
Open Source Hardware
by

Roberto Acosta
Bachelor of Science, Electrical Engineering

University of New Hampshire, Durham New Hampshire

Submitted to the System Design and Management Program
in Partial Fulfillment of the Requirements for the Degree of

ARCHVES

Master of Science in Engineering and Management
at the

Massachusetts Institute of Technology
June 2009

© 2009 Roberto Acosta
All rights reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole or in part in any medium known or hereafter

created.

Signature of Author

Certified by

Certified by

Roberto Acosta
System Design and Management Program

May 2009

S' \ Eric von Hippel
Thesis Supervisor

Sloan School of Management

Patrick Hale
Director

System Design and Management Program

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

This page is left intentionally blank.

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Open Source Hardware
by

Roberto Acosta

Submitted to the System Design and Management
Program on May 9, 2009 in Partial Fulfillment of

the Requirements for the Degree of Master of
Science in Engineering and Management

Abstract

Open source software development models have created some of the most innovative
tools and companies in the industry today modifying the way value is created and businesses
developed. The purpose of this thesis is to analyze open source hardware in its current state and
its potential impact at several stages of the value chain.

Existing examples of open source hardware at different stages of the value chain are
analyzed in terms of their innovation and potential impact to existing players in the value chain.
An Ethernet framer is develop through the use of traditional development and benchmarked
against a design developed based on open source hardware cores.

The research concludes with an examination of business models established around open
source hardware.

Thesis supervisor: Eric Von Hippel
Title: Professor of Management of Innovation and Head of the Innovation and Entrepreneurship
Group

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Biographical Note

Roberto Acosta enjoys the challenges of building products. Roberto has been architecting,

designing and building hardware for close to fifteen years. He has developed hardware for a wide

range of applications and systems including but not limited to space electronics, handheld

devices and telecommunication platforms.

Roberto Acosta joined the System Design and Management (SDM) program to increase his

knowledge of product development. The skills gained from the program have taught him many

of the important tools and approaches to architecting and designing complex systems. Roberto

has also gained the skills required to bridge the gap between business strategy and product

development.

Roberto Acosta graduated in 1996 from the University of New Hampshire (UNH) with a

Bachelor of Science in Electrical Engineering. This thesis work completes the requirements for

his Masters of Science in Engineering and Management from the Systems Design and

Management Program at the Massachusetts Institute of Technology.

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Acknowledgements

First I would like to thank Dr. Eric Von Hippel for his insight, guidance and many lessons taught

beyond the scope of this thesis. Lessons which have already helped to successfully make new

and improved products.

In addition to Professor Von Hippel, I also received great support from many members of the

Open Source Hardware community and I would like to thank all of those who helped me with

this project.

MIT was a great experience. Many members of my cohort helped me along the way and

contributed in different ways to make my time at MIT into a wonderful learning experience. I

would like to thank Gadi Oren, Aparna Chennapragada, Jeffrey Manning, Jess Kopczynski and

Luis Maseda.

Finally, I am grateful for the continuous love and support of my family; my wife Karina Liendo,

and my parents Roberto Acosta and Virginia Oakes.

Cambridge, Massachusetts Roberto Acosta

May 9, 2009

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Table of Contents

PART I Background ... 8

PART II Open Source Hardware .. 11

D efinition ... 11

H istory .. 11

PART III Challenges with Open Source Hardware Products............................... 14

PART IV Open Source Hardware and the Value Chain 15

PART V Evaluating Open Source Hardware Innovation and its potential effect in the
V alue Chain ... 17

Part VI Open Source Hardware at the Product Level 25

Open Source Hardware at the Product Level: Medical Instrument........................... 27

Open Source Hardware at the Product Level: Cell Phone 28

Open Source Hardware at the Product Level: Free Telephony Project IPO4 30

Part VII Open Source Hardware at the Sub-System Level ... 31

Part VIII Open Source Hardware at the Core Level 34

Hardware Description Languages... 35

Field Programmable Gate Arrays ... 37

Open Source Hardware at the Core level: OpenCores.org 38

Part VIII Case study of designing an Ethernet framer through available Open Source
Hardware Cores vs User Developed Cores .. 40

Part X Open Source Hardware & Business Models 43

Part IX Conclusions .. 46

Appendix A: Design Files for Ethernet FPGA 49

Bibliography ... 82

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Figure 1: V alue A dd A ctivities 15

Figure 2: OpenMedic ECG PC Board layout. Only partial information is available to reproduce

the design. Source http://OpenMedic.org ... 28

Figure 3: Distribution and Number of visitors to OpenCores............................. 39

Figure 4 : D SM of Im plem ented D esign... 41

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

PART I Background

I began the System Design and Management (SDM) program at the Massachusetts Institute of

Technology in 2006. During the first year I attended a course titled "Innovation in the

Marketplace". The course taught amongst other valuable lessons the idea of distributed

innovation. I began my professional career in hardware development in an aero/defense

company. After five years of hardware development I decided to take part in the

telecommunications boom of the late 1990's and joined a small networking startup called Avici

Systems, Inc. One of the first things that I noticed was the stark contrast between the Open

versus Closed Innovation1 paradigms between the two sectors. While Sanders, A Lockheed

Martin Company, my former employer relied heavily on internal ideas and had very low labor

mobility; Avici constantly sought external partnerships with other companies and academia.

Avici was able to incorporate ideas from a PhD thesis on massively parallel processor

architectures towards developing one of the fastest Internet routers at the time. After the Internet

boom I like several other engineers returned to the aero/defense sector and found it had

drastically changed. Labor mobility and the increasing capability of external suppliers had

served as erosion factors that were contributing to the breaking of the large vertical silos within

the aero/defense sector. In the early 2000 the return of many former and new employees to this

aero/defense sector also helped to change the notion of "not invented here". Whereas before the

aero/defense sector was reluctant to adopt strategies employed by small commercial companies,

with the influx of new and returning employees that had worked in small startup environment old

paradigms changed to the adoption of outside processes and technologies. Although at my

current work environment there has not been a wide embrace of the outside innovation there

have been some significant changes that have occurred in the last couple of years. First there has

been an increased reliance on external suppliers to provide technology that was once developed

internally. And secondly there has been a reversal in the policy of utilizing and participating in

Open Source Software.

Closed Innovation paradigms are understood as those in which a company looks inward for technical advances and

relies on its own resources to develop most of its technical developments.

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

The change in approaches came mostly due to economic and schedule pressures brought on by

the competition and the customer. On the one hand the customer was reluctant to fund

development of software that was currently available for free on the Internet and was more

interested in the company solving the "hard" or "challenging" problems. Development of

software for commonly available drivers such as USB and Ethernet were of no interest to the

customer. The customer was mostly interested in the development of core technology to help

him maintain a technological advantage. Second, the schedule pressures placed on product

development made it impractical to spend internal resources on the development of technologies

that were easily available for free or could easily be outsourced for less to another company.

Whereas before the notion of outsourcing or purchasing technology from outside the company

would have been a difficult sell it was now recognized that in order to compete effectively and to

deliver value to the customer this was the only approach.

Along the same lines of increased "openness" for the first time my employer began authorizing

the use of open source software, with certain controls and restrictions. This was a radical

departure from previous longstanding company policy to explicitly forbid the use of open source

software. At AVICI the utilization of "open source software" for development of protocol layer

software such as MPLS or VLAN was widely used in order to rapidly develop and deploy new

software upgrades to existing hardware on the field. At the time many companies were

developing the same type of data carrying mechanism and had recently been handed to the

Internet Engineering Task Force (IETF) for open standardization by another of the major

telecom carrier developers, and it made sense to take available source code and modify it in

order to work on the company's own router.

As of today open source software has made large strides in the industry, changing the way many

value chains operate and businesses compete. Even at my current employer there are the

beginnings of noticeable positive impact with the limited use of open source software in terms of

competition and lowered development costs.

Although Open Source Hardware has not seen the same growth as some of the Open Source

Software projects, recent changes in technology and design methodology have made it easier to

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

implement this model. The goal of this thesis is to examine open source hardware, its potential

impact to existing value chains and its current utilization in the industry.

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

PART II Open Source Hardware

Definition

There are many definitions of what constitutes open source hardware. The general consensus is

that Open Source hardware is electronic hardware design that is "freely available under one of

the legally binding recognized open source licenses". The open source hardware includes

schematics, diagrams and design rules that can be used, studied and modified without restriction

and can be copied and redistributed in modified or unmodified form either without restriction, or

with minimal restrictions only to ensure that further recipients can do the same.2

History

Open source hardware has a long history and has gone through several cycles of growth. It can

be argued that the first notion of open source hardware was in the early 1970's with groups such

as the Homebrew Computing Club. In these early days of computer engineering a small group of

engineers collaborated and openly shared designs of what would become one of the first personal

computers. According to Apple cofounder Stephen Wozniak, "a lot of tech-type people would

gather and trade integrated circuits back and forth" 3. There was no official or formal

organization and the main role of the club was to trade circuit designs amongst members. The

theme of the club was "Give help to others" and membership to the group was mostly as a hobby.

Wozniak states that schematics and designs for Apple I products were "passed around freely"

and help was provided in order to help other members build their own systems. Free revealing in

this manner, provided the designers of the Apple computer with early feedback on their initial

prototype by other lead users and at least part of the motivation for free revealing was the

increased reputation gained amongst peers. Open source hardware designs in this case relied on

the ability of users to tie different components together. The use of breadboards made it such that

users did not need manufacturers in the process of developing products. Information was

2 Definition was derived from literature and sites dedicated to open source hardware.

3 Wozniak, Stephen "Homebrew and How the Apple Came to Be" in Steve Ditlea, ed., Digital Deli, 1984

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

transferred from Innovating lead users to all users in the community through newsletters and

informal gatherings.

From the early days of open source hardware at the "product" level, soon lead developers turned

their attention into how to create the basic building blocks of the products. While the initial wave

of Open Source Hardware was related to how to put the basic building blocks together the late

1970's to mid 1980's saw large development at the function level of the value chain. In the

1970's Carve Meade and Lynn Conway developed a method by which users could begin to

design large-scale integrated circuits. Several designs were grouped into a single production run

in order to reduce development costs. Designs were transmitted using the Arpanet to

manufacturing sites in order to be built. This process allowed universities access to low cost

production of highly complex integrated circuits but users outside of this system could not easily

develop or replicate the same products4 . Although there were several free development tools, the

computing power needed to produce large designs was extremely expensive. In this phase of

open source hardware users began requiring the services of manufacturers in order to develop

their products.

The 1990's saw increased development of proprietary design tools and this increased the

knowledge needed to design o a particular platform making it difficult to switch and share

designs at the user level. Although the design tools allowed for easy transfer of design output to

manufacturers the increased segmentation in the tool market made it difficult to share designs

between different users. Board design tools did not easily translate from one CAD manufacturer

to another, for example design rules and databases for a board being designed with a tool such as

"Mentor Graphics" were not easily translated to that begin designed under the "Cadence"

environment. On the IC design side design input was begin driven by the IC manufacturers

making it difficult to translate designs from one type of IC to other types of IC. This made it such

that one ended up designing for a particular "targeted device" on a particular "tool flow", making

it difficult to reuse the design or share it with others that were not operating on the same platform.

4 Smith, Gina "Unsung Innovators: Lynn Conway and Carver Mead" Computerworld 2007

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

This approach led to the creation of whole groups of digital designers segmented by

manufacturer and/or design tool.

Today changes in tool design methodology and standardization of interfaces have made it easier

for open source to thrive and for user innovation communities to develop. Open Source hardware

is thriving in cases in which users require manufacturers and cases in which users require little to

no manufacturing involvement. As will be shown later most of the growth appears to be in

innovation communities in which manufacturer involvement is little and where users can easily

share, modify and upgrade the hardware with low cost approaches.

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

PART III Challenges with Open Source Hardware Products

Open source hardware has several characteristics that make it challenging to succeed when

compared to other successful models based on Open Source. Unlike Open Source Software

products such as Apache, open source hardware products will always have some form of

manufacturer involvement either in the purchasing of the building blocks to build a product or in

building of the product itself. The fact that it is a physical design adds a higher cost to the initial

design and to recursive changes in the trial and error cycle of product development.

Communicating and documenting changes and improvements are not inherent in the design as it

is in software-based products. A fix or upgrade to a version of a product based on Open Source

Software can easily be delivered in an automated way with current communication systems. The

fix or upgrade will natively contain the changes made to the source code. This is not the case

with a new release of hardware, as it will typically require users to physically modify their

product, a task that they may not be able to perform. Developing hardware products can

encompass a large range of expertise, from antenna design to digital logic and printed circuit

board design. Some of this information is difficult to encode in such a manner that it is useful for

others to reproduce, modify and recreate. Manufacturing techniques also present their own

challenges as the more difficult a design is to build the more a designer must rely in what a

manufacturer can develop or spend considerable resources searching or developing alternative

manufacturing technologies. The latency on hardware development cycles also affects the pace

at which innovation can occur drawing users and developers to established platforms and away

from potential new designs that are not as stable or that do not have a history of continuous

improvement. Hardware development cycles can range from a few weeks to several months5

making it difficult to keep up with existing production cycles for products created by established

companies with closed designs. This can affect open source hardware products since these types

of products will need to capture and establish their own "ecosystem" of software developers and

users in order to succeed.

5 Typical Hardware development time for a PCB is 1 week for fabrication and one week for assembly. ASIC design

of masks is in the order of a few months.

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

PART IV Open Source Hardware and the Value Chain

Open Source hardware today exists at most stages of the value chain, from low-level design

gates to functional cores that can perform tasks such as image analysis to platforms and complete

system/product solutions. Figure 1 shows the value chain or hardware from Atoms to Solutions

and an Open Source Hardware example that exists today at each stage.

Solutions i Example Open Source
V)

-o

Au

Atoms

El -I0 'A100.11

0.• -n ' Ij

Figure 1: Value Add Activities

At the bottom of the value chain "atoms" such as transistor level gates exist. Production of gates

at this level can be extremely capital intensive, and traditionally one does not build individual

gates but at the most basic level a few low level functions such as small drivers, buffers,

amplifiers and other basic building blocks. Current state of the art development of integrated

circuits in a 45nm process can cost upwards of $3 million dollars, with older technology 17um

technology costing anywhere between $150k-300k 6 . It is clear that one can develop Open Source

hardware at this level but activity is typically limited to sharing the physics and material

implementation of the devices. Development of hardware at this level can be extremely costly in

terms of fabrication because it relies heavily on economies of scale. Companies such as IBM

tend to develop a process and open source the methodology so that other corporations can utilize

their fabrication facilities. This method helps owners of semiconductor facilities continue to

develop innovative technologies while at the same time reducing the cost of owning and

C Roberto Acosta- All Rights Reserved

--

Su -yse

Fucto

racosta@sloan.mit.edu

maintaining the fabrication facilities. By open sourcing the technology IBM draws developers

towards its fabrication process and helps to maintain production levels high while at the same

time generating enough revenue to continue to develop processes that are innovative. There is no

"open source of the design" but mostly of the process.

One step above the gate level, stand-alone circuit designs are available in the form of electronic

schematics or cores. These designs typically relay on hardware only and require little to no

external knowledge of system operation. Examples of designs at this level can range from simple

controller such as universal serial bus (USB) drivers, Ethernet framers and more complicated

functions such as CPU's and video chips. The cores by themselves provide valuable functions

but need to be tied to other cores in order to perform a partial solution for the user. The

integration of functions to form larger subsystems requires the user to understand both the core

implementation and the interface characteristics. Developers of open source hardware typically

generate custom cores through less expensive manufacturing paths such a reconfigurable logic or

by wiring discrete atoms together. Developers have been known to generate highly integrated

cores but this approach usually involves a higher cost and greater interaction with manufacturers.

An example of a subsystem is a Video Processing core tied to a display driver and an associated

LCD screen in order to form a touch screen interface. This type of display/interface subsystem

can be found in newer smart phones. This type of subsystem allows for the user hardware to

display images and to receive input from a user but does not provide a full solution to a user need,

it can however be used by a developer as a part of a system for a phone or a gaming device.

On the product side there are cases in which the entire product is truly open including schematics

and software to re-engineer the entire product and other cases where only a small number of

interfaces to the product are available. In some cases only portions of the hardware are "open"

these cases, which typically refers to cases in which all documentation is provided to make the

hardware function but no details as to how the hardware is built7.

7 This has been referred to as Open Hardware.

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

PART V Evaluating Open Source Hardware Innovation and its

potential effect in the Value Chain

Von Hippel demonstrated that there was a continuing trend towards democratizing

innovation . By democratizing innovation Von Hippel meant that users were increasingly

capable of developing products and solutions by themselves. Von Hippel also explained the

process by which this shift was occurring and how innovation by users complemented the

innovation done by manufacturers. Open Source Hardware can help drive this innovation by

functioning as a source of designs which users can quickly leverage to build upon and create new

products. Von Hippel developed a series of attributes to see where and how innovation was

being democratized. These attributes taken from his book Democratizing Innovation9 will be

used to look through the value chain and see if the new sources of innovation are relying on open

source hardware. The attributes will help to determine in a qualitative way if and how open

source hardware is being utilized to build new and innovative products. In particular the

following attributes of widespread innovation qualified by the use/or role of open source

hardware will be utilized:

-Evidence of open source hardware developed or utilized by lead users.

