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ABSTRACT

To explore the ability of melting mafic lithologies to produce alkaline ocean-island

basalts (OIB), an experimental study was carried out measuring clinopyroxene (Cpx)-

melt and garnet (Gt)-melt partition coefficients during silica-poor garnet pyroxenite

melting for a suite of trace elements, including U and Th, at 2.5GPa and 1420-1450'C.

Partition coefficients range from 0.0083+0.0006 to 0.020+0.002 for Th and

0.0094+0.0006 to 0.024+0.002 for U in Cpx, and are 0.0032+0.0004 for Th and

0.013+0.002 for U in Gt. Forward-melting calculations using these experimental results

to model time-dependent uranium-series isotopes do not support the presence of a fixed

quantity of garnet pyroxenite in the source of OIB.

To use U-series isotopes to further constrain mantle heterogeneity and the timing and

nature of melting and melt transport processes, U-Th-Pa-Ra disequilibria, radiogenic

isotopes, and trace-element compositions were measured for the slow-spreading Arctic

mid-ocean ridges (MOR). A focused case study of 33 young (<10ka) MOR basalts

(MORB) from the shallow endmember of the global ridge system, the Kolbeinsey Ridge

(67 005'-70026'N) found that unaltered Kolbeinsey MORB have universally high

(230Th/238U) (1.165-1.296) and relatively uniform (230Th/232Th) (1.196-1.324), ENd (8.43-

10.49), 87Sr/86Sr (0.70274-0.70301), EHf(16.59-19.56), and Pb isotopes (e.g. 20 8Pb/206 pb =

2.043-2.095). This suggests a homogeneous mantle source and a long peridotite melting

column produces the thick Kolbeinsey crust. Trace element ratios suggest a young,



depleted mantle source. Data from the slow- to ultraslow Mohns and Knipovich Ridges

north of Kolbeinsey form a sloped array, and (230Th/232Th) correlates systematically with

radiogenic isotopic variations. These data are readily reproduced by models for

heterogeneous mantle melting. MORB from 85oE on the global ultraslow-spreading

endmember Gakkel Ridge are homogeneously depleted with low (230Th/238U) and high

(226Ra/230Th) that lie along a global negative correlation. Arctic data support a global

mantle temperature control on mean (230Th/ 238U).
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Title: Associate Scientist with Tenure
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CHAPTER 1:

BASALT PETROGENESIS BENEATH SLOW- AND ULTRASLOW-
SPREADING ARCTIC MID-OCEAN RIDGES: INTRODUCTION

The presence of uranium-series disequilibria in both mid-ocean ridge basalts

(MORB) and ocean island basalts (OIB) has provided new insights into the melt

generation and magma transport processes occurring beneath volcanic centers. In the

three studies presented here, I attempt to better constrain how mantle rocks melt to

produce basaltic magmas, through a series of experimental and analytical approaches.

In Chapter Two, I explore how U and Th elemental partitioning provides

important constraints on melting models, depth of melting, and specifically generation of

alkaline 01B. 238U-230Th disequilibria in particular are sensitive to the presence of garnet

(Gt), because experimental determinations of mineral-melt partition coefficients

(Di ineral/Melt = ciMinerallciMelt, where ci is the weight concentration of element i in the

mineral or the melt) indicate that U is more compatible than Th in Gt during partial

melting (i.e. DThGt/Melt/DUGt/Melt < 1). Garnet and clinopyroxene (Cpx) are the principal

hosts for U and Th in the upper mantle and thus control U-Th partitioning behavior, but

unlike with Gt, DThCPX/Met'/DUCPx/Melt is typically greater than 1 (e.g. (BEATTIE, 1993a;

BEATTIE, 1993b; HAURI et al., 1994; LA TOURETTE and BURNETT, 1992; LA TOURETTE et

al., 1993; SALTERS and LONGHI, 1999; SALTERS et al., 2002)). Thus, the presence of 230Th

excesses in MORB and OIB is generally taken as an indication of residual Gt in their

source regions (e.g. (BOURDON et al., 1996b)).

Most MORB and OIB have (230Th/238U) > 1 (Fig. 1), indicating the presence of Gt

(or Cpx with small M2 site radii; (LANDWEHR et al., 2001; WOOD et al., 1999)) in the

melt regime (BEATTIE, 1993a; BEATTIE, 1993b; BOURDON et al., 1996a; BOURDON et al.,

1996b; GOLDSTEIN et al., 1989; GOLDSTEIN et al., 1992; LA TOURETTE and BURNETT,

1992; LA TOURETTE et al., 1993; LUNDSTROM, 2000; LUNDSTROM, 2003; LUNDSTROM et

al., 1998a; LUNDSTROM et al., 1994; LUNDSTROM et al., 1998b; PEATE et al., 2001; SIMs

et al., 2003; SIMS et al., 1999; SIMS et al., 1995; SIMS et al., 2002; TEPLEY et al., 2004).
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Figure 1. (238U/232Th) vs. ( 230Th/ 232Th) "equiline" diagram showing global mid-ocean ridge basalt (MORB;

blue field (BOURDON et al., 1996a; GOLDSTEIN et al., 1989; GOLDSTEIN et al., 1992; GOLDSTEIN et al.,

1993; LUNDSTROM et al., 1999; PEATE et al., 2001; SIMs et al., 1995; SIMs et al., 2002; STURM et al., 2000;

TEPLEY et al., 2004)) and ocean island basalt (OIB; pink field (BOURDON et al., 1998; CLAUDE-IVANAJ et

al., 1998; CLAUDE-IVANAJ et al., 2001; KOKFELT et al., 2003; PIETRUSZKA et al., 2001; PRYTULAK and

ELLIOTT, 2008; SIGMARSSON et al., 1998; SIMS et al., 1999; SIMS et al., 1995; SIMS and HART, 2006; SIMS

et al., 2008; STRACKE et al., 2003a; STRACKE et al., 2003b; TURNER et al., 1997; WIDOM et al., 1997)) data.

While a number of upper mantle rocks can contain Gt, the stability of Gt in peridotite

depends on pressure. Thus if the host of Gt is peridotite, the dominant mantle lithology,

measured (230Th/238U) in MORB provides a depth control for melting. For this control to

be robust the plausibility of melting other mantle lithologies must be ruled out or

constrained. To fully evaluate the possibility of melting alternate, Gt-bearing lithologies



instead of peridotite, I have measured U and Th partition coefficients in silica-poor garnet

pyroxenite, a minor mantle lithology for which such measurements have been lacking.

Partial melting of silica-poor garnet pyroxenites may be able to produce alkaline basaltic

melts at OIB settings (HIRSCHMANN et al., 2003; KOGISO et al., 2004; PERTERMANN and

HIRSCHMANN, 2003), making it important to fully test the ability of such a rock to

produce melts similar to measured OIB geochemical data.

Chapter Two presents experimentally measured partition coefficients for Cpx and

Gt compositions appropriate for partial melting of silica-poor garnet pyroxenite at 2.5

GPa, with a focus on partitioning behavior of U and Th. I use these new experimental

results to test the capacity of garnet pyroxenite to generate the (230Th/238U) disequilibria

observed in alkaline OIB. The relative compatibilities of U and Th in both Gt and Cpx

are different in pyroxenites than in other source lithologies: for a given melting rate and

extent of partial melting, such mafic lithologies tend to produce larger 230Th excesses

than peridotite. The greater overall extents of melting experienced by eclogites and

pyroxenites relative to peridotite damp this effect for mixtures of melts, but such binary

peridotite-pyroxenite melt mixes are capable of producing the range of 230Th excesses

and, for the most part, Sm and Nd fractionations and ENd values found in OIB lavas.

However, as noted by Stracke et al. (1999), the trends that Hawaiian OIB form in

diagrams of (230Th/238U) vs. isotopic or trace element ratios have the opposite sense of

that expected from progressive melting with pyroxenite in the source, arguing against

pyroxenite in the source of Hawaii.

While some variations in U-series systematics may have a lithologic origin, the

variations observed in mid-ocean ridge basalts (MORB) also potentially record the

effects of different rates of melt production and transport in the upper mantle. Complete

geochemical data sets including major element, trace element, long-lived radiogenic

isotope, and U-series data are necessary to fully evaluate competing effects of source

variations and variations in melting and melt transport processes. To understand

geographic variations, a study of a mid-ocean ridge (MOR) segment also benefits from



detailed geographic coverage. Such a detailed, complete data set currently only exists for

9-10N on the East Pacific Rise (EPR), a fast spreading ridge (SIMS et al., 2002).

To evaluate models for melt generation and better understand MORB

geochemical data, in Chapter Three I present a geographically- and geochemically

detailed case study of the Kolbeinsey Ridge, the first such study of a slow-spreading

ridge. In addition to its slow spreading rate, Kolbeinsey Ridge has a very shallow ridge

axis. Kolbeinsey Ridge MORB exhibit large degrees of melting (e.g. low Na8 values) and

nearly constant depleted trace element and isotopic compositions. My data help to

constrain the extent to which U-series disequilibria in a slow-spreading, shallow ridge

location reflect 1) variations in source composition, or 2) variations in the melting

process, and to evaluate the differences between these melting processes at varying

spreading rates. For this study, I present measurements of U-Th disequilibria in a suite of

33 samples with complete major element, trace element, and Nd, Sr, Pb, and Hf isotopic

data. I find that unaltered Kolbeinsey Ridge lavas have universally high (23 0Th/238U), with

a narrow range of (230Th/ 232Th) and widely varying (238U/232Th) (Fig. 2). The relatively

uniform long-lived radiogenic isotopes for the ridge argue for a homogeneous mantle

source, suggesting that it is produced by variations in the melting process.

These 230Th-238U disequilibria can be explained by a long, deep peridotitic

melting column that extends well into the garnet stability field, producing 230Th excesses

and thick crust. Ultra-depleted trace element ratios, however, reflect either a relatively

young mantle source, potentially related to the young Arctic ridge system, or recent

introduction of depleted source material, possibly from the Iceland plume.

In addition to the focused case study of the Kolbeinsey Ridge, in Chapter Four I

examine the slow- to ultraslow-spreading MOR of the Arctic as a broader, regional study,
to evaluate models for global MORB production. The Arctic Ridge system extends

northward from the Tjtirnes Fracture Zone (FZ) at the northern edge of Iceland and

comprises the Kolbeinsey Ridge, the Mohns Ridge, the Knipovich Ridge, and the

ultraslow Gakkel Ridge. Spreading rates decrease northward from 18 mm/yr on the
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Figure 2. Equiline diagram showing Kolbeinsey Ridge data measured in this study. Fields as in Fig. 1, with

Iceland data (KOKFELT et al., 2003; STRACKE et al., 2003a; STRACKE et al., 2003b) removed from the OIB

field and shown separately in gray. Blue circles are unaltered samples from the depleted portion of the

Kolbeinsey Ridge, and green triangles represent unaltered samples from the isotopically enriched far-north

Kolbeinsey Ridge.

Kolbeinsey to <12 mm/yr. in the Eastern Volcanic Zone (EVZ) of the Gakkel (Breivik et

al., 2006; Mosar et al., 2002), making it the ultraslow global endmember for oceanic

spreading. Elevation of the ridge axis and major-element measures of degree of melting

also decrease systematically northward. Uranium-series analysis of Arctic lavas thus

provides an endmember test for 1) the robustness of the two-porosity melting model for

the full range of oceanic spreading rates, 2) the role of mantle heterogeneity, and 3) the

relationship between crustal thickness and melt process. In this study I present the results

of 238U, 230Th, 226Ra, 235U, and 21OPb, as well as Hf, Nd, Sr, and Pb isotopic analyses for a

suite of 27 additional samples from the Arctic MOR system, and then I compare the

results for Arctic MORB with data from the global ridge system (Fig. 3).
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Figure 3. Equiline diagram with fields after Fig. 2, showing all new data for unaltered samples measured
and reported in Chapters Three and Four.

While results for the Kolbeinsey Ridge indicated a relatively homogeneous
mantle source, evidence from the literature and my analyses suggests a stronger
heterogeneous source control over lavas from the more northerly Mohns and Knipovich
Ridges. 238 U-230Th results for these two ridges form an array that can be easily explained
by a number of models where melts from geochemically distinct mantle sources variably
mix prior to eruption. Lavas from 850E on the Gakkel Ridge, on the other hand, are
remarkably homogeneous and do not form a sloped array. These MORB do, however, lie
at the low (230Th/ 238U), high (226Ra/230Th) end of the negative global correlation between
(226Ra/230Th) and (230Th/238U). This correlation provides strong support for models in
which MORB are produced by mixing of melts from different depths in the melt column
(JULL et al., 2002; KELEMEN et al., 1997; SIMs et al., 1995; SIMS et al., 2002).



These new Kolbeinsey, Mohns, Knipovich, and Gakkel Ridge data corroborate

the Bourdon et al. (1996) observation of a negative correlation between average axial

ridge depth and average ridge (230Th/238U), suggesting a global mantle temperature

control. However, unlike mean (230Th/238U), the range and variation in 238U-23oTh

systematics results from complex factors including mantle chemical heterogeneities, and

the rate of upwelling and its effect on melt homogenization.

References

Beattie, P., 1993a. The Generation of Uranium Series Disequilibria by Partial Melting of
Spinel Peridotite - Constraints from Partitioning Studies. Earth Planet Sc Lett
117, 379-391.

Beattie, P., 1993b. Uranium Thorium Disequilibria and Partitioning on Melting of Garnet
Peridotite. Nature 363, 63-65.

Bourdon, B., Joron, J. L., Claude-Ivanaj, C., and Allegre, C. J., 1998. U-Th-Pa-Ra
systematics for the Grande Comore volcanics: melting processes in an upwelling
plume. Earth Planet Sc Lett 164, 119-133.

Bourdon, B., Langmuir, C. H., and Zindler, A., 1996a. Ridge-hotspot interaction along
the Mid-Atlantic Ridge between 37 degrees 30' and 40 degrees 30'N: The U-Th
disequilibrium evidence. Earth Planet Sc Lett 142, 175-189.

Bourdon, B., Zindler, A., Elliott, T., and Langmuir, C. H., 1996b. Constraints on mantle
melting at mid-ocean ridges from global U-238-Th-230 disequilibrium data.
Nature 384, 231-235.

Breivik, A. J., Mjelde, R., Faleide, J. I., and Murai, Y., 2006. Rates of continental
breakup magmatism and seafloor spreading in the Norway Basin-Iceland plume
interaction. J Geophys Res-Sol Ea 111, -.

Claude-Ivanaj, C., Bourdon, B., and Allegre, C. J., 1998. Ra-Th-Sr isotope systematics in
Grande Comore Island: a case study of plume-lithosphere interaction. Earth
Planet Sc Lett 164, 99-117.

Claude-Ivanaj, C., Joron, J. L., and Allegre, C. J., 2001. U-238-Th-230-Ra-226
fractionation in historical lavas from the Azores: long-lived source heterogeneity
vs. metasomatism fingerprints. Chem Geol 176, 295-310.

DePaolo, D. J., 1981. Trace-Element and Isotopic Effects of Combined Wallrock
Assimilation and Fractional Crystallization. Earth Planet Sc Lett 53, 189-202.

Goldstein, S. J., Murrell, M. T., and Jackecky, D. R., 1989. Th and U isotopic systematics
of basalts from the Juan de Fuca and Gorda Ridges by mass spectrometry. Earth
Planet Sc Lett 96, 134-146.



Goldstein, S. J., Murrell, M. T., Janecky, D. R., Delaney, J. R., and Clague, D. A., 1992.
Geochronology and Petrogenesis of Morb from the Juan-De-Fuca and Gorda
Ridges by U-238 Th-230 Disequilibrium. Earth Planet Sc Lett 109, 255-272.

Goldstein, S. J., Murrell, M. T., and Williams, R. W., 1993. Pa-231 and Th-230
Chronology of Midocean Ridge Basalts. Earth Planet Sc Lett 115, 151-159.

Hauri, E. H., Wagner, T. P., and Grove, T. L., 1994. Experimental and Natural
Partitioning of Th, U, Pb and Other Trace-Elements between Garnet,
Clinopyroxene and Basaltic Melts. Chemical Geology 117, 149-166.

Hirschmann, M. M., Kogiso, T., Baker, M. B., and Stolper, E. M., 2003. Alkalic magmas
generated by partial melting of garnet pyroxenite. Geology 31, 481-484.

Jull, M., Kelemen, P. B., and Sims, K., 2002. Consequences of diffuse and channelled
porous melt migration on uranium series disequilibria. Geochim Cosmochim Ac
66, 4133-4148.

Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M., and Dick, H. J. B., 1997. A
review of melt migration processes in the adiabatically upwelling mantle beneath
oceanic spreading ridges. Philosophical Transactions of the Royal Society of
London Series a-Mathematical Physical and Engineering Sciences 355, 283-318.

Kogiso, T., Hirschmann, M. M., and Pertermann, M., 2004. High-pressure partial melting
of mafic lithologies in the mantle. Journal ofPetrology 45, 2407-2422.

Kokfelt, T. F., Hoernle, K., and Hauff, F., 2003. Upwelling and melting of the Iceland
plume from radial variation of U-238-Th-230 disequilibria in postglacial volcanic
rocks. Earth Planet Sc Lett 214, 167-186.

La Tourette, T. Z. and Burnett, D. S., 1992. Experimental determination of U-partitioning
and Th-partitioning between cpx and natural and synthetic basaltic liquid. Earth
Planet Sc Lett 110, 227-244.

La Tourette, T. Z., Kennedy, A. K., and Wasserburg, G. J., 1993. Thorium-uranium
fractionation by garnet: Evidence for a deep source and rapid rise of oceanic
basalts. Science 261, 729-742.

Landwehr, D., Blundy, J., Chamorro-Perez, E. M., Hill, E., and Wood, B., 2001. U-series
disequilibria generated by partial melting of spinel lherzolite. Earth Planet Sc Lett
188, 329-348.

Lundstrom, C., 2000. Models of U-series disequilibria generation in MORB: the effects
of two scales of melt porosity. Phys Earth Planet In 121, 189-204.

Lundstrom, C. C., 2003. Uranium-series disequilibria in mid-ocean ridge basalts:
Observations and models of basalt genesis. Rev Mineral Geochem 52, 175-214.

Lundstrom, C. C., Gill, J., Williams, Q., and Hanan, B. B., 1998a. Investigating solid
mantle upwelling beneath mid-ocean ridges using U-series disequilibria. II. A
local study at 33 degrees Mid-Atlantic Ridge. Earth Planet Sc Lett 157, 167-181.

Lundstrom, C. C., Sampson, D. E., Perfit, M. R., Gill, J., and Williams, Q., 1999. Insights
into mid-ocean ridge basalt petrogenesis: U-series disequilibria from the Siqueiros
Transform, Lamont Seamounts, and East Pacific Rise. J Geophys Res-Sol Ea 104,
13035-13048.

Lundstrom, C. C., Shaw, H. F., Ryerson, F. J., Phinney, D. L., Gill, J. B., and Williams,
Q., 1994. Compositional Controls on the Partitioning of U, Th, Ba, Pb, Sr and Zr



between Clinopyroxene and Haplobasaltic Melts - Implications for Uranium
Series Disequilibria in Basalts. Earth Planet Sc Lett 128, 407-423.

Lundstrom, C. C., Williams, Q., and Gill, J. B., 1998b. Investigating solid mantle
upwelling rates beneath mid-ocean ridges using U-series disequilibria, 1: a global
approach. Earth Planet Sc Lett 157, 151-165.

Mosar, J., Lewis, G., and Torsvik, T. H., 2002. North Atlantic sea-floor spreading rates:
implications for the Tertiary development of inversion structures of the
Norwegian-Greenland Sea. J Geol Soc London 159, 503-515.

Peate, D. W., Hawkesworth, C. J., van Calsteren, P. W., Taylor, R. N., and Murton, B. J.,
2001. U-238-Th-230 constraints on mantle upwelling and plume-ridge interaction
along the Reykjanes Ridge. Earth Planet Sc Lett 187, 259-272.

Pertermann, M. and Hirschmann, M. M., 2003. Anhydrous partial melting experiments
on MORB-like eclogite: Phase relations, phase compositions and mineral-melt
partitioning of major elements at 2-3 GPa. Journal ofPetrology 44, 2173-2201.

Pietruszka, A. J., Rubin, K. H., and Garcia, M. 0., 2001. Ra-226-Th-230-U-238
disequilibria of historical Kilauea lavas (1790-1982) and the dynamics of mantle
melting within the Hawaiian plume. Earth Planet Sc Lett 186, 15-31.

Prytulak, J. and Elliott, T., 2008. Doubly-distilling eclogite in ocean island basalt sources.
Geochim Cosmochim Ac 72, A765-A765.

Salters, V. J. M. and Longhi, J., 1999. Trace element partitioning during the initial stages
of melting beneath mid-ocean ridges. Earth Planet Sc Lett 166, 15-30.

Salters, V. J. M., Longhi, J. E., and Bizimis, M., 2002. Near mantle solidus trace element
partitioning at pressures up to 3.4 GPa. Geochem Geophy Geosy 3, -.

Sigmarsson, O., Cam, S., and Carracedo, J. C., 1998. Systematics of U-series nuclides in
primitive lavas from the 1730-36 eruption on Lanzarote, Canary Islands, and
implications for the role of garnet pyroxenites during oceanic basalt formations.
Earth Planet Sc Lett 162, 137-15 1.

Sims, K. W. W., Blichert-Toft, J., Fornari, D. J., Perfit, M. R., Goldstein, S. J., Johnson,
P., DePaolo, D. J., Hart, S. R., Murrell, P. J., Michael, P. J., Layne, G. D., and
Ball, L. A., 2003. Aberrant youth: Chemical and isotopic constraints on the origin
of off-axis lavas from the East Pacific Rise, 9 degrees-10 degrees N. Geochem
Geophy Geosy 4, -.

Sims, K. W. W., DePaolo, D. J., Murrell, M. T., Baldridge, W. S., Goldstein, S., Clague,
D., and Jull, M., 1999. Porosity of the melting zone and variations in the solid
mantle upwelling rate beneath Hawaii: Inferences from U-238-Th-230-Ra-226
and U-235-Pa-231 disequilibria. Geochim Cosmochim Ac 63, 4119-4138.

Sims, K. W. W., Depaolo, D. J., Murrell, M. T., Baldridge, W. S., Goldstein, S. J., and
Clague, D. A., 1995. Mechanisms of Magma Generation beneath Hawaii and
Midocean Ridges - Uranium/Thorium and Samarium/Neodymium Isotopic
Evidence. Science 267, 508-512.

Sims, K. W. W., Goldstein, S. J., Blichert-Toft, J., Perfit, M. R., Kelemen, P., Fornari, D.
J., Michael, P., Murrell, M. T., Hart, S. R., DePaolo, D. J., Layne, G., Ball, L.,
Jull, M., and Bender, J., 2002. Chemical and isotopic constraints on the



generation and transport of magma beneath the East Pacific Rise. Geochim
Cosmochim Ac 66, 3481-3504.

Sims, K. W. W. and Hart, S. R., 2006. Comparison of Th, Sr, Nd and Pb isotopes in
oceanic basalts: Implications for mantle heterogeneity and magma genesis. Earth
Planet Sc Lett 245, 743-761.

Sims, K. W. W., Hart, S. R., Reagan, M. K., Blusztajn, J., Staudigel, H., Sohn, R. A.,
Layne, G. D., and Ball, L. A., 2008. 238U-Th-230-Ra-226-Pb-210-Po-210, Th-
232-Ra-228, and U-235-Pa-231 constraints on the ages and petrogenesis of
Vailulu'u and Malumalu Lavas, Samoa. Geochem Geophy Geosy 9, -.

Stracke, A., Salters, V. J. M., and Sims, K. W. W., 1999. Assessing the presence of
garnet-pyroxenite in the mantle sources of basalts through combined hafnium-
neodymium-thorium isotope systematics. Geochem Geophy Geosy 1.

Stracke, A., Zindler, A., Salters, V. J. M., McKenzie, D., Blichert-Toft, J., Albarede, F.,
and Gronvold, K., 2003a. Theistareykir revisited. Geochem Geophy Geosy 4, -.

Stracke, A., Zindler, A., Salters, V. J. M., McKenzie, D., and Gronvold, K., 2003b. The
dynamics of melting beneath Theistareykir, northern Iceland. Geochem Geophy
Geosy 4, -.

Sturm, M. E., Goldstein, S. J., Klein, E. M., Karson, J. A., and Murrell, M. T., 2000.
Uranium-series age constraints on lavas from the axial valley of the Mid-Atlantic
Ridge, MARK area. Earth Planet Sc Lett 181, 61-70.

Tepley, F. J., Lundstrom, C. C., Sims, K. W. W., and Hekinian, R., 2004. U-series
disequilibria in MORB from the Garrett Transform and implications for mantle
melting. Earth Planet Sc Lett 223, 79-97.

Turner, S., Hawkesworth, C., Rogers, N., and King, P., 1997. U-Th isotope disequilibria
and ocean island basalt generation in the Azores. Chem Geol 139, 145-164.

Widom, E., Carlson, R. W., Gill, J. B., and Schmincke, H. U., 1997. Th-Sr-Nd-Pb isotope
and trace element evidence for the origin of the Sao Miguel, Azores, enriched
mantle source. Chem Geol 140, 49-68.

Wood, B. J., Blundy, J. D., and Robinson, J. A. C., 1999. The role of clinopyroxene in
generating U-series disequilibrium during mantle melting. Geochim Cosmochim
Ac 63, 1613-1620.



19



CHAPTER 2:

PARTITIONING OF U AND TH DURING GARNET PYROXENITE PARTIAL
MELTING: CONSTRAINTS ON THE SOURCE OF ALKALINE OCEAN

ISLAND BASALTS

Previously published as "Partitioning of U and Th during garnet pyroxenite partial
melting: Constraints on the source of alkaline ocean island basalts" in 2008 by
L.J. Elkins, G.A. Gaetani, and K.W.W. Sims in Earth and Planetary Science
Letters, vol. 265, pp. 270-286. Reprinted with permission of Elsevier, © 2008
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Abstract

Uranium series disequilibria in ocean island basalts (OIB) provide evidence for the presence of garnet in their source region. It

has been suggested that enriched OIB signatures derive from mantle lithologies other than peridotite, such as eclogite or

pyroxenite, and, in particular, that silica-poor garnet pyroxenite is the source lithology for alkali basalts. To test the ability of such a

source to produce the U-Th disequilibria observed in alkali OIB, we determined experimentally clinopyroxene-melt and garnet-

melt partition coefficients for a suite of trace elements, including U and Th, at 2.5 GPa and 1420-1450 OC. The starting

composition for the experiments was a 21% partial melt of a silica-poor garnet pyroxenite. Experimentally determined

clinopyroxene-melt partition coefficients range from 0.0083±0.0006 to 0.020±0.002 for Th and from 0.0094±0.0006 to 0.024±

0.002 for U, and garnet-melt partition coefficients are 0.0032±0.0004 for Th and 0.013±0.002 for U. Comparison of our

experimental results with partition coefficients from previous experimental studies shows that the relative compatibilities of U and

Th in both garnet and clinopyroxene are different for different mineral compositions, leading to varying degrees of U/Th

fractionation with changing lithology. For a given melting rate and extent of partial melting, mafic lithologies tend to produce larger
230Th excesses than peridotite. However, this effect is minimized by the greater overall extents of melting experienced by eclogites

and pyroxenites relative to peridotite. Results from chromatographic, batch, and fractional melting calculations with binary mixing

between partial melts of pyroxenite and peridotite, carried out using our new partitioning data for the pyroxenite component and

taking into account variable productivities and different solidus depths for the two lithologies, suggest that OIB are not the product

of progressive melting of a source containing a fixed quantity of garnet pyroxenite. Melting a peridotite with enriched signatures,

and mixing those melts with melts of a depleted, "normal" peridotite, is an alternative explanation for the trends seen in Hawaiian,

Azores and Samoan lavas.

