
Architectures of the Third Cloud
Distrib Gauted Mobile, and Pervasive systes design

David Gauthier

B.Sc. in Mathematics, Universit du Qu6bec Montreal, August 2002

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
in partial fulfillment of the requirements for the degree of
Master of Science in Media Arts and Sciences
at the Massachusetts Institute of Technology
September 2009

© 2009 Massachusetts Institute of Technology. All Rights Reserved.

Author

ARCHIVES

MASSACHUSETTS tNSTWiTE
OFTECHNOLOGY

LIBRARIES 2 6 2009

LIBRARIES

David Gauthier
Program in Media Arts and Sciences
August 27, 2009

Certified by

Andrew B. Lippman
Senior Research Scientist
Program in Media Arts and Sciences

Accepted by

Deb Roy
Chair, Depart ental Committee on Graduate Students
Program in Media Arts and Sciences

.... : : :::r

Architectures of the Third Cloud
Distributed, Mobile, and Pervasive systems design

David Gauthier

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
in partial fulfillment of the requirements for the degree of
Master of Science in Media Arts and Sciences
at the Massachusetts Institute of Technology
September 2009

Abstract

In recent years, we have seen the proliferation of ubiquitous computers invading our public and private spaces.
While personal computing is unfolding to become mobile activity, it rarely crosses the boundary of our personal
devices, using the public interactive infrastructure as a substrate. This thesis develops an approach to
interoperability and modular composition in the design of ubiquitous devices and systems. The focus is placed on
the relationship between mobile devices and public infrastructure, in particular how a device with access to
information about its physical and social context can dynamically configure and extend functionality of its
cooperative environment to augment its interactive user experience.

Based on Internet concepts of connectivity utility and resource utility, we derive the concept of interaction utility
which we call the Third Cloud. Two complementary systems designs and implementations are presented to support
this vision of computing. Substrate is an authoring framework and an execution environment intended to provide
the necessary language and tools to easily compose self-operable applications capable of dynamically instantiate
desired functionality in their proximate environment. The Amulet is a discrete portable device able to act on behalf
of its user in a multitude of contexts. We evaluate the power and flexibility of these systems by using them in the
construction of two applications. In the final chapter, we compare our approach with alternative ways of building
such applications and suggest how our work can be extended.

Thesis Supervisor
Andrew B. Lippman
Senior Research Scientist
Program in Media Arts and Sciences

Architectures of the Third Cloud

David Gauthier

The following people served as readers for this thesis:

Thesis Reader

David P. Reed
Adjunct Professor of Media Arts and Sciences
Program in Media Arts and Sciences

Thesis Reader

William J. Mitchell
Alexander Dreyfoos Professor of Architecture and
Media Arts and Sciences
Program in Media Arts and Sciences

Thesis Reader

V. Michael Bove, Jr
Principal Research Scientist
Program in Media Arts and Sciences

Acknowledgements

To my advisers, Andy Lippman and David P. Reed, I would like to express my deep gratitude for their

critical insights and guidance that helped shape the core of this thesis. When I first apply to the Media

Laboratory the idea of Living the Future was a bright idea. In retrospective most of this thesis revolves

around concepts relating to it. I would also like to thank my readers, Bill Mitchell and Michael Bove, for

their precious time and comments. Working with all four of you has been an extraordinary experience

and an amazing privilege.

To Diana Mainstone for her precious help and support. You have been my inspiration from the moment

I applied to the program, until the very final moment when I submitted this thesis. Your patience has

been invaluable, especially through the hard times past away from each other. You are the most

amazing partner and accomplice one could ever ask for.

To my lab-mates and friends, Poal, Nadav, Fulu, Dawei, Kwan, Sung, and Inna for making the Viral

Communications group a fun research program. Special thanks to Deb Widener and Sandy Sener for

their help in making sure that my long order lists would always fit in the budget.

I joined the Media Laboratory because it is a place where thinking unconventionally is the rule. Thank

you for giving me the opportunity to be part of such a creative and inspirational family.

"Recordings deal with concepts through which the past is reevaluated, and they
concern notions about the future that will ultimately question even the validity of

evaluation."

Glen Gould

10

Contents

1 Introduction

Viral and Ubiquitous Computing

Contribution

Thesis Overview

2 The Third Cloud

Historical Background

Theoretical Background
Strategies of Configuration

3 Towards a Systems Design

Technological Background
Wireless Communication
Virtual Machines
Awareness and Processing
Decentralize Authentication

Our Design Approach
Discovery and Awareness
Identity and Authentication
Platform and Code Virtualization
Authoring Framework

4 Substrate

Design Principles

Computing Model

Authoring Environment

Execution Environment 60
Discovery and Awareness protocol 60
Negotiation Protocol 64
Execution Migration Process 66

Discussion 67

5 The Amulet 70

Design Principles 70

Open Platform 71

Identity and Authentication 74
Fiat-Shamir Authentication 75
Secure Channel 77
Group management 80

Discussion 82

6 Applications 86

Notepad 86

Map/Reduce Face Detection 88

Discussion 92

7 Conclusion and Future Work 96

A Substrate Implementation Notes 102

B The Amulet Implementation Notes 111

C Applications Implementation Notes 113

Bibliography 117

List of Figures

Figure 2.1 - Diagram illustrating interrelations between distributed systems, 18
mobile computing, and ubiquitous computing domains.

52
Figure 4.2 - Diagram illustrating Discovery and Awareness process.

Figure 4.3 - Application code illustrating resource referencing in 61
TransitionMigrateOnResource.

64
Figure 4.4 - Diagram illustrating automaton migration process

Figure 5.1 - The Amulet version 1.0 70

Figure 5.2 - System diagram of the Authentication Engine and API. 78

Figure 6.1- Generated state diagram of the Notepad application. 83

Figure 6.2 - Generated state diagram of the Map/Reduce Face detection 88

application.

14

1 Introduction

Viral and Ubiquitous Computing

In the last century, development in communication technologies, fabrication processes

and electronic miniaturization have dramatically altered the types of objects and

environments we can construct and interconnect. In this early 2 1st century, advances in

the development of wireless transceivers and low-power processing units are expanding

the limits of where computation can be found and reshaping the ways in which we

interact and communicate.

In 1991, Mark Weiser predicted the disappearance of computers into the background of

our daily lives freeing us to "use them without thinking and so to focus beyond them on

new goals" [Weiser, M. 1991]. Since then, his concept of ubiquitous computing as been

one of the most flourishing model of human-computer interaction, leading to the

research and commercialization of plethora of new devices and systems which are now

part of our daily lives. But are they really in the background?

While Weiser's vision of ubiquitous computers has become a reality, his vision of

invisible computing and "calm" interaction has not. This is perhaps due to the fact that

our current miniaturized devices demand a great deal of attention when operated.

These devices are usually designed as standalone units and in many case limited in

functionality. Often bound to a single mode of operation and tied to a specific network,

they don't easily communicate or interact together. "Even the most powerful notebook

computer, with access to a worldwide information network, still focuses attention on a

single box" [Weiser, M. 1991]. As more of them populate our daily lives, more of our

attention gets distributed over this collection of single boxes. Over time, we have come

to assume a fragmented experience of ubiquitous computing.

In parallel to the development of ubiquitous computers, was the evolution of the

Internet. Rooted in years of research and development on distributed systems, the focus

was placed in building a flexible, interoperable communication infrastructure where

computing resources were to be accessed remotely and invisibly through the use of a

browser. Very rapidly, new resources and functions were added to the infrastructure and

made available to the public. Nowadays, this concept of a computing utility has become

an invaluable collaboration and social utility for its users. Even the desktop environment

is now being reengineered to seamlessly move away from our personal machines to a

place in the "cloud".

We believe the same concept of utility ought to be transpose into the ubiquitous

computing sphere. In the future, ubiquitous computers will form an interaction utility

centered on mobile and social communication. The premises of ubiquitous computing

are quite different to those of the Internet. "Embodied virtuality" [Weiser, M. 1991] as

more implications in physical and social realms than does the transport of bits from end-

to-end. Nonetheless, important lessons can be learned from the architecture of the

Internet, especially the ones related to flexibility and interoperability.

Research into the architecture of interactive and ubiquitous environments, dubbed

Intelligent Environments (IE), has been thoroughly conducted at the turn of the century

[Brooks, R. A., 1997; Johanson, B. et al., 2002; Rudolph, L., 2001; Sousa, J. P. & Garlan,

D., 2002]. Multitudes of human-centered environments featuring interactive displays,

multimodal user interfaces, sensors, mobile devices, and so on, have been built around

the themes of workspaces or rooms. Although incredibly rich in terms of interactive

possibilities, these highly controlled and highly specialized spaces have not been

designed for public spaces. In this thesis, we are interested in addressing issues of public

and spontaneous access to interactive utilities; much like the Internet did with

computing utilities.

Over the last year in MIT's Viral Communications Group, my advisor David R Reed has

come with a name for this emergent field of research - The Third Cloud. Constructed

around previous research in distributed systems and the Internet, this new "cloud" is

situated at the edge of the network - where interpersonal context matters, mobility

reigns, and access to serendipitous interactive contexts are to be negotiated in time and

place.

This thesis looks at the topic of interoperability and modular composition in the design

of ubiquitous and public interactive systems. The focus is placed on the relationship

between mobile devices and public infrastructure, in particular how a socially informed

device can dynamically configure its context to augment its interactive user experience.

The objective is not to invent new user interfaces per se, but more specifically to identify

configuration strategies to spontaneously assemble and hold for a moment all the bits

and pieces available in a space needed to perform a given human-centered interaction.

In this process, I hope to map possible application areas, to understand what are the

limitations and interaction paradigms that may be captures in an authoring framework,

and most importantly, inspire future development atop the foundations of the Third

Cloud.

Contribution

I am not the first person to attempt to design such a system. After all, the vision of

ubiquitous computing has a long history. Instead, I hope to bring a provocative new set

of questions and answers about awareness, security, and interoperability by revisiting

the fundamentals of distributed, mobile, and pervasive computing. With this in mind,

this thesis hopes to provide a contribution in three distinctive ways:

(1) Begin to devise a theoretical framework to discuss public and ubiquitous

network configuration strategies involving humans, machines and spaces.

(2) Advance in making accessible to interaction designers and software developers a

authoring framework to construct self-configurable, mobile and distributed

applications.

(3) Advance in making accessible to the community open source hardware and

software components for the development of portable computers.

Thesis overview

Chapter 1: Introduction explains the motivations behind the work presented in the

thesis.

Chapter 2: The Third Cloud situates the research area in an historical context and

presents a theoretical framework to understand possible implementation strategies.

Chapter 3: Towards a system design presents technological enablers and our design

approach in the development of Third Cloud devices, systems and applications.

Chapter 3: Substrate is the authoring framework and execution environment addressing

guidelines presented in chapter 3. A high-level language to compose Third Cloud

applications is presented, a system-level awareness protocol is devised and a mechanism

to dynamically place functionality in a network is explained.

Chapter 4: The Amulet is a portable device personalizing its user in different contexts.

The open hardware platform is described and identity based protocols are explained.

Chapter 5: Applications presents two applications drawing upon Substrate's

functionality and the Amulet's execution platform. The focus is to demonstrate the

flexibility and simplicity of the applications composed with the authoring framework.

Chapter 6: Conclusion and Future work concludes by discussing Substrate's and

Amulet's respective implementation's strength and weakness and by discussing future

work in the Third Cloud.

19

2 The Third Cloud
This chapter starts by situating the concept of the Third Cloud in an historical

perspective in defining the first and second clouds. A theoretical framework is then

presented to bring discussion on the socio-technical strategies and tactics that may be

employed to make the Third Cloud vision of computing a reality.

HISTORICAL BACKGROUD

The First Cloud is the early Internet. We refer to this cloud as the one connecting

remote machines together to share information. The first cloud is a connectivity utility. It

presents a scalable communication architecture augmented of generic protocols to

deliver information on demand from an addressable machine to a browser.

The Second Cloud represents the evolutionary step towards a computing utility after the

First Cloud. We refer to this cloud as the one consisting of resources such as storage,

databases, remote functions, specialized software as services, and so forth, made

available to perform computing through a browser. In this context, the second cloud is a

resource utility - embodying concepts of what has been commonly called "cloud

computing".

The idea of computing resource utility is not new. In fact, we can date it back to time-

sharing systems developed in the 1960s at MIT [Corbat6, F. J, et al., 2000] and other

institutions where multiple users could access centralized computing resources through

remote teletypes. In 1961, John McCarthy suggested that computer time-sharing

technology might lead to a future in which computing power and even applications

could be sold through the utility business model. Time-sharing systems were offered at

the time by Honeywell, IBM, General Electric, and other companies. The business

disappeared at the end of the 1970s with the advent of personal computers and the

early Internet. These days, the idea is surfacing back with platforms such as Amazon EC2

[Amazon.com, 2009], Azure Services Platform [Microsoft.com, 2009], and Google App

Engine [Google code, 2009] to name a few.

Resource virtualization is at the center of the idea of the Second Cloud. Processing, data

storage, and hardware are made available to end users as virtual entities which are

location independent and accessed concurrently with other users. Resource

virtualization enables the dynamic modular composition of computing platforms or

applications tailored around specific computing needs. In some extent, the second cloud

can be viewed as a computing platform construction toolkit. It gives users agency, which

was not the case in the first cloud, in the fact that they can now produce data and

construct programs which will be seamlessly hosted in the infrastructure for other users

to access or operate. Access to these resource utilities is usually negotiated with a

provider (Amazon, Microsoft, Google) prior to their usage.

The Third Cloud is situated at the edge of the First and Second clouds, centered on

interactions involving humans, their devices and their immediate environment.

Communication in the Third Cloud is enabled by context, both mobile and social. Unlike

the two previous clouds, physical context in which computation takes place is of prime

importance as it delineates the boundaries of interaction and communication between

mobile and local entities. Interacting entities must be collocated in order to cooperate.

Communication is also shaped by the social context in which end users are situated.

While the second cloud presents applications bound to social aspects of their users, dub

social networking applications, the Third Cloud embeds this knowledge at the system

level where it can be blended with physical context knowledge. If networking is centered

on social relationships, it is crucial that our mobile devices be able to represent

ourselves wherever we may roam. Physical and social context are both application

invariant as they directly shape forms of communication. Hence Third Cloud platforms

are based around awareness and discovery. Sensing/signaling presence and activity

information are mechanisms providing the necessary means to construct

representations of physical and social contexts. We call these adaptive representations

neighborhoods.

Neighborhoods provide context of interaction involving mobile and local entities.

Exploitation of interactive material is performed through cooperative use of resources.

In a given neighborhood, an interactive task residing on a user's mobile device may be

projected in the environment making use of the infrastructure to carry or amplify the

interaction. Interoperability between both mobile and local entities is established

through resource and computing virtualization, standardized interfaces and evolvable

protocols. Devising Third Cloud systems is not by itself a technical challenge - most of

the required technologies are available - but rather a systems architecture challenge.

? distributed mobile ubiquitous
-I

systems omputin computing

remote / location invisibility
communication energy aware context

information access wireless local scalability
availability

Figure 2.1 - Diagram illustrating interrelations between distributed systems, mobile computing, and

ubiquitous computing domains.

We can draw important similarities between this Third Cloud concept and the one of

ubiquitous computing. The main difference with previous incarnation of ubiquitous

environments [Johanson, B. et al., 2002; Rudolph, L., 2001; Sousa, J. P. & Garlan, D.,

2002] relates to scope. The Third Cloud looks at bringing cooperative use of interactive

resources in the public realm; creating an interaction utility. While Intelligent

Environments (IE) enable the cooperative use of interactive materials, the places in

which they were designed to be deployed are private - the office, the house, the living

room, etc. In framing ubiquitous computing solely in these environments we lose the

quality of a ubiquitous host who can be found anywhere at anytime. In these

environments, the context for interaction is well defined, maintained and controlled,

while it needs to be spontaneously configured and negotiated in a public setting. This

difference begs important systems architecture challenges as public spaces will be in

practice less organized, perhaps decentralized and present uneven interactive and

computing conditions depending on location.

We approach these challenges in considering virality as one of the core interoperability

concepts of the Third Cloud. A viral process opportunistically exploits resources of a

ubiquitous host. In this thesis, we are particularly interested in identifying the structural

elements of the ubiquitous host and the logic that needs to be embedded in the viral

process in order to spontaneously migrate to a (interactive) resource's context and

consume it in place. In other words, conceive the infrastructure as a type of plastic that

one can dynamically shape into forms which are relevant to a certain interaction. Here

the infrastructure is not required to be "intelligent" or highly specialized per se, but

rather malleable; it is the viral process which figures the context of interaction and

injects its own program. The Third Cloud places most of the "intelligence" on mobile

devices rather than in the environment. A mobile viral process could potentially scale

without boundaries depending on the ubiquity of the hosts. Deployment of these hosts

could be based on a contributory participation scheme where you would be required to

contribute a host to join the network.

Composition and authoring of viral processes is also of interest in this thesis. We have

learned from the Second Cloud that modular composition of resource utilities out of

standardized service types enable end users to tailor their computing platform according

to their needs. We approach the composition of interaction utilities the same way. By

providing the necessary abstractions, one can assemble a viral application which will

behave and consume interactive materials in a suitable way.

In placing the Third Cloud in the public realm we need to carefully situate all the social

and technical elements involved in its composition, and derive an understanding of the

strategies and tactics we may employ to make this vision of computing a reality. In the

next section we take a step back from pure technical concerns and present a theoretical

framework whose intent is to place Third Cloud concepts in a socio-technical

perspective.

THEORETICAL BACKGROUD

A network in the context of the Third Cloud is composed of a collection of ad hoc and

heterogeneous materials (humans, screens, money, airwaves, institutions, processors,

spaces, architectures etc.) which resistance has been overcome. The process of ordering

this collection of material, from which the network emerges, is crucial; the Third Cloud is

nothing other than a patterned network of heterogeneous actors, both social and

material.

But how can we refer to a collection of heterogeneous elements as the "Third Cloud". In

other words, why are we sometimes aware of the network behind a utility (the web for

example) and sometimes it appears as a unique homogeneous thing? Why does the

network disappear? Why sometimes it is not the case? Appearance of unity comes from

simplification. When a heterogeneous network acts as a single block, it disappears,

replaced by the action or the task carried or performed by its actor. All internal

complexities (sociological, economical, and technical) of the network are masked and

become invisible. This simplification process is what I previously called ordering but may

be understand as figuring [Elias, 1978], or more specifically configuring. In the Third

Cloud, configuration is a process or an effect, rather than something that can be

achieved once and for all. Configuration is not free-standing, like in the Second Cloud,

but a site of struggle, a relational effect which needs to be performed, maintained,

negotiated, and mediated in place and time by all actors involved in the network. There

is no such thing as a single Third cloud configuration in a given space at a given time;

there is a plurality of possible configurations which need to be negotiated.

