The

impellers are replacement parts for the Kestrel 1000 wind speed meter [75]. They have a

magnet on the shaft which is picked up by a hall effect sensor and sent through a filter

and Schmitt trigger comparator to produce a square wave of the same frequency as the

impeller's rotation. The impellers themselves are fairly linear, although they have a finite

amount of friction, and will not sense below a certain level. These wind speed sensors are

used to measure the chilled air flowing from the VAV boxes, and are the main method used

to estimate energy consumption.

Initial calibration of the wind speed sensor is performed to determine the linearity of the

design, and the results are shown in Figure 3.4.4. The sensor is compared to a hand-held

meter of a similar design which claims to have an accuracy of ±3 % of full scale and a range

of 0.4 m/s to 30 m/s. To determine the sensor's linearity in an actual application, a control

node is mounted to a VAV box, and a large ductwork is created to collimate the air with

limited resistance placed upon the air flow. The output of this ductwork is measured at a

number of points with the hand held meter, and these values are averaged over the exposed

surface area to give the total flow rate. The opening in the ductwork is made as large as

possible while still giving a reliable reading on the hand held meter (usually around 0.4 m/s).

The test set-up can be seen in Figure 3.4.5, and the results are shown in Figure 3.4.6. In

general, the constructed wind speed sensor does a good job of measuring the total air flow

from the VAV boxes.

Ultimately, although the sensors themselves work well and have good linearity, they make

a rattling noise at high wind speeds which is not tolerable to the building occupants. For

this reason, a series of sheet metal shims are used to limit the air flow from the VAV boxes

to a level where the sensor no longer rattles. This reduces the total range of the sensor,

making the initial dead band problem worse as it now occupies a greater percentage of the

range. Fortunately the VAV dampers spend the majority of their time in a high flow rate

regime, so the data obtained from these sensors are still meaningful.

y =776.022 + 1636.34 x
10000-

9000

8000

7000

6000

5000

4000

3000

2000

1000

0-
0 1 2 3 4 5

Wind Speed Meter Value [nrVs]

Figure 3.4.4: Initial Calibration of Wind Speed Sensor

Figure 3.4.5: Collimator for In-situ Wind Speed Sensor Test

y = 922.107 + 58584 x

0 0.01 0.02 0.03 0.04 0.05 0.06
Volumetic Flowrate [r/s]

Figure 3.4.6: In-situ Calibration of Wind Speed Sensor

To compensate for this low flow rate regime, a second set of wind speed sensor calibration

tests is performed. Each VAV damper is incremented by ten percent, through its entire

range. At each level, the air flow is measured at multiple points with the hand held meter,

and the wind speed sensor value is recorded. This gives a direct mapping of each sensor's

associated flow rate, and the results can be seen in Figures 3.4.7 - 3.4.14. The majority

of the sensors have a linear, or at least monotonically increasing, correlation between flow

rate and wind speed sensor value. Unfortunately, two of the sensors show a decrease in

sensor value for extremely high flow rates. This is hypothesized to be a result of the output

scoop of the VAV box directing the air directly down, and away from the sensor, at high

velocities. A example of these decreasing sensor values can be seen in Figure 3.4.15, with the

horizontal axis showing the damper opening up by ten percent increments with time, and

the vertical axis showing the varying wind sensor values. To accomodate for this problem,

a non-linear mapping is used to extract flow rate data. As it is impossible to determine

the exact flow rate above a certain threshold, the average flow rate of all values above this

level is returned. Plots of the calibration lines used for all wind speed sensor mappings are

shown along with the data.

This calibration process was repeated on three separate days, with test points A being the

full damper incrementing process. Test points B represent samples from the previous day

at three levels, lowest possible, mid-range, and highest possible. Test points C represent

two samples from a month previous, one at the lowest level, one at the highest level. The

lowest level recorded is shown with an asterisk on the charts, as this is the flow rate below

which the friction in the wind vane sensor can not be overcome. Any flow rate below this

level will be read as zero. The variations in maximum values are due to differences in the

main system air flow, temperature, and humidity on the corresponding days.

~~;=;- :~;::u r-,,,-.-~--; i~; ;-i-l-;;~ ; 1~;;-_:~~~

3000

2500

y =246.678 + 335.042 x + -138.603 x2 + 53.5721 x3

calibration line
- test points A
A test points B
V test points C
- minimum air flow

2000-

1500-

1000

500s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
VAV Average Wind Speed [rrVs]

Figure 3.4.7: In-situ Calibration of Shimmed Wind Speed Sensor: Node 160

2500

2000

1500

1000

500

y = 23 4.89 5 + 689.64 x

-- calibration line
+ test points A

0 0.5 1 1.5 2 2.5 3
VAV Average Wind Speed [nms]

Figure 3.4.8: In-situ Calibration of Shimmed Wind Speed Sensor: Node 176

L esl points I +
V test points C

rminimum air flow

A.

I I

-

y = 509.111 +453.047 x

0 0.5 1 1.5 2 2.5
VAV Average Wind Speed [m/s]

3 3.5

Figure 3.4.9: In-situ Calibration of Shimmed Wind Speed Sensor: Node 180

y =258.468 + 897.672 x
Arnn ..

4000

3500

3000

2500

2000

1500

1000

500s

0 0.5 1 1.5 2 2.5 3
VAV Average Wind Speed [mrs]

3.5 4

Figure 3.4.10: In-situ Calibration of Shimmed Wind Speed Sensor: Node 184

2000

-- calibration line
- test points A
Stest points B

V test points C
- minimum airflow

1500-

1000-

500F

-- calibration line
+ test pointsA +

Stest points B
* minimum air flow

A-

..................... 2 " -2 !" "z iLT

I I II

U1
'

I I I I I I I

v

y =406.568 + -220.179 x + 211.75 x2

2500

2000

1500

1000

500

0 1 I I I I

0 0.5 1 1.5 2 2.5 3 3.5 4
VAV Average Wind Speed [rrVs]

Figure 3.4.11: In-situ Calibration of Shimmed Wind Speed Sensor: Node 188

y = 94.5885 + 1223.09 x + -100.214 x2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
VAV Average Wind Speed [rns]

Figure 3.4.12: In-situ Calibration of Shimmed Wind Speed Sensor: Node 200

-- calibration line
+ test points A
A test points B
V test points C
- minimum airflow

-V V /+

y =253.811 + 533.537 x

1.5 2 2.5 3 3.5 4
VAV Average Wind Speed [n(s]

Figure 3.4.13: In-situ Calibration of Shimmed Wind Speed Sensor: Node 204

3000

2500

2000

1500

1000

500

y = 226.783 + 684.467 x

- calibration line
+ test points A
A test points B

Sminimumairflow

0.5 1 1.5 2 2.5 3 3.5
VAV Average Wind Speed [nms]

4 4.5 5

Figure 3.4.14: In-situ Calibration of Shimmed Wind Speed Sensor: Node 248

: -;~~" ~~~~~~io,~~~:-;::I;- -::-- i:~~-:-;i ;L;-;:--~;:;h:i-iii. -.~.ji~~~-i~-~ a?~ ~-:;i~- -- ;-:----; ::-

L L J

3000

2500

> 2000
o

1500

1000

500

0 Lo
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [h]

Figure 3.4.15: Example Non-linear Wind Speed Sensor: Node 204

It is not clear what the appropriate solution is for the wind speed sensing requirement. Most

industrial applications measure the pressure drop across a Bernoulli plate. Although these

are currently installed in buildings and could be connected to, this makes installation more

difficult. A hot-wire anemometer would give excellent data, but is very costly and degrades

with time due to particulate build-up. It is possible that with a large enough demand,

the hot-wire solution could come down in price to make it viable for this application. It

may also be the case that accurate wind speed is not required, in which case a simple IR

beam-breaking wind vane would be the most economical choice of all.

3.5 Room Node

The room nodes are the simplest portion of the system, although arguably the most im-

portant. They collect and distribute all the RF packets, and keep track of the location

of portable nodes in the network. They use the ZigBit module and the Lantronix Xport

Direct [76] to accomplish these goals. The XPort is configured in UDP mode for ease of

implementation. The full configuration settings are shown in Table 3.5.1.

Setting Value

Baud Rate 38400
I/F 0x4c

Flow 0x00
Port No. 10001
Connect Ox0c

Datagram 0x01
Broadcast N
Remote IP X.X.X.X

Port 10001
Pack Ctrl 0x30

Send Charl Oxfe
Send Char2 Oxfd

Table 3.5.1: XPort Configuration Settings for Room Node

The room nodes use a Panasonic AMN31112 PIR motion sensor [77] with a 5 m sensing

radius. The output is digital, with a level change for every detected motion. These tran-

sitions are counted by the microcontroller over a 30 s sampling period, giving the average

activity for that period. These data, along with temperature, humidity, and light levels, are

sent out every 30 s over the Ethernet port. The temperature, humidity, and light sensors

are identical to the ones used on the portable nodes, and they are kept on continuously as

there is a wired power source. An assembled room node is shown in Figure 3.5.1.

Figure 3.5.1: Room Node Circuit Board

The only difference in its sensing is that the SHT15 temperature sensor is mounted at an

angle to the board (see upper right hand corner of Figure 3.5.1). This is done to help limit

the thermal effects from the other warm components on the board. The XPort is the main

current sink on the board, running at 200 mA when active, and 100 mA idle. since the board

runs from 5 V, this gives 0.5 W to 1 W of power dissipation. The extra heat produced raises

the sensor temperature significantly (-10 F) and makes it sensitive to local air flow, as

convective cooling now plays a role since the sensor temperature is no longer at the ambient

temperature. The angle mounting only slightly improves this situation, but the sensor still

gives useful results.

Chapter 4

Control System Design

The entire Personalized Comfort Control System was designed to operate in summer weather,

although this limitation is merely a matter of convenience, as the tests were performed in

the summer months. The tests included ten people with wearable sensors, six room nodes

monitoring their positions and the activity levels in the rooms, six corresponding thermo-

stat modules returning room temperature and humidity, two outdoor environmental sensors,

seven independent damper controllers, and two motorized window operators. Although this

collection of 33 nodes is extremely small in comparison to the usual building installation

of hundreds of thermostats and VAV damper motors, it is a more difficult control scenario,

as the usual one-to-one, or one-to-many mappings are no longer valid. There are multiple

sensor inputs that may control any number of output devices, at any one time. To compli-

cate matters even further, this mapping necessarily changes with time as people physically

move throughout the network, altering the locations of their cooling needs.

To effectively handle the complex mapping requirements of this MIMO network, a hy-

bridized control system is employed. In hybrid systems, individual modules exchange in-

formation and trade off responsibilities in an ad hoc but hierarchical fashion. This fits

particularly well with the topology of sensor networks, as the control layer matches the

physical instantiation. Ultimately, if it were desired, the entire control scheme herein could

run in the network on the individual nodes (the location module being the only difficult

one to implement). In addition to reducing wiring costs and the single point of failure that

a central server represents, this could also increase battery life in the portable nodes by

eliminating the need to transmit all data every minute for processing. This also creates

a much more secure and private scenario for personal data contained within the portable

nodes.

A full system model chart can be seen in Figure 4.0.1. The system consists of a Con-

trol Module, Location Module, Window Module, Outdoor Module, Thermostat Module,

Portable Module, and Room Module. Each node in the network has a module associated

with it, to keep track of its own local state and needs. The Control Modules receive setpoint

commands from the Window, Thermostat, Room, and Outdoor Modules, and make deci-

sions concerning how to appropriately control the associated damper and window motors

to reach these setpoints. The Location Modules aggregate all the wireless transmissions

from the portable nodes, and create a location table that the Room Modules can access to

find out who is where. The Window Modules receive information from the window control

nodes, and keep a log of when the window was last manually operated. This is accessed

by the Outdoor Modules when determining whether to open or close the windows. The

Window Modules also monitor the air speed coming in through the window, and close the

windows if it becomes to windy. The Outdoor Modules receive outdoor temperature and

humidity information, and poll the indoor Thermostat Modules to decide whether to open

the windows and let in cool outside air. The Thermostat Modules track individual room

air temperatures, and poll the Room Modules to determine whether or not they should

be performing control actions. Based upon the Room Modules' states, the Thermostat

Modules will either run normal control, setback control, or no control at all. For summer

operation, the Thermostat Modules also determine if the room is too cold, at which point

the Window Modules will not open the windows. The Portable Modules keep track of each

individual user, and whether they are active and comfortable. The Room Modules poll the

Portable Modules and Location Modules to find out if users are currently active, where they

are located, and if they are comfortable. Based upon these findings, they either relinquish

control to the Thermostat Modules, or work to minimize the discomfort in the rooms. Each

of these modules is explained in depth in the following sections.

SENSOR/
ACTUATOR
HARDWARE

Figure 4.0.1: Control System Model

LEGEND: Data and command packets sent over ethernet
Command sent to module within system

- Data requested by module within system

The system also incorporates a back-up function, which is not related to the hybrid con-

troller, but is critical to its proper functioning. After a short period of running, the control

system establishes a complicated map of the state of the sensor network. This map continues

to update for the entire duration of its operation. Some states evolve on a minute-by-minute

basis, and others over hours or days. To maintain this state during system crashes, critical

components are backed up to the hard drive whenever they are changed. Upon restart,

these components are loaded before the program begins to run. Not all components are

backed up, as some are modified too often, or are not important enough, to warrant the

overhead of continual file writes. Currently, all comfort preference variables and expected

occupancy variables are backed up.

4.1 Control Module

The Control Module represents one of the few hierarchical elements in the network, as it

merely processes and passes incoming commands. The main purpose of the Control Module

is to map the desired temperature control signals to the correct output devices, and maintain

state between the various control hand-offs that occur throughout the day, as many devices

control the same actuator. In this way, local control of the damper is maintained in a stable

fashion, regardless of the incoming control signals. This also allows for a central repository

for storing control variables specific to certain rooms. A flowchart for the Control Module

is shown in Figure 4.1.1.

The Control Module implements a hybrid proportional and integral (PI)/dead-band con-

troller. The PI controller is chosen for its simplicity and stability, limiting the number of

unknown variables when analyzing the full control loop. Sufficient performance is obtained

from the PI controller, such that a full proportional, integral, and derivative (PID) controller

is not necessary. The predictive setback algorithm (see Section 4.7) further reduces the need

for the fast system response time of derivative control, as the room temperature is set before

it is occupied. A dead-band is placed on the issuing of control signals around the setpoint

in order to reduce network traffic. Since all of these commands are required to be sent

;) __I_ ___ Ij /jiii; rX__lj__ I__.~III_1I~~---

III
II.
Window .
Modules

I

III

Outdoor U

Modules

I
U
U
U
U
U
I
U
U
I
I
I
I
I
I
I
I
I
I
I
I
I

III
I

U

Thermostat Room
Modules Modules

Control Module

* Is this a damper command?

* Is the error larger than the deadband? I

Is the damper NOT full open / closed?

NO YES

* Calculate positional gain .

* Calculate integral gain

* Create control signal I

* Route command through appropriate Room Node

Control
Nodes

Figure 4.1.1: Control Module Flowchart

over the wireless network, and the incoming control signal is digital with a finite resolution,

in the absence of a dead-band a control signal would be sent out every minute, increasing

the probability of collisions. This dead-band is chosen to be ±2 LSB (±0.1 OF) as a good

balance between maintaining temperature accuracy and limiting excessive transmissions.

In practice, this keeps temperature excursions between ±0.2 OF.

The PI gains are set via a combination of manual tuning and the Ziegler-Nichols method [78].

The Ziegler-Nichols method involves increasing the feedback gain until resonance is reached,

and then setting the gain parameters as a function of the critical resonance gain (Kc) and

period of the critical resonance (7-). The proportional gain (Kp) is set to 0.5 x Kc, and

the integral gain (Ki) is set to 1.2 x Kp/Tcr. The Ziegler-Nichols method was not employed

exclusively, as long evaluation times are required to check for stability or resonance. After

two days of testing, it was determined that the response was well enough understood to

make a reasonable estimate of the optimal PI gains.

The gain is increased by factors of two until instability is observed. The resonance can

be seen in Figure 4.1.2, and is measured as having a period of approximately 0.2 hours

at a positional gain of 32,000. This gives Kp = 0.5 x 32,000 = 16,000 and Ki = 1.2 x

16,000/(0.2 x 3, 600 s) = 26.7. Application of these control gains still produces excessive

overshoot and oscillation, as can be seen in the first half of Figure 4.1.3, so the gains

are halved again, assuming that the actual critical resonance could be anywhere between

the 16,000 gain test and the 32,000 gain test. This produces gains of K, = 8,000 and

Ki = 13.3, which can be seen to improve performance greatly, as shown in the second half

of Figure 4.1.3. These gains are then manually adjusted to their final gains of Kp = 8, 000

and Ki = 10 after more testing. An example of their performance can be seen in Figure 4.1.4,

with a four degree step response in less than an hour. The ±0.2 "F dead-band oscillation is

also visible in this figure. Since all of the offices are of similar size, and have similar cooling

equipment, the same gains are used for all offices. The only exception to this is a double

office, which has two VAV boxes that are operated in parallel at one half the controller

gains.

ir:~L------- -i~l~*;-~~l-~ --'I~-'~"~i"- !:!! i!' !!: !::i i : ! ! ?' ! ! f ' iU":

U_ 73 -
2V

F-

72.5

72

71.5-

1 2 3 4 5 6 7 8
Time [h]

Figure 4.1.2: Control Oscillation for PI Gain Calculations at Kp = 32, 000

71.8- u Y Y r -

E 71.6

71.4

71.2 -

70.8

5 10 15 20 25
Time [h]

Figure 4.1.3: Overshoot: First Half is Kp = 16, 000, Second Half is Kp = 8, 000

74

:.i:i:.i-i

i 74

73.5-

73-

72.5

72-

4 6 8 10 12 14 16 18
Time [h]

Figure 4.1.4: Example of Final Control Settings in Practice

4.2 Location Module

The Location Module (see Figure 4.2.1) is in charge of keeping track of where each node

is located in the system. It does this by aggregating all of the location packets, which

are received by each room node and passed along via Ethernet to the network hub. Since

packets arrive in tight succession, it is important to window out those packets which do

not belong to a particular broadcast transmission. To do this, the Location Module starts

a timer when the first location packet arrives from a particular portable node. It then

only accepts packets for the next 50 ms. Since location is based upon the strongest RSSI

of these received packets, the actual location may not be reflected by the data, as multi-

path can easily confound RSSI data. To accommodate this, the Location Module performs

a smoothing algorithm on the incoming data, taking a majority vote on the past three

location results. If no majority can be reached, it takes the currentresult. This allows for

temporary excursions to be excluded, but relatively quick response to changes in location.

Room
Nodes

Location Module
I I

* Sort packets by source ID

S Find destination with max RSSI

S Run smoothing algorithm

* Store current time ,

Room
Modules

Figure 4.2.1: Location Module Flowchart

An example of the received RSSI for a portable node is shown in Figure 4.2.3. The data

represents a time when there are no people in the building, and the node is neither being

worn, nor is it moving. This node is placed in perhaps the most challenging location, directly

in the center of the network of five receivers. It is in this location that it would most likely

be picked up by neighboring nodes. A map of the transmitter and receiver locations can

be seen in Figure 4.2.2. It is important to note that the distances on the map are not

representative of the actual distances from the portable sensor to the room nodes, as the

room nodes are mounted on the ceiling at a height of 3 m. The portable node is usually at a

height of approximately 1 m, as the user spends most of his or her time seated. This makes

the actual distance Dact = 22 + Dap, where Dmap and Dact are in meters. A listing of

the actual distances is shown in Table 4.2.1 for the tests done in this section.

It can be seen from Figure 4.2.3 that the RSSI values strongly correlate with distance

between transmitter and receiver, although this relationship is neither fixed nor linear.

Since the system does not need to know exact location, rather merely which room a person

is in, this rough location based around maximum RSSI values works quite well. This is

further aided by the fact that the office walls are constructed of steel studs and drywall,

with metal whiteboards and metal shelving units being common on the walls. The doors

to the offices are also metal. This creates a tight zone around each room node. A plot

of the RSSI values for the same portable node during a time when it is being worn can

be seen in Figure 4.2.4. The user is generally seated for this test, with the node hanging

from the neck in front of the chest. The user's back is facing room 48, and the sensor is

facing room 32. It can be seen that the RSSI values begin to fluctuate much more under

these conditions, as both the body and sensor are moving. The difference between RSSI

values decreases greatly, but the closest node still retains the strongest signal. The voting

algorithm helps window out short term false readings, and its output for this same time

period can be seen in Figure 4.2.5. The location algorithm reports two false readings over

the hour of testing, giving a success rate of 58/60 = 96.7 percent, as the portable module

transmits once a minute.

1

LEGEND: Each room node is labeled with its corresponding node number

scale0 Room node location A Portable node location scale
2 meters

Figure 4.2.2: Map of Receive and Transmit Locations for RSSI Tests

Room Node Distance [m]

32 3.40
36 6.32
40 5.39
44 2.23
48 3.61

Table 4.2.1: Distance from Portable Node to Room Nodes

";;;-

MI M

40-

En 30

20-

10-

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time [h]

Figure 4.2.3: Example of RSSI Values for Unoccupied Period

g30 V

\ J/\

20 . " -
I '\ I -.

0 -10 II

I I I I II I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time [h]

Figure 4.2.4: Example of RSSI Values While Sensor is Worn

i--i- i~i- ------- XL;'---I'-~-\~ - Ti;i- ""' :-I'-'--i -- ~-~-~I--r _-l,----r-r~ - -r4;_r; l-r - --_/-;;--; --__.r; ---r ii-:; -iP-)~-li-~-:r;: ,--r;;----l -XI ---;--i-i ~- -;;-^ -i.--r-i-*--- i-r_ i-;~,ril:'i;;i"~?;i:-i::~~ji_~i~:-;

48-

47

6.5

46

5.5-

45

.5-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Time [h]

Figure 4.2.5: Location Algorithm Results for Period Shown in Figure 4.2.4

4

4

4d

4.3 Window Module

The Window Module receives data from the two window controllers in the network. These

window controllers monitor the light levels, temperature, humidity, wind speed, and motor

state. The Window Module currently only takes into account the motor state and wind

speed, and a flowchart of its actions can be seen in Figure 4.3.1. Via the motor state

information, the Window Module can be notified if a user has pressed a button to manually

open or close the window, if the window was last driven in the open or closed direction

(either by a user or some other module in the network), or if the window was driven to its

limits in either the open or closed direction. From these data, the Window Module creates

a repository that can be accessed by other modules, letting them know if the window is

fully shut or not, or if the window has been manually operated in the past three hours or

not. The manual timeout of three hours is chosen to keep other modules in the network

from over-riding user preferences, but still allowing the system to respond if a window is

left open overnight.

The other function the Window Module performs is keeping the wind speed coming through

the window below a certain level. If wind speed greater than this level is detected, the

window is closed a small amount. This process repeats until the wind speed has dropped

sufficiently. Again, this automated control of the window is not performed if the window

was operated manually in the past three hours. Both the window control nodes and the

damper control nodes have built in functions for driving their respective motors to maintain

a particular flow rate through the wind speed sensor, but these are not used at this time to

allow for increased predictability of the complete system.

=

Window
Nodes

Window Module
i mm mmmmm m mm iimmmim imim mmimmimi

Check for window manually controlled in past 3 hours II* Check for window full shut I open* Check for window manually controlled in past 3 hours
I
I
I
I
I

* Is wind speed over max value?

YES
I
,* Isen window parNOT full close? command I

II
* Send window partial close command m

Control Out
Module Moc

door
dules

Figure 4.3.1: Window Module Flowchart

I1

4.4 Outdoor Module

The Outdoor Module is driven by the two outdoor environmental sensors, and a flowchart

of its decisions can be seen in Figure 4.4.1. The outdoor temperature and humidity are

stored, and the outdoor air enthalpy is calculated. The enthalpy of a gas is a measure

of its total stored energy at a given pressure and temperature. Since the contributions

due to pressure variations are negligible in this case, they are ignored, and the enthalpy

can calculated based upon the temperature and moisture content of the air. To minimize

computational load, an approximation is used based upon Equation 4.4.1, where H is the

enthalpy in Btu/lb, T is the temperature in degrees Fahrenheit, and RH is the relative

humidity in decimal form. This approximation gives one percent accuracy over the range

of conditions experienced by the sensors [79], which is more than adequate considering it is

only the difference in enthalpy that is of interest, not absolute enthalpy.

H = (0.007468 x T 2 - 0.4344 x T + 11.1769) x RH + 0.2372 x T + 0.1230 (4.4.1)

If the outside air has less energy, i.e. lower enthalpy, it is useful in cooling down a room.

For this reason, the Outdoor Module will open the window if the outside enthalpy is one

Btu/lb less than the indoor enthalpy. Although the main air-conditioning system has an

economizer which brings in outside air under similar conditions, air brought in through

the window does not require a fan to move it, thereby reducing the net energy to cool a

room. The window closes if the outdoor and indoor enthalpies are equal, effectively putting

hysteresis in the system and eliminating excessive window motion. The indoor enthalpy

is queried by the Outdoor Module from the room Thermostat Module associated with

the window, along with an indicator of room temperature. If the room is more than a

degree below its setpoint, it is assumed that the VAV dampers are already closed, and that

additional cooling is not necessary. All of these functions are performed after consulting

the Window Module to ensure that the window isn't already open or closed, and that it

hasn't been manually operated recently.

ii __1~ .jliili_/_li .-_l~~=i(;~^---~-~--_ __~_i~C ~~-.l~_~~_~iC~~___I-~-.~~~

Outdoor Module
.. m......m............mmm.mmmm

" * Has the window been manually operated ,
in the past 3 hours? U

' NO

m * Is window NOT fully closed?

SIs outdoor enthalpy greater than indoor enthalpy?

SYES NO

o Send close window Send open window
I command command

Control
Module

Figure 4.4.1: Outdoor Module Flowchart

4.5 Thermostat Module

The Thermostat Module performs many of the room temperature control functions. It re-

ceives temperature and humidity information from sensors mounted in each room below the

pre-existing thermostats. It calculates enthalpy according to equation 4.4.1, and determines

if the room is too hot or too cold. Before making these assessments, it first consults the

associated Room Module to check its state. If the room is occupied, but not by a person

wearing a portable node, the Thermostat Module performs normal control, regulating the

room temperature to a fixed setpoint, usually an average of the documented comfortable

values of its occupants. If the room is unoccupied, it performs setback control, regulating

the room to a fixed temperature usually six degrees Fahrenheit higher than Normal Mode.

This setback temperature is limited to six degrees in order to allow for fast transitions back

to comfortable temperatures when users arrive unexpectedly. In cases where the room is

occupied by users with portable nodes, the Thermostat Module relinquishes control of the

VAV dampers to the Room Module, which has more information as to who is present and

what his or her comfort needs are. A flowchart for the Thermostat Module can be found in

Figure 4.5.1.

The Thermostat Module has a number of variables that are accessible by other parts of

the network. The enthalpy, temperature, and humidity are used widely throughout the

system. The Thermostat Module also has a series of lower temperature limits it checks for,

and sets a 'too cold' indicator if any of them occur. This function is necessary as there

may be many different control operations happening at any one time, some of which might

be conflicting. For example, both the VAV dampers and window motors can be operated

to cool the room down, and they act independently, so a hard-stop is required to keep

the system from driving itself too far in one direction. Depending upon the current room

occupancy condition, different lower limits are used. The lowest limit is during setback

mode, when occupancy comfort is not relevant and reducing energy consumption is most

important. In these conditions, temperatures are allowed to drift down to 65 oF, helping to

store energy in the thermal mass of the internal building. If the room is occupied, the lower

limit is set to one degree Fahrenheit lower than the control temperature. In cases where the

1 ~__(__ _~~ _ l^__ll ̂ IX___ _1._1-_ --1~ _r__~^_t_~-~I-.lll~--_111-__

Thermostat Module

* If setback control, use setback temperature
Room * If normal control, use occupied temperature *

Modules
S * Else no control

- I

* I
* I
, I
* I

" * Calculate indoor enthalpy

* check if room is too cold

. Calculate temperature error* I* I

Outd oor Controll I
Modules Module

Figure 4.5.1: Thermostat Module Flowchart

room is occupied by users wearing portable nodes, this lower limit is kept at 70 oF. This is

because the desired temperature is unknown by the Thermostat Module, and it is best to

take the conservative approach of not cooling the room too much, but instead allowing the

main system to control the temperature.

4.6 Portable Module

The Portable Module keeps track of each user in the system, and determines whether the

user is active and comfortable. A flowchart of the Portable Module's actions can be seen in

Figure 4.6.1. Activity determination is necessary, as the nodes are often left on the users'

desks when they leave for the day. The activity determination is based upon activity and

temperature information from the portable node. Data from the portable node light sensor

was considered as a possible indicator of activity, but the variations in light levels due to

sunlight, and the lack of predictability as to whether the unit is being worn under clothes,

made it an inconsistent activity detection variable. Temperature is only mildly influential

in the activity algorithm, as it is the main control parameter for the system. If it were to

trigger a false positive, and then drive the air-conditioning system to either reinforce its

state, or attempt to change its state when this is not possible, an unstable feedback loop

could result. An example of such a situation would be a user leaving a portable node next

to a computer which is warm. This would heat up the portable node and could indicate

activity, causing the control system to believe a user is in the room. It would then try

to cool down the node, which would be impossible given the sensor's proximity to a heat

source. To eliminate such scenarios, the temperature alone can not indicate activity.

The main determinants of activity are windowed mean and variance of the piezoelectric

motion sensor on the portable node. It is very important that the activity algorithm quickly

detects when a user is no longer wearing a sensor. The sensor temperature will quickly

drop after removal, and the system would react by shutting off the air-conditioning, to the

displeasure of the remaining users in the room. For this reason, a window time of three

samples is chosen, giving a maximum delay of three minutes to clear the buffer. As the

average delay of a windowed sample is one half the window time, the average delay for this

system is only 1.5 minutes. This also has the advantage of giving a fast start-up time, so

users are added to the system as soon as they arrive. The only disadvantage is the increase

in false positives, which, fortunately, are short lived due to the small window time.

The incoming data from the portable nodes are first separated by time since last arrival, as

r

Portable
Nodes

PFortable Module
U m.n m m m m m m U m n m U m m m m m U m m m U U mm

* Is user active? l
YESI

YES
l

* Calculate comfort distance

* Store current time

* Was there a button press?

* Has the user been active for at least 15min.

* Was there NOT a button press in the past 15min.

YES WMMEE

I Update comfort algorithm
SRecalculate comfort distance

mmmOmmmmmmm

Room
Modules

Figure 4.6.1: Portable Module Flowchart

packets are sometimes sent twice due to the acknowledge transmission failing even though

the data packet transmission was successful. Only packets which arrive more than 55 s

since the last packet are accepted. Furthermore, for activity recognition, any button press

packets are ignored, as these are out of sequence time-wise and result in incorrect activity

data. Since the activity data is an accumulation since the last transmission, and button

presses can occur at any time, the actual activity is not representative. Although the time

since last packet arrival is known, and the actual activity level could be backed out, button

presses occur so infrequently that this added complexity is unnecessary. Also, the high

forces during the actual button press action make these data of little value.

After this windowing process, the Portable Module checks for activity start or continue

conditions. The activity start conditions have much higher values than the activity continue

conditions, to help reduce false positives under the assumption that once activity is detected,

it is more probable that the user is still active rather than not. This keeps users in the

system through periods of low activity, when the activity sensor is returning low values.

Start conditions include windowed mean and variance above certain thresholds, and continue

conditions include windowed mean and variance and temperature above certain thresholds.

There is also a timeout on the continue conditions, excluding temperature. Temperature

is excluded to eliminate thermal lock-up conditions. If no continue conditions are detected

before the timeout period of six minutes, the system assumes the user is no longer active,

and requires that a start condition be detected before re-establishing him or her in the

system. The user is only flagged as active if a continue condition is reached, even if the

timeout has not yet expired. The time of last activity is then logged for other modules to

access in their decision processes. A time stamp is chosen as the pass variable instead of an

activity flag, as a user could leave the system while active and leave the activity flag set,

which could not be reset as no new user data would be arriving.

A representative plot of the activity algorithm running on received data can be seen in

Figure 4.6.2. The windowed mean and variance are plotted alongside the actual activity

and temperature data for a sensor worn, via a lanyard, around the neck. Some of the

difficulties in detecting the active condition can be seen in Figure 4.6.3, which is a detail of

0 20 40 60 80 100

4(

3(

1

C-

.u

100

0 20 40 60 80 100

120

120

120

120
Time [h]

Figure 4.6.2: Representative Activity Algorithm Performance (sensor on lanyard around

neck)

0 20 40 60 80 100

x 104
I i

I 'dI IL•

I I I I I I I I I

80

75

70 I I I
0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1001

80

60

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0 lYV I" ' ' I 2i v II, I 4I U 5

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time [h]

Figure 4.6.3: Representative Activity Algorithm Performance: Detail

I I I I I I I I I

'-...

a section of Figure 4.6.2. The vertical axes are expanded to show the low levels of many

of the signals, as there are many very low activity states during normal usage by the users

in the system. Many of the tasks the users in this study perform on a daily basis include

reading and thinking, neither of which require much physical motion. As each portable

node, and the user of the node, is slightly different, the thresholds of activity need to be

different as well. These thresholds are picked manually for the users from visual evaluation

of six weeks of user data. As the data is unlabeled, estimations are made of the actual

active times, and the algorithms are modified to match these estimates as best as possible.

A listing of the thresholds used can be seen in Table 4.6.1.

Portable Mean Variation Mean Variation Temperature
Node Start Start Continue Continue Continue

4 70 200 45 15 80
8 120 200 70 25 80

20 70 200 50 25 80
24 70 200 45 15 80
28 50 200 20 15 80
76 70 200 30 15 80
84 100 200 65 25 80
88 70 200 30 15 80
96 70 200 50 20 80
104 70 200 30 15 80

Table 4.6.1: Threshold Settings for Portable Node Activity Algorithms

After the activity is sensed, a timeout is placed on any use of the data for fifteen minutes.

This is done to help alleviate erroneous control signals due to the temperature and humidity

sensors not having acclimated. A plot of a portable node being taken on and off the body

can be seen in Figure 4.6.4. The rise time varies, as the temperature it is trying to reach is

also varying, as can be seen clearly at the end of the plot. The fall time, however, gives a

clear indication of the thermal time constant, which is approximately 15 minutes to achieve

90 percent of final value. It would be more stable for the system to wait even longer, but

this would also reduce the responsiveness of the system. If a user is not active for more than

20 minutes, the algorithm is restarted and the user must wait another 15 minutes for his

or her data to become valid again. This 20 minute window time allows for short excursions

out of the system and compensates for short term false negatives in the activity algorithm.

92

90

88

S86

(2 84

E 82

80-

78-

76 I
2.5 3 3.5 4

42

40

S38

E
= 36r

34

32

30 -
2.5 3 3.5 4

Time [h]

Figure 4.6.4: Temperature and Humidity Acclimation Times of Portable Node (node worn
under shirt, and then taken off and placed on desk, twice)

If a button is pressed, these data are processed by the comfort algorithm, which stores the

last nine button presses each of hot, cold, and neutral. For the same reasons employed by

the activity algorithm, the comfort algorithm only allows button presses from users who

94

have been active for at least 15 minutes. The comfort algorithm is updated and stored

in a back-up file. As each subsequent data packet arrives, a comfort distance metric is

calculated based upon this updated algorithm, and made available to the Room Module for

temperature control calculations. As different comfort control algorithms were evaluated,

they are explained in Chapter 5, where an in-depth analysis can be found.

4.7 Room Module

The Room Module is one of the most influential modules in the network, even though it

only has one sensor data stream of its own that it uses: the passive infrared (PIR) motion

sensor. In addition to its own sensor, the Room Module references many other modules in

the network before making its decisions. It determines what format of control the room

should be set to (normal, setback, or comfort), and performs the comfort control itself. The

reason for this is that the room nodes are fixed in location, and always active, so they can

be relied upon to maintain the system state. The room nodes also have 30 s data updates,

making them more responsive than the rest of the nodes in the network, which have at least

60 s updates. A flowchart for the Room Module is shown in Figure 4.7.1.

The Room Module first processes its activity information. Although the PIR sensor returns

a count which increases with the amount of motion in the room, all levels greater than zero

are counted as a level of one. This is done to even out the algorithm results, as only the

presence of activity is desired to be known, not the level of activity. The algorithm performs

two windowed means on the incoming data, one over the past 70 samples, and the other over

the past 12 samples. Two different averaging times are used to drive two different outputs.

The first is a determinant of whether the room is occupied, which requires a fast response

time. The second is a determinant of the first arrival time of users in a day, which requires

high accuracy but response time is irrelevant. Both algorithms use a higher threshold for

initiating an occupancy state than they use for maintaining an occupancy state. This limits

false positives and excessive oscillation between states throughout the day.

Portable
Modules

Location
Modules

Control
Module

Thermostat
Modules

Room
Nodes

Room Module
I n t r oc n I ur

* I

* • Is the room occupied?
* N
m * Was the room occupied in the past 3 hours? m
I I
, * Was the room occupied sometime in the past week,]

at this time +/- 1 hour?
I I

~ I+ YES NO
SI

• Which users are in the room?

n * Are these users authorized
• to control this room?

• Are these users active? .
. YES NO

I * Arbitrate between users H

* Set control to Comfort Mode H

I I
SRelinquish control
SSet control to Normal Mode

* * Relinquish control

to Thermostat Module
S I

** Set control to NormaSetback Mode

m m m m mm m m mm m m m mm m m m

Figure 4.7.1: Room Module Flowchart

I

An example of the occupancy algorithm running on received data for a week can be seen

in Figure 4.7.2. This gives insight into a number of the problems faced, and some of the

benefits and shortcomings of the detection system. It can be seen that there are several short

periods of occupancy, especially late in the evening when custodial staff enter for cleaning.

The algorithm generally windows these out, although periods lasting more than four minutes

are usually detected as an occupancy. There are also multiple gaps in occupancy throughout

the day, which the algorithm bypasses with a three hour time-out, but this also gives longer

periods of false positives after the user leaves for the day.

20

151

101

I I I I I I I

room occupied

x X 0 occupy start
X occupy end

XI I
0

* . X X

I I I I

1 2 3 4 5 6 7
Day of Week

Figure 4.7.2: Example Occupancy and Algorithm Results for a Single Room

The main role of the occupancy algorithm is to determine what level of cooling the room

needs. For this reason, a large amount of lag is placed in the transitions, in order to keep

the air-conditioning system from cycling too heavily and wasting energy. Once occupancy

is detected, the system maintains an occupied state for three hours. This was done to

bridge large gaps in the day when users leave to go to lunch or meetings. These happen

quite frequently, and a three hour window covers most scenarios. This does, however, place

a high penalty on false positives, as it will cool a room excessively for three hours. The

window averaging time of 12 samples, which equates to six minutes, attempts to strike a

balance between fast activation and accuracy. This gives an average delay of three minutes

for new occupant entries. Although there is a long time window for this global occupancy

variable, the system also keeps track of immediate occupancy for use in determining what

cooling actions are required.

If no occupancy is detected, the system checks if a user is expected to arrive soon, in order

to ensure that the room is at an appropriate temperature when he or she enters. This is

done by checking the arrival times stored in a buffer over the past week. If a user arrived

any time in the past week within two hours of the current time, the system assumes he or

she will most likely arrive again, and it prepares the room accordingly. The window time

is much larger for this algorithm, with an average lag of 17.5 minutes, to ensure that any

person who entered the room in the past week actually stayed long enough to make it worth

cooling the room down for him or her. This algorithm also employs a three hour time-out,

in order to bridge gaps in the day, and return only one entry point for the day. If a room is

unoccupied for more than three hours, the next entry will be stored in a buffer for future

reference.

Once the Room Module has calculated its occupancy state, it then performs control actions.

These control actions are performed at one minute intervals, even though data is updated

at 30 s intervals. This is done to synchronize with the other controllers which are limited to

one minute updates. Doubling the control action time would be the equivalent of doubling

all the PI control gains, causing system instability. If no occupancy is detected, and it is not

within two hours of an expected entry, the Room Module sets the control state to setback

i I_~_I;_;___ _ ~~~~_7__~______~~~1 ___~____j~ _(____ ;_ __ _~_~_ _i;_~Llii_~;_____l li__iil ;;;; ii ____

and performs no actions. If occupancy is detected, or expected to occur in the next two

hours, but there are no users wearing portable nodes in the room, the Room Module sets

the state to normal and performs no control actions. Under both setback and normal states,

the Thermostat Module controls the VAV dampers to regulate the room temperature. If

the room has been occupied by a user with a portable node in the past three minutes, the

Room Module checks the comfort level of all users present in the room and averages them

to create a control scalar. It then turns off both normal and setback control, and acts upon

the control scalar to minimize the average room discomfort. Once users have been detected

there is a six minute timeout before either setback or normal mode can be entered, in order

to maintain system state during periods of false location responses and short trips out of

the room.

When determining the control scalar for a room, the Room Module only considers those

occupants who are normally situated in the environment. The test setting incorporates

four closed offices, and one large common space which is divided into two sections. For the

four offices, only the occupants of those offices are allowed to control the comfort setting.

In the large common space, all users are averaged together when determining the setpoint.

Although room occupant information was pre-assigned in this case, it could be replaced

by a weighting algorithm that determines how much time each user spends in a particular

space. This would produce similar results as the pre-assigned knowledge, as office occupants

would make up the highest percentage for their respective offices, but it would also increase

the amount of control workers in the public space had over their area.

100

_ ~n~LI Y-~~-I~-?~~;i~~~~~~~,~~l~;~~i~i-~ --;: r-- --:,---_;~--- -- r- - -~--~~~~~~~~~~~i

Chapter 5

Comfort Algorithm Design

In order for the entire Personalized Comfort Control System to function effectively, it must

have some metric by which to judge the individual user's 'comfort distance'. The term

'comfort distance' is used here as a measure of how hot or cold a user is, or more precisely,

how far away he or she is from being comfortable. The use of this metric places a number of

difficult constraints on what types of algorithms can be used, but is required due to the fact

that the output of the implemented algorithm must drive a control loop. For this reason,

it must have a monotonic structure to avoid instabilities and local minima. These could

be accounted for through a non-linear control structure, but this is avoided in this work

in order to minimize the number of variables involved in determining system stability and

performance.