© 2007 Elsevier B.V. All rights reserved.

Keywords: melting; uranium series; partition coefficients; garnet; clinopyroxene; garnet pyroxenite

1. Introduction

Most mid-ocean ridge basalts (MORB) and ocean
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denote activity) indicate that Th generally behaves less
compatibly during partial melting than U (e.g. (Bourdon
ct al., 1996). Garnet (Gt) and clinopyroxene (Cpx) are
the principal hosts for U and Th in upper mantle rocks
and, therefore, control the behavior of those elements during
partial melting. Experimental determinations of mineral-
melt partition coefficients (DiMineral/elt = CiMineral/ci

M elt,

where ci is the weight concentration of element i in the
mineral or the melt) indicate that U is more compatible than
Th in Gt during partial melting (i.e. DnGMelt/DGt/Melt< 1),
whereas DVx/Melt/KX/Melt is typically greater than I (e.g.
(La Tourctte and Burnett, 1992; Bcattie, 1993a,b; La
Tourette et al., 1993: Hauri et al., 1994). Thus, the presence
of 230 Th excesses in MORB and OIB is generally taken as
an indication of residual Gt in their source regions (e.g.
(Bourdon et al., 1996). Whether that Gt resides in peridotite,
pyroxenite, eclogite, or some combination thereof remains a
matter of debate (e.g. Hirschmann and Stolper; 1996;
LIundstrom ct al., 1999; Stracke et al., 1999).

The long-lived radiogenic isotopic compositions of
01B indicate that the upper mantle is characterized by
trace element heterogeneity (Zindler and Hart, 1986),
suggesting that lithologic heterogeneity is also plausi-
ble. Because the relative compatibilities of U and Th
during partial melting are sensitive to the major element
compositions of the solid phases, a detailed understand-
ing of mineral-melt partitioning of U and Th for a range
of mafic and ultramafic lithologies (i.e. eclogite,
pyroxenite, and peridotite) is necessary to evaluate the
importance of each of those rock types in the melt
generation process.

The major element compositions of melts produced
by partial fusion of eclogites and pyroxenites at upper
mantle conditions have been investigated experimental-
ly in a number of studies, and it has been demonstrated
that partial melting of silica-poor garnet pyroxenites can
produce alkaline basaltic melts (Hirschmann et al.,
2003; Pecrtetmann and Hirschmann. 2003; Kogiso et al.,
2004). This supports the suggestion that the melting of
less abundant mantle lithologies such as eclogite and
pyroxenite may play an important role in generating
OIB (Hauri, 1996; Sigmarsson et al., 1998; Lassiter
et al., 2000; Kogiso and Hirschmann. 2001: Hauri,
2002; Ilirschiann et al., 2003, Kogiso et al., 2003.
2004). Clinopyroxenes and Gt in pyroxenites, eclogites,
and peridotites have distinct compositions, however,
raising the possibility that there may be systematic
differences in the fractionation of U from Th during
partial melting of these three lithologies. Partition
coefficients for Cpx and Gt appropriate for peridotite
partial melting have been experimentally determined
over a wide range of temperature and pressure con-

ditions (Salters and Longhi, 1999; Salters et al., 2002).
Pertermann and Hlirschmann (2002) and Pertermann
et al. (2004) also measured DiMinera

l/ Me
lt values

appropriate for partial melting of MORB-type eclogites
that produce silica-rich melts. However, none of the
existing experimental studies have generated the
partitioning data needed to test whether silica-poor
garnet pyroxenite is a realistic source for alkaline
basaltic lavas, as suggested by Kogiso et al. (2004).

In this study, partition coefficients for Cpx and Gt
compositions appropriate for partial melting of silica-poor
garnet pyroxenite were determined experimentally at
2.5 GPa. We focus on the partitioning behavior of U and
Th and use our experimental results to test the capacity of
garnet pyroxenite to generate the (230Th/

2 38
U) disequili-

bria observed in alkaline OIB. We find that the relative
compatibilities of U and Th in both Gt and Cpx and, thus,
U/Th fractionation during partial melting, are different for
different source lithologies. For a given melting rate and
extent of partial melting, mafic lithologies tend to produce
larger 230Th excesses than peridotite. However, this effect
is damped by the greater overall extents of melting
experienced by eclogites and pyroxenites relative to peri-
dotite. Mixtures of partial melts from peridotite and silica-
poor garnet pyroxenite are capable of producing the range
of 2 30Th excesses and, for the most part, Sm and Nd
fractionations and eNd values found in OB lavas. How-
ever, a peridotite source with an enriched trace element
and isotopic composition could possibly explain the data
as well. As noted by Stracke et al. (1999), trends formed
by ocean island lavas from Hawaii in diagrams using
these variables have the opposite sense of that expected
from progressive melting with pyroxenite in the source.
This additional constraint argues against pyroxenite in the
source of Hawaii.

2. Experimental and analytical techniques

2.1. Starting materials

To examine the partitioning behavior of incompatible
trace elements during partial fusion of silica-poor garnet
pyroxenite, we experimentally determined DiCpx/Melt

and DGt/M
elt values for 21% partial melting of

pyroxenite MIX-1G at 2.5 GPa, previously studied by
Hirschinann et al. (2003) and Kogiso et al. (2003). This
bulk composition was found by Kogiso et al. (2003) to
produce alkaline basalts during partial melting at upper
mantle conditions. The melt composition from experi-
ment 95MMH15 reported by Hirschmann et al. (2003)
(see Table 1 in the Appendix) was synthesized as the
starting mix PX21 from a combination of high-purity
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Table I
Experimental conditions, phase assemblages and phase proportions

Experiment P T Duration Run Phase proportions
b

(GPa) (0C) (h) products (wt.%)

PX21f-4 2.5 1440 120 GI, Cpx, Gt 76.5% GI; 14.1% Cpx; 8.8% Gt; 0.17

PX21f-5 2.5 1450 144 GI, Cpx 91.4% Gl; 7.8% Cpx; 1.24

PX21f-17 2.5 1440 a 72 GI, Cpx, Sp 91.7% GI; 6.8% Cpx; 0.2%Sp; 3.19

PX21g-2 2.5 1420 48 G1, Cpx, Sp 90.4% G1l; 7.4% Cpx; 1.0% Sp; 1.07

PX21h-2 2.5 1420 48 GI, Cpx, Sp 86.7% GI; 11.2% Cpx; 1.2% Sp; 0.76

a Held at 1340 'C for 6 h before ramping up to 1440 'C.
b Calculated phase proportions for major element phase analyses (Table 3). Final value shown is mean sum of squares for mass balance analysis.

oxides and carbonates and homogenized by grinding in
an agate mortar and pestle under ethanol for 6 h. The

mix was then decarbonated at 850 'C, re-ground under

ethanol, glassed for 10 min at 1200 'C in air in a vertical

gas-mixing furnace using a graphite crucible, and

ground to a fine powder. The bulk composition of the

starting material was determined by fusing an aliquot in
a piston cylinder apparatus at 1400 'C and 1.0 GPa, then

analyzing the resulting glass by electron microprobe

using the protocol described below (composition of the

mixture in Table I in the Appendix).
Trace elements were added to three different aliquots

of the PX21 starting material to minimize potential

isobaric interferences and maximize the ion probe trace

element signal in the crystals. The combinations of trace

elements used in this study are: (1) U and Th (mix f); (2)

Li, Rb, Nd, U, Be, Sr, Sm, and Th (mix g); (3) B, Y, Hf,

La, V, Zr, Ta, Lu, Cr, Nb, Ba, and Pb (mix h). Doping

levels were - 1 wt.% total trace elements in each batch.

Uranium and Th were added using nitric acid standard

solutions, and all other elements were added as solid

oxide or carbonate powders.

2.2. Experimental methods

We conducted experiments using a piston-cylinder
apparatus with 1.27 cm-diameter assemblies (Boyd and

England, 1960). For each experiment, starting materials

were packed into a graphite capsule, which constrains the

oxygen fugacity in the charge to be - 1.5 log units more

reducing than the fayalite-magnetite-quartz (FMQ)

oxygen buffer (Ulmer and Luth, 1991), thereby main-

taining a reduced U valence state (U4+ versus U6+). The

capsule was placed inside an alumina sleeve and centered

within a straight-walled graphite furnace using crushable

MgO spacers. The pressure medium was sintered CaF2.
The friction correction for the assemblies was calibrated
against the Ca-Tschermakite breakdown reaction at 1.2 to
1.4 GPa and 1300 'C (Hays, 1966) and determined to be

less than the pressure uncertainty (±50 MPa), so that no

correction has been applied to the pressures reported in
Table 1. Experiments were conducted using the cold
piston-in technique (Johannes et al., 1971) and brought to

the desired temperature at a rate of I oC/s. Temperatures
were measured and controlled using W97Re 3-W 75Re 25
thermocouples positioned above the sample capsule, with

no correction for the effect of pressure on thermocouple
EMF. The temperature difference between the position of

the thermocouple bead and the center of the sample,

determined using offset thermocouples, was 9 'C. We
have corrected the temperatures reported in Table I for

this difference. Temperatures measured by this method

are thought to be accurate to within ±10 'C, and pressure

is thought to be accurate to within ±0.5 GPa. Run

durations ranged from 48 to 144 h, and experiments were

quenched upon completion by shutting off the power.

2.3. Analytical methods

Experimental run products were longitudinally

sectioned, mounted in epoxy, polished, and analyzed

for major elements using the 5-spectrometer JEOL 733
electron microprobe at Massachusetts Institute of

Technology. We used a 10 nA beam current and

15 kV accelerating potential for all analyses. Beam

diameters of 10 itm and 1 gtm were used for analyses of

glass and crystalline phases, respectively. We measured

elements in the glass using count times of 5 s for Na,
10 s for Mn and Fe and 40 s for Mg, Al, Si, Ti, K, and

Ca. Peak counting times for pyroxene crystals were 15 s

for Na and 40 s for Mn and Fe, and for Gt analyses were

carried out by counting Na and Ti for 20 s and Mn and

Fe for 40 s. Data were reduced using a modified ZAF

procedure (Armstrong, 1988).
Trace element concentrations were measured by

secondary ion mass spectrometry (SIMS) with the

Cameca 3f ion microprobe at Woods Hole Oceano-
graphic Institution. A -0.1 nA primary O- beam less
than 5 tm in diameter was used for all analyses due to

small Cpx grain sizes. A primary accelerating voltage of
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8.2 keV with a secondary accelerating voltage of
4.41 keV produced a primary O- beam impact energy
of 12.61 keV. Following a 3-5 min. pre-burn to remove
the Au coat, a single spot was occupied while measuring

secondary ion intensities for 7Li, 9Be, 1iB, 5 1V, 52Cr,
85Rb, 88Sr, 89Y, 90 Zr, 93 Nb, 138Ba, 139 La, '4 6Nd, 1

4 7
Sm,

175Lu, 178Hf, 181Ta, 208Pb, 
23 2

Th, or 
23

8U within a

20 eV window centered on a 90 eVoffset from the peak
of the energy distribution. Count times of 20 s were used
for all elements in experiments PX21g-2 and -h-2,
except Hf, Ta, and Pb, which were measured for 30 s
each. In experiments PX21f-4, -5, and -17, U and Th
were measured with count times of 30 s. Trace element
measurements were normalized to either 28Si or 30Si and
calibrated against standards NIST-610 and NIST-612.

3. Experimental results

3.1. Partitioning experiments

Five experiments were carried out to determine par-
tition coefficients for incompatible trace elements among

Cpx, Gt, and nepheline-normative silicate melt during
garnet pyroxenite partial melting at 2.5 GPa and 1420' to
1450 aC (Table 1). All experiments produced Cpx, spinel
(Sp) and silicate melt. One of the experiments contains a
mineral assemblage of Cpx+Gt+Sp, while the others
contain Cpx + Sp only. The absence of Gt from all but one
of the experiments, which were carried out using a single
starting mix, is thought to be attributable to sluggish
nucleation. All experiments contain large areas of
homogeneous, quench growth-free glass.

The experiment conducted at 1450 "C (just below the
liquidus temperature of 1455 'C inferred from experi-
ment 95MMH15 of Hirschmann ct al. (2003)) for 144 h
contains 91 wt.% silicate melt, 9 wt.% Cpx (- 20 tm),
and a trace amount of Sp. An experiment held at
1440 'C for 120 h produced 77 wt.% silicate melt,
16 wt.% Cpx (-20-30 tm), 6 wt.% Gt (up to
S300 lm), many of which poikilitically enclose small
pyroxene grains, and trace amounts of Sp. A second
experiment conducted at 1440 'C was initially held at
1340 'C for 6 h, and then ramped up to 1440 'C at I oC/s

to approach the same equilibrium from a different

Table 2
Electron microprobe analyses of experimental run products

Phase n SiO, TiO, A1203  CrnO3 FeO MnO MgO CaO Na2O KO0 P20s Total

fHil:chnaml el a1. (2003)

GI 5 43.1(7)" 2.58(9) 14.20(2) 13.6(4) 0.15(3) 12.5(3) 10.2(1) 3.72(7) 0.08(2) 0.06(1) 100.2

Cpx 10 50.8(7) 0.51(2) 10.5(3) - 5.4(1) 0.10(5) 16.7(1) 14.70(4) 1.2(1) 0.01(1) 0.00(I) 99.9

Gt 7 41.4(2) 0.52(6) 23.0(2) 8.2(I) 0.20(4) 19.1(1) 6.0(1) 0.02(2) 0.01(1) 0.02(3) 98.7

PX2114 -- 1440 OC --- 120 h
GI 9 41.9(2) 3.0(1) 13.8(1) 0.004(12) 15.0(2) 0.13(4) 11.2(2) 9.4(1) 4.7(3) 0.108(9) 0.03(3) 99.3

Cpx 20 49.5(3) 0.57(6) 11.6(2) 0.002(5) 6.6(3) 0.12(2) 15.6(3) 14.6(4) 1.96(6) - 100.5
Gt 18 41.1(2) 0.55(3) 24.2(2) 0.03(2) 10.8(1) 0.22(4) 16.6(2) 5.7(1) 0.02(2) - 99.1

PX2/f-5 -- 1450 'C - 144 h
Gc 10 42.3(3) 2.7(2) 14.71(7) 0.01(2) 13.7(3) 0.17(5) 11.3(2) 9.48(6) 4.2(2) 0.1(1) 0.05(5) 98.8
Cpx 16 50.0(5) 0.48(4) 11.6(4) 0.02(1) 6.0(2) 0.11(2) 15.8(3) 14.8(5) 1.66(6) 100.5

PX2~lf 17-- 1440 °C- 72 h
GI 22 43.0(2) 2.7(1) 15.1(1) 0.01(2) 13.5(2) 0.17(5) 10.9(1) 9.75(6) 3.8(2) 0.11(1) 0.02(4) 99.2
Cpx 5 49.8(3) 0.53(6) 11.8(4) 0.02(2) 5.8(2) 0.12(2) 15.3(5) 15.5(3) 1.69(7) - 100.6
Sp 8 1.2(1.1) 0.29(9) 65.5(1.4) 0.01(2) 12.5(3) 0.06(2) 20.1(3) 0.3(3) 100

PX2Ig-2 -- 1420 OC -- 48 h
GI 24 43.6(5) 2.7(1) 14.6(1) 0.04(4) 13.9(3) 0.19(4) 11.8(3) 9.30(7) 4.0(2) 0.11(1) 0.02(3) 100.2
Cpx 17 51.3(7) 0.43(8) 9.9(1.0) 0.00002(7) 6.5(4) 0.13(3) 17.9(1.1) 12.9(9) 1.6(1) 100.7
Sp 12 1.0(2.0) 0.26(3) 65.5(2.5) 0.002(4) 12.2(3) 0.09(2) 20.3(2) 0.2(5) - - 99.6

PX2,lh-2 -- 1420 "C -- 48 h
GI 18 43.4(2) 2.8(1) 14.7(1) 0.02(2) 14.3(3) 0.18(5) 11.5(3) 9.51(6) 4.2(2) 0.111(9) 0.006(12) 100.7
Cpx 9 50.7(6) 0.44(4) 10.2(9) 0 6.5(2) 0.12(2) 17.0(1.3) 13.6(1.0) 1.6(2) 100.3
Sp 15 0.32(2) 0.26(2) 64.8(4) 0 12.6(2) 0.06(3) 19.7(2) 0.008(5) - 97.9

' Numbers in parentheses represent 1 o standard deviation in terms of least units cited on the basis of replicate analyses. Thus 43.1(7) should be read
as 43.1 -0.7
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starting condition. This experiment produced 93 wt.%

silicate melt, 7 wt.% Cpx (- 20 [im), and a trace amount

of Sp (- 10 ftm).
Additional experiments were conducted at 2.5 GPa

and 1420 'C using starting compositions doped with a

larger suite of trace elements (mixes g and h). The ex-

periment doped with Li, Be, Rb, Sr, Nd, Sm, Th, and U

contains 92 wt.% melt, 7 wt.% Cpx (-200-300 pim),
and 1 wt.% Sp (- 100-200 pm). Similarly, the exper-

iment doped with B, V, Cr, Y, Zr, Nb, Ba, La, Lu, Hf, Ta,
and Pb contains 87 wt.% silicate melt, 11 wt.% Cpx

(-500 plm), and 1 wt.% Sp (- 200 gm).

Major element compositions of silicate melts, Cpx,

Gt, and Sp are reported in Table 2. Clinopyroxene, Gt,
and melt compositions are similar to those reported from

the pyroxenite partial melting experiments of Hirsch-

mann et al. (2003). The silicate melts produced in our

experiments are SiO2-poor (41.9±0.2 to 43.6±0.5 wt.%)

with 9.5 to 15.8 wt.% nepheline in their CIPW norms and

molar Mg/(Mg+ZFe) (Mg#) ranging from 0.57 to 0.60.

Clinopyroxenes have moderately high A120 3 and Na20O

contents (- 11.0 wt.% and - 1.7 wt.%, respectively)

resulting in a significant jadeite component. The principal

difference between the Cpx in our experiments and those

from Hirschmann et al. (2003) is that ours have lower

Mg# (a mean of 0.822±0.006 for the 5 experiments

reported in Table 2, versus 0.846±0.001 in Hirschmann

et al. (2003)), likely a result of the systematically lower

temperatures at which our experiments were carried out.

Compared against experiments on U and Th

partitioning during partial melting of eclogite, the Cpx

from our experiments are characterized by lower TiO 2
(- 0.50 versus - 3 wt.%), A12 0 3 (- 11 versus - 17 wt.

%), and Na2zO (-2 versus -4 wt.%), and higher Mg#

(-0.82 versus -0.66) (Pertermann and Hirschmann,
2002, 2003; Pertermann et al., 2004). The Cpx in our

experiments have relatively higher A120 3 (~ 11 versus

- 8 wt.%), CaO (- 14 versus - 10 wt.%), and Na20 (- 2

versus - 1 wt.%) and slightly lower Mg# (- 0.82 versus

-0.88) than experiments looking at U and Th

partitioning during peridotite partial melting (Salters

and Longhi, 1999; Salters et al., 2002; McDade et al.,

2003). Finally, compared with U and Th partitioning

experiments conducted on near-liquidus basalts, the Cpx

from our experiments have higher A120 3 (- 11 versus

- 7 wt.%) and Na20 (- 2 versus - 1 wt.%), lower CaO

(- 14 versus -18 wt.%), and slightly lower Mg#

(-0.82 versus -0.88; La Tourette and Burnett, 1992;

Beattie, 1993a,b; Hauri et al., 1994; Wood et al., 1999).

Garnet compositions in our experiments, likewise, are

similar to those from the melting experiments of

Hirschmann et al. (2003), although with slightly higher

A120 3 (24.2±0.2 versus 23.0+0.2) and slightly lower CaO

(5.7±0.1 versus 6.0±0.1 wt.%) and Mg# (0.734+0.001

Table 3
Experimentally determined mineral-melt partition coefficients

PX21f-4 PX21f-5 PX21f-17 PX21g-2 PX21h-2

1440 °C, 120 h 1450 -C, 144 h 1440 °C, 72 h 1420 oC, 48 h 1420 °C, 48 h

Cpx Gt Cpx Cpx Sp Cpx Sp Cpx Sp

Li 0.22(4)a 0.13

Be 0.024(3) 0.10

B - 0.19(9) 0.10

V 1.1(2) 1.3

Cr - - 2.8(5) 3.43(8)

Rb - 0.015(2) 0.029

Sr - 0.067(3) 0.0047

Y - 0.37(6) 0.002(1)

Zr 0.09(1) 0.0081(9)

Nb - - 0.0029(8) 0.0006(2)

Ba . - 0.005(2) 0.0006(4)

La _ - - 0.034(6) 0.0002(1)

Nd - 0.24(1) 0.24

Sm - 0.31(2) 0.18

Lu - - 0.38(6) 0.0007(4)

Hf . - 0.13(3) 0.003(2)

Ta - 0.008(2) 0.0004(1)

Pb 0.2(1) 0.0005(2)

Th 0.015(2) 0.0032(4) 0.0083(6) 0.015(1) 0.010(3) 0.020(2) 0.016

U 0.017(2) 0.013(2) 0.0094(6) 0.016(1) 0.014(5) 0.024(2) 0.046

a Numbers in parentheses indicate one standard error uncertainties in terms of least units cited.
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versus 0.806±0.001). Compared with existing eclogite
melting and U and Th partitioning experiments, the Gt from
our experiments have relatively low TiO2 (0.55±0.03
versus - 1 wt.%) and CaO (5.7±0.1 versus - 8 wt.%),
and high A120 3 (24.2±0.2 versus ~23 wt.%) and Mg#
(0.734±0.001 versus '0.61; Perternnann et al., 2004).
Our Gt crystals have higher A120 3 (24.2±0.2 versus
-~ 23 wt.%) and CaO (5.7±0.1 versus -4 wt.%) and lower
Mg# (0.734±0.001 versus -0.88; Salters and Longhi,
1999; Salters et al., 2002) than Gt from peridotite melting
experiments. Uranium and Th partitioning experiments
conducted on near-liquidus basalts have Gt with higher
A120 3 (-26 versus 24.2±0.2 wt.%) and slightly higher
Mg# (~0.76 versus 0.734±0.001) than ours (Beattie,
1993a,b; La Tourette et al., 1993; Hauri et al., 1994).

The partition coefficients determined in this study
are reported in Table 3. In Fig. 1, we show how Cpx-melt
partition coefficients for U increase monotonically
from 0.0094±0.0006 at 1450 oC to 0.024±0.002 at

1420 oC, while DWr'x e increases from 0.0083±0.0006
to 0.020±0.002 over the same temperature range.
The D /xMe/D6PxIMelt ratios in our experiments are
slightly less than 1, and, with a mean value of 0.88±
0.05, do not vary significantly with temperature. The
DTh Met value determined from our experiment
at 1440 OC is 0.0032±0.0004, nearly a factor of 5
smaller than DRxiMel (0.015±0.002) at the same

conditions, whereas Dt/Melt (0.013±0.002) is only
slightly smaller than DPxlMe lt (0.017±0.002). Our
experiments therefore show that D~tMelt/Dft/Melt

(0.25-0.04) is much smaller than DQ~ xMiI/De
p lt

during garnet pyroxenite partial melting, confirming
that Gt is much more effective at producing 230Th
excesses.

Clinopyroxene-melt partition coefficients determined
at 2.5 GPa and 1420 0C are presented in Fig. 2, in order of
compatibility during peridotite partial melting (Hofinann,
1988), together with partitioning data for partial melting
of both eclogites (Pertermann and Hirschmann, 2002;
Pertermann et al., 2004) and peridotites (Salters and
Longhi, 1999) for comparison. Our D Cpx /Melt values are

overall similar to those measured in previous studies,
suggesting that the variations in Cpx composition
discussed above do not produce significant changes in
compatibility for most trace elements, though Dr x/Mett

and DX/Meh , which are lower in eclogites, represent an

exception to this.

3.2. Approach to equilibrium

The approach to equilibrium for experimental results
in this study was evaluated by carrying out experiments

S 0.020
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0.010

a
0.005 ....

1420 1430 1440 1450

T (OC)

1.2

o 1.0 -

0.8

a
0.6

1420 1430 1440 1450

T(OC)

Fig. 1. Temperature vs. (a) D
Cpx/Mekt and (b) D 'kDefx

' 1/M'
ht ratio

diagrams, showing measured values from experiments PX21f-4,
PX21f-5, PX21f-17, and PX21g-2. Plotted lines show (a) Arrhenius
relationships between temperature and partition coefficients and (b) the
mean IR"Me/D9tPx/Met value, demonstrating that while D

Cpx/"Met

values decrease with T, D~xMet/lJpxM t ratios are relatively
constant.

in which the final equilibrium state was approached from
two different starting conditions, to demonstrate that the
final equilibrium is independent of path. An experiment
in which the final pressure-temperature conditions
(1440 0C, 2.5 GPa) were approached starting from am-
bient conditions produced a mineral assemblage ofCpx +
Gt+Sp with D aelt=0.017±0.002 and Rx/Melt=
0.015±0.002. A second experiment was conducted at
2.5 GPa in which the charge was initially held at 1340 'C
for 6 h, then heated at I OC/s to 1440 -C and held for 72 h.
This experiment produced a mineral assemblage of Cpx+
Sp, with D /mxet= 0.0 16 ±0.0 0 2 and D xM

e" = 0.015 ±
0.001. The Fe/Mg exchange coefficients for Cpx and melt
for these experiments are the same within analytical
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10 -' This study, PX21f-4, -g-2, -h-2

-o-- Salters and Longhi (1999), TM 1094-3
Salters et atl (2002), RD 1097-1

--- Pertermann and Hirschmann (2002), A332
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Fig. 2. Spider diagram showing combined Cpx-melt partition coefficients from experiments PX21g-2 and PX21h-2, in order of increasing

compatibility (Hofmann, 1988). Data from Pertermann and Hirschmann (2002), Salters and Longhi (1999), and Salters et al. (2002) are shown for

comparison between our experiments and eclogite and peridotite partitioning data from the literature. Note that the element ordering of Hofmann

(1988) has been retained even for cases where no partitioning data are available in order to avoid the appearance of apparent compatibility anomalies.

uncertainty (0.315±0.004 versus 0.306±0.007). There-

fore, while the absence of Gt in the second experiment

indicates that an equilibrium mineral assemblage was not

achieved, the experimental duration was adequate to

attain equilibrium element distribution between minerals

and melts.

3.3. Henry's law

In order to analyze the experimental products by

SIMS, it was necessary to dope the starting composi-

tions at levels significantly higher than those found in

natural basalts. Previous trace element partitioning

studies have demonstrated adherence to Henry's Law

at concentration levels ranging from 100 ppm to as high

as 2 wt.% (Grutzeck et al., 1974; Nicholls and Harris,

1980; Ray et al., 1983; Gallahan and Nielsen, 1992).