-Need for custom solutions at several levels of the value chain and whether those custom

solutions are based on Open Source Hardware.

-If the cost of implementation and use of open source hardware at that stage can reduce the cost

of building hardware or if it is cheaper to purchase existing hardware outright.

-User low cost innovation niches along with information stickiness at each level.

8 Von Hippel, Eric Democratizing Innovation. Cambridge, MA MIT Press 2005

9 Von Hippel, Eric p 31-40

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

-Evidence of free revealing and reuse of open source hardware not only the of the source itself

but of the manufacturing and development process.

- Existence and participation in innovation communities that develop open source hardware.

-Availability of toolkits in that are assist development with open source hardware.

Activity or evidence of innovation based on open source hardware present at any stage of the

value chain can point towards a strong possibility that open source hardware can begin to

displace or change established revenue models and organizations. In some cases manufacturers

will have to retool to accommodate more of the activity being done by users as Von Hippel

established 0 . In other cases firms may see their business models in direct competition with open

source hardware.

Von Hippel observed the following characteristics of lead users "Lead users are at the

leading edge of an important market trend and are currently experiencing needs that will later be

experienced by many users in that market"' ' . And secondly they "anticipate relatively high

benefits from obtaining a solution to their needs and so many innovate"12. Clearly if lead users

have adopted Open Source Hardware as a vehicle to develop products or subsystems it is a an

indication that Open Source Hardware can play an important role in future innovations and be

the basis for future products in the market, if lead users continue to develop products and

hardware designs with little use of open source hardware or based on current closed systems then

it is likely that the current players will see their positions unchallenged. Also the utilization of

Open Source Hardware by Lead Users can be used as an indication that Open Source Hardware

can provide a solution space not available through current existing models.

10 Von Hippel (2005) pg

11 Von Hippel (2005) pg 22

12 Von Hippel, Eric (1986) Lead Users: A source of Novel Product Concepts. Management Science. Vol 32, No 7,

July 1986

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Von Hippel also explained "high rates of user innovation suggest that users may want custom

products "3. Von Hippel also explained that if individual users or firms want something

different in a product type, it is said that heterogeneity of user need for that product type is high 4.

Open source hardware will be analyze in this context to see if it can be useful in providing a

better custom solutions in some particular markets than those provided by hardware commonly

available. For example can a user generate custom solution based on Open Source Hardware

better than that available by an established company? Will users/developers be willing to spend

resources and time working on a custom solution to obtain a custom solution at a particular point

in the value chain and will they be willing to open source the design?

By having access to the hardware documentation schematics and diagrams users can gain insight

into a particular subsystem or product and modify its characteristics to better suit their needs.

Apache web server is an example of an open source software product whose specific

characteristics and configuration allowed users to modify and develop web server security not

available through other software systems, as described by Von Hippel1 5. Many adopted Apache

since they could modify it better to suit their needs. The result of this activity has pushed the

open source based Apache server as the preferred vehicle for developing web server software.

The question remains if the same can be said for an Open Source Hardware system. Some trends

such as the Open hardware Foundation were formed to meet the efforts of the Open Graphics

Project whose aim is to provide amongst one of its charters the creation of a Open Source

Graphics chip set which would indicate that there are enough needs unmet by current Graphic

Chip sets that would make users want to generate their own graphics integrated circuit

architecture and develop their own boards and circuits. This stands in stark contrast to other very

active groups such as the General Purpose computation on Graphics Processing Units. This

group was formed to develop software and applications based on Graphic processing units,

which tend to achieve processing speed gains of orders of magnitude in computation versus

available approaches. This group is formed of lead users that having experienced unmet needs in

terms of the computational speed and processing provided by standard CPUs are looking for new

13 Von Hippel (2005) pg 33

14 Von Hippel (2005) pg 33

15 Von Hippel (2005) pg 39

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

innovative solutions through the use of graphic processing units. The software developers have

remained tied to established graphic chip sets such as the NVIDIA CUDA. This is one example

of where an established graphic chip sets provide a solution not seen by standard CPUs, however

there is only a shift in where the users will obtain their hardware they will trade standard CPU's

for Graphic Chip sets but they will not invest heavily on new platforms. In summary the users

will shift to purchasing a different type of processing IC and innovate by utilizing it in a different

way but do not feel the need to seek out an open source hardware platform.

Information Stickiness and users low cost innovation niches will be looked for as potential

factors affecting the use of Open Source Hardware. Von Hippel explained that the term of

information stickiness is a measure of how costly is it to transfer information from place to

place16. The stickiness of information is defined as the incremental expenditure required in

transferring a unit of information to a specific location in a form usable by a specific seeker 7. If

the expenditure is low information stickiness is low, when the expenditure is high stickiness is

high. Information stickiness can have a large impact on the use of Open Source Hardware. The

cost required to transfer information in Open Source Hardware can vary greatly. In cases where

schematics, integrated circuits and software is needed to recreate an Open Source Hardware

solution the user must be able to access not only the design information but also the

manufacturing requirements. There are cases where schematics are not enough to recreate a

circuit board and a user must have access to board information such as which signals should be

built with tighter constraints and which cases can have relaxed constraints. As an example a high

speed Gigabit interface running at 1000 mb/second is more challenging in terms manufacturing

than an I2C interface running at 100 kb/sec. Higher digital speeds require greater control in the

manufacturing process than those running at slower speeds. The designer must be able to

effectively communicate to the manufacturer the constraints required for a particular design.

Although some newer CAD tools support encoding this type of information there are no set rules

and tradeoffs in terms of the time and cost of manufacturing and the design requirements are

usually made. A designer would have to measure the final implementation and write up the final

16 Von Hippel, Eric (1994). " Sticky Information and the locus of problem solving: Implications for innovation."

Management Science, 40(4) 429-439
17 Von Hippel, Eric (2005) pg 67

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

constraints in order to fully communicate how a design was achieved, the designer may not have

this information available since it may rest with the manufacturer or may find that there is an

extra cost involved in order to capture this information. This can impact the utility of Open

Source Hardware designs since they may not contain all of the information required to recreate a

design. Von Hippel explained that low cost innovation niches as areas that are developed as a

consequence of information stickiness and that information stickiness yields to information

asymmetries that cannot be erased easily or cheaply,8 . Since hardware relays on manufacturers,

information stickiness can be high in certain areas of the value chain. If that is the case then it is

likely that Open Source Hardware will only impact the design aspect of the product development

cycle, the building aspect will remain with the manufacturer. However if the information

stickiness is low in order to manufacture certain types of hardware then it is possible that Open

Source Hardware can greatly affect the manufacturing points in the cycles of product

development, in these cases the manufacturing will loose some of the revenue that it can generate

by providing services associated with building of the hardware.

Evidence of free revealing and reuse of open source hardware in terms of not only the of the

design itself but of the whole system integration and development process. Von Hippel

characterized "free revealing" proprietary information as meaning that the innovator voluntarily

gives up all existing and potential intellectual property rights to that information and that all

interested parties are given access to it 19. Open Source Hardware is based on free revealing of the

source code and schematics but it is bound by licensing. The type of licensing can have an

impact on whether Open Source Hardware can challenge existing value chains. Free revealing

on the manufacturing process will also be used as characteristic of possible success of Open

Source Hardware. If evidence is available that such information is available it can be used as

measure of Open Source Hardware activity that involves not only copying the initial design but

that open source hardware is also gaining ground on the manufacturing aspect. Re-use is a good

measure of value being generated by Open Source initiatives. If there is evidence that other

designers are re-using the information that has been revealed it is an indication that other users

C Roberto Acosta- All Rights Reserved

18 Von Hippel (2005) pg 70

19 Von Hippel (2005) pg 78

racosta@sloan.mit.edu

are benefitting from the information that has been made available. Von Hippel emphasized that

valuable forms of re-use can range from those gaining general ideas of development paths to

pursue or avoid to the adoption of specific designs2°. There may be certain cases in which Open

Source Hardware architectures are available but designers do not utilize them. If there is little

reuse it can be an indication that although the information is available there in no interest or that

there is not enough information available to make use of the desing in these cases it can mean

that open source hardware designs will not compete with closed source designs.

Von Hippel defined innovation communities as nodes consisting of individuals or firms

interconnected by information transfer links, which may involve face-to face, electronic, or other

communication 21. Von Hippel also explained that innovation communities are often specialized

around certain technologies and serve as collection points for information related to narrow

categories of innovation 22. Another important value of innovation communities is that they can

offer support in the form of tools and evaluation to developers by a large number of users.

Innovation communities based around Open Source Hardware would be an indication that a

large community of users who have embraced Open Source Hardware and are actively

developing it. These communities are important because they can provide tool development and

user-to-user assistance in the form of evaluation and hardware debug. This could be an

indication of how widely diffused open source hardware is and how much momentum it has in

certain areas of the value chain. It would also be an indication that traditional hardware

development methods in which a user depends on established design houses or manufacturers for

information on circuits could be changing. User to user assistance could mean that developers of

certain types of hardware will see their positions challenged as users of the innovation

community may increasingly rely on the knowledge of the of the innovation community rather

than paying for design services from established companies. Another way that innovation

communities can begin to challenge established companies is by directly developing hardware

that competes with that of an established company. For example if a company is proficient at

developing certain types of designs interfaces such as high-speed USB interfaces and an Open

20 Von Hippel (2005) pg 88
21 Von Hippel (2005) pg 96
22 Von Hippel (2005) pg 97

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Source Hardware innovation community begins to develop a competing implementation then the

company could see some of its revenue disrupted

Von Hippel explained tookits as integrated sets of product design, prototyping and design testing

tools23. The main goal of a toolkit is to enable non-specialist users to design high-quality,

producible custom products. Von Hippel established the main characteristics of a high quality

toolkit had the following attributes24:

(1) it will enable users to carry out complete cycles of trial-and error learning

(2) It will offer users a solution space that encompasses the designs they want to create.

(3) It will be user friendly in the sense of being operable with little specialized training

(4) It will contain libraries of commonly used modules that users can incorporate into custom

designs

(5) It will ensure that custom products and services designed by users will be producible on

manufacturers production equipment without modification by the manufacturer.

Availability of high quality toolkits for open source hardware will lead higher utilization and

adoption of open source hardware by designers. If designs are available for users to leverage but

the users do not have a way of manufacturing, testing or building variants of the designs then

access to a particular hardware design may not be useful at all. However if toolkits are available

for users to develop and build and experiment with open source hardware then we could see the

rapid adoption and development of open source hardware. Traditional design houses could see

some of their work be replaced by open source hardware developers since most of their activity

would now be shifted to supporting the manufacturing of the hardware but not the design of it.

23 Von Hippel, Eric (2002) "Shifting Innovation to Users via Toolkits", Management Science Vol 48, No 7, July

2002
24 Von Hippel, Eric (2005) pg 154

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Design houses traditionally provide assistance in design, layout, routing and material

construction of PCB boards. If toolkits are available such that a user can design within certain

layout and routing constraints then a design house may not be able to charge as much money for

the services they provide. Another example would be the appearance of hardware platforms that

allow the user to change/modify only certain portions. For example if a user wanted to test a

variant of a hardware implementation of an algorithm the user may need to supporting circuits

and infrastructure in order to properly test his/her design. If a collection of libraries that exist but

are not open source the developer may choose to utilize this path since access to the existing

circuits and infrastructure will greatly reduce his development time. However if a large

collection of supporting libraries of open source hardware is available for the user to build upon

the designer may choose this development path.

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Part VI Open Source Hardware at the Product Level

Open Source Hardware at the product level is a more challenging to develop since expertise are

required from multiple areas of hardware development such as: power supply design, analog

systems and digital systems. Also at this stage one must have a system approach and

understanding of all of the underlying and interlocking pieces. Other challenges of open source

hardware at this stage are the need to have software capabilities and applications written for the

product, even to get a crude prototype, which other users can then utilize. When developing

open source hardware at the product level one must make provisions for either utilizing available

software or developing the corresponding software. Successful integration with mechanical

design and human factors is important in order to have a competing product that could possibly

displace existing products in the market. The large integration of several components and

subsystems increases the information stickiness, making it more difficult to extract all of the

information in order to make it available for other users. The primary focus of open source

hardware at the product level appears to be on competing with already existing solutions or

platforms in cost. Developers and designers must be able to build and compete with existing

market solutions and offer equal or better value to existing alternatives. The challenge with this

approach is that currently established products have already been through several cycles of

development and user testing making them more reliable. Also many of these established

products already have supporting eco-systems around them that can be extremely challenging to

replicate in a short amount of time.

Research found many currently available products based on open source hardware. Three of the

products will be analyzed but the following generalizations apply to the few that were examined:

Developed products seem to focus on existing solutions and attempted to compete on cost or on

minor approaches to satisfying a user need.

The cost of building a custom solution based on open source hardware compared to purchasing

an existing solution varied quite a bit. In the case of highly available products such as cell phones

the cost of building an open source solution was higher than purchasing a closed system. In cases

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

such as a medical instrument or telephony router the cost was equal or less to those available

from closed systems. One must note that the medical instrument was not licensed for medical use

so it could not in theory be used as intended, if one were to factor in the cost of obtaining

approval it could be conceivable that it would be just as costly for a user to choose the open

source solution rather that to purchase an existing solution. The telephony system was

considerably less cost those solutions available on the market.

Information stickiness was extremely high. Many of the products available as open source

hardware were missing details on how to build them. For example in some cases board layouts

and designs were available but there was not indication as to the copper layers used in the

process the copper density used for the PCB layers, the materials utilized in the design or

recommended manufacturing processes. Some of the information seemed to be posted just to

satisfy the "open" initiative of the product but with no clear indication of how the information

could be used to replicate the system. Information needed to adequately build the tooling and

injection molding to take the products into production was not available. In some cases the

main thrust of the design initiative was that of developing new applications for the system rather

than extending the existing hardware. Instructions for coding and modifying the existing

software were more readily available.

Free revealing and re-use. The intent of free revealing of the design was apparent as most

products were licensed through GPL licenses. There appeared to be little or no re-use of the

system. In most cases only the initial version of the prototype was available but subsequent

versions of the design did not appear to exist, indicating that although the a product was

developed with open source hardware in mind there was less of a follow through in next

generations of the product.

Innovation communities were present in several of the examined cases however the

communities were mainly geared towards developing software add-ons to the product platform

not focused on developing next generations of the hardware.

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Although there were certain toolkits available none of the would qualify as high quality.

Toolkits were often present to help develop the parts of the software but none to support

development of the hardware. Repositories of hardware information were unavailable or

partially restricted leading developers to depend on "leaked" information in order to properly

understand all of the hardware.

The following three examples are analyzes in more detail in the following sections: the

development of medical instruments for electrocardiograms, the open source smart phone

platforms OpenMoko and the open source telephony product. The examples were chosen since

they represent a good cross section of utilization and degree of success.

Open Source Hardware at the Product Level: Medical Instrument

The OpenMedic electrocardiogram was developed with the goal of manufacturing and

developing inexpensive basic medical equipment for use in poorer countries. The equipment

developed leveraged existing off the shelf PC technologies with low-cost hardware/software

based products. The Openmedic electrocardiogram represents a user low cost solution to

develop an alternative to more expensive established products. The schematics and designs are

available however important information regarding chipsets used, manufacturing, design

constraints and designs rules are missing. There is not enough information available to

adequately reproduce the design also there does not appear to be a lot of activity from other

developers and only an initial version of the design was available.

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Figure 2: OpenMedic ECG PC Board layout. Only partial information is a'ailable to reproduce the design. Source

http:iiOpenMedic.org

Design reuse appears to be minimal meaning that existing developers of medical hardware as

well as medical product designers may not see impact from an open source hardware based

product such as this one.

Open Source Hardware at the Product Level: Cell Phone

Openmoko is aimed at building and delivering mobile phones with an open source software stack.

The first iterations of the phone had a semi-open source hardware approach for developers and

designers, as partial sets of schematics were made available for users to examine and reproduce.

However the next generation schematics were not released due to NDA agreements with existing

IC vendors and also certain law requirements that prevented full conformance with open source

hardware although that was one of the developers original goals.

The Openmoko smartphone initially was perceived as an open source platform that could

seriously challenge existing players in the market. The operating system and software stack was

open making it easy for users and developers that wanted custom applications and products in

the smartphone market to help develop their own. Manuals for most of the chipsets and

instructions on how to disassemble and debug the hardware were made available along with a

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

relatively inexpensive debug board ($99) that helped developers build new applications for the

hardware. The product developers opened portions of the hardware design for users to review

and upgrade. Also community forums were established so that users could help develop the next

set of hardware requirements for future smart phone releases. For example missing features such

as Wi-Fi connectivity on the first generation devices were added later as both hardware designers

and software developers raised it as a major deficiency of the first generation. The initial launch

of the OpenMoko suffered from serious delays on delivering stable working hardware:

OpenMoko developers explained in an open letter to the community that "making changes to a

product while in R&D stages can be quite painful25. But after all the incredible demand, post-

November, we felt it had to be done. We had a string of bad luck that really hurt our productivity.

Each hardware revision takes at least one month of time. Each month without stable hardware

means serious delays of software"26. Even with several delays on the hardware development.

Openmoko managed to sell 13,000 first and second-generation headsets.