Many standard pattern recognition techniques are inadequate for this control task as they

seek to draw boundaries around similarly labeled data, giving accurate classification, but no

distinction of levels within those classes. A simple Bayesian analysis could give a probability

of comfort, but would require a much more accurate model than is currently available,

given the limited set of on-body comfort indices used. Only temperature and humidity are

measured on-body, whereas Fanger's model [38] requires clothing level, metabolic rate, and

air flow. This problem is compounded by the limited labeling of the acquired data. In

comparison to Fanger's seven point scale, users of this system only have three choices, hot,

101

cold, or neutral. This means there is no way of knowing exactly how hot or cold they are

at the instant a button is pressed. This metric must be inferred from the distribution of

the received data.

Not only are the labeled data points ambiguous as to their level of discomfort, but they

are also very sparse in their occurrence. The users are not required to press any buttons,

and are only asked to do so if they feel uncomfortable, limiting the amount of labeled data

points to an average of about one per person per day. Ideally, if the system were to function

flawlessly, this number would be even lower, as the users would be comfortable more often.

Another issue faced in this reduced data set is the lack of an even distribution of hot and

cold labels. For some users, the room never went cold enough to make them feel cold, so

only hot data points exist, giving no information by which to determine a lower limit on

comfort.

All of these drawbacks in the data set place a final constraint on the comfort algorithm. It

must be robust to insufficient, inaccurate, and indeterminate data. If one user has his or

her sensor in a pocket, where the temperature is much warmer than its usual location, the

entire system can not be allowed to drift too cold in order to compensate. There must be

the inclusion of some pre-assigned knowledge which incorporates a rational view of comfort

boundaries. This requirement will therefore favor more general approaches, which may not

be as effective for each individual, but will reduce the problems associated with over-fitting

of the data (e.g. the system attempting to cool a room to match an accidental button press).

Finally, any algorithm developed must be able to run and update itself in real-time, to effect

the comfort of the users when it is needed.

5.1 Selection of Indices

At any given instant, several features are available from which to determine comfort. Ex-

amples of these include on-body environmental conditions, room environmental conditions,

outdoor environmental conditions, location, time of day, day of week, and local VAV air

flow. Even without the creation of any subfeatures, the system already logs 24 different

102

data indices each minute, for each user in the system. Given the extremely high dimen-

sionality of the data set in comparison to the number of labeled data points (an average

of one per person per day), the number of indices used to determine comfort must be kept

to a minimum. Any algorithm trained on a small data set, with too many features, will

classify those particular points well, but is unlikely to be representative of the function as

a whole. A typical metric is to have a training set much, much larger than the feature set.

This limits the scope for these data to two or three features.

From extensive evaluation of the first two months of data, little correlation is found between

the time series data and hot or cold preferences. Although users were more likely to register

discomfort early in the day, and earlier in the experiment, there was no distinction between

hot or cold. Similarly, the outdoor environmental data gave mixed results, with the strongest

correlation coming from a user who did not have a view of a window from his workspace.

This is probably due to the weather being extremely consistent for the first two months of

the study: cold and wet. It rained in Boston on all but two days in the month of June. The

VAV damper information proved useful for determining some of the users' comfort, with

them reporting either comfortable or cold conditions when it was on, and hot or neutral

conditions with it off. However, since this is also the main method the system has for

affecting the comfort of the users, it is not used as a control parameter in order to prevent

oscillations which would occur with the system detecting a 'hot' state, initiating air flow,

detecting a 'cold' state, turning off, and repeating this cycle indefinitely.

The main parameters that returned consistent results amongst all users, were the room

and on-body environmental conditions. Scatter plots for the majority of users comparing

temperature and humidity for the various comfort conditions can be seen in Figures 5.1.1 -

5.1.7. The wall mounted thermostat nodes provided the best overall clustering of classes,

with the on-body portable nodes and ceiling mounted room nodes performing similarly.

Linear combinations of these data were also evaluated, which showed mixed results, giving

large improvements to some and greatly hindering others.

103

O neutral
* cold
+ hot

On-body

35 40
Humidity [/oRH]

o0

84

82

80

761
45 25

O neutral
* cold
+ hot

Ceiling

+

8+

+ +

30 35 4
Humidity [%RH]

O neutral
* cold
+ hot

Wall

74

40 45 50 55
Humidity [%RH]

Figure 5.1.1: Clustering Comparison for Various Sensor Locations: Node 4

+

+

78-
30

coN

------ ~-~ Ila

I

0 neutral
* cold
+ hot

On-body

O

O O

O

00

* *

*0
40 50

Humidity [%O/RH]

90[

86

84

82

80

78

-1 76-
60 25

0 neutral
* cold
+ hot

Ceiling

O

+0
O

*0

30 35 4
Humidity [%RH]

80 +8oP!

78-

40

O neutral
* cold
+ hot

Wall

45 50
Humidity [%RH]

Figure 5.1.2: Clustering Comparison for Various Sensor Locations: Node 8

86

85

84

83

82

81

80

79

78
30

O0

0oo

0

0

O neutral
* cold
+ hot

On-body

40 45
Humidity [%RH]

88

86-

84

82

80

78

76

O neutral
* cold
+ hot

Ceiling

50 25 30 35 40
Humidity [%RH]

4

72.5

71.5 k

70.5 F

69.5

69

68.5 1
.5 46

O neutral
* cold
+ hot

Wall

0

O

48 50 52
Humidity [%RH]

Figure 5.1.3: Clustering Comparison for Various Sensor Locations: Node 20

OA

82

81

80

79

7

O0

0o
0

0
O0

*0 +

0

0

R8 I I

~;;; ~ ~ ;?- ; II ~- -~ ;---II~~~;;; ; ; --" ~ - ;~-; ~;-; ~;;; ; ; '~~~ ~~;';; ;;~-~"~ ;;~~~~~~ ;'~-~l';c~ '71;-~ ~""~ 1';~--;-;~; ;-x-- - ;~~~-~~;'~-~~"~~"'-" '

35

O neutral
* cold
+ hot

On-body

35 40 45
Humidity [%RH]

O neutral
* cold
+ hot

Ceiling

84

83

82

81

_-1 77
50 30 35

Humidity [%RH]

73 F

40 40

O neutral
* cold
+ hot

WallFAL

45 50
Humidity [%RH]

Figure 5.1.4: Clustering Comparison for Various Sensor Locations: Node 24

0-

85

84

83

82

801
3

S+

+

+ +
0o
*01

0 +

o +**
0

C

J (

0

*+
O0

0)

0

0

£31 .

I I I
n

0 neutral
* cold
+ hot

On-body

0 0-

+

0 0

0

0-C- 0
cQ~

30 35
Humidity [%RH]

0 neutral
* cold
+ hot

Ceiling

92

86

84

82

80

78L
40 25 30 35

Humidity [%RH]

0 neutral
* cold
+ hot

Wall

80

78

76

74

72

70

S 681 1 I I
40 35 40 45 50

Humidity [%RH]

Figure 5.1.5: Clustering Comparison for Various Sensor Locations: Node 72

87

84k

0 +

0O

S00

**

O09. oo

*

**

on.

.

~ ------ --~... ---- ~-- --

fA

O neutral
* cold
+ hot

On-bodyR6i

40
Humidity [%RH]

86

85

.843

S83

E
w82.

81

80

-1 79L
45 25

0 neutral
* cold
I+ hot

Ceiling

0
0

O

30 35
Humidity [%RH]

0 neutral
* cold
+ hot

Wall

73

70

40 40 45 50
Humidity [%RH]

Figure 5.1.6: Clustering Comparison for Various Sensor Locations: Node 84

84[

iL

2 83

82

81

80

+ 0

- 0

O
0

+
O 0

- 4

0

:1:

7(

35
QI i nM

t

O neutral
cold

+ hot

On-body

40 45
Humidity [%RH]

O neutral
* cold
+ hot

Ceiling

85

84

83

82

81

80 1 1
50 28 30 32 34

Humidity [%RH]

72.4

72.2 k

71.8-

71.6

71.4

71.2

71

70.8

70.6

r1 70.41-
36 46

O neutral
* cold
+ hot

Wall

48 50
Humidity [o/oRH]

Figure 5.1.7: Clustering Comparison for Various Sensor Locations: Node 88

+

0

0

0 +

84
P-

~83

E
9

82

81-

O

* +

O
O

0

0 O

OO

80L
35

- -------~- ~-~ g -- --~-. ~ 9-,

Ultimately, as one of the main objectives of this thesis is to evaluate the effectiveness

of controlling an HVAC system via on-body sensing, it was decided that the clustering

is adequate to exclusively use the portable node's temperature and humidity data, even

though these are not the strongest classifiers. This will give a clear indication as to the

limits of this format of comfort control. The on-body light and activity data are excluded

from the comfort algorithm, as they give extremely poor separation of the classes. For the

most part, the activity and light levels of the user are high, with large variance, whenever

the node is being worn, giving very little difference from day to day, or hour to hour.

5.2 KNN Distance Metric

Based upon initial success with a KNN comfort algorithm (see Appendix A), a modified

KNN Distance Metric was developed. Since the original algorithm merely returned a class

label, a new method was needed to determine the level of discomfort. A KNN approach

is well suited for distance measurement, as this is an intrinsic aspect of locating nearest

neighbors. In this case, 'comfort distance' is measured as the distance away from a known

labeled point, and an average of these comfort distances is used to help reduce the effects

of outliers.

Although it is possible to accurately measure the Cartesian distance between any two data

points, it is unclear exactly how this distance relates to comfort. For this reason, outside

knowledge is required to help train the algorithm. It has been clearly shown from comfort

research and popular experience that increasing temperature and humidity levels lead to

increases in heated thermal discomfort. Fanger's PMV model gives explicit equations for

these relationships, but this equation is also a function of many other variables which are not

known in this case. To determine the appropriate weightings of temperature and humidity

for this situation, the slopes of the 'comfort lines' are measured from the received data from

the portable nodes. These comfort lines are the boundaries between the hot and cold labeled

data points, essentially enforcing a comfort metric based upon the orthogonal distance to

this line of comfort.

111

This particular method has two distinct advantages. First, it incorporates expert knowledge

of the system, allowing the system to respond as expected, and constraining the output

to apply negative feedback to the control system. It is important that the decreases in

temperature always result in decreases in heated discomfort, as this is the only method by

which the VAV damper motors can affect thermal sensation. Furthermore, this comfort

line can be determined off-line by visual inspection, which can achieve closer fits due to

the researcher's better understanding of the difference between representative data and

outliers than the computer's. Secondly, the KNN approach can easily incorporate the

neutral class into its determination, giving a better average of how the user might be feeling

at a particular point. This also allows for morphing of the comfort space to match an

individual's experience, as local clusters can pull away from the enforced distance metric,

if reinforcement is high enough.

2 86

T84

82

80

781
25 40

Humidity [%ORH]

Figure 5.2.1: Comfort
and 88

Boundary Superimposed on User Preferences: Nodes 8, 20, 72, 84,

112

I - -

To determine the comfort line, an average of all comfort boundaries is used. A plot of this

comfort boundary can be seen in Figure 5.2.1, superimposed upon the comfort labels from

half of the user population. A linear boundary is assumed to limit the ambiguity of the

weightings of temperature and humidity at a given point, by restricting it to a constant for

the entire space. An average is also taken to make the system more representative of the

preferences of the entire group. Individual comfort slopes could be used for each user, but

these slopes are based on relatively sparse data, and it was decided that an average will

suffer less from the problem of over-fitting. The average comfort line derived from these

evaluations gives a ratio of temperature to humidity of approximately -3/5 (e.g. an increase

in temperature of 3 F could be balanced out by a decrease in relative humidity of 5%).

The form of the KNN distance algorithm is shown in Equation 5.2.1, where Dd is the level

of thermal discomfort at point d, for n nearest neighbors. T is the temperature in degrees

Fahrenheit, RH is the relative humidity in percent, and GT/GRH = -3/5 is the temperature

to humidity ratio. Ci is the class label of the ith neighbor, with -1 representing cold, 0

representing neutral, and +1 representing hot. The relative weighting of the enforced linear

distance metric is set by G, with lower values of G allowing the algorithm to adapt to local

data more readily, at the cost of greater overall coherence.

1 A Td -_Ti RHe - RH G
Dd = Td - T RH - RH) x G + Ci (5.2.1)

n f GT GRHi=1

Representative results for the KNN Distance Metric can be seen in Figures 5.2.2 - 5.2.13,

with the darkness of the red sections indicating the level of hot discomfort, and the darkness

of the blue sections representing the level of cold discomfort. As there are very few samples

in the data sets, each value of n was tried, and the best visual fit was selected. A range

of G values is included to show the influence of the enforced linear boundary. It can

be seen that a standard KNN would produce extremely non-linear control inputs, and

that the linearization process is both necessary and effective. Unfortunately, despite the

heavy linearization, there still exist islands of inconsistency in the results. This is even

more problematic considering that the data sets included here represent the relatively more

113

coherent ones. It is also unclear as to the benefit of including the neutral category. Although

this helps in cases where the data sets are not well populated, there often exist clusters of

neutrals near clusters of hots, which reduces the likelihood of that particular area being

labeled as 'hot'. Although this ambiguity necessarily arises from the nature of the data, it

would perhaps be a more conservative approach to consider any labeling of a point as hot

to be indicative of conditions to be avoided.

8E

86

184

E
I-

ls~l IISIII

sII: o2I~ I i e :: i
1t

Ihul

40
Humidity [%RH]

45 50

Figure 5.2.2: KNN Distance Metric, n = 10, G = 0: Node 8

114

80

78

I l I lt •lllllltt l illlillilllillill . 1.t........
30 35 40 45 50

Humidity [%RH]

Figure 5.2.3: KNN Distance Metric, n = 10, G = .5: Node 8

I.
0

0
0

0
V

0
I j

78

30 35 40 45 50
Humidity [%RH]

Figure 5.2.4: KNN Distance Metric, n = 10, G = 1: Node 8

115

88

86

84

82

80

30 35 40 45 50
Humidity [%RH]

Figure 5.2.5: KNN Distance Metric, n = 10, G = 2: Node 8

30 32 34 36 38 40 42
Humidity [%RH]

* neutral
A hot
V cold

i I;

PIlR

44 4
44 46

Figure 5.2.6: KNN Distance Metric, n = 10, G = 0: Node 20

116

:~li i

;'Iiti !Ai

0
0

30 32 34
Humidity [%RH]

Figure 5.2.7: KNN Distance Metric, n = 10, G = .5: Node 20

A ''HI'I ! I II i 11111
A"i

H " i tti~ri~

* *I: jj

30 32 34 36 38 40 42 44 46 48
Humidity [%RH]

Figure 5.2.8: KNN Distance Metric, n = 10, G = 1: Node 20

117

88-

SIT

18 Opo0 :0 = D 'OT = u '0.IT19AI o@u'e's.(I NNX :OT'Z-'9 a-n .)

[H'd%] A l Pi.nH
o s1 OV SE OE

If I fillif a If Hi Ifitf fl1H11111 111111111111Hhiiii111H11H

20- fil

I II

III~""" .it. . . ii iIIf31

l H t IM 14tl 0 ll i ii ltill. .. .^ i ^ ̂ i lt illi llltllIiiii iitittitiiilllii
til tn u 1 tii ltttHilll Iiiillt siias °° 1 i li t i , il iiitt

Piii!I iI

8V 917 t; 17 017 OV E 9E VE ZE OE 9Z

Ii gi ~

-I

ES

n

jL

90

88

- 86

841ii

82
8082

80

rt ilitllttlltttlilllliitltil Iiit •il neutral

iii titliV ltllililllllV - coldr !llllll~wJId !llr llllllll~llltiiftltlllil,,,,,,,A :HilIhIIII1IIIIIII1111111111i
* A $

A

!111
+'+t

I:iiilii~tii A .~Iifiii iiiiiiti~iio " lIIIIII.•.

I lItl iiIIttl!II iIlt III l, '411l
,,,,,,,,,,,,,,,,1111B11'Hi11hi~i~3 , ,i

13 3333 333 333333333333 333 333JJ2

Hi,fi!!i!.
IItliii+f
IIIItii11.lii
1111111
111I11111111!!!]

30 35 40 45 51
Humidity [%/oRH]

Figure 5.2.11: KNN Distance Metric, n = 10, G = .5: Node 84

89

88
*A

l. A

11li ff3 i
Ittlti!t!"

)-tttttltt.

',!t!!ittttttttttt!11 13 1 If Itt~ttt:Ililllllti11111f

liti tttttttttlt!lllllllllittttl iti

!!!!!!!!!!!!!!!!!!

ffiiifiiiitfi iii iiiiiii i ii • ru- hot,,tt,,,,,,,,,,,,,,,,,,,,,,,,; +ittttttllttltltlt t I t tll i hot
+;, ! tfrtitIIIII II I IIIIIIIIIII I • coldxttt tlttlttt~lttltlt ll llllllll

f fzffttttttttlltt ltlll llcoi
"f + aifffff ++iftiiffifrtriillllll

A I: +httt l 1ttttt111111111111
93l I IIf 121111I• i-4 ++ ++7 +7+++++ ++++!lrittititlltii!

fill oil t !!ttt111l•i I+°! iiZ4 tttl tttltt iit
• s: :tlltti

tltt O " +tt
:2:::. . -Iil lill, ,,i ' 7+

iiijiiiiiIrlift.
ttttttttttttttt.
ttiitiftfiiifftffnr
Ittttttt~t~Ltttt~tttt
rtfitfiiifii)fffiittff
It ii i ii ii i ii ii ii tit t I t

v

if::.
2232.
:: ts S I
11111h.

30 32 34 36 38 40 42 44 46 48
Humidity [%RH]

Figure 5.2.12: KNN Distance Metric, n = 10, G = 1: Node 84

119

!!!!!!!40!!!!!! ! ! 45!!!,,, , 5!!'! !
"1' "

l,!l f,, 1Ia

5 :!J

: "' A!i ° A I- nhot

i87 t- - pfl-Aj H llfifIl IIll IIInIIIIIII IIIIINIIIII

iiN! I fill! liiiiliiiiil
84 1111ifl
83 _ oI iiiili

82 1II II Ififi A °' =' i'

30 32 34 36 38 40 42 44 46 48 50
Humidity I[%RH]

Figure 5.2.13: KNN Distance Metric, n = 10, G = 2: Node 84

120

- UM E - - . .

5.3 Fisher Discriminant

Despite the promising results of the KNN Distance Metric, it was decided that they contain

too many points of instability to reliably control the HVAC system for the month long trial.

For any system to be effective, it must deliver predictable results for users, or they might

respond in ways which counter both the goals of the system and themselves. Since the goal

of the KNN Distance Metric is the desire to fit a linear boundary between labeled data and

measure the distance from this boundary, an algorithm more suited to this task is employed:

the Fisher Linear Discriminant.

The Fisher Discriminant seeks the most effective rotation matrix for the given data set,

to produce a projection on a lower dimensional space with high class separation. It takes

a statistical approach of finding the greatest between-class scatter for the lowest within-

class scatter. For this case, it is a simple matter of reducing a two dimensional space

to one, with the only difficulty being in choosing a decision boundary. Rather than the

usual approach of using the intersection of sample distributions, the decision is based upon

discriminating between points which represent the boundary conditions. In this case, the

most representative training points are assumed to be those with the most extreme values

(e.g. 'hot' data with the lowest temperature values), and a separating line is created at the

mean of these data. The comfort distance can then be simply computed as the distance to

this boundary.

In order to accommodate the updating and adaptation of the comfort algorithm, a limited

set of data points is used in creating the decision boundary. Nine points each of hot and

cold are used, which allows a complete update in two to three weeks (users press buttons on

average once a day), which is enough time for users to adapt the system before the end of the

experiment. In cases where nine data points are not available, as many as are present are

used. If less than two data points exist, two points are selected which create a reasonable

line in comparison to other users. Representative results of the Fisher Discriminant are

shown in Figures 5.3.1 - 5.3.7. Two each of the hot and cold training points are used to

select the decision boundary. One point each generally returned more favorable results, but

121

two are used in order to limit problems associated with outliers.

As can be seen from Figures 5.3.1 - 5.3.7, the distance between the 'hot' and 'cold' labeled

points varies greatly for the different users. Accordingly, the calculated comfort distance

will also vary greatly between users. To normalize this reported comfort distance so the

control system can effectively arbitrate between users, the mean distance of 'hot' and 'cold'

points from the decision boundary is calculated. As new temperature and humidity data

are collected by a user's portable node, the final comfort output is computed as the comfort

distance divided by this mean distance. In this way, each user is equally uncomfortable for

a given comfort value.

0 = 1.86581 + -0.0116247 x + -0.0170275 y

28 30 32 34 36 38 40 42 44 46
Humidity [%RH]

Figure 5.3.1: Fisher Discriminant Boundary: Node 8

122

~1111 1 ____ I '' 1 I

0 =2.95518 + -0.00791311 x + -0.0 3 2 6 48 4 y

32 34 36 38 40 42 44 46
Humidity [%RH]

Figure 5.3.2: Fisher Discriminant Boundary: Node 20

0 = 5.26869 +0.00226612 x + -0.0642875 y

+ I + hot
* cold

+

++*

35 40 45 50 55
Humidity [%RH]

Figure 5.3.3: Fisher Discriminant Boundary: Node 24

123

I~ --- - - ---------- ~ r~

0 = 31.811 + -0.041002 x + -0.346692 y

+ + hot
+ * cold

+

-*

* *

, ,
-*

-*

28 30 32 34 36
Humidity [%RH]

38 40 42

Figure 5.3.4: Fisher Discriminant Boundary: Node 28

0 =5.2042 + -0.0173908 x + -0.0546665 y

30 32 34 36 38 40 42 44
Humidity [%RH]

Figure 5.3.5: Fisher Discriminant Boundary: Node 84

124

90

89

88

87

86

85

84

l i~

0 = 6.06233 + -0.0175431 x + -0.0647087 y

35 40 45 50 55 60
Humidity [%RH]

Figure 5.3.6: Fisher Discriminant Boundary: Node 88

0 =7.72708 + -0.0092509 x + -0.0880887 y

35 40 45 50 55 60 65 70
Humidity [%RH]

Figure 5.3.7: Fisher Discriminant Boundary: Node 96

125

U 85

S84
R 83

82

;~~II-~-~~~-- ---- ---------;-~~

126

"ri

Chapter 6

Evaluation

In order to assess the efficacy of a body-worn comfort control system, a long-term user study

was performed from May 1 8 th through August 2 1st of 2009. The study was carried out with

a mostly graduate student population at the M.I.T. Media Laboratory. Ten people were

assigned individual portable nodes, and four offices and two common areas were equipped

with room nodes and control nodes. A full system overview can be found in Section 3.1.

6.1 Experimental Procedure

Phase One of the study ran from May 1 8 th to June 2 1st, and was mostly a hardware

evaluation stage. No actuation was performed for this period, and data were merely gathered

on how users interacted with the devices, and how effective the current HVAC system was

in terms of meeting their needs. The majority of technical problems were fixed during

this time, and the various methods of using the portable nodes were evaluated. In order

to have a fair baseline to compare to, the maintenance department made repairs to the

VAV damper controllers and thermostats for all of the offices and common spaces in the

experiment, before Phase Two of the study began.

During Phase One, participants were allowed to use the portable node in any way they chose.

The majority of users left the sensor on their desk, and merely picked it up to press a button

127

if they were too hot or too cold. One user carried the sensor in his pocket, and two users

wore the sensor around their necks on lanyards. From analysis of the data, it was found

that the inertial activity sensor on the portable node was too noisy to detect proximate

motion, and therefore could not tell if its user was in the room if it was not worn. The

unworn nodes would also sometimes be set near laptops, or other warm electronic devices,

causing the environmental data to no longer represent the ambient conditions. With a more

accurate accelerometer, these different usage conditions could be sensed [80] and accounted

for, but the portable node battery life would decrease by two orders of magnitude (see

Section 3.3).

The data from the user who carried the portable node in his pocket was extremely erratic,

with very large temperature excursions depending upon how closely the sensor was being

held to the body. To complicate matters further, the device would be removed from the

pocket when the button was pressed, causing the temperature to drop very quickly and no

longer indicate the pocket temperature. In general, the distinction between the hot and

cold classes in all conditions except when the nodes were worn on the lanyards, was very

low. For this reason, all nodes were attached to lanyards for Phase Two of the study.

Phase Two of the study ran from June 2 2 nd to July 2 6 th . The purpose of this stage was

baseline data collection. The users were first asked to complete a questionnaire regarding

their comfort under the current HVAC system. They were then asked to wear the portable

node, via a lanyard, around the neck (either under or over their shirt), and press a button

whenever they felt inclined to do so (either hot, cold, or neutral). No actuation was per-

formed for the majority of this period, with the only exception being sporadic control tests

to verify the control system software, mostly occurring during the final week.

The portable node data was analyzed during this period to determine the feasibility of

using the wearable sensor to control the HVAC system. For the majority of users, the

results were still too incoherent to give a reliable indication of comfort. This is a result

of the steep thermal gradient next to the human body, and the ability of the sensor to

move around depending upon user position. To verify this issue, a series of portable nodes

were connected together at a spacing of three centimeters in front of a test subject (see

128

Figure 6.1.1 for test set-up). These nodes were worn for an hour and a half, and their data

compared to one another, as well as to data from nodes which were situated on the desk

where the subject sat, and on a nearby wall.

Figure 6.1.1: Body Thermal Gradient Test Set-up

A plot of the temperatures at these locations can be seen in Figure 6.1.2. At 12.5 h three of

the nodes were placed next to each other on a table to show the temperature offsets of each

node. One of the nodes was previously being worn, and had not fully acclimated by 13.25 h,

when they were placed on the body, but the remaining nodes show very similar readings.

129

It can be seen that there is a 9 oF difference between the temperature measured by a sensor

resting against the body, and one just 6 cm away. This is much less than the distance the

sensor can move if a person is leaning over while typing, or performing a similar attentive

task. The rate at which these sensors respond to ambient conditions is shown by the relative

depth of the dips at 13.6 h and 14.4 h. At these points, the subject walked from a warm

room to a cool room for a short period. The thermal mass of the body helps stabilize the

results.

U-
E

88
E

1-

86

84

82

80 I-

body +Ocm moving to
- body + 3cm colder room

body + 6cm
--- table im away

-wall 2m away

sensor
taken off
body

sensors moved
to final location

111

12.5 13 13.5 14 14.5 15
Time [h]

Figure 6.1.2: Body Thermal Gradient

In order to eliminate the variability in the received data that the body thermal gradient

incurs, the users were asked to wear the portable nodes on their wrists, beginning July 1 7 th .

130

1 1.111.-11 ----------- ---------

96 -

94 -

A full week of data was collected, with a few periods of routine polling of the subjects as

to their comfort condition, in order to build up a large enough data set for analysis. This

polling was usually done every fifteen minutes by asking users to press one of the three

comfort buttons, and would last anywhere from one to three hours. These data proved

stable enough to proceed with a control system based upon the wrist-worn sensors.

Phase Three of the study commenced on July 2 7th, and continued until August 2 1st . During

this period, the experimental control system was run, with the HVAC system and window

motors being controlled via the various sensors in the network. The first few days of the

study involved periodic adjustment of controller gain settings, but the control software

remained effectively unchanged for the remainder of the study. Users were asked to press

buttons on the portable nodes indicating their comfort level whenever they wanted. They

were told that the climate control system would respond to their wearable sensor, and would

try to mediate the comfort preferences of each occupant of the individual office or common

space. Periodic surveys were administered during this period to assess the user's comfort

level, and their beliefs about the system. The surveys used in this study can be found in

Appendix B, and the results are shown in the next sections.

Since the time-changing aspects of the control algorithm are of interest, Phase Three is sub-

divided into three sections: Week Two, Week Three, and Week Four. Week Two ran from

July 2 9 th to August 7 th, eliminating the first few days of the experimental control period,

during which parameters were being modified to make the system stable. Week Three ran

from August 8 th to August 1 4 th, and Week Four ran from August 1 5 th to August 2 1st

6.2 Energy Metrics

Any commercial HVAC installation consists of a large number of components, making it

difficult to assess the effects of any single part. This work attempts to overcome this

problem by averaging over a large number of days, allowing for variability in components

to be averaged out as well. Unfortunately, for the majority of the baseline testing period

(Phase Two), the outdoor climate was dramatically different from that of the experimental

131

period (Phase Three). To illustrate this, the heating and cooling days for these periods are

shown in Table 6.2.1. These data are taken from the National Weather Service database for

Boston (measured at Logan Airport) [81], as the outdoor nodes give erroneous data due to

direct sunlight effects. Heating and cooling days are an integration, over an entire day, of

the temperature difference from 65 oF, with positive values being cooling days, and negative

values being heating days. This is often used as a metric to determine how much energy

is required to heat or cool a space, as it represents the temperature difference the HVAC

system must produce, and has been shown to give linear correlations in some cases [82].

Heating Cooling Number Average
Period Days Days of Days Cooling Days

Phase Two 26 55 22 2.500
Week Two 0 115 10 11.500

Week Three 0 41 7 5.857
Week Four 0 108 7 15.429

Table 6.2.1: Number of Heating and Cooling Days During Experiment

The only method the Personalized Comfort Control System has available to measure energy

usage is via the air flow sensors on the VAV boxes. Although energy monitors on the chilled

water lines and fan motors would give more accurate results, the area being controlled by

the experimental system is a small percentage of the total space, and the effects would

be unnoticeable. Despite the air flow from the VAV boxes giving an incomplete picture

of the total energy used, it does show the fan usage for the space very accurately. Since

fan energy can represent up to 40 percent of total HVAC power consumption [83], this is

an important metric by itself. The chiller energy can be estimated by multiplying by the

number of cooling days, as this represents the total energy put into the air flowing out of

the VAV boxes. These numbers are divided through by the number of degree cooling days

to make the results more generally applicable. Plots of these energy metrics showing each

room's contribution can be seen in Figures 6.2.1 - 6.2.2.

It can be seen that the total chilled air used decreases for both metrics. The modest

improvements shown for Week Two, in comparison to Week Three and Week Four, are due

132

- Room 32
- Room 36
- Room 40

I Room 44
Room 48

- Room 196

Week 4Week 2 Week 3
Time

Figure 6.2.1: Chilled Air Usage by Room

- Room 32
- Room 36
- Room 40
m Room 44
- Room 48
- Room 196

Week 2 Week 3
Time

Week 4

Figure 6.2.2: Chilled Air Usage by Room: Normalized by Cooling Days

133

u.

UU,

CE0£

0 /

Phase 2

'5S4.5

C 3.5
8
u 3

o 2.5

2

' 1.5

1

C

a 0.5

0
Phase 2

In. . .

to thermostat node temperature settings being changed after Week Two. It was found that

the HVAC system could respond fast enough to allow a 6 OF setback, rather than the 4 F

setback which was used previously. Also, the normal control temperatures for Room 36

and Room 40 were increased from 70 'F to 72 oF, due to complaints about the space being

too cold when occupants arrived for the day. This adaptation could eventually be done

automatically, based upon an average of users' past preferences.

A cursory approximation of energy savings, based upon Phase Two, and an average of Week

Three and Week Four, shows a reduction of 75 percent. This is based upon an estimated 40

percent fan usage times the normalized VAV air usage, plus an estimated 60 percent chilled

water usage times the non-normalized VAV air usage. The actual savings are much smaller

for a number of reasons. Firstly, the main savings shown are due to Room 36 and Room 40

reductions, which represent an unfair comparison, as the area they cooled is also serviced

by eight other VAV boxes, none of which were under experimental control. Secondly, the

HVAC system, despite having been repaired, was not running properly for the majority of

Phase Two. Finally, the chiller units were most likely not running during Phase Two, as

the outside temperature was low enough to not require them.

A floorplan of the public area which contained Room 36 and Room 40, showing the other

VAV boxes, is depicted in Figure 6.2.3. There are two banks of control, each with a standard

thermostat. Bank 2's thermostat is far away from the experimentally controlled damper,

and although shutting off this damper completely would have little effect on the reading at

the thermostat, cold air can still move across and make up for the cooling difference. The

situation is worse for Bank 1, which has its thermostat very close to the experimentally

controlled damper, such that the remainder of the bank would produce more cold air to

compensate for the difference.

The dampers for the experimentally controlled VAV boxes in the public space were essen-

tially shut for the entire duration of the experiment, as the temperature in the public space

was set to 69.7 0 F, much colder than was preferred by the occupants. If the space were

entirely enclosed, the air usage would reduce, but only enough to bring the temperature

up to the preferred level. As it occurred, the temperature only raised near the VAV box

134

gr o
iI

S--1 I---1r---1

(,iI
-- Controlled

%lL I

Legend: M VAV Boxes: Bank 1 * Thermostat: Bank 1

l-I VAV Boxes: Bank 2 Q Thermostat: Bank 2

Figure 6.2.3: Floorplan of Public Space with VAV Boxes Shown

in Bank 2, and this was only 1.3 oF. The occupants of that area still stated that it was

too cold, even after the dampers had fully closed. It is difficult to predict what the system

would have done under different conditions, but it is shown that the temperature would

have risen by at least 1.3 oF, and it can be assumed that the temperature near the other

damper would have increased by at least as much, as this area was not often occupied.

To best account for Phase Two energy usage, Room 44 will be analyzed in detail. This

room is selected because it was completely repaired, with both the thermostat and damper

motor controller being replaced. It also has the most linear and sensitive wind speed sensor,

so the data can be relied upon to give an accurate view of the room state. Unfortunately,

135

m

................ NO MMONNIbc-

jI

the wind sensor was replaced half-way through Phase Two, but the latter half of this period

had a larger percentage of cooling degree days, making it more useful for this analysis.

A plot of Room 44's temperature and chilled air usage can be seen in Figure 6.2.4. This

period represents the last 13 days of Phase Two, which had 37 cooling degree days, and six

heating degree days. This is about half of the cooling degree days seen at the lowest period

for Phase Three, and as a result, the main fan speed was reduced, and the economizer was

most likely run at full open. The reduced fan speed can be seen from days 7 - 13, where

the damper was full open, and the maximum air flow still could not reach its previous level.

The dips during this period represent reductions due to increased demand during the day,

with volume increasing again at night as some of the thermostats would no longer call for

more air. Periodic glitches in the wind speed readings are caused by normal control actions

and a few experimental tests.

It is important to note that the temperature during this period was oscillating at least

5 'F every day, with daytime temperatures usually around 73 'F. This temperature was

considered too warm by the occupants of the room, so they turned the thermostat down.

Since the chillers were not running, and the fan speed was reduced, this did not have the

desired effect of cooling down the room, and the thermostat was turned down even further,

probably to its lowest level. This did not change the room temperature during the day,

but did affect the temperature at night, as the air would become cool enough to bring the

room temperature down. Unfortunately, the low setting on the thermostat also forced the

damper to stay full open for the entire duration of Phase Two.

The thermostat settings can be inferred from the temperature versus air flow profile for days

0 - 7, when there was sufficient air flow to cool the room. The air flow had previously been

low, and the thermostat was set low, and day 0 represents the fan speed being increased.

The following evening, the temperature dropped to 65 oF, and the user most likely turned

the thermostat to 70 OF, where it stayed for the next day. The reduction in air flow during

these periods shows the system backing off to maintain temperature. At the end of day

two, the system could not maintain temperature, and the thermostat was most likely turned

back down to 66 oF, where it stayed for the remainder of Phase Two.

136

::j~~~~ --- ~--~(-~~L~- r~~;~;r:.~.~:-j;; ~- i~i -- ~;-~- ;i i; ~~~ --

75
U-

_70

EI-

2 4 6 8 10 12
Time [days]

40001 I 1

" 3
.

0

C 2
U3

"0

Time [days]

Figure 6.2.4: Temperature and Chilled Air Usage for Room 44: 7.1 - 7.13

r~ ~" -"

III10

U-

2 75

E 70-

65
0 2 4 6 8 10 12

Time [days]

oo

4000-

> 3000-
o

a 2000
-o

S1000

0-
0 2 4 6 8 10 12

Time [days]

Figure 6.2.5: Temperature and Chilled Air Usage for Room 44: 7.14 - 7.26

This plot of essentially continuous chilled air usage shows that there is a high penalty to

be paid for not meeting occupant expectations. It is not clear, however, what the exact

energy trade-off would be for running the chillers and fan at a slightly increased level, in

order to decrease occupied temperatures enough to encourage reasonable thermostat usage.

Regardless, due to the nightly dips and continuous air usage, the average temperature

during this period was 69.9 'F, which is much lower than would have been desired if the

occupants could have accurately set their temperature. A justification for this is shown in

Figure 6.2.5. During this time period, the system was being transitioned from standard

to experimental control. Fan speed was also increased during day three, as it had finally

become warm enough to warrant extra cooling. The system can be seen to bring itself into

regulation during day four, with the slight exception of a fan malfunction during that day.

On day nine, the experimental control was initiated, and an even tighter thermal regulation

can be seen.

During the period when fan speed was increased, the average occupied room temperature

was 71.5 oF, with excursions up to 73 'F. This suggests that even given adequate air flow,

and new components, the system was incapable of maintaining a constant temperature in

the room, although changes could be due to thermostat actions. After the experimental

system was initiated, a fixed 72 OF was held for two days, with an increase to 74 'F after

occupant complaints of being too cold. Slight deviations during this time are due to system

resets, as the control structure was still being assembled. It is not exactly clear why the

preferred ambient temperature increased after the tighter thermal regulation was imposed,

but it is believed to be related to the increased level of discomfort which has been shown to

accompany large temperature swings [84]. Alternatively, perhaps the occupants no longer

believed the thermostat had any effect on the temperature in the room, and did not previ-

ously attempt to change the setting. In either case, the ability to control the temperature

in the room accurately led to an increase in temperature of 4 'F, and the energy savings as-

sociated with this increase. The chilled air usage decreased by over 50 percent between the

standard and experimental control systems, and they both had almost identical amounts of

cooling degree days: 26 and 27, respectively.

139

The energy savings of the experimental control system are, therefore, mostly due to fixing

a broken system. Although this is not to be discounted as a benefit of this type of wireless

sensor retrofit, it is not a fair comparison to the savings which personalized control can

enable. To account for this, the energy used for the four day period when the experimental

control system was initiated, but the comfort control algorithms were not yet running

(Figure 6.2.5: days 9 - 13), will be used as a baseline. During this period, the average

temperature was 73.1 0 F, average air usage was 0.6528m 2 /s, and average air usage per

cooling degree day was 0.0967. Comparing this to Week Three and Week Four of the

personalized control system shows an increase in temperature to 73.9 oF, a decrease in air

usage by 15 percent, and a decrease in air usage per cooling day of 31 percent. Weighting

these by the relative fan and chiller metrics discussed above gives a total energy saving of

21 percent. A more conservative estimate would be based solely on Week Three's data, as

this week had a very similar average number of cooling degree days to the baseline (Week

Three had 5.857, the baseline had 6.75, and Week Four had 15.429). This gives an increase

of average temperature to 73.5 'F (very similar to the baseline), a decrease in air usage of

17 percent, and a decrease in air usage per cooling degree day of 4 percent, summing to an

estimated 11.8 percent savings.

A comparison of damper usage for the remainder of the rooms between Week Three and

this baseline period of proper HVAC functioning produces similar results to Room 44. With

Rooms 36 and 40 removed, as they represent an unfair comparison, the remaining rooms

show an average decrease of 20 percent in air usage per degree cooling day per degree

change in room temperature, and a decrease of 30 percent in air usage per degree change in

room temperature. Regardless of degree cooling days and damper usage, it can be generally

inferred that a system which keeps the average room temperature higher will consume less

energy. The 12 percent savings from the 0.4 'F increase shown for Room 44 can be seen

throughout the system, as the average room temperature increased for almost all of the

rooms. A plot of the temperature differential contributions of these rooms can be seen in

Figure 6.2.6, with the average temperature rising 0.8 oF.

Assuming a linear correlation between temperature change and energy savings, this average

140

IL

- Room 32
SRoom 36

10 - Room 40
i i Room 44

S- Room 48

8-

u

I-
c 4

0

Time

Figure 6.2.6: Change in Temperature of Rooms from Phase Two

0.8 oF temperature increase would give an upper bound of 24 percent savings. Ultimately,

the decrease in chilled air usage per degree cooling day is the only metric that is certain,

and this shows an eight percent decrease, which, when multiplied by the 40 percent fan

usage metric, can be taken as a lower bound of 3.2 percent. This approximate 3.2 - 24

percent savings gives an indication of the Personalized Comfort Control System's ability to

modify room temperature to reduce energy while increasing comfort. Many other factors,

which are unavailable to this study, such as solar gains and daily temperature profile during

energy draw, must also be factored in for a more accurate assessment. The Week Four

data, although showing greater energy savings, also showed a decrease in the comfort of

the occupants, as the control system could not respond fast enough under the much hotter

conditions of that week, so these are not used. Furthermore, of the two methods employed

by the experimental control system to save energy (setback and comfort control), one of

these (the setback function) was rarely running for Room 44 (upon which the savings

estimates are based) during Week Three. An error in the Room Module code kept old entry

times from being removed, leading the system to believe it would be occupied at almost all

141

hours of the day. This correlates the net savings almost entirely to comfort control: the

micro-adjustments throughout the day that keep the temperature only as low as needed.

6.3 Comfort Metrics

There are two ways in which the comfort of the experimental subjects is measured: through

'hot' and 'cold' button presses, and through weekly surveys. Unfortunately, the comfort

metrics suffer from the same ambiguity as the energy metrics, as they are being compared

to a system that was essentially nonfunctional. The temperature swings during Phase Two

created an uncomfortable environment, and the Entrance Survey clearly shows this. A

comparison between the Entrance Surveys and Exit Surveys is shown in Figures 6.3.1 -

6.3.8, with the Entrance Survey representing user beliefs under normal control, and the

Exit Survey referencing the four weeks of experimental control. These surveys had identical

questions, and were taken two months apart from each other, making them a relatively

unbiased indicator of user preferences. All of the surveys used, and their responses, can be

found in Appendix B.

Users clearly felt uncomfortable under the standard control system, with the majority dis-

agreeing with the statement: "The building I work in is comfortable in terms of tempera-

ture." A feeling of a lack of control over the environment, and a desire for more control, is

also shown via Figures 6.3.5 and 6.3.7. The experimental system was mildly successful in

granting this control, as users responded more favorably to the Exit Survey, but a desire

for more control was still expressed. Ultimately, everybody's comfort can not be optimized

at all times, as spaces must be shared, so a desire for more control will always exist.

To assess how well the system performed at managing these conflicting comfort needs,

weekly polls of thermal comfort level were performed. These employed the seven point

scale used in the PMV, and can therefore be compared to standard HVAC practices of

keeping the temperature within bounds of 80 percent occupant satisfaction. An average of

142

a4

. 3

1E

0
Strongly Disagree Disagree

Figure 6.3.1: Responses to Entrance Surve
terms of temperature."