The total trace element contents of our silicate melts

(- 1 wt.%) fall well below the expected upper limit for

Henry's law, such that no deviation from Henrian

behavior is expected. While we did not carry out an

explicit test of Henry's law, there are no systematic

differences among experiments carried out using

different concentrations of U and Th, and our partition

coefficients are in general agreement with literature

values determined over a range of doping levels. On the

basis of these comparisons, we conclude that our

experiments were carried out at concentration levels

within the range of Henrian behavior and that our results

are appropriate for modeling natural systems.

4. Discussion

4.1. Partitioning of U and Th during partial melting of

garnet pyroxenite

The equilibrium partitioning of incompatible trace

elements such as U and Th during partial melting is

governed at equilibrium by the equivalence of chemical

potentials. Because of this, D MineranMe lt values depend

on both the pressure-temperature conditions at which

partial melting takes place and the compositions of both

the minerals in the source rock and the partial melt. As

noted in the introduction, there is isotopic evidence to

suggest that heterogeneity exists in the source region of

OIB (Zindler and Hart, 1986), it is plausible that

lithologic heterogeneity is also present and may be a

source for enriched lavas (Hirschmann and Stolper,

1996; Lundstrom et al., 1999), and silica-poor garnet

pyroxenite is a viable source rock for producing the

major element composition of alkaline OIB lavas

(Hirschmann et al., 2003; Kogiso et al., 2003, 2004).

Melting of garnet pyroxenite begins at higher pressures

and temperatures than peridotite, and the compositions

of both Cpx and Gt in pyroxenite are different than in

lherzolite. These factors have the potential to produce

differences in both the absolute and the relative

compatibilities of U and Th during partial melting that

could create identifiable differences in secular dis-

equilibria patterns in melts. Here we use results from

our partitioning experiments to quantify the influence

1 ill I I I I I I I I I ' ' ' ' ~ ~ ' ' ~
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for Cpx and Gt data from this study and from the literature (Benjamin et al ., 1980 La Tourette and Bumett, 1992;

Beattie, 1993a,b; t a Tourctte ct al, 1993; Itauri et al., 1994; Lundstrom et al., 1994; Salters and Longhi, 1999; van Westrencn ct al., 1999; Xood et
al., 1999; van Westrencn ct al., 200: Landwehr et al., 200I; Pertermann and Hirschmann. 2002; Salters et al., 2002; McDade ct al., 2003; Pertermann
ct al., 2004), filtered to show only those experiments with oxygen fugacity at least I log unit more reduced than the fayalite-magnetite-quartz buffer
(to avoid concerns regarding the effect of U

L  
on D ineratme '). Error bars show one-sigma standard errors where available (only one-sigma standard

deviations were available from Benjamin et al. (1980) and McDade ct al. (2003), and only estimated uncertainties were available from Salters and
Longhi (1999) and Salters et al. (2002)). Results from double error regressions (solid lines) and 95% confidence envelopes (dashed lines) for Cpx and
Gt are shown. Although all data are shown, only DMineraii'lt values with reported errors are included in the regressions. The Gt trend follows a
steeper slope than the Cpx data, as discussed in Section 4.1 of the text.

of some of these factors on D "
nera Meit, D M in L

ra
l
/Me

l t

and D neraMelt/DM
tin

era!Melt ratios during partial melt-
ing of garnet pyroxenite. While the composition of the
melt can also influence the magnitude of DiMiner al

/Me
l
t, it

is unlikely to change relative compatibilities of isovalent
cations with the same charge and similar cationic radii
(e.g. Landwehr et al., 2001; Gactani, 2004).

Given that U 4+ and Th4+ have the same valence state at
oxygen fugacity conditions thought to be prevalent in the
upper mantle, the variable most likely to influence the
relative compatibilities of these elements during partial
melting is the size of the lattice site onto which they
substitute. Wood et al. (1999) pointed out that for spinel
lherzolite of a given bulk composition, Cpx becomes
increasingly poorer in Ca 2 + and richer in A13+ with in-
creasing pressure along the peridotite solidus, and that this
likely results in a decrease in the mean size of the Cpx M2
site (designated as ro in the lattice strain equation of Blundy

and Wood (1994)). Because the cationic radius of U4
+

(1.00 A) is slightly less than that of Th4+ (1.05 A) in VIII-
fold coordination (Shannon, 1976), this compositional
change should produce a progressive decrease in the
compatibility of Th 4+ relative to U4+ in spinel lherzolite
with increasing depth in the upper mantle. Landwchr
et al. (2001) experimentally demonstrated the influ-
ence of Cpx composition on D~x/Melt/Dipx/Melt
in the simplified system CaO-MgO-Al 203-SiO2-
Na2 0, producing DTx/Melt/Dx/Mel' ratios ranging
from 1.64±0.14 for relatively CaO-rich (23.08±
0.19 wt.%), A120 3 -poor (1.27±0.04 wt.%) Cpx
with ro= 1.031 A, to 0.58±0.11 for a CaO-poor (6.3±
0.3 wt.%), A1203-rich (19.5±0.4 wt.%) Cpx with
r0o=0.952 A.

To evaluate the possibility that Cpx and Gt com-
positional differences related to differing lithologies also
cause systematic differences in U/Th fractionation
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ratios are significantly lower for Gt than for Cpx.

during partial melting, we compared U and Th partition
coefficients determined for Cpx and Gt from our
experiments with those determined in previous studies
for partial melting of eclogite and peridotite and from
near-liquidus experiments on basalts (Figs. 3 and 4).
The nominal radii (ro) of the Cpx M2 and Gt X lattice
sites were calculated as a function of mineral compo-
sition for our partitioning experiments and those from
the literature using Equation 15 of Wood and Blundy
(1997) and Equation 2 of van Westrenen et al. (2001),
respectively. Applying these values to understand the
geochemical behavior of U4+ and Th4+ requires the
assumption that rI+f=r4', but the uncertainty involved
with this approximation is small (e.g. (Wood et al.,
1999; Landwehr et al., 2001; Blundy and Wood, 2003).

There are no obvious correlations between ro
and Dner

" av
Me

lt or Dminerav/Melt for either Cpx or Gt.
This is not surprising, given that the magnitudes of both
partition coefficients depend upon pressure, tempera-
ture, and melt composition in addition to mineral
composition. However, there are statistically significant
correlations between DT n era

v
Melt and D Mineral/ Melt for

both Cpx and Gt, with an especially strong relationship for
Cpx (Fig. 3):

DcPme = 1.0+0.9 x x/ + 0.00006+0.00008 (1)

DGt/Melt 3.60.7 x t/Melt 0.00300.0017 (2)DG = 3.6+0.7 x D + 0.0030+0.0017 (2)

where stated uncertainties are 20. For Cpx, the slope of
this correlation is 1.0, reflecting the small variation
around a value of 1 exhibited by the D-x/Meltp

x
/Mel

t

ratio. As the individual compatibilities of U and Th
in Cpx increase, their relative compatibilities do not
change significantly. In the case of Gt, D8Gt/M 't in-
creases approximately 4 times faster than D"lMet, so that
the D tMelt/Dt/Melt ratio is typically - 0.25 (note that
Eq. (2) has a non-zero intercept, an indication that this
relationship is likely to be curved). There appears to be no
systematic change in compatibility of either U or Th
among the different lithologies (pyroxenite, eclogite, or
peridotite) for Cpx. This may not be true for Gt, however,
where U4+ and Th 4+ appear to be more compatible during
partial melting of peridotite relative to eclogite or
pyroxenite.

Fig. 4 is a plot of ro versus D neral/Melt/Mineal/Melt

ratio for experimentally produced Cpx and Gt. From this
comparison it can be seen that the DMnera/Me"'lD

M
in

e al/Melt

ratio increases systematically with increasing ro, as
suggested for Cpx by Wood et al. (1999), and that this
increase can be driven by bulk composition as well
as variations in pressure-temperature conditions. For
Cpx, the relative compatibilities of U and Th switch at
an ro value - 1.00 A, comparable to the cationic radius
of U4+. Clinopyroxenes produced in our experiments
are characterized by a narrow range of ro values (0.994-
0.998 A) that fall near the middle of the overall
range for Cpx from partitioning experiments (0.951 to
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1.036 A; Fig. 4), and a mean DC"'Met/Dpx/Melt ratio of
0.88 + 0.05. Clinopyroxenes with compositions relevant
to eclogite partial melting have M2 lattice sites with ro
from 0.981 to 0.988 A, significantly smaller than for
Cpx from silica-poor garnet pyroxenite, and
are characterized by DR xMelt/Dtpx/Melt ratios of

0.77 to 1.00. Clinopyroxene from experiments car-
ried out to investigate partitioning during peridotite
partial melting have ro values from 0.978 to 1.005 A,
and D-rxMct/Dpx/Melt ratios of 0.50 to 2.0. These are
substantially broader ranges than for either pyroxenite
or eclogite Cpx and may, in part, reflect the broader
range of pressure-temperature conditions of these
experiments. Clinopyroxene from partitioning experi-
ments on near-liquidus basalts have the widest range of
ro values (0.984 to 1.030 A), with D~x/Melt/Dpx/Me'

ratios of 0.83 to 2.0, and define the upper end of the range
for experiments on "natural" starting compositions. This
is likely a reflection of their systematically higher CaO
contents.

The ro values calculated for the Gt X site are smaller
than the majority of those for the Cpx M2 site,
with a narrower range of values (0.931 to 0.986 A).
The D~ Melt/DtM elt ratios are always much less than
one (0.09-0.68 with a mean of 0.25). Garnets from
pyroxenite melt (ro= 0.940 A; DkGt/elt/DGtelt = 0.245),
eclogite melt (ro=0.937 to 0.942 A; DGt/Melt/DGt/Melt=
0.087-0.211), and near-liquidus basalt (ro=0.931 to
0.945 A; D h/Melt/D3t/Melt=0.113-0.271) partitioning

experiments have ro values and D tMelt/DtIMelt ratios

comparable to one another. The ro values for Gt from
experiments relevant to peridotite partial melting are sig-
nificantly larger than for mafic lithologies, ranging from
0.959 to 0.986 A, and DhM",It/D/mje ratios (0.226 to
0.500) that tend to be larger. Therefore, as with Cpx, Gt in
mafic lithologies tend to produce large 230Th excesses
relative to peridotite.

In summary, the relationships shown in Figs. 3 and 4
strongly support the contention that, although other
factors also contribute, the principal control on the
relative compatibilities of U and Th during partial
melting is the size of the Vill-fold lattice sites in both
Cpx and Gt. The size of the Cpx M2 site and of the Gt
X site in eclogite and pyroxenite tend to be small
relative to peridotite, such that bulk rock DTh/Du ratios
will tend to be higher. Therefore, for a given melting
rate and extent of partial melting, mafic lithologies
tend to produce larger 230Th excesses than peridotites.
As discussed in the next section, this effect is
damped by the greater overall extents of partial melting
experienced by eclogites and pyroxenites relative to
peridotite.

4.2. Uranium series constraints on the role of garnet
pyroxenite in the generation of alkaline OIB

Ocean island basalt lavas are characterized by a broad
spectrum of trace element and isotopic compositions.
Zindler and Hart (1986) and others have identified a
variety of mantle components that mix to produce OIB
globally. These components consist of a depleted end
member, hypothesized to be the ambient depleted MORB
mantle (DMM), and several distinct enriched components
(EMI, EMII) characterized by time-integrated incompat-
ible trace element enrichment as evidenced by their long-
lived radiogenic isotopic signatures.

The lithologic identity of the enriched component in
the OIB source is hotly debated. Some studies suggest
that the enriched signal is produced by cryptically-
metasomatized ambient mantle peridotite (e.g. Work-
man et al., 2006), while others hypothesize that a mafic/
eclogitic source is responsible for this enrichment (e.g.
Hirschmann and Stolper, 1996: Sobolev, 2000; Hirsch-
mann ct al., 2003). Because U-Th elemental frac-
tionation is particularly sensitive to both mineral
composition and the modal abundance of Gt in a lava's
mantle source, measurements of (23 0

Th/2
38 U) disequili-

bria in OIBs provide an important means to address the
question of source lithology.

Previously, Stracke et al. (1999) suggested that, on
the basis of existing experimentally determined partition
coefficients for U and Th, partial melting of a mafic
mantle lithology (e.g. pyroxenite, eclogite) could not
generate significant degrees of 230 Th excess in lavas.
Their (23 0Th/ 238U) values for pyroxenite melting were
calculated using partitioning data from Hauri et al.
(1994) with bulk DT/Du = 0.96 for pyroxenite and 0.83
for eclogite. These bulk partition coefficients generate
only 5-20% 230

Th excess, whereas the Salters and
Longhi (1999) D values for U and Th used by Stracke
ct al. (1999) bulk Du/DTh~2) could generate up to

_ 100% 2 30Th excess during partial melting of perido-
tite. While their use of the Salters and Longhi
(1999) partition coefficients for peridotite could produce
the necessary large 2 30Th excesses, the Di

M in e
ra

/
Melt

values they used for pyroxenite from Hauri et al.
( 1994) came from experiments on near-liquidus basalt.
While the D ~Melt/DIfMlt ratio from these experi-
ments is comparable to pyroxenite (0.233 vs. 0.245), the
Dx/Melt/DC px

/
Melt ratio is significantly higher (1.13 +

0.03 vs. 0.88±0.05), leading to 23 0Th excesses that are
too small. Therefore, they are not applicable to such an
assessment.

The partition coefficients determined from our ex-
periments are specific to partial melting of garnet
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sU/232Th) vs. (23,Th/
2 32

Th) equiline diagram for upwelling rates of (a) 1 m/yr and (b) 1 cm/yr, showing chromatographic melting

trajectories with residual porosities of 0.5% and binary mixing trends described in Section 4.2 of the text and the Appendix A. The curves labeled

"Peridotite" and "Pyroxenite" show the progressive melting paths from each of those source lithologies, and the dark gray lines show mixing trends

between melts of peridotitic (blue) and pyroxenitic (red) source lithologies at melt fractions reflecting the different depths to the solidii and

productivities during upwelling. Tick or plus marks with labels show the fraction of pyroxenite in the binary pyroxenite-peridotite mixtures; note,

however, that the precise position of these ticks is dependent on our choice of endmember values. Data from OIB rocks from Hawaii (Cohen and

O'Nions, 1993; Sims et al., 1995; Cohen et al., 1996; Pickett and Murrell, 1997; Pietruszka, 1999; Sims et al., 1999), Samoa (Sims and Hart, 2006;

Sims et al., in press), the Canaries (Sigmarsson ct al., 1998; Lundstrom et al., 2003), the Azores (Turner et al., 1997; Widom et al., 1997; Claude-

Ivanaj et al., 2001; Bourdon et al., 2005), and the Comores (Bourdon et al., 1998; Claude-lvanaj et al., 1998) are plotted for comparison, together with

East Pacific Rise (EPR) and Siquieros data (Lundstrom et al., 1999; Sims et al., 1999). Also shown for comparison are light gray dashed lines with

labels indicating constant 
2 3

°Th excess. Note that because of the slopes of these lines, the enriched pyroxenitic source reaches higher values of 
2 3

Th

excess than the depleted peridotitic source.
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pyroxenite and thus provide an important test of its
effect on (230Th/23 8U) disequilibria formed during OIB
genesis. Here we use our partitioning data to evaluate
the role of mixing of peridotite and garnet pyroxenite
melts in generating the U-Th, Sm-Nd, and Nd isotope
systematics of OIB. In our calculations we consider the
differences in productivities (Hirschmann and Stolper,
1996) of these two lithologic end member components

(Fig. 5). Because of the short half-life of 230Th (75.4 ka)
relative to the timescales of melt generation and magma
transport we also consider the effects of 23 0Th ingrowth
during the melt generation process using an analytic
approximation (Sims et al., 1999) to the 1-dimensional
chromatographic melting model of Spiegelman and
Elliott (1993). The main parameters of our melting-
mixing models are: (1) DiMine ra /Melt values, (2) melt
fraction, (3) solid mantle upwelling rate, (4) porosity
of the melting region, and (5) mixing proportions
(a detailed description of our melting/mixing calcula-
tions can be found in the supplemental information).

In contrast with the results of Stracke et al. (1999),
calculations carried out using our new partition co-
efficients show that at the limit of melting (when F
approaches zero) a garnet pyroxenite source generates
slightly larger 230Th excesses (52%) than peridotite
melting (46%) using DT ncral/Melt and D Mineral/Melt

values from Salters et al. (2002) (see Table 2 in the
Appendix for DiMineral/Melt values and modes used). At
slower upwelling rates (1 cm/yr), (230 Th/2 38U) disequi-
libria are maintained or even enhanced over the duration
of upwelling because of 2 30Th ingrowth (Fig. 5b),
whereas for faster upwelling (1 m/yr), the degree of
melting exerts a stronger control over the amount of
disequilibria generated (Fig. 5a). Because of the larger
buoyancy flux beneath ocean islands like Hawaii, fast
upwelling is more appropriate, and indeed several
studies have now shown that U-Th disequilibria and
U-Pa disequilibria in places like Hawaii can be de-
scribed by time independent melting models (Sims
et al., 1995; Elliott, 1997; Sims et al., 1999; Bourdon
and Sims, 2003).

Using our understanding of relative melt productivities
for the two lithologies and conservative estimates for
productivity (Langmuir et al., 1992; Hirschmann and
Stolper, 1996; Hirschmann et al., 1999; Asimow et al.,
2001; Pertermann and Hirschmann, 2003), mixing trends
were calculated between melt fractions for pyroxenite and
peridotite that reflect the differences in onset of melting
and relative productivities. When the large productivity
predicted for mafic lithologies relative to peridotite is
taken into account, the resulting mixing lines, shown in
Fig. 5a, can explain a majority of the alkali OIB data (only

the Canaries and Comores data require greater disequili-
bria than are generated by our model). The most enriched
samples (i.e. Samoa) show small and uniform 2 30Th
excesses, while more depleted lavas (like MORB) have
large and highly variable 23 0Th excesses (e.g. Sims and
Hart, 2006). While, in principle, the alkaline 113 data in
Fig. 5 are consistent with partial melting of a mixed
pyroxenite-peridotite mantle source lithology, it is
important to note that the data could be equally well
explained by binary mixing of melts from two peridotite
sources with different isotopic and trace element sig-
natures (i.e. mixing of partial melts from a 'normal'
peridotitic source with those from a metasomatically
enriched peridotite source).

Comparison of U-Th disequilibria with other trace
element fractionations provides more definitive con-
straints on both melting processes and source litholo-
gies. In Fig. 6 we compare U-Th disequilibria with
the parameter caSm-Nd for several suites of oceanic
basalts (where aCSm-Nd=(Sm/Nd)lava/(Sm/Nd)source,

1.6,

0.9 1
0.3

Pyroxenite

0
K

0.4 0.5 0.6 0.7 0.8 0.9
SSmd

Fig. 6. aSm-Nd VS. (
2
30Th/ 2

38U) (a) batch (solid) and fractional
(dashed) melting trajectories for peridotite (blue line) and pyroxenite
(red line), with binary pcridotite-pyroxenite mixing trends shown as
thin solid black (for batch melting) and dotted black (fractional) lines.
Melt fractions for mixing are the same as in Fig. 5, as are symbols for
Hawaii (Cohen and O'Nions, 1993: Sims et al., 1995: Cohen ct al.,
1996; Pickett and Murrell, 1997; Pictruszka, 1999- Sims et al., 1999),
Samoa (Sims ct al., 1999: Sims and Hart, 2006; Sims et al., in press),
and MORB data (Lundstrom et al., 1999: Sims et al., 1999). Sm and
Nd Di

G
M

elt 
values are calculated as described in the text and

supplemental information. The significantly reduced number of data
points shown here relative to Fig. 5 reflects the smaller number of
samples for which comprehensive U-Th disequilibrium, Sm and Nd
concentration, and Nd isotope data sets exist.
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and (Sm/Nd),,,o,, is calculated using the sample's

143Nd/'44Nd ratio and a 1.8 Ga model age (see e.g.

DePaolo, 1988; Sims et al., 1995)). This approach has

been previously used to constrain melting processes in

Hawaii (Sims et al., 1995; Elliott, 1997; Sims et al.,

1999; Stracke et al., 1999), Samoa (Sims and Hart,

2006; Sims et al., in press), and the East Pacific Rise

(Sims et al., 2002). While our new data provide

constraints on U and Th partitioning, due to the

nucleation difficulties associated with Gt, our experi-

ments lack DiGarnet/Mel values for Sm and Nd. Thus,

in order to examine silica-poor garnet pyroxenite melt-

ing for these systems, we apply our measured DPCpx/Melt

values for Th, U, Sm, and Nd, while our measured DiG t
ieMe

values for Th and U are supplemented by D ,SMe

and DN/Me values calculated for our pyroxenitic Gt

compositions using the lattice strain model of van

Westrenen et al. (2001) and Draper and van Westrenen

(2007). Using these partitioning constraints and pub-

lished partitioning data for peridotite (Salters et al.,

2002), and applying them to forward batch and frac-

tional melting, we find that existing Hawaii and Samoa

data plot closer to the peridotite batch melting trend

than that for pyroxenite or to fractional melting trends

(Fig. 6). We also note, as has been found in previous

OIB studies (e.g. Sims et al., 1995; Elliott, 1997; Sims

et al., 1999), that the Hawaiian OIB data closely follow

a batch melting trend and that Th/U and Sm/Nd frac-

tionations are coupled, with the largest extents of Th/U

and Sm/Nd fractionation occurring in the alkali basalts

and basanites (inferred to be derived by low extents of

melting) and the least extents of Th/U and Sm/Nd

fractionation occurring in the tholeiites (inferred to be

the largest melt fractions). As discussed above, this is

because the inferred fast solid mantle upwelling rates

beneath Hawaii do not allow for significant 
23 0Th in-

growth in the melting column, and the range in

the extent of melting is large (i.e. from tholeiites to

basanites), such that the degree of melting exerts a

dominant control on the extent of fractionation for both

U-Th and Sm-Nd. Conversely, MORB data, shown for

comparison, do not lie on this trend (Fig. 6), having

much larger 23 0Th excesses for a given Sm/Nd, and here
230 Th ingrowth is inferred to be important because of

the slow upwelling rates beneath MOR.

It is generally assumed that mantle pyroxenite is

isotopically distinct and from a source characterized by a

long-term incompatible element enrichment. When com-

paring the Hawaiian lavas' Nd isotopic composition with

U-Th disequilibria and Sm/Nd fractionation, Stracke

et al. (1999) observed that trends formed by Hawaiian

lavas have an opposite slope from what would be
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expected from progressive melting and mixing of melts
from two different lithologies in a melting column. Using
our new pyroxenitic partition coefficients for U and Th
and the calculated values for Sm/Nd described above and
in the supplemental material, we find that our model
melting and mixing curves give results consistent with the
Stracke et al. (1999) predictions. As demonstrated in
Fig. 7, the O1B data fall along a trend counter to the
direction expected for progressive melting of a source
with a fixed quantity ofpyroxenite present. As proposed
by Stracke et al. (1999), melting a peridotite with enriched
signatures, and mixing those melts with melts of a
deleted, "normal" peridotite, is an alternative explanation
for the trends seen in the Hawaiian, Azores, and Samoan
data sets.

5. Conclusions

Previous experimental studies of U and Th par-
titioning have been conducted for peridotites, eclo-
gites, and basaltic melt compositions, and to this data
set we add new measurements for Cpx and Gt co-
existing in a silica-poor garnet pyroxenite melt. At
1420--1450 'C and 2.5 GPa, our starting composition

PX21, representing a 21% melt of the silica poor
garnet pyroxenite MIXIG after Hirschmann et al.
(2003), was found to have DMt/Dpx/Melt= 0. 8 2 ±
0.12 to 0.95±0.12 and D /Melt/DtMe lt = 0.25±0.04.

These new data provide a quantitative test for
viability of pyroxenite in the mantle source of OIB.
Taking into account depth to solidi and variable pro-
ductivities, we conclude that chromatographic and batch
melts of silica-poor garnet pyroxenite and ambient
peridotite can mix to generate most of the observed
2 3

8U--
2 3

°Th disequilibria. However, Hawaiian, Samoan,
and Azores lavas form trends in trace element
fractionation vs. radiogenic isotope space with slopes
counter to expected progressive melting trends, suggest-
ing that metasomatised peridotite could better explain
the inferred isotopic enrichment in the source of these
lavas. Further testing with new data from other ocean
island settings may help to further constrain the role of
garnet pyroxenite in global OIB production.
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Appendix A

In Section 4.2, we apply the chromatographic melting
model of Spiegelmnan and Elliott (1993) (Fig. 5). Calcula-
tions were carried out using our experimentally determined
partition coefficient values for garnet pyroxenite partial
melting (DCx/Met

= 0.015, DpxMeltf 0.017, DtMe-lt

0.0032, and D tMjlt -0.013) and partitioning data from
Salters and Longhi (1999) and Salters et al. (2002) for
peridotite partial melting (D!x/Mel -0.004, Dc px/Melt

0.003, DTMe t=0.017, D -t/MCI =0.038, D/clt--

0.0005, DM'
h

i=0.00005, Dx
l/Me =0.009, and Dq"Ox/M "

0.008, where 01 refers to olivine and Opx to ortho-
pyroxene; see Table 2 in the Appendix). We use a
porosity of 0.5% and endmember upwelling rates of
1 m/yr and 1 cm/yr to demonstrate the competing effects
of upwelling and degree of melting in generating
23

()Th 
2 3 U disequilibria, since ingrowth, in addition to

U Th fractionation, accounts for much of the disequli-
bria produced at low upwelling rates (Sims et al., 1995:
Elliott, 1997; Sims ct al., 1999; Bourdon et al., 2006).
To roughly allow for (1) the larger degrees of melting
achieved by pyroxenite and (2) melting to continue
slightly beyond the largest melt fractions in our binary
mixtures (see below), we assign maximum degrees of
melting of 0.1 for the peridotite and 0.2 for the
pyroxenite (as shown below. We chose peridotite
mineral modes of 8% Cpx, 12% Gt, 59% 01, and 21%
Opx (Table 2 in the Appendix), for parallel comparison
with relevant U-series studies such as S iis et al. ( 1995,
1999).

While other studies have placed eclogite and
pyroxenite solidi 12 -50 km deeper than the peridotite
solidus (Hirschmann and Stolper, 996; Perternmann and
Hirschmann, 2003; Kogiso ct al., 2004), Kogiso et al.
(2003) determined the MIXIG solidus to be less than
50 'C below the peridotite solidus, which, using typical
solidus slopes of 120 oC/GPa for both pyroxenite and
peridotite, places the MIX G solidus only 6.5 km below
the onset of peridotite melting.

We estimate that 40% Gt is present in pyroxenite at
3.4 GPa, or 106.5 km depth (6.5 km below the peridotite
solidus in a 100 km melting column; see Table 2 in the
Appendix for mineral modes) on the basis of previous
experimental results for the MIX Ig composition. Cal-
culations for pyroxenite mineral modes coexisting with
a 19% melt of MIXIg at 5 GPa show a significantly
greater abundance of Gt than Cpx (Kogiso et al., 2003).
Similar calculations for experiments from HIirschmann
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et al. (2003) demonstrate that almost no Gt is present

after 14% melting at 2 GPa. Mass balance calculations

for the remaining melt in these two experiments suggest

that at high pressure, almost 60% Gt is present on the

solidus, while at 2 GPa less than 10% is present.

