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Abstract

Creating an appropriate indoor climate is essential to worker productivity and personal
happiness. It is also an area of large expenditure for building owners. And, with rising fuel
costs, finding ways of reducing energy consumption is more important than ever. This idea
is promoted further by the notion that most buildings are currently being run inefficiently,
due to the non-adaptable nature of their control systems. Not just the occupants, but also
the buildings themselves have ever changing needs, for which a single setpoint is inadequate.

This dissertation presents a novel air-conditioning control system, focused around the
individual, which remedies these inefficiencies through the creation of personalized envi-
ronments. To date, the measurement of thermal preference has been limited to either a
complex set of sensors attempting to determine a Predicted Mean Vote (PMV) value, or
to direct polling of the user. The former is far too cumbersome and expensive for practical
application, and the latter places an undue burden on the user. To overcome these limita-
tions, an extremely low power, light weight, wireless sensor is developed which can measure
temperature, humidity, activity and light level directly on the user’s body. These data are
used to immediately infer user comfort level, and to control an HVAC system in an attempt
to minimize both cost and thermal discomfort.

Experimental results are presented from a building under continual usage, modified
with a wireless network with multiple sensing and actuating modalities. For four weeks, ten
building occupants, in four offices and one common space, are thermally regulated via wrist-
worn sensors controlling the local air-conditioning dampers and window operator motors.
Comparisons are made to the previous four week period of standard air-conditioning control,
showing an increase in comfort, while decreasing energy usage at the same time. The
difficult problems of control adaptation, comfort determination, and user conflict resolution
are addressed. Finally, the limitations of this format of control are discussed, along with
the possible benefits and requirements of this proactive architecture.

Thesis Supervisor: Joseph A. Paradiso
Title: Associate Professor, Program in Media Arts and Sciences
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Chapter 1

Introduction

1.1 Motivation

Our urban landscape is dotted with thousands of buildings which remain fixed in our lives
like the features of a mountainside. This long time scale of architectural evolution can
create a comforting and stable environment in a world where the rest of our lives seem to
be changing faster than we can adjust. Perhaps there are areas where a more flexible and
responsive physical environment could aid our lives, and even protect us from the rapid
change of the outside world. This reactive, or proactive, architecture could tend to its own
needs in a more efficient and less obtrusive fashion than currently available. It could also
meet the needs of its occupants in a way which is far more personalized than previously

possible.

This problem of a static architectural landscape is particularly noticeable in the urban
workplace. In our homes we have a certain level of freedom to modify and control our
surroundings, allowing them to morph to fit our needs. By contrast, commercial spaces
have locks on light switches and thermostats to keep the environmental control systems
from being tampered with. Granted, this level of Draconian building control is required
in most cases to keep the systems dynamically stable and improve efficiency, but this is

not to be taken as the only method available to achieve these goals. Considering the eight
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hour work day, resulting in some one third of our lives spent in these spaces, the individual

should have more control over the variables determining his or her comfort.

Not just the occupants, but also the commercial buildings themselves have ever-changing
needs, for which a single setpoint is inadequate. With the average job turnover rate for
American adults being a change once every six years [1], the type of work, and who is doing
it, will vary with time for a given space. The arrangement of office furniture, and even the
placement of walls and windows changes with time. And this is in addition to the usual
seasonal waxing and waning of needs. The holiday rush in a department store is not the
same environment as it is on some Tuesday evening in March. These changing needs are also
seen in the domestic environment, where summer vacations can leave a home unoccupied

for weeks on end.

To achieve this state of proactive architecture, buildings must become aware of their own
needs, and the needs of their occupants. Fortunately, this task is becoming ever more
attainable through the increasing availability of low-cost and low-power sensing. Wireless
monitors of many kinds [2, 3, 4, 5, 6, 7, 8] can be purchased for home and office use,
collecting continual streams of data for the home owner or building maintenance professional
to use. These dense sensor networks are capable of creating their own ad-hoc communication

connections and can be battery powered for months at a time.

The main issue with deploying these dense sensor networks is not a technological barrier, as
the wireless communication, sensing, and actuation technologies have all been in existence
for decades. Instead, the programming of such a large network of nodes becomes the
complicating issue. The user of the building should not have to make all the direct mappings
between inputs and outputs in the system. Furthermore, the user may not be capable of
applying the fine level of control that is required to realize added efficiency bene rom the
system. Therefore, an agile control scheme is required to handle the complex and constantly

changing inputs and outputs.

This dissertation presents one solution to this mapping problem, and demonstrates the

improvements that can be achieved through the application of dense sensor networks to
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architectural environments. Specific sensor hardware advancements will be shown, which
make the task of installing and operating these systems easier. Adaptive pattern recogni-
tion and control algorithms will be presented, along with their efficacy in increasing the
personal comfort of building occupants, and reducing building operational costs. By no
means complete or optimal, this work gives insight into what can be realized through a

proactive architecture.

1.2 Specific Instantiation

There are many aspects of human comfort that a building provides, but first and foremost is
protection from the elements. Creating an appropriate indoor climate is essential to worker
productivity [9] and personal happiness. It is also an area of large expenditure for building
owners [10]. Over the past four years, energy consumption has become an increasingly
important topic at both the national and international level. Within the United States
alone, the average petroleum price has risen over 200 percent in the past four years [11].
This is a marked increase over the previous 21 year average, which had a peak deviation of
39 percent [11]. With these rising fuel costs, finding ways of reducing energy consumption

is more important than ever.

The largest consumer of energy in the United States is buildings. Residential stock accounts
for 21 percent of the total energy usage, and commercial stock accounts for 18 percent,
combining to 39 percent [12]. Within buildings themselves, the largest energy sinks are the
basic support systems, the lighting and heating, ventilation and air-conditioning (HVAC)
systems. In residential applications, HVAC accounts for 26.1 percent and lighting 8.8 per-
cent of the total energy usage [13|, whereas in commercial applications, HVAC accounts for
53.4 percent and lighting 13.5 percent [14]. This makes building support systems, especially

in the case of commercial buildings, a prime target for energy savings.

But, what can be done to reduce costs in these areas? Either more efficient lighting and
ventilation technologies can be developed, or the existing technologies can be used more

efficiently. Considering the long life span of buildings, and the fact that most commercial
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buildings are more than 15 years old [15], the latter proposition seems more cost effective,
as merely adding a new control and sensing layer would be far less expensive than replacing
a whole ventilation system. This idea is promoted further by the notion that most buildings
are currently being run inefficiently due to the non-adaptable nature of their control system,
and that savings of 35 percent are possible [8]. For these reasons, a novel air-conditioning
control system, focused around the occupant, is developed for this thesis as a prime example

of this proactive architecture.

The system has its foundations in the learning building concept put forth by Michael Mozer
in 1992 [16]. The requirements placed upon the user will be minimal, merely a press of
a button to indicate the direction of discomfort (too hot or too cold). The system will
track general location within the building, and accommodate the needs of the person at
that location. This has the added benefit of informing the building of where people are
absent, allowing the system to be shut off when they are not around, effectively creating a
scenario much like that of the light bulb in the refrigerator: from the user’s perspective, it’s
always on. A larger unifying control structure will be informed by preassigned knowledge,
e.g. which dampers and windows affect which rooms. Eventually, this could be done by the
system as well, as the system could choose a time when users are not present, and apply a
local step change in damper position, and locate which sensors respond. The building could

eventually build a model of itself.

1.3 Contributions

Although the individual components of personalized climate control have been well doc-
umented, very little work has been done to put all the pieces together in a real-world
experiment. This thesis seeks to fill that gap, with the addition of novel, on-body, comfort
sensing hardware, and a reduced set of comfort indices. To date, the measurement of ther-
mal preference has been limited to either a complex set of sensors attempting to determine
a Predicted Mean Vote (PMV) value, or to direct polling of the user. The former is far

too cumbersome and expensive for practical application, and the latter places an undue
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burden on the user. To overcome these limitations, an extremely low power, light weight,
wireless sensor is developed which can measure temperature, humidity, activity and light
level directly on the user’s body. These data are used to immediately infer user comfort
level, and to control an HVAC system in an attempt to minimize both cost and thermal

discomfort.

Despite the commercial availability of distributed sensor networks for HVAC retrofits [8],
the majority of comfort research is carried out in climate controlled chambers, or individual
HVAC research rooms. In contrast, this thesis presents experimental results from a building
under continual usage, modified with a custom wireless sensor network. For four weeks,
ten building occupants, in four offices and one common space, were thermally regulated
via wrist-worn sensors controlling the local air-conditioning dampers and window operating
motors. Comparisons are made to the previous four week period of standard air-conditioning
control, showing an increase in comfort, while decreasing energy usage at the same time. The
difficult problems of control adaptation, comfort determination, and user conflict resolution
are addressed. Finally, the limitations of this format of control are discussed, along with

the possible benefits and requirements of this proactive architecture.
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Chapter 2

Background

This thesis presents a complicated system, which takes its inspiration from many different
aspects of the research field of comfort control. This system must necessarily be able to
apply distributed environmental sensing, actuation, and control. It must also understand
the factors involved in human thermal comfort, and successfully apply pattern recognition
algorithms to detect an occupant’s current state. Finally, the entire system needs to be
adaptive with time to maintain high efficacy under changing circumstances. To cover these
broad topics, a historical perspective on the current state of HVAC control is first given.
Next, advances in HVAC control theory are shown to present the range of solutions to the
multiple-input and multiple-output (MIMO) control problem that distributed sensor/actu-
ator networks entail. This is followed by a discussion of personal comfort determination
and actuation methodologies. Finally, previous attempts at the difficult task of creating a

learning environment are shown as an influence for the work herein.

2.1 Historical Perspective

Distributed control of HVAC systems for greater efficiency and comfort is by no means
a new topic. Although today we have more robust and accurate sensors, actuators, data

communication lines, and computers, the main control schemes in use have not changed
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significantly since the early 1900s. A central unit still produces energy and distributes it
to the rest of the building where it is locally controlled in a closed loop fashion. There are
different ways of accomplishing this task (schedule control, fixed volume control, and VAV
control), and even some that incorporate functions to minimize energy (Air-bypass control,
reset control, setback control, economizer control, and COg control), but the majority still
don’t take the entire plant state into consideration when making energy production and
distribution schedules. This is further hampered by the lack of down-stream damper control

to effect the fine grained level of distribution scheduling required to make this happen.

The main reasons for this lack of efficiency in HVAC systems is not technological, as the
control theory has existed since the 1960s to deal with MIMO systems, and the sensing
and actuation hardware has been around for much longer. The limitations are a function
of economics. The cost of computation did not fall to a reasonable level until the mid
1980s, at which point an economic recession was beginning. No one was willing to invest in
developing a new technology, especially when the demand for new architecture was drop-
ping [17]. It wasn’t until the mid 1990s, with the financial resurgence of the computer and
telecommunication industries, that building investment would increase and the networking
infrastructure would be inexpensive enough to implement such systems. Indeed, a number
of research projects came out at this time showing how new control schemes could reduce
energy costs and maximize human thermal comfort [18, 19, 20, 21, 22, 23]. These projects

detail the implementation of a truly distributed control.

Until recently, however, the implementation of these systems still remained an academic
pursuit. New building owners are extremely apprehensive about installing these sorts of
infrastructure. Because of the long life expectancy of a building, it is very risky to invest
in untested ideas which may not produce the energy savings claimed, or worse yet, may
not be robust enough to last the decades required and instead need replacing in the near
future. The cost of a new technology is generally higher to begin with, and with the
installation cost of HVAC systems already being 16 percent of a building’s total cost and
40 percent of its recurring cost [24], the decision to implement a new system is difficult

to make. This is further compounded by the fact that building operating costs are far
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outweighed by personnel costs for commercial buildings, usually by a factor of 1:100 {10],
so implementing something that might reduce worker efficiency by as little as one percent
would already discount any energy savings gained. For this reason, we still saw papers in

2002 that describe internet-controlled HVAC systems as novel [25].

Two recent developments have the potential to end this trend of energy efficient technolo-
gies being overlooked for initial investment avoidance. The first is the increase in fuel
prices, which has driven the recurring costs of energy inefficient systems higher (as energy
represents 40 percent of all recurring costs of a building [10]). The second is the devel-
opment of distributed sensor networks, which are just starting to leave the laboratory [8].
Their promise of implementing sensing at a reduced cost over current systems will eliminate
the initial investment fears of building owners. They will also allow for the retrofitting of
old buildings, which represent the largest percentage of building stock. Distributed sensor
networks accomplish this by using extremely low cost wireless transmitters, which can es-
tablish mesh networks, rather than requiring wires to be run. The running of wires has been
quoted as costing anywhere from ten percent to 90 percent of total HVAC installations [26].
With the dense sensing provided by these networks, more efficient control schemes can be

implemented, and as result, there is renewed research in this area [27, 28, 29, 30, 31, 32].

2.2 Distributed Sensing and Control of Building Systems

It seems that almost every paper on either distributed sensor networks or distributed control
theory lists HVAC systems as one of their main application areas. Gerard Guarracino et al.
give an excellent overview of the work in these fields [33]. In order to reduce the scope of
the background, references will mostly be made to research where an actual HVAC system
was controlled with the algorithms described. This will provide grounding for the results
discussed, and a better comparison point for the system which was built and tested in this
body of work. Not surprisingly, the amount of real world experience is limited, mostly due
to the cost and extremely long validation time required to thoroughly test a system (a full

year is preferred to assess both heating and cooling).
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Initial efforts into the MIMO control problem utilizing distributed control via sensor net-
works have been focused on fuzzy logic controllers [19, 20, 29]. Alcala shows very good
results for a control scenario of a single room with two vents, a COy sensor, and multiple
temperature sensors, where energy savings of up to 30 percent are cited [29]. This is aided by
the fact that not just the dampers, but also the energy production device is under control of
the system. Despite the large savings, fuzzy logic controllers require pre-programming with
expert knowledge of the system, and are not very tolerant of changes in system parameters

~2
with time, a critical component to system longevity.

These limitations of fuzzy logic control are addressed by genetic algorithms and neural
networks, which evolve with time to limit the amount of pre-information required, and
make the system robust to the ever-present devolution of the physical components. Kajl et
al. show energy savings of 16 percent with the use of a genetic algorithm based controller for
an air handling unit servicing 70 offices [30]. The system leveraged the pre-existing sensors
and actuators, and did not seek to retrofit the building. Similarly, Curtiss et al. have shown
power savings of 15 percent [23] with the addition of neural networks in the control loop.
The results are from an ideal laboratory test environment with no human occupancy, and
do not use wireless distributed sensing. In comparison to these rather complicated adaptive
techniques, auto-tuning of a control system is a simpler way of achieving these gains, and
can be applied to a variety of controllers. An example of this is demonstrated by Wang et
al. [34], but unfortunately only time response performance values are given, and no efficiency

data were collected.

Current research trends have focused on hybrid controls [32] and multi-agent controls [35].
In these systems, the control problem is broken down into small sections that are handled
on a somewhat distributed basis. With hybrid controls, there are multiple levels of control
in a hierarchical structure, with information flowing in both directions, but with each level
maintaining its local status given current information. In the multi-agent systems, the
individual nodes bid on shared resources to maximize global efficiency while minimizing
local costs. Results for these systems seem to still be in the simulation phase for the area

of HVAC controls, although they are being applied elsewhere.
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One of the few examples of an HVAC system being controlled by an actual distributed
sensor network is shown by Kintner-Meyer [28] for two office buildings. The first building
was retrofitted with 30 battery powered, wireless temperature sensors. The sensor update
rate was once every ten minutes, which is not fast enough for use in a continuous control
loop, but did allow the building maintenance staff a better view of the current state of
the system. This new view led to the identification of key problems in the HVAC system,
and once these were addressed, reduced the total energy consumption by seven percent.
The second building used 120 of these temperature sensors and allowed the use of set-
back control, which was previously unavailable due to concerns over extreme temperature
excursions. These savings ended up being approximately 6,000 $US annually for a 150,000

square foot building (estimated equivalent of four percent).

This trend of using sensor data to give insight into a plant’s operational state is quite
effective at solving the inefficiency problems. Most buildings undergo a balancing procedure
when they are first commissioned. This entails setting dampers and flow controls within
specified limits to maximize the effectiveness of the HVAC system. Unfortunately, this
is usually the last time this balancing occurs. Slow degradation of the mechanisms, and
dramatic shifts in usage of the building, lead to the initial balancing being completely

inappropriate for its current situation, causing gross inefliciencies.

To combat this, the concept of ‘continuous commissioning’ was developed [36]. Companies
such as Infometrics [37] constantly gather data from networked sensors (usually part of the
original HVAC system) and analyze these data to look for anomalies or areas of improve-
ment. A large portion of the process is automated, in a sense implementing the self aware
building concept, but at a time lag, and with human involvement required to alter the

various setpoints.

2.3 Personal Comfort Methodologies

Ultimately, the majority of the HVAC control work is focused on energy savings and tem-

perature regulation, not human comfort. Although the control algorithms and adaptive
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strategies are directly applicable, the determination of personal comfort is not a solved
problem. Multiple factors have been studied in their relationship to comfort, with the
PMYV [38] being the most common metric. The PMV attempts to average over large pop-
ulations for the following factors: temperature, humidity, wind speed, thermal radiation,
activity, and clothing. This is shown to work well in practice [39], but being a statistical
quantity, does not fit all needs. A variety of other factors have been shown to influence
comfort, including age [40], local climate and culture, and the availability of natural venti-
lation [41]. This led to the creation of the adaptive PMV, which begins to account for these

variations as subsets given a certain operating point.

The major use of the PMV is to set boundaries on temperature, humidity, and wind speed
to a comfortable level within a building. Distributed sensor networks have been employed
in an attempt to assess comfort by measuring PMV values in real-time. Ivanov et al.
developed a wearable sensor [42] for measuring PMV which contained a temperature sensor,
humidity sensor, COy sensor, and wireless transmitter. Calculated PMV values from the
sensor are shown for a three day period, but no air-conditioning control is shown, nor
is the data correlated to the user’s actual comfort level. Tse and Chan report a set of
six wired PMV sensors [43] which were deployed in an office setting and used to gather
data for a simulation of PMV based control, but no actual closed loop tests were run.
Federspiel and Asada demonstrated a full control loop operating on a single room with a
single occupant based on PMV values [44], but these were directly polled from their user
at regular intervals, creating a cumbersome interaction. This all points to a much more
personalized view of comfort that is about local variables and a given person’s perspective,

not a fixed temperature point on a wall.

These previous works, with the exception of Federspiel, attempt to assess the PMV as a
global variable: a fixed standard for all people. Megri et al. take a different approach [45].
Using PMV sensors similar to Chan’s, they poll the user as Federspiel does, but instead use a
support vector machine algorithm to determine the indices of the occupant’s comfort, rather
than looking up the comfort index from a PMV table. They show 99 percent accuracy at

predicting comfort in this manner, which points to the possibilities of automatic recognition
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of comfort, on a person-by-person basis. The major downside of this work is that it involved
large, tethered sensors which are required in three locations in close proximity to the user.

This sort of infrastructure is prohibitively expensive and bulky for real-world deployment.

Previous work by the author (see Appendix A) shows that it is possible to predict comfort
from a relatively smaller set of parameters in comparison to those in the PMV, without
the need to correlate to a fixed index of any kind. The system is also lightweight and low
power, making it a good candidate for office use. The system learns the meaning of various
temperature and humidity points via reinforcement from the user, similar to Megri. The
main advantage is the wearable nature of the sensors, obtaining direct skin temperature
and humidity, wherever the person is located. 74 percent predictability is shown with a
k-nearest neighbor (KNN) algorithm for a single sensor, and 82.5 percent predictability

with two sensors, with marginal gains for increasing numbers of sensors.

This form of on-body sensing has a long history in comfort research, often referred to as
Standard Effective Temperature (SET) [46] or the ‘rational indices’, as it attempts to take
a physiological approach to understanding the conditions of comfort. Large environmental
chambers are used to set particular conditions, and skin temperature and humidity readings
are taken at multiple points on the body. Rate of moisture loss from the body can be
measured by placing the subject on a scale. Radiative absorption and wind speed are
also measured with local photometers and anemometers. Unfortunately, the methodologies
entailed in deriving these indices are extremely cumbersome, and do not lend themselves to

real time usage.

However, the problem is not only one of assessing an individual’s personal comfort level.
An effective control system must also be able to locate the person and effect that proximate
temperature. As temperatures can vary greatly, even within the same room, this proves
a difficult task. On-body sensing solves the first portion of this task, and a number of
solutions have been derived to solve the second portion. These present some of the most

commercially available solutions to personal comfort.

Forced air distribution systems, particularly underfloor methods, can be tapped at points

along the run to allow air to circulate locally. Many companies make systems which imple-
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ment this, usually under the name Task Ambient Conditioning (TAC). Johnson Controls
made a particularly extravagant model called the Personal Environmental Module which
also included acoustic and lighting controls [47]. These systems allow the user to adjust the
air flow, and sometimes temperature, at a local vent. Not only is the availability of fresh
air shown to give greater comfort, it is also more efficient [48] as air is only chilled where
needed, and larger sections of the building can be allowed to drift out of normal comfort

Zones.

TAC systems, although efficient and effective, are rather expensive and difficult to install
after initial construction. A commercial solution for the residential market deals with some
of these issues by placing small inflatable bladders in local ductwork for localized control [7].
This relatively easy to install system is supplemented with wireless temperature sensors that
act as thermostats for the room they are set in. They can be moved around the room to
regulate where needed, but still are fixed per room and not small enough to be considered
wearable. The programming interface is quite cumbersome, involving a series of menus for
inputting temperatures and setback times for various rooms. However, it does herald a new

era of retrofittable personalized building comfort control.

This concept of localized control brings up an even more important factor, the psychological
parameters of comfort. It is found that given certain environmental conditions, a person
will be more comfortable if he or she has set those conditions [49, 50]. Things such as
operable windows and settable thermostats will increase comfort, even if they do little to
change temperatures. This is both a positive and negative realization for the majority of
personal comfort research, as it becomes difficult to distinguish actual comfort gains from

placebo gains.

2.4 Building Behavioural Models

In the not too distant future, when dense distributed sensing and actuation has finally pen-

etrated the market, a far more difficult question will need to be answered: how does the
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building become aware of itself and its occupants in a meaningful manner? The program-
ming of these large systems will be crucial to their success, as each failure will be keenly
perceived by their occupants. Learning from these failures will allow the buildings to better
understand how to react to the conflicting needs of all involved. The following examples
point to an answer to this question. They suggest that first and foremost, the system be
robust, and provide basic functions regardless of state. They show that multiple forms of
control can be leveraged to perform tasks particularly suited to their skills, each acting as
an autonomous agent in a larger structure. And finally, they insist the system and occupant

both be capable of learning from and adapting to one another.

Although the idea of a responsive architecture predates even “The Jetsons” [51], the work
to create these environments began in earnest with the beginning of ubiquitous computing
in the late 1980s [52]. At Xerox PARC, offices were equipped with radio-frequency identi-
fication (RFID) and light, temperature, and occupancy sensors which were allowed to turn
off outlets, adjust HVAC systems, and control lighting [53]. Portable devices allowed users
to edit preferences wherever they were in the building. The design philosophy was one of
reliability, invisibility, and simple control layers on top of the pre-existing control, which
would only react when needed. They could be completely removed and the system would
still operate as normal. This philosophy is particularly relevant in an experimental setting,

as long-term validation is not possible, and failures will occur often.

A current example of this sort of work tackles a very difficult question in shared office
environments: whose comfort is being optimized? Lee et al. use temperature, humidity,
light, and sound data to evaluate the comfort state of occupants [54]. In simulation, light
levels and thermostat settings are modified to improve this comfort or save energy. The
space is divided into public and private spaces, with users being tracked with RFID tags to
localize their position. Comfort is registered with local lighting and temperature controls
that the occupant can move, updating a data base which keeps track of preferences. This
rule base changes in the public versus private spaces, with personal goals such as comfort
weighted more heavily than others for the owner of a private space, and preference averaging

in the public space. There are also privileges, so that occupants with higher social status
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will be have their comfort optimized over others.

These very programmatic responses are challenged ‘by Mozer [16], who asserts that the
building can learn from its occupants with only mild intrusion, essentially learning from
the mistakes. His neural networked house would purposefully turn lights off in order to
understand whether they were wanted on or not. He sensed the status of light switches,
the thermostat, ambient indoor and outdoor light levels, ambient indoor and outdoor tem-
peratures, human motion, door positions, and window positions. The system is also made
aware of its energy consumption and current setpoints on all heating, water supply, and
lighting appliances. In this manner, it can monitor the habits of the occupants and make
predictive control decisions to minimize energy costs. Time of day and time of year are
also taken into account, and passive solar gains are included in its model. Although this
creates a longer learning curve than preassigned knowledge, it is capable of adapting over
time without intentional user input. This also reduces the level of sensing required. The

sensors are the environment, the normal inputs an occupant would use anyway.

This sort of adaption is evaluated by a number of researchers. Rutishauser [55] takes a
unique approach of modeling the building as a multi-agent system, where each actuator is
its own independent agent. These actuators use a fuzzy logic rule base that links them to
various sensors. The rules are adaptable with time, with user input being seen as negative
reinforcement: if the building is acting appropriately, no user action is required. The
system incorporates automated blinds and lights, and it monitors light switches and blind
switches, along with presence and light detectors. There are fixed rules at the lowest level
which ensure that every light switch operates the light assigned to it, so even under extreme

failure modes the basic comfort systems will still operate.

This is similar to the ideas put forth by Sterk [56], where the whole system is built up upon
smaller pieces — an example of hybridized control. Smaller agents within the system deal
with local problems while exchanging information and updating state through interactions
with larger agents, which do the same from their interactions. This manages the complexity
of the many sensor and actuator streams by breaking it down into repeatable tasks, yet

allowing the individual repeatable tasks to modify based on new information. This also
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leaves the entire system capable of functioning if a small portion breaks. And perhaps most
importantly, the local control can be simple enough for the occupant to understand what

is occurring — to have a mental model of his or her environment.

This last point is critical, as it is not only important that the building understand what the
user is doing, but also that the user understand what the building is doing. As Vastamaki et
al. clearly describe in their analysis of thermostat usage [57], the fundamental efficiency of
the building and the comfort of the occupants both suffer when the occupant does not under-
stand the behaviour of the building. Users are shown to consistently turn thermostat dials
in response to uncomfortable conditions, and to continue turning them until a comfortable
state is reached. From the user perspective this seems completely reasonable: increase an
action until the desired result is reached. From the building perspective, however, the time
lag due to the thermal mass of a room is usually on the order of hours. Furthermore, most
cooling systems are limited to excursions of one degree per hour according to the American
Society of Heating, Air-conditioning, and Refrigeration Engineers (ASHRAE) standards.
This means that over turning of the thermostat will drive the temperature too far in one
direction, at which point it will be driven back again when the user is uncomfortable. This

sort of oscillation wastes energy and creates a thermally unstable environment.

Vastamiki et al. propose a model of human behaviour with respect to wants, actions, and
outcomes. The building must provide appropriate feedback, such that the user creates
a mental model that shows the wants being eventually satisfied, so the user interprets
the building’s actions as signal and not noise. This sort of symbiotic relationship is also
promoted by Kroner [58], who describes the two-way communication required for the cre-
ation of intelligent architecture. Peter Anders and Michael Phillips, with their ARCHOS
project [59, 60], are testing these ideas with real hardware. Their system uses a relatively
simple set of sensors (cameras, microphones, HVAC and lighting data, network data traffic,
and elevator location) to infer the general state of the building/occupant unit. In their work,
the line between the building and the person becomes blurred, and the line between the
physical and virtual worlds becomes irrelevant. All of these collected data are streamed via

the internet and FM radio to occupants and nonoccupants alike, altering their immediate
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sense of space. Although the majority of the applications are merely data sonifications or
visualizations, the ‘random lift button’ gives a good example of a more tangible interface
to the network. Just as it sounds, pressing the button within the elevator will take you
to a random floor. Sometimes predictability and control are not what we want from our

buildings.
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Chapter 3

Hardware Design

The applications for distributed sensor networks are extremely varied, and they are also
extremely demanding. Size, cost, and power consumption constraints constantly limit what
can be done with individual sensor nodes. As a result, generic wireless sensing platforms
have not left the research laboratories. Although they offer a standard platform by which
various algorithms can be benchmarked, and usually allow for a wide range of applications,
they often fail at doing any particular application effectively enough to allow for continued
usage in a real-world deployment. This shortcoming of available sensor nodes necessitated

the design of the system used herein.

3.1 System Overview

At the heart of this system is the building occupant. This is where the comfort information
resides. To best assess the occupant’s comfort level, a wearable sensor node was developed
(herein referred to as the ‘portable’ node). This sensor node needs to be lightweight and
small to remain almost unnoticed by its user. If it becomes too cumbersome to use, it
will be left on the table and forgotten about. Ultimately, the user’s comfort is being
optimized. If the portable node is obtrusive, the user will not be comfortable even if the

ambient temperature is perfect. Similarly, the portable node must also have a low power
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consumption, as constant battery recharges or large battery size will be a nuisance to the

user.

This portable node senses the local temperature, humidity, light level, and inertial activity
level of the user. It sends these data wirelessly, at one minute intervals, to the central
network hub. The portable node also has three buttons on the side which allow the user
to input current comfort state (one button each for hot, cold, and neutral). These buttons
must be held down for at least two seconds to guarantee a successful transmission of data.

This delay eliminates false transmissions due to jostling or bumping of the device.

These portable nodes are also given to the building itself, so it can be aware of its own
temperature and not just that of the humans. The exterior of the building has two portable
nodes (one east-facing, one west-facing) to gather local climate data. Each room has a
different portable node, which only senses temperature and humidity, mounted near the
conventional thermostat. In spaces where the thermostat could not be found, the portable
node is mounted away from areas where humans would come in contact with it, but still in

the general vicinity to gather proximate data.

The actuation of the various air sources (windows and air-conditioning dampers) is achieved
via ‘control’ nodes. These nodes are tethered to a 24 Vpc power source, and have a motor
which can open or close the associated mechanical element via wireless commands. They
also monitor local wind speed, temperature, humidity, and light level. These data, along
with the current state of the motor, are sent off wirelessly at one minute intervals to the
central network hub. The motor can also be actuated locally with a set of pushbuttons,
allowing the user direct control of the air source. The aim of the system is to enable the user
to improve his or her climate, not confine the user to some externally controlled concept of

comfort.

The backbone of the system is comprised of ‘room’ nodes. These nodes receive the data
from the portable and control nodes, and act as network coordinators, ensuring that each
proximate node is only talking to one device. Since each room has at least one room

node, the locations of the portable nodes can be inferred from the received signal strength
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indicator (RSSI) of the RF device. They also assess the local temperature, humidity, light
level, and activity level and send these data to the central network hub at thirty second
intervals. Communication to the central network hub is accomplished via an on-board
ethernet module. This ethernet module not only routes all sensor data back to the central
network hub, but also transfers motor control commands from the central network hub to

the room boards, where they are sent off wirelessly to the control nodes.

The sensor network is deployed on the third floor of the M.I.T. Media Laboratory building
(E15). A map of the various sensor nodes and their locations can be seen in Figure 3.1.1.
Four offices and one common space are outfitted, encompassing the workspace of 10 people.
Two operable windows exist in this space, and they are equipped with control nodes and
motorized openers. There are also seven variable-air-volume (VAV) dampers which have

control nodes and motors.

This deployment provides a particularly challenging and relevant scenario. The usage of the
space is mostly by graduate students who have ever-varying schedules, so an adaptive control
scheme will be required, as compared to a typical office environment where 9AM to 5PM
work is common. The mixed usage of space — offices versus common space, with frequent
transitions between them — is a good test of the location abilities of the system. Finally,
with multiple occupants per office, and multiple control points per office, the granularity
of both temperature demands and temperature actuation allows for thorough evaluation of

the system’s agility at scheduling conflicting requirements.
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Figure 3.1.1: Floorplan of Sensor Deployment Areas
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Figure 3.1.2: Detail of All Sensors Deployed on East Side of Building
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Figure 3.1.3: Detail of All Sensors Deployed on West Side of Building
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3.2 Wireless Networking Protocol

The main topology for the network is a tree, with the central network hub acting as the
trunk, room nodes acting as branches, and control and portable nodes acting as leaves. The
full network topology is shown in Figure 3.2.1. All data is sent to the central network hub
before being processed and distributed back to the relevant leaf nodes. This organization was
chosen for its ease of implementation, as a stable network routing table could be established
once for the duration of the work. It also reduces network overhead, as nodes do not spend
much time establishing connections. A single RF channel is used, as collisions are low
enough not to warrant the extra power demand on the portable nodes of keeping aware of
the network’s current channel. The RF unit, however, is capable of detecting open channels

and switching frequencies.

The physical (PHY) layer of the wireless transceivers is based on the ZigBit module [61]
by Meshnetics. It comes prepackaged with an Atmel ATmegal281 microcontroller [62],
Atmel AT86RF230 2.4GHz radio [63], and dipole chip antenna. It automatically implements
the critical aspects of the 802.15.4 medium access control (MAC) layer, including clear
channel assessment, random exponential back-off, successful receipt acknowledge, and cyclic
redundancy check (CRC) calculation and checking. Additionally, the radios do not respond
to packets with a different personal area network (PAN) ID or destination ID (except in

the case of broadcast packets which do not require receipt acknowledge).

Each node is hard-coded with an ID when deployed, so the locations of room nodes and
users of portable nodes can be tracked. Upon wakeup, leaf nodes request a branch node to
communicate with. The first branch node to respond becomes the destination ID for that
leaf node until the leaf node is no longer in contact. At this point, the leaf node will retry
the transmission process and request another branch node from the network upon failure.
A leaf node can only communicate with its allocated branch node. In this manner, the low
power leaf nodes do not spend an appreciable amount of time finding optimal connections,

but rather stay joined to their primary branch node for as long as possible.

Each RF packet that is sent contains a preamble, the ID of the transmitting node, the ID
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Figure 3.2.1: Network Topology

of the receiving node, the PAN ID, the packet type, the packet length, payload data, and a
CRC. When a room node receives an RF packet, it strips the CRC and PAN ID, adds RSSI
data, a header, and two footer bytes before sending it over Ethernet to the network hub.
The network hub uses the header, packet length, and footer to determine valid packets, and
uses the same format for transmissions to the room nodes. Currently, the only available

commands the network hub can send over the network are motor control commands, and

they are shown in Table 3.2.2.

Successful branch node acknowledgement packets are not sent over the network, but failed

packets are sent over the network, so the system can be aware of whether a command was
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| Network Transmit Command

Packet [0x]

Open Motor Full
Close Motor Full
Open Motor n-Steps
Close Motor n-Steps
Stop Motor

ff 06 08 DES 08 08 ff fe fd
ff 06 08 DES 08 06 ff fe fd
ff 06 08 DES 08 08 n fe fd
ff 06 08 DES 08 06 n fe fd
ff 06 08 DES 06 0a ff fe fd

| Network Receive Command

Packet [0x]

Data From Portable Node
Data From Room Node
Data From Control Node
Join Request

Join Request Fail
Location Beacon

ff 0d 02 SRC BTN HUM TEMP ACT1 LITE LQI RSSI DES fe fd

ff 07 03 LITE TEMP HUM ACT2 SRC fe fd

ff 0d 07 SRC MOTR HUM TEMP WIND LITE LQI RSSI DES fe fd
ff 05 01 SRC LQI RSSI DES fe fd

ff 03 06 DES SRC fe fd

ff 05 00 SRC LQI RSSI DES fe fd

SRC = Data Source Address (2 bytes, LSB first)
BTN = Button Press Information (1 byte)

HUM = Humidity Data (1 byte)

TEMP = Temperature Data (2 bytes, LSB first)
ACT1 = Inertial Activity Data (2 bytes, LSB first)
LITE = Light Level Data (2 bytes, LSB first)

LQI = Link Quality Indicator (1 byte)

RSSI = Received Signal Strength Indicator (1 byte)
DES = Data Destination Address (2 bytes, LSB first)
ACT2 = PIR Motion Data (1 byte)

MOTR = Motor State Information (1 byte)

WIND = Wind Speed Data (2 bytes, LSB first)

Figure 3.2.2: Network Transmit Packets




received or not. For example, if a motor command is sent, but the receiving node is down,

that packet will get returned, and the system will be aware of the failure.

3.3 Portable Node

The portable nodes represent the main hardware contribution of this thesis. The require-
ments on these nodes are the most strict, subsequently leading to the development of novel

sensing techniques. The main goals for these nodes are:

e Small in size and weight, so as to be unnoticed by the user (on the same order as

other wearable devices such as wristwatches and key chain fobs).

Long battery life to make the usage seamless (years if possible).

e Sense parameters relevant to human temperature comfort (temperature, humidity,

light level, activity level).

Transmit these data via a wireless link at a rate frequent enough to enable closed loop

control with the data.

Allow for user input of current comfort level.

The portable node internals are shown in Figure 3.3.1, and an assembled node is shown in
Figure 3.3.2. It weighs 30g, and measures 54 mm by 40 mm by 14 mm. The enclosure for
the node is taken from another wearable electronic device, a keychain picture viewer, so its
form is particularly suited to this application. The device comes with a clip, so it can be
attached to clothing, keys, or merely placed in a pocket. They can be attached to lanyards
and worn around the neck (as shown in Figure 3.3.3), or to wrist straps and worn like a

watch (as shown in Figure 3.3.4).
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Figure 3.3.1: Portable Node Circuit Boards: Front and Back

Figure 3.3.2: Portable Node on Keychain
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Figure 3.3.3: Portable Node Worn on Lanyard Around Neck
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Figure 3.3.4: Portable Node Worn on Wrist
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Portable nodes are also used to monitor room climate and outdoor environmental condi-
tions. Indoors, they are mounted below the standard thermostat in the space, as shown
in Figure 3.3.5. These nodes only have temperature and humidity sensing, as light and
vibration information are not necessary. The outdoor nodes are modified to be protected
from excessive moisture. The penetration in the case for the humidity sensor is covered
with a long tube, and the remainder of the case is sealed with silicone, as can be seen in
Figure 3.3.6. The top of the node is covered with a four stop, neutral density filter, to
bring light levels down into the range of the light sensor. This has the unfortunate side
effect of absorbing a large amount of thermal radiation, and heating up the unit, causing

the temperature and humidity readings to no longer reflect the ambient conditions.

Figure 3.3.5: Portable Node Mounted Near Thermostat
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Figure 3.3.6: Portable Node Mounted on Exterior of Building

A data update rate of once per minute is chosen in order to minimize the RF unit power
consumption time, but still allow for a responsive control system. Since the thermal and
humidity time constants of the sensors are on the order of minutes, finer resolution data
would not lead to substantial improvements. As will be shown in Table 3.3.1, the sensor
sampling procedures and RF transmissions account for 20 percent of the total power con-
sumption, so slight increases in sampling frequency could be attained without exorbitant

sacrifices in battery life.

The battery for the device is a lightweight, rechargeable, 150 mAh, lithium polymer battery.
This is the battery that came with the keychain picture viewers, and it has battery pro-

tection circuitry to ensure that the users can not be hurt by battery shorts. Although the
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battery is rechargeable, no recharging circuitry is placed on-board, as the expected battery

life is two years.

The extended battery life of the portable node is achieved via extremely low power sensing
elements, and minimization of processor and RF unit on-times. A full breakdown of these
can be seen in Table 3.3.1. All of these items are powered by a 2.7V low quieséent current
voltage regulator, the TI TPS780270200 [64]. At 500nA, it places minimal load on the
battery, but has poor transient response, with excursions up to 150mV when high power
sections such as the RF unit turn on. All voltage sensitive operations, such as ADC readings,

are performed at times when such excursions do not happen. The digital operations remain

unaffected.

L Device | on-time [per 60s ] | current [ total [pAs] |
Real Time Clock 60s 6 uA 360
Voltage Regulator 60s S uA 30
Activity Sensor 60s 2.8 uA 168
ADC 12 ms 700 pA 8.4
Comparator 10ms 700 A 7
RF Unit 4ms 20 mA 80
Light Sensor 1s 5 uA 5
SHT15 55 ms 600 LA 36
| TOTAL | 11.5 4A average

Table 3.3.1: Power Consumption Breakdown for Portable Node

The 9.3 uA current during sleep mode is dominated by the real-time-clock (RTC) module
on the Atmel ATmegal281 microcontroller unit. This utilizes a 32kHz crystal to keep track
of time and wake up the unit every minute. By using this built in module, the lowest
sleep state available is ‘power-save’ mode, which has a base current draw of 2.5 uA at 2.7V
Vee and 25 °C. The remaining 3.5 pA come from the power required to vibrate the crystal.
External RTC modules can run under 1 A [65], which would both reduce the crystal drive
signal and allow for ‘power-down’ sleep mode, which only consumes 0.2 zA at 2.7V Vce and
25°C. This would more than halve the sleep current consumption, and double the battery
life. This particular direction was not chosen for ease of implementation, as the two year

battery life already exceeded the needs of the system.
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The remaining 2.2 pA are a result of computation, sensing, and RF transmissions. Since the
microcontroller is being run at 1 MHz from its internal RC oscillator, the power consumption
is fairly low (1mA), and the processor sleeps for most of the sensing time, making it quite
negligible in comparison to the 4 ms the RF unit is on for at 20 mA. The next biggest power
consumer is the SHT'15 [66] temperature and humidity unit, which requires 55 ms at 600 zA
to accomplish its task. The ADC and comparator units operate at 700 #A for 12ms and
10 ms, respectively. The light sensor is awake for a full second due to its long start up time,
and its current consumption varies with light level. On average it draws only 5 uA, though,
which is small in comparison to the other sources. This gives 133 uAs of current draw for

each wakeup cycle. These cycles come once a minute, averaging to 2.2 uA.

The temperature, humidity, and light level senors are all off-the-shelf components. The
Sensiron SHT'15 temperature and humidity sensor is run in 8-bit humidity and 12-bit tem-
perature mode to save power. Higher resolution would allow for tighter feedback control
loops around the room temperature, but the device is not accurate much past 12 bits, and
this still allows for less than 0.1°F resolution. The light sensor is the ISL29102 [67] by
Intersil, which has an integrated human eye response filter and an analog compressor at the
output, allowing for its reading to be taken by the ADC unit on the microcontroller. With-
out this compression, the six orders of magnitude of light levels could not be represented

by the 12 bits of the ADC.

The final sensing modality is especially designed for this application. Traditionally, inertial
activity level is measured with a MEMS accelerometer, but these tend to draw approx-
imately 180uA at their lowest [68]. Considering that the activity sensor needs to run
continuously so as not to miss any relevant motion, this would increase the device’s current
consumption by an order of magnitude — without even accounting for the processor time
necessary to sample an ADC or send values over a digital bus. Luckily, this application
does not require the full frequency range of MEMS accelerometers. Specifically, the 0 Hz
attitude information is not needed to determine if the user is moving around a little or a
lot. Instead, a vibration integrator is developed around a Murata PKGS [69] passive piezo

shock sensor. Usually employed in hard disk drive and air bag deployment sensors, these
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small devices are very sensitive in all directions (1:2:4 x:y:z sensitivity ratios), mitigating

the need for multiple axis integration for some applications.

The piezo ceramic is biased with high value (200 M) resistors to keep the low frequency
response of the sensor. Since the capacitance of the sensor is approximately 450 pF, this
gives a lower cutoff of 3.5 Hz. The remainder of the gain stages pass 0.1 Hz to 10 Hz, with the
second stage being a second order low pass filter to eliminate 60 Hz pickup. An active peak
detector and integrator follow to give an output which is dependent on the total activity
over the past period. A reset function is implemented by the microcontroller to drain the

charging capacitor between samples.

The op-amps used in this circuit are the OPA2369 [70] from TI, which run at 700nA
per channel, and have very low crossover distortion. Since the passive components draw
negligible power, this gives approximately 2.8 uA for the entire circuit. The low crossover
distortion is helpful in reducing errors in the active peak detector. An active peak detector
is required due to the low power supply rail of 2.7V, causing losses due to a diode drop to

become too large a portion of the full range.

To further keep power down, the integration charging currents are kept under 100nA. This
poses a difficult problem as reverse lea,kagé in standard rectifiers is usually on this order
or greater. To solve this issue, the low leakage FDLL300A [71] from Fairchild is used. At
50pA of reverse current, it exhibits low leakage for its relatively low forward voltage drop

of 0.3V.