5

4.5

3.5

3-

2.5-

2

1.5-

0.5--

0 i
Strongly Disagree Disagree

Neutral Agree Strongly Agree

y: "The building I work in is comfortable in

Neutral Agree Strongly Agree

Figure 6.3.2: Responses to Exit Survey: "The building I work in is comfortable in terms of
temperature."

143

I I

4 .5-

4-

3 .5

3-

2 .5-

2

1.5

1

0.5

0
Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 6.3.3: Responses to Entrance Survey: "Overall, I am satisfied with the comfort level
in my office."

4 .5

4

3.5

3

2 .5

2

1 .5

1-

0.5

0
Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 6.3.4: Responses to Exit Survey: "Overall, I am satisfied with the comfort level in
my office."

144

I

.

.

.

Omi
Strongly Disagree

Figure 6.3.5: Responses to E
my building."

3.5-

3-

2.5-

2-

1.5-

1-

0.5-

Disagree Neutral Agree Strongly Agree

ntrance Survey: "I feel in control of my local comfort level in

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 6.3.6: Responses to Exit Survey: "I feel in control of my local comfort level in my
building."

145

I I 1

I...
01 I

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 6.3.7: Responses to Entrance Survey: "I would like more control over my local
temperature in my building."

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 6.3.8: Responses to Exit Survey: "I would like more control over my local tempera-
ture in my building."

146

-;-~-~-:-;;~;-------;---- : -;:~~~i;~~,~~l-i~:_~:~_ -: -:::-~_~i,.~;

"U

.

. I I .

. .

.

.

the users' comfort levels for the four-week experimental control period can be seen in Fig-

ure 6.3.9. The PMV counts the 'Slightly Cool' through 'Slightly Warm' categories as being

comfortable, and the occupants were in this zone 81 percent of the time. This percentage

increased over the study, starting at 76 percent and ending at 85 percent, most likely due

to the system learning the preferences of the users.

60

50-

0

U
t 30-

a 20-

10-

0
Cold Cool Slightly Cool NeutralSlightly Warm Warm Hot

Comfort Level

Figure 6.3.9: Average Comfort Levels for Users During Experimental Control

Although this places the experimental control system within the theoretical bounds of stan-

dard practices, it is not a good indicator of how well the system could perform. A number

of problems during the experiment caused periods of uncomfortable temperatures for a few

of the occupants. For example, Node 20 was blocked by an RF transmitter with the same

node ID for almost the entirety of Week Two. Room nodes 44 and 32 experienced outages

during Week Two and Week Three, essentially disabling the location system for the occu-

pants of those offices. These outages occurred for approximately ten percent of the time,

which represents almost an entire day of non-functionality. Furthermore, the HVAC system

never went cold enough for a few of the users to hit the 'cold' button, giving no training

to determine a lower bound on comfort. To make up for this, estimated cold points were

used, which most likely placed the decision boundary too high for these users.

147

To accommodate for these malfunctions, the following section will evaluate the system for

each user, revealing both the promises and shortcomings of this implementation. A tablature

of user comfort is shown in Table 6.3.1 for the duration of the experiment. These data are

taken from survey responses to the PMV scale, used in weekly pollings. For the majority

of the users, over 95 percent comfort rates were common. In fact, the only users for which

this is not the case are those for which 'cold' data points had to be manually entered, and

User 20, whose data was not received during Week Two. It can be seen that User 20's

comfort increased dramatically after this time, suggesting that the comfort system results

are not merely placebo gains.

Percentage of Time Comfortable
User Week Two Week Three Week Four

4 20 40 60
8 95 100 100

20 20 60 75
24 80 90 90
28 95 90 97
76 90 N/A N/A
84 100 100 100
84 90 95 95
96 90 95 90
104 80 60 60

Table 6.3.1: User Comfort Versus Time

This dramatic difference in effectiveness between users is partially explained by estimated

data points and radio interference, but there must be other issues, as User 20's comfort

did not come back up the level of the others after the interference went away. Nor did

the system effectively learn the zones of discomfort after repeated training by the users

with estimated 'cold' data points. Fundamentally, the system either did not understand

the users' discomfort, or was unable to respond to it effectively enough. To disambiguate

between these conditions, a plot of users' reported comfort level versus the system's beliefs

of their comfort is shown in Figure 6.3.10. The data is taken from the weekly polling of

comfort, with -3 representing 'cold' and +3 representing 'hot'. The computed comfort uses

a similar metric, with greater positive values representing greater heat discomfort, and the

148

reverse for cold discomfort. The malfunctioning nodes are shown with asterisks in the plot,

to help differentiate their performance from the functioning nodes. Lines are also placed on

this plot to indicate the thresholds below which the comfort control algorithm would decide

no action was required.

* malfunctioning nodes
+ functioning nodes

4

+1

_+ +
+ ' +

I

+'

1 c o

I-f

Scontrol deadband

-0.8 -0.6 -0.4 -0.2 0 0.2
Computed Comfort Distance

Figure 6.3.10:
Week Four

Reported Comfort versus Computed Comfort for All Users: Week Two

With the exception of a few points, the computed comfort tracks the reported comfort fairly

well. It is also important to note that the level of reported comfort used in the PMV to

determine comfort boundaries is ±1, which is where all the functioning nodes lie. Even

for the majority of the malfunctioning nodes, the system knew those users were hot, but

was unable to respond accordingly. This could be due to a number of factors. First, the

deadband on the controller limited the system's ability to respond to all levels of discomfort.

Second, the response time on the controller was limited in its ability to cool down the user.

Typically, an hour was required for stabilization, due to the fact that not just the air, but

also the thermal mass of the user was required to change temperature for the setpoint to

149

1.5

0.5 F

-0.5

0.4 0.6 0.8

C

I I I I I I I I i

move. For users who frequently left the office and returned, this meant that the system may

have never settled upon their needs, as the room would switch to normal control when they

left. Unfortunately, location system failures would have the same problem, so a six minute

time-out was placed on switching back to normal control to help alleviate this problem.

Third, the user discomfort could have been due to the balancing of an officemate's opposite

thermal sensation. Finally, the system may have not been able to effect the user's comfort

due to the limited granularity of VAV box location.

Ultimately, the main fault seems to be with a lack of system responsiveness, as compared to

a lack of system understanding of comfort. This idea is further promoted by Figure 6.3.11,

which shows the average reported comfort versus computed comfort as a function of time.

An idealized system goal is placed on this graph, which passes through the origin, and

represents system beliefs matching user experiences. Except for User 8, the system can

clearly be seen moving towards the ideal system goal over the three polling periods. User 8

only had cold complaints, and it is assumed that the reinforcement in this case was to

1.5

0.5

-0.8 -0.6
cold

-0.4 -0.2 0 0.2
Computed Comfort Distance

0.4 0.6 0.8
hot

Figure 6.3.11:
Week Four

Reported Comfort versus Computed Comfort versus Time: Week Two -

150

O Week Two
+ Week Three O

Week Four

104+

- \; O idealized
+ # 8 system

O ,' goal
760

O'+ *20

8+ ' 4 96

+*

4#

I I I • I I I I I I

encourage the system to believe the user was in a colder state, whereas the majority of the

remaining users complained of being hot, and their general shifting to the right reinforces

the system in this manner.

Another example of this lack of effective control, is the set of problems associated with

frequent, or even infrequent, transitions between the offices and the public space. Since

the public space's temperature was essentially not under the system's control due to the

proximate VAV boxes cooling the area, the temperature in the public space was two to

three degrees lower than in the offices. As shown in Figure 6.3.12, this causes the comfort

distance to drop dramatically whenever a user would leave an office. This has the negative

effect of setting the system's belief of the user's preference to a much lower level than is

probably desired. This is not as much of an issue for leaving an office as it is for entering,

as the system knows the user's location and ceases controlling when the user leaves. Upon

re-entry, however, the node takes quite a few minutes to acclimate, and has an inaccurate

control setpoint for this period. This could be accounted for by inhibiting control signals

when a user transitions between spaces, but this would increase the lag of the system.

0.5

0.4

C
B 0.3

o 0.2

o

0 0U 0 . 1
E
o
U

0 0.5 1 1.5 2 2.5 3 3.5 4
Time [h]

Figure 6.3.12: Example Comfort Distance Used as Control Signal

151

The reasons for the control system's unresponsiveness can also be seen in its attempt to

arbitrate between users. A plot of two users' computed comfort distances can be seen

in Figure 6.3.13, along with the associated VAV damper air flow, to indicate the control

system's actions. The comfort distances are averaged over 20 samples to make the control

inputs more clear. When the first user enters the room, it can be seen that the damper

shuts off the airflow, as the user is cold. When the second user enters, and is hot, the system

increases the air flow in an attempt to average the comfort of the two users. The damper is

full open, and the comfort distances change only slightly, although in the correct directions.

When each user leaves, the system again compensates correctly, but the damper opening

and closing times are usually around an hour. Note that the entire time scale for this plot

0.6 - * Node 28

0.4-
Node 96

0.4

o 0.2 -

o

-0.1
0 1 2 3 4 5 6 7 8 9 10

Time [h]

4000 I I I I

0

(n 2 0 0 0 -

10 00 -

0 1
0 1 2 3 4 5 6 7 8 9 10

Time [h]

Figure 6.3.13: Example Arbitration Between Users

152

............

is ten hours, an extremely long time for occupants to stay in one place.

Despite this long response time, users still felt that the system was responding to their needs,

and trying to average between all occupants. Survey Responses to the question, "I believe

the personalized comfort system is doing a good job of balancing the thermal comfort needs

of all the people in my workspace.", can be see in Figure 6.3.14. The majority of participants

responded favorably to this question, and from personal recollection, users would often look

forward to their officemates leaving, so they could have a more comfortable environment.

3.5

2.5 -

0.5 F

01 1 I
Strongly Disagree Disagree Slightly Disagree Neutral Slightly Agree Agree Strongly Agree

Figure 6.3.14: Average Responses to Survey Question: "I believe the personalized comfort
system is doing a good job of balancing the thermal comfort needs of all the people in my
workspace."

A more objective measure of this comfort balancing can be seen in the average room tem-

peratures and air flows for each user. A tablature of these for Week Two through Week

Four, grouped by room, can be found in Table 6.3.2. In general, the lower air tempera-

tures correlate to more air usage, with exceptions for those users who worked more evening

hours, such as 24, 28, and 104. The self-assessed comfort level, averaged over this period, is

also given, and the colder user temperatures are consistently accompanied by the warmer

occupants, except for Room 40, which was in the public space and only partially under

153

d

control of the sytem. This indicates that the room is attempting to set the appropriate

temperatures for each user, and is allowed to do so when others are not present.

Table 6.3.2
- Week Fo

Average Average Average
Room User Temperature [oF] Air Usage [m2 /s] Discomfort

4 73.298 1.9735 +1.520
48 20 73.668 1.8374 +1.167

8 73.838 1.3033 -0.083
44 88 72.764 1.8579 +0.833

24 72.675 1.4689 -0.333
40 84 73.072 1.8694 +0.003

28 74.580 1.0248 -0.143
32 96 74.576 2.0969 +0.167

104 73.53 2.0488 +1.020

196 76 73.026 1.8909 +0.400

2: Average Room Temperature, Air Usage, and Discomfort by User:
ur

Week Two

The final metric of personal comfort is the number of button presses during the experiment.

Each user had the ability to register his or her personal comfort at any point in time via

the portable nodes. They had a button for each of hot, cold, and neutral. By the beginning

of Phase Two, the occupants had been using the buttons for a month, so the initial novelty

factor had worn off. The number of 'hot' and 'cold' button presses should, therefore, give

a good indication of how often a user was feeling uncomfortable. These button presses are

averaged over the amount of time a user was wearing the portable node, as a means of

normalizing the data. In general, more or less button presses between users is not a good

indicator of relative comfort, as different users may have different habits. But it is a good

indicator of how a single user's comfort progressed with time.

Figures 6.3.15 - 6.3.16 show the number of discomfort button presses for each user over the

duration of the experiment. Figure 6.3.15 shows all button presses, whereas Figure 6.3.16

only shows button presses when the user had been active for at least 15 minutes. This is done

to window out the temporary discomfort of first entering a different thermal environment.

Neutral button presses are not plotted, as the users were told for Phase Three that the

154

05
O

4

=2

O0

0

zo
Phase 2 Week 4

Figure 6.3.15: Discomfort Button Presses by User

- User 4
SUser 8

- User 20
- User 28

User 84
- User 88

SUser 96
SUser 104

Phase 2 Week 2 Week 3 Week 4
Time

Figure 6.3.16: Discomfort Button Presses by User: Entry Presses Removed

155

Week 2 Week 3
Time

4.5

4-

neutral button presses would not affect the environment, and they subsequently decreased.

Furthermore, Nodes 24 and 76 are excluded, as the user of Node 24 changed between Phase

Two and Phase Three, and User 76 was not present for the majority of Phase Three.

It can be seen that the total number of button presses decreased in each case, but this result

is mostly due to the actions of User 104, who essentially stopped pressing buttons during

Phase Three. Even with this user removed, the average number of button presses decreased

14 percent between Phase Two and Phase Three, when entry presses are removed. This

is a more accurate metric than total button presses, as the users were told during Phase

Three that the system would ignore any entry presses. This is not a dramatic change, but

it is significant, due to the fact that there was greater incentive during Phase Three to press

buttons, as this would actually change environmental conditions.

Users were clearly being made more comfortable by the Personalized Comfort Control Sys-

tem, despite the slow control responses. This can be attributed to the building becoming

aware of the desired comfort levels of its occupants, and occupants believing that the build-

ing was working to optimize their comfort. These are in direct contrast to a standard control

system, and were reinforced by the actions of the building. Even though it would take hours

for a user's measured comfort distance to change after a control response, the fact that the

building recognized the discomfort and acted upon it was noticed by the occupant, and

influenced his or her perception of comfort. Both the sound of the damper motor turning,

and the associated rush of air, were strong cues that the system was working, and a welcome

sign that comfort was on its way.

156

Chapter 7

Conclusions

This dissertation has presented a novel method of building comfort control, focused on

the occupant. Special sensing, communication, and actuation hardware was developed to

locate users in the building, and measure their comfort directly on the body. These comfort

signals were then used to control the air-conditioning system, and direct air flow where it

was needed, when it was needed. A three month study of the system was conducted, with

four weeks of this experimental control strategy compared to the previous four weeks of

standard control. An improvement in both comfort and energy usage is shown as a result

of Personalized Comfort Control.

Although the energy savings vary depending upon assumptions, with estimates in the range

of 3.2 to 24 percent, it is clear that the experimental system reduced chilled air usage. It

accomplished this by only cooling areas as much as required to maintain occupant comfort,

and not cooling areas when occupants were not present. It also worked to maintain room

temperatures at an equitable level for all involved. It was able to do all of this as a result

of a low-power, wrist worn, temperature, humidity, light, and activity sensor, which made

the building aware of its occupants' state via these sensor data and simple 'hot' and 'cold'

button presses.

The energy savings were the direct result of improving user comfort. In a well-functioning

building, it is not the case that the temperature is either too hot or too cold, but rather that

157

it is too hot or too cold for particular individuals: the air is not being distributed effectively.

A number of personal cooling systems are commercially available, but these are expensive,

and in some cases impossible to install. A solution which is retrofittable to older, existing

buildings is necessary, as this is not only the largest portion of existing building stock, but

also the least efficient and effective. This system accomplishes this by using wireless sensors

and actuators that create their own communication network upon deployment.

In the process of creating this system, a number of results were obtained which are not

strictly quantifiable. Through conversations with test subjects, observations on their be-

haviour, and personal experience in the controlled environment, a model of user comfort

and expectations was developed, influencing a large portion of this work. The remainder of

this chapter will focus on these ideas, and qualitatively evaluate how well they were imple-

mented. These concepts will then be projected forward onto the larger issues involved in

building automation.

7.1 Design Strategies for Comfort Control

An efficient, active building does not do tasks the occupants can already do themselves,

but rather, it is capable of doing things the occupants can not do. There are many tasks

which require an expert's knowledge to perform correctly: even thermostat setting has been

shown to be too complicated in some cases. To no longer require a professional's assistance

not only reduces maintenance costs, but it also increases the likelihood that the building is

operating correctly, as the threshold for requesting repairs is often quite high.

The main task this system performed was determining comfort level. Although the occupant

is currently capable of doing this, acting upon that comfort level is not so simple. If comfort

was as easy as a fixed temperature setting, the thermostat model would work much better

than it does. Instead, the comfort of an individual will vary greatly depending upon activity

level, location, time of day, and a host of other factors. For this reason, a proximate sensing

device is critical to understanding the user.

158

i

There are many ways of accomplishing this proximate sensing, and the wrist-worn version

shown here is perhaps the least favorable. Because of its size and materials, it proved to be

distracting, and most users were very happy to be free of it at the end of the experiment.

Ultimately, the form factor could change, or it could be incorporated into another wearable

device, like a wrist-watch, but this may not be necessary. The cost of sensing, temperature

sensing in particular, has become increasingly inexpensive, and the power requirements are

so low that solar powered versions are currently available. It is quite possible to distribute

dozens of these per room, such that the occupant has a sensor nearby, regardless of position.

A portable node of some kind will still most likely be necessary, as occupant identity,

location, activity level, and comfort status will need to be assessed, but these are things

that modern cellphones could be programmed to do. These are also bits of information that

the user might want to maintain personally, for privacy reasons.

This dense distribution of sensors throughout a room could remove some of the problems

encountered during this thesis. For example, false readings from nearby, warm electronic

components could be reduced via outlier elimination and sensor data fusion. It might also

liberate the user from the need for cumbersome, on-body temperature sensing. The wrist-

worn device used here, which was nicknamed 'the shackle' by its users, was unobtrusive

in comparison to direct thermal contact devices, which would be preferred for accurate

measurement. There is also variation in how occupants' skin temperatures vary with comfort

level, with the system working well for those who had large fluctuations. Ultimately, giving

users a choice of how to communicate with their environment will improve perceptions of

the system greatly.

Besides its lack of thermal contact with the body, the portable node failed in another

important way: its inability to convey the magnitude of user discomfort. Perhaps the

duration or pressure of the button press could indicate this information, which would be

very helpful in developing a better comfort metric. One of the great promises of this system

is the ability to make trade-offs between comfort and energy. A user could select a cost

function that best represents his or her willingness to sacrifice short term comfort for long

term financial gain. Without a better understanding of exactly how uncomfortable the user

159

is, this sort of system would most likely just lead to frustration.

This is also equally important to the task of conflict resolution. Social pressures tend to

dominate in determining office temperatures, with occupants having no reason to believe

that the others are as uncomfortable as themselves. Arguments of an almost moral nature

were common, such as "You should exercise more so you're not cold all the time." A

comfort arbitration system offers the possibility of a far more democratic approach, where

users believe that an unbiased critic is selecting the appropriate boundary. However, this

only holds as long as these beliefs are reinforced by experience. In general, the users of the

Personal Comfort System felt it was very equitable, although feedback showing the state of

others' discomfort would make this situation even better.

The comfort metric employed here was the Fisher Discriminant, which worked surprisingly

well for most users. In the cases where it did not work, the main source of failure was a result

of the system never becoming cold enough for users to press the 'cold' button, making for

an ambiguous comfort boundary. In retrospect, the KNN Distance Metric might have been

a better choice, as it was far more robust to insufficient data. In fact, it has the ability to

work in the complete absence of 'cold' data points. It also creates a more flexible boundary,

closer to the labeled discomfort points. It is unclear, though, whether it produces a good

distance metric. Perhaps a hybrid system which uses a Cartesian distance from the KNN

determined decision boundary would make a more adaptable system. Ultimately, these are

but a few of the many ways in which the machine learning aspect of this problem could be

solved.

Work also needs to be done to determine the best method to remove outliers and data

which are no longer appropriate. With a larger data set than the one used here, outlier

detection would be much easier, and a larger feature space could be incorporated. A time-

weighted metric, which leaves many more data points in the set, but gives preference to

more recent events, might solve some of these issues. As adaptability is a prime concern,

perhaps the user should be granted inputs other than just button presses, to communicate

which scenarios are most relevant.

160

The main reason why the comfort system was not as effective as it could be, was a lack of

responsiveness. Those users who had the best results were the ones who spent the most

time in a single location. A more stable control input might help remedy this situation, but

a larger issue is of concern: there is an energy penalty for fast response times. An example

of this is the initial discomfort upon entry. It was noted that almost all occupants would

be uncomfortable for approximately 15 - 30 minutes upon entering their office. After this

time, they usually acclimated, and stated they were comfortable. Before the Personalized

Comfort System was in place, occupants would often change the thermostat setting during

this period, or open the dampers manually by disconnecting the control system. This not

only wasted energy instantaneously, but also for a long time afterwards as the thermostat

or damper was rarely set back to the initial setting. The experimental system saved energy

by ignoring discomfort during this period, under the expectation that it would pass.

This idea is reinforced by the notion that occupants remember moments of discomfort

far more greatly than the longer periods of comfort. Furthermore, once an occupant has

crossed the comfort threshold, it is not merely a matter of lowering the temperature a

small fraction to cross back over the boundary. Whether it is a result of psychological

factors, or the thermal mass of the body, a hysteresis effect was noticed in the test subjects'

impression of comfort, and a great deal more cooling was required to give them relief.

It is in these periods that they will act in inefficient ways. With appropriate feedback

to the user (as will be discussed in the next section), these moments can be transitioned

without lowering temperature. The experimental system aimed to avoid these by using an

extremely conservative setback control technique, which aimed to ensure that rooms were

always within the realm of comfort before the user entered.

These energy saving techniques are further hindered by the fact that users needed greater

cold discomfort before indicating discomfort to the system. From the Week Four Survey,

users stated that they would require a discomfort level of -2.33, on average, to press the

'cold' button. This is a large difference from the +1.44 average hot discomfort level, which

indicates that a slightly hot environment is far less tolerable to people than a slightly cold

environment. Some users even stated that they preferred it cold, even though it was not

161

quite as comfortable. This may be due to the novelty of a cold environment in summer, or

the expectation that it will not be cold for long, but in either case, it is a strong argument

for mediated comfort control, as it suggests users will set temperatures much lower than

their upper comfort boundary, if they are able to do so.

Ultimately, it is the maintaining of this upper comfort boundary that saves the most energy.

The system here did this unintentionally, as the response time was too slow to cool to

the appropriate level. A more agile system would be able to meet this need, and reduce

user frustration. Nevertheless, there will always be times of transition, or unexpected

occurrences, and it is the ability of the building to communicate to the user what its

objectives are that will determine the success of these systems.

7.2 Requirements of Automated Environments

As described in Section 2.4, this work is grounded in the concept that both occupant and

building have much to gain by increased communication with each other. In order for this

to happen effectively, the automation system must be robust to failure, and always provide

basic functionality under all circumstances. Pre-programming from the user should be kept

to a minimum, as these mappings will eventually become inappropriate, and the user may

not have the time, knowledge, or inclination to input the correct settings. Most importantly,

the control system should give appropriate feedback to the user as to its intentions. In this

manner, the building and occupant will understand each other, and respond accordingly.

Ensuring basic functionality becomes a more difficult task as the complexity of a system

increases. The control structure must be built upon a basic layer which only relinquishes

control under very specific conditions. Constant checking for activity from sensors and

actuators is needed to limit system responses to invalid data. Ultimately, the actuation

hardware could contain this basic control foundation, allowing the entire system to function

under the most severe network failures. Unfortunately, what is considered a basic function

will most likely become more and more complex as building automation progresses, and

this sort of localized control will no longer suffice.

162

The hardware for the Personalized Comfort System was relatively robust, with the wireless

devices switching seamlessly between branch nodes when connections were lost. The only

failures experienced were due to bad power supplies, and an RF unit lock-up problem. These

are not fundamental limitations of the system, and merely represent common prototype

issues. A larger problem is the robustness to RF interference, which could be accounted

for with a channel hopping protocol and better packet identification. The control platform

was very stable, with room occupancy detectors ensuring that the temperature was at a

reasonable level, regardless of whether the occupant had a portable node. The window

actuators had hardware over-ride buttons that allowed occupants to open and close them

when desired, and these same controls could have been placed on the damper motors as

well. This was not done for these experiments, in order to accurately assess the efficacy of

the system. Despite this, the occupants rarely felt out of control of their environment.

This basic functionality came at the cost of a small amount of pre-programming. Mappings

were made between dampers, rooms, and users, and PID control gains and temperature

settings were preloaded. Although these represent a minimal set of information, the system

could eventually learn all of these with time. This lack of pre-programming is critical to

the acceptance of intelligent building automation systems. If a high level of expertise,

information, or time is required to commission a control system, it will most likely not be

done correctly, and will not remain stable after prolonged usage, as the pre-programmed

conditions can not be guaranteed to persist. Ultimately, some amount of pre-assigned

information will probably be desired by building owners and maintenance staff, but having

this as an option, and not a requirement, will make these systems far easier to install and

maintain.

Rather than fixing setpoints, the Personalized Comfort System learned user temperature

preferences and room usage schedules, and adapted these with time to account for changes,

or to improve comfort. The room usage schedules were automatically created by the system,

but these could be augmented with personal information from online calendars or location

information from cellphones. In contrast, the temperature preferences were inputted directly

by the users via button presses. Although this worked well for this application, as the

163

automated portions of our environments increase in complexity, the causality between user

action and source of discomfort may no longer be clear to the system. The user will not

tolerate having a button for every desire imaginable. More creative ways of communicating

intent to the building will be required. Did he close the window because it was too windy,

or because it was too cold? Did she shut off the light because she is going to sleep, or

because she is going to watch a movie? The building will need to become more adept at

making the correct guess in these conditions.

The penalty for wrong guesses is very high in building automation. If the occupant does

not believe that the building is acting in a rational manner, or if the occupant can not

formulate a simple model of the building's behaviour, then the entire system breaks down.

The relationship becomes adversarial, as was witnessed in the thermostat usage during

this experiment. Regardless of the fact that a thermostat setting of 55'F is completely

unreasonable, most of the thermostats were set at this temperature, because they were

not behaving rationally: they were not lowering temperature when turned down. Out of

frustration, the occupants began behaving irrationally in retaliation.

In the thermostat example, the users' behaviour had the negative effect of wasting energy in

the evening hours. In a system with more user control, such as the one presented here, the

lack of positive user beliefs could have more dramatic effects. If a user felt that the system

was not being equitable, and was making the room too hot for their needs, they may begin

hitting the 'hot' button in even the coldest conditions, in the hope that the boundary would

move lower, and begin favoring their desires. This problem of 'gaming the system' is one

of the many issues resulting from giving users unconstrained control. A fine balance must

be found between granting enough control to convince users that the system is working to

optimize their needs, and placing restrictions on temperature and energy excursions.

This ultimately becomes a problem of appropriate feedback. This is perhaps the most

critical aspect of an automation system, and, unfortunately, this is where this dissertation

succeeded the least. The reliance on linear control techniques led to slow response times

to ensure stability over the unpredictable and wide ranging comfort inputs. Better control

algorithms are needed to deal with these signals which are sometimes completely inaccurate.

164

The main feedback signal users received was an unintentional one: The whirring of the

damper control motor. If not for this audible cue of changes occurring, users would not

have been as tolerant of the hour-long lag on cool air arrival.

There is a trade-off between fast response time and energy consumption, so other methods

besides a quick rush of air will most likely need to be employed to communicate to the

occupants that the system is functioning. The motor sound worked in this case, but future

solutions could incorporate a wider range of information, taking inspiration from the field

of pursuasive computing, displaying the system's belief about the users' current comfort,

and the action that is being taken. In cases where the building can not meet their needs,

or comfort is intentionally being compromised for energy reasons, the users' expectations

could be set appropriately, and they could plan accordingly. This would begin to open up

the conversation between building and occupant, and would be a great improvement over

the current deaf and mute thermostat.

165

166

Appendix A

Prototype Wearable Comfort

System

167

Predictors for Human Temperature Comfort

Final Project for MAS.622J, completed December 1 5th, 2006.

A.1 Introduction

All homes and offices have environmental control systems. These usually consist of a source

of hot or cold air, and a thermostat located nearby which turns the source on or off to

regulate the temperature of the room. Unfortunately, the inhabitants of most spaces are

not located near the thermostat, so the system does not adequately regulate the tempera-

ture for their comfort. The system also does not know whether or not a person is in the

room, requiring that the ventilation run continuously, regardless of its demand. A more

energy efficient and effective environmental control system can be achieved by placing the

thermostat on the person, creating a more personalized and responsive space which knows

when people enter a room, and what their current comfort level is.

The objective of this work is to determine the ability of a simple sensor system to predict

human temperature comfort. Our perceived comfort level is a function of many factors:

metabolic rate, stress, fatigue, activity level, etc. It is possible that there is no clear cor-

relation between ambient air temperature and our perception of hot or cold. Exactly how

does our body express its comfort level? Further more, for this wearable thermostat to be

economically and socially acceptable, it must contain a minimum complement of sensors to

keep costs down, and have these sensors located on the body in such a fashion as to not

bother the user. In the ideal case, a single sensor would be worn as a button on the user's

shirt, and transmit the user's preference wirelessly to the environmental control system.

A.2 Methodology

There are many possible locations and types of sensors which could be of use to the wearable

thermostat. The locations chosen for this work are based upon places on the body which are

168

currently ornamented: finger (rings), wrist (watches), neck (necklaces), chest (necklaces),

shirt exterior (pendants). And, although there are many sensors which may be relevant,

temperature and humidity sensors were chosen as the most likely candidates for predicting

environmental comfort. To this end, a wearable temperature and humidity logging device

(see Figure A.1) is developed which records the time of day, all sensor readings, and the

user's comfort level. Every five minutes, a pager motor on the device vibrates, queuing the

user to input his preference. One button represents 'hot' (+1), the other 'cold' (-1), and

both pressed at the same time represents 'neutral' (0). 'hot' and 'cold' are determined by

the user as states where, if given the option, an outer layer of clothing would be added or

removed to help improve thermal comfort. A sample of the raw sensor data can be seen in

Figure A.2. The system is worn and trained for a single user, as thermal comfort patterns

are different for each person, and a wearable thermostat would have to learn the preferences

of its owner.

A.3 Hardware

The core of the sensing system (see left image in Figure A.1) is based upon the CAR-

GONET [85] environmental data logging board developed by Mateusz Malinowski. It has a

TI MSP430 low power micro controller which communicates with the sensors, logs the data,

and uploads these data to a computer via USB. It also has a real time clock for logging time

and waking up the system from sleep mode every five minutes. Finally, it has an on-board

temperature and humidity sensor. All sensors in the system are the Sensirion SHT15 (see

right image in Figure A.1), which is extremely small, has a fast response time (<4 s), com-

bines both humidity and temperature sensing in one package, and has humidity accuracy

of ±2% RH and temperature accuracy of ±.3 0C. Four of these sensors are tethered via

ribbon cable to be mounted to the body at the aforementioned locations with medical tape,

and the fifth sensor is located on the board to gather ambient air temperature at the user's

location. This gives a total of 10 sensors at five locations.

169

Figure A.1: Sensor System as Worn by User

A.4 Data Analysis

Data was collected for four days, giving 360 data points. Given the large dimensionality of

the data set, this is a relatively small set of data points. To help reduce non-representative

results given this small data set, the results are averaged over the entire data set. This is

done by dividing the data into ten random sets without replacement. The algorithms are

then trained on nine of these sets and tested on the remaining one. This is then repeated for

all ten permutations of the sets, and the testing results are averaged over these permutations.

The time data is not used, as the moving between hot and cold environments required to

gather enough data points in each class produced a time series which does not relate to the

current level of comfort.

170

I:""~~ll'~"=~lllll"t"t~ttt~tt~~~i:-':~

50

40

o30

20

IU
03:00:00 06:00:00 09:00:00 12:00:00

-35

~30
E
)25
25

- Air
Finger
Wrist
Chest
Neck

0 Finger

.5

.5

.1
06:00:00 12:00:00

Figure A.2: Raw Data Logged by Sensors: Temperature, Humidity, Comfort

DU I1

Figure A.1: Data Logging Board (left) and SHT15 Sensor (right)

Two different algorithms are chosen to test the ability of the system to predict the thermal

comfort of the user. The first was a Gaussian model which simply took the mean and

covariance of each of the sets of the training data marked by the user as hot, cold, and

neutral. The testing data points were then input to each of the models, and each testing

data point would receive the class of the model which returned the maximum value. The

accuracy of the system was determined by the total number of correct labellings, divided by

the total number of testing data points. The second algorithm was a K-Nearest Neighbor

algorithm, which was trained with a leave one out strategy. The tested data point would

assume a class label which represents the average of the K nearest neighbors' class labels.

Since the system rounded .5 up to 1 and -. 5 down to -1, this broke ties by favoring either

'hot' or 'cold' over neutral, assuming that there would generally not be a tie between 'hot'

and 'cold'. The value of K was chosen as the value, less than ten, which returned the

highest accuracy on the training data, when trained on all possible permutations of which

data point was left out. K was chosen to be less than ten to keep processing time down, as

ten was the maximum value observed for a few runs which were allowed to test values of K

up to the number of data points in the training set.

172

:~iir~~axx~

A.5 Results

These two algorithms are then tested on all possible sensor combinations. The top ten

sensor combinations for each quantity of sensors are returned, along with the accuracies

associated with these combinations (see Table A.2 through Table A.11). A plot of the max-

imum accuracy versus sensor quantity can be seen in Figure A.1. The K-Nearest Neighbor

algorithm is more accurate than the Gaussian model, although they both show a maximum

accuracy with seven sensors. The dotted line in Figure A.1 shows the maximum accuracy

achievable with each model given the number of body positions rather than the number of

sensors. For example, 1 represents one sensor at one point on the body, 2 represents two

sensors at the same location on the body, and 7 represents seven sensors at 4 locations on

the body.

Sensor Number Sensor Location Sensor Type

1 hand humidity
2 hand temperature
3 wrist humidity
4 wrist temperature
5 chest humidity
6 chest temperature
7 kneck humidity
8 kneck temperature
9 air humidity
10 air temperature

Table A.1: Sensor Identification Number, Placement, and Type

From Table A.2 it can be seen that the wrist temperature sensor is the best single sensor,

with the chest humidity sensor being the next best sensor to add. The chest temperature

sensor is the third best sensor to add, with minimal improvements in accuracy from adding

more sensors. Both algorithms concur on which sensors have the strongest correlation with

thermal comfort.

173

Comparon of Gaussian and K-Nearsst Neighbor Vs. Number of Sensors

0.- -.,.,,.,, -" -" - - - - - - - -

0.7

0.6-

I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Number of Sensors

Figure A.1: KNN and Gaussian Accuracies versus Number of Sensors

Sensor KNN Sensor Gaussian
Number Accuracy Number Accuracy

8 0.6028 9 0.3333
7 0.6250 2 0.3417
9 0.6417 3 0.3667
1 0.6583 10 0.3972
10 0.6611 8 0.3972
6 0.6806 6 0.4361
2 0.6833 7 0.4417
3 0.6861 5 0.5250
5 0.7222 1 0.5806
4 0.7417 4 0.6028

Table A.2: KNN and Gaussian Accuracies for 1 Sensor

Sensor KNN Sensor Gaussian
Numbers Accuracy Numbers Accuracy

4 7 0.7556 1 9 0.6000
4 9 0.7556 4 9 0.6083
5 9 0.7583 3 4 0.6250
2 4 0.7583 4 7 0.6333
3 4 0.7611 1 4 0.6417
4 10 0.7639 5 8 0.6472
5 6 0.7722 4 5 0.6528
4 8 0.7806 4 8 0.6778
4 6 0.8194 4 6 0.6861
4 5 0.8250 5 6 0.6889

Table A.3: KNN and Gaussian Accuracies for 2 Sensors

175

Sensor KNN Sensor Gaussian
Numbers Accuracy Numbers Accuracy

245 0.7806 356 0.6889
235 0.7861 1 5 6 0.6944
459 0.7861 246 0.6944
246 0.7944 568 0.6944
345 0.7972 346 0.6944
458 0.8056 146 0.6972
4 5 10 0.8083 4 6 9 0.6972
4 6 10 0.8083 4 6 8 0.7000
468 0.8111 467 0.7167
456 0.8250 456 0.7194

Table A.4: KNN and Gaussian Accuracies for 3 Sensors

Sensor KNN Sensor Gaussian
Numbers Accuracy Numbers Accuracy

45710 0.8028 14 6 8 0.7194
47910 0.8083 2456 0.7222
2 4 6 10 0.8083 14 6 9 0.7222
4 5 9 10 0.8083 14 5 6 0.7250
2468 0.8139 1 4 6 7 0.7250
2457 0.8139 3 4 6 8 0.7250
2458 0.8139 3456 0.7278
34510 0.8194 4678 0.7278
2456 0.8222 4689 0.7361
45610 0.8333 4568 0.7361

Table A.5: KNN and Gaussian Accuracies for 4 Sensors

176

--- - --~il----- i--- ----- -- -";--' -i--"---"'"'i '~i~i~L;r~~-x~; -;:;_- ;_;--- I:;i-; ; -;i r-ir- ~i~,mr-rarrir~~~

Sensor KNN Sensor Gaussian

Numbers Accuracy Numbers Accuracy
24568 0.8194 46789 0.7333
2458 10 0.8194 1 3456 0.7361
456710 0.8194 14678 0.7389
45689 0.8194 45678 0.7389
4578 10 0.8194 1 3468 0.7417
235610 0.8222 24568 0.7444
4568 10 0.8278 23456 0.7472
23458 0.8306 34568 0.7472
24578 0.8333 14689 0.7500
245710 0.8500 14568 0.7694

Table A.6: KNN and Gaussian Accuracies for 5 Sensors

Sensor KNN Sensor Gaussian
Numbers Accuracy Numbers Accuracy

2456910 0.8167 4567810 0.7500
45789 10 0.8167 134689 0.7528
23458 10 0.8194 146789 0.7528
4568910 0.8194 345689 0.7528
245678 0.8222 124568 0.7556
2345610 0.8361 134568 0.7583
2457810 0.8361 145689 0.7639
2 3 4 5 6 8 0.8389 1456 78 0.7750
2456710 0.8500 245678 0.7778
2456810 0.8500 14568 10 0.7778

Table A.7: KNN and Gaussian Accuracies for 6 Sensors

177

Sensor KNN Sensor Gaussian
Numbers Accuracy Numbers Accuracy

23457810 0.8000 1234689 0.7611
2345689 0.8000 14678910 0.7611
45678910 0.8056 34567810 0.7611
23467910 0.8083 34568910 0.7667
24578910 0.8083 24567810 0.7694
2345689 0.8111 1345678 0.7694
34567810 0.8278 1234568 0.7722
23456710 0.8306 14567810 0.7750
24567810 0.8389 12456810 0.7778
23456810 0.8556 1245678 0.7806

Table A.8: KNN and Gaussian Accuracies for 7 Sensors

Sensor KNN Sensor Gaussian
Numbers Accuracy Numbers Accuracy

234567910 0.7639 134678910 0.7639
123567810 0.7694 123468910 0.7667
23456789 0.7750 234678910 0.7667
234578910 0.7778 345678910 0.7694
345678910 0.7833 124678910 0.7694
123456710 0.7889 13456789 0.7750
123457810 0.7889 234567810 0.7750
245678910 0.8028 124567810 0.7778
234567810 0.8167 134567810 0.7778
234568910 0.8222 12345678 0.7806

Table A.9: KNN and Gaussian Accuracies for 8 Sensors

178

___1__)__ 11II_____ _L1

Sensor KNN Sensor Gaussian
Numbers Accuracy Numbers Accuracy

1234678910 0.7194 1235678910 0.7111
1235678910 0.7278 1234578910 0.7333
1234567910 0.7333 1234567910 0.7333

123456789 0.7361 1234568910 0.7583
12345789 10 0.7389 12456789 10 0.7611
13456789 10 0.7444 12346789 10 0.7694
1234568910 0.7583 2345678910 0.7722
1245678910 0.7639 123456789 0.7722

2345678910 0.7806 1234567810 0.7722

1234567810 0.7889 1345678910 0.7750

Table A.10: KNN and Gaussian Accuracies for 9 Sensors

Sensor KNN Sensor Gaussian
Numbers Accuracy Numbers Accuracy

12345678910 0.7472 12345678910 0.7667

Table A.11: KNN and Gaussian Accuracies for 10 Sensors

179

A.6 Conclusions and Future Work

These preliminary results show that a wearable thermostat has the possibility of being

accurate enough to regulate a building's ventilation system for a user's comfort. Although

the system only reached a maximum accuracy of 85 percent, further work which took into

account the time series data could possibly improve upon this. Also, gains could be made

by changing the voting algorithm for the K-Nearest Neighbor algorithm. Since the human

body works to regulate its own temperature, it is more likely that a user will be 'neutral'

rather than 'hot' or 'cold', so perhaps the algorithm should favor 'neutral' classification.

180

Appendix B

Survey Results

181

Personalized Building Comfort Control System
Pre-Experiment Questionnaire

This is a survey about personal comfort in buildings. You will be asked questions
regarding your personal background and your sense of temperature comfort in a
particular building. We will keep your information private and the result will not be
traceable to you in anyway. Any questions in regards to 'building' refer to the building
that the experiment will be running in (El 15).

1. Are you Male or Female? Male Female

2. What is your age? 10-18 18-25 25-30 30-35
35-40 40-45 45-50 50-60

3. What is your Race/ethnicity? (optional) the following category is from2000 United States Census
White
Black or African American
American Indian or Alaska Native (write in tribe)
Asian Indian
Chinese
Filipino
Japanese
Korean
Vietnamese
Native Hawaiian
Guamanian or Chamorro
Samoans
Other Pacific Islander (write in race)
Other race (write in race)

Please rank the following concepts from 1 to 5 (1 = strongly disagree, 3=neutral, 5= strongly agree).