We chose initial (
238

U/232
Th) and (2 30

Th/
232

Th)

ratios for the pyroxenite endmember component using

the non-linear regression of Samoan data in Sims and

Hart (2006); Samoan lavas have the most enriched

isotopic signatures and lowest (23 8U/2 32Th) of any OIB0

(0.6) (Sims and Hart, 2006; Sims et al., submitted for

publication), and the Sims and Hart (2006) regression

calculates Th/U=5.1-5.5 for the EM2 endmember

component. East Pacific Rise lavas represent some of

the most depleted MORB samples with the highest

(230Th/232Th) and (238U/232Th) ratios (Lundstrom et al.,
1999; Sims et al., 2002). Thus, for the peridotite end-

member we use data from the most extreme EPR sample

(with respect to ENd; (23 8U/2 32Th)= 1.6). All sources

begin in secular equilibrium.
Previous studies have observed that productivity is low

for at least the first 2-3% of melting above the solidus for

all compositions (Langmuir et al., 1992; Hirschmann and

Stolper, 1996; Hirschmann et al., 1999; Asimow et al.,
2001; Pertermann and Hirschmann, 2003). Productivity

then increases rapidly with increasing extent of partial

melting, until it reaches a maximum at the point of Cpx

exhaustion; once Cpx is absent, productivity drops abruptly

and climbs again slowly until another phase is exhausted,
though productivity is probably low enough after Cpx

exhaustion that melting does not proceed far beyond this

point. Calculated productivities from Hirschmann et al.

(1999) for fertile peridotite melting increase from -50/o/

GPa just above the solidus to - 24%/GPa at the point of

Cpx exhaustion (- 18% melting). Due to their different

solidi and melting intervals, pyroxenite experiences this

increase at a different rate during upwelling, causing the

pyroxenite to melt significantly more. Hirschmann and

Stolper (1996) estimated that peridotite initially melts at

0.4%/km and that pyroxenites melt 20-50% faster than

this, and diffusive heating below the peridotite solidus

generates an additional 0.6-3.9%/dkm (17-120%/GPa) of
melting for pyroxenites (Hirschmann and Stolper, 1996).

Based on studies by Pertermann and Hirschmann

(2003) and Kogiso et al. (2003), we estimate that a

MIXIG-type pyroxenite, which has a narrow melting

interval of -100 "C, would melt at a similar rate to

eclogite near its solidus (15%/GPa), and that diffusive
heating could conservatively add another 15%/GPa of
melting. Over 6.5 km ofupwelling, these productivities, if

constant, would generate 6% melting. Because MELTS
can overestimate melting (e.g. Hirschmann et al., 1999),

we use very conservative productivity estimates and sug-

gest that for the next 5 km productivity for the pyroxenite

is as low as 20%/GPa. Concurrently, the peridotite begins

melting with a near-solidus productivity of 5%/GPa

(Hirschmann et al., 1999); thus, after 5 more km of up-

welling, pyroxenite has experienced 10.8% melting and

peridotite 1.2%. After a further 5 km of upwelling, with a

higher pyroxenite productivity of 25%/GPa and peridotite

productivity of I 0%/GPa, the pyroxenite source has

melted 14.8% and the peridotite source 2.8%. Mixing

lines based on these calculations are shown and labeled

with the respective melt fractions of each mixing melt in

Figs. 5 7. Note that step-wise melting in this fashion

necessarily underestimates what are probably continu-

ously increasing productivities during upwelling, again

making these estimates conservative in terms of each

melting lithology's ability to fractionate trace elements

during upwelling and melting.
To test the agreement of the U-Th modeling with

other isotopic systems, we also applied batch, fractional,
and chromatographic melting models to aSm-Nd (where

aSm-Nd(SmNd)lava/(Sm/Nd)source, and (Sm/Nd)ource

is calculated using the sample's 143Nd/ 144Nd ratio and a

1.8 Ga model age) during melting of pyroxenite and

peridotite (Fig. 6). Partition coefficient data for Sm and

Nd are from Salters et al. (2002) for peridotite, and for

pyroxenite we use our measurements for Cpx partition-

ing and calculate Gt partition coefficients from van

Westrenen et al. (2001) and Draper and van Westrenen

(2007). We chose source Sm and Nd concentrations for

the depleted peridotite and enriched pyroxenite sources

from the Workman et al. (2004) and Workman and Hart

(2005) inversions for the DMM and EM2 endmembers,
respectively. Other parameters for melting and mixing

are the same as above. In Fig. 7, the same batch and

fractional melting and mixing trends for tOSm-Nd and

(230 Th/238 U) are plotted against ENd-

Appendix B. Supplementary data

Supplementary data associated with this article can

be found, in the online version, at doi:10.1016/j.

epsl.2007.10.034.
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CHAPTER 3:

MELT GENERATION AND MAGMA TRANSPORT RATES BENEATH THE

SLOW SPREADING KOLBEINSEY RIDGE DETERMINED FROM 2 38 U, 230Th,

AND 23'Pa EXCESSES

ABSTRACT

Here we report measurements of U-Th-Pa-Ra disequilibria, Hf, Sr, Nd, and Pb isotopes,

and trace-element compositions for 33 young (< 10 ka) mid-ocean ridge basalts (MORB)

from the slow-spreading Kolbeinsey Ridge north of Iceland (half-spreading rate = -0.9

cm/yr.; 67'05 ' - 70'26'N). The remaining basalts display both (230Th/238U) < 1 and

(230Th/238U) > 1, with (230Th/238U) ranging from 0.95 to 1.30. These are some of the most

U (as low as 11 ppb) and Th (as low as 35 ppb) depleted samples yet studied. With the

exception of the four northernmost Kolbeinsey samples, which display unique, enriched

radiogenic isotope signatures characteristic of the region near the Jan Mayen Fracture

Zone (e.g. mean ENd = +8.0 near Jan Mayen vs. +9.7 along the rest of the ridge),

Kolbeinsey Ridge samples lie in a narrow range of (23 0Th/232Th) (1.20 - 1.32) with a

correspondingly large range in (238U/ 232Th) (0.94 to 1.32). Thus, these data lie on a

horizontal array on a (230Th/232Th) vs. (238U/232Th) equiline diagram. However,

Kolbeinsey Ridge Nd, Sr, Hf, and Pb isotopic compositions are relatively depleted and

show a limited range (e.g. ENd = +8.4 - +10.5, 87Sr/86Sr = 0.70272 - 0.70301, EHf = +15.4 -

+19.6, and 2 8pb/206Pb = 2.043 - 2.095). Based on (234U/238U) ratios > 1.005, we exclude

12 of the samples because of potential post-depositional contamination by chemical

interaction with seawater. Our measurements show that samples with low (230Th/ 238U)

have high (234U/238 U), whereas Kolbeinsey MORB with (234U/238U) of unity have

universally high (230Th/238U). These high (230Th/238U) values can be generated in a long

melting column that initiates well within the garnet peridotite stability zone, producing



large 2"Th excesses in the melts and thick crust. Kolbeinsey lavas are almost uniformly

depleted in incompatible trace element abundances and ratios (e.g. average (La/Yb), =

0.41), and combined isotopic and trace element systematics (i.e. aSm-Nd > 1 for most of

the Kolbeinsey lavas indicates that their source Sm/Nd is younger than the assumed

average mantle 1.8 Ga model age) suggest a relatively young, depleted source.



3.1. INTRODUCTION

Uranium series isotopes measured in mid-ocean ridge basalts (MORB) record the

effects of melt production and magma transport rates in the upper mantle and lower crust.

The half-lives of 230Th (75 kyr.), 231Pa (32.5 kyr.), and 226Ra (1600 yr.) are particularly

relevant to the time-scales involved with melt generation and transport, so the 238U-230Th,
230 Th- 226Ra, 235U-231Pa systems can help constrain the timescales of melting processes such

as solid mantle upwelling rates, melt dispersivity, and melt-rock reaction. The 23 8U-2 30Th

system is particularly sensitive to source mineralogy: experimentally measured

mineral/melt partition coefficients indicate that (230Th/238U) > 1 requires melts to be

extracted either from deep, garnet (Gt) bearing lithologies, or possibly spinel peridotites

containing clinopyroxene (Cpx) with M2 site radii smaller than ~1.0 A (ELKINS et al.,

2008). Such Cpx, however, are unable to produce the large 230Th excesses frequently

observed in MORB, and they tend to occur naturally as deep, aluminous Cpx. (230 Th/ 238U)

< 1 indicates shallow spinel peridotite melting (BEATTIE, 1993a; BEATTIE, 1993b; ELKINS

et al., 2008; HAURI et al., 1994; LA TOURETTE and BURNETT, 1992; LA TOURETTE et al.,

1993; LANDWEHR et al., 2001; LUNDSTROM et al., 1994; SALTERS and LONGHI, 1999;

SALTERS et al., 2002; WOOD et al., 1999).

There have been few systematic geochemical studies of ridge segments that have

included complete major element, trace element, long-lived radiogenic isotopes, and U-

series data sets. There is such a data set for the Reykjanes Ridge south of Iceland

(MURTON et al., 2002; PEATE et al., 2001), but it lacks detailed geographic coverage. The

data that now exist for 9-10oN on the East Pacific Rise (EPR) are currently the most

detailed complete geochemical study of this type (SIMS et al., 2003; SIMs et al., 2002).

The EPR, however, is a fast-spreading ridge, such that it represents only one end-

member of the global spreading ridge system. There are not yet data of this kind of detail

for slow-spreading mid-ocean ridges (MOR). Such data are critical to test models for

melt generation. Furthermore, because very few MORB suites measured for U-series

disequilibria have also been measured for Hf, Nd, Sr, and Pb isotopic compositions, the



extent to which U-series disequilibria reflect variations in the melting process, as opposed

to variable mixing of melts from depleted and enriched mantle sources, is not well

constrained.

Here we present a detailed study of the slow-spreading Kolbeinsey ridge, to better

understand the differences between melting processes at variable spreading rates. We

present measurements of U-Th disequilibria in a suite of 33 samples from the shallow

(mean depth -~1100 km), slow-spreading (half spreading rate -0.9 cm/yr.; (MOSAR et al.,

2002)) Kolbeinsey Ridge. Many of the samples analyzed have been previously

characterized for Nd, Sr, Pb, and Hf isotopes and major and trace element compositions

(ANDRES et al., 2004; BLICHERT-TOFT et al., 2005; DEVEY et al., 1994; HAASE et al.,

2003; HANAN et al., 2000; MERTZ et al., 1991; MERTZ and HAASE, 1997; MICHAEL,

1995; MICHAEL et al., 1989; NEUMANN and SCHILLING, 1984; SCHILLING et al., 1999;

SCHILLING et al., 1983; SIGURDSSON, 1981; WAGGONER, 1989). For samples whose

major and trace-element abundances and Nd, Sr, Hf, and Pb isotopic compositions have

not previously determined or published, we have also measured these abundances and

isotopes. With our combined U-series, major and trace element, and radiogenic isotope

data, we investigate melt generation and transport processes beneath this very shallow

ridge. We test a suite of melting models to assess the extent to which U-series

disequilibria and other trace element fractionations are controlled by spreading rate and

contrasting melting behavior of heterogeneous sources. We find that Kolbeinsey Ridge

lavas have universally high 23 0Th excesses, indicating a long, deep melting column exists

beneath the ridge.

3.2. BACKGROUND

3.2.1. Geological Setting

The Kolbeinsey Ridge is a shallow, slow-spreading ridge extending northward

from the northern coast of Iceland at 66.50 N to the Jan Mayen Fracture Zone (FZ) at



71oN (Figure 1). The ridge is offset from the northeast Iceland volcanic province (i.e.
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Figure 1. (a) Map of the field area, showing the locations of all samples examined in this study,

with bathymetry from Smith and Sandwell (1997) and Jakobsson et al. (2008). (b) A depth profile

for the Reykjanes Ridge, Iceland, and the Kolbeinsey Ridge, with Kolbeinsey Ridge sample

locations as bold blue circles.



Krafla, Theistareikjir-Bunga) by the Tjornes FZ, and broken into two major segments

delineated by an overlapping spreading center. The southern segment extends from the

Tjornes FZ to the Spar FZ at 69N; the northern segment extends from the Spar FZ to the

Jan Mayen FZ. The northern Kolbeinsey Ridge segment is additionally offset by a minor

overlapping spreading center located at 7030'N (HAASE et al., 2003); the ridge segment

north of this small fracture zone is alternately referred to as the Eggvin Bank

(BRANDSDOTTIR et al., 2004; HOOFT et al., 2006).

Given the high sedimentation rate of the North Atlantic, the abundance of fresh

glasses dredged from the ridge axis suggests that it is presently active along most of its

length (DEVEY et al., 1994). The Kolbeinsey Ridge is one of the shallowest MOR ridges

and has an average depth of 1100 m (compared to 2500 m for the East Pacific Rise;

Figure lb). The ridge deepens northward from Iceland (~200 m) until it reaches its

maximum depth (~1500 m at 690N, just south of the Spar FZ). North of the Spar FZ the

central ridge shallows until it reaches the Eggvin bank, which is in places only 40 m

below sea level. Seismic studies (KODAIRA et al., 1997; MJELDE et al., 2008)) have

shown that the Kolbeinsey Ridge crustal section is 7-10 km thick, notably thicker than

the EPR (ca. 6-7 km).

The geographic coverage of the sample suite analyzed in this study encompasses

the entire Kolbeinsey Ridge, including the Tj6rnes FZ and Eggvin Bank (Figure 1, Table

1). These samples were collected by dredging on a number of research cruises funded by

the German Research Ministry, BMFT (F.S. Polarstern cruise ARK V/Ib, 1988; F.S.

Polarstern cruise ARK VII/1, 1990; F.S. Poseidon cruise 185, 1991; F.S. Poseidon cruise

210/1, 1995; F.S. Poseidon cruise 221, 1996; F.S. Poseidon cruise 229; F.S. Poseidon

cruise 291,2002; F.S. Poseidon cruise 326, 2005), and the R/V Trident leg 139 (1971).

3.2.2. Age Constraints

During the last glacial period (-~10 ka), high latitude regions, including Iceland

and the Kolbeinsey Ridge, were covered with ice. Shallower parts of the Kolbeinsey



Ridge (e.g. the northern part of the Eggvin Bank) were above sea level, which has risen

~121 m since the last glacial maximum (FAIRBANKS, 1989). Extensive glacial outwash

during subsequent deglaciation covered the ocean floor with a thick veneer of glacial

debris; this sediment layer thickens towards Iceland. Sedimentation rates have been

significant enough that in areas with volcanic morphological features visible in

bathymetric profiles, some sampling efforts have only retrieved sediment and ice-rafted

glacial debris, suggesting the volcanic features in those areas predate glaciation

(BAUMANN et al., 1993; HooFTr et al., 2006; LACKSCHEWITZ et al., 1994). Although

recent seismic surveys have not allowed for direct measurement of sediment thickness on

the Kolbeinsey Ridge, the extensive sediment deposited in basins near Iceland indicates

sedimentation has been significant. Measurements of sediment thicknesses in pull-apart

basins along the Tjornes FZ range from at least 100 m for the small Grimsey Graben (V.

Dekov, pers. communication) to up to 4 km in the 700 m deep Eyjafjardarall basin, the

southernmost expression of the Kolbeinsey Ridge (HooFTr et al., 2006).

Post-glacial volcanism (< 10 ka) along the ridge axis has 'punched through' this

outwash and produced a distinct neovolcanic zone. This is well illustrated in a high-

resolution multi-beam bathymetry of the Tjornes FZ and Southern Kolbeinsey Ridge

(BRANDSDOTTIR et al., 2004; HooFTr et al., 2006), which shows features such as moraines

and glacial sediment covering the ocean floor, with a well-developed neovolcanic zone in

the center of the ridge. Interpretation of U-Th and U-Pa disequilibria in terms of

magmatic processes requires the age of the samples to be much less than the half-life of

230Th (75 kyr.) and 231Pa (32.5 kyr.). That cruise dredges recovered basaltic glass, rather

than glacial outwash, constrains the ages of our samples to younger than 10 ka, which is

within the uncertainty of (23 0Th/23 8U) measurements (~1%).

We derive additional confirmation of our young lavas from sample POS210/1

702DS-1, for which we measured (226Ra/230Th) = 1.10 ± 3% (Table 2). 226Ra has a half-

life of 1600 years, so (226Ra/23 0Th) > 1 indicates that the sample must be younger than 8

ka. Thus even our deepest sample (dredged from 1520 m depth) is younger than the last

glacial maximum.



Table 1. List of samples measured for this study, with initial and final dredge locations, cruise legs, and brief sample descriptions from
cruise reports where available.

SamDle Location
(mCruise (m) Decito

Start
Lat.

VPar (ONI

End Start
Lat. Long.
(ON) (ON)

End

Long.
/oN)

Start

Depth

End

Depth

TRI0139-001-001G

POS185 1105B

POS185 1093

POS291 485-3

TRI0139-007-001G

POS326 540DS-4

POS291 495-2

POS185 1096A

POS185 1094B
TRI0139-006-002G
POLARK7-1-37DS-2
POLARK7-1-22DS-3
TRI0139-013-003G

Tjmrnes FZ RiV Trident 139

Tjrmes FZ R.V. Poseidon 185

S. Kolbeinsey R.V. Poseidon 185

S. Kolbeinsey R.V. Poseidon 291

S. Kolbeinsey R/V Trident 139

S. Kolbeinsey R.V. Poseidon 326

S. Kolbeinsey R.V. Poseidon 291

S. Kolbeinsey R.V. Poseidon 185

S. Kolbeinsey R.V. Poseidon 185
S. Kolbeinsey R/V Trident 139
S. Kolbeinsey Polarstern ARK VII/I
S. Kolbeinsey Polarstern ARK VII/I
S. Kolbeinsey R/V Trident 139

1971 66.5100 66.5100 -17.3400 -17.3400

1991 66.7527 66.7527 -18.0910 -18.0910

1991 66.8386 66.8386 -18.7070 -18.7070

2002 66.8987 66.8955

1971 66.9100 66.9100

2005 66.9567 66.9667

2002 66.9842 66.9842

-18.7480 -18.7455

-18.7700 -18.7700

-18.4077 -18.4062

-18.7320 -18.7225

1991 66.9990 66.9990 -18.7040

1991

1971
1990

1990

1971

67.0000

67.0100
67.0773
67.0957
67.3100

67.0000
67.0100
67.0773
67.0957
67.3100

-18.6645
-18.7100
-18.7470
-18.7388
-18.6600

-18.7040

-18.6645
-18.7100
-18.7470
-18.7388
-18.6600

72 72 Fresh basalt glass.
Vesicular, numerous

397 467 small plag.
phenocrysts, glass.

610 580 Glass.

460 451 5x5x5cm, fresh basalt
with glass.

405 405 Fresh basalt glass.
Lava fragment
8x6x4cm, glass crust
up to 1.5cm, no

131 186 alteration, porphyric,
plag. <21% up to
0.2cm, vesicles 30%
0.1-1cm.

384 333 8x8x5cm, fresh basalt
with glass.

346 298 Glassy basalt, small
vesicles.

285 270 Glass.
290 290 Fresh basalt glass.
170
110

250

170
110

250 Fresh basalt glass.

POS 229 304DS S. Kolbeinsey R.V. Poseidon 229 1997 67.4398 67.4414 -18.5727 -18.5517
Sheet flow, 10-15mm

307 323 glassy rim, 10% plag.-
phenos (1mm),
organic material

Crnife r\,,,,,~-~^~



Table 1. (cont.)

Sample
TRI0139-014-001G

POS 229 270DS

TRI0139-015-001G
TRI0139-016-001G

I ,ncatian

S. Kolbeinsey

Cruise

R/V Trident 139

Start
Lat.

Year (oN)
1971 67.4800

End
Lat.
(ON)

67.4800

S. Kolbeinsey R.V. Poseidon 229 1997 67.6275 67.6323

S. Kolbeinsey
S. Kolbeinsey

R/V Trident 139
R/V Trident 139

POS0002/2 Geo 212 * S. Kolbeinsey Polarstern ARK V/Ib

TRI0139-020-001G S. Kolbeinsey R/V Trident 139

POS221 596DS-1

POS221 605DS-2

S. Kolbeinsey R.V. Poseidon 221

S. Kolbeinsey R.V. Poseidon 221

POS210/1 682DS-1 N. Kolbeinsey R.V. Poseidon 210/1

POLARK7-1-21844
POLARK7-1-21847
POLARK7-1-21848
POLARK7-1-21850
POLARK7-1-21854

N. Kolbeinsey Polarstern ARK VII/I
N. Kolbeinsey Polarstern ARK VII/I
N. Kolbeinsey Polarstern ARK VII/I
N. Kolbeinsey Polarstem ARK VII/I

N. Kolbeinsey Polarstem ARK VII/I

POLARK7-1-21856-3 N. Kolbeinsey Polarstern ARK VII/I

1971 67.7100 67.7100
1971 67.9000 67.9000

1988 67.9250 67.9250

1971 68.3700 68.3700

1996 68.8715 68.8773

1996 68.9985 68.9850

1995 69.1392 69.1473

1990
1990
1990
1990
1990
1990

69.4650
69.6597
69.8088
70.1180
70.4432
70.6238

69.4650
69.6597
69.8088
70.1180
70.4432
70.6238

Start
Long.

(°N)
-18.6300

End
Long.

(ON)
-1.6300

-18.5345 -18.5228

-18.5400 -18.5400
-18.4100 -18.4100

-18.3623 -18.3623

-17.9900 -17.9900

-17.3625 -17.3667

-17.0768 -17.0470

-16.1813 -16.1787

-15.9903
-15.5388
-15.7008
-15.2967
-14.8063
-15.5263

-15.9903
-15.5388
-15.7008
-15.2967
-14.8063
-15.5263

POS210/1 700 DS-2 N. Kolbeinsey R.V. Poseidon 210/1 1995 70.8482 70.8475 -13.6415 -13.6617

Start
Depth

End
Depth

(m) (m) Description
390 390 Fresh basalt glass.

Pillow sector, 5mm
320 325 glass rim, aphyric,

few vesicles
402 402 Fresh basalt glass.
565 565 Fresh basalt glass.

Non-consolidated
hyaloclastite.

675 650 Fresh basalt glass.
Pillow, 5mm glass,

1350 1300 vesicles, rare Imm
plag. phenocrysts.
Pillow, 1cm glass, 2-

1500 1750 5mm vesicles, rare
plag. phenocrysts.
Basalt, glass rim

1100 1170 <0.5cm, few vesicles
<2mm, aphyric.

1226
983
1116
1346
1169
1001

1226
983
1116
1346
1169
1001

Homogeneous basalt,

1280 1350 thick glass rim, many
big vesicles (-~1cm),
aphyric.

Location Cruise Year VN) \I \ -



Table 1. (cont.)
End Start
Lat. Long.
(ON) (ON)

End
Long.

(ON)

Start
Depth

(m)

End
Depth

(m) Description

POS210/1 702 DS-1

POS210/1 698 DS-1

TRI0139-027-005G

N. Kolbeinsey R.V. Poseidon 210/1

N. Kolbeinsey R.V. Poseidon 210/1

N. Kolbeinsey R/V Trident 139

1995 70.7740 70.7725

1995 71.0615 71.0577

1971 71.3300 71.3300

-13.5778 -13.5832 1520

-13.1138 -13.1260 645

-12.6400 -12.6400 1205

Pillow, homogeneous,

1550 grey basalt, thick
glass rim, vesicles
(-1mm and more).

Sheet flow fragment,
fresh glass rim, >5%

650 vesicles (1mm), -5%
plag. phenocrysts
(<0.5cm), <1% ol.
phenocrysts (<3mm).

1205 Fresh basalt glass.

* Sample POS0002/2 Geo 212 recovered by box corer in 1988 (Mertz et al., 1991); no depths were recorded for this sample. All other samples recovered
by dredging.

Sample Location Cruise

Start
Lat.

Year (°N)_ __ __ __ __ __ __



3.23. Chemical and Isotopic Compositions

Many of the samples analyzed have been previously characterized for their Nd,

Sr, Pb, and Hf isotopic compositions and major- and trace-element abundances, including

isotope dilution measurements of Rb, Sr, Sm, Nd, U, Th, Pb, Lu, and Hf (ANDRES et al.,

2004; BLICHERT-TOFT et al., 2005; DEVEY et al., 1994; HAASE et al., 2003; HANAN et al.,

2000; MERTZ et al., 1991; MERTZ and HAASE, 1997; MICHAEL, 1995; MICHAEL et al.,

1989; NEUMANN and SCHILLING, 1984; SCHILLING et al., 1999; SCHILLING et al., 1983;

SIGURDSSON, 1981; WAGGONER, 1989).

The Kolbeinsey Ridge basalts are mafic quartz tholeiites (MgO = 6-10 wt. %;

(DEVEY et al., 1994)). Fractionation-corrected Na20O contents (Na8) are among the lowest

and fractionation corrected FeO contents (Fe8) among the highest found on the global

ridge system, indicating these MORB are the result of large degrees of melting and a

deep onset of melting (KLEIN and LANGMUIR, 1987). Compared to most other MORB,

the Kolbeinsey Ridge basalts are trace-element depleted (e.g. average (La/Yb)N = 0.41,

while average MORB = 1.03 (KELEMEN et al., 2004)).

Figure 2 shows variations in isotopic and trace element geochemical data from

the literature and this study, for the Reykjanes Ridge south of Iceland, Icelandic lavas,

and the Kolbeinsey Ridge. Isotopic studies by Mertz et al. (1991) and Mertz and Haase

(1997) demonstrated small but systematic variations in Sr and Nd isotopic compositions

along the Kolbeinsey Ridge (e.g. 87Sr/86Sr = 0.7027 - 0.7030). Mertz et al. (1991) also

found a decrease in trace element ratios (e.g. U/Pb) with approach to Iceland, indicating

that the most isotopically enriched samples (i.e. high 87Sr/86Sr, low 143Nd/144Nd) have the

most depleted chemical signatures. Although Sr and Nd isotopes point to a more enriched

source as one approaches Iceland, Mertz et al. (1991) argued, based on constant

206pb/204pb isotope ratios, that the Iceland plume component is not involved in Kolbeinsey

Ridge magmatism. More recently, Schilling et al. (1999) argued otherwise and

documented gradients in He, Pb, Sr, and Nd isotopes and trace-element characteristics

(e.g. Th/U) across the Tjirnes FZ and southern Kolbeinsey Ridge that they interpret as
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Figure 2. Trace element ratios and long-lived radiogenic isotopic ratios for the Kolbeinsey Ridge,

plotted vs. latitude for the Reykjanes Ridge, Iceland, and the Kolbeinsey Ridge. Literature data

shown as small black data points (BLICHERT-TOFT et al., 2005; COHEN et al., 1980;

CONDOMINES et al., 1981; DEVEY et al., 1994; DUPRE and ALLEGRE, 1980; FURMAN et al., 1991;

HAASE et al., 2003; HANAN et al., 2000; HARDARSON and FITTON, 1997; HARDS et al., 1995;

HEMOND et al., 1993; HILTON et al., 2000; MERTZ et al., 1991; MERTZ and HAASE, 1997;

MURTON et al., 2002; NEUMANN and SCHILLING, 1984; O'NIONS and PANKHURS.RJ, 1973;

PEATE et al., 2001; POREDA et al., 1986; SALTERS and WHITE, 1998; SCHILLING, 1975;

SCHILLING et al., 1999; SCHILLING et al., 1983; STECHER et al., 1999; STRACKE et al., 2006;

STRACKE et al., 2003a; STRACKE et al., 2003b; SUN and JAHN, 1975; THIRLWALL et al., 2004),

and new data from this study are shown as dark blue circles.

mapping the northward dispersion of the Iceland Plume.