Humans and machines makers have their own preferences. They present resistance to

any imposed ordering and are liable to break down, or make off on their own. Therefore,

the object of engineering Third Cloud systems is to describe local process of patterning

and devise mechanisms to orchestrate configuration. This, then, is the core of this thesis'

approach: a concern on how the Third Cloud mobilizes, juxtaposes and holds together

the bits and pieces out of which it is composed; how can we prevent those bits and

pieces from following their own inclinations and making off; how to manage, as a result,

24

and conceal for a time the process of configuring so an heterogeneous set of bits and

pieces turn into something that passes as a single ad hoc computing substrate capable of

hosting interactions and end user experiences.

STRATEGIES OF CONFIGURATION

But what can we say about configuring and the methods of overcoming resistance? How

the Third Cloud, which can be borrowed, displaced, dissolved, rebuilt, scaled and

profited from, can generate the effect of agency and organization? What are the tactics

and strategies? I approach this task empirically and present qualitative strategies of

configuration which directly influence the stability and resiliency of an ad hoc and

heterogeneous network. These strategies are not mutually exclusive but rather provide a

grid of analysis which can be used to examine related work and drive some of the Third

Cloud systems design.

1. Durability: configuring through time

Some materials composing the Third Cloud are more durable than others and so

maintain their relational patterns for longer. Interaction initiated by an end user

with a stranger in the street may not last very long. But interactions embodied in

a building, as an infrastructure, will probably last longer. Thus a good ordering

and configuring strategy ought to embed a set of relations in durable materials

(infrastructure, friendship, membership, etc.).

However, caution needs to be taken here. Durability itself is a relational effect,

not something given in nature of things. It is in fact related to context. Durable

materials may find other use; mediate their effect when located in a new

network of relations. For example, I may have control over a set of computing

resources residing on the 4 th floor of the Media Lab in the weekends, but not on

week days, when staff and faculty are present on the floor. My agency over this

set of resources is somehow variable through time. Thus negotiation and

mediation are central to the process of configuring.

2. Mobility: configuring through space

Mobility is about configuring through space. In particular, it is about ways of

reconfiguring a given organization in different contexts. The Third Cloud is

centered on human mobility. Therefore it must be elastic and agile enough to

translate itself wherever these actors may roam or elect domicile. A good

configuration strategy would be to embed relations in mobile and pervasive

materials so configuration itself may become a type of immutable mobile

[LATOUR B.,1987]. Mobile in the sense that it can be transported from place to

place. Immutable in the sense that the thing which is transported keeps its

integrity, does not loose its features, and can be re-instantiate at anytime. A

virus is good example of immutable mobile. Thus the viral process discussed in

the previous section is a good mobility strategy.

3. Representation: configuring through anticipation

Configuration is more effective if it anticipates the responses and reactions of

the materials to be configured. Here we resist the functionalism and

technological determinism which tend to characterize usual distributed system

building. The Third Cloud is about computing in context, not in a vacuum, and

takes into account all economical, operational and sociological aspects emerging

from the interaction of humans, spaces and machines.

Humans are very much inclined to anticipate the outcome of a given situation.

For example, before going to the NYU library to write this paragraph I have

anticipated that I would not be able to get in as an MIT student, and

consequently not be able to use their resources to do my work. I was exactly

right. MIT students are not allowed in the NYU library since no institutional MIT-

NYU agreement has been established which would allow me to use their

facilities. Why was I right? How could I predict the outcome of this relational

circumstance? The answer is simple: through calculation based on

representation. Having traveled a fair amount of distance from Boston to New

York and being identified as an MIT graduate student lead me to anticipate this

rather uncomfortable situation.

Calculation is a set of relations on its own right. But calculation can only operate

on some sort of material representation, which is a relational effect. Thus

anticipation has to be based on a system of representation. Under appropriate

relational circumstances, this system will in fact have important calculation

consequences on how a Third Cloud network takes shape. A great example of

anticipation in the current networking literature is the revisit and transformation

of the "end-to-end" argument [Saltzer et al. 1988] into a "trust-to-trust" one

[Clark, D. D, 2009]. Based on identity and authentication (representation), trust

(calculation) relationships are established between all actors involved in a given

Internet protocol, leading to a more robust network based on anticipation and

trust.

4. Scope

The issue of scope in the configuration process also has to be addressed.

Although we have stressed the view that the Third Cloud is local, it is possible to

envision configurations that ramify through and reproduce themselves in a

variety of network instances and locations.

What might such strategies look like? How have they influenced system design in the

past? How will they in the future? It is important to note that this approach of theorizing

about networks, in a relational and process-oriented manner, is also used in sociology

[Latour B., 1988]. In a radical spirit, it is in our best interest to include such theory in the

design of systems for the human and socially centered Third Cloud. Treat different

materials - people, machines, "ideas" and all the rest - as interactional effects from

which social and interactive networks emerge, rather than primitive causes.

28

3 Towards a systems design

TECHNOLOGICAL BACKGROUND

We shall now look at some of the existing and emerging technologies that could be used

to implement Third Cloud systems and applications. Our focus here is to present

technologies which could be employed for (1) communication, (2) dynamic configuration

and (3) awareness. Some of these technologies are based on existing standards and

benefit from a wide adoption on a plethora of end user devices and computer systems.

They are also made available on the market as electronic components for the design of

custom circuitry. It is now possible to design and develop, as you will see later in the

case of the Amulet, low-power embedded devices featuring a combination of these

components without requiring substantial investment. As mentioned earlier, the

challenge of constructing Third Cloud systems and devices is an architectural one rather

than purely technical.

Wireless communication

Device ubiquity could not be achieved without the use of wireless transceivers. There

are a large number of these technologies and standards already deployed in current

devices and environments. The most commonly available are Bluetooth [Bluetooth SIG],

short-range low-power radio transceiver, and Wifi [IEEE 802.11], mid-range high-

bandwidth radio transceiver. Wifi presents some advantages over Bluetooth since

modern operating systems offer a more flexible set of interfaces to access "low-level"

features of the communication stack. Other standards exist such as ZigBee [IEEE

ZigBee], IrDA [IrDa], UWB [UWB], and WiMax [WiMAX Forum], but do not benefit from

a wide deployment as does Bluetooth and Wifi.

Virtual Machine

In order to dynamically configure the Third Cloud to produce a distributed execution

environment, we must abstract single machines and devices. Virtual machine (VM)

technologies are especially designed to perform machine abstraction by logically

decoupling the execution environment from the machine where it takes place.

Untrusted code may be sandboxed by the execution environment, giving mediated

access to hardware. With virtual machines, it is also possible to make decisions at run-

time on where, how and when a program will execute, rather then at development time.

Virtual machines were invented by IBM as a development tool in the 1960s, to allow two

development teams to share a single computer - computing utility, and to emulate

machines that did not yet exist. The control program responsible for efficient hosting of

multiple instances of virtual machines is known as the virtual machine monitor (VMM).

According to an early definition [Popek and Goldberg [1974]] "a virtual machine is taken

to be an efficient, isolated duplicate of the real machine", with the following three

properties:

Efficiency: Unprivileged instructions (e.g. not affecting global machine state) are

executed natively on the underlying hardware.

Resource control: A program executing in a VM cannot allocate system resources for

itself without going through the VMM.

Equivalence: With the exception of timing and resource allocation, a program executing

in a VM should perform just as it would on real hardware.

Types of Virtual Machines

There is two main types of virtual machines: hardware virtual machines and application

virtual machines:

(1) Hardware virtual machines

Hardware virtual machines are implemented in two ways:

30

1. Hosted VMM. The VMM is hosted by an operating system (OS). It provides an

homogeneous software layer between guests VM and host OS. This type of

emulation is performed by providing specific instruction set architecture (ISA) or

by directly translating binaries. The VMM does not include device drivers since it

operates through a guest OS. This type of virtualization is used on desktops

machines where multiple instances of isolated OSes (Linux, Windows, etc) can

seamlessly run on a MAC or PC.

2. Native VMM. The VMM provides a "kernel" for all other OS to access hardware.

This type of virtualization is more powerful (faster execution) and secure than

the previous approach, though VMMs must provide their own device drivers in

order to operate. This VMM configuration is interesting for embedded system

because these have in many cases real-time requirements which are met with

this type of "bare-metal" virtualization. A specialized real-time OS (RTOS) can co-

existing with an "application" OS such as Linux on the same machine running

directly on the emulated hardware without requiring mediation of another OS.

(2) Application virtual machines

Application virtual machines somehow resemble the first category of hardware virtual

machines. A VM is hosted on a given OS and provides a run-time environment where

programs are executed. Source code is usually written in a specific high-level language

(Java, Python, C#, etc.) and compiled to an "intermediate" format composed of synthetic

instructions known by the target run-time environment (JRE, Python Interpreter, .NET

interpreter, etc). Each virtual machine presents a different instruction set from which

programs are compiled to. At run-time, these instructions are decoded, some are

translated into native OS commands, and executed accordingly. This "intermediate"

representation of programs permits the abstraction of the underlying OS and enables

applications to be portable and mobile across a range of systems for which a run-time

environment exist.

Virtual Machine Mobility

This leads us to consider VM and code mobility as a paradigm in the construction

systems and applications for the Third Cloud. Here we refer to mobility as the ability a

running piece of software has to dynamically and physically relocate itself at run-time in

a given network of machines. Hardware and application virtual machines provide

necessary mechanisms to construct such system. By decoupling execution environment

and underlying machines, the migration of executing software from machine to machine

is straight forward. However, an important distinction must be made between both

virtual machine technologies in regard to what type of software can be moved.

From a hardware virtual machine perspective the input program of a VM is the binary

code of an entire OS. The VMM is nothing more than a machine code translator. If a VM

as to move to a new host, the kernel, perhaps the file system, and all applications of the

OS as to move as well. Consequently the migration process involves a large amount of

data which has to be marshaled, transmitted and re-instantiated at run-time, leading to

important downtime. Here we refer to downtime as the time between moments when a

VM suspends its operation and when it resumes them on a remote host. Moreover, the

VM has usually no mechanism to determine the "high-level" nature and structure of the

binary data it manipulates. In other words, it doesn't know about the internal logic

(program) and data structure (file) manipulated by the guest OS. In fact, this type of

migration is the most coarse-grain type of VM mobility.

Migration is becoming a popular feature of virtual machine systems and is heavily used

in data centers and grid computing settings [Foster et al., 2002] to manage clusters of

machines. It is primarily used for load-balancing processing tasks between machines or

as grid computing job containers [Figueiredo et al. 2003, Ruth et al. 2006]. There is a

huge amount of research in this field, but the technologies worth noting are VMWare

Vmotion [Nelson et al., 2005], XenoServers [Hand et al., 2003], Shirako [Grit et al., 2006]

and NomadBIOS [Hansen, and Jul, 2004]. These systems are interesting but not related

to our research context.

However, Internet Suspend/Resume [Satyanarayanan and Kozuch. (2005)] is another

example of system using entire VM migration. The focus here is to support mobile

computing. Inspired by the suspend/resume functionality of laptops, this mobility

strategy employs VM migration to relocate a complete personal desktop environment

wherever a user may be located in the world. A end user may suspend is work machine

while at office, travel back home and then seamlessly resume its work environment from

his personal machine. In fact, the suspended VM migrates to an intermediate ISM

server where it is stored and made accessible through the Internet. When the user

wants to resume his environment the new host system will fetch the marshaled VM on

the ISR server and re-instantiate its state locally.

The authors advertise here a "carry-nothing" type of mobility in an "infrastructure-rich"

environment, where computing terminals are pervasive and made available to the

public. However, this vision of mobility is somehow reductive. End users now greatly

depend on the availability of computing terminals and performance of their respective

internet connections to retrieve entire VM state from the ISM server.

Interestingly, in an attempt to overcome these limitations, researchers have recently

proposed a "carry-everything" approach with projects such as SoulPad and Horatio

[Smaldone et al., 2008]. Here the suspended VM is cached on a portable device - USB

memory or Smartphone. Some mechanisms have been devised to reduce the amount of

data needed to resume a suspended VM [Kozuch et al., 2004]. Although proposing a

new paradigm of mobility, the focus is on migrating single desktop images from host to

host rather than distributing functionality over a heterogeneous set of machines. In

general these strategies' performances suffer from the coarse-grain nature of hardware

virtual machines migration (the lowest downtime observed is 45 seconds).

On the other hand, application virtual machines provide, by nature, a finer-grain control

over software it interprets. The input of an application virtual machine is not

homogeneous machine-code but rather an "intermediate" representation of code - dub

byte-code - tailored around a target run-time environment or interpreter. A run-time

environment must first reconstruct the logic and data structure of a byte-code program

before it can interpret or optimize its content. The optimization phase, which is used to

dynamically translate byte-code into machine code, is called just-in-time (JIT)

compilation. A more detailed description of the Java loading process is presented in the

next section. The point here is that application virtual machine gives a fine-grain control

over software that can be moved in a network. Rather than operating at the OS level,

mobility can be achieved at the code level, and thus providing richer semantics and finer

granularity to construct mobile distributed systems.

Applications can programmatically externalize their state and logic to a form which may

be later recreated. Mobility is achieved by moving this externalized data and byte-code

between machines at run-time. The externalized data format can be optimized to lower

transmission cost, leading to better efficiency in terms of downtime and amount of data

to transmit. Object mobility is performed in a similar fashion. An object encapsulates

code and data as a single structured unit. Mobility can be achieved by moving serialized

objects between hosts. However, if one or more threads are executing code inside and

object, and thus keeping parts of its state in CPU registers or on the stack, migration

must be delayed in order to write back this pending state into the object's activation

record. Hence, a well designed object mobility systems will provide mechanism to

overcome this problem by performing migration after a program as reach a certain safe

point in its execution. Code mobility is further discussed in the next section.

Code mobility strategies

This section describes in more details the salient features of code mobility. First, we

present two categories of mobility, (1) strong mobility and (2) weak mobility. Second, we

describe three strategies that may be employed to perform code mobility in a network,

(1) Remote Evaluation (REV), (2) Code on Demand (COD) and (3) Mobile Agent. These

categories and strategies are not new [Carzaniga, 1997]. In fact, as we will see in this

section, some are heavily used in our current computing systems and responsible for

some of the richest Second Cloud interactions presented through web browsers.

Strong mobility - a thread of execution is suspended, migrated and resumed in a remote

execution environment. The entire code and execution state is externalized by the

thread and recreated at the new location.

Weak mobility - a thread of execution can bind at run-time code which resides in a

different location. Code is migrated to the local execution environment and dynamically

linked to the thread of execution.

Based on these two categories, here are three strategies which may be implemented to

offer mechanisms supporting code mobility in a system:

Remote Evaluation

This paradigm involves both an execution environment A, where a thread T need to

execute a piece of code but A lacks the necessary resources to perform the operation

properly, and a remote execution environment B which posses the needed resources.

Thus Twill send the piece of code to B to be evaluated against its own resource. Results

will then be transferred back to the originating thread T

This mobile code paradigm is not to be confused by the classic client-server paradigm. In

the latter, only functions established prior to the execution of client code on the server

side are made available through a given protocol such as RPC [Thurlow R., 2009]. In the

former, a client (T) can transfer the function itself to the server (B) which has no a priori

knowledge of the code to be executed. This distinction is somehow very important. The

flexibility of recreating executable functions on the fly enables the environment B to

only expose small, fixed and generic set of interfaces on the network which can be

applied to multiple purposes. This enables true ad hoc interoperability, as opposed to

requiring each party (Tand B) to have prior knowledge of every domain-specific

interactions they may be required to perform together. In fact this aspect of code

mobility is not only specific to the Remote Evaluation paradigm but also applies to all

interaction involving mobile code.

Code on Demand

Involves both an execution environment A, which posses a given resource but where a

thread T lacks the code and logic to properly operate it, and a second execution

environment B who has the related piece of code. Here T requests code to B who will, in

turn, transmit it back to T. Upon reception, Twill link the given code to its runtime

environment A and operate the resource accordingly. This paradigm is similar to Remote

Evaluation in the sense that no execution state needs to be migrated between A and B,

therefore execution is confined to a single environment. These two paradigms are good

example of weak mobility.

Code on Demand is by far the most widely used mobile code paradigm. The Java

platform is a great example of a technology presenting code on demand as a central

component of its design. The Java run-time environment (JRE) [Lindholm and Yellin,

1996] presents an extensible dynamic class loader who loads Java classes (byte-code)

on-demand into the Java Virtual Machine (JVM) [Lindholm and Yellin, 1996]. It enables

application to dynamically extend functionality at run-time, rather than development

time, through dynamically linked modules. The loading process consist of (1) locating

these modules, (2) reading their content (3) extracting the contained classes,

representing units of code in the form of structured byte-code, and (4) loading these

classes in the local JVM. The Java class loader can be extended in a way that enables a

JRE to locate modules over a network. A Java application usually consists of module

references (e.g. import statement) which are resolved at run-time. Python presents

similar functionalities.

Code on demand is also heavily deployed in Second Cloud web technologies delivering

rich-internet-application (RIA) to the browser. Javascript [Flanagan and Ferguson, 2002]

is a scripting language whose execution environment is tightly bound to HTML

documents and their rendering through a browser. Javascript code is usually embedded

inside the HTML document or may be located on a remote server referenced through an

URL. A Javascript interpreter, commonly called a Javascript engine [Google, 2008], is

embedded into the web browser and provides access to specific run-time information

provided by the browser (e.g. mouse events, windows size, etc.) which can be linked at

run-time through the scripts. When an HTML document gets rendered, its Javascript

source code gets resolved and interpreted. Over the last few years, this language as gain

an enormous amount of interest from web developers and as becomes the de-facto web

language for rich-internet-applications.

One of the main reasons for such success can be explained by the fact that code on

demand is used to load balance servers and clients. In other words, by offloading

processing to its clients, a server is freed of the costly task of evaluating every single

client requests. Moreover, by distributing computational loads away from servers, this

paradigm has strong scaling capabilities.

Mobile Agent

Involves both an execution environment A, where thread T needs to execute a piece of

code but lacks the necessary resources to perform the operation properly, and a remote

execution environment B which posses the needed resources locally. In this paradigm, T

migrates its entire state and code to B and resume execution there, hence accessing the

resource locally.