4. The Building I work in is comfortable in terms of temperature.

1 2 3 4 5

5. The Building I work in is comfortable in terms of humidity.

1 2 3 4 5

6. The building I work in is more comfortable than my home.

1 2 3 4 5

Figure B.1: Entrance Survey: Page One

182

7. I feel in control of my local comfort level in my building.

8. I believe the building I work in is efficient in terms of the energy used to control the
building temperature.

9. The building is often too cold for me.

10. The building is often too hot for me.

11. The building is more often too hot than too cold.

12. The building is more often too cold than too hot.

13. I would like more control over my local temperature in my building.

14. My officemate and I often disagree over whether its too hot or too cold.

15. I often wear two or more layers of clothing during the summer in my building in
order to keep warm.

16. I often open a window to try to cool down my office.

1 2 3 4

17. Overall, I am satisfied with the comfort level in my office.

Figure B.2: Entrance Survey: Page Two

183

Question
Number Male Female

1 9 2

Table B.I1: Number of Responses for Question 1 on Entrance Survey

Question
Number 18 - 25 25 - 30 30 - 35 50 - 60

2 4 4 2 1

Table B.2: Number of Responses for Question 2 on Entrance Survey

Question
Number Chinese White Mixed

2 1 9 1

Table B.3: Number of Responses for Question 3 on Entrance Survey

184

; _i~_lillii_~/_i___ _I~~I _ _~_ ___ _ ____ C _~ii__lj~ _II __XII____~_XJIII~ ~-1141_~11111

Question Strongly Strongly
Number Disagree Disagree Neutral Agree Agree

4 0 6 3 2 0
5 0 2 4 4 1
6 0 4 3 2 2
7 6 1 3 1 0
8 2 4 3 1 1
9 1 2 2 4 2
10 2 2 1 3 3
11 1 3 0 3 4
12 2 6 0 2 1
13 0 1 0 3 7
14 0 2 2 4 2
15 4 4 0 1 2
16 0 0 0 3 1
17 2 2 4 3 0

Table B.4: Number of Responses for Questions 4 - 17 on Entrance Survey

185

PERSONALIZED BUILDING COMFORT SURVEY

WEEK TWO

Portable Node ID:

Please rank the following statements by how well they apply to you, circle only one option per
statement. If a statement does not apply, write N/A next to it.

1. I have felt more thermally comfortable at my workspace in the past week, than I did a month ago.

-3 -2 -1
strongly disagree slightly
disagree disagree

0
neutral slightly

agree

+2
agree

+3
strongly

agree

2. I believe the personalized comfort system is doing a good job of optimizing my thermal comfort.

strongly
disagree

-2
disagree slightly

disagree

0
neutral

+1
slightly
agree

+2
agree

+3
strongly

agree

3. I believe the personalized comfort system is doing a good job of balancing the thermal comfort needs
of all the people in my workspace.

-3
strongly
disagree

-2 -1
disagree slightly

disagree

0
neutral

+1
slightly
agree

+2
agree

+3
strongly

agree

4. For each of the following categories, place a number representing the percentage of time in the past
week you spent at that particular thermal comfort level. The total should sum to 100.

-3 -2 -1 0 +1 +2 +3
cold cool slightly neutral slightly warm hot

cool warm

5. Approximately how many hours did you spend at your workspace in the past week?

Figure B.3: Survey for Week 2 of Experimental Control

186

j ~_~____~______ _ I;__ __ (_~ (__~_~~_I i ~~ ~_~_~_ ___ li__l~~___j___*_~__~_^*i_=_i ir_ _i;;jll__ ~_jl li;_ Ii_/ iii;__~ ~_~__iiiPi_~_ll_~~ii

Node Question Number
Number 1 2 3 5

4 +1 +2 +1 30
8 +3 +3 +3 60

20 +3 +2 +2 35
24 +2 +2 0 50
28 0 +2 +1 100
76 +3 +3 0 12
84 0 0 +1 25
88 +2 +2 +2 25
96 +3 +2 +1 84

104 +2 +1 +2 68

Mean +1.90 +1.90 +1.30 48.90

Table B.5: Survey Responses by Node Number For Week 2: Questions 1, 2, 3, 5

Node Percentage of Time at Each Comfort Level
Number -3 -2 -1 0 +1 +2 +3

4 0 0 0 5 15 70 5
8 0 5 10 75 10 0 0

20 0 0 0 20 0 30 50
24 0 30 25 30 25 10 0
28 1 3 10 75 10 1 0
76 0 0 0 70 20 10 0
84 0 0 5 90 5 0 0
88 0 0 0 20 70 10 0
96 0 0 5 70 15 10 0
104 0 0 0 60 20 20 0

Mean 0.10 3.80 5.50 51.50 19.00 16.10 5.50

Table B.6: Survey Responses by Node Number For Week 2: Question 4

187

PERSONALIZED BUILDING COMFORT SURVEY

WEEK 3

Portable Node ID:

Please rank the following statements by how well they apply to you, circle only one option per
statement. If a statement does not apply, write N/A next to it.

1. I have felt more thermally comfortable at my workspace in the past week, than I did last week.

strongly
disagree

disagree slightly
disagree

neutral slightly
agree

+2
agree strongly

agree

2. I believe the personalized comfort system is doing a good job of optimizing my thermal comfort.

strongly
disagree

disagree slightly
disagree

neutral slightly
agree

+2
agree strongly

agree

3. I believe the personalized comfort system is doing a good job of balancing the thermal comfort needs
of all the people in my workspace.

-3
strongly
disagree

disagree slightly
disagree

0
neutral slightly

agree

+2
agree strongly

agree

4. For each of the following categories, place a number representing the percentage of time in the past
week you spent at that particular thermal comfort level. The total should sum to 100.

-3 -2 -1 0 +1 +2 +3
cold cool slightly neutral slightly warm hot

cool warm

5. Approximately how many hours did you spend at your workspace in the past week?

Figure B.4: Survey for Week 3 of Experimental Control

188

;___;__ _Ifiiljii ~_ij _i___ir_ __ ;___l______ll__l;ljI_--)-i-i-- --il~-(i ill-~i~-f-l-ii~-l; liij~--;ii~iii_-ll. li:itCi-: il.~-;i~l--:i~-~ir-l~--~l~tl~i -^-l_(~~

Node Question Number
Number 1 2 3 5

4 +1 +1 +1 30
8 +3 +3 +2 40

20 +2 +2 +2 40

24 +2 +2 0 40

28 +0 +2 +2 100

84 +2 +2 +1 25

88 +1 +2 +3 40

96 +2 +1 -1 45

104 +1 +2 +1 45

Mean +1.56 +1.89 +1.22 45.00

Table B.7: Survey Responses by Node Number For Week 3: Questions 1, 2, 3, 5

Node Percentage of Time at Each Comfort Level
Number -3 -2 -1 0 +1 +2 +3

4 0 0 0 20 20 45 15

8 0 0 5 95 0 0 0
20 0 0 10 25 25 25 15
24 0 10 20 60 10 0 0

28 1 8 15 70 5 1 0

84 0 0 2 90 8 0 0

88 0 0 0 35 60 5 0

96 0 0 5 75 15 5 0
104 0 0 0 30 30 30 10

Mean 0.11 2.00 6.33 55.56 19.22 12.33 4.44

Table B.8: Survey Responses by Node Number For Week 3: Question 4

189

PERSONALIZED BUILDING COMFORT SURVEY

WEEK FOUR

Portable Node ID:

Please rank the following statements by how well they apply to you, circle only one option per
statement. If a statement does not apply, write N/A next to it.

1. I have felt more thermally comfortable at my workspace in the past week, than I did last week.

strongly
disagree

disagree slightly
disagree

0
neutral

+1
slightly
agree

+2
agree

+3
strongly

agree

2. I believe the personalized comfort system is doing a good job of optimizing my thermal comfort.

-3
strongly
disagree

disagree slightly
disagree

neutral slightly
agree

+2
agree

+3
strongly

agree

3. I believe the personalized comfort system is doing a good job of balancing the thermal comfort needs
of all the people in my workspace.

disagree slightly
disagree

neutral slightly
agree

4. I would prefer to keep using the personalized comfort system, as it has been working, rather than go
back to the old control system.

-3
strongly
disagree

-2
disagree

-1
slightly
disagree

neutral slightly
agree

+2
agree strongly

agree

5. I would prefer to keep using the personalized comfort system rather than go back to the old control
system, if I could use the portable node as I wanted (e.g. you didn't need to wear it).

strongly
disagree

disagree slightly
disagree

0
neutral

+1
slightly
agree

+2
agree

+3
strongly

agree

6. Approximately how many hours did you spend at your workspace in the past week?

Figure B.5: Survey for Week 4 of Experimental Control: Page One

190

-3
strongly
disagree

+2
agree

+3
strongly
agree

7. For each of the following categories, place a number representing the percentage of time in the past
week you spent at that particular thermal comfort level. The total should sum to 100.

-3 -2 -1 0 +1 +2 +3
cold cool slightly neutral slightly warm hot

cool warm

8. Please place two check marks, one for cold and the other for hot, at the thresholds for which you
would feel uncomfortable enough to press a button during the two months of this experiment.

-3 -2
cold cool

-1 0 +1 +2

slightly
cool

neutral slightly
warm

warm

Figure B.6: Survey for Week 4 of Experimental Control: Page Two

Node Question Number
Number 1 2 3 4 5 6

4 +2 +1 +2 +2 +3 30

8 0 +3 +3 +3 +3 50

20 +2 +2 +2 +3 +3 40

24 +3 +2 0 +3 +3 50
28 0 +2 +2 +2 +3 100

84 +1 +2 +2 +2 +3 25

88 -2 -1 -1 +1 +2 40
96 +1 +1 +2 +2 +3 40

104 +2 +1 +1 +2 +2 45

Mean +1.00 +1.44 +1.44 +2.22 +2.78 46.67

Table B.9: Survey Responses by Node Number For Week 4: Questions 1 - 6

191

+3
hot

Node Percentage of Time at Each Comfort Level
Number -3 -2 -1 0 +1 +2 +3

4 0 0 0 10 50 40 0
8 0 0 10 90 0 0 0

20 0 5 5 70 0 15 5
24 0 10 20 60 10 0 0
28 1 2 10 79 8 0 0
84 0 0 10 85 5 0 0
88 0 0 0 15 80 5 0
96 0 5 10 70 10 5 0
104 0 0 4 16 40 30 10

Mean 0.11 2.44 7.67 55.00 22.56 10.56 1.67

Table B.10: Survey Responses by Node Number For Week 4: Question 7

Node Cold Hot

4 -3 +2
8 -2 +2
20 -3 +2
24 -2 +2
28 -1 +1

84 -2 +1
88 -3 +1

96 -3 +1
104 -2 +1

Mean -2.33 +1.44

Table B.11: Survey Responses by Node Number For Week 4: Question 8

192

/ _. _ X_~ ___~ _~~ ~ __ _I_ ~^iiil__ii/ i/:_lj__ _~_ _;I ___~___II_ I___I;__P~_~____~__~_I_

Personalized Building Comfort Control System
Post-Experiment Questionnaire

When answering the following questions, please only consider your comfort level over
the past 4 weeks of experimental control.

Please rank the following concepts from I to 5 (1 = strongly disagree, 3=neutral, 5= strongly agree).

4. The Building I work in is comfortable in terms of temperature.

5. The Building I work in is comfortable in terms of humidity.

1 2 3 4

6. The building I work in is more comfortable than my home.

7. I feel in control of my local comfort level in my building.

8. I believe the building I work in is efficient in terms of the energy used to control the
building temperature.

9. The building is often too cold for me.

10. The building is often too hot for me.

11. The building is more often too hot than too cold.

12. The building is more often too cold than too hot.

Figure B.7: Exit Survey: Page One

193

13. I would like more control over my local temperature in my building.

14. My officemate and I often disagree over whether its too hot or too cold.

15. I often wear two or more layers of clothing during the summer in my building in
order to keep warm.

16. I often open a window to try to cool down my office.

17. Overall, I am satisfied with the comfort level in my office.

Figure B.8: Exit Survey: Page Two

194

; - ---- 1

Question Strongly I Strongly
Number Disagree Disagree Neutral Agree Agree

4 0 2 2 4 2

5 0 1 3 3 3
6 2 0 2 4 2
7 0 2 2 4 2
8 1 3 2 3 1

9 4 3 2 0 1
10 3 2 0 5 0
11 3 1 0 2 4
12 4 3 0 2 1

13 0 0 2 5 3
14 2 1 0 5 1

15 6 2 1 0 1
16 2 1 0 1 2
17 0 0 3 4 3

Table B.12: Number of Responses for Questions 4 - 17 on Exit Survey

195

196

~i""~i'li--l(--c~i- -~l-'~ -l II'^11X-l (^_~__;_III-__LCII; X1_~_2~~~~:(;^=-_; .I^l--l;:lid_- Ijl// ~.~/l=i~i~UC.- iY;i~ii~-illlll-i-----. -- --?=ii-.-.(l j_.-:X__i., :/:::

Appendix C

Notes on Experimental Data

197

This appendix contains details on the nodes and users of the studies conducted in this

dissertation. They are included here for future reference.

* All users are assumed to be present for all parts of the study, except as noted.

* Nodes 72 and 28 represent the same user. The portable node was changed from 72 to

28 on July 2 3 rd to replace a bad activity sensor. This user is also the author of this

work.

* Nodes 100 and 4 represent the same user. The portable node was changed from 100

to 4 on June 2 2 nd to replace a bad activity sensor.

* Nodes 12 and 88 represent the same user. The portable node was changed from 12 to

88 on June 2 2 nd to replace a bad activity sensor.

* Node 24 represents two different users, although they shared the same workspace, so

the data represents the same area. The first user is from June 2 2 nd to July 1 6 th, and

the second user is from July 1 7 th through the end of the study.

* Node 20 has bad data for the first week of Phase Two, due to another node accidentally

being on the same channel. These data were backed out later by seperating the two

nodes based upon their RTC offsets.

* Node 84 represents a user that entered the study on June 2 2 nd

* Nodes 8 and 88 shared an office space.

* Nodes 28, 96, and 104 shared an office space.

* Nodes 4 and 20 shared an office space.

* Nodes 24 and 84 shared proximate locations in the public space.

* Node 76 had an unshared office space.

* Room nodes 44 and 48 had extended outages during Phase One and Phase Two of

the study due to bad powersupplies.

198

) ~ . ~__ ~__ ______ ~1_______1_~_~ II_ i~~- __-_l^-I~.T.iilC:;--iii-~-iiii...-i- -j~--l- ;?i-.--I --

* Room node 32 had extended outages during Phase Three of the study, presumably

due to a network collision problem, as this was the most heavily trafficed node. This

was eventually fixed with a hardware reset upon failure.

* For periods of room node outages, location information is inconclusive, and the damper

control functions ceased to operate.

* Control node 184 had its wind speed sensor changed on June 3 0 th, due to a malfunc-

tion. The data before this time is not useful.

* Control node 248 and thermostat node 240 were installed for Phase Three of the study.

These were initially intended to perfrom a baseline comparison, as this office was not

modified with the experimental control system. But, the office usage was very low,

and the office did not have any desktop computers in it, making it a poor comparison

point. The remainder of the offices had anywhere from two to nine computers in them,

along with many other heat producing electronic devices.

* Control nodes would sometimes stop transmitting data during Phase One and Phase

Two of the study, presumably due to bad state accounting in the wireless firmware.

This was eliminated during Phase Three, as receiving a wireless transmission would

wake them up, and wireless transmissions occured quite frequently during that period.

The exception to this rule is control node 248, which never received control commands,

as it did not have a damper motor associated with it.

199

200

: :- ::~~~;~~~;~;~~i~,-~~~:;--~i~-~;~~.-~~;r~ '-; i~~;~; -, ;1- ;-;- -;;; -- ;I-~---~-~~.;~~~~~~;~

Appendix D

Hardware Schematics

201

U1 +2.7V

i IN OUT

OuF OND
EN SET 02

TPS780270200DD T

Figure D.1: Portable Node Schematic

202

LM1086Cr-3.3 -33V

ZGBIT U5

T Tr R TB3 M4 B 16

Figure D.2: Control Node Schematic

I 00 0 ± e

+ 3 -3 V -

10uF

+3 3 U
4, GND J6

VOC ---- 0
OUT J7

-- 0C5 AMN31112 J8
uluF 1Ok

I J9

Figure D.3: Room Node Schematic

~

Appendix E

Hardware PCB Layouts

205

Figure E.1: Portable Node PCB Layout: Top Side (actual size)

Figure E.2: Portable Node PCB Layout: Bottom Side (actual size)

206

----- ---- --------- dl

Figure E.3: Control Node PCB Layout: Top Side (actual size)

Figure E.4: Control Node PCB Layout: Bottom Side (actual size)

207

~------------~--- ~ ~;

Figure E.5: Room Node PCB Layout: Top Side (actual size)

Figure E.6: Room Node PCB Layout: Bottom Side (actual size)

208

,,li.iiii.~~ill-C.li:IIII ~i -- ttttttttl ;

Appendix F

Portable Node Firmware

209

.include "m1281def.inc"

; use increments of 4 for src_addr
; csma_seed = 8 x src_addr
.equ src_addr = $aa58 ; place unique source address here
.equ csmaseed = low(src addr)*$08 ; random backoff exponent - must be unique,<$0800
.equ home_addr = $aabb ; local node des_addr
.equ pan_id = $abcd ; system pan_id
.equ retries = $38 ; high nibble = frame retries,low nibble = 2x(csma retries)
.equ channel = $36 ; tx/rx channel, $2b -> $3a valid

.org 0
rjmp start
.org int4addr
rjmp wakeupshiti5
.org int5addr
rjmp clearirq
.org OVF2addr
rjmp wakeup
.org ADCCaddr
rjmp wakeup

; accelerometer reset = pel
; buttons = pgO,pgl,pg2
; accelerometer = pf2(adc2),pe3(ainl)
; shit15 data = pe4(int4)
; shiti5 clock = peO
; vref to pe2(ainO)
; light sensor out = pfO(adcO)
; light sensor power = pfl

rO shit15 temperature msb
; rl shitl5 temperature isb
;r2 shitl5 humidity
;r3 activity msb
;r4 activity lsb
;r5 buffer pointer temporary storage
; r6 light sensor msb
; r7 light sensor isb
; r8
r9
r1O desaddr msb
ril desaddr isb
r12
r13
r14
r15
r16
r17
r18
r19
r20
r21
r22
r23
r24
r25
r26
r27
ypoi
zl
zh

button press temporary register
interrupt temporary register
interrupt temporary register
rf unit state register
adc delay timer
timer register 1
noack counter
wakeup delay timer
button wait register
button press
previous button press (sent as button data)
wait timer for joinrequest

nter is buffer end

start: ; configure microcontroller registers
using internal 8MHz RC oscillator

; system clock set to 1MHZ by /8 prescaler in fuse bits
ldi r16,high(RAMEND)
out SPH,r16 ; Set Stack Pointer to top of RAM
idi r16,1ow(RAMEND)
out SPL,r16
ldi r1i6,$17
out ddrb,rl6 ; set ss,sclk,mosi,slptr as output
Idi r16,8
out portb,r16 ; enable pullup for miso
ldi r16,1
out spsr,r16 ; set up spi
ldi r16,$50
out spcr,r16 ; set up spi
sbi portb,portbO ; set ss pin high
cbi portb,portb4 ; set slp_tr low
sbi ddra,dda7 ; set reset pin as output
sbi porta,porta7 ; pull reset high on rf unit
idi r16,$0c
sts eicrb,r16 ; configure int5 for rising edge
idi ri6,$20
out eimsk,rl6 ; enable int5
sbi portg,portg2 ; turn on pullup for buttonI
sbi portg,portgi ; turn on pullup for button2
sbi portg,portgO ; turn on pullup for button3
idi r16,high(homeaddr) ; set up des_addr to something in system for start
mov r10O,r16
Idi r16,low(home_addr) ; set up des_addr
mov rII,r16
Idi yh,$02 ; initialize buffer pointer
ldi yl,$00
clr r18 ; initialize rf state register
clr r5 ; initialize pointer buffer
clr r25 ; initialize registers
clr r24
clr r23
sbi portf,portfl ; set pfl to high to activate light sensor
sbi ddrf,ddfl ; set pfl to output

;turn off watchdog timer
wdr ; reset wdt
Idi r16,$00 ; clear all resets
out mcusr,r16 ; turn off wdrf
ldi r16,$1e
sts wdtcsr,r16 ; enable writing of wdt
ldi r16,$06
sts wdtcsr,rl6 ; turn off wdt, is timer

;setup power reduction registers
Idi r16,$ab
sts prrO,ri6 ; turn off adc,usartO,ti,tO,twi
Idi r16,$3f
sts prrl,r16 ; turn off t5,t4,t3,usart3,usart2,usartl
idi r16,$90
out acsr,r16 ; turn off comparator

;setup analog inputs
Idi r16,$05
sts didrO,ri6 ; turn off input stage for adcO,adc2 pins

C0

Idi r16,$03
sts didri,r16 ; turn off input stage for ainO,ainl pins

;setup t2 as rtc at is interval wakeup
Idi r16,$20
sts assr,rl6 ; set t2 to assynchronous mode
ldi r16,$05
sts tccr2b,r16 ; set t2 prescaler to /128 - is wakeup period

;make sure t2 is done rewriting itself
checkassr:

ids r16,assr
andi rl6,$lf ; check assr(4:0) clear
brne checkassr

clr r16
sts tifr2,r18 ; clear all pending interrupts
idi r16,$01
sts timsk2,r16 ; enable t2 overflow interrupt

;setup shit15 - peO is data, pe4 is clock
sbi ddre,ddeO ; set clock as output
cbi porte,porte4 ; make sure pullups are off for data
rcall shitl5setup

;configure rf unit registers

;wait
idi r20,$80 ; load the wait timer to 128 cycles (xlO/ck)
rcall wait2 wait ~(1280/IMHz - 1.2ms) for rf unit to stabilize

;go to trx_off state
rcall txoff ; go to trx_off state on rf unit

;setup clkm
Idi r16,$c3 ; load first data byte - write trx_ctrl_0O register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
clr r16 ; load second data byte - turn off clkm
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup short_addrO
ldi rl6,$eO ; load first data byte - write shortaddr_0O register
chi portb,portbO ; pull ss low
rcall spiwrite ; send data
ldi r16,low(src_addr) ; load second data byte - srcaddr lsb
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;setup short_addrl
ldi rl6,$el ; load first data byte - write short_addr_1 register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
ldi r16,high(src_addr) ; load second data byte - src_addr msb
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;setup pan_id_0O
ldi r16,$e2 ; load first data byte - write pan_id_0O register

cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
ldi rl6,low(pan_id) ; load second data byte - pan_id lsb
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup pan_id_l
idi r16,$e3 ; load first data byte
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
Idi rl6,high(pan_id) ; load second
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

- write pan_id_l register

data byte - pan_id msb

;setup phyccca - set channel id
idi r16,$c8 ; load byte - write phy_ccca register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
idi r16,channel ; load data byte -
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup phytxpwr - turn crc on
ldi r16,$c5 ; load byte - write phy_tx_pwr register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
Idi r16,$80 ; load data byte - autocrc-on,pwr-+3dbm
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup xahctrl - set frame and csma retries
ldi r16,$ec ; load byte - write xahctrl register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
ldi r16,retries ; load data byte - frame and csma retries
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup csma_seed_l
ldi rl6,$ee ; load byte - write csma_seedl register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
idi rl6,high(csma_seed) ; load data byte - min-be=0,aackset=O,i_amcoord=O,csma(10:8)
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup csmaseedO
idi r16,$ed ; load first data byte - write csma_seed_l register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
ldi rl6,low(csma_seed) ; load data byte - csma(7:0)
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;clear pending irqs on rf unit
Idi r16,$8f ; load first data byte - read register irq_status command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte and clear pending irqs
sbi portb,portbO ; pull as high

;enable irqs on rf unit

Idi r16,$ce ; load first data byte - write register irqmask command
cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte
Idi r16,$08 ; load second data byte - trxend only
rcall spiwrite ; send byte
sbi portb,portb0 ; pull ss high

;clear pending irqs on micro
cdr r16
out eifr,r16 ; clear any interrupt flags that are set

;enable interrupts on micro
sei ; turn on interrupts

;enter sleep mode on rf unit
sbi portb,portb4 ; pull slp_tr high to enter sleep mode
ldi r20,$80 ; load the wait timer to 128 cycles (xlO/ck)
rcall wait2 ; wait (1280/IMHz = 1.2ms) to make sure were in sleep

repeat: ; transmit data from sleep mode
; use watchdog timer to eliminate lockups while not sleeping
cli ; turn off interrupts while enabling watchdog timer
wdr ; reset wdt
Idi r16,$1e
sts wdtcsr,r16 ; enable writing of wdt
Idi r16,$0e
sts wdtcsr,rl6 ; turn on wdt, is timer
sei ; turn interrupts back on

Idi r19,$Of ; sample n times - 4ms

adcsample: ; take measurement from adcO - light sensor
ldi rl6,$aa
sts prr0,r16 ; turn on adc, leave off usart0,tl,tO,twi
Idi r16,$cO
sts admux,r16 ; use internal 2.56v as voltage reference,sample adcO
Idi r16,$9c
sts adcsra,rl6 ; turn on adc,clear interrupt flag,enable interrupt,set to /16
ldi r16,$03
out smcr,r16 ; setup adc noise reduction mode
nop
nop
nop
sleep ; wait till converesion is done
nop
nop
nop
clr r16
out smcr,rl6 ; disable sleep modes
Ids r7,adcl ; load low bit to r7
Ids r6,adch ; load high bit to r6
dec r19
brne adcsample ; take n samples to let vref settle

; turn off light sensor
cbi ddrf,ddfl ; set pfl to input to turn off light sensor
cbi portf,portfl ; turn pfl pullups off

; sample adc2 - accelerometer
ldi r16,$c2
sts admux,r16 ; use internal 2.56v as voltage reference,sample adc2

ldi r16,$9c
sts adcsra,r16 ; turn on adc,clear interrupt flag,enable interrupt,set to /16
ldi r16,$03
out smcr,r16 ; setup adc noise reduction mode
nop
nop
nop
sleep ; wait till converesion is done
nop
nop
nop
clr r16
out smcr,r16 ; disable sleep modes
lds r4,adcl ; load low bit to r4
ids r3,adch ; load high bit to r3

;reset accelerometer
idi r16,$10
out acsr,r16 ; turn on comparator
nop ; delay to let things settle a bit
nop
nop
nop
nop
nop
nop

nop
nop
nop
nop
in rl6,acsr ; check comparator output
sbrs r16,5 6 dont bother resetting if already high
rjmp compdone
cbi porte,portel ; set reset pin to low
sbi ddre,ddel ; set reset pin to output

compwait: ; idle until ainl > ain0

in rl6,acsr
sbrc r16,5
rjmp compwait ; keep checking comparator output for low output
cbi ddre,ddel ; turn off the resetting function

compdone: ; resetting done

Idi r16,$90
out acsr,r16 ; turn off comparator
Idi r16,$00
sts adcsra,rl6 ; turn off adc
Idi r16,$ab
sts prr0,r16 ; turn off adc,usart0,tl,t0,twi

rcall shitiStemp ; read shit15 temperature

rcall shit15humidity ; read shit15 humidity

cbi portb,portb4 ; pull slp_tr low to exit sleep mode
ldi r20,$28 ; load wait timer to 40 cycles (xlO/ck)
rcall wait2 ; wait ~(400/1IMHZ = 400us) for rf unit clock to stabilize

rcall checktxoff ; check to see if rf unit is in tx_off state

rcall txonaret ; put the rf unit in tx_aret_on state

cpi r21,$0Oc ; check how long its been since ack (12min)
brlo shortout ; dont bother with data packets if longout
idi yl,$O0 ; clear old data
ldi r21,$Of ; keep ack counter from incrementing back to $00
rcall transmitrequest ; transmit join request
ldi r18,$02 ; set rf state to joinrequest sent
rjmp rfwait ; wait for transmit done

shortout: ; possibly still in system - keep full data transmits

rcall transmitbeacon ; transmit beacon packet
ldi r18,$01 ; set rf state register to transmitbeacon

rfwait: ; wait till transmission is complete - could be replaced with a sleep
;int5 can only be used as level interrupt to wake from most sleep modes
;int5 must be configured as rising edge as it is active high
;could use idle mode to sleep during this operation
;idle mode would save 0.7mA max - probably not worth it
nop
nop
nop
cpi r18,$40 ; check if all transmissions are done
breq sleepstate ; shut down if all transmissions done
cpi r18,$80 ; check if all transmission are done with backlog
breq backlog ; backlog data
cpi r18,$04 ; check if waiting for joinack

S breq rfwaitl ; go to timeout sequence if waiting for joinack
rjmp rfwait ; else keep waiting

rfwaitl: ; wait for joinack

ldi r26,$ff ; wait some sweet ass long time for joinack

wait3: ; 255x16/1MHz = 4ms waitloop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
cpi r18,$04 ; check if we have a new network
brne rfwait ; go back to waiting if new network
dec r26 ; check if done
brne wait3 ; keep going if not done

backlog: ; store backlogged data

cpi r21,$0Oc ; check if in longout state
brsh sleepstate ; dont bother backlogging if longout
st y+,r6 ; load data to buffer if failed
st y+,r7
st y+,r3

st y+,r4
st y+,rO
st y+,rl
st y+,r2
st y+,r25
inc r21 ; increment no_ack counter
cpi yh,$03 ; check if counter has overflowed
brlo sleepstate ; skip if not
idi yh,$02 ; reset pointer if overflow
Idi yl,$O0 ; reset pointer if overflow

sleepstate: ; finish off and go to sleep

rcall forcetxoff ; go to tx_off state so you can sleep
sbi portb,portb4 ; pull slptr high to enter sleep mode
ldi r16,$07
out smcr,r16 ; set to power-save mode and enable sleep mode
ldi r22,$3c ; set up repeat timer to 60cycles
; turn watchdog timer off when going back to sleep
cli ; turn off interrupts while disabling watchdog timer
wdr ; reset wdt
in r16,mcusr ; get reset flag status
andi r16,$f7 ; mask off wdrf to 0
out mcusr,r16 ; turn off wdrf
ldi r16,$1e
sts wdtcsr,r16 ; enable writing of wdt
ldi r16,$06
sts wdtcsr,r16 ; turn off wdt, Is timer
sei ; turn interrupts back on

sleepstatel:
cpi r22,$01
brne sleepstate3
sbi portf,portfl ; turn on light sensor via pfl
sbi ddrf,ddfl ; set pf to output

sleepstate3:
sleep
nop
nop
nop
mov r25,r15 ; move last current button press to previous button press
clr r15 ; reset button state register
in r24,ping ; read button state
ser r16
eor r24,r16 ; flip state of buttons because they are currently pulled up
andi r24,$07 ; mask off the three buttons of interest
breq sleepstate2 ; do not turn on lightsensor if no buttons pressed
sbi portf,portfl ; turn on light sensor via pfl if button pressed
sbi ddrf,ddfl ; set pfl to output
sec ; set carry bit

buttonshift: ; convert to bitwise representation
rol r15 ; increment button press number
dec r24 ; check if done
brne buttonshift ; keep incrementing if not done
and r25,r15 ; check if button pressed last time
breq sleepstate2 ; do nothing if button was not pressed last time and this time
mov r16,r23 ; get set of buttons pressed in past minute
and rl6,r15 ; check if already sent that button press in past minute
brne sleepstate2 ; dont send data if already sent it

or r23,rI5 ; mask off button wait register
rjmp repeat ; take measurements and send them off - r25

sleepstate2:
dec r22
brne sleepstatel ; return to sleep if not yet 60s
clr r16
out smcr,r16 ; disable sleep mode
and r25,ri5 ; check if both last and current are the same
mov r23,r25 ; reset button wait register
rjmp repeat ; take measurements and send them off

txoff: ; send trx_off command to rf unit and wait till stable

ldi r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi ri6,$08 ; load second data byte - data trx_off bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checktxoff: ; check current state to see if in tx_off state

ldi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

k3 cpi r16,$08
brne checktxoff
ret ; return to previous duty

forcetxoff: ; send trxoff command to rf unit and wait till stable

Idi r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
Idi r16,$03 ; load second data byte - data forcetrxoff bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checkforcetxoff: ; check current state to see if in tx_off state

nop ; delay for a bit to make sure the device is off
nop
nop
nop
Idi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
ldi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high
cpi ri6,$08
brne forcetxoff ; redo if not off - only takes lus to turn off
;(changed due to lock up bug of getting stuck in check loop)
ret ; return to previous duty

pllon: ; send pll_on command to rf unit

ldi ri6,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$09 ; load second data byte - data pll_on bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checkpllon: ; check current state to see if in pllon state

Idi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sabi portb,portbO ; pull ss high
cpi r16,$09
brne checkpllon
ret ; return to previous duty

txonaret: ; send trx_aret_on command to rf unit and wait till stable

Idi r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$19 ; load second data byte - data trxareton bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checktxonaret: ; check current state to see if in tx_aret_on state

Idi r16,$81 ; load first data byte - read register trxstatus command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high
cpi r16,$19
brne checktxonaret
ret ; return to previous duty

rxonaack: ; send rx_aack_on command to rf unit and wait till stable

ldi rl6,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$16 ; load second data byte - data rx_aack_on bit
rcall spiwrite ; send byte
sabi portb,portbO ; pull ss high

checkrxonaack: ; check current state to see if in rx_aack_on state

idi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$16
brne checkrxonaack
ret ; return to previous duty

spiwrite: ; read and write data over spi

out spdr,r16 ; write transmitted byte to spi

wait: ; read spi register to check when done

in ri6,spsr
sbrs r16,spif
rjmp wait
in ri6,spdr ; write recieved byte to spi register
ret ; return to previous duty

wait2: ; wait timer (-12 cylces per value in r20)

nop
nop
nop
nop
nop
nop
nop
nop
dec r20
brne wait2
ret ; return to previous duty

joinrecieve: ; get new des_addr

N3 cpi r18,$04 ; check if waiting for joinack
.A1 brne done9 ; skip if not

idi r16,$20 load data byte - read buffer command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - frame length byte
cpi rl6,$Ob ; check if its a join frame length
brne donejoinfail ; finish if not
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcf(7:0)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcf(15:8)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - seq (used as command byte)
cpi r16,$06 ; check if joinpacket
brne donejoinfail ; finish if not
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save des_panid(7:0)
Idi r16,$00 ; load data byte - blank for reading
reall spiwrite ; send byte - do not save des_panid(15:8)
ldi r16,$00 ; load data byte - blank for reading
rcall spivrite ; send byte - do not save des_addr(7:0)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save des_addr(15:8)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - src_addr(7:0)
mov r11,r16
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - srcaddr(15:8)
mov rO1,r16
; dont bother with the rest of the data - it doesnt matter

;ldi r16,$00 ; load data byte - blank for reading
;rcall spiwrite ; send byte - do not save fcs(7:0)
;ldi r16,$00 ; load data byte - blank for reading
;rcall spiwrite ; send byte - do not save fcs(15:8)
;ldi r16,$00 ; load data byte - blank for reading
;rcall spiwrite ; send byte - lqi
sbi portb,portbO ; pull as high
rcall checkrxonaack ; make sure we are no longer in rx_busy
rcall pllon ; go to pllon state
rcall txonaret ; go to tx_on state
rcall transmitpacket ; send out data packet
Idi r18,$10 ; set state register to retry transmit
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; clear interrupt and return to previous duty

donejoinfail: ; finish and wait for next packet

abi portb,portbO ; pull as high
pop r16 ; get off stack
out sreg,rl6 ; return sreg
reti ; clear interrupt and return to previous duty

done9: ; rx bad packet

idi r18,$40 ; set rf state to done
pop ri6 ; get off stack
out sreg,rl6 ; return sreg
reti ; clear interrupt and return to previous duty

clearirq: ; clear irq register and irq line

in rl6,sreg ; get sreg
push r16 ; push areg on stack
ldi r16,$8f ; load first data byte - read register irqstatus command
cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checkrf: ; check rf unit state

ldi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$16 ; check if in rx_on
breq joinrecieve ; go to get data
cpi r16,$11 ; check if in busy_rx
breq joinrecieve ; go to get data
cpi rl6,$if ; check if in state transition
breq checkrf ; keep checking till in a new state
cpi r16,$12 ; check if in busy_tx state
breq checkrf ; keep checking till in a new state
;else check successful transmit before switching back to sleep
Idi r16,$82 ; load data byte - read trx_state to get trac_status
cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte
Idi r16,$00 ; load data byte - blank byte for reading
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high
andi r16,$eO ; mask off trac_status
cpi r16,$60 ; check if success or data_pending success
brlo success ; skip if success
cpi r18,$00 ; check if last transmission was a data packet
breq retry ; get new des_addr
cpi r18,$10 ; check if last transmission was a retry packet
breq retryfail ; backlog and end
cpi r18,$20 ; check if last transmission was a backlog packet
breq backlogfail ; backlog and end
Idi r18,$40 ; else set to shutdown
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; return from interrupt

retry: ; get new des_addr and retransmit

rcall transmitrequest
ldi r18,$02 ; set joinrequest state bit
pop r16 ; get off stack
out sreg,rl6 ; return sreg
reti ; clear interrupt and return to previous duty

backlogfail: ; reset backlog pointer

mov yl,r5 ; reset data pointer because data didnt go out

retryfail: ; backlog and end

3 Ildi r18,$80 ; set backlog flag
pop r16 ; get off stack
out sreg,rl6 ; return sreg
reti ; clear interrupt and return to previous duty

success: ; tx success

cpi r18,$01 ; check if last packet was beacon
breq txdata ; transmit data off
cpi r18,$00 ; check if last packet was data
breq checkback ; see if there is backlogged data
cpi r18,$02 ; check if last packet was join request
breq gotorx ; set to rx and wait for join ack
cpi r18,$20 ; check if last packet was backlog data
breq irqdone ; finish off
cpi r18,$10 ; check if last packet was retry
breq checkback ; check for backlogged data
rjmp done9 ; finish off if bad state

checkback: ; check for backlogged data

cpi yl,$00 ; check for backlogged data
breq irqdone ; finish if none
mov r5,yl ; store data pointer in case of failure
rcall transmitold ; transmit backlogged data
idi r18,$20 ; set state to backlog-aack
pop ri6 ; get off stack
out sreg,r16 ; return sreg
reti ; clear interrupt and return to previous duty

irqdone: ; finish interrupt and return

clr r21 ; reset no_ack register
idi r18,$40 ; set rf state to done
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; clear interrupt and return to previous duty

txdata: ; transmit a data packet

rcall transmitpacket ; send data
ldi r18,$00 ; set rf state to data sent
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; clear interrupt and return to previous duty

gotorx: ; recieve joinconfirm

rcall pllon ; go to pll_on state
rcall rxonaack ; go to rxonaack state
ldi r18,$04 ; set rf state to rx-waiting
pop r16 ; get off stack
out sreg,ri6 ; return sreg
reti ; return from interrupt

transmitbeacon: ; transmit a beacon frame

sbi portb,portb4 ; pull slp_tr high to begin transmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slp_tr low

Idi r16,$60 ; load data byte - write buffer command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi ri6, $Ob ; load data byte - frame length byte
rcall spiwrite ; send byte
idi ri6,$40 ; load data byte - fcf(7:0) - broadcast,no ack
rcall spiwrite ; send byte
Idi r16,$88 ; load data byte - fcf(15:8) - short address,pan_ids equal
rcall spiwrite ; send byte
idi r16,$00 ; load data byte - seq(7:0) - command(beacon)
rcall spiwrite ; send byte
Idi r16,low(pan_id) ; load data byte - pan_id(7:0)
rcall spiwrite ; send byte
ldi r16,high(pan_id) ; load data byte - pan_id(15:8)
rcall spiwrite ; send byte
Idi ri6,$ff ; load data byte - destination address (7:0) - broadcast
rcall spiwrite ; send byte
ldi rl6,$ff ; load data byte - destination address (15:0) - broadcast
rcall spiwrite ; send byte
ldi r16,low(src_addr) ; load data byte - source address (7:0)
rcall spiwrite ; send byte
Idi ri6,high(src_addr) ; load data byte - source address (15:8)
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
ret ; return to previous duty

wakeup: ; clear interrupts and return to previous task
nop
nop
nop
reti

;talk to shitl5, only works for cpu clock <=2MHZ
;data pin can never be output high - leave pullup off
;needs external pullup resistor for proper operation
wakeupshit15: ; clear interrupts and return
nop
nop
nop
cbi eimsk,4 ; disable int4 as pe4 will still be low when returning
nop
reti

shitilsetup: ; set the device to low res mode

rcall shitl5reset ; reset the device in case its fuxxored
rcall startshitlS ; send start sequence

;data sequence - register write command $06
sbi porte,porte0 ; clock high - data bit one
cbi porte,porte0 ; clock low
sbi porte,porte0 ; clock high - data bit two
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit three
cbi porte,porteO ; clock low
sbi porte,porte0 ; clock high - data bit four
cbi porte,porteO ; clock low
sbi porte,porte0 ; clock high - data bit five
cbi porte,porteO ; clock low
cbi ddre,dde4 ; data high

h sbi porte,porteO ; clock high - data bit six
cbi porte,porte0 ; clock low
sbi porte,porte0 ; clock high - data bit seven
cbi porte,porte0 ; clock low
sbi ddre,dde4 ; data low
sbi porte,porte0 ; clock high - data bit eight
cbi porte,porteO ; clock low

rcall shitl5ackO ; wait for ack from shit15

;data sequence - register write data $01
sbi ddre,dde4 ; data low
sbi porte,porteO ; clock high - data bit one
cbi porte,porteO ; clock low
sbi porte,porte0 ; clock high - data bit two
cbi porte,porte0 ; clock low
sbi porte,porte0 ; clock high - data bit three
cbi porte,porte0 ; clock low
sbi porte,porte0 ; clock high - data bit four
cbi porte,porteO ; clock low
sbi porte,porte0 ; clock high - data bit five
cbi porte,porteO clock low
sbi porte,porteO ; clock high - data bit six
cbi porte,porte0 ; clock low
sbi porte,porte0 ; clock high - data bit seven
cbi porte,porteO ; clock low
cbi ddre,dde4 ; data high
sbi porte,porte0 ; clock high - data bit eight
cbi porte,porte0 ; clock low

rcall shitl5ackO ; wait for ack from shit15
ret ;done setting up the device

shitl5temp: ; read temperature data from shit15
;send read temp commmand
rcall startshiti5 ; send start sequence

;data sequence - read temperature command $03
sbi porte,porteO ; clock high - data bit one
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit two
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit three
cbi porte,porte0 ; clock low
sbi porte,porteO ; clock high - data bit four
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit five
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit six
cbi porte,porteO ; clock low
cbi ddre,dde4 ; data high
sbi porte,porteO ; clock high - data bit seven
cbi porte,porte0 ; clock low
sbi porte,porteO ; clock high - data bit eight
cbi porte,porteO ; clock low
;sbi ddre,dde4 ; data low - if last databyte is 1 - leave it high for ack

rcall shitl5ackO ; wait for ack from shitl5

sbi eimsk,4 ; enable int4
ldi r16,$07
out smcr,r16 ; set to power-save mode and enable sleep mode
nop
nop
nop
sleep ; sleep while waiting for low level on pe4
nop
nop
nop
clr r16
out smcr,r16 ; disable sleep mode

rcall shitl5read ; read out temperature data from shitS5 (msb)
rcall shitl5ack3 ; acknowledge reciept of bit
mov rO,r16 ; move msb to another register
rcall shitl5read ; read out temperature data from shit15 (lsb)
rcall shiti5ack4 ; end transmission ack
mov rl,r16 ; move lab to another register
ret ; continue with previous task

shitl5humidity: ; read humidity data from shitl5
;send read humidity command
rcall startshit15 ; send start sequence