The activity sensor is extremely sensitive to slight movement. However, as it has a one
minute integration time, these movements must be maintained for the output to show
significant change. The output values for various activities can be seen in Table 3.3.2.
Although these values are representative, there is variation amongst circuits, as small leakage
paths discharge the integration capacitor differently. To help prevent this, each board is
thoroughly cleaned with flux remover before commissioning. Other factors such as light level
and temperature contribute to variations over time. The rectifier is light sensitive, having

greater reverse leakage under higher light levels, and the charging capacitor and piezo
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element are temperature sensitive. Fortunately the temperature and lighting conditions
remain fairly consistent in an indoor environment, and these are both measured on-board,
and can therefore be compensated for in firmware. Future revisions could reduce the light

effects by placing a metal shield over the circuit, eliminating electromagnetic interference

as well.
| sensor usage (ten sample average) | mean value | standard deviation
on desk with no one at desk 47.9 4.6
on desk with person working at desk 39.8 6.2
worn around neck by person sitting still 46.7 6.0
worn around neck by person sitting and working 191 121
worn around neck by person walking 1015 19.8

Table 3.3.2: Representative Performance of Activity Sensor

It is interesting to note that extremely low vibration levels exhibit lower readings than no
vibration levels. It is not clear exactly why this happens, but is hypothesized that a low level
of excitation keeps the diode in the active rectifier forward biased more often, reducing the
number of transitions made by the nonlinear circuit as it tries to maintain stability. These
transitions can transfer current via the capacitance across the diode, as they happen very
quickly. Ultimately, the difference is within a standard deviation of the samples, making
it difficult to distinguish between the cases in practice, although some of the nodes are

sensitive enough to perform this task.

3.4 Control Node

Since the system is intended to allow for retrofitting of existing buildings, one requirement of
the control boards is that they accommodate many different actuators. To accomplish this,
the LMD18200 PWM motor controller [72] is used. It can handle up to 3 A of continuous
current, and will operate 12V to 60V motors. As 24 Vpc is a common power supply in
the control industry, this is deemed adequate for the situation. 24 V¢ supply is the most

common in the control industry, but AC voltage does not allow for easy reversibility of
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motors, so DC is used. There is also an over-current comparator attached to the LMD18200,
so the microcontroller can automatically shut off the unit if a motor has hit the end of its

travel. An assembled control node is shown in Figure 3.4.1.

Figure 3.4.1: Control Node Circuit Board

The motors used depend upon the application. For operating the windows, a 24 Vpg motor
from Wintrol [73] is used. It is designed for this application and comes with the appropriate
mating connectors. The full window opening time is two minutes. The VAV box dampers
are controlled with Belimo CM24-3-T [74] actuators. They have automatic over-current
shutoff, and variable hard stops to set the end of travel. They also have a magnetic clutch,
which allows them to be disengaged quite easily. This feature allows for quick switching
between the normal control system and the experimental control system. The full damper
opening time is 30s. The mounting scheme for these motors can be seen in Figure 3.4.2 and
Figure 3.4.3. The control node is mounted nearby in both scenarios to capture accurate

wind speed, temperature, and humidity data.

The control nodes have the same light, temperature, and humidity sensing as the portable
nodes. In comparison to the portable nodes, the control nodes are kept on continuously as
they have a direct power source, eliminating the need to maintain any sort of battery life.
The nodes also use the same ZigBit module for their communications and sensor sampling

tasks. An external header is supplied which allows for a manual pushbutton control board
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Figure 3.4.2: Control Board Mounted with Window Motor

Figure 3.4.3: Control Board Mounted with Damper Motor
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to be attached, and also provides for future expansions of functionality.

The control node also has a wind speed sensor based upon a spinning impeller design. The
impellers are replacement parts for the Kestrel 1000 wind speed meter [75]. They have a
magnet on the shaft which is picked up by a hall effect sensor and sent through a filter
and Schmitt trigger comparator to produce a square wave of the same frequency as the
impeller’s rotation. The impellers themselves are fairly linear, although they have a finite
amount of friction, and will not sense below a certain level. These wind speed sensors are
used to measure the chilled air flowing from the VAV boxes, and are the main method used

to estimate energy consumption.

Initial calibration of the wind speed sensor is performed to determine the linearity of the
design, and the results are shown in Figure 3.4.4. The sensor is compared to a hand-held
meter of a similar design which claims to have an accuracy of +3 % of full scale and a range
of 0.4m/s to 30m/s. To determine the sensor’s linearity in an actual application, a control
node is mounted to a VAV box, and a large ductwork is created to collimate the air with
limited resistance placed upon the air flow. The output of this ductwork is measured at a
number of points with the hand held meter, and these values are averaged over the exposed
surface area to give the total flow rate. The opening in the ductwork is made as large as
possible while still giving a reliable reading on the hand held meter (usually around 0.4 m/s).
The test set-up can be seen in Figure 3.4.5, and the results are shown in Figure 3.4.6. In
general, the constructed wind speed sensor does a good job of measuring the total air flow

from the VAV boxes.

Ultimately, although the sensors themselves work well and have good linearity, they make
a rattling noise at high wind speeds which is not tolerable to the building occupants. For
this reason, a series of sheet metal shims are used to limit the air flow from the VAV boxes
to a level where the sensor no longer rattles. This reduces the total range of the sensor,
making the initial dead band problem worse as it now occupies a greater percentage of the
range. Fortunately the VAV dampers spend the majority of their time in a high flow rate

regime, so the data obtained from these sensors are still meaningful.
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Figure 3.4.5: Collimator for In-situ Wind Speed Sensor Test
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Figure 3.4.6: In-situ Calibration of Wind Speed Sensor
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To compensate for this low flow rate regime, a second set of wind speed sensor calibration
tests is performed. Each VAV damper is incremented by ten percent, through its entire
range. At each level, the air flow is measured at multiple points with the hand held meter,
and the wind speed sensor value is recorded. This gives a direct mapping of each sensor’s
associated flow rate, and the results can be seen in Figures 3.4.7 — 3.4.14. The majority
of the sensors have a linear, or at least monotonically increasing, correlation between flow
rate and wind speed sensor value. Unfortunately, two of the sensors show a decrease in
sensor value for extremely high flow rates. This is hypothesized to be a result of the output
scoop of the VAV box directing the air directly down, and away from the sensor, at high
velocities. A example of these decreasing sensor values can be seen in Figure 3.4.15, with the
horizontal axis showing the damper opening up by ten percent increments with time, and
the vertical axis showing the varying wind sensor values. To accomodate for this problem,
a non-linear mapping is used to extract flow rate data. As it is impossible to determine
the exact flow rate above a certain threshold, the average flow rate of all values above this
level is returned. Plots of the calibration lines used for all wind speed sensor mappings are

shown along with the data.

This calibration process was repeated on three separate days, with test points A being the
full damper incrementing process. Test points B represent samples from the previous day
at three levels, lowest possible, mid-range, and highest possible. Test points C represent
two samples from a month previous, one at the lowest level, one at the highest level. The
lowest level recorded is shown with an asterisk on the charts, as this is the flow rate below
which the friction in the wind vane sensor can not be overcome. Any flow rate below this
level will be read as zero. The variations in maximum values are due to differences in the

main system air flow, temperature, and humidity on the corresponding days.
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Figure 3.4.7: In-situ Calibration of Shimmed Wind Speed Sensor: Node 160
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Figure 3.4.8: In-situ Calibration of Shimmed Wind Speed Sensor: Node 176
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Figure 3.4.9: In-situ Calibration of Shimmed Wind Speed Sensor: Node 180

y =258.468 +897.672 x

4500 T T T
calibration line
4000 T testpoints A + 4
A\ testpoints B

3500FL % minimum air flow |

Wind Speed Sensor Value

0 1 1 1 1 1
0 05 1 1.5 2 25 3 35 4

VAV Average Wind Speed [nvs]

Figure 3.4.10: In-situ Calibration of Shimmed Wind Speed Sensor: Node 184
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Figure 3.4.11: In-situ Calibration of Shimmed Wind Speed Sensor: Node 188
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Figure 3.4.12: In-situ Calibration of Shimmed Wind Speed Sensor: Node 200
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Figure 3.4.13: In-situ Calibration of Shimmed Wind Speed Sensor: Node 204
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Figure 3.4.14: In-situ Calibration of Shimmed Wind Speed Sensor: Node 248
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It is not clear what the appropriate solution is for the wind speed sensing requirement. Most
industrial applications measure the pressure drop across a Bernoulli plate. Although these
are currently installed in buildings and could be connected to, this makes installation more
difficult. A hot-wire anemometer would give excellent data, but is very costly and degrades
with time due to particulate build-up. It is possible that with a large enough demand,
the hot-wire solution could come down in price to make it viable for this application. It
may also be the case that accurate wind speed is not required, in which case a simple IR

beam-breaking wind vane would be the most economical choice of all.

3.5 Room Node

The room nodes are the simplest portion of the system, although arguably the most im-
portant. They collect and distribute all the RF packets, and keep track of the location
of portable nodes in the network. They use the ZigBit module and the Lantronix Xport
Direct [76] to accomplish these goals. The XPort is configured in UDP mode for ease of

implementation. The full configuration settings are shown in Table 3.5.1.

| Setting | Value |
Baud Rate 38400
I/F Ox4c
Flow 0x00
Port No. 10001
Connect 0x0c
Datagram 0x01
Broadcast N
Remote IP | X.X.X.X
Port 10001
Pack Ctrl 0x30
Send Charl Oxfe
Send Char2 0xfd

Table 3.5.1: XPort Configuration Settings for Room Node

The room nodes use a Panasonic AMN31112 PIR motion sensor [77] with a 5m sensing

radius. The output is digital, with a level change for every detected motion. These tran-
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sitions are counted by the microcontroller over a 30s sampling period, giving the average
activity for that period. These data, along with temperature, humidity, and light levels, are
sent out every 30s over the Ethernet port. The temperature, humidity, and light sensors
are identical to the ones used on the portable nodes, and they are kept on continuously as

there is a wired power source. An assembled room node is shown in Figure 3.5.1.

Figure 3.5.1: Room Node Circuit Board

The only difference in its sensing is that the SHT15 temperature sensor is mounted at an
angle to the board (see upper right hand corner of Figure 3.5.1). This is done to help limit
the thermal effects from the other warm components on the board. The XPort is the main
current sink on the board, running at 200 mA when active, and 100 mA idle. since the board
runs from 5V, this gives 0.5 W to 1 W of power dissipation. The extra heat produced raises
the sensor temperature significantly (~10°F) and makes it sensitive to local air flow, as
convective cooling now plays a role since the sensor temperature is no longer at the ambient
temperature. The angle mounting only slightly improves this situation, but the sensor still

gives useful results.
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Chapter 4

Control System Design

The entire Personalized Comfort Control System was designed to operate in summer weather,
although this limitation is merely a matter of convenience, as the tests were performed in
the summer months. The tests included ten people with wearable sensors, six room nodes
monitoring their positions and the activity levels in the rooms, six corresponding thermo-
stat modules returning room temperature and humidity, two outdoor environmental sensors,
seven independent damper controllers, and two motorized window operators. Although this
collection of 33 nodes is extremely small in comparison to the usual building installation
of hundreds of thermostats and VAV damper motors, it is a more difficult control scenario,
as the usual one-to-one, or one-to-many mappings are no longer valid. There are multiple
sensor inputs that may control any number of output devices, at any one time. To compli-
cate matters even further, this mapping necessarily changes with time as people physically

move throughout the network, altering the locations of their cooling needs.

To effectively handle the complex mapping requirements of this MIMO network, a hy-
bridized control system is employed. In hybrid systems, individual modules exchange in-
formation and trade off responsibilities in an ad hoc but hierarchical fashion. This fits
particularly well with the topology of sensor networks, as the control layer matches the
physical instantiation. Ultimately, if it were desired, the entire control scheme herein could

run in the network on the individual nodes (the location module being the only difficult
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one to implement). In addition to reducing wiring costs and the single point of failure that
a central server represents, this could also increase battery life in the portable nodes by
eliminating the need to transmit all data every minute for processing. This also creates
a much more secure and private scenario for personal data contained within the portable

nodes.

A full system model chart can be seen in Figure 4.0.1. The system consists of a Con-
trol Module, Location Module, Window Module, Outdoor Module, Thermostat Module,
Portable Module, and Room Module. Each node in the network has a module associated
with it, to keep track of its own local state and needs. The Control Modules receive setpoint
commands from the Window, Thermostat, Room, and Outdoor Modules, and make deci-
sions concerning how to appropriately control the associated damper and window motors
to reach these setpoints. The Location Modules aggregate all the wireless transmissions
from the portable nodes, and create a location table that the Room Modules can access to
find out who is where. The Window Modules receive information from the window control
nodes, and keep a log of when the window was last manually operated. This is accessed
by the Outdoor Modules when determining whether to open or close the windows. The
Window Modules also monitor the air speed coming in through the window, and close the
windows if it becomes to windy. The Outdoor Modules receive outdoor temperature and
humidity information, and poll the indoor Thermostat Modules to decide whether to open
the windows and let in cool outside air. The Thermostat Modules track individual room
air temperatures, and poll the Room Modules to determine whether or not they should
be performing control actions. Based upon the Room Modules’ states, the Thermostat
Modules will either run normal control, setback control, or no control at all. For summer
operation, the Thermostat Modules also determine if the room is too cold, at which point
the Window Modules will not open the windows. The Portable Modules keep track of each
individual user, and whether they are active and comfortable. The Room Modules poll the
Portable Modules and Location Modules to find out if users are currently active, where they
are located, and if they are comfortable. Based upon these findings, they either relinquish
control to the Thermostat Modules, or work to minimize the discomfort in the rooms. Each

of these modules is explained in depth in the following sections.
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The system also incorporates a back-up function, which is not related to the hybrid con-
troller, but is critical to its proper functioning. After a short period of running, the control
system establishes a complicated map of the state of the sensor network. This map continues
to update for the entire duration of its operation. Some states evolve on a minute-by-minute
basis, and others over hours or days. To maintain this state during system crashes, critical
components are backed up to the hard drive whenever they are changed. Upon restart,
these components are loaded before the program begins to run. Not all components are
backed up, as some are modified too often, or are not important enough, to warrant the
overhead of continual file writes. Currently, all comfort preference variables and expected

occupancy variables are backed up.

4.1 Control Module

The Control Module represents one of the few hierarchical elements in the network, as it
merely processes and passes incoming commands. The main purpose of the Control Module
is to map the desired temperature control signals to the correct output devices, and maintain
state between the various control hand-offs that occur throughout the day, as many devices
control the same actuator. In this way, local control of the damper is maintained in a stable
fashion, regardless of the incoming control signals. This also allows for a central repository
for storing control variables specific to certain rooms. A flowchart for the Control Module

is shown in Figure 4.1.1.

The Control Module implements a hybrid proportional and integral (PI)/dead-band con-
troller. The PI controller is chosen for its simplicity and stability, limiting the number of
unknown variables when analyzing the full control loop. Sufficient performance is obtained
from the PI controller, such that a full proportional, integral, and derivative (PID) controller
is not necessary. The predictive setback algorithm (see Section 4.7) further reduces the need
for the fast system response time of derivative control, as the room temperature is set before
it is occupied. A dead-band is placed on the issuing of control signals around the setpoint

in order to reduce network traffic. Since all of these commands are required to be sent
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Figure 4.1.1: Control Module Flowchart

over the wireless network, and the incoming control signal is digital with a finite resolution,
in the absence of a dead-band a control signal would be sent out every minute, increasing

the probability of collisions. This dead-band is chosen to be +£2 LSB (£0.1°F) as a good
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balance between maintaining temperature accuracy and limiting excessive transmissions.

In practice, this keeps temperature excursions between +0.2 °F.

The PI gains are set via a combination of manual tuning and the Ziegler-Nichols method [78].
The Ziegler-Nichols method involves increasing the feedback gain until resonance is reached,
and then setting the gain parameters as a function of the critical resonance gain (K,.) and
period of the critical resonance (7). The proportional gain (K,) is set to 0.5 x K, and-
the integral gain (Kj;) is set to 1.2 x K, /7.. The Ziegler-Nichols method was not employed
exclusiveiy, as long evaluation times are required to check for stability or resonance. After
two days of testing, it was determined that the response was well enough understood to

make a reasonable estimate of the optimal PI gains.

The gain is increased by factors of two until instability is observed. The resonance can
be seen in Figure 4.1.2, and is measured as having a period of approximately 0.2 hours
at a positional gain of 32,000. This gives K, = 0.5 x 32,000 = 16,000 and K; = 1.2 X
16,000/(0.2 x 3,600s) = 26.7. Application of these control gains still produces excessive
overshoot and oscillation, as can be seen in the first half of Figure 4.1.3, so the gains
are halved again, assuming that the actual critical resonance could be anywhere between
the 16,000 gain test and the 32,000 gain test. This produces gains of K, = 8,000 and
K; = 13.3, which can be seen to improve performance greatly, as shown in the second half
of Figure 4.1.3. These gains are then manually adjusted to their final gains of K, = 8,000
and K; = 10 after more testing. An example of their performance can be seen in Figure 4.1.4,
with a four degree step response in less than an hour. The 0.2 °F dead-band oscillation is
also visible in this figure. Since all of the offices are of similar size, and have similar cooling
equipment, the same gains are used for all offices. The only exception to this is a double
office, which has two VAV boxes that are operated in parallel at one half the controller

gains.
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4.2 Location Module

The Location Module (see Figure 4.2.1) is in charge of keeping track of where each node
is located in the system. It does this by aggregating all of the location packets, which
are received by each room node and passed along via Ethernet to the network hub. Since
packets arrive in tight succession, it is important to window out those packets which do
not belong to a particular broadcast transmission. To do this, the Location Module starts
a timer when the first location packet arrives from a particular portable node. It then
only accepts packets for the next 50 ms. Since location is based upon the strongest RSSI
of these received packets, the actual location may not be reflected by the data, as multi-
path can easily confound RSSI data. To accommodate this, the Location Module performs
a smoothing algorithm on the incoming data, taking a majority vote on the past three
location results. If no majority can be reached, it takes the currentresult. This allows for

temporary excursions to be excluded, but relatively quick response to changes in location.

Location Module

* Sort packets by source ID

« Start 50ms window timer

* Find destination with max RSSI
* Run smoothing algorithm

¢ Store current time

Room
Modules

Figure 4.2.1: Location Module Flowchart
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An example of the received RSSI for a portable node is shown in Figure 4.2.3. The data
represents a time when there are no people in the building, and the node is neither being
worn, nor is it moving. This node is placed in perhaps the most challenging location, directly
in the center of the network of five receivers. It is in this location that it would most likely
be picked up by neighboring nodes. A map of the transmitter and receiver locations can
be seen in Figure 4.2.2. It is important to note that the distances on the map are not
representative of the actual distances from the portable sensor to the room nodes, as the
room nodes are mounted on the ceiling at a height of 3 m. The portable node is usually at a
height of approximately 1 m, as the user spends most of his or her time seated. This makes
the actual distance Dot = /2% + D?,mp, where Dpqp and Dy are in meters. A listing of

the actual distances is shown in Table 4.2.1 for the tests done in this section.

It can be seen from Figure 4.2.3 that the RSSI values strongly correlate with distance
between transmitter and receiver, although this relationship is neither fixed nor linear.
Since the system does not need to know exact location, rather merely which room a person
is in, this rough location based around maximum RSSI values works quite well. This is
further aided by the fact that the office walls are constructed of steel studs and drywall,
with metal whiteboards and metal shelving units being common on the walls. The doors
to the offices are also metal. This creates a tight zone around each room node. A plot
of the RSSI values for the same portable node during a time when it is being worn can
be seen in Figure 4.2.4. The user is generally seated for this test, with the node hanging
from the neck in front of the chest. The user’s back is facing room 48, and the sensor is
facing room 32. It can be seen that the RSSI values begin to fluctuate much more under
these conditions, as both the body and sensor are moving. The difference between RSSI
values decreases greatly, but the closest node still retains the strongest signal. The voting
algorithm helps window out short term false readings, and its output for this same time
period can be seen in Figure 4.2.5. The location algorithm reports two false readings over
the hour of testing, giving a success rate of 58/60 = 96.7 percent, as the portable module

transmits once a minute.
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Figure 4.2.2: Map of Receive and Transmit Locations for RSSI Tests

| Room Node | Distance [m] |

32 3.40
36 6.32
40 5.39
44 2.23
48 3.61

Table 4.2.1: Distance from Portable Node to Room Nodes

78



RSSI

20+ 4

- — s .

VN T TN oAy VAT T TN\ AN P VNt TANT T

,,,,,, I ) ST

RIS A/ R N

\

\

10 L

okl 1 | | 1 1 ] 1 L ] =

0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0 2.2
Time (h}

Figure 4.2.3: Example of RSSI Values for Unoccupied Period

79



RSS!

60 ! 1 I I ] [ [} 1 1 1

e fOOM 44
—+— room 48
— room 32
- — —room40
o room 36

o | 1 1 1 L 1 I l 1 1 1 7]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11
Time [h]

Figure 4.2.4: Example of RSSI Values While Sensor is Worn

80



Location [room number]

47.5-

§
T

&
T

S

0

()]
T

asl-

44

1 L 1 { 1

1
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Time [h}

Figure 4.2.5: Location Algorithm Results for Period Shown in Figure 4.2.4

81



4.3 Window Module

The Window Module receives data from the two window controllers in the network. These
window controllers monitor the light levels, temperature, humidity, wind speed, and motor
state. The Window Module currently only takes into account the motor state and wind
speed, and a flowchart of its actions can be seen in Figure 4.3.1. Via the motor state
information, the Window Module can be notified if a user has pressed a button to manually
open or close the window, if the window was last driven in the open or closed direction
(either by a user or some other module in the network), or if the window was driven to its
limits in either the open or closed direction. From these data, the Window Module creates
a repository that can be accessed by other modules, letting them know if the window is
fully shut or not, or if the window has been manually operated in the past three hours or
not. The manual timeout of three hours is chosen to keep other modules in the network
from over-riding user preferences, but still allowing the system to respond if a window is

left open overnight.

The other function the Window Module performs is keeping the wind speed coming through
the window below a certain level. If wind speed greater than this level is detected, the
window is closed a small amount. This process repeats until the wind speed has dropped
sufficiently. Again, this automated control of the window is not performed if the window
was operated manually in the past three hours. Both the window control nodes and the
damper control nodes have built in functions for driving their respective motors to maintain
a particular flow rate through the wind speed sensor, but these are not used at this time to

allow for increased predictability of the complete system.
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Figure 4.3.1: Window Module Flowchart
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4.4 Outdoor Module

The Outdoor Module is driven by the two outdoor environmental sensors, and a flowchart
of its decisions can be seen in Figure 4.4.1. The outdoor temperature and humidity are
stored, and the outdoor air enthalpy is calculated. The enthalpy of a gas is a measure
of its total stored energy at a given pressure and temperature. Since the contributions
due to pressure variations are negligible in this case, they are ignored, and the enthalpy
can calculated based upon the temperature and moisture content of the air. To minimize
computational load, an approximation is used based upon Equation 4.4.1, where H is the
enthalpy in Btu/lb, T is the temperature in degrees Fahrenheit, and RH is the relative
humidity in decimal form. This approximation gives one percent accuracy over the range
of conditions experienced by the sensors [79], which is more than adequate considering it is

only the difference in enthalpy that is of interest, not absolute enthalpy.

H = (0.007468 x T? — 0.4344 x T + 11.1769) x RH +0.2372 x T +0.1230  (4.4.1)

If the outside air has less energy, i.e. lower enthalpy, it is useful in cooling down a room.
For this reason, the Outdoor Module will open the window if the outside enthalpy is one
Btu/Ib less than the indoor enthalpy. Although the main air-conditioning system has an
economizer which brings in outside air under similar conditions, air brought in through
the window does not require a fan to move it, thereby reducing the net energy to cool a
room. The window closes if the outdoor and indoor enthalpies are equal, effectively putting
hysteresis in the system and eliminating excessive window motion. The indoor enthalpy
is queried by the Outdoor Module from the room Thermostat Module associated with
the window, along with an indicator of room temperature. If the room is more than a
degree below its setpoint, it is assumed that the VAV dampers are already closed, and that
additional cooling is not necessary. All of these functions are performed after consulting
the Window Module to ensure that the window isn’t already open or closed, and that it

hasn’t been manually operated recently.
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4.5 Thermostat Module

The Thermostat Module performs many of the room temperature control functions. It re-
ceives temperature and humidity information from sensors mounted in each room below the
pre-existing thermostats. It calculates enthalpy according to equation 4.4.1, and determines
if the room is too hot or too cold. Before making these assessments, it first consults the
associated Room Module to check its state. If the room is occupied, but not by a person
wearing a portable node, the Thermostat Module performs normal control, regulating the
room temperature to a fixed setpoint, usually an average of the documented comfortable
values of its occupants. If the room is unoccupied, it performs setback control, regulating
the room to a fixed temperature usually six degrees Fahrenheit higher than Normal Mode.
This setback temperature is limited to six degrees in order to allow for fast transitions back
to comfortable temperatures when users arrive unexpectedly. In cases where the room is
occupied by users with portable nodes, the Thermostat Module relinquishes control of the
VAV dampers to the Room Module, which has more information as to who is present and
whaﬁ his or her comfort needs are. A flowchart for the Thermostat Module can be found in

Figure 4.5.1.

The Thermostat Module has a number of variables that are accessible by other parts of
the network. The enthalpy, temperature, and humidity are used widely throughout the
system. The Thermostat Module also has a series of lower temperature limits it checks for,
and sets a ‘too cold’ indicator if any of them occur. This function is necessary as there
may be many different control operations happening at any one time, some of which might
be conflicting. For example, both the VAV dampers and window motors can be operated
to cool the room down, and they act independently, so a hard-stop is required to keep
the system from driving itself too far in one direction. Depending upon the current room
occupancy condition, different lower limits are used. The lowest limit is during setback
mode, when occupancy comfort is not relevant and reducing energy consumption is most
important. In these conditions, temperatures are allowed to drift down to 65 °F, helping to
store energy in the thermal mass of the internal building. If the room is occupied, the lower

limit is set to one degree Fahrenheit lower than the control temperature. In cases where the
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Figure 4.5.1: Thermostat Module Flowchart

room is occupied by users wearing portable nodes, this lower limit is kept at 70 °F. This is
because the desired temperature is unknown by the Thermostat Module, and it is best to
take the conservative approach of not cooling the room too much, but instead allowing the

main system to control the temperature.
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4.6 Portable Module

The Portable Module keeps track of each user in the system, and determines whether the
user is active and comfortable. A flowchart of the Portable Module’s actions can be seen in
Figure 4.6.1. Activity determination is necessary, as the nodes are often left on the users’
desks when they leave for the day. The activity determination is based upon activity and
temperature information from the portable node. Data from the portable node light sensor
was considered as a possible indicator of activity, but the variations in light levels due to
sunlight, and the lack of predictability as to whether the unit is being worn under clothes,
made it an inconsistent activity detection variable. Temperature is only mildly influential
in the activity algorithm, as it is the main control parameter for the system. If it were to
trigger a false positive, and then drive the air-conditioning system to either reinforce its
state, or attempt to change its state when this is not possible, an unstable feedback loop
could result. An example of such a situation would be a user leaving a portable node next
to a computer which is warm. This would heat up the portable node and could indicate
activity, causing the control system to believe a user is in the room. It would then try
to cool down the node, which would be impossible given the sensor’s proximity to a heat

source. To eliminate such scenarios, the temperature alone can not indicate activity.

The main determinants of activity are windowed mean and variance of the piezoelectric
motion sensor on the portable node. It is very important that the activity algorithm quickly
detects when a user is no longer wearing a sensor. The sensor temperature will quickly
drop after removal, and the system would react by shutting off the air-conditioning, to the
displeasure of the remaining users in the room. For this reason, a window time of three
samples is chosen, giving a maximum delay of three minutes to clear the buffer. As the
average delay of a windowed sample is one half the window time, the average delay for this
system is only 1.5 minutes. This also has the advantage of giving a fast start-up time, so
users are added to the system as soon as they arrive. The only disadvantage is the increase

in false positives, which, fortunately, are short lived due to the small window time.

The incoming data from the portable nodes are first separated by time since last arrival, as
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packets are sometimes sent twice due to the acknowledge transmission failing even though
the data packet transmission was successful. Only packets which arrive more than 55s
since the last packet are accepted. Furthermore, for activity recognition, any button press
packets are ignored, as these are out of sequence time-wise and result in incorrect activity
data. Since the activity data is an accumulation since the last transmission, and button
presses can occur at any time, the actual activity is not representative. Although the time
since last packet arrival is known, and the actual activity level could be backed out, button
presses occur so infrequently that this added complexity is unnecessary. Also, the high

forces during the actual button press action make these data of little value.

After this windowing process, the Portable Module checks for activity start or continue
conditions. The activity start conditions have much higher values than the activity continue
conditions, to help reduce false positives under the assumption that once activity is detected,
it is more probable that the user is still active rather than not. This keeps users in the
system through periods of low activity, when the activity sensor is returning low values.
Start conditions include windowed mean and variance above certain thresholds, and continue
conditions include windowed mean and variance and temperature above certain thresholds.
There is also a timeout on the continue conditions, excluding temperature. Temperature
is excluded to eliminate thermal lock-up conditions. If no continue conditions are detected
before the timeout period of six minutes, the system assumes the user is no longer active,
and requires that a start condition be detected before re-establishing him or her in the
system. The user is only flagged as active if a continue condition is reached, even if the
timeout has not yet expired. The time of last activity is then logged for other modules to
access in their decision processes. A time stamp is chosen as the pass variable instead of an
activity flag, as a user could leave the system while active and leave the activity flag set,

which could not be reset as no new user data would be arriving.

A representative plot of the activity algorithm running on received data can be seen in
Figure 4.6.2. The windowed mean and variance are plotted alongside the actual activity
and temperature data for a sensor worn, via a lanyard, around the neck. Some of the

difficulties in detecting the active condition can be seen in Figure 4.6.3, which is a detail of

90



Temperature [F]

Activity Mean
[ N W
g 8 ¢

o

0 20 40 60 80 100 120

Activity Variance
QO = N W A~ wu

T T 1 T
mE
o

1 1 1 1

0 20 40 60 100 120
T T T T T
§ 1001 _
o
£ 50 .
S
€
o]
>
< O
1 1 1 1 1
0 20 40 60 80 100 120
Time [h]

Figure 4.6.2: Representative Activity Algorithm Performance (sensor on lanyard around
neck)

91



Activity Variance Activity Mean Temperature [F]

Algorithm Output

xR
1%,

80
75
70 I 1 | ! 1 ! L ! !
0 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1 | | 1 | | 1
15 2.0 2.5 3.0 3.5 4.0 4.5 5.0

100

50

100

50

T

1.5

2.0

2.5 3.0 35 4.0 4.5 5.0

T

1 1 1 1 |

S5 1.0

1.5

2.0

2.5 3.0 3.5 4.0 4.5 5.0
Time [h]

Figure 4.6.3: Representative Activity Algorithm Performance: Detail

92



a section of Figure 4.6.2. The vertical axes are expanded to show the low levels of many
of the signals, as there are many very low activity states during normal usage by the users
in the system. Many of the tasks the users in this study perform on a daily basis include
reading and thinking, neither of which require much physical motion. As each portable
node, and the user of the node, is slightly different, the thresholds of activity need to be
different as well. These thresholds are picked manually for the users from visual evaluation
of six weeks of user data. As the data is unlabeled, estimations are made of the actual
active times, and the algorithms are modified to match these estimates as best as possible.

A listing of the thresholds used can be seen in Table 4.6.1.

Portable | Mean | Variation Mean Variation | Temperature
Node Start Start Continue | Continue Continue

4 70 200 45 15 80

8 120 200 70 25 80

20 70 200 50 25 80

24 70 200 45 15 80
28 50 200 20 15 80

76 70 200 30 15 80
84 100 200 65 25 80
88 70 200 30 15 80
96 70 200 50 20 80
104 70 200 30 15 80

Table 4.6.1: Threshold Settings for Portable Node Activity Algorithms

After the activity is sensed, a timeout is placed on any use of the data for fifteen minutes.
This is done to help alleviate erroneous control signals due to the temperature and humidity
sensors not having acclimated. A plot of a portable node being taken on and off the body
can be seen in Figure 4.6.4. The rise time varies, as the temperature it is trying to reach is
also varying, as can be seen clearly at the end of the plot. The fall time, however, gives a
clear indication of the thermal time constant, which is approximately 15 minutes to achieve
90 percent of final value. It would be more stable for the system to wait even longer, but
this would also reduce the responsiveness of the system. If a user is not active for more than
20 minutes, the algorithm is restarted and the user must wait another 15 minutes for his

or her data to become valid again. This 20 minute window time allows for short excursions
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out of the system and compensates for short term false negatives in the activity algorithm.
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Figure 4.6.4: Temperature and Humidity Acclimation Times of Portable Node (node worn
under shirt, and then taken off and placed on desk, twice)

If a button is pressed, these data are processed by the comfort algorithm, which stores the
last nine button presses each of hot, cold, and neutral. For the same reasons employed by

the activity algorithm, the comfort algorithm only allows button presses from users who
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have been active for at least 15 minutes. The comfort algorithm is updated and stored
in a back-up file. As each subsequent data packet arrives, a comfort distance metric is
calculated based upon this updated algorithm, and made available to the Room Module for
temperature control calculations. As different comfort control algorithms were evaluated,

they are explained in Chapter 5, where an in-depth analysis can be found.

4.7 Room Module

The Room Module is one of the most influential modules in the network, even though it
only has one sensor data stream of its own that it uses: the passive infrared (PIR) motion
sensor. In addition to its own sensor, the Room Module references many other modules in
the network before making its decisions. It determines what format of control the room
should be set to (normal, setback, or comfort), and performs the comfort control itself. The
reason for this is that the room nodes are fixed in location, and always active, so they can
be relied upon to maintain the system state. The room nodes also have 30s data updates,
making them more responsive than the rest of the nodes in the network, which have at least

60s updates. A flowchart for the Room Module is shown in Figure 4.7.1.

The Room Module first processes its activity information. Although the PIR sensor returns
a count which increases with the amount of motion in the room, all levels greater than zero
are counted as a level of one. This is done to even out the algorithm results, as only the
presence of activity is desired to be known, not the level of activity. The algorithm performs
two windowed means on the incoming data, one over the past 70 samples, and the other over
the past 12 samples. Two different averaging times are used to drive two different outputs.
The first is a determinant of whether the room is occupied, which requires a fast response
time. The second is a determinant of the first arrival time of users in a day, which requires
high accuracy but response time is irrelevant. Both algorithms use a higher threshold for
initiating an occupancy state than they use for maintaining an occupancy state. This limits

false positives and excessive oscillation between states throughout the day.
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An example of the occupancy algorithm running on received data for a week can be seen
in Figure 4.7.2. This gives insight into a number of the problems faced, and some of the
benefits and shortcomings of the detection system. It can be seen that there are several short
periods of occupancy, especially late in the evening when custodial staff enter for cleaning.
The algorithm generally windows these out, although periods lasting more than four minutes
are usually detected as an occupancy. There are also multiple gaps in occupancy throughout
the day, which the algorithm bypasses with a three hour time-out, but this also gives longer

periods of false positives after the user leaves for the day.
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Figure 4.7.2: Example Occupancy and Algorithm Results for a Single Room
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The main role of the occupancy algorithm is to determine what level of cooling the room
needs. For this reason, a large amount of lag is placed in the transitions, in order to keep
the air-conditioning system from cycling too heavily and wasting energy. Once occupancy
is detected, the system maintains an occupied state for three hours. This was done to
bridge large gaps in the day when users leave to go to lunch or meetings. These happen
quite frequently, and a three hour window covers most scenarios. This does, however, place
a high penalty on false positives, as it will cool a room excessively for three hours. The
window averaging time of 12 samples, which equates to six minutes, attempts to strike a
balance between fast activation and accuracy. This gives an average delay of three minutes
for new occupant entries. Although there is a long time window for this global occupancy
variable, the system also keeps track of immediate occupancy for use in determining what

cooling actions are required.

If no occupancy is detected, the system checks if a user is expected to arrive soon, in order
to ensure that the room is at an appropriate temperature when he or she enters. This is
done by checking the arrival times stored in a buffer over the past week. If a user arrived
any time in the past week within two hours of the current time, the system assumes he or
she will most likely arrive again, and it prepares the room accordingly. The window time
is much larger for this algorithm, with an average lag of 17.5 minutes, to ensure that any
person who entered the room in the past week actually stayed long enough to make it worth
cooling the room down for him or her. This algorithm also employs a three hour time-out,
in order to bridge gaps in the day, and return only one entry point for the day. If a room is
unoccupied for more than three hours, the next entry will be stored in a buffer for future

reference.

Once the Room Module has calculated its occupancy state, it then performs control actions.
These control actions are performed at one minute intervals, even though data is updated
at 30s intervals. This is done to synchronize with the other controllers which are limited to
one minute updates. Doubling the control action time would be the equivalent of doubling
all the PI control gains, causing system instability. If no occupancy is detected, and it is not

within two hours of an expected entry, the Room Module sets the control state to setback
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and performs no actions. If occupancy is detected, or expected to occur in the next two
hours, but there are no users wearing portable nodes in the room, the Room Module sets
the state to normal and performs no control actions. Under both setback and normal states,
the Thermostat Module controls the VAV dampers to regulate the room temperature. If
the room has been occupied by a user with a portable node in the past three minutes, the
Room Module checks the comfort level of all users present in the room and averages them
to create a control scalar. It then turns off both normal and setback control, and acts upon
the control scalar to minimize the average room discomfort. Once users have been detected
there is a six minute timeout before either setback or normal mode can be entered, in order
to maintain system state during periods of false location responses and short trips out of

the room.

When determining the control scalar for a room, the Room Module only considers those
occupants who are normally situated in the environment. The test setting incorporates
four closed offices, and one large common space which is divided into two sections. For the
four offices, only the occupants of those offices are allowed to control the comfort setting.
In the large common space, all users are averaged together when determining the setpoint.
Although room occupant information was pre-assigned in this case, it could be replaced
by a weighting algorithm that determines how much time each user spends in a particular
space. This would produce similar results as the pre-assigned knowledge, as office occupants
would make up the highest percentage for their respective offices, but it would also increase

the amount of control workers in the public space had over their area.
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Chapter 5

Comfort Algorithm Design

In order for the entire Personalized Comfort Control System to function effectively, it must
have some metric by which to judge the individual user’s ‘comfort distance’. The term
‘comfort distance’ is used here as a measure of how hot or cold a user is, or more precisely,
how far away he or she is from being comfortable. The use of this metric places a number of
difficult constraints on what types of algorithms can be used, but is required due to the fact
that the output of the implemented algorithm must drive a control loop. For this reason,
it must have a monotonic structure to avoid instabilities and local minima. These could
be accounted for through a non-linear control structure, but this is avoided in this work
in order to minimize the number of variables involved in determining system stability and

performance.

Many standard pattern recognition techniques are inadequate for this control task as they
seek to draw boundaries around similarly labeled data, giving accurate classification, but no
distinction of levels within those classes. A simple Bayesian analysis could give a probability
of comfort, but would require a much more accurate model than is currently available,
given the limited set of on-body comfort indices used. Only temperature and humidity are
measured on-body, whereas Fanger’s model [38] requires clothing level, metabolic rate, and
air flow. This problem is compounded by the limited labeling of the acquired data. In

comparison to Fanger’s seven point scale, users of this system only have three choices, hot,
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cold, or neutral. This means there is no way of knowing exactly how hot or cold they are
at the instant a button is pressed. This metric must be inferred from the distribution of

the received data.

Not only are the labeled data points ambiguous as to their level of discomfort, but they
are also very sparse in their occurrence. The users are not required to press any buttons,
and are only asked to do so if they feel uncomfortable, limiting the amount of labeled data
points to an average of about one per person per day. Ideally, if the system were to function
flawlessly, this number would be even lower, as the users would be comfortable more often.
Another issue faced in this reduced data set is the lack of an even distribution of hot and
cold labels. For some users, the room never went cold enough to make them feel cold, so
only hot data points exist, giving no information by which to determine a lower limit on

comfort.

All of these drawbacks in the data set place a final constraint on the comfort algorithm. It
must be robust to insufficient, inaccurate, and indeterminate data. If one user has his or
her sensor in a pocket, where the temperature is much warmer than its usual location, the
entire system can not be allowed to drift too cold in order to compensate. There must be
the inclusion of some pre-assigned knowledge which incorporates a rational view of comfort
boundaries. This requirement will therefore favor more general approaches, which may not
be as effective for each individual, but will reduce the problems associated with over-fitting
of the data (e.g. the system attempting to cool a room to match an accidental button press).
Finally, any algorithm developed must be able to run and update itself in real-time, to effect

the comfort of the users when it is needed.

5.1 Selection of Indices

At any given instant, several features are available from which to determine comfort. Ex-
amples of these include on-body environmental conditions, room environmental conditions,
outdoor environmental conditions, location, time of day, day of week, and local VAV air

flow. Even without the creation of any subfeatures, the system already logs 24 different
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data indices each minute, for each user in the system. Given the extremely high dimen-
sionality of the data set in comparison to the number of labeled data points (an average
of one per person per day), the number of indices used to determine comfort must be kept
to a minimum. Any algorithm trained on a small data set, with too many features, will
classify those particular points well, but is unlikely to be representative of the function as
a whole. A typical metric is to have a training set much, much larger than the feature set.

This limits the scope for these data to two or three features.

From extensive evaluation of the first two months of data, little correlation is found between
the time series data and hot or cold preferences. Although users were more likely to register
discomfort early in the day, and earlier in the experiment, there was no distinction between
hot or cold. Similarly, the outdoor environmental data gave mixed results, with the strongest
correlation coming from a user who did not have a view of a window from his workspace.
This is probably due to the weather being extremely consistent for the first two months of
the study: cold and wet. It rained in Boston on all but two days in the month of June. The
VAV damper information proved useful for determining some of the users’ comfort, with
them reporting either comfortable or cold conditions when it was on, and hot or neutral
conditions with it off. However, since this is also the main method the system has for
affecting the comfort of the users, it is not used as a control parameter in order to prevent
oscillations which would occur with the system detecting a ‘hot’ state, initiating air flow,

detecting a ‘cold’ state, turning off, and repeating this cycle indefinitely.

The main parameters that returned consistent results amongst all users, were the room
and on-body environmental conditions. Scatter plots for the majority of users comparing
temperature and humidity for the various comfort conditions can be seen in Figures 5.1.1 -
5.1.7. The wall mounted thermostat nodes provided the best overall clustering of classes,
with the on-body portable nodes and ceiling mounted room nodes performing similarly.
Linear combinations of these data were also evaluated, which showed mixed results, giving

large improvements to some and greatly hindering others.
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Ultimately, as one of the main objectives of this thesis is to evaluate the effectiveness
of controlling an HVAC system via on-body sensing, it was decided that the clustering
is adequate to exclusively use the portable node’s temperature and humidity data, even
though these are not the strongest classifiers. This will give a clear indication as to the
limits of this format of comfort control. The on-body light and activity data are excluded
from the comfort algorithm, as they give extremely poor separation of the classes. For the
most part, the activity and light levels of the user are high, with large variance, whenever

the node is being worn, giving very little difference from day to day, or hour to hour.

5.2 KNN Distance Metric

Based upon initial success with a KNN comfort algorithm (see Appendix A), a modified
KNN Distance Metric was developed. Since the original algorithm merely returned a class
label, a new method was needed to determine the level of discomfort. A KNN approach
is well suited for distance measurement, as this is an intrinsic aspect of locating nearest
neighbors. In this case, ‘comfort distance’ is measured as the distance away from a known
labeled point, and an average of these comfort distances is used to help reduce the effects

of outliers.