However after three versions of Openmoko smartphone development the organization recently

announce that while it would continue to develop the software platform aspect of the mobile

communication device while it would stop developing and selling the hardware aspect of the

platform. Steve Mosher responsible for marketing of the openmoko smartphone "admitted that

the hardware design presented more difficult hurdles than anticipated. Too many design changes

had led to delays. Openmoko had approached the hardware solution from the software

development side, where things can simply be reprogrammed, which has since proved a fallacy".

Although openmoko will continue to develop the software for opensource smartphones it

remains to be seen if it will rely on manufacturers to develop the platforms on which its

operating system will operate or if the organization will attempt a next generation phone in the

future. The openmoko case exemplifies one of the challenges of hardware development;

platforms tend to move quickly and both parts of the product must move at the same pace. If

either the software or the hardware do not continue to improve the whole product can become

obsolete. If this is the case an open source hardware design can loose most of its software

25 Changes needed included Bluetooth connectivity which was shelved due to lack of internal resources

26 http://lists.openmoko.org/pipermail/announce/2007-February/000003.html

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

support as developers may migrate to other more interesting or sustainable systems. Another

lesson is that certain portions of the hardware can be closed at certain points, i.e. GSM encoders

are bought of the shelf in order to minimize cost and therefore NDAs exist which prevent users

form gaining access to the full hardware source. This approach leads to products not being fully

open and users not being able to upgrade or modify certain portions of the hardware. Portions of

hardware that have closed IP or IP protected by export controls will continue to present a

problem for Open Source Hardware development as many encoders and communication

subsystems tend to be closed and restricted due to legal and regulatory concerns.

Open Source Hardware at the Product Level: Free Telephony Project IP04

David Rowe started the free telephony project with the main goal of developing low cost

solutions in order to provide access to communication technology for all. The IP04 provides a

low cost alternative to switch phone calls from analog lines to Internet through the use of Voice

over Internet Protocol (VolP)27. The IP04 system leverages the Asteriks open source telephony

engine to deliver a full open source product that includes the software and the hardware. David

Rowe utilized his knowledge in DSP to design a novel low cost telephony system based on

Blackfin DSP processors. The Blackfin DSP processors are relatively low cost but provide

enough computational capacity to provide all the necessary speech compression for multiple

communication channels. Portions of the design itself are based on two previous open source

hardware designs, which allowed the full system to be built and debug in a short amount of time.

The product development is a good example of a team leveraging resources from around the

globe. The hardware was developed in Australia portions of the software in Canada and the

volume production is performed with a manufacturing in China. The result of the work is a

telephony system that sells for 50% to 70% less than competitive products28. The product

architecture also consumes less power than competing alternatives.

27 Rowe, David "The IP04 Open telephony hardware for developing regions"

28 Pika closed systems retails for USD1200 vs. IP04 for USD450.

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Part VII Open Source Hardware at the Sub-System Level

Open Source Hardware subsystems are building blocks of functions available for users in

which to integrate modules to develop products or who want to rapidly construct prototypes of

partial portions of a system. The building blocks are not a product itself but can be stitched

together with other hardware modules or other additional sources to build different products or

prototypes. The building blocks typically consist of highly integrated hardware functions plus

some sort of software development platform for the user to customize. The hardware only

provides a building block to which the user can add external capabilities. There is large lead user

activity on this area from users developing from simple web based servo controllers to autopilots

with stabilization and GPS navigation developed for use in autonomous aircraft. The platforms

available at this level provide users with the ability to customize solutions to their liking

although the solutions are not as polished in terms of presentation as those developed at the

product level, they do include some that are extremely complex in terms of integration.

The development cost of hardware at this level is typically based on small blocks ranging from a

few dollars29 to larger more complex blocks ranging in the hundreds of dollars. Designers

typically invest in one of these systems and modify it rather than building it from scratch

although complete schematics, board-manufacturing instructions are available under the Creative

Commons Attribution Share-Alike licenses and the microcontroller libraries are available under

the LGPL license. Users typically build their own additional hardware to complement the basic

building blocks. The information for developing systems from these basic building blocks is not

as sticky as users typically post detailed instruction and videos showing how to wire the

additional hardware. Also the level of integration is not as complex as when dealing with full

products.

Re-use of circuits and designs tends to be high since many users are developing around

the same architectures basic architectures. For example a Kalman filter used for stabilizing a

two-wheeled robot was used to implement a stabilization circuit for an autonomous aerial vehicle.

Users not only utilize the ideas for improving existing products but they also use existing ideas

for new solution spaces. Another example is a remote controlled for an RC. Several different

29 A basic ardurino block costs $18.95 USD while more complex bugbase subsytems run upwards of $200 USD

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

approaches based on the same board are available and many are referenced to the original

posting of the first approach. Here users are taking advantage of the direct access to hardware

source code, previous user solutions and relatively low material costs to design different

solutions to problems. Problem solving is also not limited single point solutions, as users tend to

iterate and develop newer and in some cases more efficient and novel approaches to solving the

original problem. Innovation communities do exist and although they tend to be segmented

across the solution interest that users are seeking (i.e. designers who want to develop servo-

mechanical controllers will group together designers interested in navigation systems will group

together) the basic building blocks tend to tie all the solutions back to the basic building blocks

through web-based communities, ensuring that solutions developed in one space are available for

other developers to utilize.

Custom solutions at this level tend to prevail at this level as users are developing specific

solutions for their own interests. In some cases there are off the shelf commercial comparable

products but users still tend to develop their own solutions due to better tailor the product for

their own solution and in some cases for cost reasons. For example accelerometers and GPS

blocks were tied together in order to increase the precision of the navigation system of a RC

controlled aircraft. Off the shelf solutions that incorporate all of these features are available but

are usually priced higher than those that users can develop and build on by themselves. A

commercial RC GPS based system was found to be somewhere between 16000 USD30 , where as

the cost of the open source hardware solution was around 200 USD31 .

The following cases based on open source building blocks were examined: the Arduino

platform and the BugLab system. Arduino is an "open-source electronics prototyping platform

based on flexible, easy to use hardware and software". The prototyping system revolves around

a set of basic building blocks that perform specific functions such as a Bluetooth interface, an

USB interface and a main processing board. The boards are all open source with schematics,

diagrams and manufacturing instructions available for users to create build their own although

most users tend to purchase built boards and then proceed to modify them. The community is

organized around a central website and discussion site which links users from across the globe

30 dragonfly X6 quoted price http://www.draganfly.com

31 Ardupilot board http://diydrones.com

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

providing an efficient electronic transfer links of information. Specialized toolkits are available

in the form of tutorials at every level to more complex "hacker" examples. A user can carry a

trial and error learning of different modules characteristics by following the examples listed in

order to get basic functionality down before attempting more complex hardware and software

interactions. More experienced users are steered to a set of links with examples where other user

generated designs are listed with the goal of having users extend and modify existing hardware

capabilities. The language used to program the hardware is geared for non-software

programmers but the compiler supports direct use of C++ for more experienced users. Libraries

for commonly used functions and extensions of the hardware are available for users to leverage

directly in order to speed hardware and prototype development by the users. Users are

encouraged to share their ideas, projects and issues with the community in order to obtain

different ideas or to gain direction on how a similar problem was solved. The main development

site links users with other users or organizations and new users are encouraged to list themselves

on the site in order to participate in the innovation process.

BugLabs is based on "open source functional hardware modules"32. Although hardware source

is open and available for the modules themselves the main thrust of the group and the modules is

in developing products by tying the modules together rather than modifying the physical

modules themselves. The modules are highly integrated by function meaning that a building

block may already contain one or more subsystems. The modules allow interconnectivity to a

main "base" which is the core building block of any system. The ability to rapidly connect

different blocks to perform different functions allows rapid prototyping and implementation of

new user products with no need for manufacturing. The resulting prototypes have a more

polished look and feel since the electronic modules are already mechanically encased. All of the

information required to program the modules is available with supporting toolkits by the vendor

such as system development kit for software to run the various modules, manuals for

interconnectivity and internal schematics for users who want to gain learn or modify the modules.

C Roberto Acosta- All Rights Reserved

32 http://www.buglabs.net

racosta@sloan.mit.edu

Part VIII Open Source Hardware at the Core Level

Cores are series of circuits created to perform a particular function and can rage from

relatively simple designs of 100+ logic gates to complete systems of >lM logic gates. The cores

are typically of digital logic although; there exist some that can perform analog functions. The

growth of Open Source Hardware design in this area has happened during the last 15 years and is

due mostly to changes in hardware design paradigms, changes in technology and increased

computing power.

Hardware implementation at this level can be done by wiring a large amount of discrete

logic gates together or through the other preferred methods of building Application Specific

Integrated Circuits (ASIC's) or by designing Field Programmable Logic Arrays (FPGA's)

circuitry. The construction of logic designs through ASIC methodology requires more time

investment but allows users to achieve higher level of integration. Typically firms who plan in

building ASIC's involve multiple designers to create a single design. Designers need to be aware

of the logic design, the physical technology (CMOS,MOSFET, etc) and have access to tools for

the device construction. Design implementation involves a large number of steps, including

schematic capture, layout, fabrication and packaging. The skills and knowledge required to

develop hardware at this level ranges from electrical engineers for circuit design to mechanical

engineers for packaging. This type of process also requires significant tool investment in

specialized software, fabrication plants and can cost upwards of IM USD per design. The design

cycle for this type of circuit design is close to six-months and may require several iterations to

finalize the design. Developing of cores for specific functions through the use of ASIC's can be

an expensive proposition from which to develop hardware. Although in recent years ASIC

vendors have developed high quality toolkits that enable users to design their own custom

solutions at lower price points and with reduced production costs by making use of libraries

which contain commonly available modules and which handle most of the physical

implementation of the design allowing users to concentrate on the design itself. In the early 90's

there was a convergence of factors that lead to alternative ways in which logic designs could be

built. First design methodology transition from schematic design flow to the use of Hardware

Description Languages (HDL's), second field programmable logic devices (FPGA) achieved

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

densities comparable to those of small to medium sized Application Specific Integrated Circuits

(ASIC) and finally design methodology was streamlined.

Hardware Description Languages

Hardware description languages are programming languages used to model the intended

operation of a piece of hardware. The two most commonly utilized languages are VHDL and

Verilog. VHDL appeared in 1980 when the USA Department of Defense (DOD) established the

Very High Speed Integrated Circuit (VHSIC) program to create a standard hardware description

language that was self-documenting and followed a common design methodology33 . In 1987 the

Institute of Electrical and Engineers (IEEE) ratified it as standard IEEE Standard 1076. Verilog

had its origins in a CAE company called Gateway Design and after several iterations and

modifications was reviewed and adopted by the IEEE as IEEE standard 1364. Of all the designs

submitted to ASIC foundries in the 1993, 85% were designed and submitted using Verilog34

Today most ASIC designs and FPGA designs are done through Hardware description language

design methodology. Hardware description languages help to decrease the information

stickiness through the following characteristics: First they allow hardware design to be done

through a standardized programming language. In this case a user that utilizes a hardware

description language can easily transfer designs with no changes, cost (other than those needed

to send the design) or extra steps required to convert the information from one form to another.

Most new development tools can handle both of the standards in a mixed mode implementation

reducing even the need to represent the entire design fully in one of the languages in its entirety.

Logic designs can now be easily edited simulated and shared with other users without having to

deal with tool compatibility. Second the increased level of abstraction of the code makes it easier

to create and modify large amounts of hardware logic through code. Information transfer costs

are reduced because although less of the design needs to be represented all of the needed

information is available to recreate the design. Hardware languages add several layers of

abstraction and low-level implementation details are generally not needed in order to understand

33 Smith, Douglas J. HDL Chip Design Madison, AL Doon Publications 1996

34 Smith, Douglas J. (1996) pg 24

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

the logic design implementation. Functionally the logic design behaves the same but the amount

of information needed to understand it, replicated and implemented is greatly reduced. Lastly

hardware design can now be technology and device independent, allowing for designs to be for

the most part generated independently from the targeted device and easily portable. This allows

users that implement a design to target different physical technology implementations without

having to understand the physical structure of the device and its underlying implementation.

Instead of having to understand the design as targeted for a particular physical implementation,

with HDL's a design is first implemented in code and then targeted towards a particular physical

implementation. Increased portability leads to increased amount of re-use a designer or user can

develop an HDL library based on components that he or she may want to re-implement for

different designs.

Transistor Level Representation Gate Level Representation Hardware Description Language

VCC

signal Y1: stdJogic;
Y1 signal Y2: std_logic;

Y1 Y210 A signal A: std_logic;

Y2 A <= not(not (Y1 and Y2));

Figure 3: Different Representations of the Same Circuit: The circuit represents a conjunction function and is

first implemented via all required transistors; the second representation is utilizing ANSI/IEEE STD 91-1984
symbols and the last one in VHDL.

Figure 1 shows three different representations of the same digital logic design. The first circuit is

a transistor level implementation of the design. This representation shows the actual transistor

wiring as would be implemented in the physical integrated circuit. In order to properly model

and construct this design a user must be aware of transistor behavioral characteristics as well as

small and large signal modeling at the transistor level. Furthermore the user would need a tool

capable of describing all of the individual nodes and transistor characteristics in order to test,

implement and/or modify the circuit. Most of these tools incur some cost, although there is at

least one Free and Open Source Tool available35 to design and build circuits at this level the tool

is not compatible with those available and established as industry standards.

© Roberto Acosta- All Rights Reserved

35 Magic 7

-- -------~

racosta@sloan.mit.edu

Gate level representation is one level of abstraction above transistor level

implementation; it is easier to implement designs through this methodology than through direct

transistor representation, however one must have access to tools and development suites that can

read and generate schematics. Initially this type of design methodology was the preferred

method for logic design, but schematic capture can be extremely time consuming and difficult to

maintain. Schematics must be generated for a particular tool environment and do not easily

transition from one design environment to another. Schematics can also be difficult to interpret

and are more susceptible to mistakes when attempting to copy or to share.

The last representation is a Hardware Description Language representation of the circuit.

Although logic design through this method has some its own challenges, the circuit is

represented in a text format. The text is then fed into a synthesizer (the equivalent of a compiler

for software) that maps the design into logic gates utilized by the design flow to implement the

design. By working at this level of abstraction designs can be easily shared and made available to

others. Users only need a freely available text editor in order to generate designs. Tools for

synthesis and physical mapping for the device are available as part of open source initiatives and

some IC vendors allow users free versions of their tools for designs that are less than a certain

number of gates.

Field Programmable Gate Arrays

Ross Freeman and Bernard Vodershmitt first created Field Programmable Gate Arrays (FPGA's)

were first created in 1985 while working for Xilinx. FPGA's are semiconductor devices that can

be reconfigured by the customer after the IC has been manufactured. FPGA's have helped Open

Source Hardware development by reducing the number of cycles in which the manufacturer is

involved in the process. The ability to reprogram the FPGA provides a way of developing

hardware that reduces the cost of experimentation and allow developers. Designers can iterate

several times around a particular design without having to remanufacture a the digital logic. This

approach diverges from the traditional ASIC path in which a fabrication house must be available

in order to develop logic designs of high density. Although the unit cost of an FPGA is

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

considerably higher than that of an ASIC when developed in volume the non-recurring

engineering cost to produce a single FPGA is orders of magnitude lower than that of an ASIC.

The logic density of an FPGA cannot achieve what is possible for an ASIC today however

current FPGA sizes have grown from early 1200 equivalent logic gate size to 7 million

equivalent gate sizes more than enough for large-scale integration. FPGA's can be considered a

low cost innovation niche in which users that have heterogeneous needs and sticky information

can develop their solutions without having to resort to manufacturer knowledge for design

implementation. As long as logic designs are kept within the boundaries of the FPGA a user has

the ability to design, build, run and analyze a design in house greatly decreasing the trial-and

error cycle of product development. FPGAs also allow for users to experiment new designs

without having to pay for manufacturing costs.

Open Source Hardware at the Core level: OpenCores.org

Core development has been on of the areas that have seen accelerated growth in terms of Open

Source Hardware. Groups such as OpenCore.Org can boast membership of over 20,000

individuals and currently has over 400 designs developed and available for users to download.

The membership of the group is distributed worldwide and ranges from skilled professionals to

enthusiasts. Figure X was provided by opencores.org and it shows a regional breakdown of

activity over the last month. The objective of the group is to "design and publish core designs

under a license for hardware modeled on the Lesser General Public License (LGPL)". One of

the main reasons for founding the group was to "reduce the excessive time-to-market and

excessive cost in building deep submicron designs with millions of gates" with a technical

solution that involved "the reuse of cores and the shared expending workload of verification".

The Cores are typically coded in one of the standard hardware description languages and stored

under revision control at a centralized deposit. OpenCores began with relatively simple

functions such as CORDIC functions but is currently targeting development of more integrated

and complex designs such as multicore processor solutions and high-end digital signal

processing engines. It has adopted the Wishbone open source hardware computer bus to allow

users to better integrate different cores and allowing it to move a bit up the value chain as users

are beginning to build and develop systems on a chip. Part of the toolkits for users and

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

developers is the ability to obtain a set of schematics to build their own test board through or to

purchase a low cost development kit. The board serves as a physical interface in which users can

further validate their designs. Statistics of individual core activity are logged as well as recent

updates, bugs or feature requests. There is typically a group of people listed to serve as core or

project maintainers providing some continuity and guarantee that the core will be properly

supported. One of the important aspects of this community is that hardware vendors and

commercial developers also support it. For example some cores are developed in Bluespec,

which has higher level of abstraction than other hardware description language. Users who want

to learn more or implement cores in this more innovative language will most likely be pointed

towards tools and services provided by the Bluespec company itself. Users/companies of

opencore.org not only utilize the area and to obtain new designs but also as a connection point to

a broad network of users for services and designs that they provide.