The mobile agent paradigm is fairly different from the two previous ones. An active

computational unit is suspended, migrated and resumed. All necessary execution state,

code and data is externalized at run-time, transmitted over the network and re-created

on a remote execution environment. Here the originating execution environment is

completely offloaded of any computation. This paradigm is an example of strong

mobility.

In this section we presented Virtual Machine technologies which can be used to

instantiate functionality at run-time on a given host. We found that application virtual

machines presents a finer grain control over functionality that can be moved in a

network in contrast to the most coarse grain nature of hardware virtual machine re-

localization. We finally have identified three strategies for moving virtual code in a

network and related these strategies some of the Second Cloud systems architecture.

Awareness & Processing technologies

Central to the Third Cloud is the concept of awareness. In this section we are interested

in technologies providing functionality to retrieve contextual information from the

platform itself or the environment where it operates. Configuration should dynamically

react to physical and social context in an optimal and task oriented way.

Sensing has always been an integral part of any computer system involving direct

interaction with humans. After all, a keyboard is simply an array of pressure sensors

transmitting commands to an operating system, and a mouse is nothing more than just a

2d linear-motion-sensors. Microphones, digital cameras, image processing software and

so forth, are all part of an increasingly sophisticated set of sensors that have been added

to our computing platforms over time. This increase can be explained by the

performance gains of modern microprocessors that are better suited to decode and

process real-time sensor data.

Mobile computers, by the very fact they can be moved, change their context of use. This

salient property potentially lets software developers design applications and systems

that are easier to use. For example, a device could present data which is customized to

the current context while hiding commands which are no longer relevant. This type of

automatic configuration is called a context-aware operation. Developers can

differentiate and improve mobile systems over traditional desktop through the use of

context as a central part of their application and systems design.

We can divide contextual data into two categories: (1) local platform information -

platform sensing, (2) information from cooperating infrastructure - infrastructure

sensing.

Platform sensing

Platform sensing is the ability of a system to obtain context from sensors embedded on

the device, measuring parameters that do not require additional infrastructure support

to interpret. Acceleration, pressure, magnetic field angle, sound level, light level are all

examples of information which can be retrieved from sensors embedded on a local

platform.

Most of these sensors imply a measure of an analog physical quantity. Any measured

value must be recorder in order to be processed. Although analog recording and

processing techniques exist, the most flexible recording and processing tool is the

computer. An analog-to-digital converter (ADC) interface must therefore be used to

convert analog potential difference into a binary number. From a processor's

perspective, analog-to-digital conversion becomes a new type of problem: measuring

the time it takes for a signal to transition from a logic zero to a logic one. This is now

becoming straightforward, with the development of modern microcontrollers based on

clock rates ranging from 10 to 300 MHz, derived from high-accuracy crystal oscillators.

Typical solution to sensing on a digital platform requires a sensor, an analog interface

circuitry, ADC-microcontroller, and connection to a microprocessor's I/O port.

Standardization of serial interconnect buses, such as Inter-Integrated Circuit (12C) [NXP

Semiconductor, 2007] and Serial Peripheral Interface (SPI), has also played an important

role in the design of modern sensor interfaces. Although not designed as sensors buses

originally, they turned out to be a convenient way for sensor manufacturers to interface

physical sensors, analog circuitry and ADC with a standardized interconnect bus.

Microcontrollers and System-on-Chips (SoC) usually include hardware support for these

standards. Moreover, operating system kernels such as Linux are now providing support

for these standards, and thus standard libraries can be used to perform basic

communication with the sensor bus, greatly reducing development time. Adding sensing

capabilities to mobile computing platforms has never been easier, with accuracy and

cost no longer the limiting factor.

Infrastructure sensing

Infrastructure sensing is the ability of a system to obtain context information from other

cooperating systems in the environment. We may call this type of information -

infrastructural information. Good examples of infrastructural information are location

and presence. Both types of information are typically derived from sensing reference

points in the environment; RFID tags and infrared transceivers may be used to locate and

identify someone in a building, a GPS receiver relies on signal strength transmitted from

satellites in orbit around the planet to derive location, a 802.11 wireless adapter relies

on broadcast signals from access points (AP) to determine if it can access a network. Two

important points regarding infrastructure sensing need to be addressed as part of our

Third Cloud system design endeavor: (1) privacy and (2) latency and power consumption

(1) Privacy

While infrastructure sensing technologies provide very useful contextual information to

a user, they also raise some important privacy questions which need to be addressed,

especially when identity of users may be compromised. Infrastructural information can

easily be used to track users and their identities. After all, the cooperating infrastructure

is also able to sense users, and thus able to compile sensitive information about them.

Most of the aforementioned sensing techniques use radio frequency technologies as

awareness and discovery medium. We know from [Saponas et al., 2007] that RFID

present serious privacy and tracking issues. A more generalized privacy concern is raised

by [Greenstein et al.,2007] regarding current wireless networks standards (IEEE 802.11,

Bluetooth, Zigbee, WiMax). The authors argue that the use of persistent identifiers, such

as names and addresses, in probes and beacons to discover services and in data packets

are leaking sensible presence information about devices and their network access

history. These low level identifiers raise privacy concerns since they can easily be

mapped to actual user identities. Recent work in [Greenstein et al. ,2008] propose to

eliminate such persistent identifiers in both IEEE 802.11 service discovery and data

packets by obfuscating them with a symmetric cryptographic key. Such key needs to be

known a piori by both communicating entities in order to decrypt the packets. In [Pang

et al., 2007] they present a solution to the creation and exchange of keys between

unknown peers. Although incredibly valuable in general, their solution to the creation

and exchange of keys between unknown peers is not conclusive enough and still imply

strong trust assumption between actual users.

(2) Latency and power consumption

Infrastructure sensing also includes mechanisms by which a device can discover

resources and services provided by other devices and systems in proximity. Such

mechanisms are known as service discovery protocols. Universal Plug-n-Play (UPnP)

[Jeronimo and Weat, 2003] and ZeroConf [Williams, 2002] being the two principal

protocols.

Although effective in a wired infrastructure these protocols were not designed especially

for wireless ad hoc networks. They are IP-based (layer-3) and thus rely on mechanisms

to establish IP addressing, either through a Dynamic Host Configuration Protocol (DHCP)

server or by relying on IPV4 or IPV6 link local address. In a wireless ad hoc network, this

discovery process is suboptimal. It affects both discovery time and energy consumption

of battery operated devices. This problematic is clearly presented by [Sud et al., 2008].

To speed up the discovery process, they propose to integrate discovery mechanisms at

the link-layer (layer-2) rather than at the transport-layer (layer-3). By devising a layer-2

beaconing scheme, they clearly show an improvement of speed in the order of 50x over

current layer-3 solutions.

But these protocols are primarily designed and optimized to obtain resource or service

information on a network. The information itself is treated as a second citizen as it only

contains a representation of the presence of a resource.

In UPnP the simple service discovery protocol (SSDP) [Goland et al., 1999] is employed

to find services on a network. SSDP discovery packets only contain minimal information

about services they represent; an identifier and a pointer to its description. Actual

information about the resource must be fetch, by performing an HTTP GET, from the

pointer (URL) provided in the discovery packet. Here, discovery and awareness processes

are separated. First discover the presence of a host, and then get informed about its

capabilities. This mechanism is not spontaneous and often leads to a lengthy process.

Other discovery protocols such as SLP [Guttman E., 1999], Bluetooth SDP[Bluetooth SIG,

2009] and Jini [Waldo, J. 2000] present the same inefficiency.

While the system presented in [Sud S. et al., 2008] gives us highly relevant insights on

engineering a connectionless (layer-2) resource discovery protocol which is 50x faster

than simple UPnP and Bluetooth SDP, it lacks flexibility in representing resource in a way

that could assist our mediation process. In their beacon scheme, a resources or services

representation is reduce to a minimal bit in a four bytes bitmap, informing only of its

presence on a given host.

Decentralized Authentication

By nature, wireless technologies give devices the possibility of directly interacting with

each other without being thigh to common infrastructure. Basic ad hoc interactions

between unknown devices are common practice in the wireless world. These basic

interactions can be limited to discovery protocols while more advanced interactions,

such as access to a resource, necessitate authorization. Authorization is the process of

validating that an authenticated subject as the authority to perform a certain action.

Although authentication is conceptually based on identity, material used in the

authentication process is usually based on knowledge; that is something an end-user

knows such as a password or a personal identification number. Unlike other domains

requiring authentication, such as access to a building or alcohol where authentication

and identity is based on device ownership - an ID card, identity is rarely solely mediated

by our machines, it usually involves a user in the loop providing that magic piece of

knowledge. In the context of the Third Cloud, this authentication process could easily

become impracticable. Authentication based on device ownership seems to be a better

approach.

In our context, authentication should be performed in a decentralized fashion. Access to

centralized server or infrastructure must not be required. It must also be medium

agnostic that is not relying on a particular medium or technology providing IDs, such as

addresses. It must provide its own distributed naming scheme. Two main system design

and implementation are presented here: SPKI/SDSI and Unmanaged Internet

Architecture (UIA).

SPKI/SDSI

Simple public key infrastructure / Simple Distributed Security (SPKI/SDSI) [D. Clarke et

al., 2001] is a public key infrastructure providing locally-scoped naming and grouping

mechanisms bound to cryptographic keys forming a decentralized and composable

namespace. SPKI/SDSI associates public cryptographic keys with human readable

identifiers known and managed by a user. To access a protected resource, a client must

prove to the server it has the right credentials. The proof is done by means of a

certificate chain leading to trusted users (principals), where the client's key gets resolved

to be member of the same resource's group or has been delegated by another principal

part of the resource's group.

Unmanaged Internet Architecture

The Unmanaged Internet Architecture (UIA) [Ford, B et al., 2006] is an architecture

aimed at providing ease-of-use secure connectivity among one's personal devices, using

the idea of persistent personal names. Similar to SPKI/SDSI, a decentralized namespace

is constructed out of locally generated names bound to cryptographic targets without

the need of a central authority (CA). In UIA a distinction is made between users, devices

and keys. While SPKI/SDSI directly binds principals' identities and keys, requiring users

(principals) to manage their keys across devices, UIA instead assign a single key to each

device a user may own. UIA devices form user identities out of cooperating groups of

personal devices, which the user builds, like in the SDSI case, through simple device

introduction and merge. UIA constructs an encrypted overlay network between

introduced devices sharing a public/private key pair. This network is use to communicate

application information but also as a control channel to manage distributed keys. It

provides a gossip and replication protocol to manage naming and group state across

devices - introduction, merge and revocation key management is therefore "simplified"

and is invisible to users.

Our Design Approach

In this section we describe the formative elements for the design of Third Cloud systems

and devices. Based on the previously presented technology enablers, our focus is to

establish attributes composing a coherent set of mechanisms relating to configuration

strategies presented in section 3.1: (1) Durability, (2) Mobility and (3) Representation.

Discovery and Awareness

Ability of spontaneously retrieve information from the context in which computation

takes place is central to our systems design endeavor. Our design goal is for devices to

dynamically mediate their mode of operation to take full advantage of the interactive

resources in proximity. This mediation process as to be ad hoc and spontaneous.

We are using the word mediation here to express a part of anticipation in the process of

configuration. Prior to re-organize its operations, a device should be able to get into

relation with its context, establish a set of possible configurations and put them into

relation based on calculations specific to the interactive task which must be performed.

It may thereafter automatically elect an optimal network configuration by anticipating

that its constituent will execute the task with a high degree of fidelity. As mentioned

earlier, calculation must be rooted in a system of representation. Although mechanism

must be devised to obtain information from local device usage and cooperating systems

in the environment, a system of representation must also be established making this

contextual information valuable to the mediation process. Discovery and Awareness is

thus a Representation strategy.

Current discovery protocols were presented in previous Awareness & Processing

technologies section. We argued that their focus is solely to optimize obtainment of

resource information in a network, treating actual information as an after thought.

Information often only contains resource presence without any rich description. By not

defining proper mechanisms to establish a rich contextual system of representation,

44

these protocols rely on end users to compare competing resources. Hence anticipation is

always and solely performed by the end user. In the Third Cloud, we wish to provide the

necessary spontaneous information for a system to put these resources in relation. In

doing so, it will be able estimate the outcome of configuring itself according to a certain

pattern. We surely do not want to eliminate the end user from the anticipation equation

but we believe Third Cloud devices should at least be able to estimate, based on a set of

discriminants, possible patterns of configuration.

The Third Cloud is meant to create a public interaction utility; devices should thereof

not only be aware of available resources in a space but also be informed about the

socio-economics attributes underlying the usage of the interaction utility. After all, the

Third Cloud can be viewed as a site of struggle where trust must be established on the

fly and where transactions must be negotiated on the spot. In an attempt to capture

these qualities, a system of representation should be based on:

* Estimable resource description - Applications should present structural

components that could be used to estimate a set of discovered resources by

providing a metric. The awareness and discovery engine could then order this

set based on a given application requirement. The underlying protocol should be

flexible enough to have resources described by a rich set of attributes and

provide references to related estimators.

* System overload metric - Resources are cooperatively shared among peers.

Systems hosting resources should dynamically signal the level of concurrent

processes present in the resource's context. For example, my device may

anticipate to not displaying my personal content on a screen if shared with other

users.

* Transactional information - Resources are usually bound to an ownership

structure. Control and access over these must be granted according to an

agreement between the provider and the client. Pricing, accountability terms

and leasing structure are all quantifiable information that could be made

available on the fly part of the discovery protocol.

* Identity - Resource anonymity and confidentiality should be supported by the

discovery protocol. It should provide mechanisms to control the release of

attributes (identity of the advertiser, resource description, etc.) on a shared

network. Only peers having the right credentials should be able to reconstruct

this information. Identity and Authentication are described in more details in the

following section.

These principles can form the base of a rich system of representation conferring devices

the ability to anticipate self-configuration outcomes. An awareness protocol should be

devised integrating the aforementioned principles while drawing form concepts and

mechanisms of the connectionless (layer-2) discovery protocol presented in [Sud S. et

al., 2008].

Identity and Authentication

Identity can be the base of a strong system of representation. As an effect, durable

relations based on trust between identifiable entities may be established. Identity and

Authentication are both Representation and Durability strategies. They are tightly

coupled to the aforementioned discovery and awareness process, in the sense that

access to a discovered protected resource may be granted only after the requester as

been authenticated. It is important to remember that all operations should be

decentralized. Access to a central authority must not be required.

Following are the design principles we which to address part of our system

implementation:

* Identity Management - A device should be able to represent its user in different

contexts. When located in a new network of relations one's identity may need

mediating to adapt to the new situation. Hence, Third Cloud devices should be able

to manage multiple identity representations without requiring users to intervene in

the process.

* Decentralized grouping - A device should have the ability to locally generate keys

and identifiers to create group with other devices on the fly. These groups could

form new identities to be managed by the device. Devices should be able to

manage group identities without requiring user input.

* Authenticity - A device should be able to prove its identity upon challenge. A

device should be able to challenge other devices whenever needed. Strong

decentralized authentication mechanism need to be devised supporting custom

access control policies.

* Anonymity - Devices should be able to hide their identity while communicating

with each other. In a more general statement, a device should be able to control

release of attributes (IP addresses, list of resources, etc.) when transmitting data

over a wireless channel.

* Confidentiality - Devices should be able to establish a secure channel between

each other preventing other listening devices from eavesdropping on their private

communication. Content should be obfuscated in a way that only sender and

receiver are able to retrieve meaning.

Drawing upon previously presented decentralized authentication and security

technologies [D. Clarke et al., 2001; Ford, B et al., 2006; Greenstein et al. 2007], an

identity and authentication middleware needs to be devised, that is a system-level

software layer sitting between network interfaces and user applications, based on these

design principles.

Platform and Code Virtualization

The Third Cloud is a space where an interaction or a task residing on a user's personal

mobile device can be opportunistically loaded and executed into the environment

making use of private or public devices to carry and amplify the interaction or task to be

performed. In the previous sections we have covered system design requirements

enabling the mobile device to spontaneously discover and access public or private

resources in its environment. The question here is how will personal and public devices

interoperate? This simple question begs important architectural implications. Clearly, the

two entities must have some shared agreement on some type of interface one export

which is know to the other party. There must be a priori agreement on the form (syntax)

and function (semantics) of communication. The question that is at the core of this

thesis is: at what level should this agreement take place in order to have an application

residing on a mobile device shape its cooperative surrounding to support its own

operation in an ad hoc fashion? There are a number of common approaches one might

undertake to implement interoperability between a set of networked machines.

One approach is to agree on one or multiple domain dependent interfaces. These are

typically protocols that are bound to an application or to a specific domain of

functionality presented by a device or resource, for example RFB [RealVNC, 2009] and

RPC [Thurlow R., 2009]. The obvious problem with such interfaces is there is a numerous

collection of them and it is difficult to guarantee their availability in a given

environment.

Another approach is to agree on the use of domain independent interfaces. That is an

interface in which a rich set of interactions and functions are funneled into a single

protocol. The web uses this approach, HTML over HTTP being an example. There are no

different protocols to render a Gmail application page or a Hulu application page even if

they present very different functionality. HTML achieves interoperability through

standardization. It is nonetheless a highly generic and open interface. Generally, the

promise of interoperability on the web is predicated on there being a small and fixed set

of protocols and data types know to all entities, which are generic enough to be easily

adapted to new needs.

In order to support scalable ad hoc interoperability between heterogeneous machines, a

small set of generic domain-independent interfaces must be agreed upon, rather than

requiring them to present a multitude of domain-specific protocols. These generic

interfaces should be multipurpose by providing funneling of functions that could be

transported over the network and be placed wherever needed.

Virtual machine technology becomes here an important part of the equation since it

provides that level of dynamism and mobility while presenting secure mechanism to

sandbox execution of unknown functions, as discussed in the previous Virtual Machine

section. Application virtual machines are more suited than hardware virtual machine in

establishing light-weight interoperability between a set of heterogeneous machines

because it offers a finer-grain control over the specific behavior it may place and move.

Hence, agreement of functionality which needs to be in a network is determine at run-

time rather than development time. This degree of indirection makes the process of

configuring interoperability between machines scalable and invites virality.

By establishing a small set of generic protocols able of transporting functionality from

one host to another, we are shifting focus from how communication needs to be

constructed to how functionality extension should be performed and where these

functions should be placed. We presented three code mobility paradigms in the

previous section: Remote Invocation (REV), Code on Demand (COD) and Mobile Agents

(MA). These can obviously answer the how question. Underneath the where questions

begs an even more interesting architectural question: should the infrastructure contain

most of the "high-level" knowledge on how to operate resources or this knowledge

should reside on the mobile device which will, in turn, opportunistically inject it into the

infrastructure?