Blichert-Toft et al. (2005) analyzed many of the samples in our data set for high-

precision Pb and Hf isotope ratios (notably most dredge samples collected on the R/V

Trident (1971) and R/V Endeavour (1973) cruise legs), providing new insight into the

formation of these lavas. Principal component analysis of the 206pb/2 4mPb, 207Pb/2°Pb, and
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208Pb/204pb isotopic variation along this ridge suggested that Kolbeinsey Ridge lavas

formed as a result of mixing between a "FOZO"-like component (HART et al., 1992) and

a "depleted MORB mantle" (DMM) component (BLICHERT-TOFT et al., 2005).

Kolbeinsey Ridge MORB north of ~70.6oN have more enriched radiogenic

isotopic compositions than other Kolbeinsey Ridge lavas (MERTZ et al., 2004). Sr, Nd,

Hf, and Pb isotopes reach their most enriched values on the Jan Mayen rise, and then

systematically grow less enriched away from the Jan Mayen FZ along the Mohns Ridge

to the north. Schilling et al. (1999) and others (e.g. (NEUMANN and SCHILLING, 1984))

suggested that the isotope signatures are the result of a laterally dispersing mantle plume

beneath the Jan Mayen region, while others have suggested cool edge effects or trapped

subcontinental material in the mantle beneath Jan Mayen (MERTZ et al., 2004; TRONNES

et al., 1999).

33. RESULTS

33.1. U-Series Disequilibria in Kolbeinsey Ridge Basalts

Uranium-series isotopes were measured by thermal ionization mass spectrometry

(TIMS) at Los Alamos National Laboratory (LANL), New Mexico using methods

described in Sims et al. (1999a; 1995) and Goldstein et al. (1989) and at Faculteit der

Aardenschappen, Vrije Universiteit, Amsterdam using methods described in Frujiter et al.

(FRUJITER et al., 2000) , and by Plasma Ionization Multi-collector Mass Spectrometry

(PIMMS) at the Woods Hole Oceanographic Institution (WHOI) in Woods Hole, MA

(methods as in Sims et al. (2008b) and Ball et al. (2008)), and the University of Bristol in

Bristol, UK (methods as described in Hoffman et al. (2007); Regelous et al. (2004),

Prytulak et al. (2008), and Sims et al. (2008b)). Neodymium and Hf isotopes were

measured by PIMMS at l'cole Normale Sup6rieure (I'ENS) de Lyon (methods as in

Blichert-Toft et al. (2001)), and Sr and Pb isotopes were analyzed by PIMMS at WHOI

(SIMS and HART, 2006; TARAS and HART, 1987; TODT et al., 1996; WHITE et al., 2000).



Replicates for U and Th concentrations and isotopes between labs were overall in very

good agreement, which is consistent with the interlab comparison of standard analyses

evaluated in Sims et al. (2008a).

3.3.1.1. 238U-234

All U-series analysis results are reported in Table 2. We measured (234U/23 8U)

wherever possible to evaluate sample contamination. All samples used in this study were

handpicked glasses; (23 4U/2 38U) measurements were possible for all but a few samples, as

shown in Table 2. ((234 U/23 8U) data do not exist for the early data set from Amsterdam, or

for a sample that did not run successfully at WHOI.) For submarine basalts, (234
U/238U)

activity ratios are a sensitive indicator of secondary processes such as alteration, as

seawater is significantly enriched in 234U relative to 238U ((234 U/2 38U)sw = 1.14;

(HENDERSON et al., 1993; Ku et al., 1977; ROBINSON et al., 2004)). Although all

measured samples are reported in Tables 2 and 3, when evaluating the chemical and

isotopic systematics of Kolbeinsey lavas we only considered samples with (2 34U/ 23 8U)

activity ratios = 1.000 ± 0.005, which indicates minimal post-eruption alteration within

our analytical detection capabilities. Based on this criterion, we reject 12 samples from

further consideration in terms of primary melting processes.

In Figure 3b we show results for (238U/23 2Th) vs. (23 0Th/232Th) in our data set,

distinguished based on (234U/ 23 8U) results ((230Th/238U) data are presented in more detail

below in Section 3.3.1.2). Figure 4a shows (2 30Th/23 8U) disequilibria for Kolbeinsey rocks

plotted against (234U/238U), and suggests that there is a systematic relationship between the

degree of seawater contamination and measured 23 0Th- 23 8U disequilibrium.

3.3.1.2. 238 U-230Th
238U- 230Th results are presented in Table 2, Figure 3, and Figure 5. Many

Kolbeinsey Ridge samples have extremely low concentrations of U and Th (Th

concentrations as low as 33 ppb, and U concentrations down to 11 ppb), making even

large samples (> 2 grams) difficult to analyze by TIMS (because of the low ionization



Table 2. Measured radiogenic isotope data for those samples in our sample suite for which there were not previous literature analyses, including

new cruise samples (POS 326).
Sample
POS185 1105B
POS185 1093
POS291 485-3
POS326 540DS-4
POS291 495-2
POS185 1096A
POS185 1094B
POS0002/2 Geo 212
POS221 596DS-1
POS221 605DS-2
POS210/1 682DS-1
POLARK7-1-21844
POLARK7-1-21847
POLARK7-1-21848
POLARK7-1-21850
POLARK7-1-21854
POLARK7-1-21856-3
POS210/1 702 DS-1
POS210/1 700 DS-2
POS210/1 698 DS-1

Location
Tj6mes FZ

S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey

Latitude (N)
66.7527
66.8386
66.8987
66.9567
66.9842
66.9990
67.0000
67.9250
68.8715
68.9985
69.1392
69.4650
69.6597
69.8088
70.1180
70.4432
70.6238

70.7733
70.8480
71.0620

Longitude (E)

-18.0910
-18.7070

-18.7480
-18.4077

-18.7320
-18.7040
-18.6645

-18.3623
-17.3625
-17.0768
-16.1813
-15.9903
-15.5388

-15.7008
-15.2967
-14.8063
-15.5263

-13.5800
-13.6500
-13.1200

a 1
76Hf/177Hf and 1

43Nd/144Nd measured by PIMMS at 'Ecole Normale Supdrieure de Lyon, and are normalized relative to 179Hf/177Hf = 0.7325 and
146Nd/144Nd = 0.7219, respectively. 176Hf/' 77Hf of JMC-475 Hf standard = 0.282160 ± 0.000010. Uncertainties are 20 standard errors.

b 
143Nd/144Nd for samples POS185 1096A, POS185 1904B, and POS210/1 682DS-1 measured by PIMMS (ThermoFinnigan Neptune) at WHOI and

are normalized relative to 0.7219. '43Nd/'"44Nd of La Jolla Nd standard = 0.511847.
c 

87 Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/2 4pb measured by PIMMS (ThermoFinnigan Neptune) at WHOI. Sr standard NBS987 87Sr/86Sr

0.710240. Pb standard NBS981 2 06Pb/204Pb = 16.9356, 207Pb/204Pb = 15.4891, and 208Pb/204Pb = 36.7006.

SUncertainties are 20 standard errors for all isotopic analyses.

Depth (m)

397
610
460
131
384
346
285

1350
1500
1100
1226
983
1116
1346
1169
1001
1520
1280
645

143 Nd/4Nda

0.513108
0.513096

0.513121
0.513142
0.51314

0.513143b

0.513096b

0.513133
0.513162
0.51316
0.513159 b

0.513136
0.513102

0.513142
0.51318
0.513146
0.513139

0.513053
0.513014

0.000007

0.000007
0.000005
0.000009
0.000008
0.0000108
0.000008
0.000006
0.000005
0.000006
0.000007
0.000009
0.000009
0.000005
0.000005
0.0000105
0.000005
0.000005
0.000007
0.000004

eNd

9.17
8.93
9.42
9.83
9.71
9.85
8.93
9.66
10.22
10.18
10.16
9.71
9.05
9.83
10.49
9.91
9.77
8.10
7.33



Table 2. (cont.)

Sample
POS185 1105B
POS185 1093
POS291 485-3
POS326 540DS-4
POS291 495-2
POS185 1096A
POS185 1094B
POS0002/2 Geo 212
POS221 596DS-1
POS221 605DS-2
POS210/1 682DS-1
POLARK7-1-21844
POLARK7-1-21847
POLARK7-1-21848
POLARK7-1-21850
POLARK7-1-21854
POLARK7-1-21856-3
POS210/1 702 DS-1
POS210/1 700 DS-2
POS210/1 698 DS-1

176Hf/177Hr

0.283282
0.283281

0.28321
0.28327
0.28328

0.283280
0.28328

0.283287

0.283303
0.28331
0.283314
0.283302

0.283261
0.283297

0.28332
0.283293
0.283279
0.28323

0.283195

0.283205

eH 87Sr/86Src' 2o6Pb/204Pbc

0.000006
0.000004
0.00004
0.00002
0.00001

0.000003
0.000005
0.000005
0.000007
0.00001
0.000005
0.000006
0.000005
0.000005
0.00002
0.000004
0.000007
0.00001
0.000009
0.000008
0.000008

18.04
18.00
15.42
17.61
17.97
17.96
17.97
18.21
18.78
18.86
19.17
18.74
17.29
18.57
19.24
18.42
17.93
16.02
14.96
15.31

0.702893

0.702938
0.702737

0.702701

± 2o 7pb/204pbe

18.0423 0.0003 15.4338 0.0003 37.7547 0.0006

18.062 0.002 15.441 0.002 37.805 0.005

17.9394 0.0003 15.4150 0.0003 37.5584 0.0009

- 208b/204Pbe



Table 3. Measured U, Th, and Pa isotopic data from the Kolbeinsey Ridge.
(

2 3 4
U)/

Sample
TRI0139-001-001G a

POS185 1105B b

POS185 1093 a

TRI0139-007-001G a*

POS326 540DS-4 b

POS291 495-2 b

POS185 1096Ab

POS185 1094B b

TRI0139-006-002G a,b*

POLARK7-1-37DS-2 "
POLARK7-1-22DS-3 c

TRI0139-013-003G b

POS 229 304DS c

TRI0139-014-001G b

POS 229 270DS c

TRI0139-015-001G a,b*

TRI0139-016-001G b

POS0002/2 Geo 212 b

TRI0139-020-001G a*

POS221 596DS-1 b

POS221 605DS-2 b

POS210/1 682DS-1 b

POLARK7-1-21844 b

POLARK7-1-21847 a,b,d*

POLARK7-1-21848 d

POLARK7-1-21850 d

POLARK7-1-21854 d

POS210/1 702 DS-1 b§

POS210/1 700 DS-2 a*

POS210/1 698 DS-1 a

-- (,16

2

('38U)

1.001
1.020
1.000
1.012
1.031
1.002
1.004
1.003
1.010

(%)
0.3
0.1
0.2
0.2
0.2
0.1
0.1
0.1
0.2

Th

(ppm)
0.034
0.033
0.110
0.152
0.075
0.136
0.161
0.103
0.127
0.061
0.093
0.102
0.111
0.176
0.126
0.093
0.118
0.114
0.249
0.207
0.208
0.107
0.046
0.034
0.075
0.077
0.061
0.358
0.850
0.915

U

(ppm)
0.011
0.014
0.034
0.051
0.032
0.045
0.053
0.034
0.041
0.020
0.041
0.035
0.040
0.068
0.043
0.031
0.039
0.039
0.086
0.070
0.073
0.036
0.018
0.013
0.028
0.025
0.026
0.104
0.225
0.242

Pa (230Th)/
(fg/g) (238U)

1.26
0.997

27.7 1.275
36.3 1.215

0.988
1.209
1.253
1.197

32.6 1.236
0.984
0.960
1.223
1.172
1.070
1.239

24.7 1.165
1.228
1.216

64.0 1.256
1.190
1.168
1.296
0.978

13.0 1.003
1.104
1.243
0.951
1.235

90.1 1.181
1.205

(%)
16.2**

2.1
2.0
1.3
2.0
2.2
1.9
2.0
3.7
2.8
2.8
2.5
2.8
1.9
2.8
3.4
1.9
1.9
1.1
2.2
2.0
1.9
2.0
3.4
2.8
2.8
2.8
2.2
0.9
0.5

(
2 3 8

U)/

(232
Th)

1.00
1.274
0.942
1.033
1.292
1.002
0.991
0.999
0.994
1.266
1.322
1.033
1.103
1.170
1.038
1.010
1.001
1.032
1.055
1.031
1.073
1.022
1.146
1.213
1.146
1.003
1.306
0.883
0.810
0.809

16

(230Th)/
%) (232Th)

.3** 1.25
1.9 1.270
2.2 1.202
1.5 1.255
1.9 1.276
2.1 1.212
1.9 1.242
2.0 1.196
3.7 1.229
2.0 1.245
2.0 1.268
2.5 1.263
2.0 1.293
1.9 1.251
2.0 1.287
2.7 1.197
1.9 1.228
1.9 1.255
1.2 1.324
2.2 1.226
2.0 1.253
0.0 1.324
1.9 1.121
4.0 1.243
2.0 1.265
2.0 1.247
2.0 1.242
2.2 1.090
1.1 0.957
0.6 0.975

(%)
16.2**

2.0
2.0
1.3
0.5
0.3
0.2
0.4
3.5
2.0
2.0
0.2
2.0
0.2
2.0
2.9
0.2
0.2
1.1
0.2
0.3
0.0
2.0
3.5
2.0
2.0
2.0
0.2
0.8
0.5

(23) (%) (238U)
1.264
1.186

2.495 0.8 1.273
2.177 0.7 1.323

1.280
1.228
1.294
1.230

2.392 0.5 1.307

1.268

1.334

2.479 0.8 1.214
1.317
1.271

2.263 0.6 1.305
1.275
1.290
1.312
1.149

3.100 1.3 1.150

1.267
1.222 0.6 1.186

1.275

0.3
0.1
0.1
0.3
0.1
0.1
0.2
0.2
0.4

0.1
0.3
0.2

1.005 0.1

1.028 0.2

1.005
1.010
1.006
1.005
1.009
1.013
1.002
1.018
1.016

1.003
1.001
1.007

(231 pa)/ (230Th)/



Table 3. (cont.)
Th U Pa (23 Th)/ + (2 38U)/ - (23 Th)/ - (234U) /  (231pa)/ (23OTh)/

Sample (ppm) (ppm) (fg/g) (2 3 8
U) (%) (

23 2 Th) (%) (23 2 Th) (%) (2 3 8
U) (%) (2 3 5U) (%) (

2 3 8
U)c:

TRI0139-027-005G b 2.398 0.656 1.179 1.9 0.830 1.9 0.979 0.2 1.004 0.1 1.219

Standards measured as unknowns:
ATh-O 09/06 b 7.532 2.351 1.075 2.1 0.947 2.1 1.018 0.1 1.006 0.05
ATh-O 10/07 b 7.385 2.302 1.076 2.5 0.946 2.5 1.017 0.1 1.002 0.1
BHVO-1 09/06 b 1.207 0.434 0.991 1.9 1.092 1.9 1.081 0.1 1.003 0.1
W-2 09/06 b 2.157 0.510 0.983 1.9 0.717 1.9 0.705 0.1 1.005 0.1
BCR-1 0 3 /0 8 b 5.665 1.683 0.981 2.0 0.901 2.0 0.884 0.1 1.004 0.1
TML 03/08 b 29.789 10.505 1.000 2.1 1.070 2.1 1.070 0.1 1.003 0.04

a Sample or standard analyzed for U, Th, and/or Pa concentrations and isotopes by PIMMS (ThermoFinnigan Neptune) at the University of
Bristol, Bristol, UK.

b Sample or standard analyzed for U, Th, and/or Ra concentrations and isotopes by PIMMS (ThermoFinnigan Element2 and Neptune) at the
Woods Hole Oceanographic Inst. (WHOI), Woods Hole, MA.

c Sample analyzed for U and Th concentrations and isotopes analyzed at Amsterdam.
d Sample analyzed for U and Th concentrations and isotopes by N-TIMS at Los Alamos National Laboratory (LANL), Los Alamos, NM.
* Average of two or more analyses.

Uncertainy reported is percent two-sigma standard error for single analyses, and propagated percent 2s standard errors for replicate analyses.
** U and Th isotope measurements for sample TRIO 139-001-001G have very large uncertainties because of its unexpectedly, extremely low

U and Th concentrations. We report the data but do not include this sample in figures.
Sample POS210/1 702 DS-1 has measured (226Ra/230Th) = 1.10 ± 3%.

(230Th/ 238U)c indicates linearly corrected (230Th/2 38U) values to (234U/238U) = 1.00, indicating minimal seawater alteration, as described in the text.
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Figure 3. (23 0Th/232Th) versus (2 38 U/23 2Th) "equiline" diagram for measured basalts from
Kolbeinsey Ridge, with the exception of sample TR139 ID-Ig (( 2 38U/2 32Th) = 1.00, ( 23 0Th/232Th)
= 1.25), because its large error bars make it difficult to view the rest of the data. For comparison
we show (a) fields for global MORB data in blue (BOURDON et al., 1996a; GOLDSTEIN et al.,
1989; GOLDSTEIN et al., 1992; GOLDSTEIN et al., 1993; LUNDSTROM et al., 1999; PEATE et al.,
2001; SIMS et al., 1995; SIMS et al., 2002; STURM et al., 2000; TEPLEY et al., 2004), global ocean
island basalt (OIB) data in red (except for Iceland) (BOURDON et al., 1998; CLAUDE-IVANAJ et
al., 1998; CLAUDE-IVANAJ et al., 2001; PIETRUSZKA et al., 2001; SIGMARSSON et al., 1998; SIMS
et al., 1999a; SIMS et al., 1995; SIMS and HART, 2006; SIMS et al., 2008b; TURNER et al., 1997;
WIDOM et al., 1997), and Icelandic data in gray (KOKFELT et al., 2003; STRACKE et al., 2003a;
STRACKE et al., 2003b), (b) the same data, broken down by determination of seawater alteration
from measurements of (234 U/ 238 U), and (c) a field for global OIB data, with individual data points
for Iceland and global MORB. The Kolbeinsey Ridge data form a horizontal array that overlaps
with Icelandic samples at the high (23

°Th/
238U) end and extends to (230 Th/238U) < 1.
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Figure 4. (a) (234U/238U) vs. (23 0Th/ 23 8U) for Kolbeinsey Ridge samples. Blue shaded regions are
considered in equilibrium within analytical capabilities. The dotted black line shows a mixing
trajectory between the average, unaltered Kolbeinsey Ridge sample and seawater with (230Th/ 23 8U)
= 1.0 and (2

34U/
238U) = 1.14, as described in the text. A simple linear fit to the Kolbeinsey data, as

described in the text, is shown with a widely dashed line. (b) (234U/ 238U) vs. 87Sr/86Sr, showing

samples from this study. The black square data point represents seawater, using isotopic
compositions from Faure and Mensing (2005). The heavy black line shows a mixing trajectory
between sample 1093 (the Kolbeinsey sample with (2 3 4U/ 2 3 8U) nearest to equilibrium) and
seawater. U and Sr concentrations in seawater also from Faure and Mensing (2005).



Reykjanes R. Iceland KolbeinSey R. Reykjanes R. Iceland Kolbeinsey R.1.4 1.4

1.3 O O0 1.3 0

C O 1.2

1.0 * • o 1.1 * * ,

08 0.9

56 58 60 62 64 66 68 70 56 58 60 62 64 66 68 70
1.6

0,8- - --

1.6
1.0 4 --- - - - --- -b - - 1.5

0.8 1

56 58 60 62 64 66 68 70 56 58 60 62 64 66 68 70

Latitude (oN) Latitude (ON)

Figure 5. Uranium-series isotopes vs. latitude for the Reykjanes Ridge (PEATE et al., 2001),
Iceland (KOKFELT et al., 2003; STRACKE et al., 2006; STRACKE et al., 2003a; STRACKE et al.,
2003b), and the Kolbeinsey Ridge (this study); symbols as in Figure 2, with samples potentially
altered by seawater as open circles (Section 3.3.1.1). (230Th/232Th) isotope ratios vary slightly
along the ridge and overall mimic or mirror radiogenic isotope ratios as seen in Figure 2, while
(230Th/238U) and ( 238U/2 32Th) vary widely but not systematically along the ridge. (2 3 1pa/235U)> 1
along the entire ridge.

efficiency of Th with TIMS). The similarity of replicate analyses from different facilities

and using different mass spectrometry techniques provides confidence in the reliability of

our analyses.

The four northernmost, unaltered Kolbeinsey Ridge samples (70.70N - 71.3 0N)

have enriched long-lived radiogenic isotope signatures that increase northward towards

the Jan Mayen FZ, in keeping with literature observations (Figure 2; (BLICHERT-TOFr et

al., 2005; HAASE et al., 2003; MERTZ et al., 2004; SCHILLING et al., 1999; TRONNES et al.,

1999). All of these northernmost samples also have more enriched U/Th and (2 38U/ 23 2 Th)

ratios than we observe along the rest of the Kolbeinsey consistent with their enriched

isotopic signatures (e.g. mean ENd = +8.0 near Jan Mayen vs. +9.7 along the rest of the

ridge). Because they record the effects of different melting processes and/or mantle



source compositions from the rest of the Kolbeinsey Ridge, we exclude them from the

modeling described below for the purpose of focusing on how the majority of Kolbeinsey

lavas formed.

(23 Th/2 32Th) activities for all other Kolbeinsey Ridge basalts are essentially

constant (1.20 - 1.32), but there is a large range in (2 38U/232Th) activities (0.94 - 1.32),

such that these data lie on a sub-horizontal array on a (23 0 Th/232 Th)-( 238U/ 23 2Th) "equiline"

plot (Figure 3). The Kolbeinsey Ridge basalts show both 238U excesses ((230Th/238U) < 1)

and 230Th excesses ((230Th 238U) > 1), with a full range of (2 30Th/ 23 8U) from 0.95 - 1.30.

However, as shown in Figure 4a and described in Section 3.3.1.1, samples with 238U

excesses are affected by secondary processes, and thus we infer that the horizontal array

shown in Figure 3reflects shallow alteration of those samples with 238U excess.

3.3.1.3. 235U-231 pa

23 5U-23 1pa data are also reported in Table 2; there are five (231pa/ 235U)

measurements in unaltered Kolbeinsey samples, one of which is from the more

isotopically enriched region near the Jan Mayen FZ. In all samples (23 1pa/2 35U) > 1

(Figure 5), consistent with other studies of OIB and MORB studies (LUNDSTROM, 2003;

LUNDSTROM et al., 1998; PICKETT and MURRELL, 1997; SIMS et al., 1999a; SIMs et al.,

2002; SIMS et al., 2008b).

33.2. Radiogenic Isotope Results

Sr, Nd, Hf, and Pb isotope results for Kolbeinsey Ridge samples are shown in

Table 3, Figure 2, and Figure 6. Results from our study are in good agreement with

previous measurements from the literature, which are described above in Section 3.2. As

shown in Figure 2, radiogenic isotopic ratios for Kolbeinsey samples south of 70.6 ON

are depleted (e.g. ENd = +7.33 - +8.10, 87Sr/86Sr = 0.70272 - 0.70301), while samples

north of 70.6oN have more enriched isotopic values (ENd = +8.43 - +10.49, 87Sr/86Sr =



0.70306 - 0.70309). This is in keeping with observations from previous studies (e.g.

(MERTZ et al., 2004); Section 3.1.2).

3.4. DISCUSSION

3.4.1. Shallow Alteration

The Kolbeinsey Ridge lavas represent a unique end member among global

MORB for the combination of their relative isotopic depletion (BLICHERT-TOFT et al.,

2005; HAASE et al., 2003; MERTZ et al., 1991; MERTZ and HAASE, 1997; SCHILLING et al.,

1999), large melt fractions (e.g. low Na8; (KLEIN and LANGMUIR, 1987)), and very

shallow ridge axis (KLEIN and LANGMUIR, 1987). In order to constrain how MORB are

generated globally, it is of critical importance to understand processes at end member

locations like the Kolbeinsey.

As described in Section 3.3.1, measured Kolbeinsey samples' (234U/238U) and

(230Th/238U) vary systematically in Figure 4a, suggesting a systematic relationship due to

secondary processes, such as seawater-rock interaction. (We note that there are also a

number of samples with 238U excesses for which (2 34U/238U) was not measured, but given

the observed relationship between (234U/2 38U) and (230Th/ 238U) it is likely that these

samples have also experienced chemical exchange with seawater.) In Figure 4a, we show

a calculated mixing trajectory for a possible closed-system mixing trend between a

Kolbeinsey sample with (2 34U/238U) in equilibrium (sample 1093) and hypothesized

seawater ((23 4U/23 8U) = 1.14, (230Th/ 238U) = 1.0). Such a trajectory must be a straight line

in Figure 4a (as the denominator is the same in both indices), so it cannot fit the

Kolbeinsey Ridge data. It is very likely, however, that such surface alteration is instead

an open-system process. A number of studies have indicated that surface alteration of

basalt by seawater results in addition of U to altered glass (KROLIKOWSKA-CIAGLO et al.,

2007), such that extensive alteration leads to a significant decrease in ThU ratios

(VERMA, 1992). However, recent preliminary results suggest that during minor alteration,



there is a complex exchange of U between seawater and MORB glass, such that

(23 4U/ 238U) does not always correlate with U concentrations (GLASS et al., 2005). Thus U

concentration cannot be predicted as a function of (234U/238U), and likewise U isotopes

cannot be predicted based on U concentration. Likewise, in Figure 4b, we show

(234U/238U) vs. 8 7Sr/86Sr for the samples as well as seawater, with a calculated mixing

trajectory between unaltered Kolbeinsey samples and seawater. In this case, the samples'

Sr isotope compositions barely vary with increasing alteration as indicated by U isotopes,

corroborating the observation that exchange between seawater and MORB glass is a

complex process.

Nonetheless, for the relatively small change in (23 4U/238U) seen in our samples, we

can approximate a linear alteration path. A simple linear fit to the Kolbeinsey Ridge data

follows a slope of -9.4 + 0.5, excluding samples north of 70.60N on the ridge (including

those samples results in a slightly different slope of -7.7 ± 0.5). In Table 3 we calculate

(23 0
Th/

2 38U) values for all samples, corrected back to a (234U/ 238U) value of 1.0. Corrected

(230Th/238U) values span a range of 1.149-1.334, which is similar to the range of

uncertainty among samples within analytical uncertainty of secular equilibrium for

(234U/ 23 8U) (i.e. samples with 234 U/23 8U = 1.00 ± 0.05 have (2
30Th/

238U) of 1.17-1.296).

Samples with no (234U/ 238U) measured, if assumed to lie on the best linear fit to the data

(Figure 4a), should have corrected (230Th/ 23 8U) = 1.28 ± 0.54 when (2 34 U/23 8 U) = 1.0.