;data sequence -
sbi porte,porteO
cbi porte,porteO
sbi porte,porteO
cbi porte,porteO
sbi porte,porteO
cbi porte,porte0
sbi porte,porte0
cbi porte,porteO

read humidity command $05
; clock high - data bit one
; clock low
; clock high - data bit two
; clock low
; clock high - data bit three
; clock low
; clock high - data bit four
clock low

sbi porte,porteO ; clock high - data bit five
cbi porte,porteO ; clock low
cbi ddre,dde4 ; data high
sbi porte,porteO ; clock high - data bit six
cbi porte,porteO ; clock low
sbi ddre,dde4 ; data low
sbi porte,porteO ; clock high - data bit seven
cbi porte,porteO ; clock low
cbi ddre,dde4 ; data high
sbi porte,porteO ; clock high - data bit eight
cbi porte,porteO ; clock low
;sbi ddre,dde4 ; data low - if last databyte is 1 -

rcall shitl5ackO ; wait for acknowledge from shiti5

sbi
ldi
out

nop
nop
nop
slee

nop
nop
nop
clr

out

rcal
IN rcal

rcal

leave it high for ack

eimsk,4 ; enable int4
r16,$07
smcr,ri6 ; set to power-save mode and enable sleep mode

p ; sleep while waiting for low level on pe4

r16
smcr,r16 ; disable sleep mode

1 shitl5read ; read out humidity data from shit15 (msb)
1 shitl5ack3 ; acknowledge reciept of bit
1 shitl5read ; read out humidity data from shit15 (isb)

rcall shitl5ack4 ; end transmission ack
mov r2,r16 ; move isb to another register
ret ; return with previous task

shitl5ack4: ; end transmission ack

sbi porte,porteO ; clock high - ack
cbi porte,porteO ; clock low
ret ; return to previous task

shitl5ack3: ; data recipet acknowledge

sbi ddre,dde4 ; pull data low
sbi porte,porte0 ; clock high - ack
cbi porte,porteO ; clock low
cbi ddre,dde4 ; release data line
ret ; return to previous task

shitl5read: ; read data from shiti5

clr r16 ; clear the register where incoming data will be written
sbi porte,porteO ; clock high - data bit one
sbic pine,pine4 ; check if data is low
sbr r16,$80 ; write data bit one to register
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit two
sbic pine,pine4 ; check if data is low
sbr r16,$40 ; write data bit two to register
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit three

sbic pine,pine4 ; check if data is low
sbr r16,$20 ; write data bit three to register
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit four
sbic pine,pine4 ; check if data is low
sbr r16,$10 ; write data bit four to register
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit five
sbic pine,pine4 ; check if data is low
sbr r16,$08 ; write data bit five to register
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit six
sbic pine,pine4 ; check if data is low
sbr r16,$04 ; write data bit six to register
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit seven
sbic pine,pine4 ; check if data is low
sbr r16,$02 ; write data bit seven to register
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high - data bit eight
sbic pine,pine4 ; check if data is low
sbr r16,$01 ; write data bit eight to register
cbi porte,porteO ; clock low
ret ; return to previous activity

startshitl5:; start sequence

cbi ddre,dde4 ; set data high
cbi porte,porteO ; make sure clock is low
sbi porte,porteO ; pull clock high
sbi ddre,dde4 ; set data low
cbi porte,porteO ; clock low
sbi porte,porteO ; clock high
cbi ddre,dde4 ; data high
cbi porte,porteO ; clock low
sbi ddre,dde4 ; data low
ret ; return to previous task

shitl5ackO: ; ack sequence for sending data

cbi ddre,dde4 ; release data line

shitl5ack2: ; check that data line is low

sbic pine,pine4
rjmp shiti5ack2
sbi porte,porteO ; clock high - ack
cbi porte,porteO ; clock low

shitl5ackl: ; check that line has been released

sbis pine,pine4 ; check that line has been released
rjmp shiti5ackl
ret ; return to previous task

shiti5reset: ; reset sequence if it gets out of phase
;status register preserved
;must be followed by data start sequence
cbi ddre,dde4 ; data high
sbi porte,porteO ; clock high
cbi porte,porteO ; clock low

sbi porte,porteO ; clock high

cbi porte,porteO ; clock low

sbi porte,porteO ; clock high

cbi porte,porteO ; clock low

sbi porte,porteO ; clock high

cbi porte,porte0 ; clock low

sbi porte,porteO ; clock high

cbi porte,porte0 ; clock low

sbi porte,porteO ; clock high

cbi porte,porte0 ; clock low

sbi porte,porteO ; clock high

cbi porte,porte0 ; clock low

sbi porte,porte0 ; clock high

cbi porte,porteO ; clock low

sbi porte,porteO ; clock high
cbi porte,porteO ; clock low

sbi porte,porteO ; clock high

cbi porte,porteO ; clock low

ret ; return to previous task

transmitrequest: ; transmit a request frame

sbi portb,portb4 ; pull slp_tr high to begin transmit

nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slptr low

idi r16,$60 ; load data byte - write buffer command

cbi portb,portb0 ; pull as low

rcall spiwrite ; send byte

Q0 Idi rl6,$Ob ; load data byte - frame length byte

rcall spiwrite ; send byte

ldi r16$.40 ; load data byte - fcf(7:0) - broadcast,no ack

rcall spiwrite ; send byte

ldi r16,$88 ; load data byte - fcf(15:8) - short address,panids equal

rcall spiwrite ; send byte
ldi r16,$01 ; load data byte - seq(7:0) - command(request)

rcall spiwrite ; send byte

Idi r16,low(pan_id) ; load data byte - pan_id(7:0)

rcall spiwrite ; send byte
ldi r16,high(panid) ; load data byte - pan_id(15:8)

rcall spiwrite ; send byte

Idi r16,$ff ; load data byte - destination address (7:0) - broadcast

rcall spiwrite ; send byte

ldi r16,$ff ; load data byte - destination address (15:0) - broadcast

rcall spiwrite ; send byte

ldi rl6,low(srcaddr) ; load data byte - source address (7:0)

rcall spiwrite ; send byte

Idi r16,high(srcaddr) ; load data byte - source address (15:8)

rcall spiwrite ; send byte

sbi portb,portbO ; pull ss high

ret ; return to previous duty

transmitold: ; transmit backlogged data

sbi portb,portb4 ; pull slp_tr high to begin transmit

nop ; delay to make sure the pin is high long enough

cbi portb,portb4 ; pull slptr low

Idi ri6,$60 ; load data byte - write buffer command

cbi portb,portbO ; pull as low

rcall spiwrite ; send byte

mov r17,yl ; load data byte - frame length byte
ldi rl6,$Ob ; increase frame length for header and crc

add r16,r17 ; increase frame length

rcall spiwrite ; send byte
ldi r16,$61 ; load data byte - fcf(data)
rcall spiwrite ; send byte
ldi r16,$88 ; load data byte - fcf

rcall spiwrite ; send byte
ldi r16,$04 ; load data byte - seq(backlogged data command)

rcall spiwrite ; send byte

ldi r16,low(pan_id) ; load data byte - des_panid
rcall spiwrite ; send byte

idi r16,high(pan_id) ; load data byte - des_panid

rcall spiwrite ; send byte

mov r16,rll ; load data byte - desaddr
rcall spiwrite ; send byte

mov r16,r10 ; load data byte - des_addr

rcall spiwrite ; send byte

Idi r16,low(srcaddr) ; load data byte - srcaddr

rcall spiwrite ; send byte

Idi r16,high(src_addr) ; load data byte - src_addr

rcall spiwrite ; send byte

dataload: ; load data to rf unit

Id r16,-y ; load data byte - data byte

rcall spivrite ; send byte

cpi yl,$00 ; check if last byte

brne dataload ; branch if not last byte

sbi portb,portb0 ; pull as high

ret ; return to previous duty

transmitpacket: ; transmit a packet

sbi portb,portb4 ; pull slptr high to begin transmit

nop ; delay to make sure the pin is high long enough

cbi portb.,portb4 ; pull slp_tr low

ldi r16,$60 ; load data byte - write buffer command

cbi portb,portbO ; pull ss low

rcall spiwrite ; send byte

ldi r16,$13 ; load frame length byte - total bytes excluding this one, +2

rcall spiwrite ; send byte

ldi r16,$61 ; load fcf(7:0) byte - $61 for data packet

rcall spivrite ; send byte

ldi r16,$88 ; load fcf(15:8) byte - $88 for data packet

rcall spiwrite ; send byte

ldi r16,$02 ; load sequence byte - command(data)

rcall spiwrite ; send byte

ldi rl6,low(pan_id) ; load destination panid(7:0) byte

rcall spiwrite ; send byte

ldi rl6,high(panid) ; load destination panid(15:8) byte

rcall spiwrite ; send byte

mov r16,r11 ; load destination address(7:0) byte

rcall spiwrite ; send byte

mov r16,rO ; load destination address(15:8) byte

rcall spiwrite ; send byte

ldi r16,low(src_addr) ; load source address(7:0) byte

rcall spiwrite ; send byte

ldi r16,high(srcaddr) ; load source address(15:8) byte

rcall spiwrite ; send byte
mov r16,r25 ; load data byte - button press
rcall spiwrite ; send byte
mov r16,r2 ; load data byte - humidity
rcall spiwrite ; send byte
mov r16,rl ; load data byte - temperatureO
reall spiwrite ; send byte
mov r16,rO ; load data byte - temperaturel
rcall spiwrite ; send byte
mov rl6,r4 ; load data byte - accelerometer Isb
rcall spiwrite ; send byte

mov r16,r3 ; load data byte - accelerometer msb
rcall spiwrite ; send byte
mov r16,r7 ; load data byte - light Isb
rcall spiwrite ; send byte
mov r16,r6 ; load data byte - light msb
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
ret ; return to previous duty

Appendix G

Control Node Firmware: Damper

Motor

221

.include "m1281def.inc"

; increment of 4 for src_addr
; csma_seed = 8 x src_addr
.equ src_addr = $aab8 ; place unique source address here
.equ csma_seed = low(src_addr)*$08 ; random backoff exponent - must be unique,<$0800
.equ home_addr = $aabi ; local node des_addr
.equ pan_id = $abcd ; system panid
.equ retries = $38 ; high nibble = frame retries,low nibble = 2x(csma retries)
.equ channel = $36 ; tx/rx channel, $2b -> $3a valid
.equ stepsize = $08 ; control stepsize
.equ hysteresis = $01 ; hysteresis on control setpoint
.equ delay = $02 ; motor turn on delay msb (32.768ms per bit)
.equ motor_time = $05 ; number of 128us intervals in motor on-time increments ($05 = 164ms)

.org 0
rjmp start
.org int4addr
rjmp wakeupshit15
.org int5addr
rjmp clearirq
.org OVF2addr
rjmp wakeup
.org ADCCaddr
rjmp wakeupadc
.org OC5Aaddr
rjmp timer5int

lightsensor = pf0(adc0)
shit15 data = pe4(int4)
shitiS clock = peO
wind sensor = pd6(tl)
current threshold = pe7(int7)
direction = pgi
brake = pgO
pwm = pb7(ocOa)
rO frame length temporary register - write
rl frame length temporary register - read
r2 adc msb temporary register
r3 shitl5 msb temporary register
r4 shiti5 isb temporary register
r5 adc Isb temporary register
r6 control setpoint bottom
r7 control setpoin top
r8 wind sensor lsb
r9 wind sensor msb
riO desaddr msb
rll des_addr isb
r12 shiti5 humidity temporary register
r13 edlevel buffer
r14 motor state register for transmit
r15
r16 temporary swap register for interrupts
r17 temporary swap register for main
ri8 rf state register
r19 motor state register
r20 wait loop register
r21 wait loop register
r22 motor timer advance register
r23

; r24 temporary swap register for main
; r25 wakeup counter
xregister is recieve buffer (r27(xh),r26(xl))
yregister is buffer start (r29(yh),r28(yl))

; zregister is buffer end (r31(zh),r30(zl))
; data buffer set at 1k
; tregister is shitl5 humidity/temperature irq differentiator
; joinrequest buffer is 256byte
recieve buffer is 256byte

start: ; configure microcontroller registers
; start up time 6CK + 65ms
set to 8MHz by internal rc oscillator

;turn off watchdog timer in case of watchdog reset
wdr ; reset wdt
ldi r16,high(RAMEND)
out SPH,r16 ; Set Stack Pointer to top of RAM
ldi r16,low(RAMEND)
out SPL,rlG6
ldi r16,$17
out ddrb,r16 ; set ss,sclk,mosi,slp_tr as output
Idi r16,$68
out portb,r16 ; enable pullup for miso and pb5,pb6 for buttons
ldi r16,$01
out spsr,r16 ; set up spi - mode0, ck/2
idi r16,$50
out spcr,r16 ; set up spi - modeO, ck/2 (4MHz)
sbi portb,portbO ; set as pin high
cbi portb,portb4 ; set slptr low
sbi porta,porta7 ; pull reset high on rf unit
sbi ddra,dda7 ; set reset pin as output
Idi r16,$0c
sts eicrb,rl6 ; configure int5 for rising edge
Idi r16,$20
out eimsk,r16 ; enable int5
Idi rl6,high(home_addr) ; set up des_addr to something in system for start
mov r10,r16
ldi r16,low(home_addr) ; set up des_addr
mov rll,r16
clr zl ; set buffer end to beginning of sram
clr yl ; set buffer start to beginning of sram
ldi zh,$02 ; set buffer end to beginning of sram
ldi yh,$02 ; set buffer start to beginning of sram
idi xh,$05 ; set recieve buffer to middle of sram
clr xl ; set recieve buffer to middle of sram
Idi r23,$ff ; initialize receieve buffer count
Idi r19,$80 ; set motor state register to damper-motor
clr r18 ; reset rf state register
clr r14 ; reset tx motor state register
ldi r25,$1e ; set wakeup counter to 60s
ldi r16,$3f
out portd,r16 ; turn on pullups for unused pins on portd since they might have long cables attached

;turn off watchdog timer in case of watchdog reset
wdr ; reset wdt
idi r16,$00 ; clear all resets
out mcusr,rli ; turn off wdrf
Idi r16,$1e
sts wdtcsr,r16 ; enable writing of wdt
ldi r16,$06
sts wdtcsr,rl6 ; turn off wdt, is timer

h3
h3
t~3

;wait for rf unit to stabilize
Idi r21,$04 ; load the wait timer to 3 cycles (x3084/ck)
rcall waitloopl ; wait -(9252/8MHz = 1.2ms) for rf unit to stabilize

cbi porta,porta7 ; pull reset low to reset rf unit if watchdog reset
nop ; delay so reset has time to activate
nop
nop
nop
nop
nop
nop
nop
nop
nop
sbi porta,porta7 ; pull reset high to start

;wait for rf unit to stabilize
Idi r21,$04 ; load the wait timer to 3 cycles (x3084/ck)
rcall waitloopl ; wait ~(9252/8MHz - 1.2ms) for rf unit to stabilize

;setup analog inputs
ldi r16,$01
sts didrO,r16 ; turn off input stage for adcO pin
Idi r16,$cO
sts admux,r16 ; use internal 2.56v as voltage reference,sample adcO

0 ;setup motor control pins as output (no pwm at the moment)
cbi portg,portgl ; make sure pins are off
cbi portb,portb7 ; turn pwm off
sbi portg,portgO ; turn brake on
sbi ddrg,ddgl ; direction
sbi ddrg,ddgO ; brake
sbi ddrb,ddb7 ; pwm (on/off for now)
sbi portg,portgO ; turn on brake pin to shut off transistors

;setup tl as windspeed counter
ldi r16,$06
sts tccrlb,r16 ; set ti to external clock on tO falling edge

;setup t2 as rtc at 4s interval wakeup
ldi r16,$20
sts assr,r16 ; set t2 to assynchronous mode
Idi r16,$06
sts tccr2b,r16 ; set t2 prescaler to /256 - 2s wakeup period

;make sure t2 is done rewriting itself
checkassr:

Ids r16,assr
andi r16,$1f ; check assr(4:0) clear
brne checkassr

Idi r16,$07
out tifr2,rl6 ; clear all pending interrupts
ldi r16,$01
sts timsk2,r16 ; enable t2 overflow interrupt

;setup shit15 - peO is data, pe4 is clock

sbi ddre,ddeO ; set clock as output

cbi porte,porte4 ; make sure pullups are off for data
rcall shiti5setup

;configure rf unit registers

;go to trx_off state
rcall txoff ; go to trx_off state on rf unit

;setup clkm

Idi r16,$c3 ; load first data byte - write trxctrl_0 register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
clr r16 ; load second data byte - turn off clkm
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup short_addr_0O
ldi rl6,$eO ; load first data byte - write short_addrO register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
ldi r16,low(src_addr) ; load second data byte - src_addr lsb
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;setup shortaddr_l
Idi r16,$el ; load first data byte - write short_addr_l register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
Idi r16,high(srcaddr) ; load second data byte - srcaddr msb
rcall spivrite ; send data
sbi portb,portbO ; pull ss high

;setup panid_0O
ldi r16,$e2 ; load first data byte - write pan_id_0 register
chi portb,portbO ; pull as low
rcall spiwrite ; send data
ldi r16,low(pan_id) ; load second data byte - pan_id Isb
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup pan.idl
Idi r16,$e3 ; load first data byte
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
ldi r16,high(pan_id) ; load second
rcall spiwrite ; send data
abi portb,portbO ; pull ss high

- write pan_id_l register

data byte - pan_id msb

;setup phy_ccca - set channel id
Idi r16,$c8 ; load byte - write phy_cc_ca register
chi portb,portbO ; pull ss low
rcall spiwrite ; send data
ldi r16,channel ; load data byte -
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;setup phytx_pwr - turn crc on
ldi r16,$cS ; load byte - write phy_txpwr register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data

Idi r16,$80 ; load data byte - autocrc=on,pwr=+3dbm
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;setup xah_ctrl - set frame and csma retries
Idi rl6,$ec ; load byte - write xahctrl register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
Idi ri6,retries ; load data byte - frame and csma retries
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup csma_seed_j
ldi r16,$ee ; load byte - write csma_seed_i register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
ldi r16,high(csma_seed) ; load data byte - minbe=O,aack_set=O,i_amcoord=O,csma(10:8)
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup csmaseed_0
Idi r16,$ed ; load first data byte - write csma_seed_i register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
Idi r16,low(csma_seed) ; load data byte - csma(7:0)
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;enable irqs
Z Idi ri6,$ce ; load first data byte - write register irqmask command

cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$08 ; load second data byte - trx_end only
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

;clear pending irqs on rf unit
Idi r16,$8f ; load first data byte - read register irqstatus command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte and clear pending irqs
sbi portb,portbO ; pull as high

;clear pending irqs on micro
idi r16,$ff
out eifr,r16 ; clear any interrupt flags that are set

;enable interrupts on micro
sei ; turn on interrupts

rcall rxonaack ; put the rf unit in rxaackon state

repeat: ; handle backlogged data

cpse zh,yh ; check if buffer has data
rjmp handle ; go to data handler
cpse zl,yl ; check if buffer has data
rjmp handle ; go to data handler
in ri7,pinb ; get button press data
andi r17,$60 ; mask off button bits
ldi r24,$60 ; invert button bits
eor rl7,r24 ; invert button bits

mov r24,rl9 ; move current motor state to temp register
andi r24,$60 ; mask off button state
cp r24,r17 ; check if button state has changed
breq repeat ; continue checking if no change
andi ri9,$9b ; turn off control bit and clear button state in motor state register
ori r19,$08 ; set manual bit in motor state register
or r19,r17 ; set current button state in motor state register
or r14,r17 ; store button presses to tx motor state register
cpi r17,$60 ; check if both buttons are pressed
breq buttonstop
cpi r17,$40 ; check if open button is pressed
breq openbutton
cpi r17,$20 ; check if close button is pressed
breq closebutton
andi r19,$97 ; else shut off manual bit and button bits in motor state register

buttonstop: ; turn off motor via buttonpress

ldi r17,$08 ; turn off timer
sts tccr5b,r17 ; turn off timer
Idi r17,$00
sts timsk5,r17 ; disable t5 interrupts
cbi portb,portb7 ; stop motor
sbi portg,portgO ; turn on brake
rjmp repeat ; return to state checking

openbutton: ; open motor via buttonpress

ldi r17,$08 ; turn off timer
sts tccrSb,r17 ; turn off timer
Idi r17,$00
sts timskS,r17 ; disable t5 interrupts
cbi portg,portgO ; turn brake off
sbi portg,portgl ; set direction to open
sbi portb,portb7 ; turn on motor
ori r19,$01 ; set direction open
rjmp repeat ; return to state checking

closebutton: ; close motor via buttonpress

Idi r17,$08 ; turn off timer
sts tccr5b,rl7 ; turn off timer
ldi r17,$00
sts timsk5,r17 ; disable t5 interrupts
cbi portg,portgO ; turn brake off
cbi portg,portgl ; set direction to closed
sbi portb,portb7 ; turn on motor
andi ri9,$fe ; set direction closed
rjmp repeat ; return to state checking

handle: ; respond to recieved data packets

Id rl7,z+ ; get data frame length from buffer
mov ri,r17 ; move frame length to counter
cpi r17,$08 ; check if packet is the right length
brne resetbuffer ; reset buffer if not
ld r17,z+ ; get header byte from buffer
dec rl
cpi r17,$08 ; check if right packet type
brne resetbuffer
ld r17,z+ ; isb src_addr - ignore

dec rl
ld rl7,z+ msb srcaddr - ignore
dec ri
ld r17,z+ ; get command byte
dec rl
cpi r17,$08 ; check if motor control command
breq motor ; control motor
rjmp resetbuffer ; else finish off

motor: ; control motor

Id r17,z+ ; get motor command
dec rl
sbrc r19,3 ; do not modify if under manual control
rjmp resetbuffer ; commands past this point are overriden by manual control
cpi r17,$08 ; check if damper full open
breq open
cpi r17,$06 ; check if damper full close
breq close
cpi rl7,$Oa ; check if damper stop
breq stop
cpi r17,$0c ; check if damper set by speed
brne resetbuffer ; else end
ld r17,z+ ; get control setpoint
dec rl
cpi rl7,(hysteresis + $01) ; check if setpoint is too low
brlo setpointclose ; completely shut
cpi rlT,($ff - hysteresis) ; check if setpoint is too high
brsh setpointopen ; completely open

L' subi r17,hysteresis ; put hysterisis in
mov r6,r17 ; move setpoint to control bottom
subi r17,($00 - 2*(hysteresis)) ; put hysterisis in
mov r7,rl7 ; move setpoint to control top
ori r19,$04 ; turn on control bit in motor state register
ldi r17,$08 ; turn off timer
sts tccr5b,r17 ; turn off timer
Idi r17,$00
sts timsk5,r17 ; disable t5 interrupts
cbi portb,portb7 ; stop motor
sbi portg,portgO ; turn on brake
rjmp resetbuffer

resetbuffer: ; reset buffer pointer

ldi ri7,$00
add zl,rl ; add remaining packet count
adc zh,rl7 ; increment zh if zl overflow
sbrc zh,2 ; check if buffer at 1k
ldi zh,$02 ; reset buffer pointer to bottom of buffer
rjmp repeat ; get next packet from buffer

open: ; open damper command

andi rl9,$fb ; turn off control bit
Id rl7,z+ ; get step size packet
dec rl
rcall motortime ; start motor timer
cbi portg,portgO ; turn brake off
sbi portg,portgl ; set direction to open
sbi portb,portb7 ; turn on motor
ori r19,$01 ; set direction open

rjmp resetbuffer

stop: ; stop motor

Idi r17,$08 ; turn off timer
sts tccr5b,r17 ; turn off timer
Idi r17,$00
sts timsk5,r17 ; disable t5 interrupts
andi rl9,$fb ; turn off control bit
cbi portb,portb7 ; stop motor
sbi portg,portgO ; turn on brake
rjmp resetbuffer

close: ; close damper command

andi rl9,$fa ; turn off control bit and set direction to closed
ld ri7,z+ ; get step size packet
dec rl
rcall motortime ; start motor timer
cbi portg,portgO ; turn brake off
cbi portg,portgl ; set direction to closed
sbi portb,portb7 ; turn on motor
rjmp resetbuffer

setpointclose: ; go to full closed because setpoint is too low for control

andi ri9,$fa ; turn off control bit and set direction closed
Idi r17,$ff
rcall motortime
cbi portg,portgO ; turn brake off
cbi portg,portgl ; set direction to closed
sbi portb,portb7 ; turn on motor
rjmp resetbuffer

setpointopen: ; go to full open because setpoint is too high for control

andi rl9,$fb ; turn off control bit
ldi r17,$ff
rcall motortime
cbi portg,portgO ; turn brake off
sbi portg,portgl ; set direction to open
sbi portb,portb7 ; turn on motor
ori r19,$01 ; set direction open
rjmp resetbuffer

motortime: ; have motor on for a certain amount of time

mov r22,r17 ; move motortime to counter
ldi r17,(motor_time)
sts ocr5ah,rl7 ; set counter top to packet time
ldi r17,$00
sts ocr5al,rl7 ; set counter top to packet time
sts tcnt5h,r17 ; set counter to zero
sts tcntSl,rl7 ; set counter to zero
ldi ri7,$2f
out tifr5,rl7 ; clear all t5 interrupt flags
Idi r17,$02
sts timsk5,r17 ; turn on t5 interrupt
Idi r17,$Od
sts tccr5b,rl7 ; turn on counter, set to 128us period
ret

timer5int: ; turn off motor

in r16,sreg ; get sreg
push r16 ; push sreg on stack
dec r22 ; decrement 3rd byte counter
brne timer5intdone ; dont do anything if not done
cbi portb,portb7 ; stop motor
sbi portg,portgO ; turn on brake
idi r16,$08 ; turn off timer
sts tccr5b,rl6 ; turn off timer
idi r16,$00
sts timsk5,rl6 ; disable t5 interrupts

timer5intdone: ; finish off

pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; return from interrupt

txoff: ; send trx_off command to rf unit and wait till stable

ldi ri6,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$08 ; load second data byte - data trx_off bit
rcall spiwrite ; send byte
sbi portb,portb0 ; pull ss high

checktxoff: ; check current state to see if in tx_off state

ldi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$08
brne checktxoff
ret ; return to previous duty

pllon: ; send pllon command to rf unit

ldi r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
idi r16,$09 ; load second data byte - data pllon bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checkpllon: ; check current state to see if in pll_on state

idi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$09
brne checkpllon
ret ; return to previous duty

rxonaack: ; send rxaack_on command to rf unit and wait till stable

ldi r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
idi r16,$16 ; load second data byte - data rx_aack_on bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high

checkrxonaack: ; check current state to see if in rx_aack_on state

Idi r16,$81 ; load first data byte - read register trxstatus command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$16
brne checkrxonaack
ret ; return to previous duty

txonaret: ; send trxareton command to rf unit and wait till stable

Idi rl6,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$19 ; load second data byte - data trx_aret_on bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checktxonaret: ; check current state to see if in tx_aret_on state

Idi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$19
brne checktxonaret
ret ; return to previous duty

joinrecieve: ; get new desaddr

cpi r18,$04 ; check if waiting for joinack
brne rxrequest ; dont accpet joinack if not waiting for joinack
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save despanid(7:0)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save despanid(15:8)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save desaddr(7:0)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save desaddr(15:8)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - src_addr(7:0)
mov rll,ri6
Idi ri6,$00 ; load data byte
rcall spiwrite ; send byte -
mov rO,r16

- blank for reading
src_addr(15:8)

;dont bother with the rest of the data - it doesnt matter
;ldi r16,$00 ; load data byte - blank for reading
;rcall spiwrite ; send byte - do not save fcs(7:0)
;ldi r16,$00 ; load data byte - blank for reading
;rcall spiwrite ; send byte - do not save fcs(15:8)
;ldi r16,$00 ; load data byte - blank for reading
;rcall spiwrite ; send byte - lqi
sbi portb,portbO ; pull as high
sbiw yh:yl,$02 ; reset data buffer to begining of join request
ldi r18,$10 ; set state register to retry transmit
rcall transmit ; set rf unit to tx_onaret state
rcall transmitpacket ; transmit data
ret ; done

rxreadinterrupt: ; empty rx buffer while in interrupt

;ed_level is taken first because it is only valid for 224us after interrupt fires
ldi r16,$87 ; load data byte - read ed-level
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
idi r16,$00 ; load data byte - blank byte for reading
rcall spiwrite ; send byte
mov r13,r16 ; move ed_level to temporary buffer
sbi portb,portbO ; pull as high

;get data from recieve buffer
idi r16,$20 ; load data byte - read buffer command
chi portb,portb0 ; pull as low
rcall spiwrite ; send byte

ND ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - frame length byte
subi r16,$06 ; decrease frame length for bits to be removed
at y+,r16 ; move frame length to buffer
subi r16,$03 ; decrease frame length for buffer fitting
mov rO,r16 ; move frame length to temporary register
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcf(7:0)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcf(15:8)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - seq (used as command byte)
at y+,r16
cpi r16,$06 ; check if command byte is $06 (join acknowledge)
breq joinrecieve ; get new homeaddr if $06
cpi r16,$08 ; check if data to tethered node
breq notrequestl ; load data to buffer, else discard packet

rxrequest: ; finish off

sbi portb,portbO ; pull as high
sbiw yh:yl,$02 ; reset data buffer to begining of join request
ret ; done

notrequestl: ; continue with data loading

Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save des_panid(7:0)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save des_panid(15:8)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save des_addr(7:0)

idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save des_addr(15:8)

getdatarfl: ; keep loading data till frame compelete

ldi r16,$00 ; load data byte - blank for reading
rcall spiurite ; send byte
st y+,r16 ; move byte to buffer
dec rO ; decrement frame length byte
brne getdatarfl ; keep decrementing until done
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(7:0)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(15:8)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - Iqi
sbi portb,portbO ; pull as high
st y+,r16 ; move lqi to buffer
st y+,r13 ; move ed_level to buffer
sbrc yh,2 ; check if buffer at Ik
ldi yh,$02 ; reset buffer pointer to bottom of buffer
ret ; done writing data

transmit: ; set rf unit to tx_on_aret state

;check to see if not in rx_busy state
ldi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
ldi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high
cpi r16,$11 ; check if in busy_rx
breq transmit ; keep checking till in a new state
cpi r16,$1f ; check if in state transition
breq transmit ; keep checking till in a new state
cpi r16,$12 ; check if in busy_tx state
breq transmit ; keep checking till in a new state
rcall pllon ; go to pll on state
;check if there is data pending in rx buffer
ldi r16,$8f ; load first data byte - read register irqstatus command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
ldi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high
sbrc r16,3 ; check if trx_end interrupt flag is set
rcall rxreadinterrupt ; empty rx buffer
rcall txonaret ; put the rf unit in tx_aret_on state
ret ; return to previous duty

waitloopl: ; wait timer (-3084 cycles per value in r21)

ser r20
rcall wait2
nop
nop
nop
nop
nop
nop

nop
nop
dec r21
brne waitloopi
ret ; return to previous duty

spiwrite: ; read and write data over spi

out spdr,r16 ; write transmitted byte to spi

wait: ; read spi register to check when done

in ri6,spsr
sbrs r16,spif
rjmp wait
in r16,spdr ; write recieved byte to spi register
ret ; return to previous duty

wait2: ; wait timer ('12 cylces per value in r20)

nop
nop
nop
nop
nop
nop
nop
nop
dec r20

Y30 brne wait2
LND ret ; return to previous duty

gotorx: ; return to rx_on_aack state

;check successful transmit before switching back to rx
Idi r16,$82 ; load data byte - read trx_state to get trac_status
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$00 ; load data byte - blank byte for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high
andi r16,$eO ; mask off trac_status
cpi r16,$60 ; check if success or datapending success
brlo gotorxl ; skip if success
cpi r18,$01 ; check if this is the first failure
brne gotorx3 ; if not - finish off
rcall transmitrequest ; get new des_addr and retransmit
Idi r18,$02 ; set joinrequest state bit
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; clear interrupt and return to previous duty

gotorxi: ; turn on rx_on_aack state

rcall pllon ; go to pll_on state
rcall rxonaack ; go to rxon_aack state
cpi r18,$02 ; check if last state was a joinrequest
brne gotorx2 ; finish off if not waiting for joinrequest ack
Idi r18,$04 ; set rf state to joinrequest ack waiting
;turn off watchdog timer
wdr ; reset wdt

in rl6,mcusr ; get reset flag status
andi rl6,$f7 ; mask off wdrf to 0
out mcusr,r16 ; turn off wdrf
idi rl6,$1e
sts wdtcsr,r16 ; enable writing of wdt
Idi r16,$06
sts wdtcsr,r16 ; turn off wdt, is timer
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; return to previous task

gotorx3: ; set to rx_an_aack state

rcall pllon ; go to pll_on state
rcall rxonaack ; go to rx_on_aack state

gotorx2: ; finish off

clr r14 ; reset tx motor state register
idi r18,$00 ; reset rf state to complete
;turn off watchdog timer
wdr ; reset wdt
in ri6,mcusr ; get reset flag status
andi ri6,$f7 ; mask off wdrf to 0
out mcusr,rl6 ; turn off wdrf
Idi r16,$1e
sts wdtcsr,ri6 ; enable writing of wdt
Idi r16,$06
sts wdtcsr,ri6 ; turn off wdt, is timer
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; return to previous task

clearirq: ; clear irq register and irq line

in r16,sreg ; get sreg
push r16 ; push sreg on stack
Idi ri6,$8f ; load first data byte - read register irq_status
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high

command to clear interrupt

checkrf: ; check rf unit state

Idi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$16 ; check if in rxon
breq datacollect ; get data
cpi r16,$11 ; check if in busy_rx
breq datacollect ; get data
cpi ri6,$1f ; check if in state transition
breq checkrf ; keep checking till in a new state
cpi ri6,$12 ; check if in busytx state
breq checkrf ; keep checking till in a new state
rjmp gotorx ; else change state back to rx

;removed checkcrc because crc is automatically checked with rx_aack

datacollect: ; get data from rf unit

rcall rxreadinterrupt ; get data from rf unit
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; done writing data

wakeup: ; check if time to take data

in r16,sreg ; get sreg
push r16 ; push sreg on stack
dec r25 ; decrement wakeup counter
breq wakeupI ; take data if 60s
pop r16 ; get sreg off stack
out sreg,ri6 ; return sreg
reti

wakeupl: ; take data and return to previous task

;enable watchdog timer to eliminate lock up bug
wdr ; reset wdt
ldi r16,$1e
sts wdtcsr,r16 ; enable writing of wdt
Idi r16,$0e
sts wdtcsr,rl6 ; turn on wdt, is timer

push r17 ; push r17 on stack
ids r8,tcntll ; move windspeed isb to temporary register

t3 Ids r9,tcntlh ; move windspeed msb to temporary register
S cr ri6 ; reset activity level counter
sts tcntlh,r16
sts tcntll,rl6
;motor control code
sbrs r19,2 ; check if in control mode
rjmp wakeupend ; finish off if not
cp r9,r6 ; check if speed too low
brlo incrementup ; move motor open
cp r9,r7 ; check if speed to high
brsh incrementdown ; move motor closed

wakeupend: ; else finish off

or r14,r19 ; move motor state register to tx motor state register
rcall shitl5temp ; initiate shit15 read - humidity included
Idi rl6,$df ; take measurement from adc0O
sts adcsra,rl6 ; turn on adc,clear interrupt flag,enable interrupt,set to /128 (62.5kHz)
Idi r25,$1e ; reset wakeup counter to 60s
pop r17 ; get r17 off stack
pop r16 ; get sreg off stack
out sreg,r16 ; return sreg
reti

incrementup: ; open with motor a few steps

Idi r17,stepsize ; set increment length
rcall motortime ; move packet to motor timer
chi portg,portg0 ; turn brake off
sbi portg,portgl ; set direction to open
sbi portb,portb7 ; turn on motor
ori r19,$01 ; set direction open

rjmp wakeupend ; finish off

incrementdown: ; close with motor a few steps

idi r17,stepsize ; set increment length
rcall motortime ; move packet to motor timer
cbi portg,portg0 ; turn brake off
cbi portg,portgl ; set direction to closed
sbi portb,portb7 ; turn on motor
andi r19,$fe ; set direction closed
rjmp wakeupend ; finish off

wakeupadc: ; wakeup and return to previous task

in r16,sreg ; get sreg
push r16 ; push sreg on stack
ids rS,adcl ; load Isb to r5
Ids r2,adch ; load msb to r2
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti

shitl5setup: ; set the device to low res mode
;talk to shit15, only works for cpu clock <=2MHZ
;code modded with nops to operate at 8MHz
;data pin can never be output high - leave pullup off
;needs external pullup resistor for proper operation
;sleep operation disabled for this application
;always read temperature before humidity

rcall shitl5reset ; reset the device in case its fuxxored
rcall startshitl5 ; send start sequence

;data sequence - register write command $06
;nops added to keep clock at 1MHz
sbi porte,porte0 ; clock high - data bit one
nop
nop
cbi porte,porte0 ; clock low
nop
nop
abi porte,porte0 ; clock high - data bit two
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit three
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit four
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit five
nop

nop
cbi porte,porteO ; clock low
cbi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup time
nop
nop
nop
nop
nop
sbi porte,porteO ; clock high - data bit six
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit seven
nop
nop
cbi porte,porteO ; clock low
sbi ddre,dde4 ; data low
sbi porte,porte0 ; clock high - data bit eight
nop
nop
cbi porte,porteO ; clock low

rcall shiti5ackO ; wait for ack from shitl5

;data sequence - register write data $01
;nops added to keep clock at 1MHz

130 sbi ddre,dde4 ; data low
CO sbi porte,porte0 ; clock high - data bit one

nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit two
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit three
nop

nop
cbi porte,porte0 ; clock low
nop
naop
sbi porte,porteO ; clock high - data bit four
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit five
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit six

nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit seven
nop
nop
cbi porte,porte0 ; clock low
cbi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup time
nop
nop
nop
nop
nop
sbi porte,porteO ; clock high - data bit eight
nop
nop
cbi porte,porteO ; clock low

rcall shiti5ackO ; wait for ack from shit15
ret ;done setting up the device

shitl5temp: ; read temperature data from shit15
;send read temp commmand
rcall startshit15 ; send start sequence

;data sequence - read temperature command $03
sbi porte,porteO ; clock high - data bit one
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit two
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit three
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit four
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit five
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit six
nop

nop
cbi porte,porte0 ; clock low
cbi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup time
nop
nop
nop
nop
nop
sbi porte,porte0 ; clock high - data bit seven
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit eight
nop
nop
cbi porte,porte0 ; clock low
;sbi ddre,dde4 ; data low - if last databyte is 1 - leave it high for ack

rcall shiti5SackO ; wait for ack from shit15

sbi eimsk,4 ; enable int4
ret ; return to previous task and wait for shitIS to be done

wakeupshit15: ; collect data from shit15
in r16,sreg ; get sreg
push r16 ; push sreg on stack

ts brts shitl5humread ; skip if its a humidity read
cbi eimsk,4 ; disable int4 as pe4 will still be low when returning
rcall shitl5read read out temperature data from shit15 (msb)
rcall shitl5ack3 ; acknowledge reciept of bit
mov r3,r16 ; move msb to another register
rcall shiti5read ; read out temperature data from shiti5 (isb)
rcall shitl5ack4 ; end transmission ack
mov r4,r16 ; move lsb to another register
rcall shitl5humidity
pop r16 ; get off stack
out sreg,r16 ; return sreg
set ; set tregister to indicate humidity request in progress
reti ; continue with previous task

shitl5humread: ; read out humidity data from shit 15
rcall shitl5read ; read out humidity data from shitl5 (msb)
rcall shitl5ack3 ; acknowledge reciept of bit
rcall shitl5read ; read out humidity data from shit15 (Isb)
rcall shitl5ack4 ; end transmission ack
mov r12,r16 ; move humidity data to temporary register
Idi r18,$01 ; set rf state to first transmit
rcall transmit ; set rf unit to tx state
rcall transmitpacket ; send data off
pop r16 ; get off stack
out sreg,r16 ; return sreg
clt ; reset to temperature read
reti ; return with previous task

shitl6humidity: ; read humidity data from shitl5
;send read humidity command
rcall startshit15 ; send start sequence