In this thesis we argue for the latter. The former approach is generally used in Intelligent

Environment (IE), such as MIT's project Oxygen Intelligent Room [Rudolph, L., 2001],

Standford's iRoom [Johanson, B. et al., 2002] and CMU's Project Aurora [Sousa, J. P. &

Garlan, D., 2002], where interaction of the application running on a mobile device and

the functions embedded in the environment are tightly integrated and controlled. The

Intelligent Room is composed of a multitude of resources, ranging from devices to

software components, which need to interoperate. The Room has a communication

layer which consists of individual software agents. Each agent is tied to a specific

resource, abstracting away its "low-level" interface. Agents need to speak to one

another to control and coordinate tasks. Metaglue [Coen M. et al., 1999] was

implemented as a system enabling communication between agents. Metaglue agents

can communicate by requesting a stub interface for another agent, and calling methods

directly to the (perhaps remote) agent on that stub. This process of acquiring stubs

connected to agents is completely mediated by the central infrastructure which

performs book keeping in the form of a catalog of all deployed agents and their related

stub interfaces deployed in the Room. Much like Java's RMI [Lindholm and Yellin, 1996],

the stub code can be downloaded from the centralized catalog according to the COD

paradigm.

Three things worth noting here:

(1) Functionality of neither the client nor the infrastructure is extended, only the means

of communicating to the agent are acquired on the fly by the client.

(2) The client application is not mobile; it solely stays on the client's device.

(3) It is not the goal of such platform to provide a set of modular composable service

types that can be assembled by end-users in pre-defined ways, and therefore it

remains the responsibility of developers to create the applications with which users

will interact.

The same arguments hold in the case of Stanford's iRoom Event Heap [Johanson, B. and

Fox, A. 2002] and CMU's Aurora [Sousa, J. P. & Garlan, D., 2002]

In contrast, our approach is to dynamically create a network of virtual machines nodes,

composed of proximate devices, and move executing processes into these nodes. Rather

than passing function parameters among nodes, we migrate processes. Clearly,

infrastructure should have all the "low-level" knowledge to operate local resource, such

as device drivers. Functionality should be exported through a set of APIs - which is

currently case with standard Java or Python. The "high-level" abstraction of these -

classes using them to extend functionality - should reside on a mobile device and

moved to the desired resource context whenever needed by an application. Dynamic

binding can thus be used at run-time to connect "high-level" code to "low-level"

implementation. This way, interaction or a task residing on a user's personal mobile

device will effectively be migrated into the environment extending its functionality on

the fly, rather than explicitly using references to remote "high-level" objects already

deployed in the environment, to carry the task or interaction. This distinction is

important. In some ways, our approach uses a mix of Remote Invocation (REV) and

Mobile Agent paradigms rather than solely relying on Code on Demand (COD) as does

Metaglue. Moreover, since the mobile device initiating interaction with its environment

posses the necessary code to instantiate desired functionality on a given host, there is

no need to rely on a central "catalog" to provide such knowledge. It can happen on a

peer-to-peer base and thus present a high degree of extensibility and scalability.

Virtualization is an answer to the Mobility strategy. Through the virtualization of code

and computing context, a viral application on a mobile device is able to instantiate

functionality in its environment; functionality which was not known to the environment

prior to the interaction. Guidelines concerning the authoring of such application are

described in the next section.

Authoring framework

The Third Cloud is composed of an ad hoc heterogeneous set of materials whose

resistance has been overcome by an ordering process. We called this process

configuration and derived that the Third Cloud is simply a patterned network of

heterogeneous material. Configuring is the process of simplifying the complexity of the

underlying patterned network, so it may appear as a unified block while hosting a task.

In the previous sections we presented attributes and design guidelines answering the

need to devise configuration strategies such as Durability, Mobility and Representation.

These building blocks could form the base of our system but still need assembling. How

can we orchestrate configuration and express a task and interaction - in a meaningful

way?

Interesting concepts regarding serendipitous discovery of resources and the assembly of

patterned networks are present in [Want R. et al., 2008]. They present a dynamic

authoring framework intended to enable a mobile device to spontaneously assemble a

logical computer from a set of wireless components available in proximity. Their focus is

to improve connection set-up of wireless devices by providing a user interface (UI)

enabling the aggregation of remote services recquired to configure a user's platform.

The system abstracts away devices properties by advertising services on the wireless

network. These services are being presented to a user through the UI helping him to

navigate and configure his network. A handful of domain dependent interfaces such as

VNC [RealVNC, 2009] are being advertised as services.

Although quite similar to our endeavor of assembling a computing substrate out of

wirelessly connected entities, our respective approaches greatly diverge. They are

mainly focused on abstracting connections between machines supporting a fixed set of

well known services to help configuration of a wireless network, while we are focused

on spontaneously extending functionality of machines by abstracting computation

needed to perform an interactive task. In our approach, the task is made explicit and

drives the underlying need for a patterned network to take form. In their scheme, task

and configuration is disjoint. They mention this task oriented modular composition

strategy but do not propose any solutions.

As explained in the previous section, most of the knowledge on how to operate needed

resources should be placed in mobile device's applications. In doing so, we guarantee

they can self-operate in a multitude of contexts by pollinating as needed their

environment with functionality. Hence, they should be able to self-configure their

network. In our scheme, task and configuration are partially blurred into the same thing.

Therefore, composing configuration as to be related to the authoring of applications.

Task and configuration process should be part of the same programmable unit capable

of self-operating in multiple contexts.

An authoring framework should be devised combining both application and

configuration assembly. It should be tied to Awareness and Discovery mechanisms and

base interactions with other cooperating system on Identity and Authentication

concepts. It should allow a high degree of expressiveness and flexibility to match diverse

application design models, while being able to incorporate a wide variety of context

awareness.

54

4 Substrate
In the last chapter we presented our design approach intended to support spontaneous

configuration of cooperative devices in a Third Cloud network. This configuration was

oriented towards the execution of a task or interaction introduced by a user on its

mobile device. We blurred the boundary between task and configuration and derived

that a authoring framework ought to be devised supporting the authoring of self-

configurable applications.

In an effort to address this issue I have developed Substrate, both an authoring

framework and execution environment intended to abstract low-level aspects of

distributed and context-aware software engineering. It is intended to present the

necessary paradigms and tools to support an interaction design practice while providing

an environment for software development. It combines a computing model tailored to

support the expression of context based logic and a high level language enabling

composer to easily script applications and generate optimized executable code. In

addition, Substrate's execution environment enables software to migrate from machine

to machine informed by a resource discovery mechanism, enabling serendipitous

interoperability between cooperating machines. It integrates (1) modular composition,

(2) discovery and awareness and (3) virtualization elements presented as formative

attributes of Third Cloud systems.

Substrate is still at an early prototyping stage, but its development has so far provided

insightful information about the functionality necessary to compose context-aware

applications able to opportunistically span execution on a set of heterogeneous and

proximate machines. Functionality is iteratively added to the framework as new needs

are discovered developing applications.

In this chapter I will discuss the design principles and motivations behind the

development of Substrate, its computing model, the language in which applications and

configurations are composed and transformed into executable code and its distributed

execution environment.

Design Principles

Authoring framework

The Third Cloud represents a space of interaction where people using their mobile

devices are able to inject human-centered interactive tasks in their surrounding

infrastructure. While providing system and software engineering support for the

construction of these tasks, Substrate authoring framework should also propose

abstractions and tools to support an interactive design process. Interaction design is the

discipline of defining the behavior of products and systems that a user can interact with.

Therefore the framework should present the following attributes:

* Unify low-level software engineering and high-level application design

* Have ability to model a wide variety of complex contexts and configurations

* Assist dialog between interaction designer and the emergent application

* Facilitate interaction design transfer to technologists

* Allow an iterative design process

Awareness and discovery protocol

The protocol should seamlessly integrate with the authoring environment. An

application composer should be able to describe a resource which needs to be

discovered in a simple manner. Resource semantics need to be strongly defined. Control

flow of an application should also be based on the discovery process.

The protocol needs to integrate design guidelines explained in the Discovery and

Awareness section of chapter 3.

Computing Model

Central to Substrate's modular composition paradigm is an automaton computing model

giving an application quality of a self-operating machine [Arbib, M. A.,1969; Ginsburg, S.,

1982]. This automaton model gives us a powerful abstraction to describe and

understand programs in a formal way.

A finite state automaton is composed of a finite set of states linked together by

transitions. Given an input event, the automaton will transition from one state to the

other following the dynamics of its description. More formally, a finite state automaton

is composed of a 5-tuple (Q, 1, T, qO, F) consisting of:

* a finite set of states Q

* a finite set of input symbols T

* a transition function T: Q x1 - Q

* a start state qO

* a set of final states F c Q

In our current model, a transition T: Q x - Q is governed by a set of conditions. Input

symbols can therefore, embedded in a condition, represent actions or event that can be

either true or false. Therefore our finite state automaton can be defined as non-

deterministic; that is for a given state, there can be zero, one or multiple transitions for a

given input symbol.

The rationale behind our decision to impose a finite state automaton computing model

in Substrate is three fold:

(1) A finite state automaton's logic can be represented as a state diagram. This way

of representing computation is denotative and expressive enough for a non-

computer scientist to clearly understand a system's or application's behavior and

control flow. A finite state automaton and its related state diagram gives the

right semantics to compose, alter, and analyze self-operating software.

(2) An application can be modeled by defining states in which output actions occur

and transitions between states triggered by a context-change. In a way,

applications written with this model have the possibility to be context-reactive,

where control flow is governed by context changes. Transitions and conditions

can have as input information from an awareness engine (sensing and

discovery). An automaton model gives all the necessary tools to encapsulate all

the necessary dynamics an application needs to reflect its immediate context.

(3) We can easily describe a self-migratory machine capable of relocating itself in a

network according to the automaton's configuration. States can represent

machine location and transitions migration checkpoints. Conditions can receive

as input information from a discovery engine, and thus trigger migration upon

detection of a given resource or service present on a network. An automaton

could even clone itself (or part of itself) and relocate it on a remote site.

Core implementation of the automaton model was written in Python using the object-

oriented paradigm. Base classes such as States, Transitions, and Conditions can be

derived into new classes, providing specific functionality or attributes to these basic

building blocks, which can be instantiated in different locations in a network. A state

machine engine part of Substrate's execution environment, discussed in details in the

next section, uses polymorphism mechanisms to operates these new objects. Base

classes present basic finite state automaton functionality such as: on state entry actions,

on state exit action, on state suspended action, on state resumed action, on transition

action and test condition action. These all provide placeholders for subclasses to extend

functionality tied to the automaton's self-operation.

In structuring Substrate's code base development this way, we isolate extendable

functionality at specific points, while keeping the control flow under the govern of the

automaton. For example, awareness and discovery mechanisms only have to subclass a

Condition or a Transition in order to seamlessly integrate our model. Migration

mechanisms will derive from a Transition, while stable and more durable interaction

with a user may inherit from a State. The process of augmenting core functionality is

thoroughly automated and described in details in the following section.

Authoring Environment

In an effort to provide semantics to compose self-configurable viral application based on

Substrate's automaton computing model, we devised an authoring framework consisting

of a formal scripting language, a suite of code generators, and a build system, providing

all necessary tools to rapidly assemble applications and extend core functionality of the

base engine. It conceals both application scripting and library development in a unified

framework.

Substrate's authoring framework is conceptually separated into two layers: (1) a

descriptive layer and (2) a constructive layer. Both applications and libraries are

expressed and constructed using mechanisms related to these two layers. This

separation enables abstraction of the semantics used to describe a self-operating

program from its actual implementation into an executable and visual format. A

detailed description of our implementation is provided in Appendix A.

The descriptive layer constructs an intermediate representation of an application or

library which is implementation agnostic; that is, not depending on any implementation

details such as programming language (C++, SVG, Ada, etc.) or physical machine

architecture. It provides mechanisms to bind library definitions with application scripts,

enabling application composers to easily and quickly assemble functionality based on a

set of specialized libraries.

The constructive layer transforms intermediate representations into executable code

and visual representation. It is tightly tied to specific implementation details such as

programming language and physical machine architecture. By using code generation as

its central mechanism, our constructive layer is able to produce a suit of application

script validators and code-generators based on custom library definitions.

The key proposition of Substrate's authoring framework is that it can be configured and

extended to match the diverse design models of application composition, while being

able to incorporate a wide variety of context awareness and code mobility, anytime

during the prototyping of applications.

Execution Environment

Substrate's execution environment consists of two main components: (1) Awareness and

Discovery protocol and (2) Execution migration system. Both of these components

augment the functionalities of applications written with Substrate's authoring

environment. Specific libraries were constructed to integrate awareness and discovery

into the automaton computing model. The automaton is also used by the migration

execution system to move threads of execution from local machines to cooperative hosts

at run-time.

Awareness and discovery protocol

Awareness and discovery is a central part of the Third Cloud architecture. The focus of

the Awareness and discovery protocol is on situations were a mobile device needs to

query a space about resources made available by cooperative nodes. Mobile device and

cooperative nodes need to be in the same physical area - one hop away from each

other. Two approaches are possible to communicate discovery information from the

nodes to the mobile device on a wireless medium. Respectively using:

(1) Beacons - are periodic transmissions used to communicate resource information

on a given wireless medium. Each node pulses information while the mobile

device listens for incoming data on the same wireless channel. If it hears a

beacon of interest if can initiate a connection with the node. This scheme

presents some advantages in terms of energy consumption since a node can

sleep between pulses and only listen to incoming connections for a short period

of time after transmission of the beacon.

(2) Probes - are request sent by the mobile device to the collection of nodes

petitioning their resources. Upon reception of such requests, the nodes can

reply back to the node directly with their respective resource information. In this

scheme, nodes need to actively listen to possible incoming probe requests -

perhaps wasting more energy than the previous beacon scheme.

Our current implementation of the awareness and discovery protocol uses a beaconing

scheme to inform an environment of the presence of shared resources. An in depth

description of our beacon implementation is present in Appendix A

The information shared in the protocol is based on the guidelines presented in the

Discovery and Awareness section of chapter 3. More precisely it conveys the following:

o Resource name hash - generated by Substrate's authoring environment linking

resource to code semantic (class name).

o Resource description - defines the resource in a format understandable to the

resource estimator.

o Resource estimator name hash - generated by Substrate's authoring

environment linking resource estimator to code semantic (class name).

o Overload metric - custom field, represents resource's overload level.

o Transactional information - custom field, represent pricing in our experiments.

o Callback address - address of Substrate's migration execution system.

o Valid period - period of time in which the beacon is valid.

Resource representations are tightly coupled with Substrate authoring environment's

classes and namespace in order to provide the necessary interoperable semantics

between mobile devices and infrastructure nodes. A node needs not to posses the entire

authoring environment locally per se but rather a subset of the generated classes

representing resources to be advertised on the wireless medium. As matter of fact, a

Resource class has been added to Substrate's authoring environment. A Resource is a

base class - similar to State, Transition and Condition - which can be extended by library

developers to represent actual resources. When auto generating code for a Resource

subclass, Substrate's authoring environment generates four key features (1) an integer

hash based on the class name, (2) compare function stub used to compare a pair of

resources, (3) a serialize function stub used to generate of description of the resource,

and (4) a deserialize function stub used to construct a resource from a description. These

classes can be minimal, that is only containing minimal information about an available

"low-level" library driving a given resource. For example, a Substrate library developer

could write a resource class to signal that a given platform as access to a Wiimote

[Nintendo.com] through Python bindings. This class would not require any functionality;

only signifies through its class name (Resource name hash) that code using a Wiimote

through Python can dynamically bound the local platform to consume the resource.

Thus an actual node connected to a Wiimote, and setup so it can be accessed through

Python, could then advertise this resource description. In turn, a mobile device entering

the environment where the node is situated would be spontaneously informed about

the presence of this type of resource. If the resource is required to execute an

interactive task, then mobile device could initiate code migration to the node's context

by using the given callback address in the beacon - migration is explained in the

following Execution Migration System section.

Resource class names are converted to hash integer datum using simple non-

cryptographic hash functions (in our implementation java.lang.String.hashCode) . The

requirement of having collision free hash function is relaxed here since Susbstrate

already provide a namespace preventing class name collisions.

Awareness and Discovery Engine

A system wide Awareness and Discovery Engine constructs and retrieves discovery

beacons and acts as a mediator between applications and the network interface. It

keeps track of all the available local and remote resources and provides the means to

advertise resources on the network. More precisely, it presents methods to dynamically

publish/unpublish beacons and update their content, methods to query if a given

resource is available on the network and can signal an observer when a new resource is

discovered.

Substrate Substrate

Awareness & DiscoveryAExec Enginen
w

t Execuo Envginentntee InterIc11I

C2jflC2

Figure 4.2- Diagram illustrating Discovery and Awaress ry Aweness processryEngine. Node
Nework INetwork
Interface Interface

Figure 4.2 - Diagram illustrating Discovery and Awareness process

Local resources are advertised through the Awareness and Discovery Engine. Node

wishing to make a resource available on the network, calls the publish method of its

local engine and provides all resource's information as arguments. Local resources are

removed from the engine's local resource table by invoking the engine's remove function

with a valid resource name. Advertisement of local resources on the wireless network is

done periodically by constructing beacon frames of all the local resource present in the

local resource table at that time, and transmitting them through the network interface.

An in depth description of our engine's implementation is present in Appendix A.

As part of Substrate's default authoring libraries we provided the necessary software

components to construct finite state automata based on the Awareness and Discovery

Engine functionality. Special Conditions are made available to connect applications with

signals in order to trigger an event when a resource becomes available (unavailable).

Transitions are specialized to observe the presence of a given resource and initiate a

migration upon discovery. Upon initialization, the awareness engine can also

automatically publish a set of local resources provided in a special configuration file.

Negotiation Protocol

Rather than relying solely on the end user to navigate and compare interactive resources

utilities available in its environment [Want, R. et al., 2008], we devised a negotiation

protocol enabling an application to externalize its preferences and a mechanism to

automatically elect a host presenting a "best" match. This way, network patterning and

configuration relates to the application's composition and task to be performed.

Substrate's authoring environment gives application composers the possibility of

defining and referencing a Resource preference in their application script (see figure 4-

3). This preference definition is used to compare competing discovered resources in

order to infer a best match. Resource preference type and discovered resources types

(or class) should match in order to be compared properly. Type matching is enforced by

the Transition component which implements both the negotiation protocol and the

discovery process. A Transition only observes Resource types which it can compare to its

preference's Resource type. As illustrated in figure 4-3, our specialized transitions are

constructed by providing a reference to a resource preference. In turn, the transition

periodically requests a list of discovered resources from the Awareness and Discovery

Engine containing the same Resource Name Hash as its preference. Here we periodically

requests a list rather than connecting to a signal since we want to compare from a set of

competing descriptions as opposed of getting discreetly inform upon new arrivals.