MUS

80,000 engineers and others visit OpenCores monthly - "ndica
o China

Regional breakdown 3 Bahrain
Siran
* Greece
* Hong Kong
* Germany
* Israel
* Turnsia
O Canada
SChile

a Kuwait
* Singapore
a Turkey
SDenmark

EAlgen
o France
o Porugal
DArgenlna
SSwilzertand

* Colombia
m Firdand
a United Kingdom
MOlher Countries

Figure 3: Distribution and Number of visitors to OpenCores

Source OpenCores.org

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

; giir~llllllllllll11111111111111111111

Part VIII Case study of designing an Ethernet framer through

available Open Source Hardware Cores vs. User Developed

Cores.

The following design was developed through full code over the last couple of months. Metrics

for the design will be used to compare it those available through open source cores. Development

of a core was chosen because the hardware could be modeled/simulated through the use of

Hardware description languages without having to relay or depend on manufacturing of physical

item.

The main goal was to obtain a series of metrics to compare an open source solution with that of a

custom design. The designs will be compared for overhead, functionality, time spent on design

cycle and verification as well as resource utilization on of the FPGA.

The design implements an Ethernet framer and includes the following main components: a data

rate matching fifo, a High-Level Data Link Control block to properly detect opening and closing

flags [7E hex] and properly detect and convert user data, an Ethernet framing block and FIFO

interface for a physical interface layer. The design includes commonly used cores for Static

Random Access Memory (SRAM) and uP interface. The following block diagram represents the

implemented blocks. Highlighted blocks were replaced with commonly available blocks from

OpenCore.org . The Design Structure Matrix represents the component interactions from the

individual blocks.

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Eu

input data pipe control x x.da at maC atma g fifo x x x

datpacketuhdc convert x x x x

data packet buffer 1 x x
IS u Z X EM

data packet buffer 2 x x 0 0 Edata paket buffer 3 x xE Eu Eu E u E Eu U

0.data packet m0
d

buffer 40 0.0 x x x x0.clockmodule
up interface/registers x
input data pipe control
datpacketchutingsearch x x x
data packet detraming ret urn x x
data packet hdlc convert x x x x
data packet rotx x x
data packet statistics x x x x x x x x x x x
data packetrealignment x x x
data packet buffer 0 x x
data packet buffer 1 x x
data packet buffer2 x x
data packet buffer 3 x x
data packet extract x x x x x x

data packFigure 4 : DSM of mplemented Design
data packet mid buffer 4 x x x x x

data packet framing retu m x x x
data packet header arb x x

Figure 4 : DSM of Implemented Design

The design was taken through the synthesis aspect of the design cycle to obtain the utilization

metrics represented below:

Metric I User Developed OpenCore Developed

Design Time for 4 weeks, 1 week integration 2 weeks to integrate

Modules

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

The design implemented with cores had higher utilization, this can be traced to the higher

functionality not required by the design but included with the framing core. The design time was

significantly reduced and although there was an added cost in learning of the details of the core

this was considerably less than the time needed to engineer a custom solution. The cores

available were fully verified resulting on only the interfaces between cores and user logic

needing verification resources and time. The only penalty besides the building of capabilities by

learning to implement the functions was a design that was not optimized for the individual

solution.

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Part X Open Source Hardware & Business Models

Henry Chesbrough explained some of the dynamics that business were facing when investing in

innovation. First useful knowledge and technology are becoming increasingly widespread and

distributed across companies of different sizes and many parts of the world. Second there are

two distinct market dynamics that are contributing to the rising cost of innovation36. The first

dynamic is that of an increasing cost of investment in order to develop new and advanced

technology. Chesbrough showed that the cost of a new semiconductor fabrication plant had seen

a 100% increase in of the cost building the plant over 20 years to reach a total figure of $3

billion 37. A second market dynamic was that of shorter product life cycles. An example cited

was that of the expected model of hard-drive retaining its leadership position in the market

having shifted from two-three years down to six to nine months before newer and better

solutions appeared. Chesbrough demonstrated that the combination of these two forces reduced

a company's ability to earn a satisfactory return on its investment in innovation. If a company

decided to open its business model it could attack the cost side problem by leveraging external

R&D resources to save time and money in the innovation process.

A company that engages in Open Source Hardware development can leverage innovative

solutions from outside the company in most cases for relatively little cost. A key idea from Open

Innovation as stated by Chesbrough was the fact that "not all of the smart people work for you".

A company that invests in open source hardware can have access to innovation communities

developing novel and advanced products as well as access to lead users who are developing

commercially attractive products38. Links to these communities allow businesses to better serve

some of their customers by gaining insight into their current needs and applications.

36 Chesbrough, Henry Open Business Models. Boston, MA Harvard Business Press (2006) pg 10
37 Chesbrough, Henry pg 11
38 Von Hippel, Eric (2005)

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Businesses can position themselves in a manner such that they can profit from open source

hardware. The following approaches described by Chesbrough for open source software

companies have equivalent open source hardware approaches:

-Selling support, service or customization of hardware. A company that invests and

participates in developing open source hardware can benefit from users seeking support or

customization of open source hardware designs that they are utilizing. An example of this is the

Arduino hardware whose founders along with making a small profit by the sale of their open

source circuit. Gain most of their revenue from client who wants to build devices based on their

board and who hire the founders of the company as consultants. 39

-Versioning of Hardware, lower level IP blocks used as entry offerings with higher

performance cores or value added offerings. Some core developers have favored this approach

by providing certain lower level cores for free as a trial basis for user to test and then charge a

premium higher performance closed designs or added features such as higher performance or

lower power consumption.

-Integrate the Open Source hardware to build higher value products that a customer may

not want to manufacture. Companies such as VIA have released a full set of schematics and

CAD diagrams in order to build an open source notebook. With this information anybody can

build a notebook through a low cost manufacturer. The advantage for the company is that the

design is based on their microprocessor and associated IC's. By releasing the design for the full

product design, the company will gain market share if consumers decide to build based on its

desing and integrated circuits.

-Provide complements to the open source hardware by building proprietary modules or

tools that work with existing open source hardware modules. Companies such as Bluespec have

released open source designs to OpenCores. Developers who utilize this cores will see the

39 Thompson, Clive "Build It. Share It. Profit. Can Open Source Hardware Work?" Wired Oct. 2008

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

benefit of designing with Bluespec modeling and desing solutions and will see the value of

investing in one of several tools provided by the company.

Businesses also have strong reasons participating in open source hardware through the release of

some of their designs. First old or unused designs may find new niches or applications by

members of the open source hardware community. A company that maintains manufacturing

capacity for certain parts of the design or certain portions of a design can see an increase in sales

of an old design if an open source community finds new and novel approaches utilizing the

components or technology that were not originally though of by the company. A company can

also obtain revenue from support services for a design.

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Part IX Conclusions

Open source hardware activity is highly concentrated in the mid section of the value add

activities of the value chain although activity is present at the top of the value chain. Products

and activity at the top of the chain had relatively less re-use or modification than open source

hardware at lower levels of the value chain. Most designers/developers utilized the open source

hardware as a platform on which to develop software and applications not as a way to modify

and improve the existing hardware. Software/Application related groups were active for the open

source hardware platforms but in some cases could easily transfer their applications to other

platforms meaning that hardware developed at a product level can be at risk of keeping a

software development group tied to its system, This can make it difficult for open source

hardware platforms to compete with newer and better solutions that can appear based on closed

systems since in many cases only an interface layer is needed to program the device allowing for

easy migration to from platform to platform.

Information regarding the hardware was complete for software developers but incomplete for

hardware designers in terms of design rules and manufacturing information. In order to

manufacture hardware at this scale a developer needs a greater amount of information from

different sources and must deal with factors such as reliability, sustainability and

manufacturability.

The sub-system level saw an increase of open source hardware development with many users

tying subsystems to build their own products and solutions. Most users/developers were

involved in the product development cycle and also interested in improving products available

by other users. User communities tended to form along the building of particular sets of products

and solutions that would compete with more expensive solutions available in the market.

Products generated from the subsystems tended to improve existing solutions in the market at a

reduced cost. If manufacturers begin developing better toolkits products developed from open

source subsystems could begin to challenge established system integrators.

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Open Source hardware at the gate level is the most ubiquitous. Open source hardware designs

available at this stage can begin to challenge established core developers. In interviews with

hardware developing firms some have begun to replace established purchased cores with cores

available from areas such as opencores.org. Established core developers must either develop

cores that offer distinct advantages over freely available ones or must offer a higher level of

integration in order to compete effectively. For example a memory interface designed by a core

vendor must prove to be much better on memory access times or power consumption that one

freely available. Establish core developers must offer integrated solutions such as offering

memory interface solutions coupled with memory queuing systems or must compete with better

support and service. A design comparison between one designed with open cores versus custom

cores resulted in less time in verification for the design created from open source. Most cores

obtained had greater functionality than required for a specific function and were adequately

supported and debugged leading to a faster development cycle. Open Source development

communities utilized their vast human resources to develop highly complex defect free core

solutions in a short amount of time.

Open source hardware is available at all stages of the value chain and developers with system

thinking and those that can manage complex system interaction can take advantage of available

resources to bring faster and better solutions to the market. There appeared to be no threat of

"free ridership", "cloning" or "me too" companies who only copied the design and decided to

market it for their own profit. Common to other businesses approaches an open source hardware

based business relies on service and quality of the manufactured product. An open source

hardware based business also depends on a community of developers and users who help to

create the product. Establishing relationships with manufacturers such that high quality hardware

can be built through long production runs and creating a community of developers and designers

takes time and effort and cannot recreated easily. By freely revealing the hardware source the

businesses obtain the benefit of developers to test and enhance their product while at the same

time they generated a value add that strengthened the position of their product. Branding was an

important aspect of open source hardware. Companies such as Arduino allowed their design to

be copied but retained the name of the platform, that way they can protect their design/platform

from others who may not manufacture it with the same standards that they had.

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Developers and designers of open source hardware not only gained from a much better design

product by utilizing a community of developers but also saw their reputation increased and in

cases such as the open telephony project and the Arduino platform the lead designers were able

to obtain sources of revenue by providing services and consulting to contacts made through their

product.

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Appendix A: Design Files for Ethernet FPGA

// File : sdm_proj09.v
//Author: Roberto Acosta
//
// Description:
// This module includes the Ethernet framer module plus the I/O Ring
I-

// All ports with suffix '1' are low asserted.

// Revision History:
//
// Date Author Revision
// Sdmprj Mar 05th, 2009 R.A. First Pass
I-

module sdmproj (
clk MAC i,
clkSYS i,
sdmprj_reset_l_i,
sdmprjmb add dataio,
sdmprj mbreset_i,
sdmprj mb starti,
sdmprj_mb_busyo,
sdmprjmbselect_i,
sdmprjmb clk en _ i,
sdmprj mbint 1 _o,
sdmprj_txsell_o,
sdmprj_fps_txf_o,
sdmprj_sop_txfo,
sdmprj_eop_txfo,
sdmprj_vtg_o,
sdmprjtxasis_o,
sdmprj_flct_o,
sdmprj flct lat o,
sdmprjtxrdy_0_o,
sdmprjtxrdy_l_o,
sdmprj_chn0_tdat_pi,
sdmprj_chn0_tclk_ 155 i,
sdmprj_chn0_tclk_ 155 1 i,
sdmpj_chn0 clk 155_o,
sdmprj_chn0 clk 155 1 o,
sdmprj_chn0 ext rd o,
sdmprjtxsi o,
sdmprj_tx_ld_o,
sdmprjtxsen 1 o,
sdmprjtx rst 1 o0,
sdmprjtx0_data o,
sdmprjtx0_be_o,
sdmprjtx0_wclk_o,
sdmprj tx0 reno,
sdmprj_tx0 oe 1 o,
sdmprj tx0_wen_o,
sdmprjtx0 ffl i,
sdmprj_tx0 efl i,
sdmprjtx0_pafl_i,
sdmpj_chnl_tdat_pi,

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

sdmprj_chn ltclk 155_i,
sdmprj_chn ltclk_155 1 i,
sdmprj_chnl clk 155_o,
sdmprj_chnlclk 155 1 o,
sdmprj_chnl ext rd o,
sdmprjtxl_datao,
sdmprjtxl_beo,
sdmprjtxl wclk_o,
sdmprjtxl reno,
sdmprjtxloe 1 o,
sdmprj txl weno,
sdmprj_tx lffli,
sdmprjtxlefl i,
sdmprj_txlpafl i,
sdmprj_vlanram clk _o,
sdmprjvlanram cso,
sdmprj_vlanram_oe I o,
sdmprj_vlanram_we 1 o,
sdmprj_vlanram_adv_o,
sdmprj_vlanram_addro,
sdmprj_vlanram_data_io,
sdmprjram_clk_mirror_in_o,
sdmprj_statsram_clk_o,
sdmprj_statsram cs o,
sdmprj_statsram_oe 1 o,
sdmprj_statsram we 1 o,
sdmprj_statsram_adv_o,
sdmprj_statsram_addr_o,
sdmprj_statsram_data_o,
sdmprj ram_clk_mirrorout_i

// SYSTEM

input clk_MAC_i;
input clk_SYS i;
input sdmprjreset 1 i;

// uProcessor BUS

inout [17:0] sdmprj_mb_add_dataio;
input sdmprj_mbreset i;
input sdmprj_mb_start i;
input sdmprj_mb_select i;
input sdmprjmb_ clk_en 1 i;
output sdmprjmb_busy_o;
output[1:0] sdmprjmb int 1 o;

// Common Port Fifo Interface

output sdmprj_txsi o;
output sdmprj_tx_ld_o;
output sdmprjtx_sen l_o;
output sdmprj_txrst 1 o;

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

// Port 1 Interfaces

// Channel 1 packets

input [15:0] sdmprj_chnO_tdat_pi;
input sdmprj_chnO_tclk_ 155_i;
input sdmprj_chnO_tclk_ 155 1 i;
output sdmprj_chn0 clk 155_o;
output sdmprj_chn0 clk 155_ 1 o;
output sdmprj_chnO_extrdo;

//FIFO

output[31:0] sdmprjtx0_data_o;
output[3:0] sdmprjtx0_be_o;
output sdmprj_tx0_wclk_o;
output sdmprjtx_0 reno;
output sdmprjtx0 oe 1 o;
output sdmprj_tx0_wen_o;
input sdmprjtx0_ffl_i;
input sdmprj_tx0_efli;
input sdmprj_tx0_pafli;

// Port 2 Interfaces

// Channel 2 Interfaces

input [15:0] sdmprj_chnl_tdat_p_i;
input sdmprjchnl_tclk_ 155_i;
input sdmprj_chn l_tclk_ 155 _1i;
output sdmprj_chnl clk 155_o;
output sdmprj_chnl_clk_155_1 o;
output sdmprj_chnl_extrdo;

//FIFO

output[31:0] sdmprjtxl_data_o;
output[3:0] sdmprj_txl_be_o;
output sdmprjtxl_wclk_o;
output sdmprjtxl _ren o;
output sdmprjtxloe 1 o;
output sdmprj_txl_wen_o;
input sdmprj_txl_ffl i;
input sdmprj_txl_efl_i;
input sdmprj_txl_pafl_i;

// Memory Interface (L2 Table)

output sdmprj_vlanram_clk_o;
output sdmprjvlanramcso;
output sdmprj_vlanram_oe 1 o;
output sdmprjvlanram we 1 o;
output sdmprj_vlanram_adv_o;
output[18:0] sdmprj_vlanram_addr_o;
inout [35:0] sdmprj_vlanram_data_io;
input sdmprj_ram clkmirrorini;

// Memory Interface (Counters)

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

output sdmprj_statsramclko;
output sdmprj_statsram cso;
output sdmprj_statsram oe 1 o;
output sdmprj_statsram_we 1 o;
output sdmprj_statsram_adv_o;
output[18:0] sdmprj_statsram_addr_o;
inout [35:0] sdmprj_statsram_data_io;
output sdmprjram clk mirrorout_o;

// MAC Interface

output sdmprj_txsel 1 o;
output sdmprjfps_txf_o;
output sdmprj_sop_txfo;
output sdmprj_eop_txfo;
output sdmprj_vtg_o;
output sdmprj_txasis_o;
output[1:0] sdmprj_flct_o;
output sdmprj_flct_lat_o;
input sdmprj_txrdy_0_i;
input sdmprj_txrdy_l_i;

* Clock SYS *
***/

wire clkSYS i;

IBUF_CLK (.I(clk_SYS_i),.O(clk_MACdlli));

CLKDLL DLL_SYS (
.CLKO(clkSYSinta),
.CLK90(),
.CLK180()0,
.CLK270(),
.CLK2X(clk 2xSYSa),
.CLKDV(),
.LOCKED(),
.CLKIN(clk_SYSint),
.CLKFB(clk_SYS),
.RST(-sdmprj_reset_ 1)

BUFG BUFG_SYS (
.I(clk_SYSinta),
.O(clk_SYS)