;data sequence - read humidity command $05
;nops added to keep clock at 1MHz
sbi porte,porte0 ; clock high - data bit one
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit two
nop
nop
cbi porte,porte0 ; clock low
nop

nop

sbi porte,porte0 ; clock high - data bit thr
nop
nop

cbi porte,porte0 ; clock low
nop

nop
sbi porte,porte0
nop
nop

clock high - data bit four

chi porteporte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit five
nop
nop
cbi porte,porte0 ; clock low
cbi ddredde4 ; data high
nop ; data takes time to rise and needs setup time
nop
nop
nop
nop
nop
sbi porte,porte0 ; clock high - data bit six
nop
nop
cbi porteporte0 ; clock low
sbi ddre,dde4 ; data low
sbi porte,porte0 ; clock high - data bit seven
nop
nop
cbi porte,porte0 ; clock low
cbi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup time
nop
nop
nop
nop
nop
sbi porte,porte0 ; clock high - data bit eight
nop

nop

cbi porte,porte0 ; clock low
;sbi ddredde4 ; data low - if last databyte is 1 - leave it high for ack

rcall shitl5ack0 ; wait for acknowledge from shiti5
sbi eimsk,4 ; enable int4

ee

ret ; return to previous task and wait for shit15 to take data

shitl5ack4: ; end transmission ack
;nops added to keep clock at 1MHz
sbi porteporteO ; clock high - ack
nop
nop
cbi porte,porteO ; clock low
ret ; return to previous task

shitl5ack3: ; data recipet acknowledge
;nops added to keep clock at 1MHz
sbi ddre,dde4 ; pull data low
sbi porte,porteO ; clock high - ack
nop
nop
chi porte,porteO ; clock low
cbi ddre,dde4 ; release data line
ret ; return to previous task

shitl5read: ; read data from shit15
;nops added to keep clock at 1MHz and meet data valid time of 250ns
clr ri6 ; clear the register where incoming data will be written
sbi porte,porteO ; clock high - data bit one
sbic pine,pine4 ; check if data is low
sbr r16,$80 ; write data bit one to register
cbi porte,porteO ; clock low
nop
nop

ts0 sbi porte,porteO ; clock high - data bit two
sbic pine,pine4 ; check if data is low
sbr r16,$40 ; write data bit two to register
chi porte,porteO ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit three
sbic pine,pine4 ; check if data is low
sbr r16,$20 ; write data bit three to register
chi porte,porteO ; clock low
nop
nop
shbi porte,porteO ; clock high - data bit four
sbic pine,pine4 ; check if data is low
sbr r16,$10 ; write data bit four to register
chi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit five
sbic pine,pine4 ; check if data is low
sbr r16,$08 ; write data bit five to register
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit six
sbic pine,pine4 ; check if data is low
sbr r16,$04 ; write data bit six to register
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit seven
sbic pine,pine4; check if data is low

sbr r16,$02 ; write data bit seven to register
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit eight
sbic pine,pine4 ; check if data is low
sbr r16,$01 ; write data bit eight to register
cbi porte,porteO ; clock low
ret ; return to previous activity

startshitl5: ; start sequence
;nops added to keep clock at 1MHz
cbi ddre,dde4 ; set data high
cbi porte,porteO ; make sure clock is low
nop
nop
sbi porte,porteO ; pull clock high
sbi ddre,dde4 ; set data low
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high
cbi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup time
nop
nop
nop
nop
nop
cbi porte,porteO ; clock low
sbi ddre,dde4 ; data low
ret ; return to previous task

shitl5ackO: ; ack sequence for sending data

chi ddre,dde4 ; release data line

shitl5ack2: ; check that data line is low
;nops added to keep clock at 1MHz
sbic pine,pine4
rjmp shitl5ack2
sbi porte,porteO ; clock high - ack
nop
nop
chi porte,porteO ; clock low

shit15ackl: ; check that line has been released

sbis pine,pine4 ; check that line has been released
rjmp shiti5ackil
ret ; return to previous task

shitl5reset: ; reset sequence if it gets out of phase
;status register preserved
;must be followed by data start sequence
;nops added to slow it down to 1MHz
chi ddre,dde4 ; data high
sbi porte,porteO ; clock high
nop
nop
cbi porte,porteO ; clock low

nop

nop

sbi porte,porteO ; clock high

nop

nop

cbi porte,porteO ; clock low
nop

nop

sbi porte,porteO ; clock high
nop

nop

chi porte,porteO ; clock low

nop

nop

sbi porte,porteO ; clock high
nop

nop

cbi porte,porteO ; clock low

nop

nop

sbi porte,porte0 ; clock high

nop

nop
cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high

nop

nop

t cbi porte,porteO ; clock low

C nop
nop
sbi porte,porteO ; clock high

nop

nop

cbi porte,porteO ; clock low

nop
nop
sbi porte,porteO ; clock high

nop

nop
cbi porte,porteO ; clock low

nop
nop

sbi porte,porte0 ; clock high

nop
nop

cbi porte,porteO ; clock low

nop

nop

sbi porte,porte0 ; clock high

nop
nop

cbi porte,porteO ; clock low

ret ; return to previous task

transmitrequest: ; transmit a request frame

sbi portb,portb4 ; pull slptr high to begin transmit

nop ; delay to make sure the pin is high long enough

cbi portb,portb4 ; pull slp_tr low

ldi r16,$60 ; load data byte - write buffer command

cbi portb,portbO ; pull ss low

rcall spiwrite ; send byte
Idi r16,$Ob ; load data byte - frame length byte

rcall spiwrite ; send byte
Idi r16,$40 ; load data byte - fcf(7:0) - broadcast,no ack
rcall spiwrite ; send byte
ldi r16,$88 ; load data byte - fcf(15:8) - short address,pan_ids equal

rcall spiwrite ; send byte
Idi r16,$01 ; load data byte - seq(7:0) - command(request)

rcall spiwrite ; send byte
Idi rl6,low(pan_id) ; load data byte - pan_id(7:0)

rcall spiwrite ; send byte

ldi r16,high(pan_id) ; load data byte - pan_id(15:8)
rcall spiwrite ; send byte

ldi r16,$ff ; load data byte - destination address (7:0) - broadcast

rcall spiwrite ; send byte

ldi r16,$ff ; load data byte - destination address (15:0) - broadcast

rcall spiwrite ; send byte
Idi r16,low(src_addr) ; load data byte - source address (7:0)

rcall spiwrite ; send byte
ldi r16,high(srcaddr) ; load data byte - source address (15:8)

rcall spiwrite ; send byte

sbi portb,portbO ; pull as high

ret ; return to previous duty

transmitpacket: ; transmit a packet

sbi portb,portb4 ; pull slp_tr high to begin transmit

nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slp_tr low

ldi r16,$60 ; load data byte - write buffer command

cbi portb,portbO ; pull ss low

rcall spiwrite ; send byte

ldi r16,$13 ; load frame length byte - total bytes excluding this one, +2

rcall spiwrite ; send byte
ldi r16,$61 ; load fcf(7:0) byte - $61 for data packet

rcall spiwrite ; send byte

ldi r16,$88 ; load fcf(15:8) byte - $88 for data packet

rcall spiwrite ; send byte

ldi r16,$07 ; load sequence byte - command (data from tethered node)

rcall spiwrite ; send byte
ldi r16,low(pan_id) ; load destination panid(7:0) byte

rcall spiwrite ; send byte

Idi r16,high(panid) ; load destination panid(15:8) byte

rcall spiwrite ; send byte

mov r16,rll ; load destination address(7:0) byte

rcall spiwrite ; send byte
mov r16,rlO ; load destination address(15:8) byte
rcall spiwrite ; send byte

Idi rl6,low(src_addr) ; load source address(7:0) byte

rcall spiwrite ; send byte
Idi rl6,high(src_addr) ; load source address(15:8) byte

rcall spiwrite ; send byte

mov r16,r14 ; load data byte - motor state register

rcall spiwrite ; send byte
mov r16,r12 ; load data byte - humidity

rcall spiwrite ; send byte

mov rl6,r4 ; load data byte - temperatureO

rcall spiwrite ; send byte
mov r16,r3 ; load data byte - temperaturel
roall spiwrite ; send byte
mov rl6,r8 ; load data byte - windspeed Isb
rcall spiwrite ; send byte
mov r16,r9 ; load data byte - windspeed msb
rcall spiwrite ; send byte
mov ri6,r5 ; load data byte - light isb
rcall spiwrite ; send byte

mov r16,r2 ; load data byte - light msb
rcall spiwrite ; send byte

sbi portb,portbO ; pull ss high
ret ; return to previous duty

Appendix H

Control Node Firmware: Window

Motor

235

.include "mi281def.inc"

increment of 4 for src_addr
csma_seed = 8 x src_addr

.equ srcaddr = $aad4 ; place unique source address here

.equ csmaseed = low(src_addr)*$08 ; random backoff exponent - must be unique,<$0800

.equ home_addr = $aabi ; local node des_addr
.equ pan_id = $abcd ; system pan_id
.equ retries = $38 ; high nibble = frame retries,low nibble = 2x(csma retries)
.equ channel = $36 ; tx/rx channel, $2b -> $3a valid
.equ stepsize = $Oa ; control stepsize
.equ hysteresis = $08 ; hysteresis on control setpoint
.equ delay = $02 ; motor turn on delay msb (32.768ms per bit)
.equ motor_time = $Of ; number of 128us intervals in motor on-time increments ($Of = 492ms)

.org 0
rjmp start
.org int4addr
rjmp wakeupshit15
.org int5addr
rjmp clearirq
.org int7addr
rjmp currentstop
.org OVF2addr
rjmp wakeup
.org ADCCaddr
rjmp wakeupadc
.org OC4Aaddr

t3 rjmp timer4int

.org OC5Aaddr
rjmp timer5int

; lightsensor = pf0(adc0)
; shitl5 data = pe4(int4)
; shiti5 clock = peO
; wind sensor = pd6(tl)
; current threshold = pe7(int7)
; direction = pgl
; brake = pgO
; pwm = pb7(ocOa)
rO frame length temporary register - write

; rl frame length temporary register - read
r2 adc msb temporary register

;r3 shit15 msb temporary register
;r4 shit15 isb temporary register
;r5 ado Isb temporary register
;r6 control setpoint bottom
;r7 control setpoin top
;r8 wind sensor isb
r9 wind sensor msb
riO desaddr msb
; rll desaddr 1sb

; r12 shit15 humidity temporary register
; r13 ed_level buffer
; r14 motor state register for transmit
; ri5
; r16 temporary swap register for interrupts
; r17 temporary swap register for main
ri8 rf state register
ri9 motor state register

; r20 wait loop register
; r21 wait loop register
; r22 motor time counter
r23
r24 temporary swap register for main

; r25 wakeup counter
xregister is recieve buffer (r27(xh),r26(xl))

; yregister is buffer start (r29(yh),r28(yl))
; zregister is buffer end (r31(zh),r30(zl))
; data buffer set at 1k
; tregister is shitl5 humidity/temperature irq differentiator
; joinrequest buffer is 256byte
; recieve buffer is 256byte

start: ; configure microcontroller registers
; start up time 6CK + 65ms
; set to 8MHz by internal rc oscillator
ldi r16,high(RAMEND)
out SPH,r16 ; Set Stack Pointer to top of RAM
Idi r16,1ow(RAMEND)
out SPL,r16
Idi r16,$17
out ddrb,r16 ; set ss,sclk,mosi,slp_tr as output
Idi r16,$68
out portb,r16 ; enable pullup for miso and pb5,pb6 for buttons
Idi ri6,$01
out spsr,r16 ; set up spi - modeO, ck/2
ldi r16,$50
out spcr,r16 ; set up spi - mode0, ck/2 (4MHz)
sbi portb,portbO ; set ss pin high
cbi portb,portb4 ; set slp_tr low
sbi porta,porta7 ; pull reset high on rf unit
sbi ddra,dda7 ; set reset pin as output
ldi r16,$cc
sts eicrb,r16 ; configure int5 and int7 for rising edge
ldi r16,$a0
out eimsk,r16 ; enable int5 and int7
ldi r16,high(home_addr) ; set up desaddr to something in system for start
mov r10,r16
ldi r16,low(home_addr) ; set up des_addr
mov r11,r16
clr zl ; set buffer end to beginning of sram
clr yl ; set buffer start to beginning of sram
Idi zh,$02 ; set buffer end to beginning of sram
ldi yh,$02 ; set buffer start to beginning of sram
Idi xh,$05 ; set recieve buffer to middle of sram
clr xl ; set recieve buffer to middle of sram
Idi r23,$ff ; initialize receieve buffer count
clr r19 ; reset motor state register
clr r18 ; reset rf state register
clr r14 ; reset tx motor state register
Idi r25,$08 ; set wakeup counter to 64s
Idi r16,$3f
out portd,r16 ; turn on pullups for unused pins on portd since they might have long cables attached

;wait for rf unit to stabilize
ldi r21,$04 ; load the wait timer to 3 cycles (x3084/ck)
rcall waitloopl ; wait -(9252/8MHz = 1.2ms) for rf unit to stabilize

;setup analog inputs
Idi r16,$01

sts didrO,r16 ; turn off input stage for adcO pin
Idi rl6,$cO
sts admux,r16 ; use internal 2.56v as voltage reference,sample adcO

;setup motor control pins as output (no pwm at the moment)
cbi portg,portgl ; make sure pins are off
chi portb,portb7 ; turn pwm off
sbi portg,portgO ; turn brake on
sbi ddrg,ddgl ; direction
sbi ddrg,ddgO ; brake
sbi ddrb,ddb7 ; pwm (on/off for now)
sbi portg,portgO ; turn on brake pin to shut off transistors

;setup tl as windspeed counter
ldi r16,$06
sts tccrib,ri6 ; set ti to external clock on tO falling edge

;setup t2 as rtc at 8s interval wakeup
ldi r16,$20
sts assr,r16 ; set t2 to assynchronous mode
ldi r16,$07
sts tccr2b,r16 ; set t2 prescaler to /1024 - 8s wakeup period

;make sure t2 is done rewriting itself
checkassr:

Ids r16,assr
andi rl6,$1f ; check assr(4:0) clear
brne checkassr

Idi r16,$07
out tifr2,rl6 ; clear all pending interrupts
ldi r16,$01
sts timsk2,rl6 ; enable t2 overflow interrupt

;setup shiti5 - peO is data, pe4 is clock
sbi ddre,dde0 ; set clock as output
cbi porte,porte4 ; make sure pullups are off for data
rcall shit15setup

;configure rf unit registers

;go to trx_off state
rcall txoff ; go to trx_off state on rf unit

;setup clkm
Idi r16,$c3 ; load first data byte - write trx_ctrl_0 register
chi portb,portbO ; pull as low
rcall spiwrite ; send data
clr ri6 ; load second data byte - turn off clkm
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup short_addr_0
ldi rl6,$eO ; load first data byte - write shortaddr_0 register
chi portb,portb0 ; pull ss low
rcall spiwrite ; send data
Idi rl6,low(srcaddr) ; load second data byte - srcaddr Isb
rcall spiwrite ; send data
sbi portb,portb0 ; pull ss high

;setup short_addrA
Idi r16,$el ; load first data byte -
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
ldi r16,high(srcaddr) ; load second
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

write shortaddrl register

data byte - srcaddr msb

;setup panid_0
Idi r16,$e2 ; load first data byte - write pan_id_0 register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
ldi rl6,1ow(pan_id) ; load second data byte - panid lsb
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;setup panidi_
Idi r16,$e3 ; load first data byte
cbi portb,portb0 ; pull as low
rcall spiwrite ; send data
idi rl6,high(panid) ; load second
rcall spiwrite ; send data
abi portb,portbO ; pull as high

- write pan_id_l register

data byte - panid msb

;setup phyccca - set channel id
ldi r16,$c8 ; load byte - write phy_cc_ca register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
Idi r16,channel ; load data byte -
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup phy_tx_pwr - turn crc on
idi rl6,$cS ; load byte - write phy_tx_pwr register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
Idi r16,$80 ; load data byte - auto_crc-on,pwr-+3dbm
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup xahctrl - set frame and csma retries
Idi rl6,$ec ; load byte - write xah_ctrl register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
Idi r16,retries ; load data byte - frame and cama retries
rcall spiwrite ; send data
abi portb,portb0 ; pull as high

;setup csmaseed_l
ldi rl6,$ee ; load byte - write csmaseed_1 register
cbi portb,portb0 ; pull as low
rcall spiwrite ; send data
ldi rl6,high(csma_seed) ; load data byte - minbe=0,aack_set=0,iamcoord=O,csma(10:8)
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup cama_seed_0O
ldi rl6,$ed ; load first data byte - write csma_seed_l register
cbi portb,portb0 ; pull as low
rcall spiwrite ; send data
idi rl6,low(csma_seed) ; load data byte - csma(7:0)

rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;enable irqs
Idi ri6,$ce ; load first data byte - write register irq_mask command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$08 ; load second data byte - trx_end only
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

;clear pending irqs on rf unit
Idi rl6,$8f ; load first data byte - read register irq_status command
cbi portb,portb0 ; pull as low
rcall spiwrite ; send byte and clear pending irqs
sbi portb,portb0 ; pull ss high

;clear pending irqs on micro
ldi r16,$ff
out eifr,rl6 ; clear any interrupt flags that are set

;enable interrupts on micro
sei ; turn on interrupts

rcall rxonaack ; put the rf unit in rx_aackon state

repeat: ; handle backlogged data

cpse zh,yh ; check if buffer has data
N rjmp handle ; go to data handler
CAD cpse zl,yl ; check if buffer has data

rjmp handle ; go to data handler
in r17,pinb ; get button press data
andi r17,$60 ; mask off button bits
Idi r24,$60 ; invert button bits
eor r17,r24 ; invert button bits
mov r24,r19 ; move current motor state to temp register
andi r24,$60 ; mask off button state
cp r24,r17 ; check if button state has changed
breq repeat ; continue checking if no change
andi r19,$9b ; turn off control bit and reset button state in motor state register
ori r19,$08 ; set manual bit in motor state register
or ri9,r17 ; set current button state in motor state register
or r14,r17 ; store button presses to tx motor state register
cpi r17,$60 ; check if both buttons are pressed
breq buttonstop
cpi r17,$40 ; check if open button is pressed
breq openbutton
cpi r17,$20 ; check if close button is pressed
breq closebutton
andi r19,$97 ; else shut off manual bit and button bits in motor state register

buttonstop: ; turn off motor via buttonpress

rcall motordelay
cbi portb,portb7 ; stop motor
cbi portg,portgO ; turn on brake
rjmp repeat ; return to state checking

openbutton: ; open motor via buttonpress

cpi r19,$4b ; check if already jammed open
breq repeat ; do not open if jammed
rcall motordelay
cbi portg,portgO ; turn brake off
sbi portg,portgl ; set direction to open
sbi portb,portb7 ; turn on motor
andi rl9,$fd ; clear jam bit
ori r19,$01 ; set direction open
rjmp repeat ; return to state checking

closebutton: ; close motor via buttonpress

cpi r19,$2a ; check if already jammed closed
breq repeat ; do not open if jammed
rcall motordelay
cbi portg,portgO ; turn brake off
cbi portg,portgl ; set direction to closed
sbi portb,portb7 ; turn on motor
andi rl9,$fc ; clear jam bit and set direction closed
rjmp repeat ; return to state checking

handle: ; respond to recieved data packets

Id r17,z+ ; get data frame length from buffer
mov rl,r17 ; move frame length to counter
cpi r17,$08 ; check if packet is the right length
brne resetbuffer ; reset buffer if not
Id r17,z+ ; get header byte from buffer
dec rl
cpi r17,$08 ; check if right packet type
brne resetbuffer
Id r17,z+ ; slab src_addr - ignore
dec rl
Id r17,z+ ; msb srcaddr - ignore
dec rl
ld rlT,z+ ; get command byte
dec rl
cpi r17,$08 ; check if motor control command
breq motor ; control motor
rjmp resetbuffer ; else finish off

motor: ; control motor

ld r17,z+ ; get motor command
dec rl
sbrc r19,3 ; do not modify if under manual control
rjmp resetbuffer ; commands past this point are overriden by manual control
cpi r17,$08 ; check if window full open
breq open
cpi r17,$06 ; check if window full close
breq close
cpi r17,$Oa ; check if window stop
breq stop
cpi r17,$0c ; check if window set by speed
brne resetbuffer ; else end
Id r17,z+ ; get control setpoint
dec rl
cpi r17,(hysteresis + $01) ; check if setpoint is too low
brlo setpointclose ; completely shut
cpi rl7,($ff - hysteresis) ; check if setpoint is too high
brsh setpointopen ; completely open

subi r17,hysteresis ; put hysterisis in
mov r6,r17 ; move setpoint to control bottom
subi r17,($00 - 2*(hysteresis)) ; put hysterisis in
mov r7,r17 ; move setpoint to control top
ori r19,$04 ; turn on control bit in motor state register
rjmp resetbuffer ; finish off

resetbuffer: ; reset buffer pointer

ldi r17,$00
add zl,rl ; add remaining packet count
adc zh,rl7 ; increment zh if zl overflow
sbrc zh,2 ; check if buffer at 1k
ldi zh,$02 ; reset buffer pointer to bottom of buffer
rjmp repeat ; get next packet from buffer

open: ; open window command

andi rl9,$fb ; turn off control bit
cpi r19,$03 ; check if already jammed open
breq resetbuffer ; do not open if jammed
Id r17,z+ ; get step size packet
dec rl
cpi rl7,$ff ; check if full open command
breq openfull
cpi r17,(delay + $01) ; check if step size is bigger than motordelay
brlo resetbuffer ; end if not big enough
rcall motortime ; move packet to motor timer

openfull: ; turn on motor full open

rcall motordelay
cbi portg,portgO ; turn brake off
sbi portg,portgl ; set direction to open
sbi portb,portb7 ; turn on motor
andi rl9,$fd ; clear jam bit
ori r19,$01 ; set direction open
rjmp resetbuffer

stop: ; stop motor

andi rl9,$fb ; turn off control bit
rcall motordelay
cbi portb,portb7 ; stop motor
cbi portg,portgO ; turn on brake
rjmp resetbuffer

close: ; close window command

andi rl9,$fb ; turn off control bit
cpi r19,$02 ; check if already jammed closed
breq resetbuffer ; do not close if jammed
Id rl7,z+ ; get step size packet
dec rl
cpi r17,$ff ; check if full open command
breq closefull
cpi r17,(delay + $01) ; check if step size is
brlo resetbuffer ; end if not big enough
rcall motortime ; move packet to motor timer

closefull: ; turn on motor full closed

rcall motordelay
cbi portg,portgO ; turn brake off
cbi portg,portgl ; set direction to closed
sbi portb,portb7 ; turn on motor
andi r19,$fc ; clear jam bit and set direction closed
rjmp resetbuffer

setpointclose: ; go to full closed because setpoint is too low for control

andi rl9,$fb ; turn off control bit if already on
cpi r19,$02 ; check if already jammed closed
breq resetbuffer ; do not close if jammed
ldi r17,$08 ; turn off timer
sts tccr5b,r17 ; turn off timer
Idi r17,$00
sts timskS,r17 ; disable t5 interrupts
rjmp closefull ; close

setpointopen: ; go to full open because setpoint is too high for control

andi rlg,$fb ; turn off control bit if already on
cpi r19,$03 ; check if already jammed open
breq resetbuffer ; do not open if jammed
ldi r17,$08 ; turn off timer
sts tccrSb,r17 ; turn off timer
idi r17,$00
sts timsk5,r17 ; disable t5 interrupts
rjmp openfull ; close

motordelay: ; delay the current limit on motor at start

Idi r17,$00
sts tcnt4h,rl7 ; set counter to zero
sts tcnt4l,rl7 ; set counter to zero
Idi r17,delay
sts ocr4ah,rl7 ; set counter top to 100ms
ldi r17,$00
sts ocr4al,r17 ; set counter top to 100ms
Idi rl7,$2f
out tifr4,rl7 ; clear all t4 interrupt flags
Idi r17,$02
sts timsk4,r17 ; turn on t4 interrupt
ldi r17,$Od
sts tccr4b,rI7 ; turn on counter, set to 128us period
cbi eimsk,7 ; turn off currentlimit interrupt
ret

motortime: ; have motor on for a certain amount of time
mov r22,rl7 ; move motortime to counter
ldi r17,(motor_time)
sts ocr5ah,rl7 ; set counter top to packet time
ldi r17,$00
sts ocr5al,rI7 ; set counter top to packet time
sts tcnt5h,rl7 ; set counter to zero
sts tcnt51,rl7 ; set counter to zero

bigger than motordelay ldi rl7,$2f
out tifr5,rl7 ; clear all t5 interrupt flags
ldi r17,$02
sts timsk5,r17 ; turn on t5 interrupt
ldi r17,$Od

sts tccr5b,r17 ; turn on counter, set to 128us period
ret

currentstop: ; brake motor if current is too high

in r16,sreg ; get sreg
push r16 ; push sreg on stack
cbi portb,portb7 ; stop motor
cbi portg,portgO ; turn on brake
Idi ri6,$08 ; turn off timer
sts tccr5b,r16 ; turn off timer if still on
Idi r16,$00
sts timsk5,r16 ; disable t5 interrupts
ori r19,$02 ; set jam bit
pop r16 ; get off stack
out sreg,rl6 ; return sreg
reti ; return from interrupt

timer4int: ; reset timer and do whatever task is required

Idi r16,$08 ; turn off timer
sts tccr4b,rl6 ; turn off timer
ldi ri6,$00
sts timsk4,rl6 ; disable t4 interrupts
sbi eifr,7 ; clear currentlimit interrupt
sbi eimsk,7 ; turn currentlimit interrupt back on
sbic pine,7 ; check if current at limit
rjmp currentstop
reti ; return from interrupt

timer5int: ; turn off motor

push r17
in r16,sreg ; get sreg
push ri6 ; push sreg on stack
dec r22 ; decrement 3rd byte counter
brne timerdintdone ; dont do anything if not done
rcall motordelay
cbi portb,portb7 ; stop motor
cbi portg,portgO ; turn on brake
Idi r16,$08 ; turn off timer
sts tccr5b,rl6 ; turn off timer
ldi r16,$00
sts timsk5,r16 ; disable t5 interrupts

timer5intdone: ; finish off

pop r16 ; get off stack
out sreg,r16 ; return sreg
pop r17
reti ; return from interrupt

txoff: ; send trxoff command to rf unit and wait till stable

ldi r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
idi r16,$08 ; load second data byte - data trx_off bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checktxoff: ; check current state to see if in txoff state

Idi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi ri6,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$08
brne checktxoff
ret ; return to previous duty

pllon: ; send pll_on command to rf unit

ldi r16,$c2 ; load first data byte - write register trxstate command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$09 ; load second data byte - data pll_on bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checkpllon: ; check current state to see if in pll_on state

Idi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$09
brne checkpllon
ret ; return to previous duty

rxonaack: ; send rx_aackon command to rf unit and wait till stable

idi r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$16 ; load second data byte - data rx_aack_on bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checkrxonaack: ; check current state to see if in rxaack_on state

ldi ri6,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$16
brne checkrxonaack
ret ; return to previous duty

txonaret: ; send trxareton command to rf unit and wait till stable

ldi r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
Idi r16,$19 ; load second data byte - data trx_areton bit
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ass high

checktxonaret: ; check current state to see if in tx-aret_on state

ldi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull se low
rcall spiwrite ; send byte
ldi r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ass high
cpi r16,$19
brne checktxonaret
ret ; return to previous duty

joinrecieve: ; get new des_addr

cpi r18,$04 ; check if waiting for joinack

brne rxrequest ; dont accpet

ldi r16,$00 ; load data byte

rcall spiwrite ; send byte -

ldi r16,$00 ; load data byte
rcall spiwrite ; send byte -
ldi r16,$00 ; load data byte

rcall spiwrite ; send byte -
Idi r16,$00 ; load data byte
rcall spiwrite ; send byte -

Idi r16,$00 ; load data byte
rcall spiwrite ; send byte -

joinack if not waiting for joinack

- blank for reading

do not save despanid(7:0)

- blank for reading

do not save des_panid(15:8)

- blank for reading

do not save des_addr(7:0)

- blank for reading

do not save des_addr(15:8)

- blank for reading
src_addr(7:0)

mov rll,r16

l Idi r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - srcaddr(15:8)

mov r10,r16

;dont bother with the rest of the data - it doesnt matter
;ldi r16,$00 ; load data byte - blank for reading

;rcall spiwrite ; send byte - do not save fcs(7:0)

;ldi r16,$00 ; load data byte - blank for reading

;rcall spiwrite ; send byte - do not save fcs(15:8)

;ldi r16,$00 ; load data byte - blank for reading

;rcall spiwrite ; send byte - lqi
sbi portb,portbO ; pull ass high

sbiw yh:yl,$02 ; reset data buffer to begining of join request

Idi r18,$10 ; set state register to retry transmit

rcall transmit ; set rf unit to tx_on_aret state
rcall transmitpacket ; transmit data
ret ; done

rxreadinterrupt: ; empty rx buffer while in interrupt

;ed_level is taken first because it is only valid for 224us after interrupt fires

ldi r16,$87 ; load data byte - read ed_level

cbi portb,portbO ; pull ass low

rcall spiwrite ; send byte
Idi r16,$00 ; load data byte - blank byte for reading

rcall spivrite ; send byte
mov r13,r16 ; move edlevel to temporary buffer
sbi portb,portb0 ; pull as high

;get data from recieve buffer
Idi r16,$20 ; load data byte - read buffer command
cbi portb,portb0 ; pull ass low
rcall spiwrite ; send byte

idi r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - frame length byte

subi r16,$06 ; decrease frame length for bits to be removed

at y+,r16 ; move frame length to buffer

subi r16,$03 ; decrease frame length for buffer fitting

mov r0,r16 ; move frame length to temporary register

Idi r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - do not save fcf(7:0)

ldi r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - do not save fcf(15:8)

Idi r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - seq (used as command byte)

st y+,r16

cpi r16,$06 ; check if command byte is $06 (join acknowledge)

breq joinrecieve ; get new home_addr if $06
cpi r16,$08 ; check if data to tethered node

breq notrequestl ; load data to buffer, else discard packet

rxrequest: ; finish off

sbi portb,portbO ; pull ass high

abiw yh:yl,$02 ; reset data buffer to begining of join request

ret ; done

notrequestl: ; continue with data loading

ldi r16,$00 ; load data byte

rcall spiwrite ; send byte -

Idi r16,$00 ; load data byte
rcall spiwrite ; send byte -
Idi r16,$00 ; load data byte
rcall spivrite ; send byte -

ldi r16,$00 ; load data byte
rcall spiwrite ; send byte -

- blank for reading

do not save des_panid(7:0)

- blank for reading
do not save des_panid(15:8)

- blank for reading
do not save des_addr(7:0)

- blank for reading
do not save des_addr(15:8)

getdatarfl: ; keep loading data till frame compelete

ldi r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte

st y+,r16 ; move byte to buffer

dec rO ; decrement frame length byte

brne getdatarfl ; keep decrementing until done
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(7:0)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(15:8)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - lqi
sbi portb,portb0 ; pull as high
st y+,r16 ; move lqi to buffer

st y+,r13 ; move ed_level to buffer

abrc yh,2 ; check if buffer at 1k

ldi yh,$02 ; reset buffer pointer to bottom of buffer
ret ; done writing data

transmit: set rf unit to tx_on_aret state

;check to see if not in rx_busy state
ldi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte

Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$11 ; check if in busyrx
breq transmit ; keep checking till in a new state
cpi rl6,$f ; check if in state transition
breq transmit ; keep checking till in a new state
cpi ri6,$12 ; check if in busy_tx state
breq transmit ; keep checking till in a new state
rcall pllon ; go to pll on state
;check if there is data pending in rx buffer
Idi rl6,$8f ; load first data byte - read register irq_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
sbrc r16,3 ; check if trx_end interrupt flag is set
rcall rxreadinterrupt ; empty rx buffer
rcall txonaret ; put the rf unit in tx_aret_on state
ret ; return to previous duty

waitloopi: ; wait timer (-3084 cycles per value in r21)

ser r20
rcall wait2
nop
nop
nop

LN nop

nop
nop
nop
nop
dec r21
brne waitloopl
ret ; return to previous duty

spiwrite: ; read and write data over spi

out spdr,r16 ; write transmitted byte to spi

wait: ; read spi register to check when done

in r16,spsr
sbrs r16,spif
rjmp wait
in rl6,spdr ; write recieved byte to spi register
ret ; return to previous duty

wait2: ; wait timer (-12 cylces per value in r20)

nop
nop
nop
nop
nop
nop
nop
nop
dec r20

brne wait2
ret ; return to previous duty

gotorx: ; return to rx_on_aack state

;check successful transmit before switching back to rx
ldi r16,$82 ; load data byte - read trx_state to get tracstatus
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$00 ; load data byte - blank byte for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
andi r16,$eO ; mask off trac_status
cpi r16,$60 ; check if success or data_pending success
brlo gotorxl ; skip if success
cpi ri8,$01 ; check if this is the first failure
brne gotorx3 ; if not - finish off
rcall transmitrequest ; get new des_addr and retransmit
Idi r18,$02 ; set joinrequest state bit
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; clear interrupt and return to previous duty

gotorxl: ; turn on rx_on_aack state

rcall pllon ; go to pll_on state
rcall rxonaack ; go to rxonaack state
cpi r18,$02 ; check if last state was a joinrequest
brne gotorx2 ; finish off if not waiting for joinrequest ack
ldi r18,$04 ; set rf state to joinrequest ack waiting
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; return to previous task

gotorx3: ; set to rx_an_aack state

rcall pllon ; go to pll_on state
rcall rxonaack ; go to rxonaack state

gotorx2: ; finish off

clr r14 ; reset tx motor state registser
ldi r18,$00 ; reset rf state to complete
pop r16 ; get off stack
out sreg,ri6 ; return sreg
reti ; return to previous task

clearirq: ; clear irq register and irq line

in rl6,sreg ; get sreg
push r16 ; push sreg on stack
Idi r16,$8f ; load first data byte - read register irqstatus command to clear interrupt
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high

checkrf: ; check rf unit state

Idi r16,$81 ; load first data byte - read register
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte

trx_status command

Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high
cpi r16,$16 ; check if in rxon
breq datacollect ; get data
cpi r16,$11 ; check if in busy_rx
breq datacollect ; get data
cpi r16,$lf ; check if in state transition
breq checkrf ; keep checking till in a new state
cpi r16,$12 ; check if in busy_tx state
breq checkrf ; keep checking till in a new state
rjmp gotorx ; else change state back to rx

;removed checkcrc because crc is automatically checked with rxaack

datacollect: ; get data from rf unit

rcall rxreadinterrupt ; get data from rf unit
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; done writing data

wakeup: ; check if time to take data

in r16,sreg ; get sreg
push r16 ; push sreg on stack
dec r25 ; decrement wakeup counter
breq wakeupI ; take data if 64s
pop r16 ; get sreg off stack
out sreg,r16 ; return sreg
reti

wakeupl: ; take data and return to previous task

push r17 ; push r17 on stack
Ids r8,tcntll ; move windspeed isb to temporary register
lds rS,tcntlh ; move windspeed msb to temporary register
clr r16 ; reset activity level counter
sts tcntlh,ri6
sts tcntll,rl6
;motor control code
sbrs r19,2 ; check if in control mode
rjmp wakeupend ; finish off if not
cp r8,r6 ; check if speed too low
brlo incrementup ; move motor open
cp r8,r7 ; check if speed to high
brsh incrementdown ; move motor closed

wakeupend:; else finish off

or r14,r19 ; move motor state register to tx motor state register
rcall shitl5temp ; initiate shitl5 read - humidity included
Idi ri6,$df ; take measurement from adcO
sts adcsra,r16 ; turn on adc,clear interrupt flag,enable interrupt,set to /128 (62.5kHz)
Idi r25,$08 ; reset wakeup counter to 64s
pop r17 ; get r17 off stack
pop r16 ; get sreg off stack
out sreg,rl6 ; return sreg
reti

incrementup: ; open with motor a few steps

cpi r19,$07 ; check if already jammed open
breq wakeupend ; do nothing if jammed open
ldi r17,stepsize ; set increment length
rcall motortime ; move packet to motor timer
rcall motordelay ; turn on current limit timer
cbi portg,portg0 ; turn brake off
sbi portg,portgl ; set direction to open
sbi portb,portb7 ; turn on motor
andi rl9,$fd ; clear jam bit
ori r19,$01 ; set direction open
rjmp wakeupend ; finish off

incrementdown: ; close with motor a few steps

cpi r19,$06 ; check if already jammed closed
breq wakeupend ; do nothing if jammed closed
ldi rl7,stepsize ; set increment length
rcall motortime ; move packet to motor timer
rcall motordelay ; turn on current limit timer
cbi portg,portg0 ; turn brake off
cbi portg,portgl ; set direction to closed
sbi portb,portb7 ; turn on motor
andi r19,$fc ; clear jam bit and set direction closed
rjmp wakeupend ; finish off

wakeupadc: ; wakeup and return to previous task

in r16,sreg ; get sreg
push r16 ; push sreg on stack
Ids r5,adcl ; load lsb to r5
lds r2,adch ; load msb to r2
pop r16 ; get off stack
out sreg,r16 ; return areg
reti

shitl5setup: set the device to low res mode
;talk to shit15, only works for cpu clock <=2MHZ
;code modded with nops to operate at 8MHz
;data pin can never be output high - leave pullup off
;needs external pullup resistor for proper operation
;sleep operation disabled for this application
;always read temperature before humidity

rcall shitl5reset ; reset the device in case its fuxxored
rcall startshit15 ; send start sequence

;data sequence - register write command $06
;nops added to keep clock at 1MHz
sbi porte,porte0 ; clock high - data bit one
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit two
nop
nop
cbi porte,porte0 ; clock low
nop
nop

sbi porte,porte0 ; clock high - data bit three
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit four
nop
nop

cbi porte,porteO ; clock low
nop

nop

sbi porte,porteO ; clock high - data bit five
nop
nop

cbi porte,porteO ; clock low
chi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup t

nop
nop
nop
nop
nop

sbi porte,porteO ; clock high - data bit six
nop
nop

chi porte,porteO ; clock low
nop
nop

t sbi porte,porteO ; clock high - data bit seven
nop
nop
cbi porte,porte0 ; clock low
sbi ddre,dde4 ; data low
sbi porte,porteO ; clock high - data bit eight
nop

nop
cbi porte,porteO ; clock low

rcall shit15ackO ; wait for ack from shit15

;data sequence - register write data $01
;nops added to keep clock at 1MHz
sbi ddre,dde4 ; data low
sbi porte,porteO ; clock high - data bit one
nop
naop
cbi porte,porteO ; clock low
nop

nop

sbi porte,porteO ; clock high - data bit two
nop

nop

cbi porte,porteO ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit three
nop
nop
cbi porte,porteO ; clock low
nop

ime

nop
sbi porte,porte0 ; clock high - data bit four
nop
nop
cbi porteporteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit five
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit six
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit seven
nop
nop
cbi porte,porteO ; clock low
cbi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup time
nop
nop
nop
nop
nop
sbi porte,porte0 ; clock high - data bit eight
nop
nop
cbi porte,porte0 ; clock low

rcall shitl5ackO ; wait for ack from shiti5
ret ;done setting up the device

shitl5temp: ; read temperature data from shit15
;send read temp commmand
rcall startshit15 ; send start sequence

;data sequence - read temperature command $03
sbi porte,porteO ; clock high - data bit one
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit two
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit three
nop
nop
cbi porte,porte0 ; clock low
nop
nop

sbi porte,porte0 ; clock high - data bit four
nop
nop
chi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit five
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit six
nop

nop
cbi porte,porte0 ; clock low
cbi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup time
nop
nop
nop
nop
nop
sbi porte,porte0 ; clock high - data bit seven
nop
nop
cbi porte,porte0 ; clock low
nop
nop

'3D sbi porte,porte0 ; clock high - data bit eight
C nop

hop
cbi porte,porte0 ; clock low
;sbi ddre,dde4 ; data low - if last databyte is 1 -

rcall shitl5ackO ; wait for ack from shitl5

rcall shitl5ack4 ; end transmission ack
mov r12,r16 ; move humidity data to temporary register
Idi r18,$01 ; set rf state to first transmit
rcall transmit ; set rf unit to tx state
rcall transmitpacket ; send data off
pop r16 ; get off stack
out sreg,r16 ; return sreg
clt ; reset to temperature read
reti ; return with previous task

shitl5humidity: ; read humidity data from shit15
;send read humidity command
rcall startshit15 ; send start sequence

;data sequence - read humidity command $05
;nops added to keep clock at 1MHz
sbi porte,porte0 ; clock high - data bit one
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit two
nop
nop
cbi porte,porte0 ; clock low
nop
nop

leave it high for ack

nop
cbi
nop
nop

sbi eimsk,4 ; enable int4
ret ; return to previous task and wait for shitl5 to be done

wakeupshitl5: ; collect data from shitl5
in r16,sreg ; get sreg
push ri6 ; push sreg on stack
brts shitlShumread ; skip if its a humidity read
cbi eimsk,4 ; disable int4 as pe4 will still be low when returning
rcall shitl5read ; read out temperature data from shitl5 (msb)
rcall shitl5ack3 ; acknowledge reciept of bit
mov r3,r16 ; move msb to another register
rcall shitl5read ; read out temperature data from shit15 (Isb)
rcall shiti5ack4 ; end transmission ack
mov r4,r16 ; move Isb to another register
rcall shitl5humidity
pop r16 ; get off stack
out sreg,r16 ; return sreg
set ; set tregister to indicate humidity request in progress
reti ; continue with previous task

shitl5humread: ; read out humidity data from shit 15
rcall shitl5read ; read out humidity data from shit15 (msb)
rcall shitl5ack3 ; acknowledge reciept of bit
rcall shitl5read ; read out humidity data from shit15 (slab)

porte,porteO ; clock high - data bit three

porte,porteO ; clock low

porte,porte0 ; clock high - data bit four

porte,porte0 ; clock low

porte,porteO ; clock high - data bit five

porte,porteO ; clock low
ddre,dde4 ; data high
; data takes time to rise and needs setup time

porte,porte0 ; clock high - data bit six

porte,porteO ; clock low
ddre,dde4 ; data low
porte,porte0 ; clock high - data bit seven

porte,porteO ; clock low
ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop
nop
nop
nop
nop
sbi porte,porteO ; clock high - data bit eight
nop
nop
cbi porte,porteO ; clock low
;sbi ddre,dde4 ; data low - if last databyte is 1 - leave it high for ack

rcall shitl5ackO ; wait for acknowledge from shit15
sbi eimsk,4 ; enable int4
ret ; return to previous task and wait for shitl5 to take data

shiti5ack4: ; end transmission ack
;nops added to keep clock at 1MHz
sbi porte,porteO ; clock high - ack
nop
nop
cbi porte,porteO ; clock low
ret ; return to previous task

shitl5ack3: ; data recipet acknowledge
;nops added to keep clock at 1MHz
sbi ddre,dde4 ; pull data low
sbi porte,porte ; clock high - ack
nop