<ListOfScreens>

<Screen name-"Big" resX="2560" resY ="1600"/>

<Screen name:n"Small" resX="320" resY ="480"/>

</ListOfScreens>

<TransitionMigrateOnResource name "ToDisplay" nextstate ="Display" resourceRef "Big"/>

<TransitionMigrateOnResource name="ToDisplay" nextstate="Display" resou rceRef="Small"/>

Figure 4-3 Application code illustrating resource referencing in TransitionMigrateOnResource.

..

We decided to implement negotiation at the Transition level, in our automaton model,

since discovery of resource constitutes a context change in the environment from the

perspective of a mobile device. Consequently, a sensed context change is translated as a

state transition in a mobile application. Therefore the base Transition was extended to

support both negotiation and discovery. Negotiation is performed on the device seeking

to find a resource matching a given preference.

Algorithm

The negotiation algorithm selects the 'best' resource variant by a process of elimination.
It is somehow similar to the concept of Transparent Content Negotiation in HTTP
[Holtman, K. & Mutz, A., 1998].

(1) Requests a list of discovered resources from the Awareness and Discovery

Engine containing the same Resource Name Hash as the preference. For each

entry in the list construct a Resource from the provided Resource description

using the preference's deserialize function. If the list is empty proceed to step 3.

(2) Apply each of the following tests in order. Any variants not selected at each test

are discarded. After each test, if only one variant remains, select it as the best

match. If more than one variant remains, move on to the next test.

(1) Select the variants producing the smallest result from comparing with the

preference.

(2) Select the variants with the smallest transactional information.

(3) Select the variants with the smallest overload metric.

(4) Select the first variant of those remaining.

(3) End.

The algorithm is periodically executed until it finds a "best" match. We decided to order

discriminator tests in this order - (1) description match, (2) transactional information, (3)

overload metric - but we can easily fiddle with their order to accommodate different

negotiation styles.

Execution Migration Process

A migration of functionality usually occurs when a context change is sensed in the

environment. This change may be initiated by the user himself (pressing a button) or by

discovering a resource context in the vicinity. As we mentioned earlier, a context change

in the environment is translated into a state change in our automaton model. A

Transition is the elements representing state change, linking current state and next state.

Automaton - PC:- S
Next : null

Automaton -PC:
Next :- D

3

Automaton - PC :- a
Next :- nu

Automaton - PC :- D
Net :- null

tiOatable' 4

Automaton - PC:-
Next : null

Figure 4.4 - Diagram illustrating automaton migration process

When a given Transition's conditions are met, it signals the automaton about the need

to perform state change by providing it with the next state identifier. The automaton

then terminates the current state and switches control to the next state (see figure 4-4).

The automaton's state identifier acts as a sort of program counter (PC). Control switch is

MENOW

the moment where execution thread relocation occurs, since it provides a safe-point to

perform migration as explained in the Virtual Machine section of chapter 3. At this

moment of the automaton's execution, all threads initiated by the current state are

terminated and only a single thread of execution remains - the one on the automaton.

Having the PC and execution control, the automaton can be suspended, marshaled, and

sent over the network to a remote host, keeping all its state information in the process.

On the new host, it can be instantiated, resumed, and control can be granted to the next

state identified by the PC.

A Transition can be fired by a set of related Conditions or directly by itself. An example of

self-initiated transition was described in the last section where specialized transitions

were devised to discover resources and elect a host presenting the "best" match in

regard to a resource preference. We provide specialized Transitions part of Substrate's

default components supporting both cases, condition initiated or self-initiated

transitions.

Discussion

In this chapter we presented Substrate. Relating to design approaches highlighted in

chapter 3, Substrate considers the three design points of Authoring, Discovery and

Awareness, and Platform and Code Virtualization.

An automaton computing model was proposed to be at the core of these three

mechanisms. The automaton model provides the means to construct self-operating

machines capable of capturing and reacting to context changes in the environment. It

also presents powerful semantics to express and understand computation modular

composition. A state diagram representation can be derived from a formal automaton

description, giving an evocative vocabulary for non-programmers to clearly understand a

system's or application's behavior and control flow. Self-migratory machines can be

described using this computing model, framing code virtualization and migration in a

self-operable structure.

Substrate's authoring framework was constructed as a composition platform featuring

an extensible "high-level" language based on the automaton computing model. Armed

with a suit of code generators, the authoring framework unifies library software

engineering and application scripting. By featuring a set of extensible classes, the

framework's code base can be augmented with functionality that can automatically be

made available to application composers through "high-level" language extension. More

detailed examples of application scripting and functionality extension are presented in

chapter 6.

The goal of the framework is to construct a set of modular and composable service types

that can be assembled by end-users in pre-defined ways, minimizing the responsibility

of the software developer to solely create the application with which the user interact.

We approached this goal by proposing a modular scripting language. We understand

that end-users may not be able to script applications themselves, but we argue that the

scripting language brings us half-way there. In fact, the current language could easily be

used by interaction designers, with a minimal knowledge of web programming, to

prototype complex distributed applications. Interestingly, we could use state diagrams

to generate applications. In the current framework's implementation, these blueprint

diagrams are generated from scripts which are edited by hand in a text editor. In an

effort to address end-user composition, future development of Substrate's authoring

environment could rather present state diagrams as an editing tool and generate a

script according to the visual representation of an application.

The Awareness and Discovery protocol presented in this chapter was devised to feature

an extensible and representation rich vehicle for resources advertisement and discovery.

Entrenched within Substrate's semantically rich authoring framework, resource

descriptions can be evaluated and ordered according to a preference. An application can

externalize this preference and a negotiation protocol will elect the "best" resource

made available in a given environment. Our current algorithm is somehow very simple

and does not involve negotiation between the advertiser and petitioner. Future

development of the protocol could implement such interaction. Discovery behaviors

were easily integrated into the automaton model by providing special Transitions

capturing discovery-based context changes.

In basing our implementation on the Python programming language (see Appendix A)

we partially answered the design point of Platform and Code Virtualization. However, as

mentioned in the introduction of this thesis we are interested in the viral process as

interoperable mobile entity. We were not simply interested in moving bare code from

machines to machines but rather moving self-operable thread of executions. This is the

reason why we based our computing model on an automaton in the first place. In this

chapter we presented the mechanism that migrates an automaton from a context to

another. Functionality may be extended in an environment by injecting automata code

in its fabric. As explained in the authoring framework section, by deriving a subclass of a

State one can add desired functionality to an automaton which can get installed on a

cooperative machine, informed by the discovery process, using the aforementioned

automaton migration mechanism.

5 The Amulet

The last chapter we focused on the development of a system considering design

guidelines relating to Authoring framework, Awareness and discovery, and Platform and

Code Virtualization. We showed that Substrate provided the necessary mechanisms

answering these guidelines. However, in chapter 3 we also derived that Identity and

Authentication needed to be part of our Third Cloud systems design endeavors.

In this chapter we present the design and implementation a custom portable device part

of the Third Cloud ecosystem. The Amulet is a personal device capable of acting on

behalf of its owner in a multitude of contexts, thus addressing the guideline of Identity

and Authentication. It is also the natural habitat of Substrate, and provides us with a

fully open source embedded systems prototyping platform.

In this chapter I will discuss the design principles and motivations behind the

development of the Amulet, its hardware and software architecture, and the systems

and protocols involved in the Identity and Authentication mechanisms supported by the

device.

Design Principles

Here are the driving design principles for the development of the portable device:

* Authentication - The key feature of the Amulet is that owners always have it with

them. The device is able to prove their identity to other systems.

* Interoperability- Presents high degree of interoperability with other computing

systems and offers the possibility to use multiple radio interfaces.

* Context awareness - Able to establish context in which its user is situated. This

context may be related to the environment, other people close by, and perhaps

the purpose of its user.

* Openness - Open platform featuring an open source operating system and

present the means for software and hardware developers to easily augment

system and device functionality. It functions by using open and extensible

protocols.

* Discreetness - No need to present advanced user interface, it is rather able to

parasite interactive resources from its environment. It is not a voice oriented

device.

Open Platform

The motivations behind development of the device are diverse. Only few years ago the

most common mobile operating systems were Symbian [Symbian.org], Windows CE

[Windows.com], and Brew [brew.qualcom.com]. While these offered application

programming interfaces and software development kits, they did not propose the level

of interoperability with desktop machines we were interested in. Moreover these OS are

proprietary, thus access to system code is not straightforward. Then came along open

source OS based on a Linux [kernel.org] kernel. It was only a matter of time to see the

advent of GNU/Linux [gnu.org; kernel.org] in the mobile OS domain, and more

importantly see a standardization of platforms between computer OS and mobile OS

(Windows, Darwin and Linux).

However, as mentioned in the design principles, the Amulet is not a phone. It resembles

more a mobile single board computer than a cell phone. In this area, fewer products are

available; Gumstix' [Gumstix.com] "computer-on-module" being one of the top

contenders due to its small form factor. One minor problem with the platform is that it

does not provide lithium-ion battery charging. The major problem with Gumstix is that it

is not truly open source - as open source hardware. The main computer-on-module

schematics are not part of their distribution. Part of the current implantation of the

Amulet was the principle of having all parts of the system open - software and

hardware.

Our first custom implementation of the Amulet provides us with fully open embedded

prototyping platform. Most of the technologies presented in chapter 4 are currently

deployed on the device. It presents basic functionality to operate in the Third Cloud. We

tailored a custom GNU/Linux distribution and augmented it with Substrate functionality.

Ubiquitous device designers wishing to make a custom piece of hardware available to

the Third Cloud can use the open source schematics, printed circuit board layout, bill of

material, and Linux distribution to augment, modify or directly manufacture the device.

Such initiative is somehow at the core of this project.

Figure 5.1 - The Amulet version 1.0

Hardware

We chose hardware components that were freely available (e.g. no non disclosure

agreement attached). Here is a list of the core features and peripherals:

* ATMEL AT91RM2000 microprocessor (ARM9 core with MMU)

* 32 MB SDRAM

* 8 MB SPI Dataflash

* Lithium-Ion polymer battery charger through USB

* 2 x USB 2.0 Host ports

* 1 x USB 2.0 Device port

* 1 x SD Memory card socket

* 1 x IS07618 (smart card) interface

* Ix USART port

*1 x JTAG interface

A more detailed list of components, schematics, and board layout are available in

appendix A.

..

To address the design principle of discreetness, the current version of the Amulet does

not present a screen. It rather parasites on other visual interfaces a user may carry with

it (mobile device, laptop, etc) using Substrate's code migration mechanism.

We decided to embed USB host ports in order to be able to "plug n play" different radio

interfaces on the device. This enabled us to prototype applications based on Bluetooth

[Bluetooth SIG], Wifi [IEEE 802.11] and IrDA [IrDa].

Software

The Amulet currently runs a Linux 2.6.27 kernel [kernel.org] and a custom "Viral" OS

distribution. OpenEmbedded [openembedded.org] was used to construct the ARM

cross-compiler, GNU cross-platform toolchain, librairies and applications.

All necessary software components such as Python and dbus [freedesktop.org] are part

of the "Viral" OS distribution in order to deploy Substrate on the device. The

Interoperability and Context awareness design principles are met by the Execution

Migration Process and Awareness and Discovery Engine provided by Substrate.

Identity and Authentication

Central to the Amulet is the concept of identity and authentication. Users of the device

are being "personalized" by it; user's memberships and relationships are recorded,

embedded, and mediated through the device. Relating to work done in [Ford, B et al.,

2006] on personal devices, we decided to assign a single identity key to each Amulet,

rather than abstracting identity from devices and thus requiring the user to inform the

Amulet about its identity each time he uses it [D. Clarke et al., 2001]. The Amulet forms

user identities out of cooperating groups of Amulets, which the user builds through

simple device introduction.

The design and implementation of Identity and Authentication mechanisms on the

Amulet has been developed in conjunction with a partner company that provided us

with a dedicated cryptographic hardware module - in the form factor of a smart card.

This module greatly eases the authentication process since it is manufactured with

embedded secret knowledge, and thereof solves some of the problems of key exchange

and introduction of unknown devices [Pang et al., 2007, Ford, B et al., 2006].

In the next paragraphs, we present three authentication protocols. The Fiat-Shamir

Authentication is the basic form of authentication where upon challenge, an Amulet is

able to prove it posses the hardware module to another Amulet. The Secure Channel

protocol enable a pair of Amulet's to establish an encrypted communication channel

between each other. And finally we explain the protocol behind the creation, verification

and revocation of group memberships between collections of Amulets.

Fiat-Shamir Authentication

The Fiat-Shamir Identification scheme was introduced in [Fiat A. and Shamir A., 1988].

The authentication used with the smart card is based on an improved version of this

scheme, described in [Micali S. and Shamir A., 1990].

The Fiat-Shamir authentication is based on the intractability of factoring - the

assumption that it is hard to find the prime factors of a composite number. It is a Zero

Knowledge protocol between a Prover and a Verifier; where the Prover has to prove that

he knows some secret s, related to a public value v. The protocol use the following

parameters.

n Common modulus, known to both Verifier and Prover. It is selected as a multiplication of
two secret primes p and q, n = pq

v The Prover's public key. v is derived by applying a non-secret function - Id -4 Vto the
smart card ID. This allows the Verifier to link the smart card ID to its pubic key when
performing the authentication.

s The key related to v and known only to the Prover. It satisfies the following conditions:
* It is co-prime to n
* 15<sn-1
Sv * S2 = 1 mod n

Protocol

This section presents the protocol implemented between the Verifier and the Prover. In

this implementation, the smart card comes already manufactured with the knowledge of

p, q, and generates the secret key s.

(1) The Prover selects a random number r, 1 < r < n-1 and sends the Verifier h(x),

where:

* x= r2mod n

* h is a collision free hash function.

(2) The Verifier randomly selects a challenge bit e = {0,1}, and sends e to the

Prover.

(3) The Prover computes and sends back to the Verifier the value y = rsemod n

with:

* y = r, if e = 0 (trivial)

* y = rs mod n, if e = 1 (trivial)

(4) To confirm the proof of knowledge the Verifier does the following:

* Rejects the proof if y = 0

* Verifies that h(x) = h(y 2ve) mod n, with

o x=y 2, ife=0

o x=y2v mod n, if e = 1, since v = mod n

The above protocol is repeated k times so that the probability of being fooled by a

cheating Prover is 1 / 2 k. A legitimate Prover with a valid smart card and correct unique

key s will always answer all possible challenges correctly.

This simple authentication protocol can be performed on the clear since no secret

information is leaked. It is used to verify that a remote communication peer is an

Amulet.

Secure Channel

The establishment of a secure channel is intended to secure the communication

between two Amulets; more precisely it is intended to establish a secure channel

between an Amulet, and the smart card of a second Amulet.

The primary purpose of establishing a secure channel is to prevent an attack in which an

unauthorized "intruder" eavesdrops on the communication line between the two

Amulets, and can either obtain information for which it is not authorized, or inject

information.

The proposed scheme integrates encryption and authentication of the communication

between an Amulet A and an Amulet B based on public cryptography and symmetric

keys.

Handshake Protocol

The Amulet A shall perform the "Initial Handshake" when it first starts "talking" with the

Amulet B and upon every smart card reset thereafter. The handshake consists of the

following stages:

(1) Secure Channel Initialization -Amulet A sends a Request for card ID to Amulet

B. Amulet B sends back its card ID that Amulet A will consider as a Partner ID.

(2) Secure Channel Configuration Check - Amulet A sends a Request of Channel

Configuration to Amulet B. Amulet B sends back information regarding its RSA

Modulus length (Public Key modulus length).

(3) Shared Session Key Existence Check - Amulet A and Amulet B check if they have

already a Session Key. Amulet A sends its own card ID to Amulet B. It then sends

a Request for card ID. Amulet B sends back its card ID that Amulet A will

consider as a "Partner ID". To infer if a Session Key between the two already

exists, Amulet A requests "Partner Smart card ID" from its local smart card. This

information represents the Session Key's partner ID the card is configured to. If

the "Partner Smart card ID" is equal to Amulet B's "Partner ID" then a shared

session key exists and Amulet A goes to phase 5. If not, a Session Key binding

both Amulets must be generated.

(4) Session Key Generation -The Session Key is securely passed from Amulet A to

the Amulet B, RSA encrypted using the Amulet A's RSA Modulus and keys,

following these steps:

(1) Amulet A sends its RSA modulus to Amulet B (Public Key). Upon

reception, Amulet B starts to calculate the Session Key.

(2) Amulet A periodically "pings" Amulet B until calculation is over.

(3) Amulet A then sends a Request for Session Key command to Amulet B.

Amulet B sends back a padded block of data RSA encrypted with Amulet

A's modulus (Public Key) containing both the signing and encryption

Session Keys based on the previously calculated Session Key.

(4) Amulet A creates a hash out of the entire block of data. This has is

identified as AuthData and will later be used in the incremental Fiat-

Shamir authentication protocol.

(5) The Amulets perform several rounds of Fiat-Shamir authentication

algorithm, based on AuthData. These rounds shall be performed

without interruption. If the authentication fails, abort the Session Key

generation.

(6) AmuletA decrypts the block of data with its RSA private key and stores

both the signing and encryption Session Keys in its local smart card for

later use.

(7) On completion, the Amulet A updates its "Partner Smart Card ID" value

with the current card ID of Amulet B.

(5) Message Key Generation

(1) Amulet A creates a random seed and sends it to Amulet B encrypted

using the Session Key. The random seed will be used to construct the

Message keys.

(2) Amulet A sends a Request for Message Key to Amulet B. Upon reception,

Amulet B creates a Message Key based on the Amulet A's random seed

and the previously established Session Key. It then calculates both

signing and encryption Message Keys based on the value of the

Message Key. In response to the Request for Message Key, Amulet B

sends back both signing and encryption Message Keys and the original

random seed, encrypted with the Session Key.

(3) When receiving the response to its Request for Message Key, Amulet A

does the following:

(1) Decrypts the data received and validate the Session key

signature. If the signature verification fails the Amulet marks the

Session Key as non-valid and resets its smart card.

(2) Compares the random seed with the seed it sent previously. If

the seeds do not match, resets its smart card.

(4) On completion, Amulet A stores both signing and encryption key in

memory and use them do securely communicate with Amulet B.