Although it is possible to accurately measure the Cartesian distance between any two data
points, it is unclear exactly how this distance relates to comfort. For this reason, outside
knowledge is required to help train the algorithm. It has been clearly shown from comfort
research and popular experience that increasing temperature and humidity levels lead to
increases in heated thermal discomfort. Fanger’s PMV model gives explicit equations for
these relationships, but this equation is also a function of many other variables which are not
known in this case. To determine the appropriate weightings of temperature and humidity
for this situation, the slopes of the ‘comfort lines’ are measured from the received data from
the portable nodes. These comfort lines are the boundaries between the hot and cold labeled
data points, essentially enforcing a comfort metric based upon the orthogonal distance to

this line of comfort.
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This particular method has two distinct advantages. First, it incorporates expert knowledge
of the system, allowing the system to respond as expected, and constraining the output
to apply negative feedback to the control system. It is important that the decreases in
temperature always result in decreases in heated discomfort, as this is the only method by
which the VAV damper motors can affect thermal sensation. Furthermore, this comfort
line can be determined off-line by visual inspection, which can achieve closer fits due to
the researcher’s better understanding of the difference between representative data and
outliers than the computer’s. Secondly, the KNN approach can easgily incorporate the
neutral class into its determination, giving a better average of how the user might be feeling
at a particular point. This also allows for morphing of the comfort space to match an
individual’s experience, as local clusters can pull away from the enforced distance metric,

if reinforcement is high enough.
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To determine the comfort line, an average of all comfort boundaries is used. A plot of this
comfort boundary can be seen in Figure 5.2.1, superimposed upon the comfort labels from
half of the user population. A linear boundary is assumed to limit the ambiguity of the
weightings of temperature and humidity at a given point, by restricting it to a constant for
the entire space. An average is also taken to make the system more representative of the
preferences of the entire group. Individual comfort slopes could be used for each user, but
these slopes are based on relatively sparse data, and it was decided that an average will
suffer less from the problem of over-fitting. The average comfort line derived from these
evaluations gives a ratio of temperature to humidity of approximately —3/5 (e.g. an increase

in temperature of 3 °F could be balanced out by a decrease in relative humidity of 5%).

The form of the KNN distance algorithm is shown in Equation 5.2.1, where Dy is the level
of thermal discomfort at point d, for n nearest neighbors. T is the temperature in degrees
Fahrenheit, RH is the relative humidity in percent, and G /G gy = —3/5 is the temperature
to humidity ratio. C; is the class label of the i** neighbor, with —1 representing cold, 0
representing neutral, and +1 representing hot. The relative weighting of the enforced linear
distance metric is set by G, with lower values of G allowing the algorithm to adapt to local

data more readily, at the cost of greater overall coherence.

1 Z(Td ~Ti RHq— RHz‘) % G+ C; (5.2.1)

Gr GRru

Representative results for the KNN Distance Metric can be seen in Figures 5.2.2 — 5.2.13,
with the darkness of the red sections indicating the level of hot discomfort, and the darkness
of the blue sections representing the level of cold discomfort. As there are very few samples
in the data sets, each value of n was tried, and the best visual fit was selected. A range
of G values is included to show the influence of the enforced linear boundary. It can
be seen that a standard KNN would produce extremely non-linear control inputs, and
that the linearization process is both necessary and effective. Unfortunately, despite the
heavy linearization, there still exist islands of inconsistency in the results. This is even

more problematic considering that the data sets included here represent the relatively more
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coherent ones. It is also unclear as to the benefit of including the neutral category. Although
this helps in cases where the data sets are not well populated, there often exist clusters of
neutrals near clusters of hots, which reduces the likelihood of that particular area being
labeled as ‘hot’. Although this ambiguity necessarily arises from the nature of the data, it
would perhaps be a more conservative approach to consider any labeling of a point as hot

to be indicative of conditions to be avoided.
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5.3 Fisher Discriminant

Despite the promising results of the KNN Distance Metric, it was decided that they contain
too many points of instability to reliably control the HVAC system for the month long trial.
For any system to be effective, it must deliver predictable results for users, or they might
respond in ways which counter both the goals of the system and themselves. Since the goal
of the KNN Distance Metric is the desire to fit a linear boundary between labeled data and
measure the distance from this boundary, an algorithm more suited to this task is employed:

the Fisher Linear Discriminant.

The Fisher Discriminant seeks the most effective rotation matrix for the given data set,
to produce a projection on a lower dimensional space with high class separation. It takes
a statistical approach of finding the greatest between-class scatter for the lowest within-
class scatter. For this case, it is a simple matter of reducing a two dimensional space
to one, with the only difficulty being in choosing a decision boundary. Rather than the
usual approach of using the intersection of sample distributions, the decision is based upon
discriminating between points which represent the boundary conditions. In this case, the
most representative training points are assumed to be those with the most extreme values
(e.g. ‘hot’ data with the lowest temperature values), and a separating line is created at the
mean of these data. The comfort distance can then be simply computed as the distance to

this boundary.

In order to accommodate the updating and adaptation of the comfort algorithm, a limited
set of data points is used in creating the decision boundary. Nine points each of hot and
cold are used, which allows a complete update in two to three weeks (users press buttons on
average once a day), which is enough time for users to adapt the system before the end of the
experiment. In cases where nine data points are not available, as many as are present are
used. If less than two data points exist, two points are selected which create a reasonable
line in comparison to other users. Representative results of the Fisher Discriminant are
shown in Figures 5.3.1 — 5.3.7. Two each of the hot and cold training points are used to

select the decision boundary. One point each generally returned more favorable results, but
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two are used in order to limit problems associated with outliers.

As can be seen from Figures 5.3.1 — 5.3.7, the distance between the ‘hot’ and ‘cold’ labeled
points varies greatly for the different users. Accordingly, the calculated comfort distance
will also vary greatly between users. To normalize this reported comfort distance so the
control system can effectively arbitrate between users, the mean distance of ‘hot’ and ‘cold’
points from the decision boundary is calculated. As new temperature and humidity data
are collected by a user’s portable node, the final comfort output is computed as the comfort
distance divided by this mean distance. In this way, each user is equally uncomfortable for

a given comfort value.
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Figure 5.3.1: Fisher Discriminant Boundary: Node 8
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Chapter 6

Evaluation

In order to assess the efficacy of a body-worn comfort control system, a long-term user study
was performed from May 18" through August 215t of 2009. The study was carried out with
a mostly graduate student population at the M.I.T. Media Laboratory. Ten people were
assigned individual portable nodes, and four offices and two common areas were equipped

with room nodes and control nodes. A full system overview can be found in Section 3.1.

6.1 Experimental Procedure

Phase One of the study ran from May 18" to June 21, and was mostly a hardware
evaluation stage. No actuation was performed for this period, and data were merely gathered
on how users interacted with the devices, and how effective the current HVAC system was
in terms of meeting their needs. The majority of technical problems were fixed during
this time, and the various methods of using the portable nodes were evaluated. In order
to have a fair baseline to compare to, the maintenance department made repairs to the
VAV damper controllers and thermostats for all of the offices and common spaces in the

experiment, before Phase Two of the study began.

During Phase One, participants were allowed to use the portable node in any way they chose.

The majority of users left the sensor on their desk, and merely picked it up to press a button
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if they were too hot or too cold. One user carried the sensor in his pocket, and two users
wore the sensor around their necks on lanyards. From analysis of the data, it was found
that the inertial activity sensor on the portable node was too noisy to detect proximate
motion, and therefore could not tell if its user was in the room if it was not worn. The
unworn nodes would also sometimes be set near laptops, or other warm electronic devices,
causing the environmental data to no longer represent the ambient conditions. With a more
accurate accelerometer, these different usage conditions could be sensed [80] and accounted
for, but the portable node battery life would decrease by two orders of magnitude (see

Section 3.3).

The data from the user who carried the portable node in his pocket was extremely erratic,
with very large temperature excursions depending upon how closely the sensor was being
held to the body. To complicate matters further, the device would be removed from the
pocket when the button was pressed, causing the temperature to drop very quickly and no
longer indicate the pocket temperature. In general, the distinction between the hot and
cold classes in all conditions except when the nodes were worn on the lanyards, was very

low. For this reason, all nodes were attached to lanyards for Phase Two of the study.

Phase Two of the study ran from June 2274 to July 26", The purpose of this stage was
baseline data collection. The users were first asked to complete a questionnaire regarding
their comfort under the current HVAC system. They were then asked to wear the portable
node, via a lanyard, around the neck (either under or over their shirt), and press a button
whenever they felt inclined to do so (either hot, cold, or neutral). No actuation was per-
formed for the majority of this period, with the only exception being sporadic control tests

to verify the control system software, mostly occurring during the final week.

The portable node data was analyzed during this period to determine the feasibility of
using the wearable sensor to control the HVAC system. For the majority of users, the
results were still too incoherent to give a reliable indication of comfort. This is a result
of the steep thermal gradient next to the human body, and the ability of the sensor to
move around depending upon user position. To verify this issue, a series of portable nodes

were connected together at a spacing of three centimeters in front of a test subject (see
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Figure 6.1.1 for test set-up). These nodes were worn for an hour and a half, and their data
compared to one another, as well as to data from nodes which were situated on the desk

where the subject sat, and on a nearby wall.

Figure 6.1.1: Body Thermal Gradient Test Set-up

A plot of the temperatures at these locations can be seen in Figure 6.1.2. At 12.5h three of
the nodes were placed next to each other on a table to show the temperature offsets of each
node. One of the nodes was previously being worn, and had not fully acclimated by 13.25h,

when they were placed on the body, but the remaining nodes show very similar readings.
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It can be seen that there is a 9 °F difference between the temperature measured by a sensor
resting against the body, and one just 6 cm away. This is much less than the distance the
sensor can move if a person is leaning over while typing, or performing a similar attentive
task. The rate at which these sensors respond to ambient conditions is shown by the relative
depth of the dips at 13.6h and 14.4h. At these points, the subject walked from a warm

room to a cool room for a short period. The thermal mass of the body helps stabilize the

results.
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Figure 6.1.2: Body Thermal Gradient

In order to eliminate the variability in the received data that the body thermal gradient

incurs, the users were asked to wear the portable nodes on their wrists, beginning July 17,
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A full week of data was collected, with a few periods of routine polling of the subjects as
to their comfort condition, in order to build up a large enough data set for analysis. This
polling was usually done every fifteen minutes by asking users to press one of the three
comfort buttons, and would last anywhere from one to three hours. These data proved

stable enough to proceed with a control system based upon the wrist-worn sensors.

7th lst

Phase Three of the study commenced on July 27°", and continued until August 21%*. During
this period, the experimental control system was run, with the HVAC system and window
motors being controlled via the various sensors in the network. The first few days of the
study involved periodic adjustment of controller gain settings, but the control software
remained effectively unchanged for the remainder of the study. Users were asked to press
buttons on the portable nodes indicating their comfort level whenever they wanted. They
were told that the climate control system would respond to their wearable sensor, and would
try to mediate the comfort preferences of each occupant of the individual office or common
space. Periodic surveys were administered during this period to assess the user’s comfort

level, and their beliefs about the system. The surveys used in this study can be found in

Appendix B, and the results are shown in the next sections.

Since the time-changing aspects of the control algorithm are of interest, Phase Three is sub-
divided into three sections: Week Two, Week Three, and Week Four. Week Two ran from
July 29*" to August 7*", eliminating the first few days of the experimental control period,
during which parameters were being modified to make the system stable. Week Three ran

from August 8 to August 14*®, and Week Four ran from August 15" to August 215¢.

6.2 Energy Metrics

Any commercial HVAC installation consists of a large number of components, making it
difficult to assess the effects of any single part. This work attempts to overcome this
problem by averaging over a large number of days, allowing for variability in components
to be averaged out as well. Unfortunately, for the majority of the baseline testing period

(Phase Two), the outdoor climate was dramatically different from that of the experimental
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period (Phase Three). To illustrate this, the heating and cooling days for these periods are
shown in Table 6.2.1. These data are taken from the National Weather Service database for
Boston (measured at Logan Airport) [81], as the outdoor nodes give erroneous data due to
direct sunlight effects. Heating and cooling days are an integration, over an entire day, of
the temperature difference from 65 °F, with positive values being cooling days, and negative
values being heating days. This is often used as a metric to determine how much energy
is required to heat or cool a space, as it represents the temperature difference the HVAC

system must produce, and has been shown to give linear correlations in some cases [82].

Heating | Cooling | Number Average
Period Days Days | of Days | Cooling Days
Phase Two 26 55 22 2.500
Week Two 0 115 10 11.500
Week Three 0 41 7 5.857
Week Four 0 108 7 15.429

Table 6.2.1: Number of Heating and Cooling Days During Experiment

The only method the Personalized Comfort Control System has available to measure energy
usage is via the air flow sensors on the VAV boxes. Although energy monitors on the chilled
water lines and fan motors would give more accurate results, the area being controlled by
the experimental system is a small percentage of the total space, and the effects would
be unnoticeable. Despite the air flow from the VAV boxes giving an incomplete picture
of the total energy used, it does show the fan usage for the space very accurately. Since
fan energy can represent up to 40 percent of total HVAC power consumption [83], this is
an important metric by itself. The chiller energy can be estimated by multiplying by the
number of cooling days, as this represents the total energy put into the air flowing out of
the VAV boxes. These numbers are divided through by the number of degree cooling days
to make the results more generally applicable. Plots of these energy metrics showing each

room’s contribution can be seen in Figures 6.2.1 — 6.2.2.

It can be seen that the total chilled air used decreases for both metrics. The modest

improvements shown for Week Two, in comparison to Week Three and Week Four, are due
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to thermostat node temperature settings being changed after Week Two. It was found that
the HVAC system could respond fast enough to allow a 6 °F setback, rather than the 4°F
setback which was used previously. Also, the normal control temperatures for Room 36
and Room 40 were increased from 70 °F to 72 °F, due to complaints about the space being
too cold when occupants arrived for the day. This adaptation could eventually be done

automatically, based upon an average of users’ past preferences.

A cursory approximation of energy savings, based upon Phase Two, and an average of Week
Three and Week Four, shows a reduction of 75 percent. This is based upon an estimated 40
percent fan usage times the normalized VAV air usage, plus an estimated 60 percent chilled
water usage times the non-normalized VAV air usage. The actual savings are much smaller
for a number of reasons. Firstly, the’ main savings shown are due to Room 36 and Room 40
reductions, which represent an unfair comparison, as the area they cooled is also serviced
by eight other VAV boxes, none of which were under experimental control. Secondly, the
HVAC system, despite having been repaired, was not running properly for the majority of
Phase Two. Finally, the chiller units were most likely not running during Phase Two, as

the outside temperature was low enough to not require them.

A floorplan of the public area which contained Room 36 and Room 40, showing the other
VAV boxes, is depicted in Figure 6.2.3. There are two banks of control, each with a standard
thermostat. Bank 2’s thermostat is far away from the experimentally controlled damper,
and although shutting off this damper completely would have little effect on the reading at
the thermostat, cold air can still move across and make up for the cooling difference. The
situation is worse for Bank 1, which has its thermostat very close to the experimentally
controlled damper, such that the remainder of the bank would produce more cold air to

compensate for the difference.

Thé dampers for the experimentally controlled VAV boxes in the public space were essen-
tially shut for the entire duration of the experiment, as the temperature in the public space
was set to 69.7°F, much colder than was preferred by the occupants. If the space were
entirely enclosed, the air usage would reduce, but only enough to bring the temperature

up to the preferred level. As it occurred, the temperature only raised near the VAV box
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Figure 6.2.3: Floorplan of Public Space with VAV Boxes Shown

in Bank 2, and this was only 1.3°F. The occupants of that area still stated that it was
too cold, even after the dampers had fully closed. It is difficult to predict what the system
would have done under different conditions, but it is shown that the temperature would
have risen by at least 1.3°F, and it can be assumed that the temperature near the other

damper would have increased by at least as much, as this area was not often occupied.

To best account for Phase Two energy usage, Room 44 will be analyzed in detail. This
room is selected because it was completely repaired, with both the thermostat and damper
motor controller being replaced. It also has the most linear and sensitive wind speed sensor,

so the data can be relied upon to give an accurate view of the room state. Unfortunately,
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the wind sensor was replaced half-way through Phase Two, but the latter half of this period

had a larger percentage of cooling degree days, making it more useful for this analysis.

A plot of Room 44’s temperature and chilled air usage can be seen in Figure 6.2.4. This
period represents the last 13 days of Phase Two, which had 37 cooling degree days, and six
heating degree days. This is about half of the cooling degree days seen at the lowest period
for Phase Three, and as a result, the main fan speed was reduced, and the economizer was
most likely run at full open. The reduced fan speed can be seen from days 7 — 13, where
the damper was full open, and the maximum air flow still could not reach its previous level.
The dips during this period represent reductions due to increased demand during the day,
with volume increasing again at night as some of the thermostats would no longer call for
more air. Periodic glitches in the wind speed readings are caused by normal control actions

and a few experimental tests.

It is important to note that the temperature during this period was oscillating at least
5°F every day, with daytime temperatures usually around 73°F. This temperature was
considered too warm by the occupants of the room, so they turned the thermostat down.
Since the chillers were not running, and the fan speed was reduced, this did not have the
desired effect of cooling down the room, and the thermostat was turned down even further,
probably to its lowest level. This did not change the room temperature during the day,
but did affect the temperature at night, as the air would become cool enough to bring the
room temperature down. Unfortunately, the low setting on the thermostat also forced the

damper to stay full open for the entire duration of Phase Two.

The thermostat settings can be inferred from the temperature versus air flow profile for days
0 — 7, when there was sufficient air flow to cool the room. The air flow had previously been
low, and the thermostat was set low, and day 0 represents the fan speed being increased.
The following evening, the temperature dropped to 65°F, and the user most likely turned
the thermostat to 70 °F, where it stayed for the next day. The reduction in air flow during
these periods shows the system backing off to maintain temperature. At the end of day
two, the system couid not maintain temperature, and the thermostat was most likely turned

back down to 66 °F, where it stayed for the remainder of Phase Two.
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Figure 6.2.4: Temperature and Chilled Air Usage for Room 44: 7.1 — 7.13
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This plot of essentially continuous chilled air usage shows that there is a high penalty to
be paid for not meeting occupant expectations. It is not clear, however, what the exact
energy trade-off would be for running the chillers and fan at a slightly increased level, in
order to decrease occupied temperatures enough to encourage reasonable thermostat usage.
Regardless, due to the nightly dips and continuous air usage, the average temperature
during this period was 69.9 °F, which is much lower than would have been desired if the
occupants could have accurately set their temperature. A justification for this is shown in
Figure 6.2.5. During this time period, the system was being transitioned from standard
to experimental control. Fan speed was also increased during day three, as it had finally
become warm enough to warrant extra cooling. The system can be seen to bring itself into
regulation during day four, with the slight exception of a fan malfunction during that day.
On day nine, the experimental control was initiated, and an even tighter thermal regulation

can be seen.

During the period when fan speed was increased, the average occupied room temperature
was 71.5°F, with excursions up to 73 °F. This suggests that even given adequate air flow,
and new components, the system was incapable of maintaining a constant temperature in
the room, although changes could be due to thermostat actions. After the experimental
system was initiated, a fixed 72 °F was held for two days, with an increase to 74°F after
occupant complaints of being too cold. Slight deviations during this time are due to system
resets, as the control structure was still being assembled. It is not exactly clear why the
preferred ambient temperature increased after the tighter thermal regulation was imposed,
but it is believed to be related to the increased level of discomfort which has been shown to
accompany large temperature swings [84]. Alternatively, perhaps the occupants no longer
believed the thermostat had any effect on the temperature in the room, and did not previ-
ously attempt to change the setting. In either case, the ability to control the temperature
in the room accurately led to an increase in temperature of 4 °F, and the energy savings as-
sociated with this increase. The chilled air usage decreased by over 50 percent between the
standard and experimental control systems, and they both had almost identical amounts of

cooling degree days: 26 and 27, respectively.
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The energy savings of the experimental control system are, therefore, mostly due to fixing
a broken system. Although this is not to be discounted as a benefit of this type of wireless
sensor retrofit, it is not a fair comparison to the savings which personalized control can
enable. To account for this, the energy used for the four day period when the experimental
control system was initiated, but the comfort control algorithms were not yet running
(Figure 6.2.5: days 9 — 13), will be used as a baseline. During this period, the average
temperature was 73.1°F, average air usage was 0.6528 m? /s, and average air usage per
cooling degree day was 0.0967. Comparing this to Week Three and Week Four of the
personalized control system shows an increase in temperature to 73.9 °F, a decrease in air
usage by 15 percent, and a decrease in air usage per cooling day of 31 percent. Weighting
these by the relative fan and chiller metrics discussed above gives a total energy saving of
21 percent. A more conservative estimate would be based solely on Week Three’s data, as
this week had a very similar average number of cooling degree days to the baseline (Week
Three had 5.857, the baseline had 6.75, and Week Four had 15.429). This gives an increase
of average temperature to 73.5°F (very similar to the baseline), a decrease in air usage of
17 percent, and a decrease in air usage per cooling degree day of 4 percent, summing to an

estimated 11.8 percent savings.

A comparison of damper usage for the remainder of the rooms between Week Three and
this baseline period of proper HVAC functioning produces similar results to Room 44. With
Rooms 36 and 40 removed, as they represent an unfair comparison, the remaining rooms
show an average decrease of 20 percent in air usage per degree cooling day per degree
change in room temperature, and a decrease of 30 percent in air usage per degree change in
room temperature. Regardless of degree cooling days and damper usage, it can be generally
inferred that a system which keeps the average room temperature higher will consume less
energy. The 12 percent savings from the 0.4 °F increase shown for Room 44 can be seen
throughout the system, as the average room temperature increased for almost all of the
rooms. A plot of the temperature differential contributions of these rooms can be seen in

Figure 6.2.6, with the average temperature rising 0.8 °F.

Assuming a linear correlation between temperature change and energy savings, this average
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0.8 °F temperature increase would give an upper bound of 24 percent savings. Ultimately,
the decrease in chilled air usage per degree cooling day is the only metric that is certain,
and this shows an eight percent decrease, which, when multiplied by the 40 percent fan
usage metric, can be taken as a lower bound of 3.2 percent. This approximate 3.2 — 24
percent savings gives an indication of the Personalized Comfort Control System’s ability to
modify room temperature to reduce energy while increasing comfort. Many other factors,
which are unavailable to this study, such as solar gains and daily temperature profile during
energy draw, must also be factored in for a more accurate assessment. The Week Four
data, although showing greater energy savings, also showed a decrease in the comfort of
the occupants, as the control system could not respond fast enough under the much hotter
conditions of that week, so these are not used. Furthermore, of the two methods employed
by the experimental control system to save energy (setback and comfort control), one of
these (the setback function) was rarely running for Room 44 (upon which the savings
estimates are based) during Week Three. An error in the Room Module code kept old entry

times from being removed, leading the system to believe it would be occupied at almost all
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hours of the day. This correlates the net savings almost entirely to comfort control: the

micro-adjustments throughout the day that keep the temperature only as low as needed.

6.3 Comfort Metrics

There are two ways in which the comfort of the experimental subjects is measured: through
‘hot’ and ‘cold’ button presses, and through weekly surveys. Unfortunately, the comfort
metrics suffer from the same ambiguity as the energy metrics, as they are being compared
to a system that was essentially nonfunctional. The temperature swings during Phase Two
created an uncomfortable environment, and the Entrance Survey clearly shows this. A
comparison between the Entrance Surveys and Exit Surveys is shown in Figures 6.3.1 —
6.3.8, with the Entrance Survey representing user beliefs under normal control, and the
Exit Survey referencing the four weeks of experimental control. These surveys had identical
questions, and were taken two months apart from each other, making them a relatively
unbiased indicator of user preferences. All of the surveys used, and their responses, can be

found in Appendix B.

Users clearly felt uncomfortable under the standard control system, with the majority dis-
agreeing with the statement: “The building I work in is comfortable in terms of tempera-
ture.” A feeling of a lack of control over the environment, and a desire for more control, is
also shown via Figures 6.3.5 and 6.3.7. The experimental system was mildly successful in
granting this control, as users responded more favorably to the Exit Survey, but a desire
for more control was still expressed. Ultimately, everybody’s comfort can not be optimized

at all times, as spaces must be shared, so a desire for more control will always exist.

To assess how well the system performed at managing these conflicting comfort needs,
weekly polls of thermal comfort level were performed. These employed the seven point
scale used in the PMV, and can therefore be compared to standard HVAC practices of

keeping the temperature within bounds of 80 percent occupant satisfaction. An average of
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Figure 6.3.1: Responses to Entrance Survey: “The building I work in is comfortable in
terms of temperature.”
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Figure 6.3.2: Responses to Exit Survey: “The building I work in is comfortable in terms of
temperature.”
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Figure 6.3.3: Responses to Entrance Survey: “Overall, I am satisfied with the comfort level
in my office.”
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Figure 6.3.5: Responses to Entrance Survey: “I feel in control of my local comfort level in
my building.”
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Figure 6.3.6: Responses to Exit Survey: “I feel in control of my local comfort level in my
building.”
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Figure 6.3.7: Responses to Entrance Survey: “I would like more control over my local
temperature in my building.”
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Figure 6.3.8: Responses to Exit Survey: “I would like more control over my local tempera-
ture in my building.”
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the users’ comfort levels for the four-week experimental control period can be seen in Fig-
ure 6.3.9. The PMV counts the ‘Slightly Cool’ through ‘Slightly Warm’ categories as being
comfortable, and the occupants were in this zone 81 percent of the time. This percentage
increased over the study, starting at 76 percent and ending at 85 percent, most likely due

to the system learning the preferences of the users.

60 T T T U T T T

Percent Time at Comfort Level

Cold Cool Slightly Cool NeutralSlighty Warm Warm Hot
Comfort Level

Figure 6.3.9: Average Comfort Levels for Users During Experimental Control

Although this places the experimental control system within the theoretical bounds of stan-
dard practices, it is not a good indicator of how well the system could perform. A number
of problems during the experiment caused periods of uncomfortable temperatures for a few
of the occupants. For example, Node 20 was blocked by an RF transmitter with the same
node ID for almost the entirety of Week Two. Room nodes 44 and 32 experienced outages
during Week Two and Week Three, essentially disabling the location system for the occu-
pants of those offices. These outages occurred for approximately ten percent of the time,
which represents almost an entire day of non-functionality. Furthermore, the HVAC system
never went cold enough for a few of the users to hit the ‘cold’ button, giving no training
to determine a lower bound on comfort. To make up for this, estimated cold points were

used, which most likely placed the decision boundary too high for these users.
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To accommodate for these malfunctions, the following section will evaluate the system for
each user, revealing both the promises and shortcomings of this implementation. A tablature
of user comfort is shown in Table 6.3.1 for the duration of the experiment. These data are
taken from survey responses to the PMV scale, used in weekly pollings. For the majority
of the users, over 95 percent comfort rates were common. In fact, the only users for which
this is not the case are those for which ‘cold’ data points had to be manually entered, and
User 20, whose data was not received during Week Two. It can be seen that User 20’s
comfort increased dramatically after this time, suggesting that the comfort system results

are not merely placebo gains.

Percentage of Time Comfortable
User || Week Two | Week Three I Week Four

4 20 40 60
8 95 100 100
20 20 60 75
24 80 90 90

- 28 95 90 97

76 90 N/A N/A
84 100 100 100
84 90 95 95
96 90 95 90
104 80 60 60

Table 6.3.1: User Comfort Versus Time

This dramatic difference in effectiveness between users is partially explained by estimated
data points and radio interference, but there must be other issues, as User 20’s comfort
did not come back up the level of the others after the interference went away. Nor did
the system effectively learn the zones of discomfort after repeated training by the users
with estimated ‘cold’ data points. Fundamentally, the system either did not understand
the users’ discomfort, or was unable to respond to it effectively enough. To disambiguate
between these conditions, a plot of users’ reported comfort level versus the system’s beliefs
of their comfort is shown in Figure 6.3.10. The data is taken from the weekly polling of
comfort, with —3 representing ‘cold’ and +3 representing ‘hot’. The computed comfort uses

a similar metric, with greater positive values representing greater heat discomfort, and the
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reverse for cold discomfort. The malfunctioning nodes are shown with asterisks in the plot,
to help differentiate their performance from the functioning nodes. Lines are also placed on
this plot to indicate the thresholds below which the comfort control algorithm would decide

no action was required.
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Figure 6.3.10: Reported Comfort versus Computed Comfort for All Users: Week Two —
Week Four

With the exception of a few points, the computed comfort tracks the reported comfort fairly
well. It is also important to note that the level of reported comfort used in the PMV to
determine comfort boundaries is £1, which is where all the functioning nodes lie. Even
for the majority of the malfunctioning nodes, the system knew those users were hot, but
was unable to respond accordingly. This could be due to a number of factors. First, the
deadband on the controller limited the system’s ability to respond to all levels of discomfort.
Second, the response time on the controller was limited in its ability to cool down the user.
Typically, an hour was required for stabilization, due to the fact that not just the air, but

also the thermal mass of the user was required to change temperature for the setpoint to
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move. For users who frequently left the office and returned, this meant that the system may
have never settled upon their needs, as the room would switch to normal control when they
left. Unfortunately, location system failures would have the same problem, so a six minute
time-out was placed on switching back to normal control to help alleviate this problem.
Third, the user discomfort could have been due to the balancing of an officemate’s opposite
thermal sensation. Finally, the system may have not been able to effect the user’s comfort

due to the limited granularity of VAV box location.

Ultimately, the main fault seems to be with a lack of system responsiveness, as compared to
a lack of system understanding of comfort. This idea is further promoted by Figure 6.3.11,
which shows the average reported comfort versus computed comfort as a function of time.
An idealized system goal is placed on this graph, which passes through the origin, and
represents system beliefs matching user experiences. Except for User 8, the system can
clearly be seen moving towards the ideal system goal over the three polling periods. User 8

only had cold complaints, and it is assumed that the reinforcement in this case was to
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Figure 6.3.11: Reported Comfort versus Computed Comfort versus Time: Week Two —
Week Four
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encourage the system to believe the user was in a colder state, whereas the majority of the
remaining users complained of being hot, and their general shifting to the right reinforces

the system in this manner.

Another example of this lack of effective control, is the set of problems associated with
frequent, or even infrequent, transitions between the offices and the public space. Since
the public space’s temperature was essentially not under the system’s control due to the
proximate VAV boxes cooling the area, the temperature in the public space was two to
three degrees lower than in the offices. As shown in Figure 6.3.12, this causes the comfort
distance to drop dramatically whenever a user would leave an office. This has the negative
effect of setting the system’s belief of the user’s preference to a much lower level than is
probably desired. This is not as much of an issue for leaving an office as it is for entering,
as the system knows the user’s location and ceases controlling when the user leaves. Upon
re-entry, however, the node takes quite a few minutes to acclimate, and has an inaccurate
control setpoint for this period. This could be accounted for by inhibiting control signals

when a user transitions between spaces, but this would increase the lag of the system.
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Figure 6.3.12: Example Comfort Distance Used as Control Signal
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The reasons for the control system’s unresponsiveness can also be seen in its attempt to
arbitrate between users. A plot of two users’ computed comfort distances can be seen
in Figure 6.3.13, along with the associated VAV damper air flow, to indicate the control
system’s actions. The comfort distances are averaged over 20 samples to make the control
inputs more clear. When the first user enters the room, it can be seen that the damper
shuts off the airflow, as the user is cold. When the second user enters, and is hot, the system
increases the air flow in an attempt to average the comfort of the two users. The damper is
full open, and the comfort distances change only slightly, although in the correct directions.
When each user leaves, the system again compensates correctly, but the damper opening

and closing times are usually around an hour. Note that the entire time scale for this plot
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Figure 6.3.13: Example Arbitration Between Users

152



is ten hours, an extremely long time for occupants to stay in one place.

Despite this long response time, users still felt that the system was responding to their needs,
and trying to average between all occupants. Survey Responses to the question, “I believe
the personalized comfort system is doing a good job of balancing the thermal comfort needs
of all the people in my workspace.”, can be see in Figure 6.3.14. The majority of participants
responded favorably to this question, and from personal recollection, users would often look

forward to their officemates leaving, so they could have a more comfortable environment.

L5

Average Number of Responses
N

0.5

0 1
Strongly Disagree Disagree Slightly Disagree Neutral  Slighly Agree  Agree  Strongly Agree

Figure 6.3.14: Average Responses to Survey Question: “I believe the personalized comfort
system is doing a good job of balancing the thermal comfort needs of all the people in my
workspace.”

A more objective measure of this comfort balancing can be seen in the average room tem-
peratures and air flows for each user. A tablature of these for Week Two through Week
Four, grouped by room, can be found in Table 6.3.2. In general, the lower air tempera-
tures correlate to more air usage, with exceptions for those users who worked more evening
hours, such as 24, 28, and 104. The self-assessed comfort level, averaged over this period, is
also given, and the colder user temperatures are consistently accompanied by the warmer

occupants, except for Room 40, which was in the public space and only partially under
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control of the sytem. This indicates that the room is attempting to set the appropriate

temperatures for each user, and is allowed to do so when others are not present.

Average ' Average Average

Room | User | Temperature [°F| | Air Usage [m?/s] | Discomfort
4 73.298 1.9735 +1.520
48 20 73.668 1.8374 +1.167
8 73.838 1.3033 —0.083
44 88 72.764 1.8579 +0.833
24 72.675 1.4689 —0.333
40 84 73.072 1.8694 +0.003
28 74.580 1.0248 —0.143
32 96 74.576 2.0969 +0.167
104 73.53 2.0488 +1.020

| 196 | 76 | 73.026 ] 1.8909 | +0.400 |

Table 6.3.2: Average Room Temperature, Air Usage, and Discomfort by User: Week Two
— Week Four

The final metric of personal comfort is the number of button presses during the experiment.
Each user had the ability to register his or her personal comfort at any point in time via
the portable nodes. They had a button for each of hot, cold, and neutral. By the beginning
of Phase Two, the occupants had been using the buttons for a month, so the initial novelty
factor had worn off. The number of ‘hot’ and ‘cold’ button presses should, therefore, give
a good indication of how often a user was feeling uncomfortable. These button presses are
averaged over the amount of time a user was wearing the portable node, as a means of
normalizing the data. In general, more or less button presses between users is not a good
indicator of relative comfort, as different users may have different habits. But it is a good

indicator of how a single user’s comfort progressed with time.

Figures 6.3.15 — 6.3.16 show the number of discomfort button presses for each user over the
duration of the experiment. Figure 6.3.15 shows all button presses, whereas Figure 6.3.16
only shows button presses when the user had been active for at least 15 minutes. This is done
to window out the temporary discomfort of first entering a different thermal environment.

Neutral button presses are not plotted, as the users were told for Phase Three that the
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Figure 6.3.15: Discomfort Button Presses by User
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Figure 6.3.16: Discomfort Button Presses by User: Entry Presses Removed
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neutral button presses would not affect the environment, and they subsequently decreased.
Furthermore, Nodes 24 and 76 are excluded, as the user of Node 24 changed between Phase

Two and Phase Three, and User 76 was not present for the majority of Phase Three.

It can be seen that the total number of button presses decreased in each case, but this result
is mostly due to the actions of User 104, who essentially stopped pressing buttons during
Phase Three. Even with this user removed, the average number of button presses decreased
14 percent between Phase Two and Phase Three, when entry presses are removed. This
is a more accurate metric than total button presses, as the users were told during Phase
Three that the system would ignore any entry presses. This is not a dramatic change, but
it is significant, due to the fact that there was greater incentive during Phase Three to press

buttons, as this would actually change environmental conditions.

Users were clearly being made more comfortable by the Personalized Comfort Control Sys-
tem, despite the slow control responses. This can be attributed to the building becoming
aware of the desired comfort levels of its occupants, and occupants believing that the build-
ing was working to optimize their comfort. These are in direct contrast to a standard control
system, and were reinforced by the actions of the building. Even though it would take hours
for a user’s measured comfort distance to change after a control response, the fact that the
building recognized the discomfort and acted upon it was noticed by the occupant, and
influenced his or her perception of comfort. Both the sound of the damper motor turning,
and the associated rush of air, were strong cues that the system was working, and a welcome

sign that comfort was on its way.
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Chapter 7

Conclusions

This dissertation has presented a novel method of building comfort control, focused on
the occupant. Special sensing, communication, and actuation hardware was developed to
locate users in the building, and measure their comfort directly on the body. These comfort
signals were then used to control the air-conditioning system, and direct air flow where it
was needed, when it was needed. A three month study of the system was conducted, with
four weeks of this experimental control strategy compared to the previous four weeks of
standard control. An improvement in both comfort and energy usage is shown as a result

of Personalized Comfort Control.

Although the energy savings vary depending upon assumptions, with estimates in the range
of 3.2 to 24 percent, it is clear that the experimental system reduced chilled air usage. It
accomplished this by only cooling areas as much as required to maintain occupant comfort,
and not cooling areas when occupants were not present. It also worked to maintain room
temperatures at an equitable level for all involved. It was able to do all of this as a result
of a low-power, wrist worn, temperature, humidity, light, and activity sensor, which made
the building aware of its occupants’ state via these sensor data and simple ‘hot’ and ‘cold’

button presses.

The energy savings were the direct result of improving user comfort. In a well-functioning

building, it is not the case that the temperature is either too hot or too cold, but rather that
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it is too hot or too cold for particular individuals: the air is not being distributed effectively.
A number of personal cooling systems are commercially available, but these are expensive,
and in some cases impossible to install. A solution which is retrofittable to older, existing
buildings is necessary, as this is not only the largest portion of existing building stock, but
also the least efficient and effective. This system accomplishes this by using wireless sensors

and actuators that create their own communication network upon deployment.

In the process of creating this system, a number of results were obtained which are not
strictly quantifiable. Through conversations with test subjects, observations on their be-
haviour, and personal experience in the controlled environment, a model of user comfort
and expectations was developed, influencing a large portion of this work. The remainder of
this chapter will focus on these ideas, and qualitatively evaluate how well they were imple-
mented. These concepts will then be projected forward onto the larger issues involved in

building automation.

7.1 Design Strategies for Comfort Control

An efficient, active building does not do tasks the occupants can already do themselves,
but rather, it is capable of doing things the occupants can not do. There are many tasks
which require an expert’s knowledge to perform correctly: even thermostat setting has been
shown to be too complicated in some cases. To no longer require a professional’s assistance
not only reduces maintenance costs, but it also increases the likelihood that the building is

operating correctly, as the threshold for requesting repairs is often quite high.

The main task this system performed was determining comfort level. Although the occupant
is currently capable of doing this, acting upon that comfort level is not so simple. If comfort
was as easy as a fixed temperature setting, the thermostat model would work much better
than it does. Instead, the comfort of an individual will vary greatly depending upon activity
level, location, time of day, and a host of other factors. For this reason, a proximate sensing

device is critical to understanding the user.
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There are many ways of accomplishing this proximate sensing, and the wrist-worn version
shown here is perhaps the least favorable. Because of its size and materials, it proved to be
distracting, and most users were very happy to be free of it at the end of the experiment.
Ultimately, the form factor could change, or it could be incorporated into another wearable
device, like a wrist-watch, but this may not be necessary. The cost of sensing, temperature
sensing in particular, has become increasingly inexpensive, and the power requirements are
so low that solar powered versions are currently available. It is quite possible to distribute
dozens of these per room, such that the occupant has a sensor nearby, regardless of position.
A portable node of some kind will still most likely be necessary, as occupant identity,
location, activity level, and comfort status will need to be assessed, but these are things
that modern cellphones could be programmed to do. These are also bits of information that

the user might want to maintain personally, for privacy reasons.

This dense distribution of sensors throughout a room could remove some of the problems
encountered during this thesis. For example, false readings from nearby, warm electronic
components could be reduced via outlier elimination and sensor data fusion. It might also
liberate the user from the need for cumbersome, on-body temperature sensing. The wrist-
worn device used here, which was nicknamed ‘the shackle’ by its users, was unobtrusive
in comparison to direct thermal contact devices, which would be preferred for accurate
measurement. There is also variation in how occupants’ skin temperatures vary with comfort
level, with the system working well for those who had large fluctuations. Ultimately, giving
users a choice of how to communicate with their environment will improve perceptions of

the system greatly.

Besides its lack of thermal contact with the body, the portable node failed in another
important way: its inability to convey the magnitude of user discomfort. Perhaps the
duration or pressure of the button press could indicate this information, which would be
very helpful in developing a better comfort metric. One of the great promises of this system
is the ability to make trade-offs between comfort and energy. A user could select a cost
function that best represents his or her willingness to sacrifice short term comfort for long

term financial gain. Without a better understanding of exactly how uncomfortable the user
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is, this sort of system would most likely just lead to frustration.

This is also equally important to the task of conflict resolution. Social pressures tend to
dominate in determining office temperatures, with occupants having no reason to believe
that the others are as uncomfortable as themselves. Arguments of an almost moral nature
were common, such as “You should exercise more so you’re not cold all the time.” A
comfort arbitration system offers the possibility of a far more democratic approach, where
users believe that an unbiased critic is selecting the appropriate boundary. However, this
only holds as long as these beliefs are reinforced by experience. In general, the users of the
Personal Comfort System felt it was very equitable, although feedback showing the state of

others’ discomfort would make this situation even better.

The comfort metric employed here was the Fisher Discriminant, which worked surprisingly
well for most users. In the cases where it did not work, the main source of failure was a result
of the system never becoming cold enough for users to press the ‘cold’ button, making for
an ambiguous comfort boundary. In retrospect, the KNN Distance Metric might have been
a better choice, as it was far more robust to insufficient data. In fact, it has the ability to
work in the complete absence of ‘cold’ data points. It also creates a more flexible boundary,
closer to the labeled discomfort points. It is unclear, though, whether it produces a good
distance metric. Perhaps a hybrid system which uses a Cartesian distance from the KNN
determined decision boundary would make a more adaptable system. Ultimately, these are
but a few of the many ways in which the machine learning aspect of this problem could be

solved.

Work also needs to be done to determine the best method to remove outliers and data
which are no longer appropriate. With a larger data set than the one used here, outlier
detection would be much easier, and a larger feature space could be incorporated. A time-
weighted metric, which leaves many more data points in the set, but gives preference to
more recent events, might solve some of these issues. As adaptability is a prime concern,
perhaps the user should be granted inputs other than just button presses, to communicate

which scenarios are most relevant.

160



The main reason why the comfort system was not as effective as it could be, was a lack of
responsiveness. Those users who had the best results were the ones who spent the most
time in a single location. A more stable control input might help remedy this situation, but
a larger issue is of concern: there is an energy penalty for fast response times. An example
of this is the initial discomfort upon entry. It was noted that almost all occupants would
be uncomfortable for approximately 15 — 30 minutes upon entering their office. After this
time, they usually acclimated, and stated they were comfortable. Before the Personalized
Comfort System was in place, occupants would often change the thermostat setting during
this period, or open the dampers manually by disconnecting the control system. This not
only wasted energy instantaneously, but also for a long time afterwards as the thermostat
or damper was rarely set back to the initial setting. The experimental system saved energy

by ignoring discomfort during this period, under the expectation that it would pass.

This idea is reinforced by the notion that occupants remember moments of discomfort
far more greatly than the longer periods of comfort. Furthermore, once an occupant has
crossed the comfort threshold, it is not merely a matter of lowering the temperature a
small fraction to cross back over the boundary. Whether it is a result of psychological
factors, or the thermal mass of the body, a hysteresis effect was noticed in the test subjects’
impression of comfort, and a great deal more cooling was required to give them relief.
It is in these periods that they will act in inefficient ways. With appropriate feedback
to the user (as will be discussed in the next section), these moments can be transitioned
without lowering temperature. The experimental system aimed to avoid these by using an
extremely conservative setback control technique, which aimed to ensure that rooms were

always within the realm of comfort before the user entered.

These energy saving techniques are further hindered by the fact that users needed greater
cold discomfort before indicating discomfort to the system. From the Week Four Survey,
users stated that they would require a discomfort level of —2.33, on average, to press the
‘cold’ button. This is a large difference from the +1.44 average hot discomfort level, which
indicates that a slightly hot environment is far less tolerable to people than a slightly cold

environment. Some users even stated that they preferred it cold, even though it was not
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quite as comfortable. This may be due to the novelty of a cold environment in summer, or
the expectation that it will not be cold for long, but in either case, it is a strong argument
for mediated comfort control, as it suggests users will set temperatures much lower than

their upper comfort boundary, if they are able to do so.

Ultimately, it is the maintaining of this upper comfort boundary that saves the most energy.
The system here did this unintentionally, as the response time was too slow to cool to
the appropriate level. A more agile system would be able to meet this need, and reduce
user frustration. Nevertheless, there will always be times of transition, or unexpected
occurrences, and it is the ability of the building to communicate to the user what its

objectives are that will determine the success of these systems.

7.2 Requirements of Automated Environments

As described in Section 2.4, this work is grounded in the concept that both occupant and
building have much to gain by increased communication with each other. In order for this
to happen effectively, the automation system must be robust to failure, and always provide
basic functionality under all circumstances. Pre-programming from the user should be kept
to a minimum, as these mappings will eventually become inappropriate, and the user may
not have the time, knowledge, or inclination to input the correct settings. Most importantly,
the control system should give appropriate feedback to the user as to its intentions. In this

manner, the building and occupant will understand each other, and respond accordingly.