This suggests that Kolbeinsey MORB in fact have universally high (230Th/ 238U)

values upon eruption, and that the measured 238U excesses result from shallow crustal

alteration. This is plausible, considering the thick crust along the Kolbeinsey Ridge and

the depleted, easily contaminated nature of these MORB. However, without direct

analysis of (234U/ 238U) on those samples, the array described in Section 3.3.2 might reflect

primary melting processes and needs to be considered further. In the following section we

consider how such an array may be explained using various forward melting model

calculations.



3.42. Modeling the Horizontal Kolbeinsey Array

If it in fact reflects primary melt composition, we have measured a very striking

data array (Figure 3), which has large variations in (238U/232Th) coupled with nearly

constant (230Th/232Th) for the Kolbeinsey Ridge. The observation that these lavas also
have nearly uniform Nd, Sr, Hf, and Pb isotopic compositions (Figure 2, Figure 6)

indicates that melting processes and not source variability must be the dominant

mechanism producing the observed range of (230Th/238U).

Given the indication of melting process control over 238U-230Th systematics for

Kolbeinsey lavas, the simplest way to model this horizontal array is using a time-

independent, batch melting model with a single-lithology, peridotitic source. However,

this simple model cannot account for the nearly uniform major and trace element

compositions of the samples (we would expect batch melting to generate trace element

systematics that parallel the U-Th fractionation observed; see Section 3.4.2.1).

Previously, a heterogeneous source control has been suggested for data arrays on

(238U/232Th) vs. (23 0Th/232Th) diagrams (LUNDSTROM et al., 1998). If this were the case,

then we would expect the enriched lavas along the array (i.e. lower U/Th ratios) to have

more enriched isotopic signatures (e.g. higher 87Sr/86Sr). Figure 6 shows that this is not

the situation for Kolbeinsey MORB, however, so ingrowth of melts from two distinct

source components (one enriched and one depleted) is not consistent with our

observations.

In the following discussion we systematically explore more complex melting

scenarios to explain the suggested array in terms of the 238U-2 30Th, radiogenic isotopes,

and major and trace element compositions of these lavas. Similar to Kolbeinsey Ridge, a

lack of correlation between radiogenic isotopes and (230Th/238U) was also observed for 9-

10N on the EPR. The proposed explanation for the 9-10N EPR N-MORB data was that

the mantle beneath that region is homogeneous over the length scale of melting (SIMS et

al., 2003; SIMS et al., 2002), such that melt transport occurs via both low-porosity

reactive transport and high-porosity non-reactive transport. In this scenario, the erupted



magmas are mixtures from the different transport regimes (JULL et al., 2002; KELEMEN et

al., 1997; LUNDSTROM, 2000; SIMS et al., 2002; SIMs et al., 1999b). If reactive porous

flow melting (also called "chromatographic" melting in the literature (SPIEGELMAN and

ELLIOTT, 1993)) is important for the Kolbeinsey Ridge, we expect the results of such

melting calculations to produce large-degree melts (i.e. low Na8) and depleted trace

element ratios (e.g. low La/Smn) similar to Kolbeinsey Ridge lavas, in addition to the

observed 2 38U-230Th data array.

3.4.2.1. Time-Independent Melting

Time independent (batch and fractional) models are the simplest melting model

calculations, and they can easily generate 23 0Th-excess or 238U-excess in melts by simple

chemical fractionation of U and Th. The (2 30Th/232Th) ratio of the melt and the residue

remain constant, since without consideration of the time of melt production, there is

neither decay nor ingrowth of 230Th. In the presence of garnet, small-degree, time-

independent melts have large 230Th-excesses due to the control of garnet on bulk partition

coefficients. In the absence of garnet (or some clinopyroxene compositions that can also

produce moderate 23 Th excess (e.g. -~20%; (LANDWEHR et al., 2001; WOOD et al., 1999)),

fractionation is mainly controlled by clinopyroxene with DTh > Du, creating small 238U

excesses in the produced melt (BEATTIE, 1993a; BEATTIE, 1993b; ELKINs et al., 2008;

HAURI et al., 1994; LA TOURETTE and BURNETT, 1992; LA TOURETTE et al., 1993;

LANDWEHR et al., 2001; LUNDSTROM et al., 1994; SALTERS and LONGHI, 1999; SALTERS

et al., 2002; WOOD et al., 1999). As melting progresses and degree of melting (F)

increases, all melt compositions rapidly return to the equiline (where (230Th/ 238U) and

(231paI235U) = 1), such that (231paI235U) and (230Thl238U) disequilibria can only be preserved

in small-degree melts (generally < 1%, though the precise value depends on the D values

chosen).

To formally test and address time-independent models discussed above, we

present results for batch and fractional melting calculations for a peridotitic source. In

these calculations, all sources begin in a state of secular equilibrium. We choose a
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Ridge array, and we calculate melts for both 100 km and 55 km melting columns.

Hirschmann et al. (1999) found that productivity variations are significant during

peridotite melting, so all of our peridotite melt calculations consider variable

productivities. The relationship between the rate of melt production and the degree of

melting in our calculations is shown in Figure 7 and is modeled after MELTS calculation

results from Hirschmann et al. (1999), but with a lower peak melt productivity, due to the

tendency for MELTS to overestimate total degree of melting. Unlike the approach by

others like Braun et al. (2000), who estimate a fixed productivity of 1%/kbar above the

dry solidus, we choose to more closely emulate the progressively increasing productivity

predicted by MELTS. Mineral partition coefficients for the garnet peridotite melt regime

(deeper than 75 km) and spinel peridotite regime (shallower than 75 km) are fixed (Table

0.5
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) 0.3

0 0.2
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Productivity increases
abruptly when F = 2.5%

0.0

0.00 0.05 0.10 0.15 0.20
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Figure 7. Productivity with distance along the melting column (dF/dz) vs. total degree of melting
(F) input parameters for all peridotite melting models, as discussed in Section 3.4.1 and the

Appendix. Chromatographic garnet peridotite melt trajectories in particular have a number of

sharp turns and "kinks," which occur when there are changes in the bulk sense of U-Th

partitioning (e.g. when garnet is exhausted or is no longer stable) and when there are significant
increases or decreases in melt productivity (e.g. when clinopyroxene is exhausted, causing a

large, sudden drop in melt productivity).



Table 4: Mineral/melt partition coefficients and initial mineral modes for our melting model calculations. Dpa = 1 x 105' for all models.

Mineral/melt partition coefficient Di Mineral
U Th Sm Nd La Modee

Garnet peridotitea
Garnet 0.038 0.017 0.22 0.074 0.0010 0.12

Clinopyroxene 0.0030 0.0040 0.093 0.072 0.054 0.08
Olivine 0.00005 0.00047 0.0013 0.0010 0.00001 0.59

Orthopyroxene 0.0078 0.0086 0.029 0.021 0.0010 0.21

Spinel peridotitea
Clinopyroxene 0.0080 0.0070 0.32 0.19 0.054 0.20

Olivine 0.00005 0.00047 0.0013 0.0010 0.00001 0.60
Orthopyroxene 0.0024 0.0027 0.016 0.010 0.0010 0.20

00

Garnet pyroxeniteb
Garnet 0.013 0.0032 0 .7 1 d 0.12d 0.49d  0.40

Clinopyroxene 0.017 0.015 0.31 0.24 0.034 0.60

Eclogitec
Garnet 0.024 0.0042 0.36 0.29 0.0043 0.25

Clinopyroxene 0.0041 0.0032 0.19 0.12 0.027 0.75

a Partition coefficients from Salters et al. (2002).
b Partition coefficients from Elkins et al. (2008) except where noted otherwise.
' Partition coefficients from Pertermann et al. (2004).
d Partition coefficients calculated for garnet using the lattice strain model (e.g. Blundy and Wood, 2003), with

parameters from Draper and van Westrenen (2008).
e Initial mineral modes for lithologies described in Appendix and Elkins et al. (2008). The manner in which mineral modes

vary during melting is shown in Appendix Fig. 1.



4), but peridotite mineral modes (Table 4) vary non-linearly during melting to

approximate experimental observations from the literature as closely as possible

(HIRSCHMANN et al., 1999). (Further details about these and our other melt calculations

are provided in the Appendix.)

In Figure 8a we show results for calculations of time independent melting of

peridotitic melting columns. Mixing deep and shallow batch or fractional melts from a

single 100 km melting column (Figure 8a; Appendix) can generate a horizontal slope,

but neither melt trajectory can generate enough 238U excess anywhere in the melting

column to explain the Kolbeinsey Ridge data (fractional melts are controlled by the initial

melt compositions and generate no 238U excess anywhere, and batch melts can generate

only very small 238U excesses). For each melt calculation the total degrees of melting

must be small to observe any disequilibria (< 1% melting for 230Th excesses, and batch

melts from shallower depths only preserve 238U excesses of at most ~1% when degrees of

melting are below 5%). Estimated degrees of melting for Kolbeinsey Ridge from major

elements (Na8 and (Ca/Al) 8 calculations) range from 11 to 28%, making these time-

independent melting models problematic (SCHILLING et al., 1999). We also note that with

time-independent melting, we would expect lavas with 230Th excesses to be trace element

enriched and 238U excess basalts to be trace element depleted, which is not observed: all

of the Kolbeinsey basalts are trace element depleted. Furthermore, the Kolbeinsey Ridge

has a half-spreading rate of 0.9 cm/yr, which translates to upwelling rates of a similar

magnitude. Previous studies (BOURDON et al., 2006; KOKFELT et al., 2003; SIMS et al.,

1999a) have demonstrated for ocean-island basalts (OIB) that at slow upwelling rates,

ingrowth becomes significant and cannot be ignored. This should hold true for ridge

settings as well. Thus, as outlined above, we do not consider time-independent melting to

be plausible for explaining the Kolbeinsey Ridge lavas. Below we consider time-

dependent melting calculations.



3.4.2.2. Dynamic and Reactive Porous Flow Melting

Dynamic melting calculations consider the effects of time on the U-series

disequilibria during magma genesis, as melts are extracted fractionally above a

threshold/constant critical residual melt porosity from an upwelling, melting residue

(MCKENZIE, 1985; WILLIAMS and GILL, 1989). Ingrowth of daughter 230Th from parent

238U during ascent of the solid residue is considered. However, because melts are
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Figure 8. Equiline diagrams for the Kolbeinsey Ridge basalts with (a) time-independent, batch

(dark blue line) and fractional (light blue line) garnet peridotite melt trajectories, and (b) a

reactive porous flow melt trajectory (dark blue line); data symbols and fields as in Figure 6.

extracted instantaneously, U and Th are removed so efficiently by melting that the

aggregated melt composition is controlled by the initial small-degree melts. This means

that 238U excess cannot be produced in a dynamic melting column that initiates in the

garnet peridotite stability field, leaving no mechanism for mixing 230Th excess melts from

deep in the melting column with shallower, 238U excess melts (see Appendix for evidence

from calculations of continuous dynamic melting of a garnet peridotite source).

Producing the horizontal Kolbeinsey array by melt mixing requires that the mixing

components have the same (230 Th 2 32Th). A purely theoretical mechanism for this would

be: 1) dynamically melting a source to produce a low-degree melt with (23
°Th/

23 8U) > 1

and a residue with (2 3 0
Th/

238U) < 1, 2) generate a second, large degree melt of the residue



with (2 30Th/238U) < 1, and 3) mix those two melts. While this scenario can produce a

horizontal array spanning the range of Kolbeinsey Ridge MORB (23 8U/2 32Th) it also

produces trends in the other trace element data that are not observed in the basalts. Such a

scenario would generate systematic trace element variations along the horizontal array,

with extreme trace element depletion in the 238U excess endmember melt and relative

trace element enrichment in the 230Th excess melt. This is not the case for the Kolbeinsey

Ridge samples, which rules out a dynamic melting process for the origin of the

Kolbeinsey MORB.

Unlike the efficient, disequilibrium extraction modeled by dynamic melting

calculations, reactive porous flow melting takes into account the time scales of melting

and melt migration (i.e. enhanced production of disequilibrium in melts due to ingrowth

effects) resulting from chromatographic effects (i.e. melt and solid residence times and

effective velocities of trace elements with different partitioning behavior) in a

continuously equilibrating melt migrating through upwelling solid mantle. Such a model

can generate large disequilibria from depth, particularly during relatively slow upwelling.

We use the same partition coefficients, productivity variations, and starting conditions for

our reactive porous flow model as for the 100 km batch, fractional, and dynamic melt

calculations described above and in the Appendix.

As discussed above, the Kolbeinsey array requires the production of 230Th excess

melts from deep in the melting column as well as shallower melts with 238U excess. This

idea is not new: the observation that 23Th/ 238U is negatively correlated with the parameter

aSm-Nd led to the suggestion that small and large degree melts (with no intermediate melt

fractions) were involved in MORB genesis (SIMs et al., 1995) and then subsequently the

observation of a negative global correlation between (230Th/238U) and (226Ra/230Th) in

definitively young MORB suggested mixing between deep, 23Th excess melts and shallow

melts with preserved 226Ra excesses (JULL et al., 2002; KELEMEN et al., 1997; SIMS et al.,

2003; SIMS et al., 2002). Being able to detect melts from two different depths in a melting

column requires that melts be extracted efficiently from deep in the mantle. Extraction of

melts from the deep, garnet-bearing part of a peridotitic melt column can be envisioned in



two ways: allowing the melts produced to migrate laterally and thus extract some of the

deep, small degree melts from the corners of a two-dimensional, triangular melting

regime; or rapidly extracting such melts through a higher-porosity zone, such as a dunite

channel (Appendix Figure 1) (KELEMEN and DICK, 1995; KELEMEN et al., 1997). These

two possibilities are identical to calculate, as long as the extraction of the deep melt is

isolated and rapid. Several workers have shown that melts can be removed rapidly

enough in high-porosity channels to preserve 23 0Th-excesses generated at the bottom of

the melting column (JULL et al., 2002; SIMs et al., 2002; TEPLEY et al., 2004), and that

such processes may also preserve a wide range of possible trace element compositions

(SPIEGELMAN and KELEMEN, 2003). Thus, for the sake of simplicity, we calculate a single

melting column that originates in the garnet stability field for peridotite, and expand on

previous model observations that mixing of deeper and shallower melts in such a column

is possible and numerically robust. Our calculations add the complexity of variable bulk

partition coefficients and productivities to previous calculations of this sort from the

literature.

As shown in Figure 8b, reactive porous flow in a melt column can generate both
230Th- and 238U excesses with changing mineral modes and melt productivities along the

column. The reactive porous flow model trajectory undergoes abrupt changes in direction

and curvature that reflect changing bulk partition coefficients and melt productivity

during ascent. We are able to preserve 230Th excesses until melting is well within the

spinel peridotite stability field, as well as significant 238U excesses in the shallowest melts

despite total degrees of melting up to or even exceeding 20%. This works well with the

predictions for degrees of melting for Kolbeinsey Ridge lavas from major elements (i.e.

Na8, (Ca/Al), (KLEIN and LANGMUIR, 1987)) We note, however, that the 238U excesses

generated by the model calculation shown in Figure 8b are insufficiently large to explain

all of the Kolbeinsey data.

However, all of these models, including reactive porous flow, predict that trace

element concentrations (e.g. U concentrations) or ratios like La/SmN or Sm/Nd, should

vary systematically along the mantle array. This is not the case. As described in Section



3.4.1, we consider it likely that instead, the samples with low (230Th 238U) from

Kolbeinsey Ridge are the result of shallow interaction with and alteration by seawater. If

this is indeed the case, the observed horizontal array is not the result of primary magmatic

processes, and unaltered Kolbeinsey samples have universally large 2"Th excesses. A

long melting column that originates well below the garnet-spinel transition can generate

both 230Th excesses and the large degrees of melting predicted for Kolbeinsey Ridge. This

generally homogeneous data set is relatively straightforward to reproduce.

However, calculated aSm-Nd values (aSm-Nd = (Sm/Nd)sample/(Sm/Nd)source, where

(Sm/Nd)soice is calculated from each sample's ENd value for a model age of 1.8 Ga) for

Kolbeinsey lavas range from 0.91 to 1.24 and are almost all greater than one (Figure 9a).

Sm and Nd partitioning behavior is such that melting alone cannot produce this sense of

fractionation, suggesting that Sm/Nd ratios in the melts are decoupled from the long-lived

source composition. These aSm-Nd values suggest that the 1.8 Ga model age is incorrect.

We also note that other trace element ratios (e.g. La/SmN) are more depleted than

predicted by our melting models (Figure 9b).
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Figure 9. Measured data from Kolbeinsey Ridge, and garnet pyroxenite modeled melt trajectories
with binary mixing curves. Blue solid lines represent calculated reactive porous flow melt
trajectories and blue dashed lines indicate batch melts; data symbols and fields as in Figure 6. (a)
(23 0Th/2 38U) vs. aSmNd diagram, and (b) (2 30ThI 23 8U) vs. (La/Sm), ratios, with both time-
independent and time-dependent melt trajectories for models described in Section 4.1.3.



These anomalous trace element characteristics (very depleted La/Smn, and aSm-Nd

> 1) are inconsistent with a simple progressive melting scenario and are in direct contrast

to locations where aSm-Nd values are consistent with the U-series systematics (e.g. the Juan

de Fuca and Gorda Ridges (SIMS et al., 1995), and the EPR (SIMS et al., 2002)). The

Kolbeinsey Ridge aSm Nd values imply in particular that the assumed model age of 1.8 Ga

for the source is incorrect, i.e. the source rock with which the melt last interacted must

have recently become more depleted in Nd relative to Sm than the long-lived mantle

source. Thus the trace element budget of the source has been potentially perturbed, but

this must have occurred recently and shallow enough that it has not strongly affected the
238U-230Th disequilibria. A recent source depletion event could be explained by incursion

into the source region of depleted residue from the nearby Iceland plume. However, a

two-stage melting model would require an extremely hot mantle to generate the large

degrees of melting required for Kolbeinsey Ridge. Alternately, the source age may be

considerably younger than the average mantle model age of 1.8 Ga, perhaps because the

Greenland basin only began rifting ~55 Ma and the Kolbeinsey Ridge is the result of a

more recent ridge jump that occurred between 26-45 Ma.

We also calculated (2 3 1pa/ 235U) in reactive porous flow and batch melts. The

modeled melts reach initially large 231Pa excesses at low degrees of melting (e.g.

(23 1pa/2 35U) > 5 for the initial batch melt), and both reactive porous flow and batch

melting models generate much larger 231Pa excesses (modeled (2 3 1pa/23 5U) = 7.0 when

(23 0Th/23 8U) = 1.25, as in Kolbeinsey Ridge basalts) than observed for the Kolbeinsey

MORB ((2 3 1pa/2 35U) = 2.263 - 2.495). Sims et al. (2002) and Stracke et al. (2006) were

able to reproduce (231Pa/235U) and (230Th/238U) values like those we measured in

Kolbeinsey Ridge lavas (Table 3) with two-porosity melting models. Our models do not

explicitly consider melt transport time in high-porosity channels, as others have modeled

(JULL et al., 2002; LUNDSTROM, 2000; SIMs et al., 2002; SIMs et al., 1999b; TEPLEY et al.,

2004). Taking into account the time of disequilibrium transport with variable melt

productivities may better reproduce our Kolbeinsey (23 1pa/2 35U) values, since such a

calculation does not allow for preservation of such large 23 1Pa excesses in the melts.



3.43. Global 23rTh-2U Disequilibria, Spreading Rates, and Axial Depth

It is relatively straightforward to generate the large and relatively uniform 230Th

excesses seen in our Kolbeinsey data set; we next consider the data in a global context,

and look at how Kolbeinsey Ridge plays into global models for MORB geochemistry.

Global studies (BRODHOLT and BATIZA, 1989; DICK et al., 1984; KLEIN and LANGMUIR,

1987; LANGMUIR et al., 1992) have shown that variations in the major- and trace element

compositions of MORB are related to ridge depth and crustal thickness, suggesting

systematic variations in the temperature and therefore the degree and depth of melting

beneath large areas of the global ridge system. Klein and Langmuir (1987) proposed that

the low Na (Na contents corrected for low-pressure crystal fractionation to a MgO

content of 8%) and anomalously thick crust typical of shallow ridges are the result of

large degrees of mantle melting. Based on experimental observations, they also

interpreted the high Fe8 of lavas from these ridges as an indication of deep melting. The

ridge with the most extreme chemical characteristics (shallowest axis, lowest Na8, highest

Fe8) studied by Klein and Langmuir (1987) was the Kolbeinsey Ridge.

Despite the large degrees of melting postulated from major element calculations,

Klein and Langmuir (1987) and Langmuir et al. (1992) observed that the trace element

ratios for Kolbeinsey Ridge lavas require small degrees of melting. They attributed this to

a heterogeneous mantle source, something we have shown is not supported by variations

in radiogenic isotope ratios or melting models. Mertz et al. (1991) and Mertz and Haase

(1997) also showed that the most isotopically enriched samples (i.e. high 87Sr/86Sr and

low 143Nd/44Nd) have the most depleted incompatible element signatures, which is

inconsistent with the hypothesis that source variations control highly incompatible

element abundances and ratios at the Kolbeinsey Ridge. In Section 4.3.1 and 4.3.2 we

determined that Kolbeinsey MORB have large 230Th excesses, indicating a long melt

column that initiates in the garnet stability field and can generate the deep melting and

high melt fraction (F) signatures observed in the major elements of the lavas (Fe8, Na8,

(Ca/Al),), but that trace elements indicate a relatively young mantle source.



Bourdon et al. (1996b) have shown that on a global scale there is also a broad

negative correlation between the amount of 2 38U-230Th disequilibrium and the axial ridge

depth of MORB. Their interpretation was that this correlation reflects mantle temperature

variations beneath the ridge: hotter mantle intersects its solidus at a greater depth,

resulting in a longer melt column and more melt generation, which in turn generates

thicker crust, a shallower ridge, and larger 230Th excess (because of the longer melt

column in the garnet stability field). Bourdon et al. (1996b) did not examine shallow

ridges, but their model would predict that shallow ridges like the Kolbeinsey Ridge

should have the highest 230Th excesses.

However, although we have constrained the range of (230Th/ 238U) values for

Kolbeinsey Ridge to be relatively narrow, we note that Figure 10 demonstrates a great

deal of global variability. Peate et al. (2001) measured a large range of U-Th disequilibria

for the Reykjanes Ridge, which they attribute to the influence of heterogeneous mantle

sources and the upwelling effect of the Iceland plume. However, due to polybaric melt

effects and to the likelihood of low-porosity zones that efficiently extract deep melts,

only the maximum (230Th/ 238U) for a ridge segment should reflect the mantle temperature

effect described by Bourdon et al. (1996b), because only the melts with the most 230Th

excess reflect the deepest part of the melting column. Since mixing in magma chambers

is variable beneath MOR, masking variability at some locations, mean (230Th/238U) is

probably a more accurate method for comparing global ridges with different spreading

rates. Figure 10 shows that broadly, ridge-averaged (2 30Th/ 238U) for the global MORB

data set support the observations of Bourdon et al. (1996b).
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3.5. CONCLUSIONS

1. The slow-spreading Kolbeinsey Ridge MORB data form a nearly horizontal trend

(slope = 0.05) on a plot of (23 0Th/ 23 2Th) vs. (23 8U/232
Th). This slope would appear to be

consistent with a model relating the slopes of ridge segments to their solid mantle

upwelling rates. However, such a model requires mixing of enriched and depleted sources

to explain the slope dependence, and Kolbeinsey R. radiogenic isotope data do not

correlate with 23 8U-230Th disequilibria, precluding heterogeneous source control. These

disequilibria also fail to correlate with trace element abundances or ratios, also precluding

a simple melting process. Correlation with (234U/23 8U) instead suggests that 238U excess

samples result from shallow crustal alteration in the presence of seawater. Unaltered

Kolbeinsey MORB have universally high 230Th excesses, indicating a deep, long melting

column that can produce both the large degrees of melting indicated by major element

systematics and the shallow ridge axis.

2. Trace element ratios and concentrations are more depleted than predicted by melting

models. Most Kolbeinsey aSm-Nd ratios are also greater than one, which cannot be

generated by simple one-stage melting of a single-age long-lived source. We suggest that

a young, depleted source associated with the young Kolbeinsey Ridge can account for

this signature.

3. Kolbeinsey Ridge (230Th/ 2 38U) corroborate global observations by Bourdon et al.

(1996b) that mantle temperature determines mean ridge (2 30Th/2 38U). The shallow ridge

axis and thick crust on the Kolbeinsey Ridge predict a hot mantle and deep melt column,

which is supported by our measured 230Th excesses.

We thus present a working model for the Kolbeinsey Ridge MORB, which derive

from a depleted, relatively young mantle source (as indicated by caSm Nd). These basalts are

the result of melting in a long melt column that produces large 230Th excesses and the



thick crust and shallow Kolbeinsey Ridge axis. Shallow alteration is likely responsible

for producing samples with low (23 0 Th/238 U).
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APPENDIX

For our batch, fractional, dynamic, and reactive porous flow melting calculations,

productivity inputs for peridotite varied during melting in the manner illustrated in

Figure 7, with a linear temperature-pressure relationship during upwelling (we assume a

solidus slope of 120oC/GPa for all lithologies). Hirschmann et al. (1999) showed that

melt productivity at the peridotite solidus is equal to or lower than 0.4% melting per km,

but that in a batch melting regime, productivity increases to as much as 24%/GPa by the

time of clinopyroxene exhaustion at ~18% melting. Although productivities are lower for

fractional melting, the difference in productivity does not significantly affect our results,

so for the sake of simplicity all peridotite melting models use the same productivity

variations. We fix partition coefficients for the garnet peridotite and spinel peridotite

melting regimes (as well as for other lithologies described below; see Table 4), but

mineral modes vary to best reflect expected melting behavior and changes in mineral

stability with depth (HIRSCHMANN et al., 1999). Appendix Figure 2 shows how mineral

modes vary with depth peridotite (as well as other lithologies considered below). Initial

source U/Th ratios were chosen to best reproduce the available data, so that initial garnet

and spinel peridotite melts had (2 3 8U/2 32 Th) = ( 2 3 0Th/ 23 2 Th) = 1.25. In Figure 9 we show

binary mixtures of deep, initial garnet peridotite melts (F __ 0.1%) with shallower melts at

F = 2% (see Appendix Figure 1 for mechanisms for mixing deep and shallow melts),

which is the point at which the largest 238U excess is generated in our melt calculations.



Batch melting calculations are straightforward, but to vary productivity variations

and bulk partition coefficients with depth in fractional, dynamic, and reactive porous flow

models requires more sophisticated calculations. In the case of fractional and dynamic

melting, we accomplish this with incremental calculations. Our dynamic melt calculation

resembles the incremental modeling spreadsheet published by Stracke et al. (2003b), but

distance and time increments vary for each of the constant steps in degree of melting (see

Figure 7). For reactive porous flow melting calculations, we use our input parameters for

F, depth, and partition coefficients (Table 4; Figure 7; Appendix Figure 2) and the

program UserCalc, developed by Spiegelman (2000). We use an upwelling rate equal to

the half-spreading rate for Kolbeinsey Ridge, which is 9 mm/yr., and a porosity of 0.5%.