BUFG BUFG_2xSYS(
.I(clk_2xSYSa),
.O(clk_2xSYS)

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

wire sdmprj_txl_wclk;
assign sdmprj txl_wclk = sdmprj tx0_wclk;

/***\
* CLOCK MAC & CLOCK CHNNET GEN. *
***/

CLKDLL FIFOTX (
.CLKO(sdmprj_txO_wclk),
.CLK90(),
.CLK180()0,
.CLK270(),
.CLK2X(),
.CLKDV(),
.LOCKED(),
.CLKIN(clk_SYS),
.CLKFB(sdmprj_tx l_wclk),
.RST(-sdmprj_reset_1)

/***\
* CLOCK MAC & CLOCK CHNNET GEN. *

wire clkMAC i;
wire clkMACdlli;
wire clkMACdllo;
wire clkMAC;

wire clk 2xMACdllo;
wire clk_2xMAC;

wire clk 2xMACinta;
wire clk_2xMAC;

IBUF IBUF_MAC (.I(clk_MAC_i),.O(clkMACdlli));

CLKDLL DLL_MAC (
.CLKO(clk_MACdllo),
.CLK90(),
.CLK180()0,
.CLK270(),
.CLK2X(clk_2xMACdllo),
.CLKDV(),
.LOCKED(),
.CLKIN(clkMACdlli),
.CLKFB(clk_MAC),
.RST(-sdmprj_reset_1)

BUFG BUFG_MAC (.I(clk_MACdllo),.O(clk_MAC));

BUFG BUFG_2xMAC(.I(clk_2xMACdllo),.O(clk2xMAC));

* Chnnet 0 DLL *

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

//--------------DLL CHNNET 0 ------------ //

CLKDLL CHNO_DLL (
.CLKO(sdmprj_chn0 clk 155),
.CLK90(),
.CLK180(sdmprj_chn0 clk 155_1),
.CLK270(),
.CLK2X(),
.CLKDV(),
.LOCKED(),
.CLKIN(clk_2xMAC),
.CLKFB(sdmprj chn0 clk_ 155),
.RST(-sdmprj_reset 1)

//--------------DLL CHNNET 0 ------------ //

CLKDLL CHN1_DLL (
.CLKO(sdmprj_chn l_clk 155),
.CLK90(),
.CLK180(sdmprj_chnl_clk_155_1),
.CLK270(),
.CLK2X(),
.CLKDVO,
.LOCKED(),
.CLKIN(clk_2xMAC),
.CLKFB(sdmprj_chnl elk 155),
.RST(-sdmprj reset 1)

OBUF_LVPECL Psdmprj_chnO_clk_155
OBUF_LVPECL Nsdmprj_chn0 clk 155

OBUF_LVPECL Psdmprj_chnl clk 155
OBUF_LVPECL Nsdmprjchnl_clk_155

(.I(sdmprj_chn _clk 155), .O(sdmprj_chn0 clk 155_o));
(.I(sdmprj_chn0 clk 155_1), .O(sdmprj_chn0 clk 155_0o));

(.I(sdmprj_chnl clk 155), .O(sdmprj_chnl clk 155_o));
(.I(sdmprj_chnl clk 155_1), .O(sdmprj_chnl_clk_155_o));

* Chnnet 0 LVPECL *

//CLK
IBUF_LVPECL Psdmprj_chn0_tclk_155
IBUFLVPECL Nsdmprj_chnO_tclk_155_1

(.I(sdmprj_chn0_tclk 155_i), .O(sdmprj_chn0_tclk 155));
(.I(sdmprj_chn0_tclk_ 155_1_i), .0());

//DATA
IBUF_LVPECL PsdmprjchnO_tdatp (.I(sdmprj_chnO_tdat_pi[0]), .O(sdmprj_chnO_tdat_p[0]));
IBUF_LVPECL Plsdmprj_chnO_tdatp (.I(sdmprj_chnO_tdat_pi[1]), .O(sdmprj_chnOtdat_p[1]));
IBUF_LVPECL P2sdmprj_chnO_tdatp (.I(sdmprj_chnO_tdatp_i[2]), .O(sdmprj_chnO_tdatp[2]));
IBUF_LVPECL P3sdmprj_chn0_tdatp (.I(sdmprj_chn0tdat_p_i[3]), .O(sdmprj_chn0tdat_p[3]));
IBUF_LVPECL P4sdmprj_chnO_tdatp (.I(sdmprj_chnO_tdat_p_i[4]), .O(sdmprj_chnO_tdatp[4]));
IBUF_LVPECL P5sdmprj_chnO_tdatp (.I(sdmprj_chnO_tdat_p_i[5]), .O(sdmprj_chnO_tdatp[5]));
IBUF_LVPECL P6sdmprj_chnO_tdatp (.I(sdmprj_chnO_tdat_p_i[6]), .O(sdmprj_chnO_tdatp[6]));
IBUF_LVPECL P7sdmprj_chnO_tdatp (.I(sdmprj_chnO_tdat_p i[7]), .O(sdmprj_chnO_tdatp[7]));
IBUF LVPECL P8sdmprj_chnO_tdatp (.I(sdmprj_chnO_tdat _i[8]), .O(sdmprj_chnO_tdatp[8]));
IBUF_LVPECL P9sdmprj_chnO_tdatp (.I(sdmpj_chnO_tdat_pi[9]), .O(sdmprj_chnO_tdat-p[9]));
IBUF_LVPECL P10sdmprj_chnO_tdatp (.I(sdmprj_chnO_tdat_p_i[10]), .O(sdmprj_chnO_tdat_p[10]));
IBUF_LVPECL P1 1sdmprj_chn0_tdatp (.I(sdmprj_chn_tdat_p_i[11]), .O(sdmprj_chnO_tdat_p[1]));

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

IBUFLVPECL Pl2sdmprj_chnO_tdatp
IBUF_LVPECL P13sdmprjchnO_tdatp
IBUF_LVPECL P14sdmprj_chnO_tdatp
IBUF_LVPECL P 15sdmprj_chnO_tdatp

(.I(sdmprj_chnO_tdat_p_i[12]), .O(sdmprj_chnO_tdat_p[12]));
(.I(sdmprj_chnO_tdat_pji[13]), .O(sdmprj_chnO_tdat_p[13]));
(.I(sdmprjchnO_tdat_p_i[14]), .O(sdmprj_chnO_tdatp[14]));
(.I(sdmprj_chnO_tdat_p_i[15]), .O(sdmprj_chnO_tdat_p[15]));

* Chnnet 1 LVPECL *
**/

//CLK
IBUFLVPECL Psdmpj_chnl_tclk_155 (.I(sdmprj_chnl_tclk_155_i), .O(sdmprj_chnltclk 155));
IBUF_LVPECL Nsdmprj_chnl_tclk_155_1 (.I(sdmprj_chnl_tclk_155_l_i), .0());

//DATA
IBUF_LVPECL POsdmprj_chnl_tdatp (.I(sdmprj_chnl_tdat_p_i[O0]), .O(sdmprj_chnltdatp[0]));
IBUF_LVPECL P1 sdmprjchnl_tdatp (.I(sdmprj_chnl_tdat_p_i[1]), .O(sdmprj_chnl_tdat_p[1]));
IBUF_LVPECL P2sdmprj_chnl_tdatp (.I(sdmprj_chnl_tdat_p_i[2]), .O(sdmprj_chnl_tdatp[2]));
IBUF_LVPECL P3sdmprj_chnl_tdatp (.I(sdmprj_chnl_tdat_p_i[3]), .O(sdmprj_chnl_tdat_p[3]));
IBUF_LVPECL P4sdmprj_chnl_tdatp (.I(sdmprj_chnl_tdat_p_i[4]), .O(sdmprj_chnl_tdat_p[4]));
IBUF_LVPECL P5sdmprj_chnl_tdatp (.I(sdmprj_chnl_tdat_p_i[5]), .O(sdmprj_chnl_tdatp[5]));
IBUF_LVPECL P6sdmprj_chnl_tdatp (.I(sdmprj_chnl_tdat_pi[6]), .O(sdmprj_chnl_tdatp[6]));
IBUF_LVPECL P7sdmprj_chnl_tdatp (.I(sdmprj_chnl_tdat_pi[7]), .O(sdmprj_chnl_tdat_p[7]));
IBUF_LVPECL P8sdmprj_chnl_tdatp (.I(sdmprj_chnl_tdat_pi[8]), .O(sdmprj_chnl_tdatp[8]));
IBUF_LVPECL P9sdmprj_chnl_tdatp (.I(sdmprj_chnl_tdat_p_i[9]), .O(sdmprj_chnl_tdat_p[9]));
IBUF_LVPECL PlOsdmprj_chnl_tdatp (.I(sdmprj_chnl_tdat_p_i[10]), .O(sdmprj_chnl_tdat_p[10]));
IBUF_LVPECL P1 1sdmprj_chnl_tdatp (.I(sdmprj_chnl_tdat_p_i[11]), .O(sdmprj_chnl_tdat_p[1]));
IBUF_LVPECL P12sdmprj_chnl_tdatp (.I(sdmprj_chnl tdat_p_i[12]), .O(sdmprj_chnl_tdat_p[12]));
IBUF_LVPECL P13sdmprj_chnl_tdatp (.I(sdmprj_chn l_tdat_p_i[13]), .O(sdmprj_chnl_tdat_p[13]));
IBUF_LVPECL P14sdmprj_chnl_tdatp (.I(sdmprj_chnl_tdatp_i[14]), .O(sdmprj_chnl_tdatp[14]));
IBUF_LVPECL P15sdmprjchnltdatp (.I(sdmprj_chnl_tdat_p_i[15]), .O(sdmprj_chnl_tdat_p[15]));

sdmproj_top usdmproj_top(
.clk_MAC(clk_MAC),
.clk_SYS(clk_SYS),
.sdmprj reset_l(sdmprj reset l_i),
.sdmprj_mb_add_data(sdmprj_mb_add_data_io),
.sdmprj_mb_reset(sdmprj_mbreset_i),
.sdmprj_mbstart(sdmprj_mb_starti),
.sdmprj_mb_busy(sdmprj_mb_busy_o),
.sdmprj_mb_select(sdmprj_mb_select_i),
.sdmprj_mb clk en 1(sdmprj_mb clk en _Ii),
.sdmprj_mb_int_l(sdmprjmbintlo),
.sdmprj_txsel_l(sdmprj_txsel_o),
.sdmprjfps_txf(sdmprj_fpstxf o),
.sdmprj_sop_txf(sdmprj_sop_txf_o),
.sdmprj_eop_txf(sdmprj_eoptxf_o),
.sdmprj_vtg(sdmprj_vtg_o),
.sdmprj_txasis(sdmprj_txasis_o),
.sdmprj_flct(sdmprj_flct_o),
.sdmprjflct_lat(sdmprj_flct lat o),
.sdmprj_txrdy_0(sdmprj_txrdy_0_i),
.sdmprj_txrdy_l(sdmprj_txrdy_l_i),
.sdmprjchn0_tdat_p(sdmprj_chn0_tdat_p),
.sdmprj_chn0_tclk 155(sdmprj_chn0_tclk_155),
.sdmprj_chn _tclk 155_1()0,
.sdmprj_chnOclk 155(),
.sdmprj_chnOclk 155_1(),
.sdmprj_chn0 ext rd,
.sdmprjtxsi(sdmprj_txsi_o),
.sdmprj_txld(sdmprj_txId_o),
.sdmprj_tx_sen_l(sdmprj_tx sen lo),

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

.sdmprjtxrstl(sdmprj_tx rst lo),

.sdmprj_tx0_data(sdmprj_tx0_datao),

.sdmprjtx0be(sdmprj_tx0_be_o),

.sdmprjtx0wclk(),

.sdmprj_tx0_ren(sdmprj_tx0_ren_o),

.sdmprj_tx oel (sdmprjtx0 oe lo),

.sdmprjtx0_wen(sdmprj_tx0_weno),

.sdmprj_tx0_ffl(sdmprj_tx0_ffl_i),

.sdmprj_tx0_efl(sdmprj_tx0_efl_i),

.sdmprjtxpafl(sdmprj_tx0_pafl_i),

.sdmprj_chnl_tdat_p,

.sdmprj_chn ltclk_ 155,

.sdmprj_chn ltclk_155 1,

.sdmprj_chnl clk 155,

.sdmprj chnI clk 155 1,

.sdmprj_chnl_ extrd,

.sdmprj txl_ data,

.sdmprj txl_ be,

.sdmprjtxlwclk,
.sdmprjtx lren,
.sdmprj_txloel 1,
.sdmprjtxlwen,
.sdmprj_txl_ffl,
.sdmprj_txl_efl,
.sdmprjtxl_pafl,
.sdmprj_vlanram_clk,
.sdmprj_vlanram_cs,
.sdmprj_vlanram_oe 1,
.sdmprjvlanram_we 1,
.sdmprjvlanram_adv,
.sdmprj_vlanram_addr,
.sdmprj vlanram_data,
.sdmprjram clk mirror_in,
.sdmprj_statsram_clk,
.sdmprj_statsram_cs,
.sdmprj_statsram_oe 1,
.sdmprj_statsramwe 1,
.sdmprj_statsram_adv,
.sdmprj_statsram_addr,
.sdmprj_statsram_data,
.sdmprj_ram clk_mirrorout

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

// File : sdmproj_top.v
// Author: Roberto Acosta
/-

// Description:
// This is the Top module for the FPGA
/-

// All ports with suffix'_l' are low asserted.

// Revision History:
/-

// Date Author Revision
// Mar. 15th, 2009 R.A. First Pass
/-

'timescale Ins/10 ps

// synopsys translate_off

//'include "XilinxChaneLib/async fifovl_0.v"

// synopsys translate_on

module sdmproj_top (
clk MACi,
clkSYSi,
sdmproj resetl,
sdmproj_mb_add_data,
sdmproj_mbreset,
sdmproj_mb_start,
sdmproj_mb_busy,
sdmproj_mb_select,
sdmproj_mbclk en 1,
sdmproj_mb int 1,
sdmprojtxsel _l,
sdmproj_fps_txf,
sdmproj_sop_txf,
sdmprojeop_txf,
sdmprojvtg,
sdmproj_txasis,
sdmprojflct,
sdmprojflct_lat,
sdmproj_txrdy_0,
sdmproj_txrdy_l,
sdmproj_chanO_tdatjp,
sdmproj_chan0_tclk_155,
sdmproj_chan0_tclk_155_1,
sdmprojchan0_clk_155,
sdmproj_chan0_clk_ 155_1,
sdmproj_chan0_ext_rd,
sdmprojtxsi,

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

sdmprojtxld,
sdmproj_tx_sen_l,
sdmproj_txrstl,
sdmproj_tx0_data,
sdmproj_tx0_be,
sdmprojtxOwclk,
sdmprojtx0 ren,
sdmprojtxO0oe 1,
sdmprojtxO_wen,
sdmprojtxOffl,
sdmprojtxO_efl,
sdmproj_txO_pafl,
sdmproj_chan l_tdat_p,
sdmprojchan ltclk_ 155,
sdmproj_chan l_tclk_155 1,
sdmproj_chan l_clk_l 155,
sdmproj_chan l_clk_ 155_1,
sdmproj_chan l_ext_rd,
sdmprojtx l_data,
sdmproj_txl_be,
sdmproj_tx l_wclk,
sdmproj_txlren,
sdmproj_txl_oe l,
sdmproj_txl_wen,
sdmproj_txl_ffl,
sdmprojtxl_efl,
sdmproj_txl_pafl,
sdmproj_vlanram_clk,
sdmproj_vlanram_cs,
sdmproj_vlanram oe 1,
sdmproj_vlanram_we_1,
sdmproj_vlanram_adv,
sdmproj_vlanram_addr,
sdmproj_vlanram_data,
sdmprojram_clk_mirrorin,
sdmproj_statsram_clk,
sdmprojstatsram_cs,
sdmproj_statsram oe 1,
sdmproj_statsram_we_1,
sdmproj_statsram_adv,
sdmproj_statsram_addr,
sdmproj_statsram_data,
sdmprojram_clk_mirrorout,
sdmproj_spare 1,
sdmproj_spare2,
sdmproj_tx0_wclk_mirror,
sdmproj_txl_wclk_mirror,
sdmproj_port0_ext_fifo_rst,
sdmproj_portl_extfi forst,
sdmproj_flow _ctlp0,
sdmproj_flow ctl pl

// sdmproj_debug_lockout

parameter TPD = 1;

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

// SYSTEM

input clk_MACi;
input clk_SYSi;
input sdmproj reset_l;

// MAINTENANCE BUS

inout [17:0] sdmproj_mb_add_data;
input sdmproj_mb_reset;
input sdmproj_mb_start;
input sdmproj_mb_select;
input sdmproj_mb_clk en 1;
output sdmproj_mb_busy;
output[1:0] sdmproj_mb intl;

// SPARE

output [16:0] sdmproj/sparel;
output [16:0] sdmproj_spare2;
//output sdmproj_debug_lockout;

// Common Port Fifo Interface

output sdmprojtxsi;
output sdmproj_tx_si;
output sdmproj_tx_sen_l;
output sdmproj_tx rst 1;

// Port 1 Interfaces

// Channet

input [15:0] sdmproj_chan0_tdat_p;
input sdmproj_chan0_tclk_ 155;
input sdmproj_chan0_tclk_ 155_1;
output sdmproj_chan0_clk_ 155;
output sdmproj chan0_clk_155_1;
output sdmproj_chanO_ext_rd;