Ensuring basic functionality becomes a more difficult task as the complexity of a system
increases. The control structure must be built upon a basic layer which only relinquishes
control under very specific conditions. Constant checking for activity from sensors and
actuators is needed to limit system responses to invalid data. Ultimately, the actuation
hardware could contain this basic control foundation, allowing the entire system to function
under the most severe network failures. Unfortunately, what is considered a basic function
will most likely become more and more complex as building automation progresses, and

this sort of localized control will no longer suffice.
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The hardware for the Personalized Comfort System was relatively robust, with the wireless
devices switching seamlessly between branch nodes when connections were lost. The only
failures experienced were due to bad power supplies, and an RF unit lock-up problem. These
are not fundamental limitations of the system, and merely represent common prototype
issues. A larger problem is the robustness to RF interference, which could be accounted
for with a channel hopping protocol and better packet identification. The control platform
was very stable, with room occupancy detectors ensuring that the temperature was at a
reasonable level, regardless of whether the occupant had a portable node. The window
actuators had hardware over-ride buttons that allowed occupants to open and close them
when desired, and these same controls could have been placed on the damper motors as
well. This was not done for these experiments, in order to accurately assess the efficacy of

the system. Despite this, the occupants rarely felt out of control of their environment.

This basic functionality came at the cost of a small amount of pre-programming. Mappings
were made between dampers, rooms, and users, and PID control gains and temperature
settings were preloaded. Although these represent a minimal set of information, the system
could eventually learn all of these with time. This lack of pre-programming is critical to
the acceptance of intelligent building automation systems. If a high level of expertise,
information, or time is required to commission a control system, it will most likely not be
done correctly, and will not remain stable after prolonged usage, as the pre-programmed
conditions can not be guaranteed to persist. Ultimately, some amount of pre-assigned
information will probably be desired by building owners and maintenance staff, but having
this as an option, and not a requirement, will make these systems far easier to install and

maintain.

Rather than fixing setpoints, the Personalized Comfort System learned user temperature
preferences and room usage schedules, and adapted these with time to account for changes,
or to improve comfort. The room usage schedules were automatically created by the system,
but these could be augmented with personal information from online calendars or location
information from cellphones. In contrast, the temperature preferences were inputted directly

by the users via button presses. Although this worked well for this application, as the
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automated portions of our environments increase in complexity, the causality between user
action and source of discomfort may no longer be clear to the system. The user will not
tolerate having a button for every desire imaginable. More creative ways of communicating
intent to the building will be required. Did he close the window because it was too windy,
or because it was too cold? Did she shut off the light because she is going to sleep, or
because she is going to watch a movie? The building will need to become more adept at

making the correct guess in these conditions.

The penalty for wrong guesses is very high in building automation. If the occupant does
not believe that the building is acting in a rational manner, or if the occupant can not
formulate a simple model of the building’s behaviour, then the entire system breaks down.
The relationship becomes adversarial, as was witnessed in the thermostat usage during
this experiment. Regardless of the fact that a thermostat setting of 55°F is completely
unreasonable, most of the thermostats were set at this temperature, because they were
not behaving rationally: they were not lowering temperature when turned down. Out of

frustration, the occupants began behaving irrationally in retaliation.

In the thermostat example, the users’ behaviour had the negative effect of wasting energy in
the evening hours. In a system with more user control, such as the one presented here, the
lack of positive user beliefs could have more dramatic effects. If a user felt that the system
was not being equitable, and was making the room too hot for their needs, they may begin
hitting the ‘hot’ button in even the coldest conditions, in the hope that the boundary would
move lower, and begin favoring their desires. This problem of ‘gaming the system’ is one
of the many issues resulting from giving users unconstrained control. A fine balance must
be found between granting enough control to convince users that the system is working to

optimize their needs, and placing restrictions on temperature and energy excursions.

This ultimately becomes a problem of appropriate feedback. This is perhaps the most
critical aspect of an automation system, and, unfortunately, this is where this dissertation
succeeded the least. The reliance on linear control techniques led to slow response times
to ensure stability over the unpredictable and wide ranging comfort inputs. Better control

algorithms are needed to deal with these signals which are sometimes completely inaccurate.
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The main feedback signal users received was an unintentional one: The whirring of the
damper control motor. If not for this audible cue of changes occurring, users would not

have been as tolerant of the hour-long lag on cool air arrival.

There is a trade-off between fast response time and energy consumption, so other methods
besides a quick rush of air will most likely need to be employed to communicate to the
occupants that the system is functioning. The motor sound worked in this case, but future
solutions could incorporate a wider range of information, taking inspiration from the field
of pursuasive computing, displaying the system’s belief about the users’ current comfort,
and the action that is being taken. In cases where the building can not meet their needs,
or comfort is intentionally being compromised for energy reasons, the users’ expectations
could be set appropriately, and they could plan accordingly. This would begin to open up
the conversation between building and occupant, and would be a great improvement over

the current deaf and mute thermostat.
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Appendix A

Prototype Wearable Comfort
System
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Predictors for Human Temperature Comfort

Final Project for MAS.622J, completed December 15, 2006.

A.1 Introduction

All homes and offices have environmental control systems. These usually consist of a source
of hot or cold air, and a thermostat located nearby which turns the source on or off to
regulate the temperature of the room. Unfortunately, the inhabitants of most spaces are
not located near the thermostat, so the system does not adequately regulate the tempera-
ture for their comfort. The system also does not know whether or not a person is in the
room, requiring that the ventilation run continuously, regardless of its demand. A more
energy efficient and effective environmental control system can be achieved by placing the
thermostat on the person, creating a more personalized and responsive space which knows

when people enter a room, and what their current comfort level is.

The objective of this work is to determine the ability of a simple sensor system to predict
human temperature comfort. Our perceived comfort level is a function of many factors:
metabolic rate, stress, fatigue, activity level, etc. It is possible that there is no clear cor-
relation between ambient air temperature and our perception of hot or cold. Exactly how
does our body express its comfort level? Further more, for this wearable thermostat to be
economically and socially acceptable, it must contain a minimum complement of sensors to
keep costs down, and have these sensors located on the body in such a fashion as to not
bother the user. In the ideal case, a single sensor would be worn as a button on the user’s

shirt, and transmit the user’s preference wirelessly to the environmental control system.

A.2 Methodology

There are many possible locations and types of sensors which could be of use to the wearable

thermostat. The locations chosen for this work are based upon places on the body which are
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currently ornamented: finger (rings), wrist (watches), neck (necklaces), chest (necklaces),
shirt exterior (pendants). And, although there are many sensors which may be relevant,
temperature and humidity sensors were chosen as the most likely candidates for predicting
environmental comfort. To this end, a wearable temperature and humidity logging device
(see Figure A.1) is developed which records the time of day, all sensor readings, and the
user’s comfort level. Every five minutes, a pager motor on the device vibrates, queuing the
user to input his preference. One button represents ‘hot’ (+1), the other ‘cold’ (—1), and
both pressed at the same time represents ‘neutral’ (0). ‘hot’ and ‘cold’ are determined by
the user as states where, if given the option, an outer layer of clothing would be added or
removed to help improve thermal comfort. A sample of the raw sensor data can be seen in
Figure A.2. The system is worn and trained for a single user, as thermal comfort patterns
are different for each person, and a wearable thermostat would have to learn the preferences

of its owner.

A.3 Hardware

The core of the sensing system (see left image in Figure A.1) is based upon the CAR-
GONET [85] environmental data logging board developed by Mateusz Malinowski. It has a
TI MSP430 low power micro controller which communicates with the sensors, logs the data,
and uploads these data to a computer via USB. It also has a real time clock for logging time
and waking up the system from sleep mode every five minutes. Finally, it has an on-board
temperature and humidity sensor. All sensors in the system are the Sensirion SHT15 (see
right image in Figure A.1), which is extremely small, has a fast response time (<4s), com-
bines both humidity and temperature sensing in one package, and has humidity accuracy
of £2% RH and temperature accuracy of +.3°C. Four of these sensors are tethered via
ribbon cable to be mounted to the body at the aforementioned locations with medical tape,
and the fifth sensor is located on the board to gather ambient air temperature at the user’s

location. This gives a total of 10 sensors at five locations.
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Figure A.1: Sensor System as Worn by User

A.4 Data Analysis

Data was collected for four days, giving 360 data points. Given the large dimensionality of
the data set, this is a relatively small set of data points. To help reduce non-representative
results given this small data set, the results are averaged over the entire data set. This is
done by dividing the data into ten random sets without replacement. The algorithms are
then trained on nine of these sets and tested on the remaining one. This is then repeated for
all ten permutations of the sets, and the testing results are averaged over these permutations.
The time data is not used, as the moving between hot and cold environments required to
gather enough data points in each class produced a time series which does not relate to the

current level of comfort.
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Figure A.2: Raw Data Logged by Sensors: Temperature, Humidity, Comfort




Figure A.1: Data Logging Board (left) and SHT15 Sensor (right)

Two different algorithms are chosen to test the ability of the system to predict the thermal
comfort of the user. The first was a Gaussian model which simply took the mean and
covariance of each of the sets of the training data marked by the user as hot, cold, and
neutral. The testing data points were then input to each of the models, and each testing
data point would receive the class of the model which returned the maximum value. The
accuracy of the system was determined by the total number of correct labellings, divided by
the total number of testing data points. The second algorithm was a K-Nearest Neighbor
algorithm, which was trained with a leave one out strategy. The tested data point would
assume a class label which represents the average of the K nearest neighbors’ class labels.
Since the system rounded .5 up to 1 and —.5 down to —1, this broke ties by favoring either
‘hot’ or ‘cold’ over neutral, assuming that there would generally not be a tie between ‘hot’
and ‘cold’. The value of K was chosen as the value, less than ten, which returned the
highest accuracy on the training data, when trained on all possible permutations of which
data point was left out. K was chosen to be less than ten to keep processing time down, as
ten was the maximum value observed for a few runs which were allowed to test values of K

up to the number of data points in the training set.
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A.5 Results

These two algorithms are then tested on all possible sensor combinations. The top ten
sensor combinations for each quantity of sensors are returned, along with the accuracies
associated with these combinations (see Table A.2 through Table A.11). A plot of the max-
imum accuracy versus sensor quantity can be seen in Figure A.1. The K-Nearest Neighbor
algorithm is more accurate than the Gaussian model, although they both show a maximum
accuracy with seven sensors. The dotted line in Figure A.1 shows the maximum accuracy
achievable with each model given the number of body positions rather than the number of
sensors. For example, 1 represents one sensor at one point on the body, 2 represents two

sensors at the same location on the body, and 7 represents seven sensors at 4 locations on

the body.

| Sensor Number | Sensor Location ] Sensor Type

1

© 00 NS Uk Wi

[y
(e}

hand
hand
wrist
wrist
chest
chest
kneck
kneck
air
air

humidity
temperature
humidity
temperature
humidity
temperature
humidity
temperature
humidity
temperature

Table A.1: Sensor Identification Number, Placement, and Type

From Table A.2 it can be seen that the wrist temperature sensor is the best single sensor,
with the chest humidity sensor being the next best sensor to add. The chest temperature
sensor is the third best sensor to add, with minimal improvements in accuracy from adding

more sensors. Both algorithms concur on which sensors have the strongest correlation with

thermal comfort.
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Comparison of Gaussian and K-Nearest Neighbor Vs. Number of Sensors
1 T
| | 1 I ! 1 |

| | 1 | | | | |
1 2 3 4 5 6 7 8 9 10
Number of Sensors

Figure A.1: KNN and Gaussian Accuracies versus Number of Sensors
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Sensor | KNN Sensor | Gaussian
Number | Accuracy || Number | Accuracy
8 0.6028 9 0.3333
7 0.6250 2 0.3417
9 0.6417 3 0.3667
1 0.6583 10 0.3972
10 0.6611 8 0.3972
6 0.6806 6 0.4361
2 0.6833 7 0.4417
3 0.6861 5 0.5250
5 0.7222 1 0.5806
4 0.7417 4 0.6028

Table A.2: KNN and Gaussian Accuracies for 1 Sensor

Sensor | KNN Sensor | Gaussian

Numbers | Accuracy || Numbers | Accuracy
47 0.7556 19 0.6000
49 0.7556 49 0.6083
59 0.7583 34 0.6250
24 0.7583 47 0.6333
34 0.7611 14 0.6417
410 0.7639 58 0.6472
56 0.7722 45 0.6528
48 0.7806 48 0.6778
46 0.8194 46 0.6861
45 0.8250 56 0.6889
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Sensor | KNN Sensor | Gaussian
Numbers | Accuracy || Numbers | Accuracy
245 0.7806 356 0.6889
235 0.7861 156 0.6944
459 0.7861 246 0.6944
246 0.7944 568 0.6944
345 0.7972 346 0.6944
458 0.8056 146 0.6972
4510 | 0.8083 469 0.6972
4610 | 0.8083 468 0.7000
468 0.8111 467 0.7167
456 0.8250 456 0.7194

Table A.4: KNN and Gaussian Accuracies for 3 Sensors

Sensor | KNN Sensor | Gaussian
Numbers | Accuracy || Numbers | Accuracy
45710 | 0.8028 1468 | 0.7194
47910 | 0.8083 2456 | 0.7222
24610 | 0.8083 1469 | 0.7222
45910 | 0.8083 1456 | 0.7250

2468 | 0.8139 1467 |0.7250

2457 |0.8139 3468 | 0.7250

2458 |0.8139 3456 |0.7278
34510 | 0.8194 4678 | 0.7278

2456 |0.8222 4689 | 0.7361
45610 | 0.8333 4568 | 0.7361
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Sensor KNN Sensor | Gaussian
Numbers | Accuracy || Numbers | Accuracy

24568 | 0.8194 46789 |0.7333
245810 0.8194 13456 | 0.7361
456710 | 0.8194 14678 0.7389
45689 | 0.8194 45678 |0.7389
457810 0.8194 13468 |0.7417
235610 | 0.8222 24568 0.7444
456810 | 0.8278 23456 |0.7472
23458 | 0.8306 34568 |0.7472
24578 |0.8333 14689 | 0.7500
245710 | 0.8500 14568 0.7694

Table A.6: KNN and Gaussian Accuracies for 5 Sensors

Sensor KNN Sensor Gaussian

Numbers | Accuracy Numbers | Accuracy
2456910 | 0.8167 4567810 | 0.7500
4578910 | 0.8167 134689 | 0.7528
2345810 | 0.8194 146789 | 0.7528
4568910 | 0.8194 345689 | 0.7528
245678 | 0.8222 124568 | 0.7556
23456 10| 0.8361 134568 | 0.7583
2457810 | 0.8361 145689 | 0.7639
234568 | 0.8389 145678 | 0.7750
2456710 | 0.8500 245678 | 0.7778
2456810 | 0.8500 1456810 0.7778

Table A.7: KNN and Gaussian Accuracies for 6 Sensors
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Sensor KNN Sensor Gaussian

Numbers Accuracy Numbers Accuracy
23457810 | 0.8000 1234689 | 0.7611
2345689 | 0.8000 14678910 0.7611
45678910 | 0.8056 34567810 | 0.7611
23467910 | 0.8083 34568910 | 0.7667
245789101 0.8083 24567810 | 0.7694
2345689 | 0.8111 1345678 | 0.7694
34567810 | 0.8278 1234568 | 0.7722
23456710 | 0.8306 14567810 0.7750
24567810 | 0.8389 12456810 | 0.7778
23456810 | 0.8556 1245678 | 0.7806

Table A.8: KNN and Gaussian Accuracies for 7 Sensors

Sensor KNN Sensor Gaussian

Numbers Accuracy Numbers Accuracy
234567910 0.7639 134678910 0.7639
123567810 | 0.7694 123468910 | 0.7667
23456789 |0.7750 234678910 | 0.7667
234578910 | 0.7778 345678910 | 0.7694
345678910 | 0.7833 124678910 0.7694
123456710 0.7889 13456789 | 0.7750
123457810 0.7889 234567810 | 0.7750
245678910 | 0.8028 124567810 | 0.7778
234567810 | 0.8167 134567810 0.7778
234568910 | 0.8222 12345678 | 0.7806

Table A.9: KNN and Gaussian Accuracies for 8 Sensors
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Sensor KNN Sensor Gaussian
Numbers Accuracy Numbers Accuracy

1234678910 | 0.7194 1235678910 0.7111
1235678910 |0.7278 1234578910 (0.7333
1234567910 | 0.7333 1234567910 | 0.7333
123456789 |0.7361 1234568910 0.7583
1234578910 | 0.7389 1245678910 | 0.7611
1345678910 | 0.7444 1234678910 (0.7694
1234568910 | 0.7583 2345678910 0.7722
1245678910 | 0.7639 123456789 | 0.7722
2345678910 | 0.7806 1234567810 0.7722
1234567810 |0.7889 1345678910 0.7750

Table A.10: KNN and Gaussian Accuracies for 9 Sensors

Sensor KNN Sensor Gaussian
Numbers Accuracy Numbers Accuracy

[12345678910]07472 [[12345678910]0.7667 |

Table A.11: KNN and Gaussian Accuracies for 10 Sensors
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A.6 Conclusions and Future Work

These preliminary results show that a wearable thermostat has the possibility of being
accurate enough to regulate a building’s ventilation system for a user’s comfort. Although
the system only reached a maximum accuracy of 85 percent, further work which took into
account the time series data could possibly improve upon this. Also, gains could be made
by changing the voting algorithm for the K-Nearest Neighbor algorithm. Since the human
body works to regulate its own temperature, it is more likely that a user will be ‘neutral’

rather than ‘hot’ or ‘cold’, so perhaps the algorithm should favor ‘neutral’ classification.
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Appendix B

Survey Results

181



Personalized Building Comfort Control System
Pre-Experiment Questionnaire

This is a survey about personal comfort in buildings. You will be asked questions
regarding your personal background and your sense of temperature comfort in a
particular building. We will keep your information private and the result will not be
traceable to you in anyway. Any questions in regards to 'building' refer to the building
that the experiment will be running in (E15).

1. Are you Male or Female? _ Male __ Female

2. What is your age? _ 10-18 __ 1825 _ 25-30 _ 30-35
__35-40 _ 4045 __ 45-50 _ 50-60

3. What is your Race/ethnicity? (optional) the following category is from2000 United States Census
___ White
__ Black or African American
__ American Indian or Alaska Native (write in tribe)
__Asian Indian
___ Chinese
___Filipino
_ Japanese
__ Korean
__ Vietnamese
__Native Hawaiian
___Guamanian or Chamorro
____Samoans
___ Other Pacific Islander (write in race)
__ Other race (write in race)

Please rank the following concepts from 1 to S (1 = strongly disagree, 3=ncutral, 5= strongly agree).
4. The Building I work in is comfortable in terms of temperature.
1 2 3 4 5
5. The Building I work in is comfortable in terms of humidity.
1 2 3 4 5
6. The building I work in is more comfortable than my home.

1 2 3 4 5

Figure B.1: Entrance Survey: Page One
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7.1 feel in control of my local comfort level in my building.

1 2 3 4 5

8. I believe the building I work in is efficient in terms of the energy used to control the
building temperature.

1 2 3 4 5
9. The building is often too cold for me.

1 2 3 4 5
10. The building is often too hot for me.

1 2 3 4 5
11. The building is more often too hot than too cold.

1 2 3 4 5
12. The building is more often too cold than too hot.

1 2 3 4 5
13. I would like more control over my local temperature in my building.

1 2 3 4 5
14. My officemate and I often disagree over whether its too hot or too cold.

1 2 3 4 5

15. I often wear two or more layers of clothing during the summer in my building in
order to keep warm.

1 2 3 4 5

16. I often open a window to try to cool down my office.
1 2 3 4 5
17. Overall, I am satisfied with the comfort level in my office.

1 2 3 4 5

Figure B.2: Entrance Survey: Page Two
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Question
Number |[ Male | Female

Lt [ o] 2 |

Table B.1: Number of Responses for Question 1 on Entrance Survey

Question
Number || 18 -25 | 25-30 | 30 -35 | 50 — 60

L2 [ 4 [ 4 [ 2 [ 1 |

Table B.2: Number of Responses for Question 2 on Entrance Survey

Question
Number || Chinese | White | Mixed
2 | v [ 9 [ 1]

Table B.3: Number of Responses for Question 3 on Entrance Survey
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Question | Strongly Strongly
Number || Disagree | Disagree | Neutral | Agree | Agree
4 0 6 3 2 0
5 0 2 4 4 1
6 0 4 3 2 2
7 6 1 3 1 0
8 2 4 3 1 1
9 1 2 2 4 2
10 2 2 1 3 3
11 1 3 0 3 4
12 2 6 0 2 1
13 0 1 0 3 7
14 0 2 2 4 2
15 4 4 0 1 2
16 0 0 0 3 1
17 2 2 4 3 0

Table B.4: Number of Responses for Questions 4 — 17 on Entrance Survey
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PERSONALIZED BUILDING COMFORT SURVEY

WEEK TWO

Portable Node ID:

Please rank the following statements by how well they apply to you, circle only one option per

statement. If a statement does not apply, write N/A next to it.

1. T'have felt more thermally comfortable at my workspace in the past week, than I did a month ago.

-3 -2 -1 0 +1 +2 +3
strongly disagree slightly neutral slightly agree strongly
disagree disagree agree agree

2. I believe the personalized comfort system is doing a good job of optimizing my thermal comfort,

-3 -2 -1 0 +1 +2 +3
strongly disagree slightly neutral slightly agree strongly
disagree disagree agree agree

3. I believe the personalized comfort system is doing a good job of balancing the thermal comfort needs
of all the people in my workspace.

-3 2 -1 0 +1 +2 +3
strongly disagree slightly neutral slightly agree strongly
disagree disagree agree agree

4. For each of the following categories, place a number representing the percentage of time in the past
week you spent at that particular thermal comfort level. The total should sum to 100.

-3 2 -1 0 +1 +2 +3
cold cool slightly neutral slightly warm hot
cool warm

5. Approximately how many hours did you spend at your workspace in the past week?
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Node Question Number
Number 1 I 2 I 3 | 5
4 +1 +2 +1 30
8 +3 +3 +3 60
20 +3 +2 +2 35
24 +2 +2 0 50
28 0 +2 +1 100
76 +3 +3 0 12
84 0 0 +1 25
88 +2 +2 +2 25
96 +3 +2 +1 84
104 +2 +1 +2 68

| Mean | +1.90 | +1.90 [ +1.30 | 48.90 |

Table B.5: Survey Responses by Node Number For Week 2: Questions 1, 2, 3, 5

Node Percentage of Time at Each Comfort Level
Number | -3 [ 2] -1] 0 [ +1 | +2 [ +3
4 0o JoTJo 5 15 [ 70 [ 5

8 0 [ 5 J10] 75 | 10 0 0

20 0 [ o] o] 2 0 30 | 50
24 0 [ 3025 | 30 | 25 | 10 [ 0
28 1 [ 310 [ 75 | 10 1 0
76 0 [ oo 7 2 |10
84 0 [ o] 5 [ 90 5 0 0
88 0 [ o] o2 [70] 100
96 0 [ o] 5 [ 7 | 15100
104 0 ] oJoJ[60 | 2 |2 [0

| Mean [ 0.10]3.80[5.50 [ 51.50 | 19.00 | 16.10 | 5.50

Table B.6: Survey Responses by Node Number For Week 2: Question 4
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PERSONALIZED BUILDING COMFORT SURVEY

WEEK 3

Portable Node ID:

Please rank the following statements by how well they apply to you, circle only one option per

statement. If a statement does not apply, write N/A next to it.

1. T have felt more thermally comfortable at my workspace in the past week, than I did last week.

-3 -2 -1 0 +1 +2 +3
strongly disagree slightly neutral slightly agree strongly
disagree disagree agree agree

2. I'believe the personalized comfort system is doing a good job of optimizing my thermal comfort.

3 2 -1 . 0 +1 +2 +3
strongly disagree slightly neutral slightly agree strongly
disagree disagree agree agree

3. I believe the personalized comfort system is doing a good job of balancing the thermal comfort needs
of all the people in my workspace.

3 2 -1 0 +1 +2 +3
strongly disagree slightly neutral slightly agree strongly
disagree disagree agree agree

4. For each of the following categories, place a number representing the percentage of time in the past
week you spent at that particular thermal comfort level. The total should sum to 100.

-3 -2 -1 0 +1 +2 +3
cold cool slightly neutral slightly warm hot
cool warm

5. Approximately how many hours did you spend at your workspace in the past week?
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Node Question Number
Number 1 [ 2 ] 3 ] 5
4 +1 +1 +1 30
8 +3 +3 +2 40
20 +2 42 +2 40
24 +2 +2 0 40
28 +0 +2 +2 100
84 +2 +2 +1 25
88 +1 +2 +3 40
96 +2 +1 -1 45
104 +1 +2 +1 45
[ Mean [ +1.56 | +1.89 [ +1.22 | 45.00

Table B.7: Survey Responses by Node Number For Week 3: Questions 1, 2, 3, 5

Node Percentage of Time at Each Comfort Level
Number | -3 -2 -1] 0 [ 41 | +2 | +3
4 0 0 0 20 20 45 15
8 0 0 5 95 0 0 0
20 0 0 10 25 25 25 15
24 0 10 | 20 60 10 0 0
28 1 8 15 70 5 1 0
84 0 0 2 90 8 0 0
88 0 0 0 35 60 5 0
96 0 0 5 75 15 5 0
104 0 0 0 30 30 30 10

[ Mean [0.11[2.00]6.33]55.56 [ 19.22 [ 12.33 | 4.44 |

Table B.8: Survey Responses by Node Number For Week 3: Question 4
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PERSONALIZED BUILDING COMFORT SURVEY

WEEK FOUR

Portable Node ID:

Please rank the following statements by how well they apply to you, circle only one option per

statement. If a statement does not apply, write N/A next to it.

L. T have feit more thermally comfortable at my workspace in the past week, than I did last week.

-3 -2 -1 0 +1 +2 +3
strongly disagree slightly neutral slightly agree strongly
disagree disagree agree agree

2. I believe the personalized comfort system is doing a good job of optimizing my thermal comfort.

3 -2 -1 0 +1 +2 +3
strongly disagree slightly neutral slightly agree strongly
disagree disagree agree agree

3. I believe the personalized comfort system is doing a good job of balancing the thermal comfort needs
of all the people in my workspace.

-3 -2 -1 0 +1 +2 +3
strongly disagree slightly neutral slightly agree strongly
disagree disagree agree agree

4. I would prefer to keep using the personalized comfort system, as it has been working, rather than go
back to the old control system.

-3 2 -1 0 +1 +2 +3
strongly disagree slightly neutral slightly agree strongly
disagree disagree agree agree

5. I would prefer to keep using the personalized comfort system rather than go back to the old control
system, if I could use the portable node as I wanted (e.g. you didn't need to wear it).

-3 -2 -1 0 +1 +2 +3
strongly disagree slightly neutral slightly agree strongly
disagree disagree agree agree

6. Approximately how many hours did you spend at your workspace in the past week?

Figure B.5: Survey for Week 4 of Experiinental Control: Page One
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7. For each of the following categories, place a number representing the percentage of time in the past
week you spent at that particular thermal comfort level. The total should sum to 100.

-3 -2 -1 0 +1 +2 +3
cold cool slightly neutral slightly warm hot
cool warm

8. Please place two check marks, one for cold and the other for hot, at the thresholds for which you

would feel uncomfortable enough to press a button during the two months of this experiment.

-3 -2 -1 0 +1 +2 +3
cold cool slightly neutral slightly warm hot
cool warm

Figure B.6: Survey for Week 4 of Experimental Control: Page Two

Node Question Number
Number 1 [ 2 | 3 | 4 5 6

4 +2 +1 +2 +2 +3 30

8 0 +3 +3 +3 +3 50
20 +2 +2 +2 +3 +3 40
24 +3 +2 0 +3 +3 50
28 0 +2 +2 +2 +3 100
84 +1 +2 +2 +2 +3 25
88 -2 -1 -1 +1 +2 40
96 +1 +1 +2 +2 +3 40
104 +2 +1 +1 +2 +2 45

[ Mean [ +1.00] +1.44 [ +1.44] 4222 [ +2.78 | 46.67

Table B.9: Survey Responses by Node Number For Week 4: Questions 1 — 6
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Node Percentage of Time at Fach Comfort Level
Number | -3 [ -2 [ -1 | 0 [ +1 | +2 [ +3
4 0 0 0 10 50 40 0
8 0 0 10 90 0 0 0
20 0 5 5 70 0 15 5
24 0 10 | 20 60 10 0 0
28 1 2 10 79 8 0 0
84 0 0 10 85 5 0 0
88 0 0 0 15 80 5 0
96 0 5 10 70 10 5 0
104 0 0 4 16 40 30 10

| Mean [[0.11]2.44 ] 7.67 [ 55.00 [ 22.56 | 10.56 | 1.67 |

Table B.10: Survey Responses by Node Number For Week 4: Question 7

| Node || Cold | Hot |

4 -3 +2
8 -2 +2
20 -3 +2
24 -2 +2
28 -1 +1
84 -2 +1
88 -3 +1
96 -3 +1
104 -2 +1

| Mean || —2.33 [ +1.44 |

Table B.11: Survey Responses by Node Number For Week 4: Question 8
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Personalized Building Comfort Control System
Post-Experiment Questionnaire

When answering the following questions, please only consider your comfort level over
the past 4 weeks of experimental control.

Please rank the following concepts from 1 to § (1 = strongly disagree, 3=neutral, 5= strongly agree).
4. The Building I work in is comfortable in terms of temperature.
1 2 3 4 5
5. The Building I work in is comfortable in terms of humidity.
1 2 3 4 5
6. The building I work in is more comfortable than my home.

1 2 3 4 5

7. I feel in control of my local comfort level in my building.

1 2 3 4 5

8. I believe the building I work in is efficient in terms of the energy used to control the
building temperature.

1 2 3 4 5
9. The building is often too cold for me.

1 2 3 4 5

10. The building is often too hot for me.
1 2 3 4 5

11. The building is more often too hot than too cold.

1 2 3 4 5

12. The building is more often too cold than too hot.

1 2 3 4 5

Figure B.7: Exit Survey: Page One
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13. I would like more control over my local temperature in my building.

1 2 3 4 5

14. My officemate and I often disagree over whether its too hot or too cold.

1 2 3 4 5

15. I often wear two or more layers of clothing during the summer in my building in
order to keep warm.

1 2 3 4 5

16. I often open a window to try to cool down my office.
1 2 3 4 5
17. Overall, I am satisfied with the comfort level in my office.

1 2 3 4 5

Figure B.8: Exit Survey: Page Two
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Question || Strongly Strongly
Number || Disagree | Disagree | Neutral | Agree | Agree
4 0 2 2 4 2
5 0 1 3 3 3
6 2 0 2 4 2
7 0 2 2 4 2
8 1 3 2 3 1
9 4 3 2 0 1
10 3 2 0 5 0
11 3 1 0 2 4
12 4 3 0 2 1
13 0 0 2 5 3
14 2 1 0 5 1
15 6 2 1 0 1
16 2 1 0 1 2
17 0 0 3 4 3

Table B.12: Number of Responses for Questions 4 — 17 on Exit Survey
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Appendix C

Notes on Experimental Data
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This appendix contains details on the nodes and users of the studies conducted in this

dissertation. They are included here for future reference.

e All users are assumed to be present for all parts of the study, except as noted.

e Nodes 72 and 28 represent the same user. The portable node was changed from 72 to
28 on July 23™ to replace a bad activity sensor. This user is also the author of this

work.

e Nodes 100 and 4 represent the same user. The portable node was changed from 100

to 4 on June 229 to replace a bad activity sensor.

e Nodes 12 and 88 represent the same user. The portable node was changed from 12 to

88 on June 2279 to replace a bad activity sensor.

e Node 24 represents two different users, although they shared the same workspace, so
the data represents the same area. The first user is from June 2279 to July 16, and

the second user is from July 17! through the end of the study.

e Node 20 has bad data for the first week of Phase Two, due to another node accidentally
being on the same channel. These data were backed out later by seperating the two

nodes based upon their RTC offsets.
e Node 84 represents a user that entered the study on June 2274,
e Nodes 8 and 88 shared an office space.
e Nodes 28, 96, and 104 shared an office space.
e Nodes 4 and 20 shared an office space.
e Nodes 24 and 84 shared proximate locations in the public space.
e Node 76 had an unshared office space.

e Room nodes 44 and 48 had extended outages during Phase One and Phase Two of
the study due to bad powersupplies.
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Room node 32 had extended outages during Phase Three of the study, presumably
due to a network collision problem, as this was the most heavily trafficed node. This

was eventually fixed with a hardware reset upon failure.

For periods of room node outages, location information is inconclusive, and the damper

control functions ceased to operate.

Control node 184 had its wind speed sensor changed on June 30", due to a malfunc-

tion. The data before this time is not useful.

Control node 248 and thermostat node 240 were installed for Phase Three of the study.
These were initially intended to perfrom a baseline comparison, as this office was not
modified with the experimental control system. But, the office usage was very low,
and the office did not have any desktop computers in it, making it a poor comparison
point. The remainder of the offices had anywhere from two to nine computers in them,

along with many other heat producing electronic devices.

Control nodes would sometimes stop transmitting data during Phase One and Phase
Two of the study, presumably due to bad state accounting in the wireless firmware.
This was eliminated during Phase Three, as receiving a wireless transmission would
wake them up, and wireless transmissions occured quite frequently during that period.
The exception to this rule is control node 248, which never received control commands,

as it did not have a damper motor associated with it.
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Appendix D

Hardware Schematics
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Figure D.1: Portable Node Schematic
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Figure E.1: Portable Node PCB Layout: Top Side (actual size)

Figure E.2: Portable Node PCB Layout: Bottom Side (actual size)
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Figure E.3: Control Node PCB Layout: Top Side (actual size)

Figure E.4: Control Node PCB Layout: Bottom Side (actual size)
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Figure E.5: Room Node PCB Layout: Top Side (actual size)

Figure E.6: Room Node PCB Layout: Bottom Side (actual size)
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.include "m1281idef.inc"

; use increments of 4 for src_addr
; csma_seed = 8 x src_addr

.equ src_addr = $aa58 ; place unique source address here

.equ csma_seed = low(src_addr)*$08 ; random backoff exponent - must be unique,<$0800
.equ home_addr = $aabb ; local node des_addr

.equ pan_id = $abcd ; system pan_id

.equ retries = $38 ; high nibble = frame retries,low nibble = 2x(csma retries)

.equ channel = $36 ; tx/rx channel, $2b -> $3a valid

.org 0

rjmp start

.org intdaddr
rjmp wakeupshiti1s
.org intSaddr
rjmp clearirq
.org OVF2addr
rjmp wakeup

.org ADCCaddr
rjmp wakeup

accelerometer reset = pel

buttons = pgl,pgl,pg2
accelerometer = pf2(adc2),pe3(ainl)
shit16 data = pe4(int4)

shit1b clock = pe0

vref to pe2(ain0)

light sensor out = pf0(adc0)

light sensor power = pfl

r0 shitl5 temperature msb

ri shit15 temperature 1lsb

r2 shitis humidity

r3 activity msb

r4 activity lsb

r5 buffer pointer temporary storage
r6 light sensor msb

r7 light sensor 1lsb

r8

r9

110 des_addr msb

ril des_addr 1lsb

ri2

rl3

ri4

r15 button press temporary register
rl6 interrupt temporary register
rl7 interrupt temporary register
r18 rf unit state register

rl9 adc delay timer

r20 timer register 1

r21 no_ack counter

r22 wakeup delay timer

23 button wait register

r24 button press

25 previous button press (sent as button data)
r26 wait timer for joinrequest

27

ypointer is buffer end

; zl

;5 zh

start: ; configure microcontroller registers

; using internal 8MHz RC oscillator

; system clock set to IMHZ by /8 prescaler in fuse bits
1di ri16,high(RAMEND)

out SPH,r16 ; Set Stack Pointer to top of RAM
1di r16,low(RAMEND)

out SPL,ri6

1di r16,$17

out ddrb,r16 ; set ss,sclk,mosi,slp_tr as output
1di r16,8

out portb,rl6 ; enable pullup for miso

1ldi ri6,1

out spsr,rl6 ; set up spi

1di r16,$50

out spcr,r1l6 ; set up spi

sbi portb,portb0 ; set ss pin high

cbi portb,portb4 ; set slp_tr low

sbi ddra,dda7 ; set reset pin as output

sbi porta,porta7 ; pull reset high on rf unit
1di r16,$0¢c

sts eicrb,r16 ; configure int§ for rising edge
1di ri16,$20

out eimsk,rl16 ; enable intS

sbi portg,portg2 ; turn on pullup for buttonl
sbi portg,portgl ; turn on pullup for button2
sbi portg,portgl ; turn on pullup for button3
1di r16,high(home_addr) ; set up des_addr to something in system for start
mov ri0,rié

1di r16,low(home_addr) ; set up des_addr

mov rii,ri6

1di yh,$02 ; initialize buffer pointer

1di yl1,$00

clr ri8 ; initialize rf state register

clr r5 ; initialize pointer buffer

clr r25 ; initialize registers

clr r24

clr r23

sbi portf,portfl ; set pfl to high to activate light semnsor
sbi ddrf,ddfl ; set pfl to output

jturn off watchdog timer

wdr ; reset wdt

1di r16,$00 ; clear all resets

out mcusr,rl6 ; turn off wdrf

1di r16,$1e

sts wdtcsr,rl6 ; enable writing of wdt
1di r16,$06

sts wdtcsr,rl6 ; turn off wdt, 1s timer

;setup power reduction registers

1di r16,$ab

sts prr0,r16 ; turn off adc,usart0,tl,t0,twi

1di r16,$3f

sts prrl,r16 ; turn off t5,t4,t3,usart3,usart2,usartl
1di r16,$90

out acsr,rl16 ; turn off comparator

;jsetup amalog inputs
1di r16,$05
sts didr0,r16 ; turn off input stage for adc0,adc2 pins
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1di r16,$03
sts didrl,ri6 ; turn off input stage for ain0,ainl pins

;setup t2 as rtc at 1s interval wakeup

1di r16,$20

sts assr,rl6 ; set t2 to assynchronous mode

1di r16,$05

sts tccr2b,ri6 ; set t2 prescaler to /128 - 1s wakeup period

;make sure t2 is done rewriting itself
checkassr:

1lds ri6,assr
andi r16,$1f ; check assr(4:0) clear
brne checkassr

clr ri6

sts tifr2,r16 ; clear all pending interrupts
1di r16,$01

sts timsk2,r16 ; enable t2 overflow interrupt

;setup shitlb - pe0 is data, pe4 is clock

sbi ddre,dde0 ; set clock as output

cbi porte,porte4 ; make sure pullups are off for data
rcall shitiSsetup

;configure rf unit registers

jwait
1di r20,$80 ; load the wait timer to 128 cycles (x10/ck)
rcall wait2 ; wait ~(1280/1MHz = 1.2ms) for rf unit to stabilize

;80 to trx_off state
rcall txoff ; go to trx_off state on rf unit

;setup clkm

1di r16,$c3 ; load first data byte - write trx_ctrl_0 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

clr ri6 ; load second data byte - turn off clkm

rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup short_addr_0

1di r16,$e0 ; load first data byte - write short_addr_0 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,low(src_addr) ; load second data byte - src_addr lsb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

jsetup short_addr_1

1di r16,$el ; load first data byte - write short_addr_i register
¢bi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,high(src_addr) ; load second data byte - src_addr msb
rcall spivrite ; send data

sbi portb,portb0 ; pull ss high

;setup pan_id_0
1di r16,%$e2 ; load first data byte - write pan_id_0 register

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,low(pan_id) ; load second data byte - pan_id lsb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup pan_id_1

1di r16,$e3 ; load first data byte - write pan_id_1 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,high(pan_id) ; load second data byte - pan_id msb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup phy_cc_ca - set channel id

1di r16,$c8 ; load byte - write phy_cc_ca register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di ri16,channel ; load data byte -

rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup phy_tx_pwr - turn crc¢ on

1di r16,$c5 ; load byte - write phy_tx_pvr register
cbi portb,portbQ ; pull ss low

rcall spiwrite ; send data

1di r16,$80 ; load data byte - auto_crc=on,pwr=+3dbm
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup xah_ctrl - set frame and csma retries

1di r16,$ec ; load byte - write xah_ctrl register

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di ri16,retries ; load data byte - frame and csma retries
rcall spiwrite ; send data

8bi portb,portb0 ; pull ss high

;setup csma_seed_1

1di r16,$ee ; load byte - write csma_seed.l register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di rlG,high(csma_sead) ; load data byte - min_be=0,aack_set=0,i_am_coord=0,csma(10:8)

rcall spiwrite ; send data
sbi portb,portb0 ; pull ss high

;setup csma_seed_0

1di r16,$ed ; load first data byte - write csma_seed_l1 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,low(csma_seed) ; load data byte - csma(7:0)

rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

iclear pending irqs on rf unit

1di r16,$8f ; load first data byte - read register irq_status command

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte and clear pending irgs
sbi portb,portb0 ; pull ss high

;enable irgs on rf unit
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1di r16,$ce ; load first data byte - write register irq_mask command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$08 ; load second data byte — trx_end only

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

jclear pending irqs on micro
clr rié
out eifr,r16 ; clear any interrupt flags that are set

;enable interrupts on micro
sei ; turn on interrupts

;enter sleep mode on rf unit

sbi portb,portb4 ; pull slp_tr high to enter sleep mode
1di r20,$80 ; load the wait timer to 128 cycles (x10/ck)

rcall wait2 ; wait "(1280/1MHz = 1.2ms) to make sure were in sleep
repeat: ; transmit data from sleep mode

; use watchdog timer to eliminate lockups while not sleeping

cli ; turn off interrupts while enabling watchdog timer

wdr ; reset wdt

1di r16,$1e

sts wdtcsr,rl6 ; enable writing of wdt

1di r16,$0e

sts wdtcsr,r16 ; turn on wdt, ls timer

sei ; turn interrupts back on

1di r19,$0f ; sample n times - 4ms

adcsample: ; take measurement from adc0 - light sensor
1di ri6,$aa

sts prr0,rl6 ; turn on adc, leave off usart0,t1,t0,twi
1di r16,$c0

sts admux,r16 ; use internal 2.56v as voltage reference,sample adcO
1di r16,%$9¢c

sts adcsra,rl6 ; turn on adc,clear interrupt flag,enable interrupt,set to /16
1di r16,$03

out smcr,rl6 ; setup adc noise reduction mode

nop

nop

nop

sleep ; wait till converesion is done

nop

nop

nop

¢lr rié

out smcr,ri6é ; disable sleep modes

1lds r7,adcl ; load low bit to x7

1lds r6,adch ; load high bit to ré

dec ri9

brne adcsample ; take n samples to let vref settle

i

w

; turn off light sensor
cbi ddrf,ddfl ; set pfl to input to turn off light sensor
cbi portf,portfi ; turn pfl pullups off

; sample adc2 - accelerometer
1di r16,$c2
sts admux,r16 ; use internal 2.56v as voltage reference,sample adc2

1di r16,$9¢

sts adcsra,rl6 ; turn on adc,clear interrupt flag,enable interrupt,set to /16
1di r16,$03

out smecr,rl6é ; setup adc noise reduction mode
nop

nop

nop

sleep ; wait till converesion is done

nop

nop

nop

clr rié

out smcr,r16 ; disable sleep modes

1lds ré4,adcl ; load low bit to ré

lds r3,adch ; load high bit to r3

;reset accelerometer

1di r16,$10

out acsr,rl6 ; turn on comparator

nop ; delay to let things settle a bit
nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

in ri6,acsr ; check comparator output
sbrs ri6,5 ; dont bother resetting if already high
rjmp compdone

cbi porte,portel ; set reset pin to low
sbi ddre,ddel ; set reset pin to output

compwait: ; idle until aini > ain0

in r16,acsr

sbrc r16,5

rjmp compwait ; keep checking comparator output for low output
cbi ddre,ddel ; turn off the resetting function

compdone: ; resetting done

1di r16,$90

out acsr,r16 ; turn off comparator

1di r16,$00

sts adesra,rl6 ; turn off adc

1di r16,$ab

sts prr0,r16 ; turn off adc,usart0,tl,t0,twi

jn

rcall shitlStemp ; read shitl5 temperature

rcall shitiShumidity ; read shit15 humidity

cbi portb,portb4d ; pull slp_tr low to exit sleep mode

1di r20,$28 ; load wait timer to 40 cycles (x10/ck)

rcall wait2 ; wait “(400/iMHZ = 400us) for rf unit clock to stabilize

rcall checktxoff ; check to see if rf unit is in tx_off state
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st y+,r4

rcall txonaret ; put the rf unit in tx_aret_on state st y+,r0
st y+,rl

cpi r21,$0c ; check how long its been since ack (12min) st y+,r2

brlo shortout ; dont bother with data packets if longout st y+,r25

ldi y1,$00 ; clear old data inc r21 ; increment no_ack counter

1di r21,$0f ; keep ack counter from incrementing back to $00 cpi yh,$03 ; check if counter has overflowed

rcall transmitrequest ; transmit join request brlo sleepstate ; skip if not

1di ri18,$02 ; set rf state to joinrequest sent 1di yh,$02 ; reset pointer if overflow

rjmp riwait ; wait for transmit done 1di y1,$00 ; reset pointer if overflow

shortout: ; possibly still in system - keep full data transmits sleepstate: ; finish off and go to sleep

rcall transmitbeacon ; transmit beacon packet rcall forcetxoff ; go to tx_off state so you can sleep

1di r18,8$01 ; set rf state register to transmitbeacon sbi portb,portb4d ; pull slp_tr high to enter sleep mode
1di ri16,$07

rfvait: ; wait till transmission is complete - could be replaced with a sleep out smcr,ri6 ; set to power-save mode and enable sleep mode

;intS can only be used as level interrupt to wake from most sleep modes 1di r22,$3c ; set up repeat timer to 60cycles

;int5 must be configured as rising edge as it is active high ; turn watchdog timer off when going back to sleep

;could use idle mode to sleep during this operation cli ; turn off interrupts while disabling watchdog timer

;idle mode would save 0.7mA max - probably not worth it wdr ; reset wdt

nop in r16,mcusr ; get reset flag status

nop andi r16,$£7 ; mask off wdrf to 0

nop out mcusr,r16 ; turn off wdrf

cpi r18,$40 ; check if all transmissions are done 1di ri6,$1e

breq sleepstate ; shut down if all transmissions done sts wdtcsr,r16€ ; enable writing of wdt

cpi r18,$80 ; check if all transmission are dome with backlog 1di r16,$06

breq backlog ; backlog data sts wdtcsr,r16 ; turn off wdt, 1s timer

cpi r18,$04 ; check if waiting for joinack sei ; turn interrupts back on

breq rfwaitl ; go to timeout sequence if waiting for joinack

rjmp rfwait ; else keep waiting sleepstatel:

cpi r22,$01
brne sleepstate3d

rfwaitl: ; wait for joinack sbi portf,portfl ; turn on light sensor via pfil
sbi ddrf,ddfi1 ; set pfi to output

1ldi r26,$ff ; wait some sweet ass long time for joinack

sleepstate3:
wait3: ; 255x16/1MHz = 4ms waitloop sleep
nop nop
nop nop
nop nop
nop mov r26,r15 ; move last current button press to previous button press
nop clr ri§ ; reset button state register
nop in r24,ping ; read button state
nop ser r16
nop eor r24,r16 ; flip state of buttons because they are currently pulled up
nop andi r24,$07 ; mask off the three buttons of interest
nop breq sleepstate2 ; do not turn on lightsensor if no buttons pressed
nop sbi portf,portfi ; turn on light semsor via pfl if button pressed
cpi r18,$04 ; check if we have a new network sbi ddrf,ddf1i ; set pfl to output
brne rfwait ; go back to waiting if new network sec ; set carry bit
dec r26 ; check if done
brne wait3 ; keep going if not done buttonshift: ; convert to bitwise representation
rol r1§ ; increment button press number
backlog: ; store backlogged data dec r24 ; check if done
brne buttonshift ; keep incrementing if not done
cpi r21,$0c ; check if in long_out state and r25,r15 ; check if button pressed last time
brsh sleepstate ; dont bother backlogging if long_out breq sleepstate2 ; do nothing if button was not pressed last time and this time
st y+,r6 ; load data to buffer if failed mov ri6,r23 ; get set of buttons pressed in past minute
st y+,r7 and r16,r15 ; check if already sent that button press in past minute

st y+,r3 brne sleepstate2 ; dont send data if already sent it
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or r23,rl5 ; mask off button wait register
rjmp repeat ; take measurements and send them off - r25

sleepstate2:

dec r22

brne sleepstatel ; return to sleep if not yet 60s

clr ri6

out smcr,rl6 ; disable sleep mode

and r25,r15 ; check if both last and current are the same
mov r23,r25 ; reset button wait register

rjmp repeat ; take measurements and send them off

txoff: ; send trx_off command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command
¢bi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$08 ; load second data byte - data trx_off bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checktxoff: ; check current state to see if in tx_off state

1di r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$08

brne checktxoff

ret ; return to previous duty

forcetxoff: ; send trx_off command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$03 ; load second data byte - data force_trx_off bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checkforcetxoff: ; check current state to see if in tx_off state

nop ; delay for a bit to make sure the device is off

nop

nop

nop

1di r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$08

brne forcetxoff ; redo if not off - only takes lus to turn off
; (changed due to lock up bug of getting stuck in check loop)
ret ; return to previous duty

pllon: ; send pll_on command to rf unit

1di r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$09 ; load second data byte - data pll_on bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checkpllon: ; check current state to see if in pll_on state

1di r16,$81 ; load first data byte - read register trx_status command
¢cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$09

brne checkpllon

ret ; return to previous duty

txonaret: ; send trx_aret_on command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command
¢bi portb,portb0 ; pull ss low

rcall spiwrite ; send byte .