Standard Rijndael block cipher (AES-128) is used for signature and encryption. The

Incremental Hash function is also a Rijndael-based hash function. The following table

summarizes the information shared between that smart card and the Amulet.

Hardware module internal memory

RSA modulus, RSA modulus length, RSA private key,

Session keys (signature and encryption), Partner

Smart Card ID

I Amulet internal memory
Message Keys (signature and encryption),

Incremental Hash function, AuthData

Group management

Groups permit the establishment of membership relation between collections of

Amulets. An Amulet can authenticate its membership to other members of the same

group. The smart cards embedded on each Amulet are manufactured with pre-

configured secret group knowledge (password and identification code).

The following protocols require that a Secure Channel be established between a pair of

Amulets and a valid Message Key is available. All communication between Amulets is

encrypted and signed.

Joining protocol

Scenario: Amulet A is part of group G and wish to add Amulet B to the group.

(1) Amulet A sends a Join Group command with a secret code identifying

group G to Amulet B.

Verifying protocol

Scenario: Amulet B insinuates it is part of group G and Amulet A, who is effectively part

of the group, wants to verify the assumption.

(1) Amulet A sends a Group Membership Check command to Amulet B with

a secret code identifying group G.

(2) Amulet A sends a Verify Card Password command to Amulet B. Upon

reception, Amulet B retrieves the password from its local smart card,

encrypts the result and sends it back to Amulet A.

(3) AmuletA decrypts the response and verifies the signature. If signature

is not valid, Amulet B is not part of group G.

(4) Amulet A verifies that the decrypted password is effectively the one of

group G. If the password is not valid, Amulet B is not part of group G. If

the password is valid, Amulet B is effectively part of group G.

Removing protocol

Scenario: Amulet A and Amulet B are part of group G. Amulet A needs to remove Amulet

B from the group.

(1) AmuletA sends a Remove from Group command with a secret code

identifying group G to Amulet B.

Authentication Engine and API

In all the protocols mentioned above, the sequence of operations involving the Amulet's

embedded smart card is important. The card keeps state of the commands sent to it and

thus the steps described in the protocol must be performed in sequence. Concurrent

access to the smart card peripheral must thereof be mediated by a system wide

interface.

81

Application Application

Application

(Authentication
API

Engine

Smart card
Interface

Amulet

Figure 5.2- System diagram of the Authentication Engine and API

The Amulet base system provides such interface called the Authentication Engine. It is

responsible for interfacing with the smart card reader hardware peripheral and

encapsulates all the "low-level" card commands needed to perform a specific protocol.

Atop of the engine is an Application Programming Interface (API) implementing the Fiat-

Shamir Authentication, Secure Channel, and Group Management protocols. Concurrent

access to the card is mediated through the Authentication Engine where a single

instance of the engine is encapsulated in a system wide dbus [freedesktop.org] deamon.

If a given protocol is under development, access to the card is denied to other

applications until the protocol terminates.

Discussion

In this chapter we introduced the Amulet, an open source embedded systems

prototyping platform having for design guideline Identity and Authentication.

82

In terms of hardware, the device is not by itself novel. It rather presents the core basic

functionality a device should have in order to operate in the Third Cloud. Access to open

source hardware design files and bill of material is especially intended to bootstrap the

design and implementation of new ubiquitous Third Cloud devices. New designs may be

based on the current architecture or may not, the point is to have them open sourced so

users can augment, modify, and perhaps distribute emergent hardware devices.

The Amulet achieves interoperability with other computer systems by presenting a

GNU/Linux operating system augmented of Substrate programs and systems, and by

featuring USB ports where multiple standard "plug n play" radio interfaces may be

connected to the platform. Using Substrate, code and programs are migrated from the

embedded platform to more powerful machines and richer interactive systems in the

environment, making use of their resources on the fly. Context is captured by the device

within Substrate's Awareness and Discovery system. Future development of the device

may include embedded sensors to bring local platform sensing into play in the

establishment of context.

Central to the Amulet is a cryptographic hardware module providing a toolbox for the

implementation of authentication protocols and encrypted communication channels.

We presented a first zero-knowledge protocol intended to verify that a communicating

peer effectively posses the cryptographic module. The verifier itself does not need to

posses such modules. It only challenges on the fly a pretending Amulet to prove itself

and can infer, through mathematical manipulation of answers given by the Amulet, if it is

a trustworthy device. This simple protocol answers the need of authenticity while

keeping a degree of anonymity, in the sense that the Amulet is not directly identified by

this zero-knowledge protocol but rather challenged to give proof of being of the Amulet

"type".

On the other hand, a Secure Channel can only be established between a pair of

Amulets. A Session Key must first be produced in order to create Message Keys used to

encrypt and sign messages between communicating peers. This Secure Channel protocol

relies on one of the Amulet's public key to securely exchange symmetric Session and

Message Keys. When generated, these keys can be used for subsequent communications

involving the same pair of Amulets. This protocol answers the need for confidentiality in

our Identity and Authentication design guidelines.

Amulets can also form groups between each other. Thereof, a user can forge itself an

identity by creating a new group or simply by getting introduced to a preexisting group

of Amulets. The fact that we are using a cryptographic hardware module manufactured

with preexisting groups in memory eases the implementation of such mechanism;

however it is limited since it does not scale. Future development need to take this

scaling limit in consideration. Also, groups are only used to authenticate memberships

and do not provide cryptographic targets. We can use Message Keys generated between

a pair of Amulets as groups' cryptographic targets but they were not devised to be used

in this scenario.

In general our efforts here have been on implementing systems drivers to communicate

with the cryptographic hardware module atop of which we build the protocols

mentioned above. Further development of the Identity and Authentication system

would dedicate efforts on abstracting these core mechanisms away by devising and

implementing a key and identity management system presenting a richer semantic to

describe, present and manage social relations entrenched within the Amulet. The work

presented here could be the foundation for such endeavor.

85

6 Applications
In this chapter we present two applications that were constructed with Substrate's

authoring environment atop the Awareness and Discovery Engine and Execution

Migration Process. The point is to show the flexibility of Substrate, the simplicity of its

scripting language and the visual feedback produced by the engine. A first application

featuring a Notepad capable of migrating from the Amulet to a discovered display in the

environment is presented. A second application consists of a face detection search

performed in a room where cameras are made available. Search is modeled around

Google's map/reduce algorithm.

Notepad

This application is intended to be a simple example of the interaction functionality

migration involving the Amulet and interaction resources in its environment. A notepad

is deployed on the Amulet, capable of migrating to proximate display resources upon

discovery. The following table shows the few lines a Substrate script needed to construct

the application.

<Application na~m "Viral Notepad Application" mjrh "Daviid Gauthier" in, : -'http://www.w3.org/2001/XMLSchema-instance'

xsi~ oN msp'es m ato ation m,'../generators/viral framework.xsd'>

<Interfaces>
<ServiceDefault/>
<ServiceNotepad/>

</Interfaces>
<Resources>

<ListOfScreens>
<Screen nanw "aScreen" resX "2560" rs "1600"/>

</ListOfScreens>
</Resources>
<Machines>

<StateMachineDefault n we- "Application Automaton" reii 3 Rem w- "false" s spendOn I ei) "false" ii " ' "10">

<ListOfConditions>
<ConditionAlways/>

</ListOfConditions>
<ListOfStates>

<StateDefault na me "AmuletState">

<ListOfTransitions>
<TransitionMigrateOnResource 1ie \i "ToNotepadState" ne xstate "NotepadState" ire i P if :"aScreen"/>

</ListOfTransitions>
</StateDefault>
<StateNotepad name- "NotepadState" tit --"Zapman's Notepad">

<ListOfTransitions>
<TransitionMigrationDefault nexlsatie -"AmuletState" riamne"toAmuletState" ip "00:XX:E7:XX:D2:XX">

<ListOfConditions>
<ConditionMigrateNotepad/>

</ListOfConditions>
</TransitionMigrationDefault>

..

<TransitionDefault ; "te "End" iif"W "toEnd">

<ListOfConditions>

<ConditionExitNotepad/>
</ListOfConditions>

</TransitionDefault>

</ListOfTransitions>
</StateNotepad>

<StateAppShouldEnd "End"/>

</ListOfStates>
</StateMachineDefault>

</Machines>

</Application>

We developed a Notepad library, referenced by <ServiceNotepad/>, containing StateNotepad,

ConditionMigrateNotepad, and ConditionExitNotepad. StateNotepad is derived from

Substrate's base State class. It overwrites the base class' OnEnter method where Python

code creating the Notepad window and displaying the current text is placed. OnLeave is

also overwritten to capture the input text and serialize it before migrating back to the

Amulet. The Notepad widow also presents a menu where a user can close the

application or signal the Notepad to migrate back to its Amulet. These menu items raise

events that are captured by both ConditionExitNotepad and ConditionMigrateNotepad

respectively.

Following is the state diagram based on the "Viral Notepad Application" script,

generated by the authoring environment. It illustrates the three states described in the

script and the transitions liking them together. This diagram gives the application

composer a "high-fidelity" visual feedback of the application automaton being

generated in (Python) code.

Application Viral Notepad Application by Daviid Gauthier

Machine Main Application Automaton

Figure 6.1- Generated state diagram of the Notepad application

Notepad is a simple application illustrating the basics functionality of Substrate's

automaton migration. It introduces concepts of State and Condition functionality

....

extension and effective scripting. A more developed application is presented in the next

section.

Map/Reduce Face Detection

This next application is performing a search based on faces detected in a room. In this

scenario, cameras attached to cooperating machines are discovered and face detection

code is migrated to their respective contexts in parallel, consuming the camera

resources locally and using the processing power of the underlying machines. The search

itself returns a picture featuring the highest number of faces from the collection of

pictures taken from each machines.

The algorithm to perform the search is based on Google's Map/Reduce algorithm [Dean,

J. and Ghemawat, S., 2004]. Map/Reduce was designed to execute a parallel search in

larger clusters of commodity machines. A programmer wishing to perform search on the

cluster writes two functions:

(1) Map function - analyzing data on a single machine and generating a set of

key/value pair based on the analysis algorithm.

(2) Reduce function - having as input the set of key/value pair generated by the map

function and reducing it to a smaller size set, generally reducing it to a single

pair.

The Map/Reduce system is responsible of sending the custom Map function code (REV)

to each machines in the cluster in order to be executed in parallel. It then links the

results generated by the Map functions to the Reduce function which, in turn, reduces

all the intermediate results to a single search result.

We implemented a similar parallel Map/Reduce algorithm using Substrate authoring

environment. Two specific states are implemented: StateMap and StateReduce. These

are embedded in two different automata executing concurrently. Here is the script for

the Map automaton:

The first state named MigrateMaps is responsible to send an automaton to each

discovered machines featuring a camera. The same copy of the automaton is sent to

each machine and the script is executed in parallel. The MigrateMaps 'transition named

TransitionMigrateOnAllResources is responsible for this parallel migration.

When the automaton has been migrated to the remote context, it enters the StateMap.

This State provides an OnEnter function hook for custom code to be scripted in. Here

<SnapAndAnalyze numberSnaps="10"/> is taking ten pictures using the camera, analyzing the content

with a face detection algorithm, and producing a file name/number of faces pair for each

pictures. The generated set of file name/number of faces pairs is then handed back to

StateMap to store the result in a global variable. This StateMap's OnEnter function is

similar to Google's Map function in the sense that it can be customized with code as

long as the function emits back key/value pairs to the Map system in order to be stored

and reduced later by the Reduce function.

<StateMachineDefault name--"Map" r etoResume"fal se" spendOnLeave"false" maxPlays="10">

<ListOfConditions>
<ConditionAlways/>

</ListOfConditions>
<ListOfStates>

<StateDefault name "MigrateMaps">
<ListOfTransitions>
<TransitionMigrateOnAllResources name "ToMap" nextstateh"Map" resourceRef "aCamera"/>

</ListOfTransitions>
</StateDefault>

<StateMap name="Map" red ucerAdd r"aaa.bbb.ccc.ddd" reducer Port="8188">

<ListOfTransitions>
<TransitionDefault name "ToEnd" nextstate="End">

<ListOfConditions>

<ConditionReducer/>
</ListOfConditions>

</TransitionDefault>
</ListOfTransitions>
<OnEnter>

<PrintState nmessage"TakeSnapAndAnalyze OnEnter"/>

<SnapAndAnalyze numberSnaps="10"/>

</OnEnter>
</StateMap>

<StateAppShouldEnd na'e "End"/>

</ListOfStates>

</StateMachineDefault>

.......

After OnEnter function completion, StateMap signals back to the Reducer, still residing

on the originating platform, that it has terminated its analysis. The mapping automaton

then halts execution and wait for the reducer to arrive before ending the process. This

halt is represented by the <ConditionReducer/> attached to the StateMap's single transition.

At the other end, the Reduce automaton is waiting for signals from the Map automata to

start execution. This halt is represented by the <ConditionMapSignals cal backPort="8188"/>, attached

to the automaton in the script bellow:

<StateMachineDefault name="Reduce" resetOnResume "false" suspendOnLeave="false" maxPlays="10">

<ListOfConditions>
<ConditionMapSignals ca libac kPort "8188"/>

</ListOfConditions>
<ListOfStates>

<StateDefault name="MigrateToMaps">
<ListOfTransitions>

<TransitionMigrateToMapper name="ToReduceResults" nextstate= "ReduceResults"/>
</ListOfTransitions>

</StateDefault>

<StateReduce name "ReduceResults">
<ListOfTransitions>

<TransitionDefault name= "ToMigrateToMaps" nextstate "MigrateToMaps">
<ListOfConditions>

<ConditionMoreMappers/>
</ListOfConditions>

</TransitionDefault>
<TransitionMigrationDefault name="ToDisplayResult" nextstate="DisplayResult" ip=" aaa.bbb.ccc.ddd">

<ListOfConditions>
<ConditionNoMoreMappers/>

</ListOfConditions>
</TransitionMigrationDefault>

</ListOfTransitions>
<OnEnter>
<PrintState message="ReduceSnaps OnEnter"/>
<ReduceSnaps/>

</OnEnter>
</StateReduce>

<StateDefault name="DisplayResult">
<ListOfTransitions>

<TransitionDefault name="ToEnd" nextstate="End">
<ListOfConditions>

<ConditionCloseApp/>
</ListOfConditions>

</TransitionDefault>
</ListOfTransitions>
<OnEnter>

<ShowReducerResult/>
</OnEnter>

</StateDefault>

<StateAppShouldEnd name="End"/>

</ListOfStates>
</StateMachineDefault>

When the ConditionMapSignals receives signals from the remote Map automata it

records their respective addresses and stored them in the automaton memory. Data is

...

kept in the automaton's memory since the automaton is the object whose entire state is

migrated from machine to machine. The automaton presents a dictionary (key/value) to

store transportable data across machines. When all the addresses are collected, the

Reduce automaton enters its first state named MigrateToMaps. A special Transition

called TransitionMigrateToMapper was devised to go through the heap of remote

addresses constructed by the ConditionMapSignals and initiate a migration to the

address popped from the top.

After the automaton has been migrated to the remote context, it enters the

StateReduce. Similar to StateMap, this State provides an OnEnter function hook for

custom code to be scripted in. Here <ReduceSnaps/> is related to the previous map function

and goes through the intermediate set of file name/number of faces pairs on the local

platform and compares the highest number of faces score with what it already has in the

automaton's memory. If the score is higher, it stores the bitmap picture in memory and

updates the new score. Access to the Map set of key/value pairs is possible since the set

is a global variable of the StateMap module (Python module are singletons instances)

and the StateReduce and StateMap are part of the same Python OS process.

After reduction, the automaton hops to the next "Map machine" if the address heap is

not empty. The same process described above will take place, ultimately reducing all

intermediate results to a single one. When the heap of addresses runs empty, the

automaton is migrated back to its originating platform and the picture with the highest

number of faces is displayed. The following figure is the state diagram of both automata.

Application Map/Reduce Face Detection Application by Daviid Gauthier

Machine Map

Machine Reduce

Figure 6.2 - Generated state diagram of the Map/Reduce Face detection application

Discussion

In this chapter we presented two applications built with Substrate's authoring

environment.

Notepad is a parasitic application capable of projecting itself from an Amulet into an

environment featuring display devices. The script only contains 41 lines of XML code.

Simple, the application is intended to introduce to application composers the simplicity

of the authoring framework and library developers the mechanisms from which

functionality is virally injecting into an environment. The application could be

generalized to richer interactive applications, such a gaming, web browsing, or even

drawing.

Map/Reduce Face Detection is an advanced application composed of two automata

interacting with each other. This application shows the flexibility of Substrate to

implement diverse programming models and agility to configure a set of loosely coupled

machines. Here the Map/Reduce model has been implemented and adapted to the

Third Cloud. We showed that parallel execution of code is possible by migrating the

same instance of an automaton to different machines (Map automaton) - this model

relates to the remote invocation (REV) paradigm introduced in chapter 3. We also

..

I r

showed that a mobile agent can be constructed crawling from machines to machines

(Reduce automaton), where the route is established on the fly with the cooperation of

other automata (Map automata). In Google's data centers, Map/Reduce is supported by

an underlying central system responsible for scheduling jobs across a well know set of

machines and mediating access to the file system [Dean, J. and Ghemawat, S., 2004]. In

our case, the Map/Reduce task is a viral process capable of self-configuration and self-

operation on a set of heterogeneous and loosely coupled machines. Task and

configuration are part of the same executable.

In both application examples we demonstrated the process of writing an application

script and extending functionality of the base system. Let's now revisit and evaluate

Substrate's design principles.

* As illustrated by StateNotepad, StateMap, and StateReduce, Substrate's

authoring framework permits the extension the "high-level" language with

semantics exported form a custom library description. In turn, the generated

application code directly links library code. The framework does indeed unify

low-level software engineering and high-level application design.

* As demonstrated in the context of the Map/Reduce Face Detection application,

the authoring framework gives the ability to model a wide variety of complex

contexts and configurations.

* The generated state diagrams are also important tools to understand what will

be generated in executable code. These blueprints simplify the understanding of

the internal logic of an automaton by representing it is an accessible visual

format. It assists dialog between application composers and their emergent

application. Moreover, idea transfers between non-technologists and

technologist is greatly improved by this sort of state diagram.

Substrate's code generation mechanism supports an iterative design process

since application can be assembled, modified, and deployed rapidly without the

need of intermediary expert developers.