//FIFO

output[31:0] sdmprojtx0_data;
output[3:0] sdmproj_tx0_be;
output sdmproj_tx0_wclk;
output sdmproj_tx0_ren;
output sdmproj_tx0_oe_;
output sdmproj_tx0_wen;

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

input sdmproj_tx0_ffl;
input sdmproj_tx0_efl;
input sdmproj_tx0_pafl;

input sdmproj_tx0_wclk_mirror; //RA
output sdmprojport0_ext_fifo_rst;

// Port 2 Interfaces

// Channel 1

input [15:0] sdmproj_chan ltdatp;
input sdmproj_chanl_tclk_ 155;
input sdmproj_chan l_tclk_ 155 1;
output sdmproj_chanl_clk_155;
output sdmproj_chanl_clk_ 155 _1;
output sdmproj_chanl_ext_rd;

//FIFO

output[31:0] sdmprojtx l_data;
output[3:0] sdmproj_txl_be;
output sdmprojtxlwclk;
output sdmproj_txl_ren;
output sdmproj_txl_oe_l;
output sdmproj_txl_wen;
input sdmprojtxl_ffl;
input sdmproj_txl_efl;
input sdmproj_txl_pafl;

input sdmproj_txl_wclk_mirror; //RA
output sdmproj_port l_ext_fifo rst;
//
// Memory Interface (L2 Table)
output sdmprojvlanramclk;//

output sdmproj_vlanram_cls;
output sdmproj_vlanram_e s;
output sdmproj_vlanram we 1;
output sdmproj-vlanram we 1;
output sdmproj_vlanram_adv;
output[18:0] sdmproj_vlanram_addr;
inout [35:0] sdmproj_vlanram_data;
input sdmproj_ram_eclk_mirror in;

// Memory Interface (Counters)
II!1111!output sdmprojstatsram_11 lk;1

output sdmproj_statsramclk;
output sdmproj_statsram_cs;
output sdmproj_statsram _ e 1;
output sdmproj_statsram_weadv;
output sdmproj_statsramadv;
output[18:0] sdmproj_statsram_addr;
inout [35:0] sdmproj_statsram_data;

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

input sdmproj_ram_clk_mirror_out;

// MAC Interface

input sdmprojflow////////////ctlp;//////
input sdmproj_flow_ctlp0;

output sdmproj_txsel_l;
output sdmproj_fpstxf /* synthesis syn_useioff = 1 */;
output sdmproj_sop_txf;
output sdmproj_eoptxf;
output sdmproj_vtg;
output sdmproj_txasis;
output[1:0] sdmproj_flct;
output sdmproj_flct_lat;
input sdmproj_txrdy_0;
input sdmproj_txrdy_l;

// Inter-Module Wires

/**************Clocks MAIN*****************/
wire clkSYSi;
wire clk SYSint;
wire clk SYSinta;
wire clk_SYS /* synthesis syn_keep=l */;

wire clk 2xSYSa;
wire clk_2xSYS /* synthesis synkeep=l */;
wire locked_2xSYS;
wire SRL_output;
wire SRL_output_not;

// Debug signals for dll locks jw
//wire sdmproj_debug_lockout /* synthesis syn_keep=l syn_preserve=l */;
//wire clk0_oe /* synthesis syn_keep=l syn_preserve=l */;
//wire clkl_oe /* synthesis syn_keep=l1 syn_preserve=l */;

'ifdefVERA SIM ENV
assign SRL_output_not = -sdmprojreset_l;
'else
assign SRL_outputnot = -SRL_output;
'endif

//assign SRL_output_not = -sdmproj_reset_l;

wire logic 1;
assign logicl = l'bl;

'ifdef VERA SIM ENV
'else

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

IBUFG I_ibufg_clk_SYS(
.I(clk_SYSi),
.O(clk_SYSint)

endif

'ifdefVERA SIM ENV
CLKDLL usdmproj_clkdllSYS(

.CLKO(clk_SYSinta),

.CLK90(),

.CLK180(),

.CLK270(),

.CLK2X(clk_2xSYSa),

.CLKDV(),

.LOCKED(locked_2xSYS),

.CLKIN(clk_SYSi),

.CLKFB(clk_SYS),

.RSTO

'else
CLKDLL usdmproj_clkdllSYS(

.CLKO(clkSYSinta),

.CLK90(),

.CLK180(),

.CLK270(),

.CLK2X(clk_2xSYSa),

.CLKDV(),

.LOCKED(locked_2xSYS),

.CLKIN(clk_SYSint),

.CLKFB(clk_2xSYS),

.RST()

'endif

SRL16 usdmproj_srl 6SYS (
.Q(SRL_output),
.AO(logicl),
.Al(logicl),
.A2(logic 1),
.A3(logicl),
.D(locked_2xSYS),
.CLK(clk_2xSYS)

BUFG usdmprojbufgSYS (
.I(clk_SYSinta),
.O(clk SYS)

BUFG usdmproj_bufg2xSYS(
.I(clk_2xSYSa),
.O(clk 2xSYS)

wire sdmproj_tx0_wclkinta;

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

wire sdmproj_tx l_wclkinta;
wire sdmprojtx0_wclk;
wire sdmproj_txl_wclk;
wire sdmproj_tx0_wclk_mirror;
wire sdmprojtxl_wclk_mirror;

wire sdmproj tx0_ locked;
wire sdmproj_txl_locked;

//assign sdmproj_txl wclk = sdmproj_tx0_wclk;

'ifdef VERA SIM ENV
CLKDLL usdmproj_clkdlltx0(

.CLKO(sdmprojtx0wclkinta),

.CLK90(),

.CLK180(),

.CLK270(),

.CLK2X(),

.CLKDV(),

.LOCKED(sdmproj_tx0_locked),

.CLKIN(clkSYSi),

.CLKFB(clk_SYS),

.RST0

'else
CLKDLL usdmproj_clkdlltx0(

.CLKO(sdmproj_tx0_wclkinta),

.CLK90(),

.CLKI 80(),

.CLK270(),

.CLK2X(),

.CLKDV(),

.LOCKED(sdmproj_tx0_locked),

.CLKIN(clkSYSint),

.CLKFB(sdmproj_tx0_wclk_mirror),

.RST0

endif
OBUF_ F 12 I_obuf_tx0_wclk(

.I(sdmproj_tx0_wclkinta),

.O(sdmproj_tx0_wclk)

'ifdefVERA SIM ENV
CLKDLL usdmproj_clkdlltxl(

.CLKO(sdmproj_txlwclkinta),

.CLK90(),

.CLKI 80(),

.CLK270(),

.CLK2X(),

.CLKDV(),

.LOCKED(sdmproj txl_locked),

.CLKIN(clk_SYSi),

.CLKFB(clk_SYS),

.RST0

'else

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

CLKDLL usdmproj_clkdlltxl(
.CLKO(sdmprojtxlwclkinta),
.CLK90(),
.CLK1 80(),
.CLK270(),
.CLK2X(),
.CLKDV(),
.LOCKED(sdmproj_tx llocked),
.CLKIN(clk_SYSint),
.CLKFB(sdmproj_txlwclkmirror),
.RST0

endif

OBUF F 12 Iobuftxlwclk (
.I(sdmproj_tx l_wclkinta),
.O(sdmprojtxlwclk)

wire clk_2xSYSo; //Wire between DLL and OBUFG (int-ext)
wire clk 2xSYSb; //Wire between DLL and OBUFG (int-ext)
wire sdmprojvlanram clk;
wire sdmproj_statsram_clk;
wire sdmproj_vlan_locked;

wire sdmproj_ram_clk_mirror in int;

IBUFG ram mirror (
.I(sdmproj_ram_clk mirrorin),
.O(sdmprojram_clk_mirrorinint)

'ifdefVERA SIM ENV
CLKDLL usdmproj_clkdllvlan(

.CLKO(),

.CLK90(),

.CLK1 80(),

.CLK270(),

.CLK2X(clk_2xSYSo),

.CLKDV(),

.LOCKED(sdmproj_vlan_locked),

.CLKIN(clkSYSi),

.CLKFB(clk_SYS),

.RSTO

'else
CLKDLL usdmproj_clkdll_vlan(

.CLKO(),

.CLK90(),

.CLK1 80(),

.CLK270(),

.CLK2X(clk_2xSYSo),

.CLKDV(),

.LOCKED(sdmproj_vlan locked),

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

.CLKIN(clkSYSint),

.CLKFB(sdmprojram_clk_mirror in int),

.RSTO

endif

OBUFF_ 12 Iobuf_clk2x_vlan(
.I(clk_2xSYSo),
.O(sdmproj_vlanram_clk)

OBUFF_12 I_obuf_clk2x_stats (
.I(clk_2xSYSo),
.O(sdmproj_statsram_clk)

/**************Clocks 77*****************/
wire clk MACi;
wire clkMACint;
wire clk MACinta;
wire clk_MAC /* synthesis syn_keep=l */;

wire clk 2xMACinta;
wire clk_2xMAC /* synthesis syn_keep=l */;
wire locked_2xMAC;
wire SRLMAC_output;
wire SRLMAC_output_not;

'ifdef VERA SIM ENV
'else
IBUFG I_ibufg_clk_MAC (

.I(clk_MACi),

.O(clk_MACint)

'endif

'ifdefVERA SIM ENV
CLKDLL usdmproj_clkdllMAC(

.CLKO(clkMACinta),

.CLK90(),

.CLK180(),

.CLK270(),

.CLK2X(clk_2xMACinta),
.CLKDV(),
.LOCKED(locked_2xMAC),
.CLKIN(clk_MACi),
.CLKFB(clkMACinta),
.RST()

BUFG usdmproj_bufgMAC (

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

.I(clk_MACi),

.O(clk_MAC)

'else
CLKDLL usdmproj_clkdllMAC(

.CLKO(clkMACinta),

.CLK90(),
.CLK1 80(),
.CLK270(),
.CLK2X(clk_2xMACinta),
.CLKDV(),
.LOCKED(locked_2xMAC),
.CLKIN(clk_MACint),
.CLKFB(clk_MACinta),
.RST0

BUFG usdmproj_bufgMAC (
.I(clk_MACinta),
.O(clk_MAC)

endif

/**************Clocks 155*****************/
/*
wire sdmproj_chanO_clk_155inta;
wire sdmproj_chan0_clk_ 155 _linta;
wire sdmproj_chanO_clk_155;
assign sdmproj_chanO_clk_155 = clk_2xSYS;
wire sdmproj_chanO_clk_155_1;
assign sdmproj_chan0_clk_155_1 = -clk_2xSYS;

wire sdmproj_chanl_clk_ 155inta;
wire sdmproj_chan l_clk_ 155 _linta;
wire sdmproj_chanl_clk_155;
assign sdmproj_chanl_clk_155 = clk_2xSYS;
wire sdmproj_chanl_clk_155_1;
assign sdmproj_chanl_clk_155_1 = -clk_2xSYS;
*/
/***********Channet Clocks*******************/

IBUF_LVPECL data0_p (.I(sdmproj_chanO_tclk_155), .O(sdmproj_chan0_tclk_155_int));
IBUF_LVPECL data0_n (.I(sdmproj_chanO_tclk_155_1), .0());

IBUF_LVPECL datalp (.I(sdmproj_chanl_tclk_155), .O(sdmproj_chanl_tclk_ 155_int));
IBUF_LVPECL datal n (.I(sdmprojchanl_tclk_155_1), .0());

/***********Local Reg Module************/

//SAXE
wire [17:0] sdmproj_mbadd_data;
wire sdmprojmb reset;
wire sdmprojmb_start;
wire sdmproj_mb_busy;
wire sdmproj_mb_select;
wire sdmproj_mb_clk enl;

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

wire [1:0] sdmproj_mb_intl;

//ZBT MODULE (LOOKUP)
wire [20:0] sdmproj_mb_zbt_add out;
wire [35:0] sdmproj_mb_zbt_data out;
wire sdmproj_mb_zbt_we;
wire sdmproj_mb_zbt_valid;
wire [31:0] sdmproj_mb_zbt_data_in;
wire sdmproj_mb_zbtrd;
wire mbclken;

//ZBT MODULE (STATS)
wire [20:0] sdmproj_mb_zbt_add out;

wire sdmproj_mb_stats_we;
wire sdmproj_mb_stats_valid;
wire [31:0] sdmproj_mb_stats_datain;
wire sdmproj_mb_stats_rd;

//PIPE 0
wire sdmproj_port0_special;
wire [7:0] sdmproj_port0_delay;
wire [3:0] sdmproj_port0_mode;
wire sdmproj_port0_link_state;

assign sdmproj_port0_link_state = sdmproj_port0_mode[3];
wire [1:0] sdmproj_port0 int en;
wire [47:0] sdmprojport0_sa;
wire [31:0] sdmproj_port0_mpls_tag;
wire [127:0] sdmproj_port0_12_table;
wire [31:0] sdmproj_port0_pkts_count;
wire [31:0] sdmproj_port0_pkts_count_sop;
wire [31:0] sdmproj_port0_oct_count;
wire sdmproj_port0_pkts_clear;
wire sdmproj_port0_pkts_clear-sop;
wire [31:0] sdmproj_mfifo0_pktscount_eop;
wire [31:0] sdmproj_mfifo0_pkts_count_sop;
wire sdmproj_mfifo0_pkts_count_eop_clear;
wire sdmproj mfifo0_pkts_count_sop_clear;
wire [31:0] sdmproj_ipipe0_pktscount_eop;
wire [31:0] sdmprojipipe0_pktscount_sop;
wire sdmproj _ipipe0_pkts_counteop_clear;
wire sdmproj _ipipeOpkts_count_sop_clear;
wire [31:0] sdmproj_discard0_sop_count;
wire [31:0] sdmproj_discard0_eopcount;
wire sdmproj discard0_sop_clear;
wire sdmproj_discard0_eop_clear;

wire [15:0] sdmproj_port0_link_upcount;
wire sdmproj_port0_link_upclear;
wire [15:0] sdmprojport0_link_dncount;
wire sdmproj_port0_link_dnclear;

wire sdmprojport0_12_error;
wire sdmproj_port0_overflow;

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

wire sdmproj_port0_zbt_error;
wire sdmproj_port0_12_errorclear;
wire sdmproj_port0_overflow_clear;
wire sdmproj_port0_zbt_error_clear;

wire sdmproj_port0_vlan_rd;
wire [31:0] sdmproj_port0_vlan_dout;
wire sdmproj_port0_vlan_valid;

wire [31:0] debug_bits;

//PIPE 1
wire sdmproj _port l_special;
wire [7:0] sdmproj_portl delay;
wire [3:0] sdmproj_portl_mode;
wire sdmproj_port l_link_state;

assign sdmproj_portl _link_state = sdmproj_portl_mode[3];
wire [1:0] sdmproj_portl int en;
wire [47:0] sdmproj_portl_sa;
wire [31:0] sdmproj_portl_mpls tag;
wire [127:0] sdmproj_portl_12table;
wire [31:0] sdmprojportlpkts_count;
wire [31:0] sdmproj_portl_pkts_count_sop;
wire [31:0] sdmprojportl_oct_count;
wire sdmproj_port lpkts_clear;
wire sdmproj_port l_pkts_clearsop;
wire [31:0] sdmproj_mfifol_pkts_counteop;
wire [31:0] sdmproj_mfifolpktscount_sop;
wire sdmproj_mfifo l_pkts_count_eop_clear;
wire sdmproj_mfifo l_pkts_count_sop_clear;
wire [31:0] sdmprojipipelpktscount_eop;
wire [31:0] sdmproj_ipipel_pktscount_sop;
wire sdmproj_ipipe l_pkts_count_eop_clear;
wire sdmproj _ipipel_pkts count_sop_clear;
wire [31:0] sdmproj_discardl_sop_count;
wire [31:0] sdmproj_discardl_eop_count;
wire sdmproj_discard l_sop_clear;
wire sdmproj_discardl_eop_clear;

wire [15:0] sdmproj_portl_link_upcount;
wire sdmproj_portl _link_upclear;
wire [15:0] sdmprojportl_link_dncount;
wire sdmproj_portl link_dnclear;

wire sdmproj_portl_12_error;
wire sdmproj_port l_overflow;
wire sdmprojportl_zbt_error;
wire sdmproj_portl_12_errorclear;
wire sdmprojportl_overflow_clear;
wire sdmproj_portl_zbt_errorclear;

wire sdmproj_portl_vlan_rd;
wire [31:0] sdmproj_portl_vlan_dout;
wire sdmproj_port l_vlan_valid;

/***********PIPE 0 Module************/

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

//IN
wire [15:0]
wire
wire
wire

//OUT
wire [31:0]
wire [3:0]
wire
wire
wire

//With Internal
wire
wire
wire
wire

sdmproj_chan0_tdat_p;
sdmproj_chan0_ext_rd;
sdmproj_chan0_tclk_155;
sdmproj_chan0_tclk_ 155_1;

sdmproj_tx0_data;
sdmprojtx0_be;
sdmproj_tx0_wen;
sdmproj_tx0_wen_i;
sdmproj_tx0_pafl;

Storage fifos
sdmproj tx0_sop;
sdmproj_tx0_eop;
sdmproj_tx0_abr;
sdmproj_tx0_pafl_int;