1di r16,$19 ; load second data byte - data trx_aret_on bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checktxonaret: ; check current state to see if in tx_aret_on state

1di r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi ri6,$19

brne checktxonaret

ret ; return to previous duty

rxonaack: ; send rx_aack_on command to rf unit and wait till stable

1di r16,$c2 ; load first data byte — write register trx_state command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$16 ; load second data byte - data rx_aack_on bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checkrxonaack: ; check current state to see if in rx_aack_on state

1di r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

8bi portb,portb0 ; pull ss high

cpi r16,$16

brne checkrxonaack

ret ; return to previous duty



GIc

spiwrite: ; read and write data over spi
out spdr,rl6 ; write transmitted byte to spi
wait: ; read spi register to check when done

in r16,spsr

sbrs ri6,spif

rjmp wait

in r16,spdr ; write recieved byte to spi register
ret ; return to previous duty

wait2: ; wait timer ("12 cylces per value in r20)

nop

nop

nop

nop

nop

nop

nop

nop

dec r20
brne wait2
ret ; return to previous duty

joinrecieve: ; get new des_addr

cpi r18,$04 ; check if waiting for joinack

brne done9 ; skip if not

1di r16,$20 ; load data byte - read buffer command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - frame length byte

cpi r16,$0b ; check if its a join frame length

brne donejoinfail ; finish if not

1di r16,$00 ; load data byte - blank for reading

rcall spivrite ; send byte - do not save fcf(7:0)

1di r16,$00 ; load data byte - blank for reading

rcall spivrite ; send byte - do not save fcf(15:8)

1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - seq (used as command byte)
cpi r16,$06 ; check if joinpacket

brne donejoinfail ; finish if not

1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - do not save des_panid(7:0)
1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - do not save des_panid(15:8)
1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - do not save des_addr(7:0)
1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte ~ do not save des_addr(15:8)
1di r16,$00 ; load data byte - blank for reading

rcall spivrite ; send byte - src_addr(7:0)

;1di r16,$00 ; load data byte - blank for reading
;rcall spiwrite ; send byte - do not save fcs(7:0)
;1di r16,$00 ; load data byte - blank for reading
;rcall spivrite ; send byte - do not save fcs(15:8)
;1di r16,800 ; load data byte - blank for reading
;rcall spiwrite ; send byte - 1qi

sbi portb,portb0 ; pull ss high

rcall checkrxonaack ; make sure we are no longer in rx_busy
rcall pllon ; go to pll_on state

rcall txonaret ; go to tx_on state

rcall transmitpacket ; send out data packet

1di r18,$10 ; set state register to retry transmit
pop rié ; get off stack

out sreg,rl6 ; return sreg

reti ; clear interrupt and return to previous duty

donejoinfail: ; finish and wait for next packet

sbi portb,portb0 ; pull ss high

pop r16 ; get off stack

out sreg,ri6 ; return sreg

reti ; clear interrupt and return to previous duty

done9: ; rx bad packet

1di r18,$40 ; set rf state to done

pop ri6 ; get off stack

out sreg,ri6 ; return sreg

reti ; clear interrupt and return to previous duty

clearirq: ; clear irq register and irq line

in r16,sreg ; get sreg
push ri6 ; push sreg on stack

1di r16,$8f ; load first data byte - read register irq_status command

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte
sbi portb,portb0 ; pull ss high

checkrf: ; check rf unit state

1di r16,$81 ; load first data byte - read register trx_status command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$16 ; check if in rx_on

breq joinrecieve ; go to get data

cpi r16,$11 ; check if in busy_rx

breq joinrecieve ; go to get data

cpi r16,$1f ; check if in state transition

breq checkrf ; keep checking till in a new state
cpi r16,$12 ; check if in busy_tx state

breq checkrf ; keep checking till in a new state

;else check successful transmit before switching back to sleep

mov rii,rié 1di r16,$82 ; load data byte -~ read trx_state to get trac_status

1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
mov r10,r16

- blank for reading
src_addr(15:8)

; dont bother with the rest of the data - it doesnt matter

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load data byte - blank byte for reading
rcall spiwrite ; send byte
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sbi portb,portb0 ; pull ss high

andi r16,$e0 ; mask off trac_status

cpi r16,$60 ; check if success or data_pending success
brlo success ; skip if success

cpi r18,$00 ; check if last transmission was a data packet

breq retry ; get new des_addr

cpi r18,$10 ; check if last transmission was a retry packet

breg retryfail ; backlog and end

cpi r18,$20 ; check if last transmission was a backlog packet

breq backlogfail ; backlog and end
1di r18,$40 ; else set to shutdown
pop ri6 ; get off stack

out sreg,rl6é ; return sreg

reti ; return from interrupt

retry: ; get new des_addr and retransmit

rcall transmitrequest

1di r18,$02 ; set joinrequest state bit

pop rl6 ; get off stack

out sreg,rl6é ; return sreg

reti ; clear interrupt and return to previous duty

backlogfail: ; reset backlog pointer
mov yl,r5 ; reset data pointer because data didnt go out
retryfail: ; backlog and end

1di r18,$80 ; set backlog flag

pop rl6 ; get off stack

out sreg,ri6 ; return sreg

reti ; clear interrupt and return to previous duty

success: ; tx success .

cpi ri8,$01 ; check if last packet was beacon
breq txdata ; transmit data off

cpi r18,$00 ; check if last packet was data

breq checkback ; see if there is backlogged data
cpi r18,$02 ; check if last packet was join request
breq gotorx ; set to rx and wait for join ack

cpi r18,$20 ; check if last packet was backlog data
breq irqdone ; finish off

cpi r18,$10 ; check if last packet was retry

breq checkback ; check for backlogged data

rjmp done9 ; finish off if bad state

checkback: ; check for backlogged data

cpi yl,$00 ; check for backlogged data

breq irqdone ; finish if none

mov r5,yl ; store data pointer in case of failure
rcall transmitold ; transmit backlogged data

1di r18,$20 ; set state to backlog-aack

pop rlé ; get off stack

out sreg,rl6é ; return sreg

reti ; clear interrupt and return to previous duty

irqdone: ; finish interrupt and return

clr r21 ; reset no_ack register

1di r18,$40 ; set rf state to done

pop rl6 ; get off stack

out sreg,rif ; return sreg

reti ; clear interrupt and return to previous duty

txdata: ; transmit a data packet

rcall transmitpacket ; send data

1di r18,$00 ; set rf state to data sent

pop rlé ; get off stack

out sreg,rl6 ; return sreg

reti ; clear interrupt and return to previous duty

gotorx: ; recieve joinconfirm

rcall pllon ; go to pll_on state

rcall rxonaack ; go to rx_on_aack state
1di r18,$04 ; set rf state to rx-waiting
pop ri6 ; get off stack

out sreg,rl6 ; return sreg

reti ; return from interrupt

transmitbeacon: ; transmit a beacon frame

sbi portb,portb4d ; pull slp_tr high to begin transmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slp_tr low

1di r16,$60 ; load data byte - write buffer command

cbi portb,portb0 ; pull ss low :

rcall spiwrite ; send byte

1di r16,$0b ; load data byte - frame length byte

rcall spiwrite ; send byte

1di r16,$40 ; load data byte - fcf(7:0) - broadcast,no ack

rcall spiwrite ; send byte

1di r16,$88 ; load data byte - fcf(15:8) - short address,pan_ids equal
rcall spiwrite ; send byte

1di r16,$00 ; load data byte - seq(7:0) - command(beacon)

rcall spiwrite ; send byte

1di r16,low(pan_id) ; load data byte - pan_id(7:0)

rcall spiwrite ; send byte

1di ri16,high(pan_id) ; load data byte - pan_id(15:8)

rcall spiwrite ; send byte

1di r16,$£ff ; load data byte - destination address (7:0) - broadcast
rcall spiwrite ; send byte

1di. r16,$ff ; load data byte - destination address (15:0) - broadcast
rcall spiwrite ; send byte

1di r16,low(src_addr) ; load data byte - source address (7:0)

rcall spiwrite ; send byte

1di r16,high(src_addr) ; load data byte - source address (15:8)
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

ret ; return to previous duty

wakeup: ; clear interrupts and return to previous task
nop
nop
nop
reti
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;talk to shitlb, only works for cpu clock <=2MHZ

;data pin can never be output high - leave pullup off shitlStemp: ; read temperature data from shiti§
;needs external pullup resistor for proper operation ;send read temp commmand
wakeupshit15: ; clear interrupts and return rcall startshitl5 ; send start sequence
nop
nop ;data sequence - read temperature command $03
nop sbi porte,porteQ ; clock high - data bit one
cbi eimsk,4 ; disable int4 as pe4 will still be low when returning cbi porte,ported ; clock low
nop sbi porte,ported ; clock high - data bit two
reti cbi porte,ported ; clock low
sbi porte,porte0 ; clock high - data bit three
cbi porte,ported ; clock low
shitibsetup: ; set the device to low res mode sbi porte,porte0 ; clock high - data bit four
cbi porte,ported ; clock low
rcall shitibreset ; reset the device in case its fuxxored sbi porte,porte0 ; clock high - data bit five
rcall startshitlS ; send start sequence cbi porte,porte0 ; clock low
sbi porte,porte0 ; clock high - data bit six
;data sequence - register write command $06 cbi porte,ported ; clock low
sbi porte,porte0 ; clock high - data bit one cbi ddre,dde4 ; data high
cbi porte,porte0 ; clock low sbi porte,porte0 ; clock high - data bit seven
sbi porte,porte0 ; clock high - data bit two cbi porte,ported ; clock low
cbi porte,porte0 ; clock low sbi porte,ported ; clock high - data bit eight
sbi porte,ported ; clock high - data bit three cbi porte,porte0 ; clock low
cbi porte,porte0 ; clock low ;sbi ddre,dde4 ; data low - if last databyte is 1 - leave it high for ack
sbi porte,ported ; clock high - data bit four
cbi porte,porte0 ; clock low rcall shit1Sack0 ; wait for ack from shitlS
sbi porte,ported ; clock high - data bit five
cbi porte,ported ; clock low sbi eimsk,4 ; enable int4
cbi ddre,dde4 ; data high 1di r16,$07
sbi porte,porte0 ; clock high - data bit six out smcr,rl6 ; set to power-save mode and enable sleep mode
cbi porte,ported ; clock low nop
sbi porte,porte0 ; clock high - data bit seven nop
cbi porte,ported ; clock low nop
sbi ddre,dde4 ; data low sleep ; sleep while waiting for low level on ped
sbi porte,porte0 ; clock high - data bit eight nop
cbi porte,porte0 ; clock low nop
nop
rcall shiti5ack0 ; wait for ack from shitis clr rié

out smcr,rl6 ; disable sleep mode
;data sequence - register write data $01

sbi ddre,dde4 ; data low rcall shitibSread ; read out temperature data from shit15 (msb)
sbi porte,porte0 ; clock high - data bit one rcall shitiSack3 ; acknowledge reciept of bit
cbi porte,porte0 ; clock low mov r0,r16é ; move msb to another register
sbi porte,porte0 ; clock high - data bit two rcall shitlSread ; read out temperature data from shiti (1lsb)
cbi porte,porte0 ; clock low rcall shitiSack4 ; end transmission ack
sbi porte,porte0 ; clock high - data bit three mov r1l,r16 ; move lsb to another register
cbi porte,porte0 ; clock low ret ; continue with previous task
sbi porte,porte0 ; clock high - data bit four
cbi porte,porte0 ; clock low shit15humidity: ; read humidity data from shiti1f
sbi porte,porte0 ; clock high - data bit five isend read humidity command
cbi porte,ported ; clock low rcall startshitl$ ; send start sequence
sbi porte,porte0 ; clock high - data bit six
cbi porte,porte0 ; clock low ;data sequence - read humidity command $05
sbi porte,porte0 ; clock high - data bit seven sbi porte,porte0 ; clock high - data bit onme
cbi porte,porte0 ; clock low cbi porte,porte0 ; clock low
cbi ddre,dde4 ; data high sbi porte,porte0 ; clock high - data bit two
sbi porte,porte0 ; clock high - data bit eight cbi porte,porte0 ; clock low
cbi porte,porte0 ; clock low sbi porte,porte0 ; clock high - data bit three
¢bi porte,porte0 ; clock low
rcall shiti5ack0 ; wait for ack from shitlb sbi porte,porteQ ; clock high - data bit four

ret ;done setting up the device cbi porte,porte0 ; clock low
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sbi porte,porte0 ; clock high - data bit five
cbi porte,porte® ; clock low

cbi ddre,dde4 ; data high

sbi porte,porte0 ; clock high - data bit six
cbi porte,porte0 ; clock low

sbi ddre,dde4 ; data low

sbi porte,porte0 ; clock high - data bit seven
cbi porte,porte0 ; clock low

cbi ddre,dde4 ; data high

sbi porte,porte0 ; clock high - data bit eight
cbi porte,porte0 ; clock low

;sbi ddre,dded ; data low - if last databyte is 1 - leave it high for ack

rcall shitlSack0 ; wait for acknowledge from shitlb

sbi eimsk,4 ; enable int4

1di r16,$07

out smcr,rl6 ; set to power—save mode and enable sleep mode
nop

nop

nop

sleep ; sleep while waiting for low level on ped
nop

nop

nop

clr rié

out smcr,rl6 ; disable sleep mode

rcall shitlbread ; read out humidity data from shitil5 (msb)
rcall shitlb5ack3 ; acknowledge reciept of bit
rcall shitlSread ; read out humidity data from shiti15 (1sb)
rcall shitlback4 ; end tramsmission ack

mov r2,ri6 ; move lsb to another register

ret ; return with previous task

shit1Back4: ; end transmission ack

sbi porte,porte0 ; clock high - ack
cbi porte,porte0 ; clock low
ret ; return to previous task

shitiback3: ; data recipet acknowledge

sbi ddre,dde4 ; pull data low

sbi porte,porte0 ; clock high - ack
cbi porte,porte0 ; clock low

cbi ddre,dde4 ; release data line
ret ; return to previous task

shitiSread: ; read data from shitils

clr r16 ; clear the register where incoming data will be written
sbi porte,porte0 ; clock high - data bit one

sbic pine,pine4 ; check if data is low

sbr r16,$80 ; write data bit one to register

cbi porte,porte0 ; clock low

sbi porte,porte0 ; clock high ~ data bit two

sbic pine,pine4 ; check if data is low

sbr r16,$40 ; write data bit two to register

cbi porte,porte0 ; clock low

sbi porte,porte0 ; clock high - data bit three

sbic pine,pine4 ; check if data is low

sbr r16,$20 ; write data bit three to register
¢cbi porte,ported ; clock low

sbi porte,porte0 ; clock high - data bit four
sbic pine,pine4 ; check if data is low

sbr r16,$10 ; write data bit four to register
cbi porte,ported ; clock low

sbi porte,porte0 ; clock high - data bit five
sbic pine,pine4 ; check if data is low

sbr r16,$08 ; write data bit five to register
cbi porte,porte0 ; clock low

sbi porte,porte0 ; clock high - data bit six
sbic pine,pine4 ; check if data is low

sbr r16,$04 ; write data bit six to register
cbi porte,porte0 ; clock low

sbi porte,porte0 ; clock high - data bit seven
sbic pine,pine4 ; check if data is low

sbr r16,$02 ; write data bit seven to register
cbi porte,porte0 ; clock low

sbi porte,porte0 ; clock high - data bit eight
sbic pine,pined4 ; check if data is low

sbr r16,$01 ; write data bit eight to register
cbi porte,ported ; clock low

ret ; return to previous activity

startshitl15: ; start sequence

cbi ddre,dde4 ; set data high

cbi porte,porte® ; make sure clock is low
sbi porte,porte® ; pull clock high

sbi ddre,dde4 ; set data low

cbi porte,ported ; clock low

sbi porte,porte0 ; clock high

cbi ddre,dde4 ; data high

cbi porte,porte0 ; clock low

sbi ddre,dded4 ; data low

ret ; return to previous task

shit15ack0: ; ack sequence for sending data
cbi ddre,dde4 ; release data line
shitiback2: ; check that data line is low

sbic pine,pine4

rjmp shitiback2

sbi porte,portel ; clock high - ack
cbi porte,ported ; clock low

shitiSackl: ; check that line has been released

sbis pine,pined4 ; check that line has been released
rjmp shitibackl
ret ; return to previous task

shitibreset: ; reset sequence if it gets out of phase
jstatus register preserved

smust be followed by data start sequence

cbi ddre,dde4 ; data high

sbi porte,porte0 ; clock high

cbi porte,porteld ; clock low
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sbi porte,porte0
cbi porte,porte0 ; clock low
sbi porte,porte0 ; clock high

; clock high
H
H
cbi porte,ported ; clock low
H
;
H

sbi porte,porte0 ; clock high
cbi porte,porte0 ; clock low
sbi porte,porte0 ; clock high
cbi porte,ported ; clock low

sbi porte,porte0 ; clock high
cbi porte,porte0 ; clock low
sbi porte,portel ; clock high
cbi porte,porte0 ; clock low

sbi porte,porteQ ; clock high
cbi porte,porte0 ; clock low
sbi porte,portel ; clock high
<bi porte,porte0 ; clock low
sbi porte,porte0 ; clock high
cbi porte,porte0 ; clock low

ret ; return to previous task
transmitrequest: ; transmit a request frame

sbi portb,portbd ; pull slp_tr high to begin transmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slp_tr low

1di r16,$60 ; load data byte - write buffer command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$0b ; load data byte - frame length byte

rcall spiwrite ; send byte

1di r16,$40 ; load data byte - fcf(7:0) - broadcast,no ack

rcall spiuvrite ; send byte

1di r16,$88 ; load data byte - fcf(15:8) - short address,pan_ids equal
rcall spiwrite ; send byte

1di r16,$01 ; load data byte - seq(7:0) - command(request)

rcall spiwrite ; send byte

1di ri16,low(pan_id) ; load data byte - pan_id(7:0)

rcall spiwrite ; send byte

1di r16,high(pan_id) ; load data byte - pan_id(15:8)

rcall spiwrite ; send byte

1di r16,$ff ; load data byte - destination address (7:0) - broadcast
rcall spiwrite ; send byte

1di r16,$ff ; load data byte - destination address (15:0) ~ broadcast
rcall spiwrite ; send byte

1di ri6,low(src_addr) ; load data byte - source address (7:0)

rcall spiwrite ; send byte

1di r16,high(src_addr) ; load data byte - source address (15:8)
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

ret ; return to previous duty

transmitold: ; transmit backlogged data

sbi portb,portb4 ; pull slp_tr high to begin transmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slp_tr low

1di r16,$60 ; load data byte - write buffer command
¢bi portb,portb0 ; pull ss low
rcall spiwrite ; send byte

mov r17,yl ; load data byte - frame length byte
1di r16,$0b ; increase frame length for header and crc
add r16,r17 ; increase frame length

rcall spiwrite ; send byte

1di r16,$61 ; load data byte - fcf(data)

rcall spiwrite ; send byte

1di r16,$88 ; load data byte - fcf

rcall spiwrite ; send byte

1di r16,$04 ; load data byte - seq(backlogged data command)
rcall spiwrite ; send byte

1di ri6,low(pan_id) ; load data byte - des_panid
rcall spiwrite ; send byte

1di r16,high(pan_id) ; load data byte - des_panid
rcall spiwrite ; send byte

mov ri6,ril ; load data byte - des_addr

rcall spiwrite ; send byte

mov r16,r10 ; load data byte - des_addr

rcall spiwrite ; send byte

1di r16,low(src_addr) ; load data byte - src_addr
rcall spiwrite ; send byte

1di r16,high(src_addr) ; load data byte - src_addr
rcall spiwrite ; send byte

dataload: ; load data to rf unit

1d r16,-y ; lcad data byte - data byte
rcall spiwrite ; send byte

cpi y1,$00 ; check if last byte

brne dataload ; branch if not last byte
sbi portb,portb0 ; pull ss high

ret ; return to previous duty

transmitpacket: ; transmit a packet

sbi portb,portb4 ; pull slp_tr high to begin tramsmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slp_tr low

1di r16,$60 ; load data byte - write buffer command

cbi portb,portb0 ; pull ss low

rcall spivrite ; send byte

1di r16,$13 ; load frame length byte - total bytes excluding this one, +2
rcall spiwrite ; send byte

1di r16,$61 ; load £fcf(7:0) byte - $61 for data packet
rcall spiwrite ; send byte

1di r16,$88 ; load fcf(15:8) byte - $88 for data packet
rcall spiwrite ; send byte

1di r16,$02 ; load sequence byte - command(data)

rcall spiwrite ; send byte

1di r16,low(pan_id) ; load destination panid(7:0) byte
rcall spiwrite ; send byte

1di r16,high(pan_id) ; load destination panid(156:8) byte
rcall spiwrite ; send byte

mov ri6,ri11 ; load destination address(7:0) byte

rcall spiwrite ; send byte

mov ri6,r10 ; load destination address(15:8) byte
rcall spiwrite ; send byte

1di r16,low(src_addr) ; load source address(7:0) byte
rcall spiwrite ; send byte

1di r16,high(src_addr) ; load source address(15:8) byte
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rcall spiwrite ; send byte

mov r16,r256 ; load data byte - button press
rcall spiwrite ; send byte

mov r16,r2 ; load data byte -~ humidity
rcall spiwrite ; send byte

mov ri6,rl ; load data byte - temperature0
rcall spiwrite ; send byte

mov r16,r0 ; load data byte - temperaturel
rcall spiwrite ; send byte

mov ri6,r4 ; load data byte - accelerometer lsb
rcall spiwrite ; send byte

mov ri6,r8 ; load data byte - accelerometer msb

rcall spiwrite ; send byte

mov ri6,r7 ; load data byte - light lsb
rcall spiwrite ; send byte

mov rif,r6 ; load data byte - light msb
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

ret ; return to previous duty
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.include "mi1281def.inc"

; increment of 4 for src_addr
; csma_seed = 8 x src_addr
.equ src_addr = $aab8 ; place unique source address here

.equ csma_seed = low(src_addr)*$08 ; random backoff exponent - must be unique,<$0800

.equ home_addr = $aabl ; local node des_addr

.equ pan_id = $abcd ; system pan_id

.equ retries = $38 ; high nibble = frame retries,low nibble = 2x(csma retries)
.equ channel = $36 ; tx/rx channel, $2b -> $3a valid

.equ stepsize = $08 ; control stepsize

.equ hysteresis = $01 ; hysteresis on control setpoint

.equ delay = $02 ; motor turn on delay msb (32.768ms per bit)

.equ motor_time = $05 ; number of 128us intervals in motor on-time increments ($05 = 164ms)

.org 0

rjmp start
.org intdaddr
rjmp wakeupshitiS
.org intSaddr
rjmp clearirq
.org OVF2addr
rjmp wakeup
.org ADCCaddr
rjmp wakeupadc
.org 0C5Aaddr
rjmp timerSint

; lightsensor = pf0(adc0)

shit15 data = pe4(intd)

shit15 clock = pe0

wind sensor = pd6(t1)

current threshold = pe7(int7)
direction = pgil

brake = pgld

pwm = pb7(ocOa)

r0 frame length temporary register - write
rl frame length temporary register - read
r2 adc msb temporary register

r3 shitlb msb temporary register

r4 shiti5 1lsb temporary register

r5 adc lsb temporary register

r6 control setpoint bottom

r7 control setpoin top

r8 wind sensor 1lsb

r3 wind sensor msb

r10 des_addr msb

rll des_addr 1sb

rl2 shitlb humidity temporary register
rl13 ed_level buffer

rl4 motor state register for transmit
riS

rl6 temporary swap register for interrupts
rl7 temporary swap register for main
rl8 rf state register

rl9 motor state register

120 wait loop register

r21 wait loop register

r22 motor timer advance register

r23

r24 temporary swap register for main

r25 wakeup counter

xregister is recieve buffer (r27(xh),r26(xl))

yregister is buffer start (r29(yh),r28(yl))

zregister is buffer end (r31(zh),r30(zl))

data buffer set at 1k

tregister is shit1b humidity/temperature irq differentiator
joinrequest buffer is 256byte

recieve buffer is 256byte

start: ; configure microcontroller registers

; start up time 6CK + 65ms

; set to 8MHz by internal rc oscillator

jturn off watchdog timer in case of watchdog reset
wdr ; reset wdt

1di r16,high(RAMEND)

out SPH,r16 ; Set Stack Pointer to top of RAM

1di r16,low(RAMEND)

out SPL,r16

1di r16,$17

out ddrb,rl6 ; set ss,sclk,mosi,slp_tr as output
1di ri16,$68

out portb,r16 ; enable pullup for miso and pb5,pbé for buttons
1di r16,$01

out spsr,ri6 ; set up spi - mode0, ck/2

1di r16,$50

out spcr,ri6 ; set up spi - mode0, ck/2 (4MHz)

sbi portb,portb0 ; set ss pin high

cbi portb,portb4 ; set slp_tr low

sbi porta,porta7 ; pull reset high on rf unit

sbi ddra,dda7 ; set reset pin as output

1di r16,$0c

sts eicrb,rl6 ; configure int5 for rising edge
1di r16,$20

out eimsk,r16 ; enable intS

1di r16,high(home_addr) ; set up des_addr to something in system for start
mov ri0,ri16

1di r16,low(home_addr) ; set up des_addr

mov rili,ri6

clr zl ; set buffer end to beginning of sram

clr yl ; set buffer start to beginning of sram
1di zh,$02 ; set buffer end to beginning of sram
1di yh,302 ; set buffer start to beginning of sram
1di xh,$05 ; set recieve buffer to middle of sram
clr x1 ; set recieve buffer to middle of sram

1di r23,$£ff ; initialize receieve buffer count
1di r19,$80 ; set motor state register to damper-motor
clr ri8 ; reset rf state register

clr ri4 ; reset tx motor state register

1di r25,$le ; set wakeup counter to 60s

1di r16,$3f

out portd,rl6é ; turn on pullups for unused pins on portd since they might have long cables attached

;turn off watchdog timer in case of watchdog reset
wdr ; reset wdt

1di r16,$00 ; clear all resets

out mcusr,rl6 ; turn off wdrf

1di r16,$1e

sts wdtcsr,rl6 ; enable writing of wdt

1di r16,$06

sts wdtcsr,ri6 ; turn off wdt, 1s timer
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;wait for rf unit to stabilize
1di r21,$04 ; load the wait timer to 3 cycles (x3084/ck)
rcall waitloopl ; wait ~(9252/8MHz = 1.2ms) for rf unit to stabilize

cbi porta,porta7 ; pull reset low to reset rf unit if watchdog reset
nop ; delay so reset has time to activate
nop

nop

nop

nop

nop

nop

nop

nop

nop

sbi porta,porta7 ; pull reset high to start

;wait for rf unit to stabilize
1di r21,$04 ; load the wait timer to 3 cycles (x3084/ck)
rcall waitloopl ; wait “(9252/8MHz = 1.2ms) for rf unit to stabilize

jsetup analog inputs

1di r16,$01

sts didr0,r16 ; turn off input stage for adcO pin

1di r16,%$c0

sts admux,r16 ; use internal 2.56v as voltage reference,sample adcO

;setup motor control pins as output (no pwm at the moment)
cbi portg,portgl ; make sure pins are off

cbi portb,portb7 ; turn pwm off

sbi portg,portg0d ; turn brake on

sbi ddrg,ddgl ; direction

sbi ddrg,ddg0 ; brake

sbi ddrb,ddb7 ; pwm (on/off for now)

sbi portg,portg0 ; turn on brake pin to shut off transistors

;setup tl as windspeed counter
1di r16,$06
sts tccrlb,rl6 ; set t1 to external clock on t0 falling edge

;setup t2 as rtc at 4s interval wakeup

1di r16,$20

sts assr,rl6 ; set t2 to assynchronous mode

1di r16,$06

sts tccr2b,r16 ; set t2 prescaler to /256 - 2s wakeup period

;make sure t2 is done rewriting itself
checkassr:

1lds ri16,assr
andi r16,$1f ; check assr(4:0) clear
brne checkassr

1di ri16,$07
out tifr2,r16 ; clear all pending interrupts
1di r16,$01
sts timsk2,r16 ; enable t2 overflow interrupt

jsetup shitl5 - pe0 is data, pe4 is clock

sbi ddre,dde0 ; set clock as output
cbi porte,porte4 ; make sure pullups are off for data
rcall shitiSsetup

;configure rf unit registers

;g0 to trx_off state
rcall txoff ; go to trx_off state on rf unit

;setup clkm

1di r16,$c3 ; load first data byte - write trx_ctrl_0 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

clr r16 ; load second data byte - turn off clkm

rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup short_addr_0

1di r16,$e0 ; load first data byte - write short_addr_0 register

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,low(src_addr) ; load second data byte - src_addr lsb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup short_addr_1

1di r16,$el ; load first data byte - write short_addr_1 register

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,high(src_addr) ; load second data byte - src_addr msb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup pan_id_0

1di r16,$e2 ; load first data byte - write pan_id 0 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,low(pan_id) ; load second data byte - pan_id 1lsb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup pan_id.1

1di r16,$e3 ; load first data byte - write pan_id_1 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,high(pan_id) ; load second data byte - pan_id msb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup phy_cc_ca - set channel id

1di r16,$c8 ; load byte - write phy_cc_ca register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,channel ; load data byte -

rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup phy_tx_pwr - turn crc on

1di r16,$c5 ; load byte - write phy_tx_pwr register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data
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1di r16,$80 ; load data byte - auto_crc=on,pwr=+3dbm mov r24,r19 ; move current motor state to temp register

rcall spiwrite ; send data andi r24,$60 ; mask off button state
sbi portb,portb0 ; pull ss high cp r24,r17 ; check if button state has changed
breq repeat ; continue checking if no change
jsetup xah_ctrl - set frame and csma retries andi r19,$9b ; turn off control bit and clear button state in motor state register
1di r16,$ec ; load byte - write xah_ctrl register ori r19,$08 ; set meanual bit in motor state register
cbi portb,portb0 ; pull ss low or rl9,rl7 ; set current button state in motor state register
rcall spiwrite ; send data or ri4,rl7 ; store button presses to tx motor state register
1di ri6,retries ; load data byte - frame and csma retries cpi r17,$60 ; check if both buttons are pressed
rcall spiwrite ; send data breq buttonstop
sbi portb,portb0 ; pull ss high cpi r17,$40 ; check if open button is pressed
breq openbutton
;setup csma_seed_1 cpi ri17,$20 ; check if close button is pressed
1di r16,$ee ; load byte - write csma_seed_1 register breq closebutton
cbi portb,portb0 ; pull ss low andi ri9,$97 ; else shut off manual bit and button bits in motor state register
rcall spiwrite ; send data -
1di r16,high(csma_seed) ; load data byte - min_be=0,aack_set=0,i_am_coord=0,csma(10:8) buttonstop: ; turn off motor via buttonpress
rcall spiwrite ; send data
sbi portb,portb0 ; pull ss high 1di r17,$08 ; turn off timer
sts tccrSb,r17 ; turn off timer
;setup csma_.seed_0 1di r17,$00
1di r16,$ed ; load first data byte - write csma_seed_1 register sts timsk5,r17 ; disable t5 interrupts
cbi portb,portb0 ; pull ss low cbi portb,portb7? ; stop motor
rcall spiwrite ; send data sbi portg,portgl ; turn on brake
ldi r16,low(csma_seed) ; load data byte - csma(7:0) rjmp repeat ; return to state checking
rcall spiwrite ; send data
sbi portb,portb0 ; pull ss high openbutton: ; open motor via buttonpress
;enable irqgs 1di r17,$08 ; turn off timer
1di r16,$ce ; load first data byte - write register irq mask command sts tccrSb,ri7 ; turn off timer
cbi portb,portb0 ; pull ss low 1di r17,$00
rcall spiwrite ; send byte sts timsk5,r17 ; disable t5 interrupts
1di r16,$08 ; load second data byte - trx_end only cbi portg,portg0 ; turn brake off
rcall spiwrite ; send byte sbi portg,portgl ; set direction to open
sbi portb,portb0 ; pull ss high sbi portb,portb7 ; turn on motor
ori r19,$01 ; set direction open
jclear pending irqs on rf unit rjmp repeat ; return to state checking
1di r16,$8f ; load first data byte - read register irq_status command
cbi portb,portb0 ; pull ss low closebutton: ; close motor via buttonpress
rcall spiwrite ; send byte and clear pending irqs
sbi portb,portb0 ; pull ss high 1di r17,$08 ; turn off timer
sts tccrbb,rl7 ; turn off timer
;clear pending irgs on micro 1di r17,$00
1di r16,$£f sts timsk6,r17 ; disable t5 interrupts
out eifr,r16 ; clear any interrupt flags that are set cbi portg,portgd ; turn brake off
cbi portg,portgl ; set direction to closed
jenable interrupts on micro sbi portb,portb7 ; turn on motor
sei ; turn on interrupts andi ri19,8fe ; set direction closed

rjmp repeat ; return to state checking
rcall rxonaack ; put the rf unit in rx_aack_on state

handle: ; respond to recieved data packets
repeat: ; handle backlogged data

1d r17,z+ ; get data frame length from buffer

cpse zh,yh ; check if buffer has data mov rl,r17 ; move frame length to counter

rjmp handle ; go to data handler cpi r17,$08 ; check if packet is the right length
cpse z1,yl ; check if buffer has data brne resetbuffer ; reset buffer if not

rjmp handle ; go to data handler 1d r17,z+ ; get header byte from buffer

in r17,pinb ; get button press data dec rl

andi r17,$60 ; mask off button bits cpi r17,$08 ; check if right packet type

1di r24,$60 ; invert button bits brne resetbuffer

eor ri7,r24 ; invert button bits 1d ri7,z+ ; 1sb src_addr - ignore
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dec rit rjmp resetbuffer
1d r17,z+ ; msb src_addr - ignore

dec ri1 stop: ; stop motor

1d r17,z+ ; get command byte

dec ril 1di r17,$08 ; turn off timer

cpi r17,$08 ; check if motor comtrol command sts tccrSb,ri7 ; turn off timer

breq motor ; control motor 1di r17,$00

rjmp resetbuffer ; else finish off sts timskS5,r17 ; disable t5 interrupts
andi r19,$fb ; turn off control bit

motor: ; control motor cbi portb,portb7 ; stop motor
sbi portg,portg0 ; turn on brake

1d ri7,z+ ; get motor command rjmp resetbuffer

dec ri

sbrc r19,3 ; do not modify if under manual control close: ; close damper command

rjmp resetbuffer ; commands past this point are overriden by manual control

cpi r17,$08 ; check if damper full open andi r19,$fa ; turn off control bit and set direction to closed

breq open 1d r17,z+ ; get step size packet

cpi r17,$06 ; check if damper full close dec ri

breq close rcall motortime ; start motor timer

cpi r17,$0a ; check if damper stop cbi portg,portgld ; turn brake off

breq stop cbi portg,portgl ; set direction to closed

cpi r17,$0c ; check if damper set by speed sbi portb,portb7 ; turn on motor

brne resetbuffer ; else end rjmp resetbuffer

1d ri7,z+ ; get comntrol setpoint

dec rl setpointclose: ; go to full closed because setpoint is too low for conmtrol

cpi r17,(hysteresis + $01) ; check if setpoint is too low

brlo setpointclose ; completely shut andi r19,$fa ; turn off control bit and set direction closed

cpi r17,($ff - hysteresis) ; check if setpoint is too high 1di r17,$ff

brsh setpointopen ; completely open rcall motortime

subi ri7,hysteresis ; put hysterisis in cbi portg,portgd ; turn brake off

mov r6,rl7 ; move setpoint to control bottom cbi portg,portgl ; set direction to closed

subi r17,($00 - 2«(hysteresis)) ; put hysterisis in sbi portb,portb7 ; turn on motor

mov r7,rl7 ; move setpoint to control top rjmp resetbuffer

ori r19,$04 ; turn on control bit in motor state register

1di r17,$08 ; turn off timer setpointopen: ; go to full open because setpoint is too high for control

sts tcerSb,r17 ; turn off timer

1di r17,$00 andi ri19,$fb ; turn off control bit

sts timsk5,r17 ; disable t5 interrupts 1di ri7,$ff

cbi portb,portb? ; stop motor rcall motortime

sbi portg,portg0 ; turn on brake cbi portg,portgd ; turn brake off

rjmp resetbuffer sbi portg,portgl ; set direction to open
sbi portb,portb7 ; turn on motor

resetbuffer: ; reset buffer pointer ori r19,$01 ; set direction open

rjmp resetbuffer
1di r17,$00

add zl,rl ; add remaining packet count motortime: ; have motor on for a certain amount of time
adc zh,r17 ; increment zh if zl overflow
sbrc zh,2 ; check if buffer at 1k mov r22,r17 ; move motortime to counter
1di zh,$02 ; reset buffer pointer to bottom of buffer 1di r17, (motor_time)
rjmp repeat ; get next packet from buffer sts ocrSah,ri7 ; set counter top to packet time
1di r17,$00
open: ; open damper command sts ocrbal,ri7 ; set counter top to packet time
sts tcntbSh,r17 ; set counter to zero
andi r19,$fb ; turn off control bit sts tcntbl,r17 ; set counter to zero
1ld r17,z+ ; get step size packet 1di r17,$2f
dec ri out tifr5,r17 ; clear all t5 interrupt flags
rcall motortime ; start motor timer 1di r17,$02
cbi portg,portg0d ; turn brake off sts timskS5,r17 ; turn on t5 interrupt
sbi portg,portgl ; set direction to open 1di r17,$0d
sbi portb,portb7 ; turn on motor sts tccrbb,rl7 ; turn on counter, set to 128us period

ori r19,$01 ; set direction open ret
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timerSint: ; turn off motor

in r16,sreg ; get sreg

push ri6 ; push sreg on stack

dec r22 ; decrement 3rd byte counter

brne timerSintdone ; dont do anything if not dome
cbi portb,portb7 ; stop motor

sbi portg,portg0d ; turn on brake

1di r16,$08 ; turn off timer

sts tcecrbb,rl6 ; turn off timer

1di r16,$00

sts timsk6,r16 ; disable t5 interrupts

timerSintdone: ; finish off

pop ri6 ; get off stack
out sreg,ri6 ; return sreg
reti ; return from interrupt

txoff: ; send trx_off command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command
¢bi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$08 ; load second data byte - data trx_off bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checktxoff: ; check current state to see if in tx_off state

1di r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi ri16,$08

brne checktxoff

ret ; return to previous duty

pllon: ; send pll_on command to rf unit

1di r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$09 ; load second data byte - data pll_on bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checkpllon: ; check current state to see if in pll_on state

1di r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$09

brne checkpllon

ret ; return to previous duty

rxonaack: ; send rx_aack_on command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$16 ; load second data byte - data rx_aack_on bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checkrxonaack: ; check current state to see if in rx_aack_on state

1di r16,$81 ; load first data byte - read register trx_status command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$16
brne checkrxonaack

ret ; return to previous duty

txonaret: ; send trx_aret_on command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$19 ; load second data byte - data trx_aret_on bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checktxonaret: ; check current state to see if in tx_aret_on state

1di r16,$81 ; load first data byte - read register trx_status command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi ri6,$189
brne checktxonaret

ret ; return to previous duty

Joinrecieve: ; get new des_addr

cpi r18,$04 ; check if waiting for joinack
joinack if not waiting for joinack

brne rxrequest ; dont accpet
1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
mov rll,rlé