We note that there are other, more complex mechanisms possible for producing

and extracting both deep and shallow melts. One such scenario is a single melt column

with two porosities of extraction, but in which the deep and shallow melts are the result

of wet and dry melt pulses at different depths. This is a scenario where there is a small

amount of wet melting at depth that dehydrates the residue, producing (230Th/2 38U) > 1 in

an initial melt. This residue then undergoes a second pulse of melting at shallower depths

upon reaching the dry peridotite solidus, producing a melt with 238U excess. These deep

and shallow melts variably mix prior to eruption. A reactive porous flow calculation for

such a model, where there is a very small pulse of 0.01% melting very deep (300 km) and

a second pulse initiating at shallower depths in the peridotite stability field, results in

nearly identical results to those shown for reactive porous flow calculations in Figure 8

and Figure 9.

The results of dynamic melt calculations are shown in Appendix Figure 3 for a

100 km garnet peridotite melting column. The dynamic melt has the same productivity

variations and varying bulk partition coefficients as used for the batch melt from Section

3.4.2.1, and uses the same upwelling rate and porosity as the reactive porous flow model.

The resulting melt composition is so heavily controlled by melts produced at low F that
no 238U excess can be created.

The relative homogeneity of long-lived radiogenic isotopes along the Kolbeinsey

Ridge, despite the large variations in (230Th/238U), implies that source heterogeneity does
not control the Kolbeinsey 238U-230Th systematics along the horizontal array. This implies



lithologic homogeneity in the source as well. However, though the scenario is unlikely, it

could be argued that Th isotopes alone reflect lithologic heterogeneity. We consider a

two-lithology scenario where the garnet-bearing source is a mafic lithology like eclogite

(60% clinopyroxene (Cpx) and 40% garnet (Gt) for a deep solidus, or 75% Cpx and 25%

Gt with a shallower melting regime; (PERTERMANN et al., 2004)) or silica-poor garnet

pyroxenite (70% Cpx and 30% Gt for deep melting, or 80% Cpx and 20% Gt for

shallower melting), a lithology some have suggested to be a plausibly melting mantle

lithology (HIRSCHMANN et al., 2003; KOGIso et al., 2004). Here we calculate melts of

those lithologies in a continuously melting column. We then calculate binary mixtures

between the mafic lithology melts and melts of peridotites.

Sources begin in secular equilibrium. Eclogite and pyroxenite have deeper solidi

than peridotite (50 km and 6.5 km deeper than the peridotite solidus, respectively;

(ELKINS et al., 2008; HIRSCHMANN and STOLPER, 1996; KOGISO et al., 2004;

PERTERMANN and HIRSCHMANN, 2003)), and productivities during melting vary

considerably for all lithologies in question (ELKINS et al., 2008; HIRSCHMANN et al.,

1999; KOGISO et al., 2003; PERTERMANN and HIRSCHMANN, 2003). As described in detail

in Elkins et al. (2008), the different depths to the solidus and productivity variations for

eclogite and silica-poor garnet pyroxenite are such that mafic melts are the result of much

higher degrees of melting than peridotite melts extracted from the same depths, and this

dominates the binary mixing paths predicted for all two-lithology melting scenarios.

There are only constraints for batch melt productivities for these lithologies (KOGISO et

al., 2003; PERTERMANN and HIRSCHMANN, 2003), although for the fractional melt

extraction expected the degree of melting would be lower. Appendix Figure 2 shows

that using batch melting productivities from the literature leads to 100% melting of both

lithologies in the deep melting scenario (for shallow melting, the silica-poor pyroxenite

only reaches between 60 and 70% melting using these estimates), which may not occur in

a fractional melting regime; however, even with lower productivities the melt

composition is dominated by initial melts, so the calculated results would be very similar

to those shown in Appendix Figure 4 and discussed in Section 3.4.2.2. In Appendix

Figure 4, we show mixtures of mafic melts with coexisting initial melts calculated for

peridotite, i.e. mixing at the peridotite solidus, which is sufficient to demonstrate the



mixing behavior predicted (see Elkins et al. (2008) for more details about mixing melts

from two lithologies). We calculate mixtures of the first peridotite melt increment with

either a 65% melt of an eclogite or a 5% melt for a garnet pyroxenite source. Initial mafic

source U/Th ratios could be chosen at any value without changing the problems described

in Section 3.4.2.2. Appendix Figure 4 shows results for a source that is only moderately

enriched relative to the peridotite source, with (2 38 U/ 232 Th) = (23 0Th 23 2Th) = 1.00. As a

result of their deeper solidi, eclogite and pyroxenite melts produced deeper than the

peridotite solidus (e.g. in veins of mafic material) cannot migrate through and equilibrate

with the surrounding peridotite matrix without freezing. We thus restrict melt scenarios

for mafic lithologies: only fractional and dynamic melts of these lithologies are

considered, as they must be extracted without interaction with solid residue during ascent.

All melts of the mafic lithologies are modal melts with constant partition coefficients and

melt productivities, in part because constraints on eclogite and pyroxenite melt

productivities are poor (batch melting estimates from previous studies cover wide ranges

and are likely too high for fractional melts (KOGISO et al., 2003; PERTERMANN and

HIRSCHMANN, 2003), and in part because only early, small F melts strongly impact the

final aggregated melt composition for both fractional and dynamic models. For a

summary of partition coefficients and mineral modes used, see Table 4.

Appendix Figure 4 shows the results of mixing between disequilibrium melts of

the mafic mantle lithologies and equilibrium peridotite melts for (a, c) a deep melting

column (peridotite solidus at a depth of 100km) and (b, d) a shallower column (peridotite

solidus at 55km) for (a, b) time-independent (batch peridotite and fractional eclogite and

garnet pyroxenite melts) and (c, d) time-dependent (chromatographic peridotite and

dynamic mafic melts) melting models. As described above, U/Th ratios were chosen so

the mafic lithology is only moderately more enriched than the peridotite. This is likely

inconsequential - even with identical starting compositions mixing between melts of a

mafic lithology and melts of a peridotite cannot explain most of the Kolbeinsey Ridge

array. The depths to the solidi for both mafic lithologies tested are larger than for a

peridotite. Also, these alternate lithologies have narrower melting intervals and are

insulated super adiabatically by sub-solidus peridotite (HIRSCHMANN and STOLPER,

1996), such that even with the lower productivities that might be expected for fractional



melting, the eclogite and pyroxenite melt must experience relatively large degrees of

melting by the time the peridotite solidus is reached. With any of the melt scenarios used

here, the eclogite and pyroxenite melts fail to preserve high 230Th excesses by the time

such large F values are reached (the degrees of melting at the onset of peridotite melting

are possibly as high as 5% for garnet pyroxenite and 65% for eclogite, though such

estimates are based on variable-productivity batch melting estimates from Pertermann et

al. (2003).

When mafic melts mix with deep, small-degree peridotite melts generated at the

same depth, there is no means to generate 238U excess melts because all lithologies

contain garnet. On the other hand, when mafic melts mix with shallow spinel peridotite

melts, there is no means to generate the large 230Th excesses observed in our sample suite

because only the eclogite and pyroxenite are generating 23 0Th excess in the melt, but they

cannot preserve that excess. This is true for both time-independent and time-dependent

models. Melts from mafic mantle lithologies, if present, cannot play a dominant role in

generating the variability observed for Kolbeinsey Ridge. The deeper solidii and higher

productivities of mafic lithologies than for peridotitic rocks make it impossible for e.g.

eclogitic melts to have maintained large 230Th excesses by the time the peridotite source

begins melting. This prevents binary melt mixtures of a lithologically heterogeneous

source from producing the Kolbeinsey Ridge array. This is the case regardless of initial

U/Th ratios used for the mafic source.
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Appendix Figure 1. Schematic conceptual diagrams for two-porosity and two-dimensional melt
transport regimes. On the left is a two-column melt regime, where equilibrium melts are produced
in a low-porosity upwelling regime and then extracted into an adjacent, higher-porosity column,
where they experience disequilibrium transport. On the right is a two-dimensional, triangular
melting regime for a mid-ocean ridge setting, after Langmuir et al. (1992).
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eclogite, and deep garnet pyroxenite melting, as described in the Appendix. Black dashed lines
represent the degree of melting (F) and colored lines show the changes in mineral mode with
depth in the melting columns.
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Appendix Figure 3. Equiline diagram for the Kolbeinsey Ridge basalts with a modeled garnet
peridotite, continuously melting, dynamic melt trajectory (blue line), as described in the
Appendix; data symbols and fields as in Figure 6.
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Appendix Figure 4. Equiline diagrams for the Kolbeinsey Ridge basalts, showing modeled melt

trajectories for two mantle lithologies and binary melt mixing curves, as described in the

Appendix. Garnet peridotite melting trajectories are shown in dark blue, spinel peridotite

trajectories are green, eclogite melts are bright red lines, the trajectories for garnet pyroxenite are

dark red lines, and binary mixtures are shown as dashed black lines; data symbols and fields as in

Figure 6. (a) Deep melting column with time-independent melting; (b) shallow melting column

with time-independent melting; (c) Deep melting column with time-dependent melting; (d)

Shallow melting column with time-independent melting.
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Supplemental Table 1. Trace element data for samples, analyzed by ICP-ES at Boston University for this study.

Sample
POS185 1096A
POS185 1094B
POS0002/2 Geo 212
POS221 596DS-1
POS210/1 682DS-1

Location
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
N. Kolbeinsey

* Concentration below instrument detection limit.

Be
0.32
0.25
0.26
0.34
0.29

Sc
52.09
47.96
46.22
43.76
43.82

TiO,
1.07
0.90
0.95
1.30
0.95

V
364.52

321.75
336.42
374.43
291.37

Cr
143.01
58.14
36.15
122.77
120.75

Co
54.45

51.18
50.74
47.39
44.95

Ni
78.74
40.79
48.15
71.27
48.95

Cu
121.70
146.69
149.12
91.01
75.45

Zn
105.79
95.51
105.43
274.25
142.18

Ga
18.42
17.05
16.91
17.71
15.46

Rb
1.44
0.59
0.93

1.40

0.52

Sr
62.03
58.06
54.53
60.51
66.75

Y
31.91
26.42
28.83
36.77
25.31

Zr
62.02

54.45

54.43
102.54

54.44

Nb
2.52
1.40

1.52
3.03

1.32

Ba
18.92

11.17
12.93
21.44
13.28



Supplemental Table 1 (cont.)

Sample
POS185 1096A
POS185 1094B
POS0002/2 Geo 212
POS221 596DS-1
POS210/1 682DS-1

Location
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
N. Kolbeinsey

La

2.39
1.61
1.74
3.22
1.70

Pr

6.70
4.73
5.21
9.77
5.17

1.25
0.91
1.02
1.69
1.00

Nd

6.76
5.19
5.77
8.93
5.65

2.49
1.99
2.19
3.06

2.05

El'

0.98
0.81
0.87
1.07
0.82

Th

0.75
0.61
0.67
0.85
0.59

Gd

4.02

3.27

3.56
4.66
3.25

D v

5.16
4.19
4.59
5.83
4.04

Ho

1.21
0.98
1.07
1.34
0.93

Er

3.59
2.82
3.09
3.84
2.61

Tm

0.52
0.43
0.47
0.58
0.38

Yb

3.67
2.94
3.25
4.03
2.63

Lu
0.57
0.47
0.51
0.63
0.41

Hf
1.81
1.67
1.50
3.01
1.08

Ta

0.24
0.12

0.12
0.26
0.14

Pb Th U
-* 0.14 0.04

0.18 0.09

- 0.08 -

0.66 0.57 0.19
0.02 0.06 0.02

'e cm
b Gd Dy Ho r M Yb Lu



Supplemental Table 2. Calculated aSm-Nd values for samples in this study.

Sample

TRI0139-001-001G
POS 185 1105B
POS 185 1093
POS291 485-3
TRI0139-007-001G
POS326 540DS-4
POS291 495-2
POS 185 1096A
POS 185 1094B
TRI0139-006-002G
POLARK7-1-37DS-2
POLARK7-1-22DS-3
TRI0139-013-003G
TRI0139-014-001G
TRI0139-015-001G
TRIO 139-016-001G
POS0002/2 Geo 212
TRIO139-020-001G
POS221 596DS-1
POS221 605DS-2
POS210/1 682DS-1
POLARK7-1-21844
POLARK7-1-21847
POLARK7-1-21848
POLARK7-1-21850
POLARK7-1-21854
POS210/1 700 DS-2
POS210/1 702 DS-1
POS210/1 698 DS-1
TRI0139-027-005G

Location

Tj6rnes FZ
Tj6rnes FZ

S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
S. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey
N. Kolbeinsey

* aSm-Nd = (Sm/Nd)sampJ(Sm/Nd)source, where (Sm/Nd),souce is derived from the measured ENd value of the sample and a
model age of 1.8 Ga.

aSm-Nd*

1.233
1.155
1.082
1.088
0.983
1.035
1.053
0.966
1.024
1.037
1.115
0.993
1.045
0.998
1.058
1.028
0.999
0.911
0.895
1.011
0.947
1.081
1.216
1.103
1.236
1.185
0.799
0.924
0.739
0.667



CHAPTER 4:

GENERATION OF 226Ra, 238U, AND 23 0Th EXCESSES IN ARCTIC MID-OCEAN

RIDGE BASALTS FROM THE KOLBEINSEY, MOHNS, KNIPOVICH, AND

GAKKEL RIDGES

ABSTRACT

We present U-Th-Ra isotopic data for the slow- to ultraslow spreading Mohns,

Knipovich, and Gakkel Ridges. On the ultraslow-spreading end member Gakkel Ridge,

we find that MORB from the 85°E volcano on the Eastern Volcanic Zone are extremely

homogeneous, with depleted radiogenic isotopic signatures (e.g. mean 87Sr/86 Sr =

0.702612 + 1) and (230Th/238U) near 1.0 (mean = 1.01 ± 4%) and ranging from small (5%)

230Th excesses to small 238U excesses (also 5%). All of these samples are age-constrained

by (226Ra/230Th) ratios ranging from 3.07 to 3.65 ± 3%, and one sample is additionally

constrained to younger than 100 years old by (210Pb/226Ra) = 0.89 + 9%. The

(226Ra/230Th) and (230Th/238U) lie along a global negative correlation, supporting their

production by mixing of melts from different depths.

In Chapter 3, we found that mid-ocean ridge basalts (MORB) from Kolbeinsey

Ridge have uniformly high 23°Th excess for a narrow range of (230Th/232Th) and formed

in a long, deep mantle melting column. A relatively uniform degree of 230Th-238U

disequilibrium is observed for isotopically enriched Kolbeinsey Ridge samples north of

70.60N, the Mohns Ridge, and the Knipovich Ridge (mean (2 3 0Th/ 2 3 8U) = 1.17 ± 6%).

Age-constrained ((2 26Ra/230Th) values out of equilibrium) samples from Mohns Ridge

cluster with mean (23 0Th/238U) = 1.22 (ranging from 1.165 ± 0.007 to 1.30 + 0.03), while

Knipovich Ridge samples form a sloped array parallel to the "equiline" on a (238U/232Th)

vs. (230Th/232Th) diagram (slope = 1.0; r2 = 0.8). Three samples from the Kolbeinsey

Ridge north of 70.6N also form a steeply-sloped array (slope = 1.9; r2 = 0.99). If the



mantle below the Knipovich Ridge and Mohns Ridge is similar, as suggested by

radiogenic isotopes, these data sets may together form a single sloped array. Position on
this array correlates with radiogenic isotope compositions (e.g. 87Sr/86Sr and
147Nd/144Nd), suggesting that mantle source heterogeneity controls the (238U/232Th) and

(230Th/232Th) for this region. This is in direct contrast to the homogeneous source
compositions and melt process control on 238U-230Th disequilibria for 85oE Gakkel Ridge

and Kolbeinsey Ridge data.

Globally, mean (230Th/238U) vs. axial ridge depth for discrete MOR segments

forms a negative correlation, supporting a global mantle temperature and peridotitic

melting control on generation of U-Th disequilibrium in MORB. However, the variance

of (230Th/238U) ratios in MORB and slopes of arrays formed by individual ridge segments

result from a variety of factors including melting of heterogeneous mantle sources. This

is in keeping with the relatively large variations in (230Th/ 238U) coupled with

correspondingly small 87Sr/86Sr variations observed in MORB, also suggested by Sims

and Hart (2006) to reflect the large variations in melt process occurring at MOR settings.
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4.1. INTRODUCTION

4.1.1. Uranium-Series Isotopes at Slow-Spreading Mid-Ocean Ridges

Uranium-series isotopes are an ideal tool for studying processes occurring over

timescales similar to their half-lives, such as melting and melt transport in the mantle.

The study of U-series isotopes, in combination with major element, trace element, and

long-lived radiogenic isotopic data, can thus help constrain how source composition

variations, timing of melting, melt transport, and upwelling rates impact mid-ocean ridge

(MOR) basalt chemical and isotopic data. There have been systematic studies of MOR

basalt (MORB) that include complete U-series, isotopic, and major and trace element

data sets, but none in the Arctic MOR north of Iceland prior to the work presented in

Chapter 3. The slow- to ultraslow-spreading Arctic MOR provide a regional case study of

melting in a slowly upwelling region.

Here we build on the work presented in Chapter 3 with data from a suite of

samples for the full Arctic Ridge system northward of the Kolbeinsey Ridge. Previous U-

series studies have suggested that melting to produce MORB must be complex,

incorporating the effects of time-dependent melting, melt transport variations, and

potential source compositional heterogeneities (BOURDON et al., 1996b; JULL et al., 2002;

KELEMEN et al., 1997; LUNDSTROM, 2000; LUNDSTROM, 2003; LUNDSTROM et al., 1998a;

SIMS et al., 2002; SIMS et al., 1999b; SPIEGELMAN and ELLIOTT, 1993; TEPLEY et al.,

2004). In this chapter we evaluate such scenarios from the perspective of a set of

extremely slow-spreading ridges, to better constrain the characteristics of melting beneath

the global mid-ocean ridge system.

4.1.2. Global Observations and the Arctic MOR

In ocean island basalt (OIB) settings, which are characterized by active mantle

upwelling, melting in regions of relatively slow upwelling produces enhanced ingrowth
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of 23 0Th relative to its parent 23 8U, so that lavas from slowly upwelling regions are

expected to have larger 230Th-238U disequilibria than melts produced at fast upwelling

regions, such as at plume centers (KOKFELT et al., 2003; SIMS et al., 1999a). In MORB

settings the extent of disequilibria measured did not directly correlate with spreading rate,

so Lundstrom et al. (1998b) suggested that the sloped arrays of MORB observed on plots

of (238U/232Th) vs. (230Th/232Th) ("equiline" diagrams) for discrete ridge segments could

result from binary mixing of melts of enriched mafic and depleted peridotitic lithologies

at different upwelling rates. However, Sims et al. (2002) observed that the sloped array

produced by data from 9-10oN EPR mid-ocean-ridge basalts (MORB) did not fit this

model, because although the steep slope observed would be expected for a fast-spreading

ridge such as the EPR, the radiogenic isotopes indicated a homogeneous mantle source.

Sims et al. (2002) instead suggested that deep melts of a garnet peridotite, extracted in a

high-porosity channel, could mix with shallower melts to produce the observed U-Th

systematics. They suggested that the negative correlation between (230Th/238U) and

(226Ra/23oTh) disequilibria for the 9-10N lavas, whose ages are young compared to the

half-life of 226Ra supported this scenario, since only shallow melts can preserve large

226Ra excess (we note that this correlation was also observed for the Juan de Fuca and

Gorda Ridges, but the ages of those samples were uncertain relative to the half-life of
226Ra (KELEMEN et al., 1997; SIMS et al., 1995; VOLPE and GOLDSTEIN, 1993)). Deep

melts with strong garnet signatures (large 230Th excesses) cannot preserve 226Ra excess

during melt transport to the surface, while melts with smaller 230Th excesses or even 238U

excesses come from shallower depths in the melt column and can better preserve 226Ra

excesses during their shorter melt transport times.

Klein and Langmuir (1987) observed that the depth to mid-ocean ridge axes

correlates with both the degree and the mantle depth of MORB melting, as indicated by

major elements in the lavas (i.e. Na8 and (Ca/Al) 8 for degree of melting, and Fe 8 for depth

of melting). They suggested that this indicates that a thicker crust is produced by a longer

melt column and higher degree of melting. Bourdon et al. (1996b) later observed that the

measured (230Th/ 238U) for MORB inversely correlates with depth to the ridge axis. They
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suggested that a thicker crust (i.e. higher degree of melting) and correspondingly deeper

melt column produce larger 230Th-excess by generating more melt in the garnet stability

field. Our new measurements from the slow- to ultraslow-spreading ridges north of

Iceland range from the thick crustal endmember of Klein and Langmuir (1987), the

Kolbeinsey Ridge (averaging 1100 m deep) to the deep Gakkel Ridge (up to 5000 m

deep; see Figure ib), making this region ideal for examining the relationship between

238U-230Th disequilibria and axial depth.

The mantle beneath the Mohns Ridge and the Knipovich Ridge is hypothesized to

contain trapped subcontinental lithospheric material, based on long-lived radiogenic

isotope systematics of MORB from those ridges (Blichert-Toft et al., 2005). This region

provides a contrast to our findings in Chapter 3 for the Kolbeinsey Ridge, where the

measured samples show very little isotopic variability (BLICHERT-TOFT et al., 2005;

DEVEY et al., 1994; MERTZ et al., 1991; MERTZ and HAASE, 1997; SCHILLING et al.,

1999). The Mohns and Knipovich Ridges thus provide an opportunity to evaluate the

influence of source heterogeneity on U-series isotope variations at similarly slow

spreading rates to the Kolbeinsey Ridge.

Uranium-series analysis of Arctic lavas thus provides an endmember test for 1)

the robustness of the two-porosity melting model for the full range of oceanic spreading

rates, 2) the role of mantle heterogeneity, and 3) the relationship between crustal

thickness and melt process. In this study we present the results of 238U, 230Th, 226Ra, and

210Pb isotopic analysis for a suite of 27 samples from the Arctic MOR system, and then

we compare these results with data from the Kolbeinsey Ridge (see Chapter 3) as well as

the global ridge system. We find that melt composition is generally controlled by mantle

temperature as well as variations in the process of melting and melt extraction in a

peridotitic melting column, but that the presence of significant compositional mantle

heterogeneities can also influence melt composition.
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4.2. GEOLOGIC SETTING

Overall, the oceanic basins north of Iceland are relatively young in age. Rifting

between Greenland and Eurasia began at 53-55 Ma, forming the Aegir, Jan Mayen,

Mohns, and Gakkel Ridges (Blichert-Toft et al., 2005; Glebovsky et al., 2006; Schilling

et al., 1999; Shipilov, 2008). At 45 Ma, a north-propagating rift axis initiated to the west

of the Jan Mayen Ridge, simultaneous with continued Aegir Ridge spreading. The

northern propagation of this early Kolbeinsey Ridge led to the breaking off of a fragment

of the Jan Mayen Ridge around 43 Ma, and by 26 Ma spreading ceased on the Aegir

Ridge and continued solely on the Kolbeinsey Ridge, trapping a fragment of continental

lithospheric material south of Jan Mayen Island. At 25 Ma the spreading direction of the

Mohns Ridge changed from NNW-SSE to NW-SE (Mjelde et al., 2008a). It has been

suggested that the transform between the Mohns and Gakkel Ridges then began to

experience spreading, developing into what is now the highly oblique Knipovich Ridge

(e.g. (Okino et al., 2002)). (See Figure 1 for a regional map and sample locations for this

study.)

Crustal thickness varies widely along the Arctic ridge system. Thicknesses along

the Kolbeinsey Ridge axis reach 15 km (Kodaira et al., 1997; Mjelde et al., 2008b), most

likely due to its proximity to Iceland and consequently hotter mantle temperatures.

Spreading is nearly orthogonal to the ridge axis (spreading rate is -18 mm/yr.; (Breivik et

al., 2006; Mosar et al., 2002)) and the ridge is volcanically active along its entire length.

The Mohns (17 mm/yr. spreading rate (Mosar et al., 2002)) and Knipovich Ridges (up to

16 mm/yr.; (Mosar et al., 2002)) have estimated crustal thicknesses of 4 to 8 kin, based

on seismic data (Kandilarov et al., 2008; Klingelhofer et al., 2000; Ljones et al., 2004;

Okino et al., 2002). The Mohns Ridge spreads NW-SE, which is oblique to the

orientation of the axis, and Knipovich Ridge spreading is even more highly oblique (35 -

490 obliquity; (Okino et al., 2002)). The ultraslow Knipovich Ridge contains amagmatic

as well as magmatic sections, and the ridge axis is located in a series of pull-apart basins

along the strike of the ridge that are underlain by small-scale transform structures
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Figure 1. a) Regional map showing dredge and dive locations of samples analyzed in this study,
with recent bathymetric data by Smith and Sandwell (1997) and Jakobsson et al. (2008). b)

Bathymetric and topographic profile along the Arctic ridge system, showing sample locations for

this study.
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(Okino et al., 2002). Gakkel Ridge crust, due to the cold, thick lithosphere underlying

ultraslow spreading centers, is extremely thin (5 3 km) and amagmatic in many locations,

with local thickening beneath isolated active volcanoes along the ridge axis (Jokat and

Schmidt-Aursch, 2007). Gakkel is divided into three regions with distinct morphology

and volcanic character: the Western Volcanic Zone (WVZ), which has active magmatic

centers along its length and spreads at -13 mm/yr.; the Sparsely Magmatic Zone, where

spreading is mainly amagmatic; and the EVZ, where volcanism occurs at discrete

volcanic centers and spreading rate is less than 12 mm/yr. (Goldstein et al., 2008;

Michael et al., 2003).

Previous work (Blichert-Toft et al., 2005; Devey et al., 1994; Mertz et al., 1991;

Mertz and Haase, 1997; Schilling et al., 1999) has shown that MORB from the

Kolbeinsey Ridge are overall radiogenic-isotope depleted as well as extremely trace-

element depleted. Isotopic ratios are more enriched near Iceland and also near the Jan

Mayen Platform and Fracture Zone (FZ) (Mertz et al., 2004), though trace elements

remain depleted as far south as the Tjirnes FZ just offshore of the northern Icelandic

margin (Figure 2). Elevated 3He/4He ratios with approach to Iceland along the Kolbeinsey

Ridge suggest that the increased isotopic enrichment near Iceland is related to the

Icelandic hotspot (Schilling et al., 1999). There is no such anomaly near Jan Mayen,

however, and other sources for the increased isotopic enrichment have been suggested for

the area near the Jan Mayen FZ. Haase et al. (1996) suggested that Jan Mayen may be the

result of a locally wetter mantle, preferentially tapping mantle heterogeneities, or that

there may be trapped lithospheric material present from early basin formation. Tronnes et

al. (1999) suggested that Jan Mayen represented a small microplate of rifted Greenland

material that is experiencing a relatively low degree of melting.

MORB north of the Jan Mayen FZ show variable amounts of isotopic and trace

element enrichment, but are generally more enriched than the Kolbeinsey Ridge.