//With External Storage fifos
wire sdmproj_tx_ld;

assign sdmproj_tx_ld = l'bl;
wire sdmproj_tx_rst_1;

//With ZBT RAM (LOOKUP)
wire [15:0] sdmproj_p0Ozbt_addout;
wire sdmproj_p0_zbt_we;
wire [31:0] sdmproj_p0_zbt_data_out;
wire sdmprojp0zbt rd;
wire sdmprojp0_zbt_valid;
wire sdmprojp0_zbt_afull;

//With Mictor
wire [16:0] sdmproj_port0_sparel;
wire [16:0] sdmprojort0_spare2;

/***********PIPE 1 Module************/
//IN
wire [15:0]
wire
wire
wire

//OUT
wire [31:0]
wire [3:0]
wire
wire
wire

//With Internal
wire
wire
wire
wire

sdmproj_chanl_tdat_p;
sdmproj_chanl_extrd;
sdmproj_chanl_tclk_155;
sdmproj_chan l_tclk_ 155_1;

sdmproj_txl_data;
sdmprojtxl_be;
sdmproj_tx l_wen;
sdmproj_txl_wen_i;
sdmproj_txlpafl;

Storage fifos
sdmproj_txl_sop;
sdmproj_txl_eop;
sdmproj_txl_abr;
sdmproj_txl_pafl_int;

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

//With External Storage fifos
wire sdmproj_txsi;

assign sdmproj tx si = 1'b0;
wire sdmproj_tx_sen_l;

assign sdmproj tx senl = l'bl;

//With ZBT RAM (LOOKUP)
wire [15:0] sdmproj_pl_zbt_add_out;
wire sdmproj_p l_zbt_we;
wire [31:0] sdmproj_pl_zbt_data_out;
wire sdmproj_pl zbt rd;
wire sdmproj_p lzbt_valid;
wire sdmprojp lzbt_afull;

//With Mictor
wire [16:0] sdmproj_portl_sparel;
wire [16:0] sdmproj_portl_spare2;

/***********MAC Module ************/
//SYS

wire sdmproj_mac_p0_en;
assign sdmproj_mac_p0_en = sdmproj_port0 inten[1];

wire sdmproj_mac_pl_en;
assign sdmproj_mac_pl_en = sdmproj_portl_inten[1];

//With Internal Storage fifos 0
wire sdmproj_extfifo0_sop;
wire sdmproj_extfifo0_eop;
wire sdmproj_extfifo0_abr;

//With External Storage fifos 0
wire sdmproj_tx0_ren;
wire sdmprojtx0_oel;
wire sdmproj_tx0_sop_efl;
wire sdmproj_port0_ext_fi fo_rst;
assign sdmprojport0_ext_fifo_rst = sdmproj_port0_link_state;

//With Internal Storage fifos 1
wire sdmproj_extfifol_sop;
wire sdmproj_extfifo l_eop;
wire sdmproj_extfifo _abr;

//With External Storage fifos 1
wire sdmprojtx l_ren;
wire sdmproj_txloe 1;
wire sdmproj_txl_sop_efl;
wire sdmproj_port l_ext_fifo_rst;
assign sdmproj_portl _ext fifo rst = sdmproj_portl_link_state;

//With MAC
wire sdmproj_txsell;
wire sdmproj_fpstxf;
wire sdmproj_sop_txf;
wire sdmproj_eoptxf;

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

wire sdmproj_vtg;
wire sdmproj_txasis;
wire[1:0] sdmproj_flct;
wire sdmproj_flct_lat;
wire sdmproj_txrdy_0;
wire sdmprojtxrdy_l;
wire sdmproj_flow ctl _p0;
wire sdmproj_flow ctl pl;

/***********ZBT RAM ************/

wire sdmproj_vlanram_cs;
wire sdmproj_vlanramoel 1;
wire sdmproj_vlanramwe 1;
wire sdmproj_vlanram_adv;
wire [18:0] sdmproj_vlanram_addr;
wire [35:0] sdmproj_vlanram_data;
wire sdmprojram clk_mirror in;

// Data Path for Ports
IIIII//

//wire sdmproj_ipipe0_ctl_en;
// assign sdmproj_ipipe0 ctlen = sdmproj_port0_int en[0];

//wire sdmproj_ipipel ctl_en;
// assign sdmproj_ipipel ctl en= sdmproj_portl inten[0];

wire sdmproj_mac ctl_en;
assign sdmproj_mac_ctl_en = l'b 1l;

/**\
* Sdmproj spare register connections *
***************************************reg [15:0] sd r eg

reg [15:0] sdmproj_regspare 1;
reg [15:0] sdmprojreg_spare2;
wire [16:0] sdmproj_sparel;
wire [16:0] sdmproj_spare2;

always @ (posedge clk_SYS or negedge sdmprojreset_1)
begin

if(-sdmproj reset 1)
begin

sdmprojreg_sparel <= 16'h0000;
sdmprojreg_spare2 <= 16'h0000;

end
else
begin

sdmprojreg_sparel <= sdmproj_port0_mode[2] ? sdmproj_port0_sparel[15:0] :

sdmproj_port l_spare l [15:0];

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

sdmprojregspare2 <= sdmproj_port0_mode[2] ? sdmproj_port0_spare2 [15:0] :
sdmproj_portl_spare2[15:0];

end
end

assign sdmproj_sparel [16:0] = {clk_SYS,sdmprojreg_sparel [15:0]};
assign sdmproj_spare2[16:0] = {clk SYS,sdmprojreg_spare2[15:0]};

/**

* Sdmproj fifo Partial Reset *
**

/***************************************

* Wait for all DLLs to lock before outputing clocks

//assign sdmproj_debug_lockout = locked_2xSYS;

//assign clk0_oe = locked_2xMAC & locked_2xSYS;
//assign clkl_oe = locked_2xMAC & locked_2xSYS;

/**************Clocks 155*****************/

wire sdmproj_chan0_clk_ 155inta;
wire sdmproj_chan0_clk_155_linta;
wire sdmproj_chan0_clk_ 155;
wire sdmproj_chan0_clk_155_internal;
wire sdmproj chan0_clk_155n_internal;

//assign sdmproj_chan0_clk_155_internal = sdmprojport0_mode[] ? clk 2xMACinta: clk_2xSYS;

assign sdmproj_chan0_clk_155_intemal = clk_2xSYS;

//OBUFT_LVPECL clkO_p (.I(sdmproj_chanO_clk_155_internal), .T(clkO_oe), .O(sdmproj_chan0_clk_155));
//INV clkO_inv (.I(sdmproj_chan0_clk_155_internal), .O(sdmproj_chanO_clk_155 n internal));
//OBUFT_LVPECL clk0_n (.I(sdmproj_chanO_clk_155_n_internal), .T(clkO_oe), .O(sdmproj_chanO clk_155_1));

OBUF_LVPECL clkO_p (.I(sdmproj_chanO_clk_155 internal), .O(sdmproj_chanO_clk_155));
INV clk0_inv (.I(sdmproj_chan0_clk_155_internal), .O(sdmproj_chanO_clk_155_ninternal));
OBUF_LVPECL clk0_n (.I(sdmproj_chanO_clk_155 n internal), .O(sdmproj_chanO_clk_155_1));

wire sdmproj_chan l_clk_155inta;
wire sdmproj_chanl_clk_155_linta;
wire sdmprojchanl_clk_155;
wire sdmproj_chanl_clk_155_internal;
wire sdmprojchanl_clk_155_n intemal;

//assign sdmproj_chanl_clk_155_internal = sdmproj_portl_mode[1] ? clk_2xMACinta: clk_2xSYS;

assign sdmproj_chanl_clk_155_internal = clk_2xSYS;

//OBUFT_LVPECL clkl_p (.I(sdmproj_chanl_clk_155internal), .T(clkl_oe), .O(sdmproj_chan l_clk_155));

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

//INV clkl_inv (.I(sdmproj_chanlclk_155_internal), .O(sdmproj_chanl_clk_155 n internal));
//OBUFT_LVPECL clkl_n (.I(sdmproj_chanl_clk_ 155 n internal), .T(clkl_oe), .O(sdmproj_chan lclk 155_1));

OBUF_LVPECL clkl_p (.I(sdmproj_chanl_clk_155 internal), .O(sdmproj_chan l_clk_155));
INV clkl_inv (.I(sdmproj_chanlclk_155_internal), .O(sdmproj_chanl_clk_155 ninternal));
OBUF_LVPECL clkl_n (.I(sdmprojchanl_clk_155 n internal), .O(sdmprojchanl_clk_155_1));

/**\

* This is the Sdmproj Local Register module it also interfaces with *
* the NT SRAM and the VLAN NT SRAM *
**/

wire resetortl;
wire reset_port0;
wire resetmac;

sdmproj_localreg usdmproj_localreg (
.clk_SYS(clkSYS),

.sdmprojreset_l(sdmprojreset_1),
.mb_clk en l(sdmproj_mb_clk en 1),
.mb_clk en(mb_clken),
.mbreset(sdmproj_mb_reset),
.mb_start(sdmproj_mb_start),
.mb_select(sdmproj_mb_select),
.mb_busy(sdmproj_mb_busy),
.mb_add data(sdmproj_mb add data),
.sdmproj_mb int l(sdmproj_mb int 1),
.sdmproj_debug_bits(debug_bits),
.sdmproj_txO_pafl_int(sdmproj_txO_pafl_int),
.sdmproj_portOspecial(sdmproj_port0_special),
.sdmproj_portOdelay(sdmproj_port0_delay),

.sdmprojportO_mode(sdmproj_port0_mode),
.sdmproj_port0_inten(sdmproj_portOint en),
.sdmproj_portO_sa(sdmproj_port0_sa),
.sdmproj_port0_mpls_tag(sdmproj_port0_mpls_tag),
.sdmproj_portO 12 table(sdmproj_portO_12 table),
.sdmproj_portOpkts_count(sdmproj_port0_pktscount),
.sdmproj_portO_pktscount_sop(sdmproj_portO_pkts_count_sop),
.sdmprojportO_oct_count(sdmproj_port0_oct_count),
.sdmproj_portOpktsclear(sdmproj_portO_pkts_clear),
.sdmproj_portO_pktsclear_sop(sdmproj_portO_pkts_clearsop),
.sdmprojportO_oct_clear(sdmproj_port0_oct_clear),

.sdmproj_mfifoO_pkts_count_eop(sdmprojmfifoO_pktscount eop),

.sdmproj_mfifoO_pkts_count_sop(sdmproj_mfifoO_pktscount_sop),

.sdmproj_mfifoO_pktscount_eop_clear(sdmproj mfifoO_pkts_count_eop_clear),

.sdmproj_mfifoO_pkts_count_sop_clear(sdmproj_mfifoO_pkts_count_sop_clear),
.sdmproj_ipipeO_pktscounteop(sdmproj_ipipeO_pktscount_eop),
.sdmproj_ipipeO_pktscount_sop(sdmproj_ipipeO_pktscount sop),

.sdmproj ipipeO_pktscount_eop_clear(sdmproj_ipipepkts_count_ eopclear),

.sdmproj_ipipeO_pktscount_sop_clear(sdmproj_ipipe0_pkts_count_sop_clear),
.sdmproj_discardO_sop_count(sdmproj_discardO sop_count),
.sdmproj_discard0_eop_count(sdmproj_discard0_eop_count),

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

.sdmproj_discard0_sop_clear(sdmproj_discardO_sop_clear),

.sdmproj_discard0_eopclear(sdmproj_discard0_eop_clear),

.sdmproj_port0_link_upcount(sdmproj_port0_link upcount),

.sdmproj_port0_link upclear(sdmproj_port0_link_upclear),

.sdmproj_port0_link_dncount(sdmproj_port0_link_dncount),

.sdmproj_portO_link dnclear(sdmproj_port0_linkdnclear),

.sdmprojtxdmprojtx aflint(sdmproj_tx _pafl_int),

.sdmproj_port 1 _special(sdmproj_port l_special),

.sdmproj_portl delay(sdmproj_portl_delay),

.sdmproj_portl_mode(sdmproj_port l_mode),

.sdmprojportl_inten(sdmproj_portl_inten),

.sdmprojportl_sa(sdmproj_portl_sa),

.sdmprojport 1 _mpls_tag(sdmproj_portl_mplstag),

.sdmprojportl_12table(sdmproj_portl 12table),

.sdmprojportl_pktscount(sdmproj_portl_pktscount),

.sdmprojportl_pkts_count_sop(sdmproj_portl_pkts_count_sop),

.sdmproj_portl_oct_count(sdmproj_portl_octcount),

.sdmprojportl_pkts_clear(sdmproj_portl_pkts_clear),

.sdmproj_portlpkts_clearsop(sdmproj_port _pkts clearsop),

.sdmproj_port l_oct_clear(sdmproj_port loctclear),
.sdmproj_mfifo 1 _pktscount_eop(sdmproj_mfifo I_pktscount_eop),
.sdmproj_mfifol_pktscount_sop(sdmproj_mfifo _pkts_count_sop),

.sdmproj_mfifo 1 _pkts count_eop_clear(sdmproj_mfifo _pkts_count_eop_clear),

.sdmproj_mfifo 1 _pkts_count_sop_clear(sdmproj_mfifo 1 _pkts_countsop_clear),
.sdmproj_ipipe 1_pktscounteop(sdmproj_iippe 1_pktscount_eop),
.sdmproj_ipipe 1 _pkts_count_sop(sdmprojipipe 1_pkts_count_sop),

.sdmproj_ipipe l_pkts_count_eop_clear(sdmproj_ipipipelpktscount_eop_clear),

.sdmprojipipe lpkts_count_sop_clear(sdmproj_ipipe _pkts_count_sop_clear),
.sdmproj_discard l_sop_count(sdmproj_discard l_sop_count),
.sdmproj_discard l_eop_count(sdmproj_discard 1 _eop_count),
.sdmproj_discard l_sop_clear(sdmproj_discardl_sop_clear),
.sdmproj_discardl_eop_clear(sdmproj_discardl_eop_clear),
.sdmprojportl_link_upcount(sdmproj_portl_link_upcount),
.sdmprojport I _link_upclear(sdmproj_port l_link_upclear),
.sdmproj_portl _link_dncount(sdmprojportl_link_dncount),
.sdmproj_port 1 _link_dnclear(sdmprojport l_link_dnclear),
.sdmproj_mb_zbt add out(sdmproj_mb_zbt_add_out),
.sdmproj_mb zbt data out(sdmproj mb zbt data out),
.sdmproj_mb zbt_we(sdmproj_mb_zbt_we),
.sdmprojmb_zbt_valid(sdmproj mb_zbtvalid),
.sdmproj_mb_zbt_data in(sdmproj_mb_zbt_datain),
.sdmproj_mb_zbtrd(sdmproj_mb_zbt_rd),
.sdmproj_mb_stats_we(sdmproj_mb_stats_we),
.sdmproj_mb_stats_valid(sdmproj_mb_stats_valid),
.sdmproj_mb_statsdata in(sdmproj_mb_stats data in),
.sdmproj_mb_stats_rd(sdmproj_mb_stats_rd),
.sdmproj_tx rstl(sdmproj_tx_rst_l),
.sdmproj_port0_12_error(sdmproj_portO 12 error),
.sdmproj_port0_overflow(sdmproj_port0_overflow),
.sdmprojport0_zbt_error(sdmprojport0_zbterror),
.sdmprojportl 12_error(sdmprojport 112error),
.sdmproj_port 1 _overflow(sdmproj_port l_overflow),

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

.sdmproj_port 1 _zbt error(sdmproj_port l_zbt_error),

.sdmproj_port0_12_error clear(sdmproj_port0_12_errorclear),

.sdmproj_port0_overflow_clear(sdmproj_port0Ooverflowclear),

.sdmproj_port0_zbt_errorclear(sdmproj_port0_zbt_errorclear),

.sdmproj_portl 12_errorclear(sdmproj_portl_12_errorclear),

.sdmprojport l_overflow_clear(sdmprojort l_overflowclear),

.sdmproj_port 1 zbt_errorclear(sdmproj_port l_zbt_error clear),

.reset_portl(reset_portl),

.reset_portO(resetportO),

.reset_mac(reset_mac)

/***\

* Link UP down counters *
**/

sdmproj_link stats usdmproj_linkstats (
.clk_SYS(clk_SYS),
.sdmprojreset_l(sdmprojreset_l1),
.sdmproj_portO _link_state(sdmproj_port0_link state),
.sdmproj_port1 link_state(sdmprojport l_linkstate),
.sdmproj_port0_link_upcount(sdmproj_port0_linkupcount),
.sdmproj_portO_link_upclear(sdmproj_port0_link upclear),
.sdmproj_port0_link dncount(sdmproj_port0_link_dncount),
.sdmproj_portO_link_dnclear(sdmproj_port0_link dnclear),
.sdmproj_portl_link_upcount(sdmproj_portl_link_upcount),
.sdmproj_portl_link_upclear(sdmprojport llinkupclear),
.sdmproj_portl_link dncount(sdmproj_portl_link_dncount),
.sdmproj_portl link dnclear(sdmproj_portl_linkdnclear)