1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
mov ri0,r16

- blank for
do not save
- blank for
do not save
- blank for
do not save
- blank for
do not save
- blank for

reading
des_panid(7:0)
reading
des_panid(15:8)
reading
des_addr(7:0)
reading
des_addr(15:8)
reading

src_addr(7:0)

- blank for

src_addr(15:

reading
8)



Le¢

;dont bother with the rest of the data -

it doesnt matter

;1di r16,$00 ; load data byte - blank for reading
;rcall spiwrite ; send byte - do not save fcs(7:0)
;1di r16,$00 ; load data byte - blank for reading
jrcall spiwrite ; send byte - do not save fcs(15:8)
;1di r16,$00 ; load data byte - blank for reading

;rcall spiwrite ; send byte - lqi
sbi portb,portb0 ; pull ss high

sbiv yh:yl,$02 ; reset data buffer to begining of join request
1di r18,$10 ; set state register to retry transmit
rcall transmit ; set rf unit to tx_on_aret state

rcall transmitpacket ; transmit data
ret ; done

rxreadinterrupt: ; empty rx buffer while

in interrupt

;ed_level is taken first because it is only valid for 224us after interrupt fires
1di r16,$87 ; load data byte - read ed_level

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte

1di r16,$00 ; load data byte - blank byte for reading

rcall spiwrite ; send byte
mov ri3,r16 ; move ed_level to temporary
sbi portb,portb0 ; pull ss high

;get data from recieve buffer

buffer

1di r16,$20 ; load data byte - read buffer command

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte
1di r16,$00 ; load data byte - blank for

reading

rcall spiwrite ; send byte - frame length byte

subi r16,$06 ; decrease frame length for
st y+,r16 ; move frame length to buffer
subi r16,$03 ; decrease frame length for

bits to be removed

buffer fitting

mov r0,r16 ; move frame length to temporary register

1di r16,$00 ; load data byte - blank for
rcall spivrite ; send byte - do not save
1di r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save
1di r16,$00 ; load data byte - blank for

reading
fcf(7:0)
reading
fcf(16:8)
reading

rcall spiwrite ; send byte - seq (used as command byte)

st y+,r16

cpi r16,$06 ; check if command byte is $06 (join acknowledge)
breq joinrecieve ; get new home_addr if $06

cpi r16,$08 ; check if data to tethered node

breq notrequestl ; load data to buffer, else discard packet

rxrequest: ; finish off

sbi portb,portb0 ; pull ss high

sbiw yh:y1,$02 ; reset data buffer to begining of join request

ret ; done

notrequestl: ; continue with data loading

1di r16,$00 ; load data byte - blank for
rcall spivrite ; send byte - do not save
1ldi r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save
1di r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save

reading
des_panid(7:0)
reading
des_panid(15:8)
reading
des_addr(7:0)

1di r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save des_addr(15:8)

getdatarfl: ; keep loading data till frame compelete

1di r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte

st y+,r16 ; move byte to buffer

dec r0 ; decrement frame length byte

brne getdatarfl ; keep decrementing until done
1di r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(7:0)
1di r16,$00 ; load data byte -~ blank for reading
rcall spiwrite ; send byte - do not save fcs(15:8)
1di r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - lqi

sbi portb,portb0 ; pull ss high

st y+,r16 ; move 1qi to buffer

st y+,r13 ; move ed_level to buffer

sbrc yh,2 ; check if buffer at 1k

1di yh,$02 ; reset buffer pointer to bottom of buffer
ret ; done writing data

transmit: ; set rf unit to tx_on_aret state

icheck to see if not in rx_busy state

1di r16,$81 ; load first data byte - read register trx_status command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$11 ; check if in busy_rx

breq transmit ; keep checking till in a new state
cpi r16,$1f ; check if in state transition

breq transmit ; keep checking till in a new state
cpi r16,$12 ; check if in busy_tx state

breq transmit ; keep checking till in a new state
rcall pllon ; go to pll on state

;check if there is data pending in rx buffer

1di r16,$8f ; load first data byte - read register irq_status command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

sbrc r16,3 ; check if trx_end interrupt flag is set
rcall rxreadinterrupt ; empty rx buffer

rcall txonaret ; put the rf unit in tx_aret_on state
ret ; return to previous duty

waitloopl: ; wait timer ("3084 cycles per value in r21)

ser r20
rcall wait2
nop

nop

nop

nop

nop

nop
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nop
nop

dec r21

brne waitloopl

ret ; return to previous duty

spiwrite: ; read and write data over spi
out spdr,ri6é ; write transmitted byte to spi
wait: ; read spi register to check when done

in r16,spsr

sbrs ri6,spif

rjmp wait

in r16,spdr ; write recieved byte to spi register
ret ; return to previous duty

wait2: ; wait timer (712 cylces per value in r20)

nop
nop

nop

nop

nop

nop

nop

nop

dec r20

brne wait2

ret ; return to previous duty

gotorx: ; return to rx_on_aack state

;check successful transmit before switching back to rx
1di r16,$82 ; load data byte - read trx_state to get trac_status
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load data byte - blank byte for reading
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

andi ri6,$e0 ; mask off trac_status

cpi r16,$60 ; check if success or data_pending success
brlo gotorxl ; skip if success

cpi r18,$01 ; check if this is the first failure

brne gotorx3 ; if not - finish off

rcall transmitrequest ; get new des_addr and retransmit
1di r18,$02 ; set joinrequest state bit

pop rlé ; get off stack

out sreg,rl6 ; return sreg

reti ; clear interrupt and return to previous duty

gotorxl: ; turn on rx_on_aack state

rcall pllon ; go to pll_on state

rcall rxonaack ; go to rx_on_aack state

cpi r18,$02 ; check if last state was a joinrequest

brne gotorx2 ; finish off if not waiting for joinrequest ack
1di r18,$04 ; set rf state to joinrequest ack waiting

jturn off watchdog timer

wdr ; reset wdt

in ri6,mcusr ; get reset flag status
andi r16,$£7 ; mask off wdrf to O

out mcusr,r16 ; turn off wdrf

1di r16,$1e

sts wdtcsr,rl6 ; enable writing of wdt
1di r16,$06

sts wdtcsr,r16 ; turn off wdt, 1s timer
pop rié ; get off stack

out sreg,ri6 ; return sreg

reti ; return to previous task

gotorx3: ; set to rx_am_aack state

rcall pllon ; go to pll_on state
rcall rxonaack ; go to rx_on_aack state

gotorx2: ; finish off

clr r1l4 ; reset tx motor state register
1di r18,$00 ; reset rf state to complete
s;turn off watchdog timer

wdr ; reset wdt

in rié,mcusr ; get reset flag status
andi r16,$£f7 ; mask off wdrf to 0

out mcusr,rl6é ; turn off wdrf

1di r16,$1e

sts wdtcsr,ri6 ; enable writing of wdt
1di r16,$06

sts wdtesr,rl6 ; turn off wdt, 1s timer
pPop rl6 ; get off stack

out sreg,rl6 ; return sreg

reti ; return to previous task

clearirq: ; clear irq register and irq line

in ri16,sreg ; get sreg
push r16 ; push sreg on stack

1di r16,$8f ; load first data byte - read register irq_status command to clear interrupt

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte
sbi portb,portb0 ; pull ss high

checkrf: ; check rf unit state

1di r16,$81 ; load first data byte - read register trx_status command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte

sbhi portb,portb0 ; pull ss high

epi r16,$16 ; check if in rx_on

breq datacollect ; get data

cpi r16,$11 ; check if in busy_rx

breq datacollect ; get data

cpi r16,$1f ; check if in state transition

breq checkrf ; keep checking till in a new state
cpi r16,$12 ; check if in busy.tx state

breq checkrf ; keep checking till in a new state
rjmp gotorx ; else change state back to rx

sremoved checkecrc b crc is ically checked with rx_aack
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datacollect: ; get data from rf unit

rcall rxreadinterrupt ; get data from rf unit
pop rl6é ; get off stack

out sreg,rl6é ; return sreg

reti ; done writing data

wakeup: ; check if time to take data

in r16,sreg ; get sreg

push r16 ; push sreg on stack

dec r25 ; decrement wakeup counter
breq wakeupl ; take data if €0s
pop ri6 ; get sreg off stack

out sreg,rl6 ; return sreg

reti

wakeupl: ; take data and return to previous task

;enable watchdog timer to eliminate lock up bug
wdr ; reset wdt

1ldi ri6,$1e

sts wdtcsr,ri6 ; enable writing of wdt

1di r16,$0e

sts wdtcsr,rl6 ; turn on wdt, 1s timer

push r17 ; push r17 on stack

lds r8,tcntll ; move windspeed 1lsb to temporary register
1lds r9,tcntlh ; move windspeed msb to temporary register
clr r16 ; reset activity level counter

sts tentih,rié

sts tcntll,rlé

;motor control code

sbrs r19,2 ; check if in control mode

rjmp wakeupend ; finish off if not

cp r9,r6 ; check if speed too low

brlo incrementup ; move motor open

cp r9,r7 ; check if speed to high

brsh incrementdown ; move motor closed

wakeupend: ; else finish off

or r14,ri9 ; move motor state register to tx motor state register
rcall shitiStemp ; initiate shit1S read - humidity included

1di r16,$df ; take measurement from adcQ

sts adcsra,r16 ; turn on adc,clear interrupt flag,enable interrupt,set to /128 (62.5kHz)

1di r25,$1e ; reset wakeup counter to 60s
pop rl7 ; get ril7 off stack

pop ri6 ; get sreg off stack

out sreg,rlé ; return sreg

reti

incrementup: ; open with motor a few steps

1di r17,stepsize ; set increment length
rcall motortime ; move packet to motor timer
cbi portg,portgd ; turn brake off

sbi portg,portgl ; set direction to open
sbi portb,portb7 ; turn on motor

ori r19,$01 ; set direction open

rjmp wakeupend ; finish off
incrementdown: ; close with motor a few steps

1di r17,stepsize ; set increment length
rcall motortime ; move packet to motor timer
cbi portg,portgld ; turn brake off

cbi portg,portgl ; set direction to closed
sbi portb,portb7 ; turn on motor

andi r19,$fe ; set direction closed

rjmp wakeupend ; finish off

wakeupadc: ; wakeup and return to previous task

in ri16,sreg ; get sreg

push ri6 ; push sreg on stack
1ds r5,adcl ; load 1lsb to r5
1lds r2,adch ; load msb to r2
pop r16 ; get off stack

out sreg,rl6 ; return sreg
reti

shitl5setup: ; set the device to low res mode

jtalk to shitl5, only works for cpu clock <=2MHZ
;code modded with nops to operate at 8MHz

;jdata pin can never be output high - leave pullup off
;needs external pullup resistor for proper operation
jsleep operation disabled for this application
;always read temperature before humidity

rcall shitlSreset ; reset the device in case its fuxxored
rcall startshitl$ ; send start sequence

;data sequence - register write command $06
;nops added to keep clock at 1MHz

sbi porte,porte0 ; clock high - data bit one
nop

nop

cbi porte,portel ; clock low

nop

nop

sbi porte,portel ; clock high - data bit two

cbi porte,porte0 ; clock low

sbi porte,porte0 ; clock high - data bit three
nop

nop

cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit four
nop

nop

cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit five
nop
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nop

cbi porte,porte0 ; clock low
cbi ddre,dde4 ; data high
nop ; data takes time to rise

nop
nop
nop
nop
nop
sbi porte,portel
nop
nop
cbi porte,portel
nop
nop
sbi porte,portel
nop
nop

H

H

clock high

clock low

clock high

cbi porte,ported ; clock low
sbi ddre,dde4 ; data low

sbi porte,portel
nop
nop
cbi porte,portel

rcall shitiBackO
jdata sequence -

sbi ddre,dded ;
sbi porte,portel
nop

nop

cbi porte,ported
nop

nop

sbi porte,ported
nop

nop

cbi porte,ported
nop

nop

sbi porte,portel
nop

nop

cbi porte,porte0
nop

nop

sbi porte,porte0
nop

nop

cbi porte,portel ;

nop
nop
sbi porte,porteQ
nop
nop
cbi porte,porte0
nop
nop
sbi porte,portel

H

clock high

clock low

and needs setup time

- data bit six

- data bit seven

- data bit eight

wait for ack from

register write data
;nops added to keep clock at 1MHz

H

H

H

H

data low

clock high

clock low

clock high

clock low

clock high

clock low

clock high

clock low

clock high

clock low

clock high

- data

- data

- data

- data

- data

- data

shit1s

$01

bit

bit

one

two

three

four

five

six

nop
nop

cbi porte,porteld ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit seven
nop

nop

cbi porte,porte0 ; clock low

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit eight
nop

nop

cbi porte,ported ; clock low

rcall shitlback0 ; wait for ack from shitib
ret ;done setting up the device

shitlStemp: ; read temperature data from shitiS
;send read temp commmand
rcall startshitlS ; send start sequence

;data sequence - read temperature command $03
sbi porte,porte0 ; clock high - data bit one
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit two
nop

nop

cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit three
nop

nop

cbi porte,porte0d ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit four
nop

nop

cbi porte,ported ; clock low

nop

nop

sbi porte,ported ; clock high - data bit five
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit six
nop
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nop
cbi porte,porte0 ; clock low

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit seven
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit eight
nop

nop

cbi porte,porte0 ; clock low

;8bi ddre,dde4 ; data low - if last databyte is 1 - leave it high for ack

rcall shiti5ackQ ; wait for ack from shitib

sbi eimsk,4 ; enable int4
ret ; return to previous task and wait for shitl5 to be done

wakeupshitib: ; collect data from shitib

in r16,sreg ; get sreg

push r16 ; push sreg on stack

brts shitiShumread ; skip if its a humidity read

cbi eimsk,4 ; disable int4 as pe4 will still be low when returning
rcall shitlbread ; read out temperature data from shit15 (msb)
rcall shitiback3 ; acknowledge reciept of bit

mov r3,r16 ; move msb to another register

rcall shitibSread ; read out temperature data from shit1S (1sb)
rcall shitiSack4 ; end tramsmission ack

mov r4,r16 ; move lsb to another register

rcall shitlS5humidity

pop r16 ; get off stack

out sreg,ri6é ; return sreg

set ; set tregister to indicate humidity request in progress
reti ; continue with previous task

shit15humread: ; read out humidity data from shit 15

rcall shitiSread ; read out humidity data from shitib (msb)
rcall shitiBack3 ; acknowledge reciept of bit

rcall shitlbSread ; read out humidity data from shit15 (1lsb)
rcall shitlSack4 ; end transmission ack

mov r12,r16 ; move humidity data to temporary register

1di r18,$01 ; set rf state to first transmit

rcall transmit ; set rf unit to tx state

rcall transmitpacket ; send data off

pop r16 ; get off stack

out sreg,rl6é ; return sreg

clt ; reset to temperature read

reti ; return with previous task

shit1Shumidity: ; read humidity data from shiti
;jsend read humidity command
rcall startshitlb ; send start sequence

jdata sequence - read humidity command $05
;nops added to keep clock at 1MHz

sbi porte,porte0 ; clock high - data bit one
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit two
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit three
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit four
nop

nop

cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit five
nop

nop

cbi porte,ported ; clock low

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit six
nop

nop

cbi porte,ported ; clock low

sbi ddre,dde4 ; data low

sbi porte,porte0 ; clock high - data bit seven
nop

nop

cbi porte,porte0 ; clock low

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit eight
nop

nop

cbi porte,portel ; clock low

;8bi ddre,dde4 ; data low - if last databyte is 1 - leave it high for ack

rcall shitilSack0 ; wait for acknowledge from shitlb
sbi eimsk,4 ; enable int4
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ret ; return to previous task and wait for shitlb to take data

shiti5ack4: ; end transmission ack
;nops added to keep clock at 1MHz
sbi porte,porte0 ; clock high - ack
nop

nop

cbi porte,porte0 ; clock low

ret ; return to previous task

shit1back3: ; data recipet acknowledge
;nops added to keep clock at 1MHz

sbi ddre,dde4 ; pull data low

sbi porte,porte0 ; clock high - ack
nop

nop

cbi porte,ported ; clock low

cbi ddre,dde4 ; release data line

ret ; return to previous task

shitiSread: ; read data from shiti§

snops added to keep clock at 1MHz and meet data valid time of 250ns
clr r16 ; clear the register where incoming data will be written
sbi porte,porte0 ; clock high - data bit one
sbic pine,pined4 ; check if data is low

sbr r16,$80 ; write data bit one to register
cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit two
sbic pine,pine4 ; check if data is low

sbr r16,$40 ; write data bit two to register
cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit three
sbic pine,pined4 ; check if data is low

sbr r16,$20 ; write data bit three to register
cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high -~ data bit four
sbic pine,pined ; check if data is low

sbr r16,$10 ; write data bit four to register
cbi porte,portel ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit five
sbic pine,pine4 ; check if data is low

sbr r16,$08 ; write data bit five to register
cbi porte,portel ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit six
sbic pine,pined4 ; check if data is low

sbr r16,$04 ; write data bit six to register
cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit seven
sbic pine,pined4.; check if data is low

sbr r16,$02 ; write data bit seven to register
cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit eight
sbic pine,pine4 ; check if data is low

sbr r16,$01 ; write data bit eight to register
cbi porte,ported ; clock low

ret ; return to previous activity

startshitib: ; start sequence
;nops added to keep clock at 1MHz
cbi ddre,dde4 ; set data high

cbi porte,porte0 ; make sure clock is low
nop

nop

sbi porte,porte0 ; pull clock high
sbi ddre,dde4 ; set data low

cbi porte,porte0 ; clock low

nop

nop

sbi porte,ported ; clock high

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop

nop

nop

nop

nop

cbi porte,ported ; clock low

sbi ddre,dded ; data low

ret ; return to previous task

shit15ack0: ; ack sequence for sending data
cbi ddre,dde4 ; release data line

shitlback2: ; check that data line is low
;nops added to keep clock at 1MHz

sbic pine,pine4

rjmp shitlback2

sbi porte,porte0 ; clock high - ack

nop

nop

cbi porte,ported ; clock low

shitlBackl: ; check that line has been released
sbis pine,pine4 ; check that line has been released

rjmp shitibackl
ret ; return to previous task

shitlbreset: ; reset sequence if it gets out of phase

;status register preserved

smust be followed by data start sequence
;nops added to slow it down to 1MHz

cbi ddre,dde4 ; data high

sbi porte,porte0 ; clock high

nop

nop

cbi porte,ported ; clock low



€€T

nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
ret

porte,ported

porte,porte0

porte,portel

porte,portel ;

porte,portel ;

porte,portel

porte,portel

porte,portel

porte,portel

porte,porte0

porte,porte0

porte,porte0

porte,porte0

porte,portel

porte,portel

porte,portel

porte,porte0

clock

clock

clock

clock

clock

clock

clock

clock

clock

clock

clock

clock

clock

clock

clock

clock

clock

high

low

high

low

high

low

high

low

high

low

high

low

high

low

high

low

high

porte,porte0 ; clock low
; return to previous task

transmitrequest:

sbi portb,portb4 ; pull slp_tr high to begin tramsmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slp_tr low

transmit a request frame

1di r16,$60 ; load data byte - write buffer command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$0b ; load data byte - frame length byte

rcall spiwrite ; send byte

1di r16,$40 ; load data byte - fcf(7:0) - broadcast,no ack

rcall spiwrite ; send byte

1di r16,$88 ; load data byte - fcf(15:8) - short address,pan_ids equal
rcall spiwrite ; send byte

1di r16,$01 ; load data byte - seq(7:0) - command(request)

rcall spiwrite ; send byte

1di r16,low(pan_id) ; load data byte - pan_id(7:0)

rcall spiwrite ; send byte

1di r16,high(pan_id) ; load data byte - pan_id(15:8)

rcall spiwrite ; send byte

1di r16,$£f ; load data byte - destination address (7:0) - broadcast
rcall spiwrite ; send byte

1di r16,$ff ; load data byte - destination address (15:0) - broadcast
rcall spiwrite ; send byte

1di r16,low(src_addr) ; load data byte - source address (7:0)

rcall spiwrite ; send byte

1di r16,high(src_addr) ; load data byte - source address (15:8)
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

ret ; return to previous duty

transmitpacket: ; transmit a packet

sbi portb,portb4 ; pull slp_tr high to begin transmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slp_tr low

1di r16,$60 ; load data byte - write buffer command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$13 ; load frame length byte - total bytes excluding this one, +2
rcall spiwrite ; send byte

1di r16,$61 ; load fcf(7:0) byte - $61 for data packet
rcall spiwrite ; send byte

1di r16,$88 ; load fcf(15:8) byte - $88 for data packet
rcall spiwrite ; send byte

1di r16,$07 ; load sequence byte - command (data from tethered node)
rcall spiwrite ; send byte

1di r16,low(pan_id) ; load destination panid(7:0) byte
rcall spiwrite ; send byte

1di r16,high(pan_id) ; load destination panid(15:8) byte
rcall spiwrite ; send byte

mov r16,r11 ; load destination address(7:0) byte

rcall spiwrite ; send byte

mov ri6,r10 ; load destination address(15:8) byte

rcall spiwrite ; send byte

1di r16,low(src_addr) ; load source address(7:0) byte
rcall spiwrite ; send byte

1di ri6,high(src_addr) ; load source address(15:8) byte
rcall spiwrite ; send byte

mov ri6,r14 ; load data byte - motor state register
rcall spiwrite ; send byte

mov r16,r12 ; load data byte - humidity

rcall spiwrite ; send byte

mov ri6,r4 ; load data byte - temperatureQ
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rcall spiwrite ; send byte
mov ri6,r3 ; load data byte
rcall spiwrite ; send byte
mov r16,r8 ; load data byte
rcall spiwrite ; send byte
mov ri6,r9 ; load data byte
rcall spiwrite ; send byte
mov ri6,r5 ; load data byte
rcall spiwrite ; send byte

temperaturel
windspeed 1sb
windspeed msb

light 1sb

mov r16,r2 ; load data byte ~ light msb
rcall spiwrite ; send byte
sbi portb,portb0 ; pull ss high

ret

H

return to previous duty
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.include "m1281def.inc"

; increment of 4 for src_addr
; csma_seed = 8 x src_addr

.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ

.org
rjmp
org
rimp
.org
rjmp
.org
rjmp
.org
Tjmp
.org
rjmp
.org
rjmp
.oxg
rjmp

r0
rl
r2
r3
r4
5
6
7
r8
r9

src_addr = $aad4 ; place unique source address here

csma_seed = low(src_addr)*$08 ; random backoff exponent - must be unique,<$0800
home_addr = $aabl ; local node des_addr

pan_id = $abcd ; system pan_id

retries = $38 ; high nibble = frame retries,low nibble = 2x(csma retries)
channel = $36 ; tx/rx channel, $2b -> $3a valid

stepsize = $0a ; control stepsize

hysteresis = $08 ; hysteresis on control setpoint

delay = $02 ; motor turn on delay msb (32.768ms per bit)

motor_time = $0f ; number of 128us intervals in motor on-time increments ($0f = 492ms)

[}

start
intdaddr
wakeupshit15
intSaddr
clearirq
int7addr
currentstop
0OVF2addr
wakeup
ADCCaddr
wakeupadc
0C4Aaddr
timer4int
0C5Aadar
timerS5int

lightsensor = pfO(adc0)
shit15 data = pe4(int4)
shit15 clock = peQ

wind sensor = pd6(t1)

current threshold = pe7(int7)
direction = pgl

brake = pg0d

pwm = pb7(ocOa)

frame length temporary register - write
frame length temporary register - read
adc msb temporary register

shitl5 msb temporary register

shit15 1sb temporary register

adc 1sb temporary register

control setpoint bottom

control setpoin top

wind sensor lsb

wind sensor msb

r10 des_addr msb

rll des_addr lsb

r12 shitl5 humidity temporary register
r13 ed_level buffer

ril4 motor state register for transmit

ri5

ri6é temporary swap register for interrupts
rl7 temporary swap register for main

rl8 rf state register

; rl9 motor state register

120 wait loop register

r21 wait loop register

r22 motor time counter

r23

r24 temporary swap register for main

r25 wakeup counter

xregister is recieve buffer (r27(zh),r26(x1))
yregister is buffer start (r29(yh),r28(yl))
zregister is buffer end (r31(zh),r30(zl))
data buffer set at 1k

tregister is shit15 humidity/temperature irq differentiator
joinrequest buffer is 266byte

recieve buffer is 256byte

start: ; configure microcontroller registers
; start up time 6CK + 65ms
; set to 8MHz by intermal rc oscillator

ldi
out
ldi
out
1ldi

r16,high (RAMEND)

SPH,r16 ; Set Stack Pointer to top of RAM

r16, low(RAMEND)

SPL,r16

r16,$17

ddrb,r16 ; set ss,sclk,mosi,slp_tr as output
i ri6,$68

portb,r16 ; enable pullup for miso and pb5,pb6 for buttons

ri6,$01

spsr,rl6 ; set up spi - mode0, ck/2

r16,$50

sper,ri6 ; set up spi - mode0, ck/2 (4MHz)

portb,portb0 ; set ss pin high
portb,portbd ; set slp_tr low

porta,porta7 ; pull reset high on rf unit

ddra,dda? ; set reset pin as output

r16,$cc

eicrb,r16 ; configure int5 and int7 for rising edge

r16,$a0

eimsk,ri6 ; enable int5 and int7

r16,high(home_addr) ; set up des_addr to something in system for start
r10,r16

i r16,low(home_addr) ; set up des_addr

rii,r16
z1 ; set buffer end to beginning of sram
¥yl ; set buffer start to beginning of sram

i zh,$02 ; set buffer end to beginning of sram

yh,$02 ; set buffer start to beginning of sram
xh,$05 ; set recieve buffer to middle of sram
x1 ; set recieve buffer to middle of sram

i r23,$£f ; initialize receieve buffer count

rl9 ; reset motor state register

r18 ; reset rf state register

ri4 ; reset tx motor state register

r25,$08 ; set wakeup counter to 64s

r16,$3f

portd,x16 ; turn on pullups for unused pins on portd since they might have long cables attached

;wait for rf unit to stabilize

1di

r21,$04 ; load the wait timer to 3 cycles (x3084/ck)

rcall waitloopl ; wait ~(9252/8MHz = 1.2ms) for rf unit to stabilize

;setup analog inputs

1di

r16,$01



sts didr0,r16 ; turn off input stage for adcO pin ;setup short_addr_1
1di r16,$c0 1di r16,$el ; load first data byte - write short_addr_1 register
sts admux,rl6 ; use internal 2.56v as voltage reference,sample adcO cbi portb,portb0 ; pull ss low

18T

;setup motor control pins as output (no pwm at the moment)
cbi portg,portgl ; make sure pins are off

cbi portb,portb7 ; turn pwm off

sbi portg,portgl ; turn brake on

sbi ddrg,ddgl ; direction

sbi ddrg,ddg0 ; brake

sbi ddrb,ddb7 ; pwm (on/off for now)

sbi portg,portgld ; turn on brake pin to shut off transistors

;setup tl as windspeed counter
1di r16,$06
sts tcerlb,r16 ; set tl to externmal clock on tO falling edge

;setup t2 as rtc at 8s interval wakeup

1di r16,$20

sts assr,r1l6 ; set t2 to assynchronous mode

1di r16,$07

sts tcer2b,r16 ; set t2 prescaler to /1024 - 8s wakeup period

;make sure t2 is done rewriting itself
checkassr:

lds r16,assr
andi r16,$1f ; check assr(4:0) clear
brne checkassr

1di r16,$07
out tifr2,r16 ; clear all pending interrupts
1di r16,$01
sts timsk2,r16 ; enable t2 overflow interrupt

;setup shitib - pe0 is data, pe4 is clock

sbi ddre,dde0 ; set clock as output

cbi porte,porte4 ; make sure pullups are off for data
rcall shitiSsetup

;configure rf unit registers

;80 to trx_off state
rcall txoff ; go to trx_off state on rf unit

;setup clkm

1di r16,$c3 ; load first data byte - write trx_ctrl_ 0 register
cbi portb,portbl ; pull ss low

rcall spiwrite ; send data

clr ri6 ; load second data byte - turn off clim

rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup short_addr_0

1di r16,$e0 ; load first data byte - write short_addr_0 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1ldi r16,low(src_addr) ; load second data byte - src_addr 1lsb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

rcall spiwrite ; send data

1di rlG,high(src_addr) ; load second data byte - src_addr msb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

jsetup pan_id_0

1di r16,$e2 ; load first data byte - write pan_id_0 register
cbi portb,portbd ; pull ss low

rcall spiwrite ; send data

1di r16,low(pan_id) ; load second data byte - pan_id lsb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup pan_id_1

1di r16,$e3 ; load first data byte — write pan_id_1 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,high(pan_id) ; load second data byte - pan_id msb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup phy_cc_ca - set channel id

1di r16,$c8 ; load byte - write phy_cc_ca register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,channel ; load data byte -

rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

jsetup phy_tx_pwr - turn crc on

1di r16,$c5 ; load byte - write phy_tx_pwr register
¢bi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,$80 ; load data byte - auto_crc=on,pwr=+3dbm
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

jsetup xah_ctrl - set frame and csma retries

1di r16,%ec ; load byte - write xah_ctrl register

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di ri6,retries ; load data byte - frame and csma retries
rcall spiwrite ; send data

8bi portb,portb0 ; pull ss high

;setup csma_seed_1

1di r16,$ee ; load byte - write csma_seed_l register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,high(csma_seed) ; load data byte - min_be=0,aack_set=0,i_am_coord=0,csma(10:8)

rcall spiwrite ; send data
sbi portb,portb0 ; pull ss high

;setup csma_seed_0

1di r16,$ed ; load first data byte - write csma_seed_l1 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,low(csma_seed) ; load data byte - csma(7:0)
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rcall spiwrite ; send data cpi r19,$4b ; check if already jammed open

sbi portb,portb0 ; pull ss high breq repeat ; do not open if jammed
rcall motordelay

jenable irgs cbi portg,portgl ; turn brake off

1di r16,$ce ; load first data byte - write register irq_mask command sbi portg,portgl ; set direction to open

cbi portb,portb0 ; pull ss low sbi portb,portb7 ; turn on motor

rcall spiwrite ; send byte andi r19,$fd ; clear jam bit

1di z16,$08 ; load second data byte - trx_end only ori r19,$01 ; set direction open

rcall spiwrite ; send byte rjmp repeat ; return to state checking

sbi portb,portb0 ; pull ss high
closebutton: ; close motor via buttonpress
;clear pending irgs on rf unit

1di r16,$8f ; load first data byte - read register irq_status command cpi ri9,$2a ; check if already jammed closed
cbi portb,portb0 ; pull ss low breq repeat ; do not open if jammed

rcall spiwrite ; send byte and clear pending irgs rcall motordelay

sbi portb,portb0 ; pull ss high cbi portg,portgd ; turn brake off

cbi portg,portgl ; set direction to closed
;clear pending irqs on micro sbi portb,portb7 ; turn on motor
1di r16,$ff andi r19,$fc ; clear jam bit and set direction closed
out eifr,r16 ; clear any interrupt flags that are set rjmp repeat ; return to state checking
jenable interrupts on micro handle: ; respond to recieved data packets

sei ; turn on interrupts
1d ri17,z+ ; get data frame length from buffer

rcall rxonaack ; put the rf unit in rx_aack_on state mov rl,rl7 ; move frame length to counter
cpi r17,$08 ; check if packet is the right length
repeat: ; handle backlogged data brne resetbuffer ; reset buffer if not
1d r17,z+ ; get header byte from buffer
cpse zh,yh ; check if buffer has data dec ri
rjmp handle ; go to data handler N cpi r17,$08 ; check if right packet type
cpse zl,yl ; check if buffer has data brone resetbuffer
rjmp handle ; go to data handler 1d r17,z+ ; 1lsb src_addr - ignore
in r17,pinb ; get button press data dec r1
andi r17,$60 ; mask off button bits 1d ri7,z+ ; msb src_addr - ignore
1di r24,$60 ; invert button bits dec ri
eor rl7,r24 ; invert button bits 1d ri7,z+ ; get command byte
mov r24,r19 ; move current motor state to temp register dec rl
andi r24,$60 ; mask off button state cpi ri7,$08 ; check if motor control command
cp r24,r17 ; check if button state has changed breq motor ; control motor
breq repeat ; continue checking if no change rjmp resetbuffer ; else finish off
andi r19,$9b ; turn off control bit and reset button state in motor state register
ori r19,$08 ; set manual bit in motor state register motor: ; control motor
or ri9,rl7 ; set current button state in motor state register
or ri4,rl17 ; store button presses to tx motor state register 1d r17,z+ ; get motor command
cpi ri7,$60 ; check if both buttons are pressed dec ri
breq buttonstop sbrc r19,3 ; do not modify if under manual control
cpi r17,$40 ; check if open button is pressed rjmp resetbuffer ; commands past this point are overriden by manual control
breq openbutton cpi r17,$08 ; check if window full open
cpi r17,$20 ; check if close button is pressed breq open
breq closebutton cpi r17,$06 ; check if window full close
andi r19,$97 ; else shut off manual bit and button bits in motor state register breq close
cpi r17,$0a ; check if window stop
buttonstop: ; turn off motor via buttonpress breq stop
cpi r17,$0c ; check if window set by speed
rcall motordelay brne resetbuffer ; else end
cbi portb,portb? ; stop motor 1d r17,z+ ; get control setpoint
cbi portg,portgd ; turn on brake dec r1
rjmp repeat ; return to state checking cpi r17, (hysteresis + $01) ; check if setpeint is too low
brlo setpointclose ; completely shut
openbutton: ; open motor via buttonpress cpi r17,($ff - hysteresis) ; check if setpoint is too high

brsh setpointopen ; completely open
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subi r17,hysteresis ; put hysterisis in

mov r6,rl7 ; move setpoint to control bottom rcall motordelay

subi r17,($00 - 2*(hysteresis)) ; put hysterisis in cbi portg,portg0d ; turn brake off

mov r7,rl7 ; move setpoint to control top cbi portg,portgl ; set direction to closed

ori r19,$04 ; turn on control bit in motor state register sbi portb,portb7 ; turn on motor

rjmp resetbuffer ; finish off andi r19,$fc ; clear jam bit and set direction closed

rjmp resetbuffer
resetbuffer: ; reset buffer pointer

setpointclose: ; go to full closed because setpoint is too low for control
1di r17,$00

add zl,rl ; add remaining packet count andi r19,$fb ; turn off control bit if already on
adc zh,r17 ; increment zh if zl overflow cpi r19,$02 ; check if already jammed closed
sbrc zh,2 ; check if buffer at 1k breq resetbuffer ; do not close if jammed
1di zh,$02 ; reset buffer pointer to bottom of buffer 1di r17,$08 ; turn off timer
rjmp repeat ; get next packet from buffer sts tccrSb,r17 ; turn off timer
1di r17,$00
open: ; open window command sts timsk5,r17 ; disable t5 interrupts
rjmp closefull ; close
andi ri19,$fb ; turn off control bit
cpi r19,$03 ; check if already jammed open setpointopen: ; go to full open because setpoint is too high for comtrol
breq resetbuffer ; do not open if jammed
1d ri17,z+ ; get step size packet andi r19,$fb ; turn off control bit if already on
dec ri cpi r19,$03 ; check if already jammed open
cpi r17,$ff ; check if full open command breq resetbuffer ; do not open if jammed
breq openfull 1di r17,$08 ; turn off timer
cpi r17,{(delay + $01) ; check if step size is bigger than motordelay sts tccrSb,r17 ; turn off timer
brlo resetbuffer ; end if not big enough 1di r17,$00
rcall motortime ; move packet to motor timer sts timskS,r17 ; disable t5 interrupts
rjmp openfull ; close
openfull: ; turn on motor full open

motordelay: ; delay the current limit on motor at start
rcall motordelay

cbi portg,portg0 ; turn brake off 1di r17,$00
sbi portg,portgl ; set direction to open sts tcnt4h,rl7 ; set counter to zero
sbi portb,portb7 ; turn on motor sts tent4l,r17 ; set counter to zero
andi r19,$fd ; clear jam bit 1di ri7,delay
ori r19,$01 ; set direction open sts ocr4ah,r17 ; set counter top to 100ms
rjmp resetbuffer 1di r17,$00
sts ocrd4al,rl7 ; set counter top to 100ms
stop: ; stop motor 1di r17,$2f
out tifr4,r17 ; clear all t4 interrupt flags
andi r19,$fb ; turn off control bit 1di r17,$02
rcall motordelay sts timsk4,r17 ; turn on t4 interrupt
cbi portb,portb7 ; stop motor 1di r17,$0d
cbi portg,portg0 ; turn on brake sts tccrédb,rl?7 ; turn on counter, set to 128us period
rjmp resetbuffer cbi eimsk,7 ; turn off currentlimit interrupt
ret
close: ; close window command
motortime: ; have motor on for a certain amount of time
andi r19,$fb ; turn off control bit mov r22,rl17 ; move motortime to counter
cpi r19,$02 ; check if already jammed closed 1di r17, (motor_time)
breq resetbuffer ; do not close if jammed sts ocr5ah,r17 ; set counter top to packet time
1ld ri7,z+ ; get step size packet 1di r17,$00
dec ri sts ocrbal,ri7 ; set counter top to packet time
cpi r17,$ff ; check if full open command sts tentbh,r17 ; set counter to zero
breq closefull sts tcntSl,r17 ; set counter to zero
cpi r17,(delay + $01) ; check if step size is bigger than motordelay 1ldi ri17,$2f
brlo resetbuffer ; end if not big enough out tifr5,r17 ; clear all t5 interrupt flags
rcall motortime ; move packet to motor timer 1di r17,$02

ste timsk6,r17 ; turn on t5 interrupt
closefull: ; turn on motor full closed 1di ri7,$0d
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sts tcerSb,rl7 ; turn on counter, set to 128us period
ret

currentstop: ; brake motor if current is too high

in r16,sreg ; get sreg

push r16 ; push sreg on stack

cbi portb,portb7 ; stop motor

cbi portg,portgl ; turn on brake

1di r16,$08 ; turn off timer

sts tcerbb,r16 ; turn off timer if still on
1di r16,$00

sts timsk5,r16 ; disable t5 interrupts
ori r19,$02 ; set jam bit

pop ri6é ; get off stack

out sreg,rl6 ; return sreg

reti ; return from interrupt

timer4int: ; reset timer and do whatever task is required

1di r16,$08 ; turn off timer

sts tccrdb,ri6 ; turn off timer

1di r16,$00

sts timsk4,r16 ; disable t4 interrupts

sbi eifr,7 ; clear curremtlimit interrupt

sbi eimsk,7 ; turn currentlimit interrupt back on
sbic pine,7 ; check if current at limit

rjmp currentstop

reti ; return from interrupt

timerbint: ; turn off motor

push ri7

in ri6,sreg ; get sreg

push r16 ; push sreg on stack

dec r22 ; decrement 3rd byte counter
brne timerSintdone ; dont do anything if not done
rcall motordelay

cbi portb,portb7 ; stop motor

cbi portg,portgl ; turn on brake

1di r16,$08 ; turn off timer

sts tcerbb,rl6 ; turn off timer

1di r16,$00

sts timsk5,r16 ; disable t5 interrupts

timerSintdone: ; finish off

pop rlé ; get off stack

out sreg,rl6é ; return sreg
pop ri7

reti ; return from interrupt

txoff: ; send trx_off command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$08 ; load second data byte - data trx_off bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checktxoff: ; check current state to see if in tx_off state

1di r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$08

brne checktxoff

ret ; return to previous duty

pllon: ; send pll_on command to rf unit

1di r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$09 ; load second data byte - data pll_on bit

rcall spiwrite ; send byte )

sbi portb,portb0 ; pull ss high

checkpllon: ; check current state to see if in pll_on state

1di r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$09

brne checkpllon

ret ; return to previous duty

rxonaack: ; send rx_aack_on command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$16 ; load second data byte - data rx_aack_on bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checkrxonaack: ; check current state to see if in rx_aack_on state

1di r16,$81 ; load first data byte - read register trx_status command
¢bi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$16

brne checkrxonaack

ret ; return to previous duty

txonaret: ; send trx_aret_on command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$19 ; load second data byte - data trx_aret_on bit

rcall spiwrite ; send byte
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sbi portb,portb0 ; pull ss high
checktxonaret: ; check current state to see if in tx_aret_on state

1di r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$19

brne checktxonaret

ret ; return to previous duty

joinrecieve: ; get new des_addr

cpi r18,$04 ; check if waiting for joinack

brne rxrequest ; dont accpet joinack if not waiting for joinack
1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - do not save des_panid(7:0)
1di r16,$00 ; load data byte - blank for reading

rcall spivrite ; send byte - do not save des_panid(15:8)
1di r16,$00 ; load data byte - blank for reading

rcall spivrite ; send byte - do not save des_addr(7:0)
1di r16,$00 ; load data byte - blank for reading

rcall spivrite ; send byte - do not save des_addr(15:8)
1di r16,$00 ; load data byte - blank for reading

rcall spivrite ; send byte - src_addr(7:0)

mov ril,rié

1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
mov ri0,r16

;dont bother with the rest of

- blank for reading
src_addr(15:8)

the data - it doesnt matter

;1di r16,$00 ; load data byte - blank for reading

;rcall spiwrite ; send byte -

do not save fcs(7:0)

;1di r16,300 ; load data byte - blank for reading

;rcall spiwrite ; send byte -

do not save fcs(15:8)

;1di r16,$00 ; load data byte - blank for reading
;rcall spiwrite ; send byte - lqi

sbi portb,portb0 ; pull ss hi

gh

sbiw yh:yl,$02 ; reset data buffer to begining of join request

1di r18,$10 ; set state regis
rcall transmit ; set rf unit

ter to retry transmit
to tx_on_aret state

rcall transmitpacket ; transmit data

ret ; done

rxreadinterrupt: ; empty rx buffer while in interrupt

;ed_level is taken first because it is only valid for 224us after interrupt fires

1di r16,$87 ; load data byte
cbi portb,portb0 ; pull ss lo
rcall spiwrite ; send byte

1di r16,$00 ; load data byte
rcall spiwrite ; send byte

mov r13,r16 ; move ed_level t
sbi portb,portb0 ; pull ss hi

;jget data from recieve buffer

- read ed_level
W

- blank byte for reading

o temporary buffer

gh

1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - frame length byte

subi r16,$06 ; decrease frame length for bits to be removed
st y+,r16 ; move frame length to buffer

subi r16,$03 ; decrease frame length for buffer fitting
mov r0,r16 ; move frame length to temporary register

1di r16,$00 ; load data byte - blank for reading

rcall spivrite ; send byte - do not save fcf(7:0)

1di r16,$00 ; load data byte - blank for reading

rcall spivrite ; send byte - do not save fcf(15:8)

1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - seq (used as command byte)

st y+,r1é

cpi r16,$06 ; check if command byte is $06 (join acknowledge)
breq joinrecieve ; get new home_addr if $06

cpi r16,$08 ; check if data to tethered node

breq notrequestl ; load data to buffer, else discard packet

rxrequest: ; finish off

sbi portb,portb0 ; pull ss high
sbiv yh:y1,$02 ; reset data buffer to begining of join request
ret ; done

notrequestl: ; continue with data loading

1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - do not save des_panid(7:0)
1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - do not save des_panid(15:8)
1di r16,$00 ; load data byte - blank for reading

rcall spivrite ; send byte - do not save des_addr(7:0)
1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte - do not save des_addr(15:8)

getdatarfl: ; keep loading data till frame compelete

1di r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte

st y+,r16 ; move byte to buffer

dec r0 ; decrement frame length byte

brne getdatarfl ; keep decrementing until done
1di r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - do not save fcs(7:0)
1di r16,$00 ; load data byte - blank for reading
rcall spivrite ; send byte - do not save fcs(15:8)
1di r16,$00 ; load data byte - blank for reading
rcall spiwrite ; send byte - 1qi

sbi portb,portb0 ; pull ss high

st y+,r16 ; move 1qi to buffer

st y+,r13 ; move ed_level to buffer

sbrc yh,2 ; check if buffer at ik

1di yh,$02 ; reset buffer pointer to bottom of buffer
ret ; done writing data

transmit: ; set rf unit to tx_on_aret state

;check to see if not in rx_busy state

1di r16,$20 ; load data byte - read buffer command
cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte

1di r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte
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1ldi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$11 ; check if in busy_rx

breq transmit ; keep checking till in a new state

cpi r16,$1f ; check if in state tramsition

breq transmit ; keep checking till in a new state

cpi r16,$12 ; check if in busy_tx state

breq transmit ; keep checking till in a new state
rcall pllon ; go to pll on state

jcheck if there-is data pending in rx buffer

1di r16,$8f ; load first data byte - read register irq_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

sbre r16,3 ; check if trx_end interrupt flag is set
rcall rxreadinterrupt ; empty rx buffer

rcall txonaret ; put the rf unit in tx_aret_on state
ret ; return to previous duty

waitloopl: ; wait timer ("3084 cycles per value in r21)

ser r20

rcall wait2
nop

nop

nop

nop

nop

nop

nop

nop

dec r21

brne waitloopl
ret ; return to previous duty

spiwrite: ; read and write data over spi
out spdr,ri6 ; write transmitted byte to spi
wait: ; read spi register to check when done

in r16,spsr

sbrs ri6,spif

rjmp wait

in r16,spdr ; write recieved byte to spi register
ret ; return to previous duty

wait2: ; wait timer (12 cylces per value in r20)

nop
nop
nop
nop
nop
nop
nop
nop
dec r20

brne wait2
ret ; return to previous duty

gotorx: ; return to rx_on_aack state

scheck successful transmit before switching back to rx
1di r16,$82 ; load data byte - read trx_state to get trac_status
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load data byte - blank byte for reading
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

andi r16,%e0 ; mask off trac_status

cpi r16,$60 ; check if success or data_pending success
brlo gotorxl ; skip if success

cpi r18,$01 ; check if this is the first failure

brne gotorx3 ; if not - finish off

rcall transmitrequest ; get new des_addr and retransmit
1di r18,$02 ; set joinrequest state bit

pop rié ; get off stack

out sreg,rl6é ; return sreg

reti ; clear interrupt and return to previous duty

gotorxl: ; turn on rx_on_aack state

rcall pllon ; go to pll_on state

rcall rxonaack ; go to rx_on_aack state

cpi r18,$02 ; check if last state was a joinrequest

brne gotorx2 ; finish off if not waiting for joinrequest ack
1di r18,$04 ; set rf state to joinrequest ack waiting

pop r16 ; get off stack

out sreg,rl6 ; return sreg

reti ; return to previous task

gotorx3: ; set to rx_an_aack state

rcall pllon ; go to pll_on state
rcall rxonaack ; go to rx_on_aack state

gotorx2: ; finish off

¢lr rl4 ; reset tx motor state registser
1di r18,$00 ; reset rf state to complete
pop r16 ; get off stack

out sreg,rl6 ; return sreg

reti ; return to previous task

clearirq: ; clear irq register and irq line

in r16,sreg ; get sreg
push r16 ; push sreg on stack

1di r16,$8f ; load first data byte - read register irq_status command to clear interrupt

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte
sbi portb,portb0 ; pull ss high

checkrf: ; check rf unit state
1di r16,$81 ; load first data byte - read register trx_status command

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte
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1ldi r16,$00 ; load second data byte - blank for reading
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$16 ; check if in rx_on

breq datacollect ; get data

cpi r16,$11 ; check if in busy_rx

breq datacollect ; get data

cpi r16,$1f ; check if in state transition

breq checkrf ; keep checking till in a new state
cpi r16,$12 ; check if in busy_tx state

breq checkrf ; keep checking till in a new state
rjmp gotorx ; else change state back to rx

;removed checkcrc because crc is automatically checked with rx_aack

datacollect: ; get data from rf unit

rcall rxreadinterrupt ; get data from rf unit
pop ri6 ; get off stack

out sreg,rlé ; return sreg

reti ; done writing data

wakeup: ; check if time to take data

in r16,sreg ; get sreg

push r16 ; push sreg on stack

dec r25 ; decrement wakeup counter
breq wakeupl ; take data if 64s
pop ri6 ; get sreg off stack

out sreg,rlé ; return sreg

reti

wakeupl: ; take data and return te previous task

push ri7 ; push ri7 on stack

1ds r8,tcntll ; move windspeed lsb to temporary register
1lds r9,tcntlh ; move windspeed msb to temporary register
clr ri6 ; reset activity level counter

sts tcntlih,r16

sts tentll,r1é

;motor control code

sbrs r19,2 ; check if in control mode

rjmp wakeupend ; finish off if not

cp r8,r6 ; check if speed too low

brlo incrementup ; move motor open

cp r8,r7 ; check if speed to high

brsh incrementdown ; move motor closed

wakeupend: ; else finish off

or ri4,r19 ; move motor state register to tx motor state register
rcall shitiStemp ; initiate shitl5 read - humidity included

1di r16,$df ; take measurement from adcO

sts adcsra,rl6 ; turn on adc,clear interrupt flag,enable interrupt,set to /128 (62.5kHz)

1di r25,$08 ; reset wakeup counter to 64s
pop ri7 ; get ri7 off stack

pop rié ; get sreg off stack

out stag,rls ; return sreg

reti

incrementup: ; open with motor a few steps

cpi r19,$07 ; check if already jammed open
breq wakeupend ; do nothing if jammed open
1di ri7,stepsize ; set increment length
rcall motortime ; move packet to motor timer
rcall motordelay ; turn on current limit timer
cbi portg,portgl ; turn brake off

sbi portg,portgl ; set direction to open
8bi portb,portb7 ; turn on motor

andi r19,$fd ; clear jam bit

ori r19,$01 ; set direction open

rjmp wakeupend ; finish off

incrementdown: ; close with motor a few steps

cpi r19,$06 ; check if already jammed closed

breq wakeupend ; do nothing if jammed closed

1di r17,stepsize ; set increment length

rcall motortime ; move packet to motor timer

rcall motordelay ; turn on current limit timer

cbi portg,portgld ; turn brake off

cbi portg,portgl ; set direction to closed

sbi portb,portb7 ; turn on motor

andi ri19,$fc ; clear jam bit and set direction closed
rjmp wakeupend ; finish off

wakeupadc: ; wakeup and return to previous task

in ri6,sreg ; get sreg

push r16 ; push sreg on stack
1lds r5,adcl ; load 1lsb to r5
1ds r2,adch ; load msb to r2
pop r16 ; get off stack

out sreg.rlS ; return sreg
reti

shitibsetup: ; set the device to low res mode

jtalk to shitl5, only works for cpu clock <=2MHZ
;code modded with nops to operate at 8MHz

;data pin can never be output high - leave pullup off
;needs external pullup resistor for proper operation
;8leep operation disabled for this application
;always read temperature before humidity

rcall shitiSreset ; reset the device in case its fuxxored
rcall startshitlS ; send start sequence

;data sequence - register write command $06
;nops added to keep clock at 1MHz

sbi porte,porte0 ; clock high - data bit one
nop

nop

cbi porte,porte0d ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit two
nop

nop

cbi porte,porte0 ; clock low

nop

nop
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sbi porte,porte0 ; clock high - data bit three nop

nop sbi porte,porte0 ; clock high - data bit four
nop. nop

cbi porte,porte0 ; clock low nop

nop cbi porte,ported ; clock low

nop nop

sbi porte,porte0 ; clock high - data bit four nop

nop sbi porte,porte0 ; clock high - data bit five
nop nop

cbi porte,porte0 ; clock low nop

nop cbi porte,ported ; clock low

nop nop

sbi porte,porte0 ; clock high - data bit five nop

nop sbi porte,porte0 ; clock high - data bit six
nop nop

cbi porte,ported ; clock low nop

cbi ddre,dde4 ; data high cbi porte,ported ; clock low

nop ; data takes time to rise and needs setup time nop

nop nop

nop sbi porte,porte0 ; clock high - data bit seven
nop nop

nop nop

nop cbi porte,ported ; clock low

sbi porte,porte0 ; clock high - data bit six cbi ddre,dde4 ; data high

nop nop ; data takes time to rise and needs setup time
nop nop

cbi porte,porte0 ; clock low nop

nop nop

nop nop

sbi porte,porte0 ; clock high - data bit seven nop

nop sbi porte,porte0 ; clock high - data bit eight
nop nop

cbi porte,portel ; clock low nop

sbi ddre,dde4 ; data low cbi porte,porte0 ; clock low

sbi porte,porte0 ; clock high - data bit eight

nop rcall shitiback0 ; wait for ack from shitlb
nop ret ;done setting up the device

cbi porte,porte0 ; clock low

shitiStemp: ; read temperature data from shitib
rcall shitlSack0 ; wait for ack from shitib ;send read temp commmand

rcall startshit16 ; send start sequence
jdata sequence - register write data $01

snops added to keep clock at 1MHz ;data sequence - read temperature command $03
sbi ddre,dde4 ; data low sbi porte,porte0 ; clock high - data bit one
sbi porte,porte0 ; clock high - data bit one nop

nop nop

nop cbi porte,porte0d ; clock low

cbi porte,ported ; clock low nop

nop nop

nop sbi porte,porte0 ; clock high - data bit two
sbi porte,porte0 ; clock high - data bit two nop

nop nop

nop cbi porte,ported ; clock low

cbi porte,ported ; clock low nop

nop nop

nop sbi porte,porte0 ; clock high -~ data bit three
sbi porte,porte0 ; clock high - data bit three nop

nop nop

nop cbi porte,ported ; clock low

cbi porte,porte0 ; clock low nop

nop nop
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sbi porte,porte0 ; clock high - data bit four rcall shitlSack4 ; end transmission ack

nop mov r12,r16 ; move humidity data to temporary register
nop 1di r18,$01 ; set rf state to first transmit
cbi porte,porte0 ; clock low rcall transmit ; set rf unit to tx state
nop rcall transmitpacket ; send data off
nop pop rl6 ; get off stack
sbi porte,porte0 ; clock high - data bit five out sreg,rl6 ; return sreg
nop clt ; reset to temperature read
nop reti ; return with previous task
cbi porte,portel ; clock low
nop shit1Shumidity: ; read humidity data from shitis
nop ;send read humidity command
sbi porte,porte0 ; clock high - data bit six rcall startshitiS ; send start sequence
nop
nop ;data sequence - read humidity command $05
cbi porte,porte0 ; clock low ;nops added to keep clock at 1MHz
cbi ddre,dde4 ; data high sbi porte,porte0 ; clock high - data bit one
nop ; data takes time to rise and needs setup time nop
nop nop
nop cbi porte,porte0d ; clock low
nop nop
nop nop
nop sbi porte,porte0 ; clock high -~ data bit two
sbi porte,porte0 ; clock high - data bit seven nop
nop nop
nop cbi porte,ported ; clock low
cbi porte,porte0 ; clock low nop
nop nop
nop sbi porte,ported ; clock high - data bit three
sbi porte,porte0 ; clock high - data bit eight nop
nop nop
nop cbi porte,ported ; clock low
cbi porte,porte0 ; clock low nop
;sbi ddre,dde4 ; data low - if last databyte is 1 - leave it high for ack nop
sbi porte,porte0 ; clock high - data bit four
rcall shitiBack0 ; wait for ack from shitib nop
nop
sbi eimsk,4 ; enable int4 cbi porte,ported ; clock low
ret ; return to previous task and wait for shit15 to be done nop
nop
wakeupshit15: ; collect data from shit1b sbi porte,porte0 ; clock high - data bit five
in ri16,sreg ; get sreg nop
push ri6 ; push sreg on stack nop
brts shitibhumread ; skip if its a humidity read cbi porte,ported ; clock low
cbi eimsk,4 ; disable int4 as pe4 will still be low when returning cbi ddre,dde4 ; data high
rcall shitlbread ; read out temperature data from shit15 (msb) nop ; data takes time to rise and needs setup time
rcall shitl1S5ack3 ; acknowledge reciept of bit nop
mov r3,ri6 ; move msb to another register nop
rcall shitlSread ; read out temperature data from shitlSs (1sb) nop
rcall shitiSack4 ; end tramsmission ack nop
mov r4,ri6 ; move lsb to another register nop
rcall shitlShumidity sbi porte,porte0 ; clock high - data bit six
pop ri6 ; get off stack nop
out sreg,rl6é ; return sreg nop
set ; set tregister to indicate humidity request in progress cbi porte,ported ; clock low
reti ; continue with previous task 8bi ddre,dde4 ; data low
sbi porte,porte0 ; clock high - data bit seven
shitiShumread: ; read out humidity data from shit 15 nop
rcall shitiSread ; read out humidity data from shiti5 (msb) nop
rcall shitl5ack3 ; acknowledge reciept of bit cbi porte,porte0d ; clock low

rcall shitlSread ; read out humidity data from shit16 (lsb) cbi ddre,dde4 ; data high



9%¢

nop ; data takes time to rise and needs setup time
nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit eight
nop

nop

cbi porte,portel ; clock low

;sbi ddre,dde4 ; data low - if last databyte is 1 - leave it high for ack

rcall shitilbackO ; wait for acknowledge from shitlS
sbi eimsk,4 ; enable int4
ret ; return to previous task and wait for shiti5 to take data

shiti5ack4: ; end transmission ack
;nops added to keep clock at 1MHz
sbi porte,porte0 ; clock high - ack
nop

nop

cbi porte,porte0 ; clock low

ret ; return to previous task

shit1back3: ; data recipet acknowledge
snops added to keep clock at 1MHz

sbi ddre,dde4 ; pull data low

sbi porte,portel ; clock high - ack
nop

nop

cbi porte,ported ; clock low

cbi ddre,dde4 ; release data line

ret ; return to previous task

shitlbread: ; read data from shitild

;nops added to keep clock at 1MHz and meet data valid time of 250ns
clr r16 ; clear the register where incoming data will be written
sbi porte,porte0 ; clock high - data bit one
sbic pine,pine4 ; check if data is low

sbr r16,$80 ; write data bit one to register
cbi porte,ported ; clock low

nop

nop

sbi porte,ported ; clock high - data bit two
sbic pine,pine4 ; check if data is low

sbr r16,$40 ; write data bit two to register
cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit three
sbic pine,pine4 ; check if data is low

sbr r16,$20 ; write data bit three to register
cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit four
sbic pine,pine4 ; check if data is low

sbr r16,$10 ; write data bit four to register
cbi porte,porte® ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit five
sbic pine,pine4 ; check if data is low

sbr r16,$08 ; write data bit five to register
cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit six
sbic pine,pine4 ; check if data is low

sbr r16,$04 ; write data bit six to register
cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit seven
sbic pine,pine4 ; check if data is low

sbr r16,$02 ; write data bit seven to register
cbi porte,ported ; clock low

nop

nop

sbi porte,porte0d ; clock high - data bit eight
sbic pine,pine4 ; check if data is low

sbr r16,$01 ; write data bit eight to register
cbi porte,ported ; clock low

ret ; return to previous activity

startshitl5: ; start sequence
snops added to keep clock at 1MHz
cbi ddre,dde4 ; set data high

cbi porte,porte0 ; make sure clock is low
nop

nop

sbi porte,porte0 ; pull clock high
abi ddre,dde4 ; set data low

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time

nop
nop

nop

nop

nop

cbi porte,porte0 ; clock low
sbi ddre,dded4 ; data low

ret ; return to previous task

shit15ack0: ; ack sequence for sending data
cbi ddre,dded ; release data line

shit15ack2: ; check that data line is low
;nops added to keep clock at 1MHz

sbic pine,pine4

rjmp shitiback2

sbi porte,porte0 ; clock high - ack

nop

nop

cbi porte,ported ; clock low

shitibackl: ; check that line has been released
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sbis pine,pine4 ; check that line has been released

rjmp shitlSackl
ret ; return to previous task

shit16reset:

; reset sequence if it gets out of phase

;status register preserved

;must be followed by data start sequence
;nops added to slow it down to iMHz

cbi ddre,dde4 ; data high
porte,porte0 ; clock high

sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop
cbi
nop
nop
sbi
nop
nop

porte,porte0

porte,portel ;

porte,portel

porte,portel ;

porte,ported

porte,portel

porte,portel

porte,portel ;

porte,portel ;

porte,ported

porte,portel

porte,portel

porte,portel

porte,portel ;

porte,porte0 ;

porte,porte0 ;

B

H

H

H

H

H

clock low

clock high

clock low

clock high

clock low

clock high

clock low

clock high

clock low

clock high

clock low

clock high

clock low

clock high

clock low

clock high

cbi porte,ported ; clock low

DOP

nop

sbi porte,porte0 ; clock high
nop

nop

cbi porte,ported ; clock low

ret ; return to previous task

transmitrequest: ; tramnsmit a request frame

sbi portb,portb4 ; pull slp_tr high to begin transmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slp_tr low

1di r16,$60 ; load data byte - write buffer command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$0b ; load data byte - frame length byte

rcall spiwrite ; send byte

1di r16,$40 ; load data byte - fcf(7:0) - broadcast,no ack

rcall spiwrite ; send byte

1di r16,$88 ; load data byte - fcf(15:8) - short address,pan_ids equal
rcall spiwrite ; send byte

1di r16,$01 ; load data byte - seq(7:0) - command(request)

rcall spiwrite ; send byte

1di r16,low(pan_id) ; load data byte - pan_id(7:0)

rcall spivrite ; send byte

1di r16,high(pan_id) ; load data byte - pan_id(15:8)

rcall spiwrite ; send byte

1di r16,$ff ; load data byte - destination address (7:0) - broadcast
rcall spiwrite ; send byte

1di r16,$ff ; load data byte - destination address (15:0) - broadcast
rcall spiwrite ; send byte

1di r16,low(src_addr) ; load data byte - source address (7:0)

rcall spiwrite ; send byte

1di r16,high(src_addr) ; load data byte - source address (15:8)
rcall spiwrite ; send byte

sbi portb,portbQ ; pull ss high

ret ; return to previous duty

transmitpacket: ; transmit a packet

sbi portb,portb4 ; pull slp_tr high to begin transmit
nop ; delay to make sure the pin is high long enough
cbi portb,portb4 ; pull slp_tr low

1di r16,$60 ; load data byte - write buffer command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$13 ; load frame length byte - total bytes excluding this ome, +2
rcall spiwrite ; send byte

1di r16,$61 ; load fcf(7:0) byte - $61 for data packet

rcall spiwrite ; send byte

1di r16,$88 ; load fcf(15:8) byte - $88 for data packet

rcall spiwrite ; send byte

1di r16,$07 ; load sequence byte - command (data from tethered node)
rcall spiwrite ; send byte

1di r16,low(pan_id) ; load destination panid(7:0) byte

rcall spiwrite ; send byte

1di r16,high(pan_id) ; load destination panid(15:8) byte
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rcall spiwrite ; send byte

mov r16,ril ; load destination address(7:0) byte
rcall spiwrite ; send byte

mov ri6,r10 ; load destination address(15:8) byte
rcall spiwrite ; send byte

1di r16,low(src_addr) ; load source address(7:0) byte
rcall spiwrite ; send byte

1di r16,high(src_addr) ; load source address(15:8) byte
rcall spiwrite ; send byte

mov rl6,r14 ; load data byte - motor state register
rcall spiwrite ; send byte

mov r16,r12 ; load data byte - humidity

rcall spiwrite ; send byte

mov r16,r4 ; load data byte - temperature0

rcall spiwrite ; send byte

mov ri6,r3 ; load data byte - temperaturel

rcall spiwrite ; send byte

mov ri6,r8 ; load data byte - windspeed lsb
rcall spiwrite ; send byte

mov r16,r9 ; load data byte - windspeed msb
rcall spiwrite ; send byte

mov ri6,r5 ; load data byte ~ light lsb

" rcall spiwrite ; send byte

mov r16,r2 ; load data byte - light msb
rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

ret ; return to previous duty
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.include "m128ldef.inc"

3 increment of 4 for src_addr

; csma_seed = 8 x src_addr

.equ src_addr = $aacé4 ; place unique source address here

-equ csma_seed = low(src_addr)*$08 ; random backoff exponent - must be unique,<$0800
.equ home_addr = $aabb ; local node des_addr

.equ pan_id = $abcd ; system pan_id

.equ retries = $38 ; high nibble = frame retries,low nibble = 2x(csma retries)

.equ channel = $36 ; tx/rx channel, $2b -> $3a valid

.org O

rjmp start

.org int4addr
rjmp wakeupshitiS
.org intSaddr
rjmp clearirq
.org OVF2addr
rjmp wakeup

.org ADCCaddr
rjmp wakeupadc
.org URXCladdr ; USART1 - Rx Complete
rjmp wakeuprx
.org 0C4Aaddr
rjmp timer4int

lightsensor = pf0{adc0)

shit15 data = ped4(int4)

shit16 clock = pel

activity sensor = pd7(t0)

xport = pd2,pd3(usarti),

0 frame length temporary register - write
ri frame length temporary register - read
r2 adc msb temporary register

r3 shitl5 msb temporary register

r4 shitl5 1sb temporary register

r5 adc lsb temporary register

r6 joinrequest buffer index 1lsb

r7 joinrequest buffer index msb

T8 activity level temporary register

r9 ed_level temporary register

r10 usart temporary register

rll last rf tx packet length temporary register
12 shitl5 humidity temporary register

ri3

ri4

rl5 usart tx temporary register

rl6 temporary swap register for interrupts
17 temporary swap register for interrupts
rl8 temporary swap register for main

rl9 temporary swap register for main

120 wait loop register

; r21 wait loop register

r22 hextoascii temporary register

r23 usart rx temporary register

r24 wakeup counter

25 transmit temporary register

xregister is recieve buffer (r27(xh),r26(x1))
yregister is buffer start (r29(yh),r28(yl))
zregister is buffer end (r31(zh),r30(zl))

; data buffer set at 1k

; tregister is shitl5 humidity/temperature irq differentiator
; joinrequest buffer is 256byte

; recieve buffer is 256byte

start: ; configure microcontroller registers

; using extermal oscillator (from RF unit)

; start up time 6CK + 65ms

; set to i1MHz initially, changed to 8MHz by clkm setup
1di r16,high(RAMEND)

out SPH,r16 ; Set Stack Pointer to top of RAM

1di r16,low(RAMEND)

out SPL,ri16

1di r16,$17

out ddrb,rl6 ; set ss,sclk,mosi,slp_tr as output

1di ri6,8

out portb,rl6 ; enable pullup for miso
1di r16,1

out spsr,rif ; set up spi - mode0, ck/2
1di r16,$50

out sper,ri6 ; set up spi - mode0, ck/2 (4MHz)

sbi portb,portb0 ; set ss pin high

cbi portb,portb4d ; set slp_tr low

sbi porta,porta7 ; pull reset high on rf unit

sbi ddra,dda7 ; set reset pin as output

1di r16,$0c

sts eicrb,r16 ; configure int6 for rising edge

1di ri16,$20

out eimsk,r16 ; enable int5

clr z1 ; set buffer end to beginning of sram

clr yl ; set buffer start to beginning of sram
1di zh,$02 ; set buffer end to beginning of sram
1di yh,$02 ; set buffer start to beginning of sram
1di xh,$05 ; set recieve buffer to middle of sram
clr x1 ; set recieve buffer to middle of sram

1di r23,$£f ; initialize receieve buffer count

1di r24,$04 ; set wakeup counter to 32s

i

;wait for rf unit to stabilize
1di r21,$04 ; load the wait timer to 3 cycles (x3084/ck)
rcall waitloopl ; wait "(9252/8MHz = 1.2ms) for rf unit to stabilize

;setup clkm

1di r16,$c3 ; load first data byte - write trx_ctrl 0 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,$04 ; load second data byte - lowest driver strength, clkm = 8MHz
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

nop ; idle for a bit as clock changes

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop
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nop

nop

nop

1di r21,$ff ; load wait timer to 2556 cycles (x3084/ck)
rcall waitloopl ; wait ~100ms to make sure clock is stable

;Setup analog inputs

1di r16,$01

sts didr0,r16 ; turn off input stage for adcO pin
1di r16,$c0

sts admux,ri6 ; use internal 2.56v as voltage reference,sample adcO

;setup t0 as activity counter
1di r16,%$06
out tccrOb,r16 ; set t0 to external clock on t0 falling edge

;setup t2 as rtc at 8s interval wakeup

1ldi ri16,$20

sts assr,ri6 ; set t2 to assynchronous mode

1di ri16,$07

sts tccr2b,r16 ; set t2 prescaler to /1024 - 8s wakeup period

;make sure t2 is done rewriting itself
checkassr:

1lds ri16,assr
andi r16,$1f ; check assr(4:0) clear
brne checkassr

clr r16

out tifr2,r16 ; clear all pending interrupts
1di r16,$01

sts timsk2,r16 ; enable t2 overflow interrupt

;setup t4 as usart recieve counter

1di r16,$00

sts ocr4ah,rl6 ; set counter top to 2ms
1ldi ri16,$10

sts ocr4al,rl6 ; set counter top to 2ms

;setup shitlS - pe0 is data, pe4 is clock

sbi ddre,dde0 ; set clock as output

cbi porte,porte4 ; make sure pullups are off for data
rcall shitiSsetup

;setup usartl

1di r16,$98

sts ucsrib,rl6 ; enable rx,tx,rx interrupt
1ldi r16,$0c

sts ubrril,ri6 ; set baud rate to 38.4k

;configure rf unit registers

;g0 to trx_off state
rcall txoff ; go to trx_off state on rf unit

;setup short_addr_0

1di r16,$e0 ; load first data byte - write short_addr 0 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,low(src_addr) ; load second data byte - src_addr lsb

rcall spiwrite ; send data
sbi portb,portb0 ; pull ss high

;setup short_addr_1

1di r16,%el ; load first data byte - write short_addr_1 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,high(src_addr) ; load second data byte - src_addr msb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup pan_id_0

1di r16,%e2 ; load first data byte - write pan_id_0 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,low(pan_id) ; load second data byte - pan_id lsb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup pan_id_1

1di r16,%e3 ; load first data byte - write pan_id_1 register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,high(pan_id) ; load second data byte - pan_id msb
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;jsetup phy_cc_ca - set channel id

1di r16,$c8 ; load byte - write phy_cc_ca register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,channel ; load data byte -

rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup phy_tx_pwr - turn crc on

1di r16,$c6 ; load byte - write phy_tx_pwr register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,$80 ; load data byte - auto_crc=on,pwr=+3dbm
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup xah_ctrl - set frame and csma retries

1di r16,$ec ; load byte - write xah_ctrl register

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di ri6,retries ; load data byte - frame and csma retries
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;setup csma_seed_1

1di r16,$ee ; load byte - write csma_seed_l register
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,high(csma_seed) ; load data byte - min_be=0,aack_set=0,i_am_coord=0,csma(10:8)

rcall spiwrite ; send data
sbi portb,portb0 ; pull ss high

jsetup csma_seed_0
1di r16,%ed ; load first data byte - write csma_seed_l register



(444

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send data

1di r16,low(csma_seed) ; load data byte - csma(7:0)
rcall spiwrite ; send data

sbi portb,portb0 ; pull ss high

;enable irqgs

1di r16,$ce ; load first data byte - write register irq mask command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1ldi r16,$08 ; load second data byte - trx_end only

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

jclear pending irqs on rf unit

1di r16,$8f ; load first data byte - read register irg_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte and clear pending irgs

sbi portb,portb0 ; pull ss high

jclear pending irqs on micro
clr rié
out eifr,r16 ; clear any interrupt flags that are set

senable interrupts on micro
sei ; turn on interrupts

rcall rxonaack ; put the rf unit in rx_aack_on state
repeat: ; handle backlogged data

cpse zh,yh ; check if buffer has data
rjmp handle ; go to data handler
cpse zl,yl ; check if buffer has data
rjmp handle ; go to data handler
rjmp repeat ; keep checking for data

handle: ; deal with data
; needs fixing to deal with buffer overrums

senddatausart: ; send data over usart from buffer

1di r18,$£f ; move header byte to transmit buffer
rcall txusart

1d r18,z+ ; get data frame length from buffer

mov rl,r18 ; move frame lenghth to temporary register
rcall txusart

senddatausartl: ; send data over usart from buffer

1d ri8,z+ ; get data from buffer
rcall txusart

dec rl

brne senddatausartl
1di r18,low(src_addr)
rcall txusart

1di r18,high(src_addr)
rcall txusart

1di r18,$fe

rcall txusart

1di r18,$fd

rcall txusart

sbrc zh,2 ; check if buffer at 1k

1di zh,$02 ; reset buffer pointer to bottom of buffer
rjmp repeat ; get next byte from buffer

txoff: ; send trx_off command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$08 ; load second data byte - data trx_off bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checktxoff: ; check current state to see if in tx_off state

1di r16,$81 ; load first data byte - read register trx_status command
¢bi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi r16,$08

brne checktxoff

ret ; return to previous duty

pllon: ; send pll_on command to rf unit

1di r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$09 ; load second data byte - data pll_on bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checkpllon: ; check current state to see if in pll_on state

1di r16,$81 ; load first data byte - read register trx_status command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

cpi ri6,$09

brne checkpllon

ret ; return to previous duty

rxonaack: ; send rx_aack on command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command
cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$16 ; load second data byte - data rx_aack_on bit

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

checkrxonaack: ; check current state to see if in rx_aack_on state
1di r16,$81 ; load first data byte - read register trx_status command

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte
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1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high
cpi r16,$16

brne checkrxonaack

ret ; return to previous duty

txonaret: ; send trx_aret_on command to rf unit and wait till stable

1di r16,$c2 ; load first data byte - write register trx_state command

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte

1di r16,$19 ; load second data byte - data trx_aret_onm bit

rcall spiwrite ; send byte
sbi portb,portb0 ; pull ss high

checktxonaret: ; check current state to see if in tx_aret_on state

1di r16,$81 ; load first data byte - read register trx_status command

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high
cpi r16,$19

brne checktxonaret

ret ; return to previous duty

rxreadinterrupt: ; empty rx buffer while

in interrupt

;ed_level is taken first because it is only valid for 224us after interrupt fires
1di r16,$87 ; load data byte - read ed_level

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte

1di r16,$00 ; load data byte - blank byte for reading

rcall spiwrite ; send byte

mov r9,r16 ; move ed_level to temporary buffer

sbi portb,portb0 ; pull ss high

;get data from recieve buffer

1di r16,$20 ; load data byte - read buffer command

cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte
1di r16,$00 ; load data byte - blank for

reading

rcall spiwrite ; send byte - frame length byte

subi r16,$06 ; decrease frame length for
st y+,r16 ; move frame length to buffer
subi r16,$03 ; decrease frame length for

bits to be removed

buffer fitting

mov r0,r16 ; move frame length to temporary register

1di r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save
1di r16,%00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save
1di r16,$00 ; load data byte - blank for

reading
£cf(7:0)
reading
fcf(15:8)
reading

rcall spiwrite ; send byte - seq (used as command byte)

st y+,r16
dec r16 ; check if command byte is $01
brne notrequestl ; skip if not $01

notrequestl: ; continue with data loading

1di r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save
1di r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save
1di r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save
1di r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save

reading
des_panid(7:0)
reading
des_panid(15:8)
reading
des_addr(7:0)
reading
des_addr(15:8)

goetdatarfl: ; keep loading data till frame compelete

1di r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte

st y+,r16 ; move byte to buffer

dec r0 ; decrement frame length byte
brne getdatarfl ; keep decrementing until
1di r16,$00 ; load data byte - blank for
rcall spivrite ; send byte - do not save
1di r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - do not save
1di r16,$00 ; load data byte - blank for
rcall spiwrite ; send byte - 1qi

sbi portb,portb0 ; pull ss high

st y+,r16 ; move lqi to buffer

st y+,r9 ; move ed_level to buffer

sbre yh,2 ; check if buffer at 1k

reading

done
reading
fcs(7:0)
reading
fcs(15:8)
reading

1di yh,$02 ; reset buffer pointer to bottom of buffer

ret ; done writing data

transmit: ; transmit a packet

rcall checkrxonaack ; check to see if not in rx_busy state

rcall pllon ; go to pll on state
;check if there is data pending in rx buf

1di r16,$8f ; load first data byte - read register irq_status command

cbi portb,portb0 ; pull ss low
rcall spivrite ; send byte

fer

1di r16,$00 ; load second data byte - blank for reading

rcall spiwrite ; send byte

sbi portb,portb0 ; pull ss high

sbrc r16,3 ; check if trx_end interrupt {f
rcall rxreadinterrupt ; empty rx buffer

lag is set

rcall txonaret ; put the rf unit in tx_aret_on state

sbi portb,portb4 ; pull slp_tr high to begin transmit

nop ; delay to make sure the pin is high
cbi portb,portb4 ; pull slp_tr low

1di r16,$60 ; load data byte ~ write buff
cbi portb,portb0 ; pull ss low
rcall spiwrite ; send byte

long enough

er command

1d r16,x+ ; load data byte - frame length byte
mov r26,r16 ; load frame length byte to byte counter

1di r17,$08 ; increase frame length for crc,panid,fcf,src_addr

add r16,r17 ; increase frame length
rcall spiwrite ; send byte

1di r16,$61 ; load data byte - fcf(data)
rcall spiwrite ; send byte

1di r16,$88 ; load data byte - fcf

rcall spiwrite ; send byte

1d r16,x+ ; load data byte - seq(command)
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rcall spiwrite ; send byte

1di r16,low(pan_id) ; load data byte ~ des_panid
rcall spiwrite ; send byte

1di r16,high(pan_id) ; load data byte - des_panid
rcall spiwrite ; send byte

1d ri6,x+ ; load data byte - des_addr

rcall spiwrite ; send byte

1d ri6,x+ ; load data byte - des_addr

rcall spiwrite ; send byte

1di r16,low(src_addr) ; load data byte - src_addr
rcall spiwrite ; send byte

1di r16,high(src_addr) ; load data byte - src_addr
rcall spiwrite ; send byte

subi r25,$03 ; decrease byte counter for fixed transmit bytes
breq loaddone ; finish if no more bytes

dataload: ; load data to rf unit

1d r16,x+ ; load data byte - data byte
rcall spiwrite ; send byte

dec r25 ; check byte in sequence

brne dataload ; branch if not last byte

loaddone: ; finish data transmission and return

sbi portb,portb0 ; pull ss high
ret ; return to previous duty

waitloopl: ; wait timer (3084 cycles per value in r21)

ser r20

rcall wait2
nop

nop

nop

nop

nop

nop

nop

nop

dec r21

brne waitloopl
ret ; return to previous duty

spiwrite: ; read and write data over spi

out spdr,ri6 ; write transmitted byte to spi
wait: ; read spi register to check when domne

in r16,spsr

sbrs ri6,spif

rjmp wait

in ri16,spdr ; write recieved byte to spi register
ret ; return to previous duty

wait2: ; wait timer (712 cylces per value in r20)
nop

nop
nop

nop
nop

nop

nop

nop

dec r20
broe wait2

ret ; return to previous duty

gotorx: ; return to rx_on_aack state

;check successful transmit before switching back to rx

1di r16,$82 ; load data byte

- read trx_state to get trac_status

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte
1di r16,$00 ; load data byte
rcall spiwrite ; send byte

- blank byte for reading

sbi portb,portb0 ; pull ss high

andi r16,$e0 ; mask off trac_status

cpi r16,$60 ; check if success or data_pending success
brlo gotorxi ; skip if success

sget data from rf unit tx buffer

1di r16,$20 ; load data byte

-~ read buffer command

cbi portb,portb0 ; pull ss low

rcall spiwrite ; send byte

1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
1di r16,$00 ; load data byte
rcall spiwrite ; send byte -

subi r16,$08 ; decrease frame length for bits to be removed

- blank for reading

old frame length byte - do not save

= blank for reading
new frame length byte

st y+,r16 ; move frame length to buffer
mov ri7,r16 ; move frame length to temporary register

1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
st y+,ri6

1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
st y+,r16

1di r16,$00 ; load data byte
rcall spiwrite ; send byte -
st y+,r16

- blank for reading

do not save fcf(7:0)

~ blank for reading

do not save fcf(15:8)

- blank for reading

seq (used as command byte)

- blank for reading

do not save des_panid(7:0)
- blank for reading

do not save des_panid(15:8)
- blank for reading

save des_addr(7:0)

~ blank for reading
save des_addr(16:8)

subi r17,$03 ; decrease frame length for buffer fitting
breq done7 ; finish if last byte

1di ri6,$00 ; load data byte
rcall spiwrite ; send byte -
1di r16,$00 ; load data byte
rcall spiwrite ; send byte -

- blank for reading
do not save src_addr(7:0)
- blank for reading
do not save src_addr(15:8)

getdatarf2: ; keep loading data till frame compelete

1di r16,$00 ; load data byte
rcall spiwrite ; send byte

- blank for reading
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st y+,r16 ; move byte to buffer 1di r16,$00 ; load data byte - blank for reading

dec ri17 ; decrement frame length byte rcall spiwrite ; send byte - frame length byte
brne getdatarf2 ; keep decrementing until done subi r16,$06 ; decrease frame length for bits to be removed
st y+,ri6 ; move frame length to buffer
done7: ; finish data storage mov ri7,r16 ; move frame length to temporary register for joinrequest check
subi r16,$03 ; decrease frame length for buffer fitting
sbi portb,portb0 ; pull ss high mov r0,r16 ; load frame length to byte counter
sbrc yh,2 ; check if buffer at 1k 1di r16,$00 ; load data byte - blank for reading
1di yh,$02 ; reset buffer pointer to bottom of buffer rcall spiwrite ; send byte - do not save fcf(7:0)
1di r16,$00 ; load data byte - blank for reading
gotorxl: ; turn on rx_on_aack state rcall spiwrite ; send byte - do not save fcf(15:8)
1di r16,$00 ; load data byte - blank for reading
rcall pllon ; go to pll_on state rcall spiwrite ; send byte - seq (used as command byte)
rcall rxonaack ; go to rx_on_aack state st y+,r16
pop ri6é ; get off stack cpi r16,$01 ; check if command byte is $01 (joinrequest)
out sreg,rlé ; return sreg breq rxrequest ; go to joinrequest if $01

reti ; return to previous task

notrequest: ; continue with normal operation
clearirq: ; clear irq register and irq line

1di r16,$00 ; load data byte - blank for reading

in ri16,sreg ; get sreg rcall spiwrite ; send byte - do not save des_panid(7:0)
push r16 ; push sreg on stack 1di r16,$00 ; load data byte - blank for reading

1di r16,$8f ; load first data byte - read register irq_status command to clear interrupt rcall spiwrite ; send byte - do not save des_panid(15:8)
cbi portb,portb0 ; pull ss low 1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte rcall spiwrite ; send byte - do not save des_addr(7:0)
sbi portb,portb0 ; pull ss high 1di r16,$00 ; load data byte - blank for reading

rcall spivrite ; send byte - do not save des_addr(15:8)
checkrf: ; check rf unit state

getdatarf: ; keep loading data till frame compelete
1di r16,$81 ; load first data byte - read register trx_status command

cbi portb,portb0 ; pull ss low 1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte rcall spiwrite ; send byte

1di r16,$00 ; load second data byte - blank for reading st y+,r16 ; move byte to buffer

rcall spiwrite ; send byte dec r0 ; decrement frame length byte

sbi portb,portb0 ; pull ss high brne getdatarf ; keep decrementing until done

cpi r16,$16 ; check if in rx_on 1di r16,$00 ; load data byte - blank for reading

breq datacollect ; get data rcall spiwrite ; send byte - do not save fcs(7:0)

cpi r16,811 ; check if in busy_rx 1di r16,$00 ; load data byte - blank for reading

breq datacollect ; get data rcall spiwrite ; send byte - do not save fcs(15:8)

cpi r16,$1f ; check if in state tramsition 1di r16,$00 ; load data byte - blank for reading

breq checkrf ; keep checking till in a new state rcall spiwrite ; send byte - 1qi

cpi r16,$12 ; check if in busy_tx state sbi portb,portb0 ; pull ss high

breq checkrf ; keep checking till in a new state st y+,r16 ; move 1qi to buffer

rjmp gotorx ; else put rf unit in rx_on_aack state st y+,r9 ; move ed_level to buffer
sbrc yh,2 ; check if buffer at 1k

;removed checkcrc because crc is automatically checked with rx_aack 1di yh,$02 ; reset buffer pointer to bottom of buffer
pop rié ; get off stack

datacollect: ; get data from rf unit out sreg,rl6 ; return sreg

;ed_level is taken first because it is only valid for 224us after interrupt fires reti ; done writing data

1di r16,$87 ; load data byte - read ed_level

cbi portb,portb0 ; pull ss low rxrequest: ; perform joinrequest storage

rcall spiwrite ; send byte

1di r16,$00 ; load data byte - blank byte for reading 1di r16,$00 ; load data byte - blank for reading

rcall spiwrite ; send byte rcall spiwrite ; send byte - do not save des_panid(7:0)

mov r9,r16 ; move ed_level to temprorary buffer 1di r16,$00 ; load data byte - blank for reading

sbi portb,portb0 ; pull ss high rcall spivrite ; send byte - do not save des_panid(15:8)
1di r16,$00 ; load data byte - blank for reading

;get data from recieve buffer rcall spiwrite ; send byte - do not save des_addr(7:0)

1di r16,$20 ; load data byte - read buffer command 1di r16,$00 ; load data byte - blank for reading

cbi portb,portb0 ; pull ss low rcall spiwrite ; send byte - do not save des_addr(15:8)

rcall spiwrite ; send byte
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getdatarf3: ; keep loading data till frame compelete rjmp txusart
sts udri,r18 ; send out data

1di r16,$00 ; load data byte - blank for reading ret ; go back to previous task
rcall spiwrite ; send byte
st y+,ri6 ; move byte to buffer timer4int: ; reset usart timer due to bad packet
dec r0 ; decrement frame length byte
brne getdatarf3 ; keep decrementing until done 1di r16,$08 ; turn off timer
1di r16,$00 ; load data byte - blank for reading sts tcerdb,rl6 ; turn off timer
rcall spiwrite ; send byte - do not save fcs(7:0) 1di r16,$00
1di r16,$00 ; load data byte - blank for reading sts timsk4,r16 ; disable t4 interrupts
rcall spiwrite ; send byte - do not save fcs(15:8) 1di r23,$ff ; reset usart byte counter
1di r16,$00 ; load data byte - blank for reading 1di x1,$00 ; reset buffer to bottom
rcall spiwrite ; send byte .- 1qi reti ; return from interrupt
sbi portb,portb0 ; pull ss high
st y+,r16 ; move 1lqi to buffer wakeup: ; take data every 32s
st y+,7r9 ; move ed_level to buffer
; transmit data out in r16,sreg ; get sreg
rcall checkrxonaack ; check to see if not in rx_busy state push r16 ; push sreg on stack
rcall pllon ; go to pll on state dec r24 ; decrement wakeup counter
rcall txonaret ; put the rf unit in tx_aret_on state breq tOread ; take data if 32s
Pop r16 ; get off stack
sbi portb,portb4 ; pull slp_tr high to begin transmit out sreg,rl€ ; return sreg
nop ; delay to make sure the pin is high long enough reti

cbi portb,portb4 ; pull slp_tr low
tOread: ; get activity level from t0
sbiw yh:y1,$04 ; reset data buffer to begining of join request

1di r16,$60 ; load data byte - write buffer command in r8,tcnt0 ; move activity to temporary register

cbi portb,portb0 ; pull ss low clr r16 ; reset activity level counter

rcall spiwrite ; send byte out tentO,rié6

1di r16,$0b ; load data byte - frame length byte rcall shitiStemp ; initiate shit15 read - humidity included
rcall spiwrite ; send byte 1di r16,$df ; take measurement from adcO

1di r16,$61 ; load data byte - fcf(data) sts adcsra,r16 ; turn on adc,clear interrupt flag,enable interrupt,set to /128 (62.S5kHz)
rcall spiwrite ; send byte 1di r24,$04 ; reset wakeup counter to 32s

1di r16,$88 ; load data byte - fcf pop r16 ; get off stack

rcall spiwrite ; send byte out sreg,rl6 ; return sreg

1di r16,$06 ; load join confirm command reti

rcall spiwrite ; send byte

1di r16,low(pan_id) ; load data byte - des_panid wakeupadc: ; wakeup and return to previous task

rcall spiwrite ; send byte

1di r16,high(pan_id) ; load data byte - des_panid in ri6,sreg ; get sreg

rcall spiwrite ; send byte push r16 ; push sreg on stack

1d r16,y+ ; load data byte - des_addr 1lds r5,adcl ; load 1lsb to r5

rcall spiwrite ; send byte 1lds r2,adch ; load msb to r2

1d r16,y+ ; load data byte - des_addr pop ri6é ; get off stack

rcall spiwrite ; send byte out sreg,rl6 ; return sreg

1di r16,low(src_addr) ; load data byte - src_addr reti

rcall spiwrite ; send byte

1di r16,high(src_addr) ; load data byte - src_addr shiti5setup: ; set the device to low res mode

rcall spiwrite ; send byte stalk to shitlS, only works for cpu clock <=2MHZ

sbi portb,portb0 ; pull ss high ;code modded with nops to operate at 8MHz

adiw yh:yl,$02 ; reset pointer ;data pin can never be output high - leave pullup off
sbrc yh,2 ; check if buffer at 1k ;needs external pullup resistor for proper operation