13 nop
cbi porte,porteO ; clock low
cbi ddre,dde4 ; release data line
ret ; return to previous task

shitl5read: ; read data from shiti5
;nops added to keep clock at 1MHz and meet data valid time of 250ns
clr ri6 ; clear the register where incoming data will be written
sbi porte,porteO ; clock high - data bit one
sbic pine,pine4 ; check if data is low
sbr r16,$80 ; write data bit one to register
chi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit two
shbic pine,pine4 ; check if data is low
sbr r16,$40 ; write data bit two to register
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit three
sbic pine,pine4 ; check if data is low
sbr r16,$20 ; write data bit three to register
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit four
sbic pine,pine4 ; check if data is low
sbr r16,$10 ; write data bit four to register
cbi porte,porteO ; clock low
nop
nop

sbi porte,porteO ; clock high - data bit five
sbic pine,pine4 ; check if data is low
sbr r16,$08 ; write data bit five to register
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit six
sbic pine,pine4 ; check if data is low
sbr r16,$04 ; write data bit six to register
cbi porte,porteO ; clock low
nop
nop

sbi porte,porteO ; clock high - data bit seven
sbic pine,pine4 ; check if data is low
sbr r16,$02 ; write data bit seven to register
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit eight
sbic pine,pine4 ; check if data is low
sbr r16,$01 ; write data bit eight to register
cbi porte,porteO ; clock low
ret ; return to previous activity

startshit15: ; start sequence
;nops added to keep clock at 1MHz
cbi ddre,dde4 ; set data high
cbi porte,porteO ; make sure clock is low
nop
nop
sbi porte,porteO ; pull clock high
sbi ddre,dde4 ; set data low
chi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high
cbi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup time
nop
nop
nop
nop
nop
cbi porte,porteO ; clock low
sbi ddre,dde4 ; data low
ret ; return to previous task

shitl5ackO: ; ack sequence for sending data

cbi ddre,dde4 ; release data line

shitl5ack2: ; check that data line is low
;nops added to keep clock at 1MHz
sbic pine,pine4
rjmp shiti5ack2
sbi porte,porteO ; clock high - ack
nop
nop
cbi porte,porteO ; clock low

shitl5ackl: ; check that line has been released

sbis pine,pine4 ; check that line has been released

rjmp shitl5ackl

ret ; return to previous task

shitiSreset: ; reset sequence if it gets out of phase
;status register preserved

;must be followed by data start sequence

;nops added to slow it down to 1MHz

cbi ddre,dde4 ; data high

sbi porte,porte0 ; clock high

nop
nop
cbi porte,porte0 ; clock low
nop
nop

sbi porte,porte0 ; clock high

nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high

L3 nop
nop
cbi porte,porte0 clock low
nop
nop
sbi porte,porte0 ; clock high
nop
nop
chi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high

nop
nop
chi porte,porte0 ; clock low

nop
nop
sbi porte,porte0 ; clock high

nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high

nop
nop
chi porte,porte0 ; clock low

nop
nop
sbi porte,porte0 ; clock high

nop
nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high

nop

nop

cbi porte,porte0 ; clock low

ret ; return to previous task

transmitrequest: ; transmit a request frame

sbi portb,portb4 ; pull slp_tr high to begin transmit

nop ; delay to make sure the pin is high long enough

cbi portb,portb4 ; pull slp_tr low

ldi r16,$60 ; load data byte - write buffer command

cbi portb,portb0 ; pull as low
rcall spiwrite ; send byte

ldi r16,$Ob ; load data byte - frame length byte

rcall spiwrite ; send byte
Idi r16,$40 ; load data byte - fcf(7:0) - broadcast,no ack

rcall spiwrite ; send byte

ldi r16,$88 ; load data byte - fcf(15:8) - short address,pan_ids equal

rcall spiwrite ; send byte

ldi r16,$01 ; load data byte - seq(7:0) - command(request)

rcall spiwrite ; send byte

Idi r16,low(panid) ; load data byte - pan id(7:0)

rcall spiwrite ; send byte

Idi r16,high(panid) ; load data byte - pan_id(15:8)

rcall spiwrite ; send byte
Idi r16,$ff ; load data byte - destination address (7:0) - broadcast
rcall spiwrite ; send byte

Idi r16,$ff ; load data byte - destination address (15:0) - broadcast

rcall spiwrite ; send byte

Idi rl6,low(srcaddr) ; load data byte - source address (7:0)

rcall spiwrite ; send byte

Idi rl6,high(srcaddr) ; load data byte - source address (15:8)

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high
ret ; return to previous duty

transmitpacket: ; transmit a packet

abi portb,portb4 ; pull slptr high to begin transmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slptr low

Idi r16,$60 ; load data byte - write buffer command

cbi portb,portb0 ; pull as low

rcall spiwrite ; send byte

Idi r16,$13 ; load frame length byte - total bytes excluding this one, +2

rcall spiwrite ; send byte

ldi r16,$61 ; load fcf(7:0) byte - $61 for data packet

rcall spiwrite ; send byte

ldi r16,$88 ; load fcf(15:8) byte - $88 for data packet

rcall spiwrite ; send byte

Idi r16,$07 ; load sequence byte - command (data from tethered node)

rcall spiwrite ; send byte

ldi r16,1ow(panid) ; load destination panid(7:0) byte

rcall spiwrite ; send byte

ldi r16,high(pan_id) ; load destination panid(15:8) byte

rcall spiwrite ; send byte
mov r16,r11 ; load destination address(7:0) byte
rcall spiwrite ; send byte
mov ri6,rlO ; load destination address(15:8) byte
rcall spiwrite ; send byte
idi rl6,low(src_addr) ; load source address(7:0) byte
rcall spiwrite ; send byte
ldi r16,high(src_addr) ; load source address(15:8) byte
rcall spiwrite ; send byte
mov r16,r14 ; load data byte - motor state register
rcall spiwrite ; send byte
mov r16,r12 ; load data byte - humidity
rcall spiwrite ; send byte
mov r16,r4 ; load data byte - temperatureO
rcall spiwrite ; send byte
mov r16,r3 ; load data byte - temperaturel

rcall spiwrite ; send byte
mov r16,r8 ; load data byte - windspeed Isb
rcall spiwrite ; send byte
mov rl6,r9 ; load data byte - windspeed msb
rcall spiwrite ; send byte
mov r16,r5 ; load data byte - light isb
rcall spiwrite ; send byte
mov rl6,r2 ; load data byte - light msb
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
ret ; return to previous duty

Appendix I

Room Node Firmware

249

.include "m1281def.inc"

; increment of 4 for src_addr
; csma_seed = 8 x src_addr
.equ src_addr = $aac4 ; place unique source address here
.equ csma_seed = low(srcaddr)*$08 ; random backoff exponent - must be unique,<$0800
.equ home_addr = $aabb ; local node des_addr
.equ pan_id = $abcd ; system panid
.equ retries = $38 ; high nibble = frame retries,low nibble = 2x(csma retries)
.equ channel = $36 ; tx/rx channel, $2b -> $3a valid

.org 0
rjmp start
.org int4addr
rjmp wakeupshitl5
.org int5addr
rjmp clearirq
.org OVF2addr
rjmp wakeup
.org ADCCaddr
rjmp wakeupadc
.org URXCladdr ; USART1 - Rx Complete
rjmp wakeuprx
.org OC4Aaddr
rjmp timer4int

lightsensor = pfO(adcO)
shit15 data = pe4(int4)
shiti5 clock = peO
activity sensor = pd7(tO)
xport = pd2,pd3(usartl),
rO frame length temporary register - write
rl frame length temporary register - read
r2 adc msb temporary register
r3 shiti5 msb temporary register
r4 shitl5 isb temporary register
r5 adc Isb temporary register
r6 joinrequest buffer index Isb
r7 joinrequest buffer index msb
r8 activity level temporary register
r9 ed_level temporary register
rIO usart temporary register
rll last rf tx packet length temporary register
r12 shitl5 humidity temporary register
r13
r14
r15 usart tx temporary register
ri6 temporary swap register for interrupts
r17 temporary swap register for interrupts
r18 temporary swap register for main
r19 temporary swap register for main
r20 wait loop register
r21 wait loop register
r22 hextoascii temporary register
r23 usart rx temporary register
r24 wakeup counter
r25 transmit temporary register
xregister is recieve buffer (r27(xh),r26(xl))
yregister is buffer start (r29(yh),r28(yl))
zregister is buffer end (r31(zh),r30(zl))

; data buffer set at 1k
; tregister is shit15 humidity/temperature irq differentiator
joinrequest buffer is 256byte
recieve buffer is 256byte

start: ; configure microcontroller registers
; using external oscillator (from RF unit)
; start up time 6CK + 65ms
; set to 1MHz initially, changed to 8MHz by clkm setup
ldi ri6,high(RAMEND)
out SPH,r16 ; Set Stack Pointer to top of RAM
Idi r6,low(RAMEND)
out SPL,r16
Idi r16,$17
out ddrb,rl6 ; set ss,sclk,mosi,slp_tr as output
ldi ri6,8
out portb,r16 ; enable pullup for miso
Idi r16,1
out spsr,rl6 ; set up spi - modeO, ck/2
ldi r16,$50
out spcr,rl6 ; set up spi - modeO, ck/2 (4MHz)
sbi portb,portbO ; set ss pin high
cbi portb,portb4 ; set slp_tr low
sbi porta,porta7 ; pull reset high on rf unit
sbi ddra,dda7 ; set reset pin as output
Idi r16,$0c
sts eicrb,r16 ; configure int5 for rising edge
Idi r16,$20
out eimsk,rl6 ; enable int5
clr zl ; set buffer end to beginning of sram
clr yl ; set buffer start to beginning of sram
Idi zh,$02 ; set buffer end to beginning of sram
Idi yh,$02 ; set buffer start to beginning of sram
Idi xh,$05 ; set recieve buffer to middle of sram
clr xl ; set recieve buffer to middle of sram
idi r23,$ff ; initialize receieve buffer count
idi r24,$04 ; set wakeup counter to 32s

;wait for rf unit to stabilize
Idi r21,$04 ; load the wait timer to 3 cycles (x3084/ck)
rcall waitloopi ; wait ~(9252/8MHz = 1.2ms) for rf unit to stabilize

;setup clkm
ldi r16,$c3 ; load first data byte - write trx_ctrl_0O register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
ldi r16,$04 ; load second data byte - lowest driver strength, clkm = 8MHz
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high
nop; idle for a bit as clock changes
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop

CD
0

nop
nop
nop
Idi r21,$ff ; load wait timer to 255 cycles (x3084/ck)
rcall waitloopl ; wait 100ms to make sure clock is stable

;setup analog inputs
Idi r16,$01
sts didrO,rl6 ; turn off input stage for adcO pin
Idi r16,$cO
sts admux,r16 ; use internal 2.56v as voltage reference,sample adcO

;setup tO as activity counter
idi r16,$06
out tccrOb,r16 ; set tO to external clock on tO falling edge

;setup t2 as rtc at 8s interval wakeup
Idi r16,$20
sts assr,r16 ; set t2 to assynchronous mode
ldi r16,$07
sts tccr2b,r16 ; set t2 prescaler to /1024 - 8s wakeup period

;make sure t2 is done rewriting itself
checkassr:

Ids r16,assr
andi r16,$1f ; check assr(4:0) clear
brne checkassr

cl dr r16
out tifr2,r16 ; clear all pending interrupts
Idi r16,$01
sts timsk2,r16 ; enable t2 overflow interrupt

;setup t4 as usart recieve counter
Idi r16,$00
sts ocr4ah,rl6 ; set counter top to 2ms
ldi r16,$10
sts ocr4al,r16 ; set counter top to 2ms

;setup shit15 - peO is data, pe4 is clock
sbi ddre,ddeO ; set clock as output
cbi porte,porte4 ; make sure pullups are off for data
rcall shitl5setup

;setup usartl
ldi r16,$98
sts ucsrlb,rl6 ; enable rx,tx,rx interrupt
ldi r16,$0c
sts ubrrll,r16 ; set baud rate to 38.4k

;configure rf unit registers

;go to trx_off state
rcall txoff ; go to trx_off state on rf unit

;setup short_addr_0O
Idi r16,$eO ; load first data byte - write shortaddr0 register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
Idi r16,low(src_addr) ; load second data byte - srcaddr Isb

rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;setup short_addr_l
idi r16,$el ; load first data byte - write short_addr_l1 register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
ldi r16,high(src_addr) ; load second data byte - srcaddr msb
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;setup pan_id_0
ldi r16,$e2 ; load first data byte - write pan id_0 register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
Idi r16.low(pan_id) ; load second data byte - pan id lsb
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;setup pan id_l1
ldi r16,$e3 ; load first data byte - write pan idl register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
Idi r16,high(panid) ; load second data byte - panid msb
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;setup phy_cc_ca - set channel id
ldi r16,$c8 ; load byte - write phyccca register
cbi portb,portbO ; pull as low
rcall spiwrite ; send data
Idi r16,channel ; load data byte -
rcall spivrite ; send data
sbi portb,portbO ; pull ss high

;setup phy_txpwr - turn crc on
ldi r16,$c5 ; load byte - write phytxpwr register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
Idi r16,$80 ; load data byte - autocrc=on,pwr=+3dbm
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;setup xah-ctrl - set frame and csma retries
ldi rl6,$ec ; load byte - write xah_ctrl register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
Idi r16,retries ; load data byte - frame and csma retries
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup csma_seed_l
ldi r16,$ee ; load byte - write csma_seed_l register
cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
ldi r16,high(csma_seed) ; load data byte - min_be-O,aack_set-O,i amcoord=O,csma(10:8)
rcall spiwrite ; send data
sbi portb,portbO ; pull as high

;setup csma_seed_0
ldi r16,$ed ; load first data byte - write csma_seed_l1 register

cbi portb,portbO ; pull ss low
rcall spiwrite ; send data
ldi r16,low(csma_seed) ; load data byte - csma(7:0)
rcall spiwrite ; send data
sbi portb,portbO ; pull ss high

;enable irqs
idi rl6,$ce ; load first data byte - write register irqmask command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
idi r16,$08 ; load second data byte - trxend only
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

;clear pending irqs on rf unit
Idi r16,$8f ; load first data byte - read register irqstatus command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte and clear pending irqs
sbi portb,portbO ; pull ss high

;clear pending irqs on micro
clr r16
out eifr,ri6 ; clear any interrupt flags that are set

;enable interrupts on micro
sei ; turn on interrupts

rcall rxonaack ; put the rf unit in rx_aack_on state

repeat: ; handle backlogged data

cpse zh,yh ; check if buffer has data
rjmp handle ; go to data handler
cpse zl,yl ; check if buffer has data
rjmp handle ; go to data handler
rjmp repeat ; keep checking for data

handle: ; deal with data
; needs fixing to deal with buffer overruns

senddatausart: ; send data over usart from buffer

ldi r18,$ff ; move header byte to transmit buffer
rcall txusart
Id r18,z+ ; get data frame length from buffer
mov rl,r18 ; move frame lenghth to temporary register
rcall txusart

senddatausartl: ; send data over usart from buffer

ld r18,z+ ; get data from buffer
rcall txusart
dec rl
brne senddatausartl
idi r18,low(srcaddr)
rcall txusart
Idi r18,high(src_addr)
rcall txusart
ldi r18,$fe
rcall txusart
ldi r18,$fd

rcall txusart
sbrc zh,2 ; check if buffer at 1k
ldi zh,$02 ; reset buffer pointer to bottom of buffer
rjmp repeat ; get next byte from buffer

txoff: ; send trxoff command to rf unit and wait till stable

ldi r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
Idi r16,$08 ; load second data byte - data trxoff bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high

checktxoff: ; check current state to see if in txoff state

Idi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$08
brne checktxoff
ret ; return to previous duty

pllon: ; send pll_on command to rf unit

ldi r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$09 ; load second data byte - data pll_on bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checkpllon: ; check current state to see if in pll_on state

ldi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$09
brne checkpllon
ret ; return to previous duty

rxonaack: ; send rxaack_on command to rf unit and wait till stable

Idi ri6,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$16 ; load second data byte - data rxaackon bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checkrxonaack: ; check current state to see if in rx_aack_on state

idi ri6,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte

Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$16
brne checkrxonaack
ret ; return to previous duty

txonaret: ; send trx_aret_on command to rf unit and wait till stable

Idi r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$19 ; load second data byte - data trx_aret_on bit
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high

checktxonaret: ; check current state to see if in tx_aret_on state

idi r16,$81 ; load first data byte - read register trx_status command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
cpi r16,$19
brne checktxonaret
ret ; return to previous duty

rxreadinterrupt: ; empty rx buffer while in interrupt

;ed_level is taken first because it is only valid for 224us
Idi r16,$87 ; load data byte - read ed_level
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
ldi r16,$00 ; load data byte - blank byte for reading
rcall spiwrite ; send byte
mov r9,ri6 ; move edlevel to temporary buffer
sbi portb,portbO ; pull ss high

;get data from recieve buffer
ldi r16,$20 ; load data byte - read buffer command
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - frame length byte
subi r16,$06 ; decrease frame length for bits to be removed
st y+,r16 ; move frame length to buffer
subi r16,$03 ; decrease frame length for buffer fitting
mov rO,r16 ; move frame length to temporary register
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcf(7:0)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcf(15:8)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - seq (used as command byte)
at y+,r16
dec r16 ; check if command byte is $01
brne notrequestl ; skip if not $01

notrequestl: ; continue with data loading

after interrupt fires

idi r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save
ldi r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save
Idi r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save
ldi r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save

reading
des_panid(7:0)
reading
des_panid(15:8)
reading
desaddr(7:0)
reading
des_addr(15:8)

getdatarfl: ; keep loading data till frame compelete

Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte
st y+,r16 ; move byte to buffer
dec rO ; decrement frame length byte
brne getdatarfl ; keep decrementing until done
ldi ri6,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(7:0)
ldi ri6,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(15:8)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - Iqi
sbi portb,portbO ; pull ss high
st y+,r16 ; move lqi to buffer
st y+,r9 ; move edlevel to buffer
sbrc yh,2 ; check if buffer at 1k
ldi yh,$02 ; reset buffer pointer to bottom of buffer
ret ; done writing data

transmit: ; transmit a packet

rcall checkrxonaack ; check to see if not in rxbusy state
rcall pllon ; go to pll on state
;check if there is data pending in rx buffer
ldi r16,$8f ; load first data byte - read register irq_status command
cbi portb,portbO ; pull ss low
rcall spivrite ; send byte
Idi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
sbrc r16,3 ; check if trx_end interrupt flag is set
rcall rxreadinterrupt ; empty rx buffer
rcall txonaret ; put the rf unit in tx_aret_on state

sbi portb,portb4 ; pull slptr high to begin transmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slptr low

Idi r16,$60 ; load data byte - write buffer command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
ld r16,x+ ; load data byte - frame length byte
mov r25,r16 ; load frame length byte to byte counter
ldi r17,$08 ; increase frame length for crc,panid,fcf,src_addr
add r16,r17 ; increase frame length
rcall spiwrite ; send byte
ldi r16,$61 ; load data byte - fcf(data)
rcall spiwrite ; send byte
ldi r16,$88 ; load data byte - fcf
rcall spiwrite ; send byte
ld r16,x+ ; load data byte - seq(command)

rcall spiwrite ; send byte
Idi r16,low(panid) ; load data byte - des_panid
rcall spiwrite ; send byte
Idi r16,high(pan_id) ; load data byte - des_panid
rcall spiwrite ; send byte
id r16,x+ ; load data byte - des_addr
rcall spiwrite ; send byte
ld r16,x+ ; load data byte - des_addr
rcall spiwrite ; send byte
Idi r16,low(srcaddr) ; load data byte - src_addr
rcall spiwrite ; send byte
ldi rl6,high(src_addr) ; load data byte - srcaddr
rcall spiwrite ; send byte
subi r25,$03 ; decrease byte counter for fixed transmit bytes
breq loaddone ; finish if no more bytes

dataload: ; load data to rf unit

id r16,x+ ; load data byte - data byte
rcall spiwrite ; send byte
dec r25 ; check byte in sequence
brne dataload ; branch if not last byte

loaddone: ; finish data transmission and return

sbi portb,portb0 ; pull ss high
ret ; return to previous duty

waitloopl: ; wait timer (-3084 cycles per value in r21)

ser r20
rcall wait2
nop
nop
nop
nop
nop
nop
nop
nop
dec r21
brne waitloopi
ret ; return to previous duty

spiwrite: ; read and write data over spi

out spdr,rl6 ; write transmitted byte to spi

wait: ; read spi register to check when done

in ri6,spsr
sbrs r16,spif
rjmp wait
in r16,spdr ; write recieved byte to spi register
ret ; return to previous duty

wait2: ; wait timer (-12 cylces per value in r20)

nop
nop
nop

nop
nop
nop
nop
nop
dec r20
brne wait2
ret ; return to previous duty

gotorx: ; return to rx_onaack state

;check successful transmit before switching back to rx
idi r16,$82 ; load data byte - read trx_state to get trac_status
cbi portb,portb0 ; pull as low
rcall spiwrite ; send byte
ldi r16,$00 ; load data byte - blank byte for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull ss high
andi r16,$eO ; mask off trac_status
cpi r16,$60 ; check if success or data_pending success
brlo gotorxi ; skip if success

;get data from rf unit tx buffer
Idi r16,$20 ; load data byte - read buffer command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - old frame length byte - do not save
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - new frame length byte
subi r16,$08 ; decrease frame length for bits to be removed
st y+,r16 ; move frame length to buffer
mov r17,r16 ; move frame length to temporary register
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcf(7:0)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcf(15:8)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - seq (used as command byte)
st y+,r16
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save des_panid(7:0)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save despanid(15:8)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - save desaddr(7:0)
st y+,r16
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - save des_addr(15:8)
st y+,r16
subi r17,$03 ; decrease frame length for buffer fitting
breq done7 ; finish if last byte
ldi ri6,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save src_addr(7:0)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save srcaddr(15:8)

getdatarf2: ; keep loading data till frame compelete

ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte

st y+,r16 ; move byte to buffer
dec r17 ; decrement frame length byte
brne getdatarf2 ; keep decrementing until done

done7: ; finish data storage

sbi portb,portbO ; pull as high
sbrc yh,2 ; check if buffer at 1k
ldi yh,$02 ; reset buffer pointer to bottom of buffer

gotorxl: ; turn on rxon_aack state

rcall pllon ; go to pll_on state
rcall rxonaack ; go to rx_on_aack state
pop r16 ; get off stack
out areg,r16 ; return sreg
reti ; return to previous task

clearirq: ; clear irq register and irq line

in r16,sreg ; get sreg
push r16 ; push sreg on stack
ldi r16,$8f ; load first data byte - read register irqstatus
cbi portb,portbO ; pull ss low
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high

ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - frame length byte
subi r16,$06 ; decrease frame length for bits to be removed
st y+,r16 ; move frame length to buffer
mov r17,r16 ; move frame length to temporary register for joinrequest check
subi r16,$03 ; decrease frame length for buffer fitting
mov rO,r16 ; load frame length to byte counter
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcf(7:0)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcf(15:8)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - seq (used as command byte)
st y+,r16
cpi r16,$01 ; check if command byte is $01 (joinrequest)
breq rxrequest ; go to joinrequest if $01

notrequest: ; continue with normal operation

command to clear interrupt

checkrf: ; check rf unit state

ND Idi r16,$81 ; load first data byte - read register trx_status command
01 cbi portb,portbO ; pull ss low

rcall spiwrite ; send byte
ldi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte
sbi portb,portbO ; pull as high
cpi r16,$16 ; check if in rx_on
breq datacollect ; get data
cpi r16,$11 ; check if in busy_rx
breq datacollect ; get data
cpi r16,$lf ; check if in state transition
breq checkrf ; keep checking till in a new state
cpi r16,$12 ; check if in busy_tx state
breq checkrf ; keep checking till in a new state
rjmp gotorx ; else put rf unit in rxonaack state

;removed checkcrc because crc is automatically checked with rx_aack

datacollect: ; get data from rf unit
;ed_level is taken first because it is only valid for 224us after interrupt fires
Idi r16,$87 ; load data byte - read ed-level
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte
ldi r16,$00 ; load data byte - blank byte for reading
rcall spiwrite ; send byte
mov r9,r16 ; move ed_level to temprorary buffer
sbi portb,portbO ; pull ss high

;get data from recieve buffer
ldi r16,$20 ; load data byte - read buffer command
cbi portb,portbO ; pull as low
rcall spiwrite ; send byte

idi r16,$00 ; load data byte
rcall spivrite ; send byte -
ldi r16,$00 ; load data byte
rcall spiwrite ; send byte -
ldi r16,$00 ; load data byte
rcall spiwrite ; send byte -
ldi r16,$00 ; load data byte
rcall spiwrite ; send byte -

- blank for reading
do not save des_panid(7:0)
- blank for reading
do not save des_panid(15:8)
- blank for reading
do not save des_addr(7:0)
- blank for reading
do not save des_addr(15:8)

getdatarf: ; keep loading data till frame compelete

Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte
st y+,r16 ; move byte to buffer
dec rO ; decrement frame length byte
brne getdatarf ; keep decrementing until done
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(7:0)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(15:8)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - Iqi
sbi portb,portbO ; pull ss high
st y+,r16 ; move lqi to buffer
st y+,r9 ; move ed_level to buffer
sbrc yh,2 ; check if buffer at 1k
ldi yh,$02 ; reset buffer pointer to bottom of buffer
pop r16 ; get off stack
out sreg,rl6 ; return sreg
reti ; done writing data

rxrequest: ; perform joinrequest storage

ldi r16,$00 ; load data byte
rcall spiwrite ; send byte -
ldi r16,$00 ; load data byte
rcall spiwrite ; send byte -
Idi r16,$00 ; load data byte
rcall spiwrite ; send byte -
ldi r16,$00 ; load data byte
rcall spiwrite ; send byte -

- blank for reading
do not save des_panid(7:0)
- blank for reading
do not save des_panid(15:8)
- blank for reading
do not save des_addr(7:0)
- blank for reading
do not save des_addr(15:8)

getdatarf3: ; keep loading data till frame compelete

ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte
st y+,r16 ; move byte to buffer
dec rO ; decrement frame length byte
brne getdatarf3 ; keep decrementing until done
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(7:0)
Idi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(15:8)
ldi r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - lqi
sbi portb,portb0 ; pull ss high
st y+,r16 ; move lqi to buffer
st y+,r9 ; move ed_level to buffer
; transmit data out
rcall checkrxonaack ; check to see if not in rx_busy state
rcall pllon ; go to pll on state
rcall txonaret ; put the rf unit in txaret_on state

sbi portb,portb4 ; pull slp_tr high to begin transmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slptr low

sbiw yh:yl,$04 ; reset data buffer to begining of join request
Idi r16,$60 ; load data byte - write buffer command
cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte

>3 Idi rl6,$0b ; load data byte - frame length byte
CA rcall spiwrite ; send byte

Idi r16,$61 ; load data byte - fcf(data)
rcall spiwrite ; send byte
idi r16,$88 ; load data byte - fcf
rcall spiwrite ; send byte
ldi r16,$06 ; load join confirm command
rcall spiwrite ; send byte
ldi r16,low(pan_id) ; load data byte - des_panid
rcall spiwrite ; send byte
Idi rl6,high(pan_id) ; load data byte - despanid
rcall spiwrite ; send byte
ld ri6,y+ ; load data byte - des_addr
rcall spiwrite ; send byte
Id r16,y+ ; load data byte - desaddr
rcall spiwrite ; send byte
Idi rl6,low(src_addr) ; load data byte - src_addr
rcall spiwrite ; send byte
Idi r16,high(src_addr) ; load data byte - src_addr
rcall spiwrite ; send byte
sbi portb,portb0 ; pull ss high
adiw yh:yl,$02 ; reset pointer
sbrc yh,2 ; check if buffer at 1k
ldi yh,$02 ; reset buffer pointer to bottom of buffer
pop ri6 ; get off stack
out sreg,r16 ; return sreg
reti ; done writing data

txusart: ; transmit a byte via usartl for main

Ids rl0,ucsrla
sbrs r10,UDRE1

rjmp txusart
sts udri,ri8 ; send out data
ret ; go back to previous task

timer4int: ; reset usart timer due to bad packet

ldi r16,$08 ; turn off timer
sts tccr4b,r16 ; turn off timer
Idi r16,$00
sts timsk4,r16 ; disable t4 interrupts
ldi r23,$ff ; reset usart byte counter
ldi xl,$00 ; reset buffer to bottom
reti ; return from interrupt

wakeup: ; take data every 32s

in r16,sreg ; get sreg
push r16 ; push sreg on stack
dec r24 ; decrement wakeup counter
breq tOread ; take data if 32s
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti

t0read: ; get activity level from tO

in r8,tcnt0 ; move activity to temporary register
clr r16 ; reset activity level counter
out tcntO,r16
rcall shit15temp ; initiate shit15 read - humidity included
Idi r16,$df ; take measurement from adcO
sts adcsra,rl6 ; turn on adc,clear interrupt flag,enable interrupt,set to /128 (62.5kHz)
ldi r24,$04 ; reset wakeup counter to 32s
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti

wakeupadc: ; wakeup and return to previous task

in r16,sreg ; get sreg
push ri6 ; push sreg on stack
lds r5,adcl ; load lsb to r5
lds r2,adch ; load msb to r2
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti

shit15setup: ; set the device to low res mode
;talk to shiti5, only works for cpu clock <=2MHZ
;code modded with nops to operate at 8MHz
;data pin can never be output high - leave pullup off
;needs external pullup resistor for proper operation
;sleep operation disabled for this application
;always read temperature before humidity

rcall shitl5reset ; reset the device in case its fuxxored
rcall startshit15 ; send start sequence

;data sequence - register write command $06
;nops added to keep clock at 1MHz
sbi porte,porte0 ; clock high - data bit one

nop
nop
chi porte,porteO ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit two
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit three
nop
nop
cbi porte,porteO ; clock low
nop
nop
abi porte,porte0 ; clock high - data bit four
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit five
nop
nop
chi porte,porteO ; clock low
cbi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup time
nopCA nop

nop
nop
nop

nop
nop

nop
sbi porte,porte0 ; clock high - data bit seven
nop
nop
cbi porte,porteO ; clock low
sbi ddre,dde4 ; data low
sbi porte,porteO ; clock high - data bit eight
nop
nop
cbi porte,porteO ; clock low

rcall shitl5ackO ; wait for ack from shit15

;data sequence - register write data $01
;nops added to keep clock at 1MHz
sbi ddre,dde4 ; data low
sbi porte,porteO ; clock high - data bit one
nop
nop
cbi porte,porteO ; clock low
nop
nop

sbi porte,porteO ; clock high - data bit two
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit three
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit four
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit five
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit six
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit seven
nop
nop
cbi porte,porte0 ; clock low
cbi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup time
nop
nop
nop
nop
nop
sbi porte,porte0 ; clock high - data bit eight
nop
nop
cbi porte,porteO ; clock low

rcall shitl5ackO ; wait for ack from shitl5
ret ;done setting up the device

shitl5temp: ; read temperature data from shiti5
;send read temp command
rcall startshit15 ; send start sequence

;data sequence - read temperature command $03
sbi porte,porteO ; clock high - data bit one
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit two

nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit three
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit four
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit five
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit six
nop
nop
cbi porte,porteO ; clock low
cbi ddre,dde4 ; data high
nop ; data takes time to rise and needs setup time

30 nop

nop
nop
nop
nop
sbi porte,porteO ; clock high - data bit seven
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit eight
nop
nop
cbi porte,porteO ; clock low
;sbi ddre,dde4 ; data low - if last databyte is 1 -

rcall shitl5ackO ; wait for ack from shitl5

leave it high for ack

sbi eimsk,4 ; enable int4
ret ; return to previous task and wait for shitl5 to be done

wakeupshit15: ; collect data from shitl5
in r17,sreg ; get sreg
push r17 ; push sreg on stack
brts shitl5humread ; skip if its a humidity read
cbi eimsk,4 ; disable int4 as pe4 will still be low when returning
rcall shitl5read ; read out temperature data from shit15 (msb)
rcall shiti5ack3 ; acknowledge reciept of bit
mov r3,r16 ; move msb to another register
rcall shitl5read ; read out temperature data from shitl5 (lsb)
rcall shiti5ack4 ; end transmission ack

mov r4,r16 ; move isb to another register
rcall shitl5humidity
pop r17 ; get off stack
out sreg,rl7 ; return sreg
set ; set tregister to indicate humidity request in progress
reti ; continue with previous task

shitl5humread: ; read out humidity data from shit 15
rcall shitl5read ; read out humidity data from shit15 (msb)
rcall shitl5ack3 ; acknowledge reciept of bit
rcall shit15read ; read out humidity data from shitl5 (Isb)
rcall shit15ack4 ; end transmission ack
mov r12,r16 ; move humidity data to temporary register
Idi r16,$07 ; load frame length
st y+,r16 ; move frame length to buffer
Idi r16,$03 ; set command byte to data from stationary nodes
st y+,r16 ; move frame type to buffer
st y+,r5 ; move adc Isb to buffer
st y+,r2 ; move adc msb to buffer
st y+,r4 ; move shit15 temperature isb to buffer
st y+,r3 ; move shiti5 temperature msb to buffer
st y+,r12 ; move shiti5 humidity to buffer
st y+,r8 ; move activity level to buffer
sbrc yh,2 ; check if buffer at 1k
idi yh,$02 ; reset buffer pointer to bottom of buffer
pop r17 ; get off stack
out sreg,r17 ; return sreg
clt ; reset to temperature read
reti ; return with previous task

shiti5humidity: ; read humidity data from shiti5
;send read humidity command
rcall startshit15 ; send start sequence

;data sequence - read humidity command $05
;nops added to keep clock at 1MHz
sbi porte,porte0 ; clock high - data bit one
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit two
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porteO ; clock high - data bit three
nop
nop
cbi porte,porte0 ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit four
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porte0 ; clock high - data bit five

nop

nop

cbi porte,porte0 ; clock low

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time

nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit six

nop

nop

cbi porte,porte0 ; clock low

sbi ddre,dde4 ; data low
sbi porte,porteO ; clock high - data bit seven

nop

nop

cbi porte,porte0 ; clock low

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time

nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit eight

nop

nop

cbi porte,porte0 ; clock low

;sbi ddre,dde4 ; data low - if last databyte is I - leave it high for ack

rcall shitl5ackO ; wait for acknowledge from shitl5

sbi eimsk,4 ; enable int4

ret ; return to previous task and wait for shitl5 to take data

shitl5ack4: ; end transmission ack
;nops added to keep clock at 1MHz
sbi porte,porte0 ; clock high - ack

nop

nop

chi porte,porte0 ; clock low

ret ; return to previous task

shitl5ack3: ; data recipet acknowledge

;nops added to keep clock at 1MHz

sbi ddre,dde4 ; pull data low

sbi porte,porte0 ; clock high - ack

nop

nop

chi porte,porte0 ; clock low
cbi ddre,dde4 ; release data line
ret ; return to previous task

shitl5read: ; read data from shit15
;nops added to keep clock at 1MHz and meet data valid time of 250ns

clr r16 ; clear the register where incoming data will be written

sbi porte,porte0 ; clock high - data bit one

sbic pine,pine4 ; check if data is low

sbr r16,$80 ; write data bit one to register
cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit two

sbic pine,pine4 ; check if data is low

sbr r16,$40 ; write data bit two to register

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit three

sbic pine,pine4 ; check if data is low

sbr r16,$20 ; write data bit three to register

chi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit four
sbic pine,pine4 ; check if data is low

sbr r16,$10 ; write data bit four to register

cbi porte,porte0 ; clock low

nop

nop

shbi porte,porte0 ; clock high - data bit five

sbic pine,pine4 ; check if data is low

sbr r16,$08 ; write data bit five to register

cbi porte,porte0 ; clock low

nop

nop
sbi porte,porte0 ; clock high - data bit six

sbic pine,pine4 ; check if data is low

sbr r16,$04 ; write data bit six to register

chi porte,porte0 ; clock low

nop
nop
sbi porte,porte0 ; clock high - data bit seven

sbic pine,pine4 ; check if data is low

sbr r16,$02 ; write data bit seven to register

cbi porte,porte0 ; clock low

nop

nop
sbi porte,porte0 ; clock high - data bit eight

sbic pine,pine4 ; check if data is low

sbr r16,$01 ; write data bit eight to register

cbi porte,porte0 ; clock low

ret ; return to previous activity

startshit15: ; start sequence
;nops added to keep clock at 1MHz

cbi ddre,dde4 ; set data high

chi porte,porte0 ; make sure clock is low

nop

nop

sbi porte,porte0 ; pull clock high

sbi ddre,dde4 ; set data low

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time

nop
nop
cbi porte,porteO ; clock low
sbi ddre,dde4 ; data low
ret ; return to previous task

shitl5ackO: ; ack sequence for sending data

cbi ddre,dde4 ; release data line

shitl5ack2: ; check that data line is low
;nops added to keep clock at 1MHz
sbic pine,pine4
rjmp shiti5ack2
sbi porte,porteO ; clock high - ack
nop
nop
cbi porte,porteO ; clock low

shitl5ackl: ; check that line has been released

sbis pine,pine4 ; check that line has been released
rjmp shiti5ackil
ret ; return to previous task

shitl5reset: ; reset sequence if it gets out of phase
;status register preserved
;must be followed by data start sequence
;nops added to slow it down to 1MHz

Z3 cbi ddre,dde4 ; data high
sbi porte,porteO ; clock high
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high

nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high
nop
nop
cbi porte,porteO ; clock low
nop
nop
sbi porte,porteO ; clock high
nop
nop
cbi porte,porteO ; clock low
ret ; return to previous task

wakeuprx: ; process incoming bytes on usartl

in r16,sreg ; get sreg
push r16 ; push sreg on stack
ldi r16,$00
sts tcnt4h,r16 ; set counter to zero
sts tcnt4l,rl6 ; set counter to zero
Ids r16,udrl ; load recieved byte
;subi r16,$20 ; test code to make ascii work
;lsl r16 ; test code to make ascii work
cpi r23,$ff ; check to see if you already have the header byte
brne usartrx ; go to data recieve

rxheadercheck: ; check for header byte

;cpi r16,$aO ; check if header byte - testcode to make ascii work
cpi rl6,$ff ; check if header byte - $ff
brne done5 ; skip if not
ldi r16,$2f ; set up byte timeout counter
out tifr4,rl6 ; clear all t4 interrupt flags
Idi r16,$02
sts timsk4,rl6 ; turn on t4 interrupt
ldi r16,$Od
sts tccr4b,rl6 ; turn on counter, set to 128us period
clr r23 ; set byte number register to 0

done5:
pop r16 ; get off stack
out sreg,rl6 ; return sreg
reti ; return to previous task

usartrx: ; recieve data

tst r23 ; check for first byte

brne usartrxdata; skip if not first byte

clr xl ; reset buffer to bottom

st x+,r16 ; store recieved byte

mov r23,r16 ; move frame length to byte number
pop r16 ; get off stack

out sreg,rl6 ; return sreg

reti ; return to previous task

usartrxdata: ; load data bytes

st x+,rl6 ; store recieved byte

dec r23 ; check for last byte

brne done5 ; continue

Idi xl,$O00 ; go to bottom of buffer

ld r16,x+ ; load frame length byte
cpi r16,$03 ; check if there are at least three bytes

brlo done6 ; throw away the packet if its invalid

cpi r16,$40 ; check if there are more than 64 bytes
brsh done6 ; dont transmit if too big

Id r16,x ; load command byte
cpi r16,$08 ; check if a transmit packet

brne done6 ; skip if not a transmit packet

idi xl,$O0 ; reset to packet length byte

rcall transmit ; transmit from buffer if valid

done6: ; reset counter and return to previous task

Idi r16,$08 ; turn off timeout counter

sts tccr4b,rl6 ; turn off timeout counter
Idi r16,$00
sts timsk4,rl6 ; disable t4 interrupts
Idi r23,$ff ; set byte number to $ff to reset count
pop r16 ; get off stack
out sreg,r16 ; return sreg
reti ; return to previous task

262

Appendix J

System Control Code

263

import socket
import glob
import logging
import logging.handlers
import thread
import time
import ConfigParser
import numpy
import scipy
import scipy.linalg

hvacconfig = ConfigParser.RawConfigParser() # create configuration object
hvacconfig.read('hvacconfigl.cfg')

LOG FILENAME = 'data.txt'

logger = logging.getLogger('BarnMonitor')
hdlr = logging.handlers.TimedRotatingFileHandler(

LOGFILENAME, when='midnight', backupCount=100)
formatter = logging.Formatter('%(message)s')
hdlr.setFormatter(formatter)
logger. addHandler (hdlr)
logger.setLevel(logging.INFO)

def temperature(t):
return (-39.1 + .072 * t)

def temperaturel(t):
return (-39.4 + .072 * t)

def humidity(h):
return (-2.0468 + 0.5872 * h + -.00040845 * h * h)

UDP_IP="18.85.45.140"
UDPPORT=10001

UDP_IP_SEND="18.85.45.185"
UDPPORTSEND=10001

def send_command(dst, parml, parm2): # map destinations to room nodes

if dst == 156:

sendadd = "18.85.45.185"
elif dst == 160:

send_add = "18.85.45.131"
elif dst == 176:

send_add = "18.85.45.145"
elif dst == 180:

send_add = "18.85.45.170"
elif dst == 184:

send_add = "18.85.45.142"
elif dst == 188:

send-add = "18.85.45.185"
elif dst == 192:

sendadd = "18.85.16.117"
elif dst == 200:

sendadd = "18.85.45.185"
elif dst == 204:

sendadd = "18.85.16.117"
message = chr(Oxff) + chr(Ox06) + chr(OxO8) + chr(dst) + chr(Oxaa) + chr(Ox08) + chr(parml) + chr(parm2)
sock = socket.socket(socket.AF_INET, # Internet

socket.SOCKDGRAM) # UDP
sock.sendto(message, (send_add, UDP_PORT_SEND))
sock.closeO
print "SENT: Ox%x OxYx Oxx Ox%x Oxx Ox%x Ox%x Oxx IP: %s PORT: .s" % (ord(message[O]),ord(message[ll]),ord(message[2]),

ord(message3]) ,ord(message[4]),ord(message[5]),ord(messageC6]),ord(message[71), send_add, UDP_PORT)

class Location:

create location object
def __init__(self, data_id): # takes a packet which is Erssi, dst] and id of the portable node being tracked

self.__lock = thread.allocate_lockO # get a thread lock in case the timeout happens when data is being transferred
self.__first = True # set start flag to first time
self.__packet = [0, 01 # initialize packet
self.__location_out = 0 # clear the output buffer
self .__location_array = [] # clear the location array
self.__location_ountl = 1 # last sample - for lowpassing
self.__location_out2 = 2 # two samples ago - for lowpassing
self.__location_out3 = 0 # temp register for lowpassing
self.__data_id = dataid # id of portable being tracked

run location object
def run(self, packet):