95

7 Conclusion and Future Work
In this thesis we introduced architectures of the Third Cloud. Based on concepts of

connectivity utility and resource utility, the Third Cloud looks at bringing cooperative use

of interactive resources in the in the public realm; creating an interaction utility. We can

draw important similarities between the Third Cloud concept and the one of ubiquitous

computing. The main difference relates to scope. Rather than embedding interactions in

highly controlled spaces, contexts of interaction in the Third Cloud need to be

spontaneously defined on the spot, based on less organized, perhaps decentralized set

of public interaction resources presenting uneven computing conditions. This thesis

looked at the topic of interoperability, modular composition, and application authoring

in the design of pervasive and public interactive systems.

A typical approach to solve the problem of interoperability between devices is to define

a fixed set of domain-dependent interfaces which would be installed and configured in

the environment a priori a given interaction. A mobile device would then discover the

availability of these services and establish a domain dependent protocol with a specific

node hosting a given service. For example, in the case of the Notepad application

presented in chapter 6, a Notepad service would need to be configured on a set of

machines in the environment and made available on the network. A client application

residing on the user's mobile device would need to discover the Notepad service and

establish a connection using Notepad dependent protocol with the node hosting it.

Another domain-dependent interface would also be needed to build the Map/Reduce

Face Detection application presented in the same chapter. However, the problem with

such domain-dependent interfaces in the context of the Third Cloud, of course, is that

there are a plurality of them; the range of such interfaces means that there are always

likely to be specific interfaces that a particular entity is not configured to use or

understand.

Our alternative approach to this problem, presented in this thesis, is to consider a small

set of domain-independent interfaces shared between devices and machines of the

Third Cloud. Rather than making explicit a single specific interaction between

communicating entities, as in the domain-dependent case, our domain-independent

interface funnels interactions into one simple protocol. Funneling of interactions is

achieved with the use of virtual machines, placed on each Third Cloud devices, and

virtual code exchange between these devices. In other words, our approach is to

consider the dynamic configuration of an ad hoc network of virtual machines composed

of devices in proximity in order to move executing processes into nodes presenting local

access to a given interaction resource. Using the systems we created, we have shown

that there is no need for separate protocols for the Notepad application and the

Map/Reduce Face Detection applications to execute in an environment but rather a

need for a single protocol used to migrate desired functionality from a mobile device to

its cooperative context.

Motivated by the concept of viral process, our approach in achieving interoperability

tried to highlight the importance of decoupling computation from the underlying

machines where it takes place; not to make computation location invariant per se, but

rather to make it agile, mobile, and opportunistic. Augmented of the ability to capture

social and infrastructural context in which it operates, computation can spontaneously

and opportunistically span the boundaries of local and personal device and expand itself

into the environment by using the proximate interaction infrastructure as a substrate;

making the vision of interaction utility a reality.

Given the anticipated continued churn in devices, media formats, and interaction

resources, it will be practically impossible for application developers to provide to end

users custom-built applications that support the range of things that they want to do

given the variety of resources available in a particular point of time. A central goal of this

thesis was to find the middle ground in a spectrum that ranges between extreme ease of

use - represented by pre-built applications proposing a unique and fixed interaction

scenarios - and extreme flexibility in constructing a variety of tasks - using specific

programming languages such as Java, Python, C++ to express in details a given

application.

Our approach was to construct a set of modular and composable service types that can

be assembled by end users in pre-defined ways, minimizing the responsibility of the

software developer to solely create the application with which the user interact. We

approached this goal by proposing a modular scripting language and an automaton

computing model both entrenched in a single authoring framework we called Substrate.

We decided to base user generated applications on an automaton model since it

provides the necessary modular structure and expressive abstraction, such as a state

diagram, to author self-operable interactive tasks capable of safely migrating execution

to cooperative machines depending on their surrounding contexts. Our framework itself

presents a descriptive layer where automaton-based applications are scripted in a high-

level scripting language, and a constructive layer transforming the scripted computation

into executable code. By separating description from construction, we isolate the

specifics of implementation and unify both library software engineering and application

design with the same semantics. As a result, emergent resources can automatically be

added to our framework by having a software engineer describing a library to operate

the resource, implementing the details in a target programming language, and exporting

control semantics to our high-level language in a modular fashion so application

designers can assemble an application based on the resource.

We demonstrated the flexibility and power of our approach in chapter 6 where two

different applications, Notepad and Map/Reduce Face Detection, were authored and

constructed using Substrate's framework. In these applications, specialized modular

automaton components such as State, Condition, and Transition have been extended

with specific functionality in a set of libraries; functionality ranging from automaton

migration to discovering resources in proximity. These components naturally integrated

our computing model and were made available to application designers through

Substrate's high level language. In turn, using the same automaton paradigm to describe

computation and the same authoring environment, Notepad and Map/Reduce Face

Detection were constructed. Through these applications we showed that Substrate can

adapt to diverse programming models and demonstrated the agility of an automaton-

based viral process to configure a set of loosely coupled machines to carry a given task.

Our systems could certainly be improved. Future work on Substrate would consider

creating an editing tool based on automata state diagrams. This editing front-end could

easily generate Substrate scripts. The same compiler toolchain described in this thesis

would then be used to generate executable code. The Awareness and Discovery engine

could propose adaptable advertising rates based on work presented in

[Ypodimatopoulos, P., 2008]. Our Identity and Authentication protocols could form the

basis of an identity management system presenting a richer semantic to describe,

present and manage social relations entrenched within the Amulet. The Amulet could

be embedded with a set of local sensors and its form at could be made smaller.

In fact, all architectures presented in this thesis were devised around the open source

philosophy in the hope of bringing user innovators as key actors in the development of

the Third Cloud [von Hippel, E., 2007]. Substrate was constructed around the

assumption that by constructing a set of modular and composable service types that can

be assembled by end-users in pre-defined ways, we could minimize the responsibility of

the software developer to solely create the application with which the user interact. The

open source Amulet was also designed in reaction to the pathological limitations of our

devices to interoperate with each other; limits imposed by network operators and

machine makers who are building technology in silos. This is perhaps the reason why

Weiser's vision of ubiquitous computers may have become a reality, but his vision of

invisible computing and "calm" interaction has not. In an effort to address this issue, all

our systems are open and have been integrated horizontally, from the bootloader

loading the Linux kernel into the Amulet microprocessor's memory to Substrate's "high-

level" language used to compose viral applications. We truly believe that empowering

user innovators is the only avenue which will lead us to the Third Cloud. It is time to start

treating different materials - people, machines, "ideas" and all the rest - as interactional

effects from which social, interactive, and innovative networks emerge, rather than

primitive causes.

100

101

Appendix A

Substrate Implementation Notes

A.1 Authoring Environment

appcatron executable

I

Figure 4.2 - Diagram illustrating components of Substrate's authoring environment

Substrate's scripting language is based on extensible markup language (XML) and related

technologies. It was elected language of choice since has the following feature:

* provides a formal semantic to describe program/application

* is easier to read and write than bare source code

* tools exist to validate content

* tools exist to transform into another format

Used in tandem with both XML Schema (XSD) and Extensible Stylesheet Language

Transformations (XSLT) technologies, we can easily engineer a basic compiler; where the

XSD-validating parser figures as the compiler's front-end and the XSLT code generator as

the back-end. Substrate's authoring framework features four of these compilers:

102

..

(1) Library definition compiler

Core elements of the finite state automaton can be extended at the library level.

A library description is written in XML and validates against Substrate's library

XML schema (library.xsd). The schema defines possible base types that may be

extended (subclassed) by a library. Such types include: State, Transition,

Condition and Procedure. Extension of these basic types is performed by

providing a class definition, consisting of input parameters and a set of methods.

Hence, a library definition exposes new class names and method signatures,

defining a specific namespace which can be referenced by applications. Code is

generated when the library definition validates against the library XML schema.

Specific XML to Python transformations of are defined in an XSLT format

(LibraryGenerator.xslt). This file defines the process of generating Python classes

derived from Substrate's base classes. Depending on the content of the library

definition, a set of files are generated. Each of them represents a derived class

comprised of method placeholders. These methods are generated according to

their signatures, specified in the library definition, or derived from Substrate's

base classes. In programming language term, each generated classes are facades

[Gamma et al., 1995] comprising method stubs for code to be written in.

Hence a current Python library can easily be added to Substrate's code base. It

only needs to define an export interface in XML (library definition) and the

authoring framework will in turn create placeholders to put desired functionality

in. To make a custom piece of code available to application composers, a library

developer only has to write a few lines of code: write an XML interface and hook

its code into generated method stubs.

(2) Library definition to Application XSD and XSLT compiler

From a library description in XML the framework constructs a namespace used

to reference generated classes. This namespace is constructed by producing an

application XML schema (application.xsd) from the library description. This

generated schema contains all possible class names and method signatures

103

described in the library which can be referenced in an application and against

which the application XML description is validated.

Bindings between generated namespace and the actual Python library code are

defined in an generated XSLT document (ApplicationGenerator.xslt). This

document contains code transformation descriptions which have as input

elements of the generated namespace and produce as output related Python

class and method invocations. Thus applications' description in XML are

transformed into valid Python code capable of binding previously generated

libraries.

This intermediate code generating phase is central to the authoring framework's

extensibility. By providing both an XML schema generator

(ApplicationXSDGenerator.xslt) and a code-generator generator

(ApplicationXSLTGenerator.xslt) it is possible to seamlessly extend the

framework's code base with optimized library code that is automatically

available to applications scripts.

(3) Library definition to Application state diagram XSLT compiler

From a library definition, a state diagram generator is constructed. Currently

Substrate outputs a state diagram based on the Scalable Vector Graphics (SVG)

format. The generated SVG code-generator contains shape descriptions and

draw functions to construct a representation of an application's automaton

logic. It gives a visual feedback to application composers on the flow control of

their script and provides a blueprint of what will be generated in executable

code.

(4) Application compiler

An application is scripted in an XML format which validates against the

generated XML schema (application.xsd) described in the previous section. This

104

schema also contains format description of a finite state automaton. Hence, an

application is required to be scripted in a finite state automaton format

describing a set of States, Transitions and Conditions. These building blocks can

be derived from generated libraries or from Substrate's base implementation.

Code generation of an application is two fold. First the application XML will be

transformed into an SVG document featuring a state diagram representation of

the automaton (ApplicationVisGenerator.xslt). Second, the application XML is

processed according to the generated Application XSLT document

(ApplicationGenerator.xslt) and produces a Python executable file binding both

Substrate's core finite state automaton classes and extended library code.

The build process is automated by the various Ant [Ant.apache.com, 2009] scripts

produced alongside the code generation phases. These Ant scripts are similar to

Makefiles, as they contains all necessary commands to validate and generate

applications and libraries when invoked.

A.2 Awareness and Discovery

0-1 2-3 4-5 6-7 8-9 10-11

RNH RENH TRAN

CB OM VP PL

Resource Description Payload

RNH: Resource Name Hash (4 bytes)
RENH: Resource Estimator Name Hash (4 bytes)
TRAN: Transaction (information)(4 bytes)
CB: Callback address (6 bytes)
OM: Overload Metric (2 bytes)
VP: Valid Period (2 bytes)
PL: Payload Length (2 bytes)
Resource Description Payload (1 or more bytes)

Table 4-1 Awareness and Discovery frame header

Our protocol uses raw sockets to directly embed beacon information in layer-2 frames.

105

We utilize the provided link-layer MAC address to keep track of beacons' provenance.

Upon reception of a beacon, the Awareness and Discovery Engine looks its remote

resources table if the given MAC address/Resource Name Hash pair is present.

If the pair is not present:

(1) Constructs a data structure containing all the information provided in the

beacon.

(2) Timestamps the structure to keep track of its validity.

(3) Inserts the structure in the remote resource table.

(4) Signals observers about the presence of this new resource.

If the pair is present:

(1) Compares the content of the beacon with the given data structure.

(2) Updates data fields if necessary (update the overload metric for example).

(3) If the resource as been updated, signals observers about this resource's update.

(4) Gives the structure a new timestamp.

In order to keep its view of the network up-to-date, the Awareness and Discovery Engine

refreshes its remote resources table periodically by comparing the Validity Period of

each resource entry with the difference of times between the current time and the

entry's timestamp. If the comparison exceeds a given threshold T, then removes the

entry from the table and signals observers about this resource's removal.

Local resources are also advertised through the Awareness and Discovery Engine. Node

wishing to make a resource available on the network, calls the publish method of its

local engine and provides all resource's information as arguments. In turn, the engine

constructs a data structure representing the resource and inserts it in its local resource

table. A node can dynamically call the update method when it needs to change a given

resource's state (e.g. Transactional Information, Overload metric). Local resources are

removed from the engine's local resource table by invoking its remove function with a

valid Resource Name Hash. Advertisement of local resources on the wireless network is

done periodically by constructing beacon frames of all the local resource present in the

106

local resource table at that time, and transmitting them in through the network

interface. The engine inserts its own advertisement period in each beacons' Validity

Period.

Applications and the Awareness and Discovery Engine do not communicate directly -

not part of the same OS process. In its current incarnation, the engine is encapsulated in

a system wide dbus [freedesktop.org] deamon, an inter-process communication (IPC)

bus system portable to a plethora of Linux based systems and machine architecture (x86,

ARM, MIPS, PPC, etc.). In isolating Substrate's application and system domains with a

well defined set of signals and methods, our beaconing scheme is more consistent as the

central engine broadcasts periodically all available local resources to the environment,

rather than singularly and sporadically, giving a better spontaneous picture of its state to

its neighborhood. Also, since the access to the network interface is mediated through

the engine, we could easily change wireless medium or network protocol without

impacting applications' composition.

A.3 Execution Migration Process

Our implementation of the Execution Migration Process is based on Python's Interpreter

functionality (VM). We constructed a special Python class loader sitting in between

Substrate applications and the Python Interpreter. It is intended to capture all Substrate

modules (libraries) imported by an application. More precisely it performs the following:

(1) Locates a given Substrate module on the local machine or request it from a peer

wishing to migrate to the local platform (detailed in the Protocol section)

(2) Stamps the module of being Substrate related and keep a reference to it.

(3) Loads the module into the Python Interpreter

The class loader is configured to know a priori the location of the Substrate library

directory on the local machine. Consequently, it can quickly locate Substrate libraries

locally or infer that the local environment needs to request them from a peer. It also

keeps track of all libraries that have been loaded into the Interpreter and thus directly

107

accessible in memory.

The point of this mechanism is for the class loader to have an accurate picture of the

local Substrate environment capabilities. It is thus able to provide access to local or

already loaded modules to requesting peers on the network.

Protocol

As explained earlier, upon a Transition an automaton reaches a state where it can be

serialized and migrated from the local environment to another environment (see phase

4 of figure4-X). Part of our automaton implementation, we provided the necessary

means to encapsulate its state and self-initiate a migration. Here we explain the protocol

involved in the migration process.

Context A

migrate
SAutomaton

abort

transmit
Automaton

lookup
ModuleX

* absent

* present

lookup
ModuleY

absent

present

* abort

end

Context B

deny

AC accacept

*: load
Automaton

. missing
Mod ModuleX

NACK

:miss-----ACK abortload
ModuleX

ACK Mod abort

load
ModuleY

ratio abort *-

resume
ACK Automaton.

execution '

Figure 4.5 - Diagram illustrating migration protocol

108

A Context is the overarching structure creating threads of execution and keeping a global

reference to all local Automata running on the platform. Each platform has a single

Context who is responsible of instantiating each automaton and performing migration to

other remote Contexts upon request. Consequently, an automaton initiates a migration

by informing its Context about the destination it needs to migrate to. This destination is

usually provided by the Transition who initiated the migration process. Destination

addresses and ports can currently be hardcoded in the Transition or retrieved from a

discovery beacon (Callback field).

We focus on a situation where an automaton in Context A requests a migration to

Context B, who is listening to incoming connections at a given address. Context A

serializes the automaton and initiates a connection to Context B. When the connection is

established the following protocol is executed (see figure 4-X):

(1) Context A sends a REQ Migration to Context B.

(2) Context B replies with an ACK or a NACK.

(3) If Context A receives an NACK it aborts migration, if receives an ACK continues to

next phase.

(4) ContextA sends the serialized automaton to Context B.

(5) Context B's class loader evaluates the automaton and signal Context B if a

module is missing from its environment denying it from instantiating the

automaton. If the automaton can be instantiated go to phase 9, if not continue

to next phase.

(6) Context B sends a REQ for the missing module X.

(7) Context A asks its class loader if module X is available locally. If available replies

with an ACK and byte-code for the module, if not sends an NACK.

(8) If Context B receives an ACK, loads the byte-code through the class loader and

proceeds to phase 5. If receives a NACK go to phase 11.

(9) Context B sends an ACK Migration to Context A and go to phase 13.

(10) Context A receives an ACK Migration and go to phase 14.

(11) Context B sends an NACK Migration to Context A.

(12)Context A receives an NACK Migration and aborts migration.

109

(13)Context B resumes automaton execution.

(14)Context A ends automaton execution.

When Context B resumes the automaton it has all the necessary States byte-code it

needs in order to operate the automaton. It retrieved this information in a peer-to-peer

fashion from ContextA. This process is described in phases 5 to 8. An automaton

resumes by instantiating the current state identified by its program counter (PC) and

enters the state. In other words, it hands execution control to the current state which

can now access resources locally and present new functionality on its new host. This

process illustrates how a mobile device using Substrate can dynamically inject

functionality in its proximate environment. The next section explains in details

applications that were constructed around this model.

110

PJ

->

V
)

C

3
P-

I

F
i'

II 3cD m O (A -S .4
.

.
.
.
.
.

..
.
.
.
.
.
.