1di yh,$02 ; reset buffer pointer to bottom of buffer ;sleep operation disabled for this application

pop ri6é ; get off stack ;always read temperature before humidity

out sreg,rl6 ; return sreg

reti ; done writing data rcall shitiSreset ; reset the device in case its fuxxored

rcall startshitlS ; send start sequence
txusart: ; transmit a byte via usartl for main

jdata sequence - register write command $06
1ds r10,ucsrla ;nops added to keep clock at 1MHz

sbrs r10,UDRE1 sbi porte,porte0 ; clock high - data bit one
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nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit two
nop

nop

cbi porte,ported ; clock low

nop

nop

sbi porte,ported ; clock high - data bit three
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit four
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit five
nop

cbi porte,ported ; clock low

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit six
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit seven
nop

nop

cbi porte,porte0 ; clock low

sbi ddre,dde4 ; data low

sbi porte,porte0 ; clock high - data bit eight
nop

nop

cbi porte,portel ; clock low

rcall shitl5ack0 ; wait for ack from shitib

;data sequence - register write data $01
;nops added to keep clock at 1MHz

sbi ddre,dde4 ; data low

sbi porte,porte0 ; clock high - data bit one
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit two
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,ported ; clock high - data bit three
nop

nop

cbi porte,ported ; clock low

nop

nop

sbi porte,ported ; clock high - data bit four
nop

nop

cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit five
nop

nOP

cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit six
nop

nop

cbi porte,porte0d ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit seven
nop

nop

cbi porte,porte0 ; clock low

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit eight
nop

nop

cbi porte,ported ; clock low

rcall shit15ack0 ; wait for ack from shitls
ret ;done setting up the device

shitl5temp: ; read temperature data from shiti§
;send read temp commmand
rcall startshitl5 ; send start sequence

;data sequ e - read temp e d $03
sbi porte,porte0 ; clock high - data bit one

nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,ported ; clock high - data bit two
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nop
nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit three
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit four
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit five
nop

nop

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit six
nop

nop

cbi porte,porte0 ; clock low

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit seven
nop

nop

¢cbi porte,porte0d ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit eight
nop

nop

cbi porte,porte0 ; clock low

;sbi ddre,dde4 ; data low - if last databyte is 1 - leave it high for ack

rcall shitibackO ; wait for ack from shitib

sbi eimsk,4 ; enable int4
ret ; return to previous task and wait for shitlS to be domne

wakeupshit15: ; collect data from shitil5

in ri7,sreg ; get sreg

push ri7 ; push sreg on stack

brts shitibhumread ; skip if its a humidity read

cbi eimsk,4 ; disable int4 as pe4 will still be low when returning
rcall shitiSread ; read out temperature data from shit1S (msb)
rcall shitlback3 ; acknowledge reciept of bit

mov r3,rl6 ; move msb to another register

rcall shitiSread ; read out temperature data from shit15 (Isb)
rcall shitl5ack4 ; end transmission ack

mov r4,rl6 ; move 1lsb to another register

rcall shitiShumidity

pop ri17 ; get off stack

out sreg,rl7 ; return sreg

set ; set tregister to indicate humidity request in progress
reti ; continue with previous task

shitlbhumread: ; read out humidity data from shit 15

rcall shitiSread ; read out humidity data from shiti5 (msb)
rcall shitl5ack3 ; acknowledge reciept of bit

rcall shitlSread ; read out humidity data from shitl5 (1lsb)
rcall shitiSack4 ; end transmission ack

mov r12,r16 ; move humidity data to temporary register

1di r16,$07 ; load frame length

st y+,ri6 ; move frame length to buffer

1di r16,$03 ; set command byte to data from stationary nodes
st y+,r16 ; move frame type to buffer

st y+,r5 ; move adc lsb to buffer

st y+,r2 ; move adc msb to buffer

st y+,r4 ; move shiti5 temperature lsb to buffer

st y+,r3 ; move shitlS temperature msb to buffer

st y+,r12 ; move shit15 humidity to buffer

st y+,r8 ; move activity level to buffer

sbrc yh,2 ; check if buffer at 1k

1di yh,$02 ; reset buffer pointer to bottom of buffer

pop r17 ; get off stack

out sreg,rl7 ; return sreg

clt ; reset to temperature read

reti ; return with previous task

shit1Bhumidity: ; read humidity data from shitib
;send read humidity command
rcall startshitlb ; send start sequence

;data sequence - read humidity command $0S
;nops added to keep clock at 1MHz

sbi porte,porte0 ; clock high - data bit one
nop

nop

cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit two
nop

nop

cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit three
nop

nop

cbi porte,porte® ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit four
nop

nop

cbi porte,portel ; clock low

nop

nop

sbi porte,ported ; clock high - data bit five
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nop

nop

cbi porte,ported ; clock low

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit six
nop

nop

cbi porte,porte0 ; clock low

sbi ddre,dde4 ; data low

sbi porte,ported ; clock high - data bit seven
nop

nop

cbi porte,porte0 ; clock low

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop

nop

nop

nop

nop

sbi porte,porte0 ; clock high - data bit eight
nop

nop

cbi porte,porte0 ; clock low

;5bi ddre,dde4 ; data low - if last databyte is 1 - leave it high for ack

rcall shiti5ack0 ; wait for acknowledge from shiti§
sbi eimsk,4 ; enable int4
ret ; return to previous task and wait for shitiS to take data

shitlback4: ; end transmission ack
;nops added to keep clock at 1MHz
sbi porte,porte0 ; clock high - ack
nop

nop

cbi porte,porte0 ; clock low

ret ; return to previous task

shitiSack3: ; data recipet acknowledge
;nops added to keep clock at 1MHz

sbi ddre,dde4 ; pull data low

sbi porte,porte0 ; clock high - ack
nop

nop

cbi porte,porte0 ; clock low

cbi ddre,dde4 ; release data line

ret ; return to previous task

shitiSread: ; read data from shit15

;nops added to keep clock at 1MHz and meet data valid time of 250ns
clr r16 ; clear the register where incoming data will be written
sbi porte,porte0 ; clock high - data bit one

sbic pine,pine4 ; check if data is low

sbr r16,$80 ; write data bit one to register

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit two
sbic pine,pine4 ; check if data is low

sbr r16,$40 ; write data bit two to register
cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit three
sbic pine,pine4 ; check if data is low

sbr r16,$20 ; write data bit three to register
cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit four
sbic pine,pine4 ; check if data is low

sbr r16,$10 ; write data bit four to register
cbi porte,ported ; clock low

nop

nop

sbi porte,ported ; clock high - data bit five
sbic pine,pine4 ; check if data is low

sbr r16,$08 ; write data bit five to register
cbi porte,ported ; clock low

nop

nop

sbi porte,ported ; clock high - data bit six
sbic pine,pine4 ; check if data is low

sbr r16,$04 ; write data bit six to register
cbi porte,ported ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit seven
sbic pine,pine4 ; check if data is low

sbr r16,$02 ; write data bit seven to register
cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high - data bit eight
sbic pine,pine4 ; check if data is low

sbr r16,$01 ; write data bit eight to register
cbi porte,porte0 ; clock low

ret ; return to previous activity

startshit15: ; start sequence

;nops added to keep clock at 1MHz

cbi ddre,dde4 ; set data high

cbi porte,porte0 ; make sure clock is low
nop

nop

sbi porte,porte0 ; pull clock high

8bi ddre,dde4 ; set data low

cbi porte,porte0 ; clock low

nop

nop

sbi porte,porte0 ; clock high

cbi ddre,dde4 ; data high

nop ; data takes time to rise and needs setup time
nop

nop

nop
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nop nop

nop nop
cbi porte,porte0 ; clock low cbi porte,porte0d ; clock low
sbi ddre,dde4 ; data low nop
ret ; return to previous task nop
sbi porte,porte0 ; clock high
shit16ack0: ; ack sequence for sending data nop
nop
cbi ddre,dde4 ; release data line cbi porte,portel ; clock low
nop
shitl5ack2: ; check that data line is low nop
snops added to keep clock at 1MHz sbi porte,porte0 ; clock high
sbic pine,pined nop
rjmp shitiback2 nop
sbi porte,porte0 ; clock high - ack cbi porte,porte0 ; clock low
nop nop
nop nop
cbi porte,porte0 ; clock low sbi porte,ported ; clock high
nop
shitibackl: ; check that line has been released nop
cbi porte,ported ; clock low
sbis pine,pine4 ; check that line has been released nop
rjmp shitibacki nop
ret ; return to previous task sbi porte,porteld ; clock high
nop
shitiSreset: ; reset sequence if it gets out of phase nop
jstatus register preserved cbi porte,ported ; clock low
;must be followed by data start sequence ret ; return to previous task
;nops added to slow it down to 1MHz
cbi ddre,dde4 ; data high wakeuprx: ; process incoming bytes on usartl
sbi porte,porte0 ; clock high
nop in ri6,sreg ; get sreg
nop push r16 ; push sreg on stack
cbi porte,portel ; clock low 1di ri6,$00
nop sts tcnt4h,r16 ; set counter to zero
nop sts tentd4l,r16 ; set counter to zero
sbi porte,porte0 ; clock high 1ds r16,udrl ; load recieved byte
nop ;subi r16,$20 ; test code to make ascii work
nop ;181 r16 ; test code to make ascii work
cbi porte,porte0 ; clock low cpi r23,$£f ; check to see if you already have the header byte
nop brne usartrx ; go to data recieve
nop
sbi porte,porte0 ; clock high rxheadercheck: ; check for header byte
nop
nop ;cpi rl6,$a0 ; check if header byte - testcode to make ascii work
cbi porte,ported ; clock low cpi r16,$£ff ; check if header byte - $£f
nop brne doneS ; skip if not
nop 1di r16,$2f ; set up byte timeout counter
sbi porte,porte0 ; clock high out tifr4,r16 ; clear all t4 interrupt flags
nop 1di r16,$02
nop sts timsk4,r16 ; turn on t4 interrupt
cbi porte,porte0 ; clock low 1di r16,$0d
nop sts tccrdb,rl6é ; turn on counter, set to 128us period
nop clr r23 ; set byte number register to O
sbi porte,porte0 ; clock high
nop doneS:
nop pop ri6 ; get off stack
cbi porte,portel ; clock low out sreg,rl6 ; return sreg
nop reti ; return to previous task
nop

sbi porte,porte0 ; clock high usartrx: ; recieve data
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tst r23 ; check for first byte

brne usartrxdata; skip if not first byte

clr x1 ; reset buffer to bottom

st x+,rl6 ; store recieved byte

mov r23,r16 ; move frame length to byte number
pop rié ; get off stack

out sreg,rl6 ; return sreg

reti ; return to previous task

usartrxdata: ; load data bytes

st x+,r16 ; store recieved byte

dec r23 ; check for last byte

brne done5 ; continue

1di x1,$00 ; go to bottom of buffer

1d r16,x+ ; load frame length byte

cpi r16,$03 ; check if there are at least three bytes
brlo done6 ; throw away the packet if its invalid
cpi r16,$40 ; check if there are more than 64 bytes
brsh done6é ; dont transmit if too big

1d r16,x ; load command byte

cpi r16,$08 ; check if a transmit packet

brne done6é ; skip if not a transmit packet

1di x1,$00 ; reset to packet length byte

rcall transmit ; transmit from buffer if valid

done6: ; reset counter and return to previous task

o

1di r16,$08 ; turn off timeout counter

sts tccrdb,rl6 ; turn off timeout counter

1di ri6,$00

sts timsk4,r16 ; disable t4 interrupts

1di r23,$ff ; set byte number to $ff to reset count
pop ri6 ; get off stack

out sreg,rl6 ; return sreg

reti ; return to previous task
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Appendix J

System Control Code
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import socket

import glob

import logging

import logging.handlers
import thread

import time

import ConfigParser
import numpy

import scipy

import scipy.linalg

hvacconfig = ConfigParser.RawConfigParser() # createé configuration object
hvacconfig.read(’hvacconfigl.cfg’)

LOG_FILENAME = ’data.txt’

logger = logging.getLogger(’BarnMonitor’)

hdlr = logging.handlers.TimedRotatingFileHandler(
LOG_FILENAME, when=’midnight’, backupCount=100)

formatter = logging.Formatter (’%(message)s’)

hdlr.setFormatter (formatter)

logger.addHandler (hdlr)

logger.setLevel(logging.INFQ)

def temperature(t):
return (-39.1 + .072 * t)

def temperaturel(t):
return (-39.4 + .072 * t)

de:

=

humidity(h)
return (-2.0468 + 0.5872 * h + -.00040845 * h * h)

UDP_IP="18.85.45.140"
UDP_PORT=10001

UDP_IP_SEND="18.85.45.185"
UDP_PORT_SEND=10001

def send_command(dst, parml, parm2): # map destinations to room nodes

if dst == 156:
send_add = "18.85.45.185"
elif dst == 160:
send_add = "18.85.45.131"
elif dst == 176:
send_add = "18.86.45.145"
elif dst == 180:
send_add = "18.85.45.170"
elif dst == 184:
send_add = "18.85.45.142"
elif dst == 188:
send_add = "18.85.45.186"
elif dst == 192:
send_add = "18.85.16.117"
elif dst == 200:
send_add = "18.85.45.185"
elif dst == 204:
send_add = "18.85.16.117"
message = chr(Oxff) + chr(0x06) + chr(0x08) + chr(dst) + chr(Oxaa) + chr(0x08) + chr(parml) + chr(parm2)
sock = socket.socket(socket.AF_INET, # Internet
socket.SOCK_DGRAM) # UDP
sock.sendto(message, (send_add, UDP_PORT_SEND))
sock.close()
print “SENT: Ox/x OxJx Ox/x Ox%x Ox/x O0x%x Ox)x Ox¥x IP: ¥%s PORT: %s" % (ord(message[0]),ord(message[1]),ord(message{2]),
ord() age{3]),0rd( ge [4]) ,0rd( [61) ,0rd( age[61),o0rd( gel[7]), send_add, UDP_PORT)

class Location:

# create location object
def __init__(self, data_id): # takes a packet which is [rssi, dst] and id of the portable node being tracked
self.__lock = thread.allocate_lock() # get a thread lock in case the timeout happens when data is being transferred
self._ _first = True # set start flag to first time
self.__packet = [0, 0] # initialize packet
self.__location_out = O # clear the output buffer
self.__location_array = [] # clear the location array
self.__location_outi = 1 # last sample - for lowpassing
self.__location_out2 = 2 # two samples ago - for lowpassing
self.__location_out3 = O # temp register for lowpassing
self.__data_id = data_id # id of portable being tracked

# run location object
def run(self, packet):
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self.__packet = packet
self.__lock.acquire() # get a lock in case the data is being modified
if self.__first: # check if first packet
self.__location_array = [self.__packet] # initialize packet array with first rssi value
self.__first = False # unset start flag
thread.start_new_thread(self.__sort, ()) # start timeout timer for packet aggregation
else:
self.__location_array.append(packet) # put next rssi value on to array
self.__lock.release() # release lock

# allow for passing of location to other programs
def where(self):
return self.__location_out3

# sort locations after timeout

def __sort(self):
time.sleep(.05) # set timeout for packet waiting
sslf,-_lock.acquire() # get a lock in case the data is being modified
self.__location_array.sort() # sort the array to find highest rssi
self.__location_out = self.__location_array[-1]1[1] # get location for highest rssi
self.__location_out3 = self.__location_out # make a temporary copy
if self.__location_outl == self.__location_out2: # check if the location changed

self.__location_out3 = self.__location_out2 # keep it the same if it changed

self.__location_out2 = self.__location_outl # move past sample to two samples ago
self.__location_outl = self.__location_out # move sample to past sample
self.__first = True # reset start flag
self.__location_array = [] # clear the location array
logger.info("%f %d %d %d" % (time.time(), 13, self.__data_id, self.__location_out3)) # log the data to a file for testing
self.__lock.release() # release lock

class Room:

# create room object

def __init__(self, data_id, buffsize, levelin, levelout, control_id): # takes in room motion sensor and room id
self.__occupied = True # variable for determining if room is occupied
self.__motion = 0 # motion sensor variable
self.__timer = 0 # manual control timeout
self.__timerl = time.time() # entry control timeout
self.__timer2 = time.time() # comfort control timeout
self.__time = time.time() # current time
self.__data_id = data_id # id of room node
self.__temp = O # room temperature buffer
self._ _hum = O # room humidity buffer
self.__control = [] # control vector
self.__normal = True # initialize auto/normal control flag
self.__setback = False # initialize setback control flag
self.__buff = [0 for i in range(70)] # create data buffer for first entry
gelf.__levelin = levelin # threshold for detecting person in room
self.__levelout = levelout # threshold for detecting nc one in room
self.__daytime = O # buffer for time of day
self.__entry = True # in system flag for entry
self.__entry buff = eval(hvacconfig.get(’entrybuffer’, str{self.__data_id))}) # create entry buffer
self.__buffsize = buffsize # setup buffer size for occupancy calculation
self.__control_id = control_id
self.__flip = False
self.__range = False

# check to see if someone is in the room
def run(self, motion):
self.__motion = motion >= 1 # clip off all motion above one
del self.__buff(-1] # do buffer rotate
self.__buff.insert(0,self.__motion) # do buffer rotate
self.__time = time.time()
self.__daytime = int(divmod(self.__time, 86400)[1])
if (self.__occupied == True) and (self.__time - self.__timer < 10800): # if occupied - check to see if still occupied
if (numpy.sum(self.__buff[:self.__buffsize]) >= self.__levelout): # see if there is motion
self.__timer = self.__time # reset counter if occupied
elif (self.__occupied == True) and (self.__time - self.__timer >= 10800): # if timer expires - set to not occupied
self.__occupied = False # set occupancy flag
logger.info("%f %d %d" % (self.__time, 15, self.__data_id)) # log the data to a file for testing
else:
if (numpy.sum(self.__buff[:self.__buffsize]) >= self.__levelin): # see if there is motion
self.__occupied = True # set occupancy flag
self.__timer = self._ _time # reset timer
logger.info("%f %d %d" % (self.__time, 14, self.__data_id)) # log the data to a file for testing
else:
for x in self.__entry buff(:]:
if self.__time - x(0] > 604800: # check if a week old
self.__entry_buff.remove(x) # eliminate the element
for i in range(len(self.__entry_buff)):
# the next line checks if an entry time is within n hours
# first check is time till entry, second check is time since entry
if (divmod(self.__entry_buff(i]l[1] - self.__daytime, 86400){1] < 7500) or
(divmod(self.__daytime - self.__entry buff[il[1], 86400){1] < 6000):
self.__range = True
break
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else:
self.__range = False
if (self.__entry == True) and (self.__time - self.__timerl < 10800): # if occupied - check to see if still occupied
if (numpy.sum(self.__buff) >= 10): # see if there is motion
self.__timerl = self.__time # reset counter if occupied
elif (self.__entry == True) and (self.__time - self.__timerl >= 10800): # if timer expires - set to not occupied
self._ _entry = False # set occupancy flag
logger.info("Af %d %d" % (self.__time, 21, self.__data_id)) # log the data to a file for testing
else:
if (numpy.sum(self.__buff) >= 40): # see if there is motion
self.__entry = True # set occupancy flag
self. _timerl = self.__time # reset timer
logger.info("%f %d %d %d" % (self.__time, 20, self,__data_id, self.__daytime)) # log
self.__entry_buff.append{([self.__time, self.__daytime]) # store time for predictions
hvacconfig.set(’entrybuffer’,str(self.__data_id),str(self.__entry buff)) # store buffer to configuration file
f=open(’hvacconfigl.cfg’,’wb’) # send data to file
hvacconfig.write(f)
f.close()
if self.__flip == False: # do an alternating bit to limit control cycle to once a minute
self.__flip = True
else:
self.__flip = False
if (self.__occupied == True) and (self.._time - self.__timer < 400): # find out who it is
self.__control = [1 # reset control vector
if self._ _data_id == 32: # only allow specific users control
if (location_96.where() == self.__data_id) and (self.__time - activity_96.active() < 90):
self.__control = self.__control + [activity_96.comfort()]
if (location_104.where() self.__data_id) and (self.__time - activity_104.active() < 90):
self.__control = self.__control + [activity_104.comfort()]
if (location_28.where() == self.__data_id) and (self.__time - activity_28.active() < 90):
self.__control = self.__control + [activity_28.comfort()]
elif self._ _data_id == 36:
if (location_4.where() == self.__data_id) and (self.__time - activity_4.active() < 90):
self.__control = self.__control + [activity_4.comfort()]
if (location_8.where() == self.__data_id) and (self.__time - activity_8.active() < 90):
self.__control = self.__control + [activity_8.comfort()]
if (location_20.where() == self.__data_id) and (self.__time - activity_20.active() < 90):
self.__control = self.__control + [activity_20.comfort()]
if (location_24.where() == self.__data.id) and (self.__time - activity_24.active() < 90):
self. _control = self.__control + [activity_24.comfort()]
if (location_28.where() == self.__data_id) and (self.__time - activity_28.active() < 90):
self.__control = self.__control + [activity_28.comfort()]
if (location_76.where() self.__data_id) and (self.__time - activity_76.active() < 90):
self.__control = self.__control + [activity_76.comfort()]
if (location_84.where() == self._._data_id) and (self.__time - activity_84.active() < 90):
self.__control = self.__control + [activity_84.comfort()]
if (location_88.where() == self.__data_id) and (self.__time ~ activity_88.active() < 90):
self.__control = self.__control + [activity_88.comfort()]
if (location_96.where() == self.__data_id) and (self.__time - activity_96.active() < 90):
self.__control = self.__control + [activity_96.comfort()]
if (location_104.where() == self.__data_id) and (self.__time - activity_104.active() < 90):
self.__control = self.__control + [activity_104.comfort()]
elif self.__data_id == 40:
if (location_4.where() == self.__data_id) and (self.__time - activity_4.active() < 90):
self.__control = self.__control + [activity_4.comfort()]
if (location_8.where() == self.__data_id) and (self.__time - activity_8.active() < 90):
self.__control = self.__control + [activity_8.comfort()}
if (location_20.where() == self.__data_id) and (self.__time - activity_20.active() < 90):
self.__control = self.__control + [activity_20.comfort()]
if (location_24.where() == self.__data_id) and (self.__time - activity_24.active() < 90):
self.__control = self.__control + [activity_24.comfort()]
if (location_28.where() == self.__data_id) and (self.__time - activity_28.active() < 90):
self.__control = self.__control + [activity_28.comfort()]
if (location 76.where() == self.__data_id) and (self.__time - activity_76.active() < 90):
self.__control = self.__control + [activity_76.comfort()]
if (location_84.where() == self.__data_id) and (self.__time - activity_84.active() < 90):
self.__control = self.__control + [activity_84.comfort()]
if (location_88.whers() == self.__data_id) and (self.__time - activity_88.active() < 90):
self.__control = self.__control + [activity_88.comfort()]
if (location_96.where() == self.__data_id) and (self.__time - activity_96.active() < 90):
self.__control = self.__control + [activity_96.comfort(}]
if (location_104.where{() == self.__data_id) and (self.__time - activity_104.active() < 90):
self.__control = self.__control + [activity_104.comfort()]
elif self.__data_id == 44:
if (location_8.where() == self.__data_id) and (self.__time - activity_8.active() < 90):
self.__control = self.__control + [activity_8.comfort()]
if (location_88.where() == self.__data_id) and (self.._time - activity_88.active() < 90):
self.__control = self.__control + [activity_88.comfort()]
elif self.__data_id == 48:
if (location_4.where() == self.__data_id) and (self.__time - activity_4.active() < 90):
self.__control = self.__control + [activity_4.comfort()]
if (location_20.where() == self.__data_id) and (self.__time - activity_20.active() < 90):
self.__control = self.__control + [activity_20.comfort()]
elif self.__data_id == 196:
if (location_76.where() == self.__data_id) and (self.__time - activity_76.active() < 90):
self.__control = self.__control + [activity_76.comfort()]
if len(self.__control) > O: # if someone was in the room
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self.__normal = False # turn off normal control
self.__setback = False # turn off setback control
self.__control = numpy.mean(self.__control) # arbitrate between users
self.__control_id.run(self.__control) # control damper
self.__timer2 = self._ _time
elif self.__time - self.__timer2 > 400: # check if comfort control in past 6 minutes
self.__normal = True
self.__setback = False
elif (self.__occupied == True) or (self.__range == True):
self.__normal = True # set to normal control
self.__setback = False # turn off setback control
else:
self.__normal = False
self.__setback = True

# output occupied global variable
def occupied(self):
return self.__occupied

def normal(self):
return self.__normal

def setback(self):
return self.__setback

class Window:

# create window object
def __init__(self, data_id): # takes in data motor state, wind speed
self.__manual = False # variable for determining if window is under manual control
self.__closed = False # variable for determining if window is closed
self.__motor = O # motor state variable
self.__wind = O # wind speed variable
self.__timer = 0 # manual control timeout
self.__data_id = data_id # id of window under control

# do over speed control and variable determination
def run(self, motor, wind):
self.__motor = motor
self._ _wind = wind
self.__closed = (((self.__motor) & 0x03) == 0x02) # test for jam closed
if ((self.__motor) & 0x68) > 1: # test if buttons pressed or manual bit set
self.__timer = time.time() # reset timeout counter
self.__manual = True # set manual flag
else: # if no buttons, test for 3 hour timeout
self.__manual = ((time.time() - self.__timer) < 10800) # see if its been 3 hours since last manual control
if (self.__manual == False) and (self.__closed == False): # if not under manual control and open
if self.__wind > 1000: # check if wind speed too high
send_command{self.__data_id, 0x06, 0x20) # close window

# output manual global variable
def man(self):
return self.__manual

# output closed global variable
def shut(self):
return self.__closed
class Activity:

# initialize activity buffers
def __init__(self, start_act, start_var, reset_act, reset_var, cont_temp, expire, data_id):

self.__start_act = start_act
self.__start_var = start_var
self.__reset_act = reset_act

self.__reset_var = reset_var

self._ _cont_temp = cont_temp

self.__expire = expire

self.__timeout = O

self.__last_time = O

self._ _time = 0

self._ _buffl =0

self.__buff2 = 0

self.__buff = [0, 0, O]

self.__data_id = data_id

self.__data_id_cold = data_id + 1

self._ _data_id_hot = data_id + 2

self._ _data_id_tran = data_id + 3
self.__gain_id = data_id + 200
self.__time_active = O # buffer for last time active
self.__hum = O

self.__button = 0O

self.__butt_time = 0

self.__activity = False # activity flag
self.__active2 = False # activity timeout flag
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self.__timer2 = time.time()

buff_cold = eval(hvacconfig.get(’comfortbuffer’, str(self.__data_id_cold))) # create cold buffer
buff_hot = eval(hvacconfig.get(’comfortbuffer’, str(self.__data_id_hot))) # create hot buffer
self.__mean_cold = []

self.__mean_hot = []

self.
self.
self.
self.__tran_cold = []

self.__transform = numpy.matrix(eval(hvacconfig.get(’comfortbuffer’, str(self.__data_id_tran)))).T
boundary = hvacconfig.getfloat(’comfortbuffer’, str(self.__data_id))

comf_dis = 0

time_active2 = 0

self.__temp = 80

self.__hum = 35

self. _gain = hvacconfig.getfloat(’comfortbuffer’, str(self.__gain_id))

def run(self, act, temp, hum, button):
self.__act = act
self.__temp = temp
self.__hum = hum
self.__button = button
self.__time = time.time()
if (self.__time - self.__last_time > 55) and (self.__button == 0): # check if not repeat packet or button press
self.__buff = [self.__buff2, self.__buffl, self.__act] # create buffer
if (self.__time - self.__timeout < self.__expire): # check if activity timeout has expired
if (numpy.var(self.__buff) > self.__reset_var) or (self.__act > self.__reset_act): # check for restart conditions
self.__activity = True
logger.info("4f 4d %d %d" % (self.__time, 18, self.__data_id, 100))
self.__timeout = self.__time
self.__time_active = self.__time
elif (self.__act > self.__cont_temp): # check for continue conditions
self.__activity = True
self.__time_active = self.__time
logger.info("4f %d %d %d" % (self.__time, 18, self.__data_id, 100))
else:
self. _activity = False
logger.info("4f %d %d %d" % (self.__time, 18, self.__data_id, 0))

else:
if (numpy.var(self..__buff) > self.__start_var) or (self.__act > self.__start_act): # check for start conditions
self.__timeout = self.__time
self.__activity = True
self.__time_active = self
logger.info("’f %d %d ’d"
else:
self.__activity = False
logger.info("/f %d %d %d" % (self.__time, 18, self.__data_id, 0))
self.__last_time = self.__time # reset timer with last packet time
self.__buff2 = self. _buffl # shift buffer
self.__buffl = self. _act # shift buffer
if (self.__active2 True) and (self.__time - self.__time_active > 900): # check if its been 20 minutes
self._ _active2 = False # set 15min activity flag to false
elif (self.__active2 == False) and (self.__activity == True):
self._ _active2 = True
self.__timer2 = self.__time
logger.info("/f %d %d %d" % (self.__time, 22, self.__data_id, 100))
if (self.__activity == True) and (self.__time - self.__timer2 > 900):
self.__time_active2 = self.__time
if (self.__button > 0) and (self.__time - self.__butt_time > 1800) and (self.__activity == True) and
(self.__time - self.__timer2 > 900):

time
(self.__time, 18, self.__data_id, 100))

self.__butt_time = self._ _time
if self.__button == 8:
if len(self.__buff_cold) >= 9:
del self.__buff_cold[-1]
self.__buff_cold.insert(0, [self.__temp, self.__hum])
hvacconfig.set(’comfortbuffer’, str(self.__data_id_cold), str(self.__buff_cold)) # store buffer to configuration
f=open(’hvacconfigl.cfg’,’wb’) # send data to file
hvacconfig.write(f)
£.close()
self.__fisher()
elif self.__button == 1:
if len(self.__buff_hot) >= 9:
del self.__buff _hot[-1]
self.__buff_hot.insert(0, [self.__temp, self.__hum])
hvacconfig.set (’comfortbuffer’, str(self.__data_id_hot), str(self.__buff_hot)) # store buffer to configuration
f=open(’hvacconfigl.cfg’,’wb’) # send data to file
hvacconfig.urite(f)
£.close()
self.__fisher()

def __fisher(self):
self.__scat_cold = numpy.matrix([[0, 0], [0, 0]1)
self.__scat_hot = numpy.matrix([[0, 0], [0, 0]1)
self.__mean_hot = numpy.matrix(numpy.mean(self.__buff_hot,0))
self.__mean_cold = numpy.matrix(numpy.mean(self.__buff_cold,0))
for i in range(len(self.__buff_cold)):

k = numpy.subtract(self.__buff_cold[il, self.__mean_cold)
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self.__scat_cold = numpy.add(self.__scat_cold, (k.T * k))
for i in range(len(self.__buff_hot)):
k = numpy.subtract(self.__buff_hot[i], self.__mean_hot)
self.__scat_hot = numpy.add(self.__scat_hot, (k.T * k))
self.__transform = numpy.subtract(self.__mean_cold, self.__mean_hot)
self.__transform = self.__transform.T
self.__transform = (scipy.linalg.inv(numpy.add(self.__scat_cold, self.__scat_hot))) * self.__transform
self.__tran_cold = self.__buff_cold * self.__transform
self.__tran_hot = self.__buff_hot * self.__transform
boundary = numpy.mean(numpy.vstack((numpy.msort(self.__tran_cold)(:2], numpy.msort(self.__tran_hot)[-2:])))
self.__gain = -1.5 / (abs((self.__mean_hot * self.__transform) - self.__boundary) +
abs((self.__mean_cold * self.__transform) - self.__boundary))
self.__gain = self.__gain[0,0]
hvacconfig.set(’comfortbuffer’, str(self.__gain_id), str(self.__gain))
hvacconfig.set(’comfortbuffer’, str(self.__data_id), str(self.__boundary))
g=numpy .array(self.__transform)
hvacconfig.set(’comfortbuffer’, str(self.__data_id_tran), str([g(0,0], g(1,0]1))
f=open{’hvacconfigl.cfg’,’wb’) # send data to file
hvacconfig.write(f)
f.close()

de

=

active(self):
return self.__time_ active2

de:

=%

comfort(self):
self.__comf_dis = ((numpy.matrix([self.__temp, self.__hum]) * self.__transform)[0,0] - self.__boundary) *
(self.__gain) * 0.4
logger.info("%f %d %d %f %f Uf Af A Af Uf" % (self.__time, 23, self.__data_id, self.__comf_dis, self.__gain,
self.__boundary, self.__transform(0,0], self.__transform(1,0], self.__temp, self.__hum))
if self.__comf dis > 1:
self.__comf_dis = 1
elif self.__comf_dis < -1:
self.__comf dis = -1
return self.__comf_dis

class Thermostat:

def __init__(self, data_id, room_id, control_id, setback_temp, normal_temp):
self.__data_id = data_id
self.__control_id = control_id
self.__temp = 72
self.__hum = 40
self.__room_id = room_id
self.__cold = False
self.__setb = setback_temp
self.__norm = normal_temp

def run(self, temp, hum):
self.__hum = hum
self.__temp = temp
if self.__room_id.normai{) == True:
self.__control_id.run(self.__temp - self.__norm) # normal temperature
elif self.__room_id.setback() == True:
self.__control_id.run(self.__temp - self.__setb) # setback temperature

de:

29

temp(self):
return self.__temp

de:

-

hum(self):
return self.__hum

def enth(self):
return ((.007468 * self.__temp * self.__temp) - (.4344 * self.__temp) + 11.1769) % self._ _hum / 100 +
(.2372 * self.__temp) + .1230

de

=N

cold(self):
if self.__room_id.normal() == True:
return self.__temp < self.__norm - 1 # normal lower limit
elif self.__room_id.setback() == True:
return self.__temp < 65 # setback lower limit
else:
return self.__temp < 70 # auto lower limit

class Outdoor:

def __init__(self, data_id, therm_id, window_id, command_id):
self.__data_id = data_id
self.__therm_id = therm_id
self.__control_id = window_id
self.__command_id = command_id
self.__temp = 72
self.__hum = 60
self.__enth = 30

def run(self, temp, hum):
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self. _temp = temp
self.__hum = hum
if (self.__therm_id.cold() == True) and (self.__control_id.man() == False) and (self.__control_id.shut() == False):
send_command (self.__command_id, 0x06, Oxff) # shut window full
elif (self.__control_id.man() == False) and (self.__therm_id.cold() == False): # is it under manual or is it too cold
self.__enth = ((.007468 * self.__temp * self.__temp) - (.4344 * self.__temp) + 11.1769) * self.__hum / 100 +
(.2372 * self.__temp) + .1230
logger.info("4f %d %d %f %f" % (time.time(), 19, self.__data_id, self.__enth, self.__therm_id.enth()))
if (self.__control_id.shut() == True) and (self.__temp < 78) and (self.__enth < (self.__therm_id.enth() - 1)):
send_command (self.__command_id, 0x08, 0x80) # open window a bit
logger.info("%f %d %d %d" % (time.time(), 16, self.__data_id, 100))
elif (self.__control_id.shut() == False) and (self.__enth > (self.__therm_id.enth())):
send_command (self.__command_id, 0x06, Oxff) # full close window
logger.info("%f %d %d %d" % (time.time(), 16, self.__data_id, 0))

de:

23

temp(self):
return self.__temp

def hum(self):
return self._ _hum

class Control:

def __init__(self, dst, offset, pgain, igain):
self.__dst = dst
self.__pgain = pgain
self._ _igain = igain-
self.__time = 0
self.__last_time = time.time()
self.__offset = offset
self.__position = 0
self.__last_error = O

def run(self, error):
self.__error = error
self.__time = time.time()
if self.__time - self.__last_time > 50: # remove repeat packets
self.__pos = (self.__error - self.__last_error) / (self.__time - self.__ last_time) # get positional data
if ((self.__position > 255) and (self.__error > 0)) or ((self.__position < -255) and (self.__error < 0)):
self. _signal = int(self.__pos * self.__pgain)
else:
self.__signal = int((self.__pos * self.__pgain) + (self.__igain * self.__error)) # make control signal
self.__last_error = self.__error
self.__last_time = self.__time
if self.__signal > 253:
self.__signal = 254
elif self._ _signal < -263:
self.__signal = -254
if (abs(self.__error) > self.__offset) and (abs(self.__position) < 255):
if (self.__signal > 0):
send_command (self.__dst, 0x08, self.__signal)
if (self.__dst == 188):
send_command(0xc8, 0x08, self.__signal) # repeat signal for second unit
elif (self.__signal < 0):
send_command(self.__dst, 0x06, abs(self.__signal))
if (self.__dst == 188):
send_command (0xc8, 0x06, abs(self.__signal)) # repeat signal for second unit
self.__position = self.__position + self.__signal

location_4 = Location(4)
location_8 = Location(8)
location_20 = Location(20)
location_24 = Location(24)
location_28 = Location(28)
location_76 = Location(76)
location_84 = Location(84)
location_88 = Location(88)
location_96 = Location(96)
location_104 = Location(104)

control_160 = Control(160, .1, 8000, 10)
control_176 = Control(176, .1, 8000, 10)
control_ 180 = Control(180, .1, 8000, 10)
control_184 = Control(i84, .1, 8000, 10)
control_188 = Control(188, .1, 4000, 5)

control_204 = Control(204, .1, 8000, 10)

room_32 = Room(32, 12, 7, 4, control_188)
room_36 = Room(36, 12, 7, 4, control_180)
room_40 = Room(40, 12, 7, 4, control_176)
room_44 = Room(44, 12, 7, 4, control_184)
room_48 = Room(48, 12, 7, 4, control_160)
room_196 = Room(196, 12, 7, 4, control_204)

activity_4 = Activity(70, 200, 45, 15, 80, 360, 4)
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activity_8 = Activity(120, 200, 70, 25, 80, 360, 8)
activity_20 = Activity(70, 200, 50, 25, 80, 360, 20)
activity_24 = Activity(70, 200, 45, 15, 80, 360, 24)
activity_28 = Activity(50, 200, 20, 15, 80, 360, 28)
activity_76 = Activity(70, 200, 30, 15, 80, 360, 76)
activity_84 = Activity(100, 200, 65, 25, 80, 360, 84)
activity_88 = Activity(70, 200, 30, 15, 80, 360, 88)
activity_96 = Activity(70, 200, 50, 20, 80, 360, 96)
activity_104 = Activity(70, 200, 30, 15, 80, 360, 104)

window_156 = Window(166)
window_192 = Window(192)

thermo_216 = Thermostat(216, room_196, control_204, 78, 72)
thermo_220 = Thermostat(220, room_44, control_184, 80, 74)
thermo_224 = Thermostat(224, room_48, control_160, 78, 72)
thermo_228 = Thermostat(228, room_32, control_188, 80, 74)
thermo_232 = Thermostat(232, room_36, control_180, 76, 72)
thermo_236 = Thermostat(236, room_40, control_176, 76, 72)

outdoor_148 = Outdoor(148, thermo_228, window_156, 156)
outdoor_172 = Outdoor(172, thermo_216, window_192, 192)

sock = socket.socket( socket.AF_INET, # Internet
socket.SOCK_DGRAM ) # UDP
sock.bind ((UDP_IP,UDP_PORT))

while True:
data, addr = sock.recvfrom( 1024 ) # buffer size is 1024 bytes
if (len(data)==ord(data([1])+6) and (ord{(data([0]) == Oxff) and (ord(data(ord(data[1])+4]) == Oxfe) and
(ord(datalord(data[1])+5]) == Oxfd):
typel = ord(data(2])
if typel == 0x03: # room data
src = ord(datal[9])
light = ord(data(4]) * 256 + ord{(data[3])
temp = temperaturel(ord(data(6]) * 256 + ord{(data(s]))
hum = humidity(ord(data(7]))
act = ord(data(8])
logger.info("4f %d %d 4f 4f %d %d" % (time.time(), typel, light, temp, hum, act, src))
if src == 32:
room_32.run(act)
elif src == 36:
room_36.run(act)
elif src == 40:
room_40.run(act)
elif src == 44:
room_44.run(act)
elif src == 48:
room_48.run(act)
elif src == 196:
room_196.run(act)
elif typel == 0x00: # location
src = ord(data(3])
dst = ord(datal7])
1qi = ord(data[5])
rssi = ord(data(6])
logger.info("Af %d %d %d %d %d* %4 (time.time(), typel, src, lqi, rssi, dst))
if src == 4:
location_4.run([rssi, dst])
elif src == 8:
location_8.run([rssi, dst])
elif src == 20:
location_20.run([rssi, dst])
elif src == 24:
location_24.run([rssi, dst])
elif src == 28:
location_28.run([rssi, dst])
elif src == 76:
location_76.run([rssi, dst])
elif src == 84:
location_84.run([rssi, dst])
elif src == 88:
location_88.run([rssi, dstl])
elif src == 96:
location_96.run((rssi, dstl)
elif src == 104:
location_104.run([rssi, dst])
elif typel == 0x02: # data from portable
src = ord(data[(3])
dst = ord(data[15])
button = ord(data[6])
light = ord(data[12]) * 256 + ord(data[11])
temp = temperature(ord(data[8]) * 266 + ord(data{7]))
hum = humidity(ord(data(6]))
act = 0x3ff - (ord(data[10]) * 256 + ord(data[9]))
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1qi = ord(data[13])
rssi = ord(data[14])

logger.info("/f %d %d %d %f %f %d %d %4 %d %d" % (time.time(), typel, src, button, hum, temp, act, light, 1qi,

if src == 4:

activity_4.run(act, temp, hum, button)
elif src

activity_8.run(act, temp, hum, button)
elif src == 20:

activity_20.run(act, temp, hum, button)
if src == 24:

activity_24.run(act, temp, hum, button)
elif src == 28:

activity_28.run(act, temp, hum, button)
elif src == 76:

activity_76.run(act, temp, hum, button)
elif src == 84:

activity_84.run(act, temp, hum, button)
elif src == 88:

activity_88.run(act, temp, hum, button)
elif src == 96:

activity_96.run(act, temp, hum, button)
elif src == 104:

activity_104.run(act, temp, hum, button)
elif src == 148:

outdoor_148.run(temp, hum)
elif src == 172:

outdoor_172.run(temp, hum)
elif src == 216:

thermo_216.run(temp, hum)
elif src == 220:

thermo_220.run(temp, hum)
elif src == 224:

thermo_224.run(temp, hum)
elif src == 228:

thermo_228.run(temp, hum)
elif src == 232:

thermo_232.run(temp, hum)
elif src == 236:

thermo_236.run(temp, hum)

elif typel == 0x07: # data from control

src = ord(data[3])

dst = ord(data[15])

motor = ord(datal[5])

light = ord(data[12]) * 256 + ord(data[11])

temp = temperaturei(ord(data(8]) * 256 + ord(data[71))
hum = humidity(ord(datal61))

wind = ord(data[10]) * 256 + ord(datal9])

1qi = ord(data([13])

rssi = ord(datal14])

rssi, dst))

logger.info("4f %d %d %d %f %f %d %d %d %d %d" % (time.time(), typel, src, motor, hum, temp, wind, light, 1qi,

if src == 1566:
window_156.run(motor, wind)

elif src == 192:
window_192.run(motor, wind)

#elif typel == 0x09: # data from power

#src = ord(dataf3l)
#dst = ord(data[9])
#power = ord(data[6])*256 + ord(datal[5])
#1gi = ord(data(7])
#rssi = ord(datal8l)

#logger.info("4f %d %d %d %d %d 4" % (time.time(), typel, src, power, 1lgi, rssi, dst))

elif typel == 0x01: # join request

src = ord(datal[3])
dst = ord(data[7])
1qi = ord(data[5])

rssi = ord(data(6])

logger.info("%4f %d %d %d %d 44" % (time.time(), typel, src, 1qi, rssi, dst))

else:
print ("UNKNOWN PACKET TYPE length: %d type: %d src: Ox¥x" % (ord(data(1]), ord(data[2]), ord(datal3l)))

else:

print("BAD PACKET TYPE length: %d type: %d src: Ox%x" % (ord(datal[1]), ord(datal[2l), ord(datal31)))
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