264

'I-i -li~ilii iiii i;i ; -- ; -~ -~- - ;':i;*;I -- li; ; -

self.__packet - packet
self .__lock.acquire() # get a lock in case the data is being modified
if self.__first: # check if first packet

self.__locationarray = [self.__packet] # initialize packet array with first rssi value
self.__first - False # unset start flag
thread.start_new_thread(self.__sort, ()) # start timeout timer for packet aggregation

else:
self.__locationarray.append(packet) # put next rssi value on to array

self .__lock.releaseO # release lock

allow for passing of location to other programs
def where(self):

return self .__location_out3

sort locations after timeout
def __sort(self):

time.sleep(.05) # set timeout for packet waiting
self .__lock.acquireO # get a lock in case the data is being modified
self .__location_array.sortO # sort the array to find highest rssi
self.__location_out = self .__locationarray[-11]1] # get location for highest rssi
self ._location_out3 = self ._locationout # make a temporary copy
if self.__location_outl == self.__location-out2: # check if the location changed

self.__location_out3 = self ._location_out2 # keep it the same if it changed
self.__location_out2 = self.__location_outl # move past sample to two samples ago
self.__location-outl = self.__locationout # move sample to past sample

self.__first = True * reset start flag
self.__locationarray - [] * clear the location array
logger.info("%f Xd %d %d" V (time.time(), 13, self ._dataid, self ._location_out3))
self.__lock.releaseO # release lock

log the data to a file for testing

class Room:

create room object
def __init__(self, dataid, buffsize, levelin, levelout, controlid): * takes in room motion sensor and room id

self.__occupied - True # variable for determining if room is occupied
self motion = 0 # motion sensor variable
self timer - 0 # manual control timeout
self ._timerl - time.timeO # entry control timeout
self.__timer2 = time.timeO # comfort control timeout
self._ time = time.timeO # current time
self.__data_id = dataid # id of room node
self.__temp - 0 # room temperature buffer
self._hum = 0 # room humidity buffer
self.__control = [] # control vector
self.__normal - True # initialize auto/normal control flag
self.__setback - False # initialize setback control flag
self._buff = (0 for i in range(70)] # create data buffer for first entry
self._levelin = levelin # threshold for detecting person in room
self.__levelout - levelout # threshold for detecting no one in room
self.__daytime - 0 # buffer for time of day

self.__entry - True # in system flag for entry
self.__entrybuff = eval(hvacconfig.get('entrybuffer', str(self.__data_id))) # create entry buffer

self._buffsize = buffsize # setup buffer size for occupancy calculation
self.__controlid = controlid
self._flip = False
self.__range - False

check to see if someone is in the room
def run(self, motion):

self.__motion - motion >= 1 * clip off all motion above one
del self.__buffC-1] # do buffer rotate
self.__buff.insert(0,self.__motion) # do buffer rotate
self.__time time.time()
self.__daytime = int(divmod(self .__time, 86400)[1])
if (self.__occupied -- True) and (self._.time - self.__timer < 10800): # if occupied - check to see i

if (numpy.sum(self.__buff [:self.__buffsize]) >- self.__levelout): # see if there is motion
self .__timer - self ._time * reset counter if occupied

elif (self.__occupied -- True) and (self._time - self.__timer >- 10800): * if timer expires - set to
self.- occupied - False # set occupancy flag
logger.info("%f %d Xd" X (self.__time, 15, self._.data_id)) # log the data to a file for testing

else:
if (numpy.sum(self. __buff :self.__buffsize]) >= self.__levelin): # see if there is motion

els

if still occupied

onot occupied

self._occupied = True # set occupancy flag
self .__timer - self ._time * reset timer
logger.info("%f %d 'd" A (self.__time, 14, self.__data_id)) # log the data to a file for testing
e:
for x in self.__entry_buff[:]:

if self.__time - x[O] > 604800: # check if a week old
self._entrybuff .remove(x) # eliminate the element

for i in range(len(self.__entry_buff)):
the next line checks if an entry time is within n hours
* first check is time till entry, second check is time since entry
if (divmod(self._ _entrybuffi] [1] - self . daytime, 86400) (11 < 7500) or

(divmod(self . daytime - self.__entrybuff (i] (1], 86400) [1i < 6000):
self.__range - True
break

265

else:
self.__range = False

if (self.__entry == True) and (self. _time - self. _timerl < 10800): # if occupied - check to see if still occupied
if (numpy.sum(self. buff) >= 10): # see if there is motion

self.__timerl = self.- time # reset counter if occupied
elif (self.__entry == True) and (self.__time - self._timerl >= 10800): # if timer expires - set to not occupied

self.__entry = False # set occupancy flag
logger.info("%f %d %d" % (self._time, 21, self.__data_id)) # log the data to a file for testing

else:
if (numpy.sum(self.__buff) >= 40): # see if there is motion

self.__entry = True # set occupancy flag
self ._timerl = self.__time # reset timer
logger.info("%f %d %d %d" % (self.__time, 20, self.__dataid, self.__daytime)) # log
self.__entrybuff .append((self.__ time, self.__daytime]) # store time for predictions
hvacconfig.set('entrybuffer',str(self.__dataid),str(self.__entry_buff)) # store buffer to configuration file
f=open('hvacconfigl.cfg', 'b') # send data to file
hvacconfig.write(f)
f.closeO(

if self.-f lip == False: # do an alternating bit to limit control cycle to once a minute
self.__flip = True

else:
self.__flip = False
if (self.__occupied == True) and (self.__time - self.__timer < 400): # find out who it is

self._ control = [] # reset control vector
if self.__data_id == 32: # only allow specific users control

if (location 96.whereO == self.__data-id) and (self.__time - activity_96.activeO < 90):
self .__control = self . control + [activity_96.comfortO]

if (location 104.whereO == self.- data_id) and (self.__time - activityl104.activeO < 90):
self.__control = self.__control + [activity_104.comfortO]

if (location_28.where(== self._ data_id) and (self.__time - activity_28.activeO < 90):
self.__control = self.__control + [activity_28.comfortO]

elif self.__data_id == 36:
if (location_4.whereO == self.__data_id) and (self.__time - activity_4.active() < 90):

self .__control = self ._control + [activity_4.comfortO]
if (location 8.whereO == self.__dataid) and (self.__time - activity_8.activeO < 90):

self .__control = self. _control + (activity 8.comfortO]
if (location_20.whereO == self.__data id) and (self.__time - activity_20.activeO < 90):

self . control = self __control + [activity_20.comfortO]
if (location_24.whereO == self.__data_id) and (self.__time - activity_24.activeO < 90):

self ._ control = self __control + [activity-24.comfortO]
if (location_28.whereO == self.__data_id) and (self.__time - activity28.activeO < 90):

self ._control = self .__control + [activity_28.comfortO]
if (location 76.whereO == self.__data id) and (self.__time - activity_76.activeO < 90):

self. -control = self __control + [activity-76.comfortO1
if (location_84.whereO == self.__data_id) and (self.__time - activity_84.active() < 90):

self .__control = self .__control + [activity_84.comfortO]
if (location88.where() == self.__data_id) and (self.__time - activity_88.activeO < 90):

self.__control = self.__control + [activity_88.comfortO]
if (location_96.whereO == self.__dataid) and (self.__time - activity_96.activeO < 90):

self .__control = self ._control + (activity_96.comfortO]
if (location_104.whereO == self.__data_id) and (self.__time - activityl104.activeO < 90):

self.__control = self. -control + [activity_104.comfortO]
elif self.__dataid == 40:

if (location_4.whereO == self.__data_id) and (self.__time - activity_4.activeO < 90):
self . control = self .__control + [activity_4.comfort]()

if (location_8.whereO == self.__dataid) and (self.__time - activity_8.active < 90):
self.__control = self.__control + [activity_8.comfortO)

if (location_20.where == self.__data_id) and (self.__time - activity_20.activeO < 90):
self.__control = self.__control + [activity_20.comfortO]

if (location_24.whereo == self.__data_id) and (self.__time - activity_24.activeO < 90):
self .__control = self ._control + [activity_24.comfortO)

if (location_28.whereO == self.__data_id) and (self.__time - activity_28.activeO < 90):
self.__control = self._ control + [activity_28.comfortO

if (location_76.whereO == self. _data_id) and (self.__time - activity_76.activeO < 90):
self.__control = self._ control + [activity_76.comfort()]

if (location_84.whereO == self.__dataid) and (self.__time - activity_84.activeO < 90):
self . control = self ._control + [activity.84.comfortO]

if (location_88.whereO == self.__data id) and (self.__time - activity_88.activeO < 90):
self . control = self ._control + (activity_88.comfortO]

if (location_96.where == self.__data_id) and (self.__time - activity_96.activeO < 90):
self.__control = self.__control + [activity_96.comfort()]

if (location_104.whereO == self.__data_id) and (self.__time - activity_104.activeO < 90):
self.__control = self.__control + [activity_104.comfortO]

elif self.__dataid == 44:
if (location_8.whereO == self.__data_id) and (self.__time - activity_8.active < 90):

self.__control = self.__control + [activity_8.comfort()]
if (location_88.whereO == self.__data_id) and (self.__time - activity_88.activeO < 90):

self .__control = self .__control + [activity_88.comfortO]1
elif self ._dataid == 48:

if (location 4.whereO == self._data_id) and (self.__time - activity_4.activeO < 90):
self .__control = self .__control + [activity_4.comfort()

if (location 20.whereO == self.__data_id) and (self.__time - activity_20.activeO < 90):
self.__control = self.__control + [activity_20.comforto]

elif self.__data_id == 196:
if (location_76.whereO == self.__data_id) and (self ._time - activity_76.activeO < 90):

self.__control = self.__control + [activity_76.comfortO]
if len(self.__control) > 0: # if someone was in the room

266

/

self._normal - False # turn off normal control
self.__setback - False # turn off setback control
self.__control = numpy.mean(self.__control) # arbitrate between users
self .__controlid.run(self .__control) # control damper
self ._timer2 - self.__time

elif self.__time - self.__timer2 > 400: # check if comfort control in past 6 minutes
self. _normal = True
self . setback = False

elif (self.__occupied -- True) or (self.__range -- True):
self.__normal - True # set to normal control
self.__setback - False # turn off setback control

else:
self.__normal - False
self ._setback - True

output occupied global variable
def occupied(self):

return self.__occupied

def normal(self):
return self ._normal

def setback(self):
return self ._setback

class Window:

create window object
def __init__(self, dataid): # takes in data motor state, wind speed

self.__manual - False # variable for determining if window is under manual control
self.__closed - False # variable for determining if window is closed
self..motor - 0 # motor state variable
self.__wind - 0 # wind speed variable
self ._timer - 0 # manual control timeout
self._ data_id = data_id # id of window under control

do over speed control and variable determination
def run(self, motor, wind):

self.__motor - motor
self.__wind vwind
self.__closed = (((self.__motor) & Ox03) -- Ox02) # test for jam closed
if ((self.__motor) & 0x68) > 1: # test if buttons pressed or manual bit set

self.__timer = time.time() # reset timeout counter
self.__manual = True # set manual flag

else: # if no buttons, test for 3 hour timeout
self.__manual - ((time.time() - self.__timer) < 10800) * see if its been 3 hours since last manual control

if (self.__manual -- False) and (self.__closed -- False): # if not under manual control and open
if self.__wind > 1000: # check if wind speed too high

sendcommand(self.__dataid, Ox06, Ox20) # close window

output manual global variable
def man(self):

return self.__manual

output closed global variable
def shut(self):

return self. closed

class Activity:

initialize activity buffers
def __init__(self, start_act, start_var, reset_act, resetvar, cont_temp, expire, data_id):

self . startact - startact
self._ start.var - startvar
self.__reset_act - resetact
self.__reset_var - resetvar
self.__cont_temp - cont_temp
self .__expire - expire
self.__timeout - 0
self.__lasttime - 0
self.__time - 0
self.__buffl - 0
self._ buff2 - 0
self.__buff = (0, 0, 0]
self.__dataid - data_id
self.__dataid_cold = dataid + 1
self. _data-idhot - dataid + 2
self._ data-idtran - dataid + 3
self.__gainid - dataid + 200
self. time active - 0 # buffer for last time active
self._hum - 0
self.. button - 0
self._ butt-time - 0
self.__activity - False # activity flag
self.__active2 - False * activity timeout flag

267

self .- _timer2 = time.timeO
self.__buff_cold = eval(hvacconfig.get('comfortbuffer', str(self.__data_id_cold))) # create cold buffer
self. buff_hot = eval(hvacconfig.get('comfortbuffer', str(self. _data_id_hot))) # create hot buffer
self.__mean_cold = []
self.__mean_hot = []
self.__scatcold = []
self.__scat_hot = []
self.__tran_hot = []
self.__tran_cold = []
self.__transform = numpy.matrix(eval(hvacconfig.get('comfortbuffer', str(self.__data_id_tran)))).T
self.__boundary = hvacconfig.getfloat('comfortbuffer', str(self.__data_id))
self.__comf_dis = 0
self . timeactive2 = 0
self.__temp = 80
self.__hum = 35
self.__gain = hvacconfig.getfloat('comfortbuffer', str(self.__gain_id))

def run(self, act, temp, hum, button):
self.__act = act
self.__temp = temp
self.__hum = hum
self. button = button
self.__time = time.time()
if (self.__time - self.__last_time > 55) and (self.__button == 0): # check if not repeat packet or button press

self.__buff = [self.__buff2, self.__buffl, self.__act] # create buffer
if (self.__time - self.__timeout < self._expire): # check if activity timeout has expired

if (numpy.var(self._buff) > self.__reset_var) or (self. .act > self.__reset.act): # check for restart conditions
self.__activity = True
logger.info("%f %d d %d" % (self.__time, 18, self.__data.id, 100))
self.__timeout = self ._time
self ._timeactive = self.__time

elif (self.__act > self._.cont_temp): # check for continue conditions
self.- activity = True
self .__time-active = self.__time
logger.info("%f %d %d %d" X (self.__time, 18, self.__dataid, 100))

else:
self . activity = False
logger.info("%f %d %d %d" % (self.__time, 18, self.__dataid, 0))

else:
if (numpy.var(self.__buff) > self.__start_var) or (self.__act > self.__start_act): # check for start conditions

self ._timeout = self.__time
self.__activity = True
self.__time_active = self._-time
logger.info(" f %d %d %d" % (self.__time, 18, self.__data id, 100))

else:
self.__activity = False
logger.info("%f %d %d %d" % (self._time, 18, self._data_id, 0))

self._last_time = self.__time # reset timer with last packet time
self.__buff2 = self.__buffl # shift buffer
self.__buffl = self. act # shift buffer
if (self.__active2 == True) and (self.__time - self.__time_active > 900): # check if its been 20 minutes

self.__active2 = False # set 15min activity flag to false
elif (self.__active2 == False) and (self.__activity == True):

self._ active2 = True
self.__timer2 = self.__time
logger.info("%f %d %d %d" ' (self.__time, 22, self.__data_id, 100))

if (self.__activity == True) and (self.__time - self.__timer2 > 900):
self.__time_active2 = self.__time

if (self.__button > 0) and (self.__time - self.__butt_time > 1800) and (self.__activity == True) and
(self.__time - self.__timer2 > 900):

self.__butt_time = self.__time
if self.__button == 8:

if len(self.__buff_cold) >= 9:
del self.__buff_cold[-l]

self ._buff_cold.insert(0, [self .__temp, self .__hum])
hvacconfig.set('comfortbuffer', str(self._-data_id_cold), str(self.__buff_cold)) # store buffer to configuration
f=open('hvacconfigl.cfg','wb') # send data to file
hvacconfig.write(f)
f.close()
self .__fisherO

elif self.__button == 1:
if len(self.__buffhot) >= 9:

del self.__buff_hot [-1]
self .__buf f_hot.insert(0, [self. _temp, self. __hum])
hvacconfig.set('comfortbuffer', str(self.__dataidhot), str(self.__buff_hot)) # store buffer to configuration
f=open('hvacconfigl.cfg','wb') # send data to file
hvacconfig.write(f)
f.close()
self .__fisherO

def __fisher(self):
self.__scat_cold = numpy.matrix([[0, 0], [0, 0]])
self.__scat_hot = numpy.matrix(CEO, 01, [0, 0]])
self.__mean_hot = numpy.matrix(numpy.mean(self.__buff_hot,0))
self._ meancold = numpy.matrix(numpy.mean(self.__buff_cold,0))
for i in range(len(self.__buffcold)):

k = numpy.subtract(self.__buffcold[i], self._mean cold)

268

self .__scatcold - numpy.add(self.__scat_cold, (k.T * k))
for i in range(len(self.__buff_hot)):

k - numpy.subtract(self. _buff_hot(i], self .__meanhot)

self.__scat_hot - numpy.add(self.__scathot, (k.T * k))

self.__transform - numpy. subtract(self.__mean_cold, self.__mean_hot)
self.__transform = self.__transform.T
self.__transform - (scipy.linalg.inv(numpy.add(self.__scatcold, self.__scathot))) * self.__transform
self.__tran_cold - self.__buff_cold * self.__transform
self.__tran_hot - self.__buff_hot * self.__transform

self.__boundary = numpy.mean(numpy.vstack((numpy.msort(self . tran_cold) [:2], numpy.msort(self .__tran_hot) [-2:])))
self. _gain = -1.5 / (abs((self.__mean_hot * self.__transform) - self.__boundary) +

abs((self._ meancold * self.__transform) - self.__boundary))
self.__gain = self.__gain[0,01
hvacconfig.set(comfortbuffer', str(self.__gain_id), str(self.__gain))

hvacconfig.set('comfortbuffer', str(self.__dataid), str(self.__boundary))

g=numpy.array(self. __transform)
hvacconfig.set('comfortbuffer', str(self. dataid_tran), str([g[0,0], g[1,0]]))

f=open('hvacconfigi.cfg','wb'
)
send data to file

hvacconfig.vwrite(f)

f.close()

def active(self):
return self.__timeactive2

def comfort(self):
self .__comf_dis = ((numpy.matrix([self ._temp, self.__hum]) * self._transform)[0,03 - self.__boundary) *

(self._gain) * 0.4

logger.info("%f %d %d %f %f %f %f %f %f Xf" X (self.__time, 23, self.__dataid, self.__comfdis, self.__gain,
self.__boundary, self.__transform[0,0], self .__transform(1,0], self.__temp, self.__hum))

if self._comfdis > 1:
self.__comf_dis - 1

elif self . comfdis < -1:

self ._comf-dis = -1
return self.__comf_dis

class Thermostat:

def __init__(self, data_id, roomid, control_id, setback_temp, normaltemp):

self.__dataid - data id
self ._controlid - controlid

self.__temp = 72
self._hum = 40
self ._room_id = room id
self. cold = False

self._ setb - setback_temp

self. _norm = normaltemp

def run(self, temp, hum):

self ._hum - hum

self.__temp - temp

if self.__room_id.normal() =- True:
self .__control-id.run(self.__temp - self.__norm) # normal temperature

elif self.__roomid.setback() -- True:
self .__controlid.run(self .__temp - self.__setb) # setback temperature

def temp(self):
return self.__temp

def hum(self):
return self.__hum

def enth(self):

return ((.007468 * self.__temp * self.__temp) - (.4344 * self.__temp) + 11.1769) * self.__hum / 100 +
(.2372 * self.__temp) + .1230

def cold(self):
if self.__roomid.normal() - True:

return self.__temp < self.. norm - 1 # normal lower limit

elif self.__roomid.setback() -- True:

return self.__temp < 65 # setback lower limit
else:

return self.__temp < 70 # auto lower limit

class Outdoor:

def __init__(self, data_id, therm_id, windowv_id, command_id):

self.__data_id = data_id

self.__therm_id = therm_id
self.__control_id = window_id
self.__command_id - command_id
self._.temp = 72
self. _hum = 60
self.__enth - 30

def run(self, temp, hum):

269

self.__temp = temp
self ._hum= hum
if (self.__thermid.coldO == True) and (self..__control_id.manO == False) and (self .__control id.shutO == False):

send_command(self.__command_id, Ox06, Oxff) # shut window full
elif (self.__control_id.manO == False) and (self.__therm_id.coldO == False): # is it under manual or is it too cold

self.__enth = ((.007468 * self.__temp * self._temp) - (.4344 * self.__temp) + 11.1769) * self.__hum / 100 +
(.2372 * self.__temp) + .1230

logger.info("Xf %d %d %f %f" (time.timeO, 19, self.__data_id, self.__enth, self.._therm_id.enthO))
if (self.__controlid.shut() == True) and (self.__temp < 78) and (self.__enth < (self.__thermid.enthO - 1)):

send_command(self.__command_id, Ox08, Ox80O) # open window a bit
logger.info("%f %d %d %d" % (time.timeO, 16, self.__data-id, 100))

elif (self.__control_id.shutO == False) and (self.__enth > (self._ therm_id.enthO)):
send_command(self.__command_id, Ox06, Oxff) # full close window
logger.info("%f %d %d %d" % (time.time(), 16, self.__data-id, 0))

def temp(self):
return self._temp

def hum(self):
return self. hum

class Control:

def __init__(self, dst, offset, pgain, igain):
self.__dst = dst
self.__pgain = pgain
self. _igain = igain
self.__time = 0
self ._lasttime = time.time()
self._offset = offset
self.__position = 0
self .__lasterror = 0

def run(self, error):
self.__error = error
self ._time = time.timeO
if self.__time - self.__last_time > 50: # remove repeat packets

self.__pos = (self.__error - self.__last_error) / (self.__time - self.__last_time) # get positional data
if ((self.__position > 255) and (self.__error > 0)) or ((self.__position < -255) and (self._error < 0)):

self ._signal = int(self.__pos * self.__pgain)
else:

self.__signal = int((self.__pos * self.__pgain) + (self.__igain * self.__error)) # make control signal
self.__lasterror = self ._error
self.__last_time = self.__time
if self.__signal > 253:

self.__signal = 254
elif self.. signal < -253:

self.__signal = -254
if (abs(self.-_error) > self.__offset) and (abs(self.__position) < 255):

if (self.__signal > 0):
send_command(self.__dst, Ox08, self.__signal)
if (self.__dst == 188):

send_command(Oxc8, Ox08, self.__signal) # repeat signal for second unit
elif (self.__signal < 0):

send_command(self .__dst, Ox06, abs(self.__signal))
if (self.__dst == 188):

send_command(Oxc8, Ox06, abs(self.__signal)) # repeat signal for second unit
self.__position = self. _position + self.__signal

location_4 = Location(4)
location 8 = Location(8)
location20 = Location(20)
location 24 = Location(24)
location_28 = Location(28)
location_76 = Location(76)
location_84 = Location(84)
location_88 = Location(88)
location_96 = Location(96)
location_i04 = Location(104)

control_160 = Control(160, .1, 8000, 10)
control_176 = Control(176, .1, 8000, 10)
control_180 = Control(180, .1, 8000, 10)
control-184 = Control(184, .1, 8000, 10)
control_188 = Control(188, .1, 4000, 5)
control_204 = Control(204, .1, 8000, 10)

room_32 = Room(32, 12, 7, 4, control_188)
room_36 = Room(36, 12, 7, 4, control180)
room_40 = Room(40, 12, 7, 4, control_176)
room_44 = Room(44, 12, 7, 4, control_184)
room_48 = Room(48, 12, 7, 4, control_160)
room_196 = Room(196, 12, 7, 4, control_204)

activity_4 = Activity(70, 200, 45, 15, 80, 360, 4)

270

------. l--..-r.---~~+-------- ~iii~---

activity_8 - Activity(120, 200, 70, 25, 80, 360, 8)
activity_20 = Activity(70, 200, 50, 25, 80, 360, 20)
activity_24 = Activity(70, 200, 45, 15, 80, 360, 24)
activity_28 = Activity(50, 200, 20, 15, 80, 360, 28)
activity_76 - Activity(70, 200, 30, 15, 80, 360, 76)
activity_84 = Activity(100, 200, 65, 25, 80, 360, 84)
activity88 = Activity(70, 200, 30, 15, 80, 360, 88)
activity-96 = Activity(70TO, 200, 50, 20, 80, 360, 96)
activity_104 = Activity(70, 200, 30, 15, 80, 360, 104)

window_156 = Window(156)
window_192 - Window(192)

thermo216 = Thermostat(216, room_196, control_204, 78, 72)
thermo_220 = Thermostat(220, room_44, control_184, 80, 74)
thermo_224 = Thermostat(224, room_48, control_160, 78, 72)
thermo_228 - Thermostat(228, room_32, control_188, 80, 74)
thermo-232 = Thermostat(232, room_36, control_180, 76, 72)
thermo_236 = Thermostat(236, room_40, control_176, 76, 72)

outdoor_148 = Outdoor(148, thermo_228, windowl156, 156)
outdoor-172 = Outdoor(172, thermo_216, window_192, 192)

sock = socket.socket(socket.AF_INET, * Internet
socket.SOCK_DGRAN) # UDP

sock.bind((UDP_IP,UDP_PORT))

while True:
data, addr - sock.recvfrom(1024) # buffer size is 1024 bytes
if (len(data)==ord(data(l])+6) and (ord(data[O]) == Oxff) and (ord(dataCord(data[ll])+4]) == Oxfe) and

(ord(data(ord(data[ll)+5]) == Oxfd):
typel = ord(data[2])
if typel -- Ox03: # room data

arc - ord(data(9])
light = ord(dataC4]) * 256 + ord(dataC3])
temp = temperaturel(ord(dataC6]) * 256 + ord(data[5]))
hum = humidity(ord(data[7]))
act - ord(dataC8])

logger.info("f 'd %d %f %f %d 'd" ' (time.timeO(), typel, light, temp, hum, act, src))
if src == 32:

room_32.run(act)
elif src -== 36:

room_36.run(act)
elif src ==- 40:

room_40.run(act)
elif src -= 44:

room_44.run(act)
elif arc == 48:

room_48.run(act)
elif src --== 196:

room_196.run(act)
elif typel -- Ox00: # location

src - ord(data[3])
dst = ord(data[7])
lqi = ord(data[5])
rssi = ord(data[6])
logger.info("%f %d 'd 'd 'd 'd" ' (time.timeO, typel, src, lqi, rssi, dst))
if arc -= 4:

location_4.run([rssi, dst])
elif src --== 8:

location_8.run([rssi, dst])
elif src -- 20:

location_20.run([rasi, dst])
elif arc -= 24:

location_24.run([rssi, dst])
elif arc -- 28:

location_28.run([rsi, dat])
elif arc -= 76:

location_76.run([rssi, dst])
elif arc == 84:

location_84.run(Erasi, dat])
elif arc ==- 88:

location_88.run([rssi, dat])
elif arc -- 96:

location_96.run(Erasi, dst])
elif arc -= 104:

locationl104.run([rasi, dst])
elif typel --== Ox02: # data from portable

arc = ord(data[3])
dst = ord(data[15])
button = ord(data[5])
light = ord(data[12]) * 256 + ord(data[11])
temp = temperature(ord(data[8]) * 256 + ord(data[7]))
hum = humidity(ord(data[6]))
act = Ox3ff - (ord(data[10]) * 256 + ord(data[9]))

271

lqi = ord(data[13])
rssi = ord(data[14])
logger.info("f %d %d %d Xf f %d d d d %d" (time.time(), typel, src, button, hum, temp, act, light, iqi,

rssi, dst))
if src == 4:

activityA4.run(act, temp, hum, button)
elif src == 8:

activity-8.run(act, temp, hum, button)
elif src == 20:

activity20.run(act, temp, hum, button)
if src == 24:

activity_24.run(act, temp, hum, button)
elif src == 28:

activity_28.run(act, temp, hum, button)
elif src == 76:

activity_76.run(act, temp, hum, button)
elif src == 84:

activity 84.run(act, temp, hum, button)
elif src == 88:

activity 88.run(act, temp, hum, button)
elif src == 96:

activity_96.run(act, temp, hum, button)
elif src == 104:

activity_104.run(act, temp, hum, button)
elif src == 148:

outdoor_148.run(temp, hum)
elif src == 172:

outdoor_172.run(temp, hum)
elif src == 216:

thermo_216.run(temp, hum)
elif src == 220:

thermo_220.run(temp, hum)
elif src == 224:

thermo_224.run(temp, hum)
elif src == 228:

thermo_228.run(temp, hum)
elif src == 232:

thermo_232.run(temp, hum)
elif src == 236:

thermo_236.run(temp, hum)
elif typel == Ox07: # data from control

src = ord(data[3])
dst = ord(data[18])
motor = ord(data[5])
light = ord(data[12]) * 256 + ord(data[11])
temp = temperaturei(ord(data[8]) * 256 + ord(data[7]))
hum = humidity(ord(data[6]))
wind = ord(datali0) * 256 + ord(data[9])
lqi = ord(data[13])

rssi = ord(data[14])
logger.info("Xf %d %d %d %f Xf Xd %d %d d d" X (time.time(), typel, src, motor, hum, temp, wind, light, lqi,

rssi, dst))
if src == 156:

window_156.run(motor, wind)
elif src == 192:

window_192.run(motor, wind)
#elif typel == Ox09: # data from power

#src = ord(data[3])
#dst = ord(data[9])
#power = ord(data[6])*256 + ord(data[5])
#1qi = ord(dataC7])
#rssi = ord(data[8])
#logger.info("Xf %d %d %d d %d %d" X (time.time(), typel, src, power, lqi, rssi, dst))

elif typel == OxOl: # join request
src = ord(data[3])
dst = ord(data[7])
lqi = ord(data[5])
rssi = ord(data[6])
logger.info("f Xd %d dd %d Xd" X (time.time(), typel, src, lqi, rssi, dst))

else:
print("UNKNOWN PACKET TYPE length: X.d type: Xd src: Ox%x" X (ord(data(l]), ord(data[2]), ord(data[3))))

else:
print("BAD PACKET TYPE length: .d type: %d src: Ox%x" X (ord(data(1]), ord(data[2]), ord(data[3])))

272

Bibliography

[1] US Bureau of Labor Statistics. Employee tenure in the mid-1990s. 1997.
http://www.bls.census.gov/cps/pub/tenure-0296.htm.

[2] Smart Home Systems, Inc. http://www.smarthomeusa.com/.

[3] Xanboo, Inc. http://www.xanboo.com/.

[4] X10, Ltd. http://www.xl0.com/homepage.htm.

[5] Carrier Corporation: Infinity System.
http://www.residential.carrier.com/products/controls/wireless.shtml.

[6] Eaton Corporation: HOMEheartbeat.
http://www.homeheartbeat.com/HomeHeartBeat/index.htm.

[7] Home Comfort Zones, Inc.: MyTemp. http://www.homecomfortzones.com.

[8] Federspiel Controls. http://www.federspielcontrols.com.

[9] W.J. Fisk and A.H. Rosenfeld. Estimates of improved productivity and health from
better indoor environments. Indoor Air, 7:158-172, 1997.

[10] J. Kreider, P. Curtiss, and A. Rabi. Heating and Cooling of Buildings: Design for
Efficiency. McGraw-Hill, 2002.

[11] U.S. Energy Information Administration. Petroleum navigator. 2007.

[12] U.S. Energy Information Administration. Energy consumption by sector. 2006
Annual Energy Review, 2007.

[13] U.S. Energy Information Agency. Residential end use electricity consumption.
Residential End Use Consumption Survey, 2001, 2007.

[14] U.S. Energy Information Administration. Preliminary end use consumptin estimates.

Commercial Building End Use Consumption Survey, 1999, 2003.

[15] R.C. Diamond. An overview of the US Building Stock. Indoor air quality handbook,
2001.

273

[16] M.C. Mozer. The neural network house: An environment that adapts to its
inhabitants. In Proceedings of the American Association for Artificial Intelligence
Spring Symposium on Intelligent Environments, pages 110-114, Menlo Park, CA,
1998. AAAI Press.

[17] M. Hordeski. HVAC Control in the New Millenium. Marcel Dekker, 2001.

[18] M. Arima, E.H. Hara, and J.D. Katsberg. A fuzzy logic and rough sets controller for
hvac systems. In Proceedings of the IEEE WESCANEX, pages 133-138, 1995.

[19] P.Y. Glorennec. Application of fuzzy control for building energy management.
Building Simulation: International Building Performance Simulation Association,
pages 197-201, 1991.

[20] S. Huang and R.M. Nelson. Rule development and adjustment strategies of a fuzzy
logic controller for an hvac system - parts i and ii (analysis and experiment).
ASHRAE Transacations, 100(1):841-856, 1994.

[21] S.J. Hepworth and A.L. Dexter. Neural control of non-lindear hvac plants. In
Proceedings of the Third IEEE Conference on Control Applications, Vol. 3, pages
1849-1854, 1994.

[22] K.J. Astrom, T. Hagglund, and A. Wallenborg. Automatic tuning of digital
controllers with applications to hvac plants. Automatica, 29:1333-1343, 1993.

[23] P. Curtiss, J. Kreider, and M. Bralnclemuehl. Local and global control of commercial
building hvac systems using artificial neural networks. In Proceedings of the American
Control Conference, Vol. 3, pages 3029-3044, 1994.

[24] A. Kelly. Understanding hvac economics. Building Operation Management, Oct. 2002.

[25] I.H. Lin and H.L. Broberg. Internet based monitoring and controls for hvac
applications. IEEE Industry Applications Magazine, 8(1):49-54, 2002.

[26] E. Arens and et al. How ambient intelligence will improve habitability and energy
efficiency in buildings. Ambient Intelligence, pages 63-80, 2005.

[27] C. Lin, D. Auslander, and C. Federspiel. Multi-sensor single-acutuator control of hvac
systems. Energy Systems Laboratory, 2002.

[28] M. Kintner-Meyer and R. Conant. Opportunities of wireless sensors and controls for
building operation. Energy Engineering Journal, 102(5):27-48, 2005.

[29] Alcala R. and et al. Fuzzy control of hvac systems optimized by genetic algorithms.
Applied Intelligence, 18(2):155-177, 2003.

[30] N. Nassif, S. Kajl, and R. Sabourin. Optimization of hvac control system strategy
using two-objective genetic algorithm. HVAC&R Research, 11(3), 2005.

274

[31] M Anderson and et al. Mimo robust control for heating, ventilating and air
conditioning (hvac) systems. In Proceedings of the 41st IEEE Conference on Decision

and Control, pages 167-172, 2002.

[32] A. Yahiaoui and et al. Specificatin for real-time control using hybrid systems in

building automation systems. In Proceedings of the 17th International
Air-conditioning and Ventilation Conference, 2006.

[33] G. Guarracino and et al. Advanced control systems for energy and environmental
performance of buildings. In Solar Thermal Technologies for Buildings, pages 65-89,
London, UK, 2003. James and James Ltd.

[34] Q.G. Wang and et al. Specification for real-time control using hybrid systems in
building automation systems. In Proceedings of the American Control Conference,
Vol. 6, pages 4353-4357, 1999.

[35] S. Sharples, V. Callaghan, and G. Clarke. A multi-agent architecture for intelligent
building sensing and control. International Sensor Review Journal, 1999.

[36] M. Liu, D.E. Claridge, and W.D. Turner. Continuous commissioning of building
energy systems. Journal of Solar Energy Engineering, 125(3):275-281, 2003.

[37] Cimetrics, Inc.: infometrics. http://www.cimetrics.com/home/infometrics/.

[38] P.O. Fanger. Thermal Comfort. Danish Technical Press, Copenhagen, 1970.

[39] R. De Dear. Thermal comfort in practice. Indoor Air, 14(s7):32-39, 2004.

[40] N.A. Taylor, N.K. Allsopp, and D.G. Parkes. Preferred room temperature of young vs
aged males: the influence of thermal sensation, thermal comfort, and affect. Journals

of Gerontology Series A: Biological and Medical Sciences, 50(4):216-221, 1995.

[41] J.F. Nicol and M.A. Humphreys. Adaptive thermal comfort and sustainable thermal
standards for buildings. Energy & Buildings, 34(6):563-572, 2002.

[42] B. Ivanov, O. Zhelondz, L. Borodulkin, and H. Ruser. Distributed smart sensor
system for indoor climate monitoring. In KONNEX Scientific Conference, Miinchen,
2002.

[43] W.L. Tse and W.L. Chan. A distributed sensor network for measurement of human
thermal comfort feelings. Sensors & Actuators: A. Physical, 144(2):394-402, 2008.

[44] C.C. Federspiel and H. Asada. User-adaptable comfort control for HVAC systems. In
Journal of Dynamic Systems, Measurement, and Control, volume 116, pages 474-487,
Sep 1994.

[45] A.C. Megri, I.E. Naqa, and F. Haghighat. A Learning Machine Approach for

Predicting Thermal Comfort Indices. International journal of ventilation,
3(4):363-376, 2005.

275

[46] RR Gonzalez, Y. Nishi, and AP Gagge. Experimental evaluation of standard effective
temperature a new biometeorological index of man's thermal discomfort.
International Journal of Biometeorology, 18(1):1-15, 1974.

[47] F. Bauman, A. Baughman, G. Carter, and E. Arens. A field study of PEM (Personal
Environmental Module) performance in Bank of America's San Francisco office
buildings. Berkeley, Center for Environmental Design Research, University of
California. Final report submitted to Johnson Controls World Services, Inc, 1997.

[48] D. Wang, E. Arens, T. Webster, and M. Shi. How the number and placement of
sensors controlling room air distribution systems affect energy use and comfort. In
International Conference for Enhanced Building Operations, 2002.

[49] G.S. Brager, G. Paliaga, and R. de Dear. Operable windows, personal control, and
occupant comfort. Ashrae Transactions, 110(2):17-35, 2004.

[50] M.J. O'Neill. Effects of workspace design and environmental control on office workers'
perceptions of air quality. In Human Factors and Ergonomics Society Annual Meeting
Proceedings, pages 890-894. Human Factors and Ergonomics Society, 1992.

[51] "The Jetsons". Hanna-Barbera Productions, 1962-1988.
http://www.imdb.com/title/tt0055683/.

[52] M. Weiser, R. Gold, and J.S. Brown. The origins of ubiquitous computing research at
PARC in the late 1980s. IBM Systems Journal, 38(4):693-696, 1999.

[53] S. Elrod, G. Hall, R. Costanza, M. Dixon, and J. Des Rivieres. The responsive
environment: Using ubiquitous computing for office comfort and energy management.
Technical report, Technical Report CSL-93-5, Xerox Palo Alto Research Center, 1993.

[54] H. Lee, J.S. Choi, and R. Elmasri. A Conflict Resolution Architecture for the
Comfort of Occupants in Intelligent Office. In Intelligent Environments, 2008 IET

4th International Conference on, pages 1-8, 2008.

[55] U. Rutishauser, J. Joller, and R. Douglas. Control and learning of ambience by an
intelligent building. IEEE Transactions on Systems, Man and Cybernetics, Part A,
35(1):121-132, 2005.

[56] T.E. Sterk. Building upon Negroponte: a hybridized model of control suitable for
responsive architecture. Automation in Construction, 14(2):225-232, 2005.

[57] R. Vastamiki, I. Sinkkonen, and C. Leinonen. A behavioural model of temperature
controller usage and energy saving. Personal and Ubiquitous Computing,
9(4):250-259, 2005.

[58] W.M. Kroner. An intelligent and responsive architecture. Automation in
construction, 6(5-6):381-393, 1997.

[59] Arch-Os. http://www.arch-os.com/.

276

; ~__l__~_____~j(~;CIr^_Llilil_;;_ iiii.il~-iil;i ii.. ..ii--.li.ii.li~.. i.._ --ii(l- .~ii-(-ii-i-iili..lii i.i ill. -li..liil.. --- - -...--~--.~--.--...~-ili..-.~-l.- ll-ll

[60] P. Anders and M. Phillips. Arch-os: An operating system for buildings.
http://www.chrisoshea.org/files/cybrid/rpl50.pdf.

[61] LuxLabs, Ltd. dba MeshNetics. ZigBit OEM Modules. Datasheet, Apr 2008.
http://www.meshnetics.com/netcatfiles/Image/M-251 01-(ZigBit OEM Module
Product Datasheet).pdf.

[62] Atmel Corporation. ATmegal281 8-bit Microcontroller. Datasheet, Aug 1997.
http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf.

[63] Atmel Corporation. AT86RF230. Datasheet, Feb 2009.
http://www.atmel.com/dyn/resources/prod_documents/doc5131.pdf.

[64] Texas Instruments, Inc. TPS780 Series. Datasheet, May 2008.
http://focus.ti.com/lit/ds/symlink/tps780270200.pdf.

[65] STMicroelectronics, Inc. M41t series. Datasheet, Aug 2006.
http://www.st.com/stonline/products/literature/ds/10397.pdf.

[66] SENSIRION AG. SHT15. Datasheet, Apr 2009.
http://www.sensirion.com/en/pdf/product_information/Datasheet-humidity-sensor-
SHTlx.pdf.

[67] Intersil Americas Inc. ISL29102. Datasheet, Jul 2008.
http://www.intersil.com/data/fn/FN6483.pdf.

[68] Analog Devices, Inc. ADXL330. Datasheet, Sep 2006.
http://www.analog.com/static/imported-files/datasheets/ADXL330.pdf.

[69] Murata Manufacturing Company, Ltd. Piezoelectric Ceramic Sensors (PIEZOTITE).
Datasheet, Jun 2002.

[70] Texas Instruments, Inc. OPA2369. Datasheet, Dec 2008.
http://www.analog.com/static/imported-files/datasheets/ADXL330.pdf.

[71] Fairchild Semiconductor Corporation. FDLL300. Datasheet, Mar 2000.
http://www.fairchildsemi.com/ds/FD/FDLL300A.pdf.

[72] National Semiconductor Corporation. LMD18200. Datasheet, Apr 2005.
http://www.national.com/ds/LM/LMD18200.pdf.

[73] Wintrol Window Motor. http://www.wintrol.com/standardmotorkit.htm.

[74] Belimo Aircontrols, Inc. CM Series Actuators. Datasheet, Jan 2009.
http://www.belimo.us/bellib/DamperActuators/CM_Actuators.pdf.

[75] Kestrel 1000. http://www.kestrelmeters.com/Kestrel-1000-wind-meter.pro.

[76] Lantronix, Inc. XPort Direct. Datasheet, Dec 2007.
http://www.lantronix.com/pdf/XPort-DirectIG.pdf.

277

[77] Panasonic Electric Works Co., Ltd. MP Motion Sensor. Datasheet.
http://pewa.panasonic.com/pcsd/product/sens/pdf/amn.pdf.

[78] J. G. Ziegler and N. E. Nichols. Optimum settings for automatic controllers. ASME
Transactions, 64:759-768, 1942.

[79] Calculating the Enthalpy of Air.
http://cr4.globalspec.com/thread/3873/Calculating-the-Enthalpy-of-Air.

[80] Y. Kawahara, H. Kurasawa, and H. Morikawa. Recognizing user context using mobile
handsets with acceleration sensors. In IEEE International Conference on Portable
Information Devices, 2007. PORTABLE07, pages 1-5, 2007.

[81] National Weather Service. http://www.weather.gov/climate/index.php?wfo=box.

[82] D.E. Claridge, J.S. Haberl, S. Katipamula, D.L. O'Neal, D. Ruch, L. Chen,
T. Heneghan, S. Hinchey, JK Kissock, and J. Wang. Analysis of Texas LoanSTAR
Data. In 7th Annual Symposium on Improving Building Systems in Hot and Humid
Climates, pages 9-10, 1990.

[83] D. Westphalen and S. Koszalinski. Energy Consumption Characteristics of
Commercial Building HVAC Systems. Volume II: Thermal Distribution, Auxiliary
Equipment, and Ventilation, 1999.

[84] JLM Hensen. Literature review on thermal comfort in transient conditions.
Environment, 25(4):309-316.

[85] M. Malinowski, M. Moskwa, M. Feldmeier, M. Laibowitz, and J.A. Paradiso.
CargoNet: a low-cost micropower sensor node exploiting quasi-passive wakeup for
adaptive asychronous monitoring of exceptional events. In Proceedings of the 5th
international conference on Embedded networked sensor systems, pages 145-159.
ACM New York, NY, USA, 2007.

278

i "-" -~~'-';l~~~~-~i~""":~~i''lii I- ---;;: ;-ii-- -; i:-;-;-;;;;; ;;;r-~_~_~_l;~ ""~~X'-i -