_
~

~
~

B.2 Amulet Top Board Layout

B.3 Amulet Bottom Board Layout

112

Appendix C

Applications Implementation Notes

C.1 Notepad XML script

<Application name="Viral Notepad Application" author="Daviid Gauthier" xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi: noNamespaceSchermaLocation='../generators/viral_framework.xsd'>

<Interfaces>

<ServiceDefault/>
<ServiceNotepad/>

</Interfaces>
<Resources>

<UstOfScreens>

<Screen name="aScreen" resX="2560" resY ="1600"/>

</ListOfScreens>

</Resources>
<Machines>

<StateMachineDefault name="Application Automaton" resetOnResume "false" suspendOnLeave="false" maxPlays="10">

<ListOfConditions>

<ConditionAlways/>
</ListOfConditions>
<ListOfStates>

<StateDefault name="AmuletState">

<ListOfTransitions>
<TransitionMigrateOnResource name "ToNotepadState" nextstate="NotepadState" resourceRef="aScreen"/>

</ListOfTransitions>

</StateDefault>
<StateNotepad name="NotepadState" title="Zapman's Notepad">

<ListOfTransitions>

<TransitionMigrationDefault nextstate="AmuletState" name="toAmuletState" ip="00:XX:E7:XX:D2:XX">

<ListOfConditions>

<ConditionMigrateNotepad/>

</ListOfConditions>
</TransitionMigrationDefault>
<TransitionDefault nextstate="End" name="toEnd">

<ListOfConditions>

<ConditionExitNotepad/>

</ListOfConditions>
</TransitionDefault>

</ListOfTransitions>

</StateNotepad>
<StateAppShouldEnd name="End"/>

</ListOfStates>

</StateMachineDefault>
</Machines>

</Application>

113

It-

C.2 Notepad SVG State Diagram

Application Viral Notepad Application by Daviid Gauthier

Machine Main Application Automaton

C.3 Map/Reduce Face detection XML script

<Application name "Map/Reduce Face Detection Application" author="Daviid Gauthier"
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:oNamespaceSchema ocation '../generators/viralframeWork.xsd'>

<Interfaces>
<ServiceDefault/>
<ServiceMapReduce/>

</Interfaces>

<Resources>
<ListOfCameras>

<Camera name="Camera"/>
</ListOfCameras>

</Resources>

<Machines>

<StateMachineDefault name="Map" resetOnResume="false" suspendOtl.eave "false" maxPlays="10">

<ListOfConditions>
<ConditionAlways/>

</ListOfConditions>

<ListOfStates>

<StateDefault name="MigrateMaps">
<ListOfTransitions>
<TransitionMigrateOnAllResources name="ToMap" nextstate="Map" resourceRef="aCamera"/>

</ListOfTransitions>
</StateDefault>

<StateMap name="Map" reducerAddr="aaa.bbb.ccc.ddd" reducerPort="8188">
<ListOfTransitions>

<TransitionDefault name-"ToEnd" nextstate="End">
<ListOfConditions>

<ConditionReducer/>
</ListOfConditions>

</TransitionDefault>
</ListOfTransitions>
<OnEnter>

<PrintState message="TakeSnapAndAnalyze OnEnter"/>
<SnapAndAnalyze numberSnaps="10"/>

</OnEnter>
</StateMap>

<StateAppShouldEnd name="End"/>

</ListOfStates>

</StateMachineDefault>

114

iiiiiiii ..

<StateMachineDefault name "Reduce" resetOnResume="false" suspendOneave="false" maxPlaVs="10">

<ListOfConditions>
<ConditionMapSignals callack Por ="8188"/>

</ListOfConditions>
<ListOfStates>

<StateDefault narme="MigrateToMaps">
<ListOfTransitions>

<TransitionMigrateToMapper name= "ToReduceResults" nextate "ReduceResults"/>
</ListOfTransitions>

</StateDefault>

<StateReduce name= "ReduceResults">
<ListOfTransitions>

<TransitionDefault name="ToMigrateToMaps" nextstate="MigrateToMaps">
<ListOfConditions>

<ConditionMoreMappers/>
</ListOfConditions>

</TransitionDefault>
<TransitionMigrationDefault name="ToDisplayResult" nextstate= "DisplayResult" ip:

<ListOfConditions>
<ConditionNoMoreMappers/>

</ListOfConditions>
</TransitionMigrationDefault>

</ListOfTransitions>
<OnEnter>
<PrintState message="ReduceSnaps OnEnter"/>
<ReduceSnaps/>

</OnEnter>
</StateReduce>

" aaa.bbb.ccc.ddd">

<StateDefault name "DisplayResult
" >

<ListOfTransitions>
<TransitionDefault name "ToEnd" nextstate="End">

<ListOfConditions>
<ConditionCloseApp/>

</ListOfConditions>
</TransitionDefault>

</ListOfrransitions>
<OnEnter>

<ShowReducerResult/>
</OnEnter>

</StateDefault>
<StateAppShouldEnd name= "End"/>

</ListOfStates>
</StateMachineDefault>

</Machines>
</Application>

C.4 Map/Reduce Face detection SVG State Diagram

Application Map/Reduce Face Detection Application by Daviid Gauthier

Machine Map

Machine Reduce

2A44M"~

115

p"""444ks~

Aftmuli~ pr wo~

116

Bibliography

Amazon.com "Amazon Elastic Compute Cloud (Amazon EC2)". July 31, 2009.

http://aws.amazon.com/ec2/. Retrieved on August 1, 2009.

Ant.apache.com (2009) "Apache Ant 1.7.1". http://ant.apache.org/manual/index.html.

Retrieved July 2009

Arbib, M. A. (1969) Theories of Abstract Automata (Prentice-Hall Series in Automatic

Computation). Prentice-Hall, Inc.

Bluetooth SIG, 2009. Specification of the Bluetooth System, Version 3.0
http://www.bluetooth.com/Bluetooth/Technology/Building/Specifications/.

Brew.qualcom.com, "Brew", http://brew.qualcomm.com/brew/en/

Brooks, R. A.(1997). The Intelligent Room project. In Proceedings of the 2nd

international Conference on Cognitive Technology (CT '97) (August 25 - 28, 1997).

CT. IEEE Computer Society, Washington, DC, 271.

Caceres, R., Carter, C., Narayanaswami, C., and Raghunath, M. (2005). Reincarnating PCs

with portable SoulPads. In Proceedings of the 3rd international Conference on

Mobile Systems, Applications, and Services (Seattle, Washington, June 06 - 08,

2005). MobiSys '05. ACM, New York, NY, 65-78

Corbat6, F. J., Merwin-Daggett, M., and Daley, R. C. 2000. An experimental time-

sharing system. In Classic Operating Systems: From Batch Processing To

Distributed Systems, P. Brinch Hansen, Ed. Springer-Verlag New York, New York,

NY, 117-137.

Carzaniga, A., Picco, G. P., and Vigna, G. 1997. Designing distributed applications with

mobile code paradigms. In Proceedings of the 19th international Conference on

Software Engineering (Boston, Massachusetts, United States, May 17 - 23, 1997).

117

ICSE '97. ACM, New York, NY, 22-32.

Clark D. D., Blumenthal M. S., 2009, The end-to-end argument and application design:

the role of trust.

Clarke, D., Elien, J., Ellison, C., Fredette, M., Morcos, A., and Rivest, R. L. 2002. Certificate

chain discovery in SPKI/SDSI. Journal of Computer Security. 9, 4 (Feb. 2002), 285-

322.

Coen M, Phillips B., Warshawsky N., Weisman L., Peters S., and Finin R.. (1999) Meeting

the computational needs of intelligent environments: The metaglue system. In

Proceedings of MANSE'99

Dean, J. and Ghemawat, S. (2004). MapReduce: simplified data processing on large

clusters. In Proceedings of the 6th Conference on Symposium on Opearting

Systems Design & Implementation - Volume 6 (San Francisco, CA, December 06 -

08, 2004). Operating Systems Design and Implementation. USENIX Association,

Berkeley, CA, 10-10.

Elias, N. (1978). The History of Manners. The Civilizing Process: Volume I. New York:

Pantheon Books

Fiat, A. and Shamir, A.(1987). How to prove yourself: practical solutions to identification

and signature problems. In Proceedings on Advances in cryptology---CRYPTO '86

(Santa Barbara, California, United States). A. M. Odlyzko, Ed. Springer-Verlag,

London, 186-194.

Figueiredo, R. J., P. A. Dinda and J. A. B. Fortes. (2003) A case for grid computing on

virtual machines. In Proceedings of the 23rd International Conference on

Distributed Computing Systems, page 550. IEEE Computer Society

118

Flanagan, D., Ferguson, P. (2002). JavaScript: The Definitive Guide (4th ed.). O'Reilly &

Associates

Foster, lan, Carl Kesselman, Jeffrey M. Nick and Steven Tuecke. (2002) The Physiology of

the Grid. An open Grid services architecture for distributed systems integration. Draft.

Ford, B., Strauss, J., Lesniewski-Laas, C., Rhea, S., Kaashoek, F., and Morris, R. 2006.

Persistent personal names for globally connected mobile devices. In Proceedings

of the 7th Symposium on Operating Systems Design and Implementation

(Seattle, Washington, November 06 - 08, 2006). Operating Systems Design and

Implementation. USENIX Association, Berkeley, CA, 233-248.

freedesktop.org. D-bus. http://www.freedesktop.org/wiki/Software/dbus. Retrieved

July 2009.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides (1995). Design Patterns:

Elements of Reusable Object-Oriented Software Addison-Wesley.

Ginsburg, S. (1982) Introduction to Mathematical Machine Theory. Addison Wesley

Longman Publishing Co., Inc.

Gnu.org, "GNU Operating System", http://www.gnu.org/

Goland, Y. Y., Cai, T., Ye, G., Leach, P., Albright, S., (1999) IETF draft version 3, Simple

Service Discovery Protocol/1.0, http://tools.ietf.org/html/draft-cai-ssdp-vl-03

Google code. (2008) V8 Javascript Engine, Retrieved July 2009 from

http://code.google.com/p/v8/

Google code. (2009) Google App Engine, Retrieved July 2009 from

http://code.google.com/appengine/

Greenstein, B., Gummadi, R., Pang, J., Chen, M. Y., Kohno, T., Seshan, S., and Wetherall,

119

D. 2007. Can Ferris Bueller still have his day off? protecting privacy in the

wireless era. In Proceedings of the 11th USENIX Workshop on Hot Topics in

Operating Systems (San Diego, CA, May 07 09, 2007). G. Hunt, Ed. USENIX

Association, Berkeley, CA, 16.

Greenstein, B., McCoy, D., Pang, J., Kohno, T., Seshan, S., and Wetherall, D. 2008.

Improving wireless privacy with an identifierfree link layer protocol. In

Proceeding of the 6th international Conference on Mobile Systems, Applications,

and Services (Breckenridge, CO, USA, June 17 20, 2008). MobiSys '08. ACM, New

York, NY, 4053.

Grit, L., D. Irwin, A. Yumerefendi and J. Chase. (2006) Virtual Machine Hosting for

Networked Clusters: Building the Foundations for Autonomic Orchestration. In

Proceedings of First International Workshop on Virtualization Technology in

Distributed Computing (VTDC).

Gumstix.com, "gumstix", http://www.gumstix.com/

Guttman E. (1999) IETF RFC 2608, Service Location Protocol, Version 2,

http://www.openslp.org/doc/rfc/rfc2608.txt, June 1999

Hand, S., T. Harris, E. Kotsovinos and I. Pratt. (2003) Controlling the XenoServer Open

Platform. Open Architectures and Network Programming, IEEE Conference on,

pages 3-11.

Hansen, J. G. and Jul, E. (2004). Self-migration of operating systems. In Proceedings of

the 11th Workshop on ACM SIGOPS European Workshop (Leuven, Belgium,

September 19 - 22, 2004).

Holtman, K. & Mutz, A. (1998) IETF RFC 2295, Transparent Content Negotiation in HTTP,
http://www.ietf.org/rfc/rfc2295.txt, March 1998

IEEE 802.11. IEEE 802.11 LAN/MAN Wireless LANS.

120

http://standards.ieee.org/getieee802/802.11.html

IEEE. Zigbee: IEEE 802.15 WPAN Task Group 4 (TG4).
http://www.ieee802.org/15/pub/TG4.html.

IrDA. IrDA page. http://www.irda.org/

Jeronimo M. and Weast J., (2003) UPnP Design by Example: A Software Develop-

er's Guide to Universal Plug and Play, Intel Press.

Johanson, B., Fox, A., & Winograd, T. 2002. The Interactive Workspaces Project:

Experiences with Ubiquitous Computing Rooms. IEEE Pervasive Computing 1, 2

(Apr. 2002), 67-74.

Johanson, B. and Fox, A. (2002). The Event Heap: A Coordination Infrastructure for

Interactive Workspaces. In Proceedings of the Fourth IEEE Workshop on Mobile

Computing Systems and Applications (June 20 - 21, 2002). WMCSA. IEEE

Computer Society, Washington, DC, 83.

Juels, A. (2006) RFID security and privacy: A research survey. In IEEE Journal on Selected

Areas in Communications

Kernel.org, The Linux Kernel Archive, http://www.kernel.org/

Kozuch, M., & Satyanarayanan, M., (2002) Internet Suspend/Resume, in Proceedings of

the 4th IEEE Workshop on Mobile Computing Systems and Applications,

Callicoon, NY

Kozuch, M., Satyanarayanan, M., Bressoud, T., Helfrich, C. & Sinnamohideen, S. (2004)

Seamless mobile computing on fixed infrastructure. Computer, 37(7):65-72

Latour B.(1987). Science in Action: How to Follow Scientists and Engineers Through

121

Society, Milton Keynes: Open University Press

Latour, B. (1988). Mixing humans and nonhumans together: The sociology of a door-

closer. Social Problems 35(3): 298-310.

Latour B.(2005). Reassembling the Social: An Introduction to Actor-Network-Theory,

Oxford University Press

Lindholm, Tim and Frank Yellin. (1996) The Java Virtual Machine Specification. Addison-

Wesley.

Micali, S. and Shamir, A.(1990). An improvement of the Fiat-Shamir identification and

signature scheme. In Proceedings on Advances in Cryptology (Santa Barbara,

California, United States). S. Goldwasser, Ed. Springer-Verlag New York, New

York, NY, 244-247.

Microsoft.com, "Azure Service Platform",

http://www.microsoft.com/azure/default.mspx. Retrieved on August 1, 2009.

Nelson, Michael, Beng-Hong Lim and Greg Hutchins. (2005) Fast transparent migration

for virtual machines. In Proceedings of the 2005 Annual USENIX Technical

Conference.

Nintendo.com, "Wiimote", http://www.nintendo.com/wii, Retrieved July 2009.

NXP Semiconductor, 12C-bus specification (V3.0) (2007), from

www.nxp.com/acrobat_download/usermanuals/UM 10204_3.pdf

openembedded.org, Open Embedded, http://wwwopenembedded.org

Pang, J., Greenstein, B., McCoy, D., Seshan, S., and Wetherall, D. (2007) Tryst: The case

for confidential service discovery. In HotNets .

122

Popek, G. J. and Goldberg, R. R (1974) Formal requirements for virtualizable third

generation architectures. Commun. ACM 17, 7 (Jul. 1974), 412-421.

RealVNC, (2009), The RFB Protocol version 3.8,

http://www.realvnc.com/docs/rfbproto.pdf. Retrieved July 2009

Rudolph, L. (2001). Project Oxygen: Pervasive, Human-Centric Computing - An Initial

Experience. In Proceedings of the 13th international Conference on Advanced

information Systems Engineering (June 04 - 08, 2001). K. R. Dittrich, A. Geppert,

and M. C. Norrie, Eds. Lecture Notes In Computer Science, vol. 2068. Springer-

Verlag, London, 1-12.

Ruth, Paul, Junghwan Rhee, Dongyan Xu, Rick Kennell and Sebastien Goasguen. (2006)

Autonomic live adaptation of virtual computational environments in a multi-

domain infrastructure. In Proceedings of the 3rd IEEE International Conference

on Autonomic Computing.

Saltzer, J., Reed, D., and Clark, D.D. 1984. End-to-end arguments in system design. ACM

Transactions on Computer Systems, Vol. 2, No. 4, Nov., pp.277-288.

Satyanarayanan M., Kozuch M., Helfrich C., & O'Hallaron D., (2005) Towards Seamless

Mobility on Pervasive Hardware, Pervasive & Mobile Computing, vol 1, num 2,

pp 157-189

Saponas, T. S., Lester, J., Hartung, C., Agarwal, S., and Kohno, T. 2007. Devices that tell on

you: privacy trends in consumer ubiquitous computing. In Proceedings of 16th

USENIX Security Symposium on USENIX Security Symposium (Boston, MA,

August 06 10, 2007). N. Provos, Ed. USENIX Association, Berkeley, CA, 116.

Smaldone S., Gilbert B., Toups M., Iftode L., & Satyanarayanan M, (2008) Smart Phones

123

as Self-Cleaning Portable Caches for Infrastructure-Based Mobile Computing,

CMU-CS-08-140

Sousa, J. P. & Garlan, D. (2002) Aura: an Architectural Framework for User
Mobility in Ubiquitous Computing Environments. In Proceedings of the 3rd

Working IEEE/IFIP Conference on Software Architecture. pp. 29-43, August 25-

31.

Sud, S.; Want, R.; Pering, T.; Rosario, B.; Lyons, K., 2008 Enabling rapid wireless system

composition through layer2 discovery, Network, IEEE, vol.22, no.4, pp.1420,

July/Aug.

Surie A., Lagar-Cavilla A., de Lara E., & Satyanarayanan M., (2008.) Low-Bandwidth VM

Migration via Opportunistic Replay, HotMobile '08, Napa Valley, CA

Symbian.org, "Symbian", http://www.symbian.org/about/

Taylor, B. T., & Bove, V. M. (2008). The bar of soap: a grasp recognition system

implemented in a multi-functional handheld device. In the extended abstracts

on Human factors in computing systems (CHI '08) (pp. 3459-3464). Florence,

Italy: ACM Press.

Thurlow R., (2009) IETF RFC 5531, RPC: Remote Procedure Call Protocol Specification

Version 2, http://tools.ietf.org/html/rfc5531, May 2009

von Hippel, E., (2007) Horizontal innovation networks - by and for users, Industrial and

Corporate Change Advance Access, published May 16, 2007, p. 22

Waldo, J. 2000 The Jini Specifications. 2nd. Addison-Wesley Longman Publishing Co., Inc.

Want, R., Pering, T., Sud, S., and Rosario, B. 2008. Dynamic composable computing. In

Proceedings of the 9th Workshop on Mobile Computing Systems and

Applications (Napa Valley, California, February 25 26, 2008). HotMobile '08.

ACM, New York, NY, 1721.

124

Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265 (3), pp.

94-104.

Williams, A. (2002). Zero Configuration Networking, Internet-Draft: Requirements for

Automatic Configuration of IP Hosts. from http://files.zeroconf.org/draft-ietf-

zeroconf-reqts-12.txt

WiMAX Forum. WiMAX Forum Technical Documents. from
http://www.wimaxforum .org/technology/documents/

Windows.com, "Windows CE", http://www.microsoft.com/windowsembedded/en-

us/products/windowsce/default.mspx

Wood, T., P. Shenoy, A. Venkataramani and M. Yousif. (2007) Black-box and Gray-box

Strategies for Virtual Machine Migration. In Proceedings of the Fourth

Symposium on Networked System Design and Implementation (NSDI'07).

Ypodimatopoulos, P., Cerebro: Forming Parallel Internets and Enabling Ultra-Local
Economies, S.M Thesis, MIT 2008

125