/***********+**\

* This is the Sdmproj NT SRAM interface for the address lookup *
***/

wire sdmproj_zbt_en;
assign sdmproj_zbt_en = l'bl;

sdmproj_zbt usdmproj_zbt (
.clk_SYS(clk_SYS),
.clk_2xSYS(clk_2xSYS),
.sdmproj_reset_l(sdmprojreset_1),
.mb_clk_en(mb_clk_en),
.sdmproj_zbt_en(sdmproj_zbt_en),
.sdmproj_mb zbt add out(sdmproj mb zbt add out),
.sdmproj_mb zbt data out(sdmproj mb zbt data out),
.sdmproj_mbzbtwe(sdmproj_mbzbt we),
.sdmproj_mb_zbtvalid(sdmproj_mbzbt valid),
.sdmproj_mb_zbt_afull(sdmproj_mb_zbt_afull),
.sdmproj_mb_zbt data_in(sdmproj_mb zbt data in),
.sdmproj_mb_zbtrd(sdmproj_mb_zbtrd),
.sdmproj_p0_zbt add out(sdmproj_0_zbt add out),
.sdmproj_p0_zbt_we(sdmproj_p0_zbt we),

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

.sout(sjp0_zbtdataout(sdmproj_p0_zbtdata out),

.sdmproj_p0_zbt_rd(sdmproj_p0_zbtrd),

.sdmprojp0zbt_valid(sdmproj_p0Ozbt valid),
.sdmproj_p0_zbt_afull(sdmproj_p0_zbtafull),
.sdmproj_pl_zbt_add_out(sdmproj_pl zbt addout),
.sdmproj_pl_zbt_we(sdmproj_pl zbtwe),
.sdmproj_pl _zbtdata_out(sdmproj_pl_zbtdataout),
.sdmproj_pl zbtrd(sdmproj_p l_zbtrd),
.sdmproj_pl_zbt_valid(sdmproj_plzbt-valid),
.sdmproj_p 1 _zbt_afull(sdmproj_pl_zbt_afull),
.sdmproj_vlanram_cs(sdmproj_vlanram_cs), //RA 19
.sdmproj_vlanram_oe_l(sdmproj_vlanram_oe1), //RA 19
.sdmproj_vlanram_we _(sdmproj_vlanram_we1), //RA 19
.sdmproj_vlanramadv(sdmproj_vlanram_adv), //RA 19
.sdmproj_vlanram_addr(sdmproj_vlanram_addr), //RA 19
.sdmproj_vlanramdata(sdmproj_vlanram_data), //RA 19
.sdmproj_port0_zbt_error(sdmproj_port0_zbt_error),
.sdmproj_portl_zbt_error(sdmproj_port lzbterror),
.sdmproj_port0_zbt_error clear(sdmproj_port0_zbt_error clear),
.sdmproj_port I_zbt_errorclear(sdmproj_port l_zbt_error clear)

/**\

* This is the Sdmproj NT SRAM interface for the address lookup *
**/

wire sdmproj_statsen;
assign sdmproj_stats_en = l'bl;

sdmproj_stats usdmproj_stats (
.clk_SYS(clkSYS),
.clk_2xSYS(clk_2xSYS),
.sdmprojreset_l(sdmprojreset_1),
.mb_clken(mb_clk_en),
.sdmproj_stats_en(sdmproj_stats_en),
.sdmprojmb_zbt_ add_out(sdmproj_mb zbt add out),
.sdmproj mb zbt data_out(sdmproj_mb zbt data out),
.sdmproj mb stats_we(sdmproj_mb_stats_we),
.sdmproj_ mb stats_valid(sdmproj_mb_stats valid),
.sdmproj_mb_statsafull(sdmproj_mb_stats_afull),
.sdmproj_mb_stats_datain(sdmproj_mb_statsdata in),
.sdmproj_mb_statsrd(sdmproj_mb_stats_rd),
.sdmproj_port0_vlan_rd(sdmproj_port0_vlan_rd),
.sdmproj_port0_vlan_dout(sdmprojport0_vlan_dout),
.sdmproj_port0_vlan_valid(sdmproj_port0_vlanvalid),
.sdmproj_portl vlan_rd(sdmproj_portl vlanrd),
.sdmproj_port 1 _vlandout(sdmproj_portl_vlandout),
.sdmproj_portl_vlan_valid(sdmprojportl_vlanvalid),
.sdmproj_statsramcs(sdmproj_statsram_cs), //RA 19
.sdmproj_statsram_oe_l(sdmproj_statsram_oel), //RA 19
.sdmproj_statsram_we_1(sdmproj_statsram_we_1), //RA 19
.sdmproj_statsram_adv(sdmproj_statsram_adv), //RA 19
.sdmproj_statsram_addr(sdmproj_statsram_addr), //RA 19
.sdmproj_statsram_data(sdmproj_statsram_data) //RA 19

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

* This is the Pipe 0 interface the IPIPE module contains all the data *
* processing for the data extracted from CHANNEL, frame delimitation, *
* label extraction, byte count. Currently the missing two ports one for *
* the MPLS label fifo which should go to the external SRAM and one for *
* the counter sram............ *

**/

sdmproj_ipipe usdmproj_ipipe0 (
.clk_CHAN(sdmproj_chan0_tclk_ 1 55int),
.clkSYS(clkSYS),
.sdmproj_reset_l(sdmproj_reset_ 1),
.sdmproj_chan_tdatp(sdmproj_chan0_tdat_p),
.sdmproj_chan_ext_rd(sdmproj_chan0_extrd),
.sdmproj_txdata(sdmproj_tx0_data),
.sdmprojtsdmprojtxben(sdmproj tx0_be),
.sdmproj_tx_wen(sdmprojtx0_wen),
.sdmproj_tx_weni(sdmprojtx0_weni),
.sdmproj_tx_abr(sdmproj_tx0_abr),
.sdmproj_tx_eop(sdmproj_tx0_eop),
.sdmproj_tx_sop(sdmproj_tx0_sop),
.sdmproj_txmprojdmproj_tx0_pafl_int),
.sdmproj_port special(sdmproj_port0_special),
.sdmproj port delay(sdmproj_port0_delay),

.sdmproj_portmode(sdmproj_port0_mode),
.sdmproj_port inten(sdmproj_port0_int en),
.sdmprojportsa(sdmproj_port0_sa),
.sdmprojport_mpls_tag(sdmproj_port0_mplstag),
.sdmproj_port 12 table(sdmproj_port0_12 table),
.sdmproj_portpkts_count(sdmproj_port0_pkts_count),
.sdmproj_port_pkts_count_sop(sdmproj_port0_pktscount_sop),
.sdmproj_port_oct_count(sdmproj_port0_oct_count),
.sdmprojport_pkts_clear(sdmproj_port0_pkts_clear),
.sdmproj_port_pkts_clearsop(sdmproj_port0_pktsclearsop),
.sdmproj_port_oct_clear(sdmproj_port0_oct_clear),
.sdmproj_mfifopktscount_eop(sdmprojmfifo0_pkts count_eop),
.sdmproj_mfifo_pktscount_sop(sdmprojmfifo0_pkts countsop),

.sdmproj_mfifopktscount_eop_clear(sdmproj_mfi fo0_pkts_count_eop_clear),

.sdmproj_mfifo_pkts_countsop_clear(sdmproj_mfifo0_pkts_count_sop_clear),
.sdmproj_ipipe_pkts_count_eop(sdmproj_ipipe0_pktscounteop),
.sdmproj_ipipe_pktscount_sop(sdmprojipipe0_pkts_count_sop),

.sdmproj ipipe_pkts_count_eop_clear(sdmproj ipipe0_pkts counteop_clear),

.sdmproj_ipipepkts_count_sop_clear(sdmproj_ipipe0_pktscount_sop_clear),
.sdmproj_discard_sop_count(sdmproj_discard0_sop_count),
.sdmproj_discard_eop_count(sdmproj_discard0_eop_count),
.sdmproj_discard_sop_clear(sdmproj_discard0_sop_clear),
.sdmproj_discard_eop_clear(sdmproj_discard0_eop_clear),
.sdmproj_p_zbt_add_out(sdmprojpO_zbt_add_out),
.sdmproj_p_zbt_we(sdmprojp0Ozbtwe),
.sdmproj_p_zbt_data_out(sdmproj_p0_zbt_data out),
.sdmproj_p_zbtrd(sdmproj_p0zbt rd),
.sdmproj_p_zbtvalid(sdmproj_p0_zbt_valid),

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

.sdmproj_p_zbt_afull(sdmproj_p0_zbt_afull),

.sdmproj_port 12_error(sdmproj_port0_12 error),

.sdmproj_portoverflow(sdmproj_port0_overflow),

.sdmprojport 12 error_clear(sdmproj_port0 12 errorclear),

.sdmproj_port_overflow_clear(sdmprojport0_overflow_clear),
.sdmprojvlan_rd(sdmproj_port0_vlanrd),
.sdmprojvlan_dout(sdmproj_port0_vlandout),
.sdmproj vlan_valid(sdmproj_port0_vlan_valid),
.debug_bits(debug_bits),
.sdmproj_spare 1(sdmproj_port0_spare 1),
.sdmproj_spare2(sdmproj_port0_spare2)

/**\

* This is the Pipe 1 interface the IPIPE module contains all the data *
* processing for the data extracted from CHANNET, frame delimitation, *
* label extraction, byte count. Currently the missing two ports one for *
* the MPLS label fifo which should go to the external SRAM and one for *
* the counter sram............

**/

sdmproj_ipipe usdmprojipipel (
.clk_CHAN(sdmproj_chan l_tclk_ 155_int),
.clk_SYS(clkSYS),
.sdmproj_reset_l(sdmprojreset_l1),
.sdmproj_chantdat_p(sdmproj_chanl_tdat_p),
.sdmproj_chan_ext_rd(sdmproj_chanl_ext_rd),
.sdmproj_tx_data(sdmproj_txl_data),
.sdmproj_tx_ben(sdmprojtx lbe),
.sdmproj_tx_wen(sdmproj_txl_wen),
.sdmproj_tx_weni(sdmprojtxl weni),
.sdmproj_tx_abr(sdmproj_tx l_abr),
.sdmproj_tx_eop(sdmproj_txl_eop),
.sdmproj_tx_sop(sdmproj_tx l_sop),
.sdmproj_tx_pafl(sdmproj_txl_pafl_int),
.sdmprojport special(sdmproj_portl_special),
.sdmproj_portdelay(sdmproj_portl_delay),

.sdmproj_portmode(sdmprojportl_mode),
.sdmproj_port int en(sdmproj_portl_int en),
.sdmprojport_sa(sdmproj_portl_sa),
.sdmproj_port_mpls_tag(sdmproj_portl_mpls_tag),
.sdmproj_port 12 table(sdmproj_portl_12 table),
.sdmprojport_pkts_count(sdmprojportl_pkts_count),
.sdmproj_portpkts_count_sop(sdmproj_portl_pkts_count_sop),
.sdmproj_port_oct_count(sdmproj_port l_oct_count),
.sdmprojport_pkts_clear(sdmproj_portl_pkts_clear),
.sdmproj_port_pkts clearsop(sdmproj_portl_pktsclearsop),
.sdmproj_port_oct_clear(sdmproj_portl_oct_clear),
.sdmproj_mfifo_pktscount_eop(sdmproj_mfifol_pkts_count_eop),
.sdmproj_mfifo_pkts_count_sop(sdmprojmfifol_pkts_count_sop),

.sdmproj_mfifo_pkts_count_eop_clear(sdmproj mfifo 1 _pkts count_eop_clear),

C Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

.sdmproj_mfifo_pkts count sop_clear(sdmproj_mfifol_pkts countsop_clear),
.sdmproj_ipipe_pktscount_eop(sdmproj_ipipipel_pktscount_eop),
.sdmproj_ipipepkts_count_sop(sdmproj_ipipel_pktscount_sop),

.sdmproj_ipipe_pkts_count_eop_clear(sdmprojipipe l_pktscounteop_clear),

.sdmproj_ipipe_pkts_count_sop_clear(sdmproj_ipipe _pktscount_sop_clear),
.sdmproj_discard_sop_count(sdmproj_discardl_sop_count),
.sdmproj_discard_eop_count(sdmproj_discardl_eop_count),
.sdmproj_discardsop_clear(sdmproj_discardl_sop_clear),
.ar(sroj_discard_eop_clear(sdmproj_discardl_eop_clear),
.sdmproj_p_zbt_add_out(sdmproj_p lzbt_add_out),
.sdmproj_pzbt_we(sdmprojpl zbtwe),
.sdmproj_p_zbt_data_out(sdmproj_p l_zbt_data_out),
.sdmproj_p_zbt rd(sdmproj_pl zbtrd),
.sdmproj_p_zbt_valid(sdmprojpl_zbt_valid),
.sdmproj_p_zbt_afull(sdmproj_pl_zbtafull),
.sdmprojport 12 error(sdmprojportl_12_error),
.sdmproj_port overflow(sdmproj_port l_overflow),
.sdmprojport 12_error_clear(sdmproj_port 1_12 error clear),
.sdmprojport_overflow_clear(sdmproj_portl_overflow_clear),
.sdmproj_vlan_rd(sdmproj _portl_vlan_rd),
.sdmproj_vlan_dout(sdmproj_portlvlan_dout),
.sdmproj_vlan_valid(sdmproj_portlvlan_valid),
.debug_bits(),
.sdmproj_sparel(sdmproj_portl_sparel),
.sdmproj_spare2(sdmproj_portl_spare2)

/***\

* This is the Sdmproj MAC interface. This module arbitrates between *
* the two ports for time on the MAC FIFO bus. Also the internal eop, sop *
* and abr for both ports are fed here and muxed to the outside pins *
***/

sdmproj_mac usdmproj_mac
.clk_SYS(clkSYS),
.clk_MAC(clk MAC),
.sdmproj_reset_l(sdmprojreset_1),
.sdmproj_mac_ctl_en(sdmproj_mac ctlen),
.sdmproj_portO_link_state(sdmprojortO_linkstate),
.sdmproj_port 1 _link_state(sdmproj_port _link_state),
.sdmproj_mac_pOen(sdmproj_mac_pOen),
.sdmproj_mac_p l_en(sdmproj_mac_p l_en),
.sdmproj_txO_wen(sdmproj_tx0Oweni),
.sdmproj_txO_dmp(sdmproj_txO_sop),
.sdmproj_txOeop(sdmproj_tx0_eop),
.sdmproj_txO_abr(sdmproj_tx0_abr),
.sdmproj_tx_pafl_int(sdmproj_txO_paflint),
.sdmproj_tx l_wen(sdmproj_tx iwen_i),
.sdmproj_txl_sop(sdmproj_txlsop),
.sdmproj_txl_eop(sdmproj_txl_eop),
.sdmproj_txl_abr(sdmproj_txl_abr),
.sdmproj_tx l_pafl_int(sdmproj_tx l _pafl_int),

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

.sdmproj_tx0_ren(sdmproj_tx0Oren),

.sdmproj_tx0_oe_l(sdmproj_tx0_oe1),

.sdmproj_tx0_efl(sdmproj_txO_sop_efl),
.sdmprojtx lren(sdmprojtx lren),
.sdmproj_txl_oe _(sdmproj_txloe1),
.sdmproj_tx l_efl(sdmproj_tx _sop_efl),
.sdmproj_txsel_l(sdmprojtxsel_1),
.sdmproj_fps_txf(sdmproj_fpstxf),
.sdmproj_sop_txf(sdmproj_sop_txf),
.sdmproj_eop_txf(sdmproj_eop_txf),
.sdmproj_vtg(sdmproj vtg),
.sdmproj_txasis(sdmproj_txasis),
.sdmproj_flct(sdmproj_flct),
.sdmproj_flctlat(sdmprojflct_lat),
.sdmproj_txrdy_O(sdmproj_txrdy_0),
.sdmproj_txrdy_l (sdmproj_txrdy_l),
.sdmproj_flow_ctl_pO(sdmproj_flow_ctl_p0),
.sdmproj_flow ctl_pl(sdmproj_flow_ctlpl)

endmodule

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Bibliography

Baldwin, Carliss Y., and Kim B. Clark. Design Rules, Volume 1: The Power ofModularity.

Cambridge, MA: MIT Press 2000.

Christansen, Clayton and Michael Raynor (June 1997) Innovators Dilema: When New

Technologies Cause Great Firms to Fail. Harvard Business School Press (1997)

Chesbrough, Henry (2006) Open Business Models 2006 Harvard Business School Press, Boston

MA

Chesbrough, Henry (2006) Open Innovation 2006 Harvard Business School Press, Boston MA

Smith, Gina "Unsung Innovators: Lynn Conway and Carver Mead" Computerworld 2007

Thompson, Clive "Build it. Share it. Profit. Can Open Source Hardware Work?" Wired Oct.

2008

Von Hippel, Eric. (2002) Shifting Innovation to Users via Toolkits. Management Science, Vol.

48, No.7, July 2002

Von Hippel, Eric (2005) Democratizing Innovation. 2005 MIT Press, Cambridge MA

Von Hippel, Eric (1986) Lead Users: A source of Novel Product Concepts. Management Science.

Vol 32, No.7, July 1986

Von Hippel, Eric (1994). "Sticky Information and the locus of problem solving: Implications for

innovation." Management Science, 40(4) 429-439.

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

Wozniak, Stephen "Homebrew and How the Apple Came to Be" _in Steve Ditlea, ed., Digital

Deli, 1984

© Roberto Acosta- All Rights Reserved racosta@sloan.mit.edu