Blichert-Toft et al. (2005) performed a principal-component analysis for the Kolbeinsey,

Mohns, and Knipovich Ridges, and they suggested that while along the Kolbeinsey all of
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Figure 2. Distance along the Arctic ridge system vs. isotopic and trace element data in MORB
(BLICHERT-TOFT et al., 2005; COHEN et al., 1980; CONDOMINES et al., 1981; DEVEY et al., 1994;
DUPRE and ALLEGRE, 1980; FURMAN et al., 1991; GOLDSTEIN et al., 2008; HAASE et al., 2003;
HANAN et al., 2000; HARDARSON and FITTON, 1997; HARDS et al., 1995; HEMOND et al., 1993;
HILTON et al., 2000; MERTZ et al., 1991; MERTZ and HAASE, 1997; MURTON et al., 2002;
NEUMANN and SCHILLING, 1984; O'NIONS and PANKHURS.RJ, 1973; PEATE et al., 2001; POREDA
et al., 1986; SALTERS and WHITE, 1998; SCHILLING, 1975; SCHILLING et al., 1999; SCHILLING et
al., 1983; SIGURDSSON, 1981; STECHER et al., 1999; STRACKE et al., 2006; STRACKE et al.,
2003a; STRACKE et al., 2003b; SUN and JAHN, 1975; THIRLWALL et al., 2004; WAGGONER,
1989). New data from this study are shown as blue data points.
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the variance can be explained by mixing between "depleted MORB mantle" (DMM) and

"FOZO" (Hart et al., 1992) source components, the more northerly ridges have additional

input from a more enriched source, though it was not possible to discern the exact

composition of that enriched component. Anomalously depleted EHf values relative to ENd

for these two ridges were cited by Blichert-Toft et al. (2005) to suggest the presence of

streaks of subcontinental lithospheric material in the mantle beneath Mohns and

Knipovich Ridges.

Goldstein et al. (2008) observed that Gakkel Ridge lavas from the WVZ are

distinct from those in the EVZ. WVZ lavas have a Pb isotope "DUPAL" signature that

the EVZ MORB lack, suggesting the presence of subcontinental material trapped in the

WVZ mantle as well; Goldstein et al. (2008) suggested that this material was a remnant

from Svalbard-Greenland rifting.

In Chapter 3, we found that Kolbeinsey MORB have high (230Th/2 38U) for a

relatively narrow span of (230Th/232Th), as shown in Figure 3. These lavas have a

relatively narrow range of 87Sr/86Sr, ENd, EHf, La/Yb, and Pb isotopic values, indicating a

relatively homogeneous mantle source. 230Th-excess in mantle melts requires melting in

the presence of garnet (Du > DTh; (BEATTIE, 1993a; BEATTIE, 1993b; HAURI et al., 1994;

LA TOURETTE and BURNETT, 1992; LA TOURETTE et al., 1993; SALTERS and LONGHI,

1999; SALTERS et al., 2002) or high-pressure clinopyroxene (Landwehr et al., 2001;

Wood et al., 1999). In Chapter 3 we argued for a deep melt column to produce these

lavas. Trace elements suggest a young, depleted mantle source.

As described in Chapter 3, lavas from the Kolbeinsey Ridge north of 70.6N,

unlike other Kolbeinsey MORB, demonstrate enriched isotopic and trace element

signatures associated with the adjacent Jan Mayen Ridge and Fracture Zone (MERTZ et

al., 2004). We thus expect the far-north Kolbeinsey Ridge samples reported in Chapter 3

to be more similar to southern Mohns Ridge samples with enriched radiogenic isotopes

than to the rest of the Kolbeinsey Ridge.

Samples measured for this study comprise dredged basaltic glasses from cruises

R/V Trident leg 139 in 1971, R/V Endeavor leg 26 in 1973, and a R/V Professor
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Figure 3. (238U/232 Th) VS. (2 30Th/ 232 Th) "equiline" diagram showing data from Chapter 3
(Kolbeinsey Ridge data points) and this study (Mohns Ridge, Knipovich Ridge, and Gakkel
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SIMS et al., 2002; STURM et al., 2000; TEPLEY et al., 2004), OIB (BOURDON et al., 1998;
CLAUDE-IVANAJ et al., 1998; CLAUDE-IVANAJ et al., 2001; PIETRUSZKA et al., 2001;
SIGMARSSON et al., 1998; SIMS et al., 1999a; SIMS et al., 1995; SIMS and HART, 2006; SIMS et
al., 2008; TURNER et al., 1997; WIDOM et al., 1997), and Iceland (KOKFELT et al., 2003;
STRACKE et al., 2003a; STRACKE et al., 2003b) fields in blue, red, and gray for comparison,
respectively. Samples from north of 70.6oN on the Kolbeinsey Ridge, which are enriched and
isotopically distinct, are separated from the rest of the Kolbeinsey data and more closely resemble
Mohns Ridge and Knipovich Ridge samples. These northern Kolbeinsey samples and the
Knipovich Ridge data both form sloped arrays. Age-constrained Mohns Ridge 23 8U-2 30Th data
(Table 2; see Section 4.4) cluster tightly at the enriched end of these arrays. Gakkel Ridge
samples are highly depleted and homogeneous and range from 5% 230Th excess to 5% 238U
excess.
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Logatchev cruise to the Knipovich Ridge in 1996, and samples retrieved by the Camper
ROV on the R/V Oden Expedition 1 l/AGAVE cruise to the Gakkel Ridge (2007). The
full suite of samples for which new data are reported in this study are listed in Table 1
and shown in Figure 1.

4.3. RESULTS

4.3.1. 238 U- 234U

We analyzed (2 34U/ 238U) by Plasma Ionization Multi-collector Mass Spectrometry
(PIMMS) at the Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA and
the University of Bristol, Bristol, UK (Table 2). (2 34U/238U) is sensitive to contamination
with seawater, which has (2 34 U/ 2 38U) = 1.14, while newly erupted basalt has (234U/238U) in

equilibrium (i.e. (2 3 4U/238U) = 1.000) (HENDERSON et al., 1993; Ku et al., 1977). All

analyses were performed on handpicked glass shards. We restrict further consideration of
our samples to those samples with (234U/2 38U) = 1.000 + 0.5%, which indicates minimal
post-eruption alteration of the rock. Four samples are excluded by this method. As in
Chapter 3, one sample was not successfully measured at WHOI and three samples from
Kiel, Germany (see Section 4.3.2) do not have measurements for (2 34U/2 38U). However,
Figure 4 shows that unlike for Kolbeinsey Ridge, there is not a clear systematic

relationship between (234U/238U) and (230Th/238U) for the more northerly ridges. For this
reason and because they have relatively high (230Th/238U), we consider the 230Th-238U
disequilibrium measurements for samples without measured (234U/238U) results at face

value.

4.3.2. 238U- 230Th

(230Th/238U) results are reported in Table 2 (Figure 5) and were measured by
PIMMS at WHOI (methods as in (BALL et al., 2008; SIMS et al., 2008)), the University of
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Bristol (methods as in (HOFFMANN et al., 2007; SIMs et al., 2008)), and the Institute of

Geosciences, Kiel University, Kiel, Germany (methods as in (FRETZDORFF et al., 2003)).

We plot measured (238U/232Th) vs. (230Th/W232Th) from this study on an "equiline" diagram

in Figure 3. As described above, in Chapter 3 we found that lavas from the Kolbeinsey

Ridge form a nearly horizontal array that ranges from large 230Th excesses to small 238U

excesses.

Mohns Ridge samples with age constraints (Table 2; see Section 4.4 below)

cluster with a mean 230Th excess of 22%. Knipovich Ridge lavas form a sloped array with

(238U/232Th) = 0.76 + 0.02 to 0.940 + 0.004 and a slope of 1.0 in Figure 3, and the three

samples from the Kolbeinsey Ridge north of 70.6oN also form a steep slope (1.9)

(Chapter 3). Both the far-north Kolbeinsey Ridge and the Knipovich Ridge data arrays

intersect the Mohns Ridge data field. Samples from 85°E on the Gakkel Ridge also

cluster tightly, and they span a narrow range of (230Th/238U) values from 0.95 ± 0.02

(small 238U excess) to 1.05 + 0.02 (small 230Th excess).

4.3.3. 23°Th- 226Ra

Though we were sample limited, where possible we measured (226Ra/23oTh) for

our sample suite; all analyses of (226Ra/230Th) were conducted by PIMMS at WHOI (SIMS

et al., 2008). We measured 15 samples with 226Ra excesses (Table 2). Figure 6 shows our

(226Ra/230Th) - (230Th/238U) isotope results together with global data. These data strongly

support the negative global correlation described below and in the literature (Sims et al.,

2002). Note that without age constraints for the data, these 226Ra excesses are minima

(see Section 4.4).

4.3.4. 226Ra-21pb

We measured 210Pb (t/2 = 22.6 ± 0.1 yrs. (Holden, 1990)) by alpha counting of

210po at the University of Iowa in four fresh, glassy samples from the Gakkel Ridge
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(Table 2). Uncertainties for the alpha counting measurements (20) range from 7-11%

(Table 2). Sample Camper 13-1 has a 21oPb deficit ((21oPb/226Ra) = 0.89 + 9%), and is the

only sample out of equilibrium.
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Figure 4. (234U/238U) VS. (230Th/238U) diagram showing results from Chapters 3 and 4. Unlike the

Kolbeinsey Ridge (Chapter 3), the more northern ridges show less systematic patterns of seawater

alteration.
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4.3.5. Radiogenic Isotope Analyses

Isotopic as well as major and trace element data are available from the literature

for some of our samples (Blichert-Toft et al., 2005; Hanan et al., 2000; Neumann and

Schilling, 1984; Schilling et al., 1999; Schilling et al., 1983; Sigurdsson, 1981;

Waggoner, 1989). We measured radiogenic isotopes in those samples that lacked such

data (Table 3). Hf and Nd isotope ratios were measured by PIMMS at l'Ecole Normale

Superieure (I'ENS) de Lyon (methods as in (BLICHERT-TOFT, 2001)), and both Sr and Pb

isotope ratios and replicate Nd isotope ratios were measured by PIMMS at WHOI (SIMS

and HART, 2006; TARAS and HART, 1987; TODT et al., 1996; WHITE et al., 2000). Our

new results agree well with previous observations for the region (Figure 2; (Blichert-Toft

et al., 2005)), and the replicate 143Nd/ 144Nd results reported in Table 3 show good interlab

agreement within respective uncertainties.

Radiogenic isotopes in Gakkel Ridge lavas from the 85oE volcano on the EVZ are

homogeneous and depleted (Table 3). In keeping with observations by Goldstein et al.

(Goldstein et al., 2008) for EVZ lavas, the 85oE samples do not show a DUPAL anomaly,

but are instead systematically depleted in all Pb isotope ratios (e.g. 208pb/206Pb = 2.087 -

2.093).

4.4. AGE CONSTRAINTS

With time, U-series disequilibria undergo radioactive decay that returns systems

to a state of secular equilibrium within -5 half-lives of the daughter nuclide in question.

Thus, age constraints are necessary for correct interpretation of the measured U-series

data in MORB. In the absence of age constraints, measured disequilibria can be treated as

minimum values only.

As discussed in Chapter 3, Kolbeinsey Ridge lavas erupted through thick glacial

outwash sediments and are thus constrained to be younger than the last glacial maximum

(10 ka). This is young enough that (230Th/238U) disequilibria from Kolbeinsey Ridge can
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Figure 6. (226Ra/230Th) vs. (230Th/238U) disequilibria data for this study and Chapter 3, with global

MORB and OIB data (BOURDON et al., 1998; LUNDSTROM et al., 1999; PEATE et al., 2001; SIMS

et al., 1999a; SIMS et al., 2002; SIMS and HART, 2006; STRACKE et al., 2006; STURM et al., 2000;

TEPLEY et al., 2004; TURNER et al., 1997) for comparison. a) Full global data set, and b) scaled to

show samples with (226Ra/230Th) at or near equilibrium. Symbols as in Figure 3. Global OIB have

relatively low 226Ra excesses, while MORB data form a negative correlation that is suggested to

indicate mixing of melts from different depths in MOR melting columns (SIMS et al., 2002).

be treated as unperturbed by decay associated with eruption age.

For the new MORB data we report in this study there is no such stratigraphic

constraint on eruption age. Where we measure (226Ra/230Th) out of equilibrium, we can

treat (230Th/2 3 8U) data as young enough to be unperturbed. Without younger time

constraints we must treat all (226Ra/ 23oTh) disequilibria as minima. The exception is the

sample Camper 13-1 from the Gakkel Ridge, for which we measured a 2 10Pb deficit,

indicating an eruption age less than 100 years old. That all Gakkel rocks analyzed have

similar 238U-230Th-226Ra systematics and are very fresh, glassy samples suggests that all

of the samples from 85oE are similarly young.
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4.5. ARCTIC MELT GENERATION

In Chapter 3, we calculated a series of forward model melt trajectories to explore

the means by which our measured Kolbeinsey data could be generated by mantle melting

processes. We suggested that melting of a relatively homogeneous, depleted, young

mantle source in a long melt column could best reproduce the data.

Unlike on the Kolbeinsey Ridge, with its relatively homogeneous source

composition, we observe a systematic relationship between isotopic composition and

(230 Th/238U) for the more northerly Knipovich Ridge (Figure 7). Arguably, this

relationship may in fact apply to all samples from the Mohns, Knipovich, and far-north

Kolbeinsey Ridge, since 1) similar mantle source variations have been suggested for the

Mohns and Knipovich Ridges, 2) the Knipovich and far-north Kolbeinsey Ridge arrays

form relatively steep slopes (1.0 and 1.9, respectively) and occupy a similar range in

(230Th/232Th) (0.905-1.130 and 0.957-1.090, respectively), and 3) both arrays intersect the

relatively enriched Mohns Ridge data. Thus, for at least the Knipovich Ridge lavas, and

possibly for all three areas, mantle heterogeneity may play a role in generating U-Th

isotope systematics. In Chapter 3 we observed that models that examined melting of two

different mantle lithologies (a peridotite and one of two more mafic lithologies, either

eclogite or silica-poor garnet pyroxenite) could not reproduce the Kolbeinsey

systematics; however, such a scenario may be able to reproduce the Knipovich Ridge,

northernmost Kolbeinsey Ridge, and possibly also Mohns Ridge data. The high

productivities and deep solidi of mafic lithologies, addressed in Chapters 2 and 3, do not

pose a problem for generating steeply sloping arrays by mixing of melts, as shown in

Figure 8.

Using the same techniques for two-lithology melting described in detail in

Chapter 3, in Figure 8 we plot trajectories for one possible melting and binary melt

mixing scenario, in which an enriched, dynamic eclogite melt (initial (238U/232Th) = 0.6,

similar to a Samoan-type end member (SIMS and HART, 2006)) mixes with the reactive

porous flow melt of a depleted peridotite (initial (2 38U/232Th) = 1.25, as in Chapter 3).
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Figure 7. 87 Sr/86Sr vs. (230Th/232Th) (top panels), (238U/232Th) (middle panels), and (230Th/ 238U)
(bottom panels), with symbols as in Figure 3; radiogenic isotope data from this study and the
literature (BLICHERT-TOFT et al., 2005; HANAN et al., 2000; NEUMANN and SCHILLING, 1984;
SCHILLING et al., 1999; SCHILLING et al., 1983; SIGURDSSON, 1981; WAGGONER, 1989). The
position on the sloped array for Knipovich Ridge (e.g. (238U/232Th)) does form a correlation,
indicating that source composition may control the slope of the array shown in Figure 3. Gakkel
Ridge samples are universally isotopically depleted.
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The melting scenario in Figure 8 can readily reproduce the Knipovich Ridge basalts, and

a range of different melt models could also produce binary melt mixtures that

approximate the Knipovich Ridge array (e.g. mixing melts of depleted and enriched

garnet peridotite lithologies. Such compositional heterogeneity agrees with previous

suggestions for a heterogeneous mantle underlying the Mohns, Knipovich (BLICHERT-

TOFT et al., 2005), and Western Gakkel Ridges (Goldstein et al., 2008).

EVZ Gakkel Ridge basalts erupt through thin crust (JOKAT and SCHMIDT-

AURSCH, 2007), and major element data (e.g. Nas) indicate that they are the result of

smaller degrees of melting than MORB from the other Arctic ridge segments

(HELLEBRAND et al., 2002). The one sample with measured 238U excess (Camper 23-1) is

dominated by relatively shallow melting with no garnet present, and the presence of large

226Ra excesses in all of the 850E samples implies that melt must interact with solid mantle

until relatively shallow depths for all samples, and that deep melting in the presence of

garnet is minimal. While this indicates a relatively short mantle melting column, even

small 230Th excesses like those measured in Camper samples 13-1 and 19-1 generally is

interpreted to require the presence of garnet. As shown in Elkins et al. (2008), however,

spinel peridotites containing clinopyroxene (Cpx) with M2 site radii smaller than 1.0 A
could plausibly produce small 230Th excesses, though most naturally occurring Cpx for

which this is the case are aluminous and occur deep (BEATTIE, 1993a; BEATTIE, 1993b;

HAURI et al., 1994; LA TOURETTE and BURNETT, 1992; LA TOURETTE et al., 1993;

LANDWEHR et al., 2001; SALTERS and LONGHI, 1999; SALTERS et al., 2002; WOOD et al.,

1999). These 230Th excesses, however, are small compared to most MORB. Such

ultraslow-spreading ridges are expected to have a thick lithospheric cap, so we envision a

short melting column that is capped as far as 50 km below the surface. The strikingly

high (226Ra/23oTh) values we measure strongly favor shallow mantle-melt interaction for

the lavas from 85°E Gakkel Ridge. This is supported by the high MgO contents and high

Na8 of Gakkel lavas (HELLEBRAND et al., 2002; MICHAEL et al., 2003).
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4.6. GLOBAL MORB PETROGENESIS

We compare data from this study with global MORB and OIB data in Figure 6,

Figure 8, and Figure 9. Figure 6 shows that the Gakkel Ridge data, with their low

(230Th/238U) near the equiline and high (226Ra/230Th) ranging from 3.07 to 3.65 + 3%,

corroborate the global inverse trend observed by Sims et al. (2002): the data from this

study lie along the negative (226Ra/230Th) - (230Th/238U) correlation for global MORB.

This supports the model that overall MORB are mixtures of deep and shallow (or

shallow-reacting) melts in a two-porosity system (JULL et al., 2002; KELEMEN et al.,

1997; SIMS et al., 2003; SIMs et al., 1995; SIMS et al., 2002).

In Figure 9a we add data for the sloped Knipovich array to a global compilation of

calculated ridge segment slopes. Previously Lundstrom et al. (2003; 1998b) observed a

positive trend between spreading rate and slope (excluding FAZAR data because of

proximity to the Azores, which implies possible effects of active upwelling), which they

suggested arose from binary mixing of enriched and depleted melts in different upwelling

regimes. As discussed above, Sims et al. (2002) noted that the data array for 9-10N on

the EPR, which seemed to contribute to the positive correlation, was not in fact produced

by source heterogeneity. This means that the slope of a MORB array is not solely the

product of upwelling rates and mixing of melts from heterogeneous source materials. On

the other hand, our new Knipovich Ridge data may be controlled by source

heterogeneity; however, the slope is much steeper than that predicted by the correlation

observed by Lundstrom et al. (1998b). Even when there is a clear mantle heterogeneity

control over the slope of an array on an equiline diagram, the prediction of shallower

slopes in regions with slower upwelling does not hold true in all cases. This could reflect

the effects of different "enriched" mantle source compositions in different locales, for

example. Thus, a combination of factors (initial source compositional variations

preserved in the long-lived radiogenic isotope signatures of the melts, as well as

progressive source depletion within the melting column) contribute to the slopes
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produced, indicating MORB melting is not simply the result of mixing between melts of

heterogeneous sources, as suggested by Lundstrom et al. (2003; 1998b).

0.4 0.6 0.8 1.0 1.2 1.4

(238 U/232Th)

Figure 8. Equiline diagram showing melting model calculations described in Section 5, after

Chapter 3. Red line indicates the dynamic melt trajectory for an enriched eclogitic mantle source,

and the blue line shows a reactive porous flow garnet peridotite melt. The black dashed lines

show possible binary mixtures between these melts (0.1% melt of peridotite with 50% melt of

eclogite, and 6% melt of peridotite with 100% melt of eclogite). Symbols and fields as in Figure

3. Such a mixing scenario can readily produce the sloped Knipovich and northern Kolbeinsey

arrays. A scenario where an enriched peridotite melts instead of an eclogite can also produce

plausible mixing trajectories.
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In Figure 9b we plot (230Th/238U) vs. axial depth for the global data set, after

Bourdon et al. (1996) and Chapter 3. Large data points show the average depth and

(230Th/238U) for each ridge segment. Overall the negative trend observed and modeled by

Bourdon et al. (1996b) is supported by the global data, if the mean (230Th/ 238U) produced

is considered to reflect an average depth in the melting column (where length of the

column controls the relative amount of melt produced in the garnet stability field).

Bourdon et al. (1996b) explained this correlation by inferring a mantle temperature

control over melt column depth (i.e. the depth to the peridotite solidus). Thus on average,

peridotite melting controls the global production of MORB. That the variance seen at

individual ridge segments does not obey the predicted trend suggests that the spread of

(230Th/238U) data (like the slope of an array) is influenced by factors other than mantle

temperature. Mantle heterogeneity is likely one important factor in places like the

Knipovich Ridge.

We thus concur with Bourdon et al. (1996b) that mantle temperature and length of

peridotitic melt columns, and thus the mean degree of melting, determines the broad,

global systematics of 238U-230Th variations. This encourages us to believe that while

minor lithologic heterogeneities surely exist in the mantle and may influence melt

composition in some localities, overall MORB production mechanisms are controlled by

the melting of peridotite everywhere. Such broad variations are predicted by Sims and

Hart (2006), and are a function of the large, variable melt fractions and predicted melting

column lengths of MORB, which globally have large (230Th/ 238U) and correspondingly

small 87Sr/ 86Sr variations, while OIB show the opposite relationship due to their shorter

melting columns, lower degrees of melting, and heterogeneous source signatures that

overwhelm melt process signals (Figure 10). In keeping with these observations,

variations in upwelling rate and mantle compositional variability can affect the variance

of measured 238U-23oTh data and the sloped arrays produced on an equiline diagram by

individual ridge segments.

121



FAZAR

1.5

I-

0 1.0

r 0.5
e-- *

N*

C 0.0

-0.5

0 20 40 60 80

Half-spreading rate (mm/yr) a

122



2000
3000

3000

4000
4000 5000

Axial Depth (m)

A

0o

0 AA4 A

*" A

0 0

o •
o e •

V
0

Figure 9. a) Diagram of slopes of arrays on equiline diagrams vs. spreading rates for discrete
MOR segments ((LUNDSTROM, 2003) and refs therein), after Lundstrom et al. (1998, 2003). Our
new Knipovich array does not agree with the positive correlation previously observed. Open
circles indicate alpha counting data, which have larger uncertainties than mass spectrometric data.
b) Diagram of measured (230Th/238U) vs. axial ridge depth for global ridge data ((BOURDON et al.,
1996b; LUNDSTROM, 2003) and refs therein), showing both full data sets (small data points) and
ridge averages (larger symbols), after Bourdon et al. (1996). The trend for mean ridge data
supports the suggestion by Bourdon et al. (1996) that regional mantle temperature controls depth
of peridotite melting and (230Th/ 238U), but the variations of individual ridge segments are
influenced by other factors and do not as clearly follow this trend. This likely reflects variable
sampling of deep and shallow melts in two-porosity systems, coupled with variations in the
amount of mixing in magma chambers.
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4.7. CONCLUSIONS

In Chapter 3 we found that MORB from the Kolbeinsey Ridge north of Iceland

have universally high 230Th excesses which are best explained by a deep peridotite melt

column and a young, depleted, relatively homogeneous mantle source that experiences a
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large degree of melting to produce the thick crust and observed major element

systematics of the lavas.

Here we find that basalts from 850E on the Gakkel Ridge are highly homogeneous

and have low (230Th/238U) ranging from 5% 230Th excess to 5% 238U excess, with large

(226Ra/230Th) ratios, all greater than 3. These samples lie on the negative global

correlation between (226Ra/230Th) and (230Th/238U) observed by Sims et al. (2002),
indicating that the Gakkel MORB are the result of mixing of melts extracted from

different depths during upwelling.

MORB from the Kolbeinsey Ridge immediately adjacent to the Jan Mayen FZ,
from the Mohns Ridge, and from the Knipovich Ridge are more isotopically enriched

than either the Kolbeinsey or Gakkel Ridge lavas. Far-north Kolbeinsey and Knipovich

basalts form sloped arrays on an equiline diagram that intersect the relatively enriched

Mohns Ridge data. We observe a correlation between position on the sloped arrays (e.g.

(238U/2 3 2Th)) and radiogenic isotopic composition (e.g. 87 Sr/ 86Sr), suggesting that 238U-
230Th data in these MORB are controlled by heterogeneity in the mantle source, unlike

the majority of Kolbeinsey Ridge lavas or MORB from 85oE on the Gakkel Ridge. This

heterogeneity likely reflects the presence of trapped subcontinental lithospheric material

in the subsurface beneath these ridges (BLICHERT-TOFT et al., 2005). Despite this source

heterogeneity control, the slope of the data array is steeper than that predicted by

Lundstrom et al. (1998b), suggesting that the relationship they predicted for array slopes

and upwelling rates does not sufficiently account for global source compositional

variations.

We argue that global MORB (230Th/2 38U) is controlled, on average, by mantle

temperature and, thus, by the depth of peridotite melting, as suggested by Bourdon et al.

(1996b). The range of (230Th/2 38U) observed and slope on an equiline diagram, however,

is affected by factors such as progressive source depletion in a two-porosity melting

regime, the presence as well as the compositional range of isotopic and/or lithologic

heterogeneities in the source, and variable mixing in crustal magma chambers.
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Table 1. Locations, collection data, and cruise descriptions for samples analyzed in this study.

Sample*
END0026-009-001 G
TRI0139-030-002G
END0026-010-001G
END0026-010-003G
END0026-011-001G
TRI0139-031-002G
END0026-012-002G
TRI0139-032-001G
END0026-014-001G
TRI0139-033-002G
END0026-015-001G
END0026-016-001G
END0026-032-003G
END0026-030-001 G
END0026-021-001G
END0026-025-002G
PL96 67-2
PL96 57-1
PL96 54-3
Camper 12-1

Camper 13-1

Camper 19-1

Ridge
Mohns
Mohns
Mohns
Mohns
Mohns
Mohns
Mohns
Mohns
Mohns
Mohns
Mohns
Mohns
Mohns

Knipovich
Knipovich
Knipovich
Knipovich
Knipovich
Knipovich

Gakkel

Gakkel

Gakkel

Cruise
R/V Endeavour 26
R/V Trident 139

R/V Endeavour 26
R/V Endeavour 26
R/V Endeavour 26

R/V Trident 139
R/V Endeavour 26
R/V Endeavour 26
R/V Endeavour 26

R/V Trident 139
R/V Endeavour 26
R/V Endeavour 26
RN/V Endeavour 26
R/V Endeavour 26
RIV Endeavour 26
R/V Endeavour 26

R/V Professor Logatchev
R/V Professor Logatchev
R/V Professor Logatchev

R/V Oden 11

RN/V Oden 11

R/V Oden 11

Year Lat. (°N) Long. (oE) Depth (m) Description
1973 71.6420 -3.0570 2220 Fresh basalt glass.
1971 71.8200 -2.0800 2550 Fresh basalt glass.
1973 71.8880 -1.3930 2900 Fresh basalt glass.
1973 71.8880 -1.3930 2900 Fresh basalt glass.
1973 71.9900 -0.6500 2340 Fresh basalt glass.
1971 72.1800 0.2300 2462 Fresh basalt glass.
1973 72.3230 1.4820 2525 Fresh basalt glass.
1973 72.6080 3.3750 3020 Fresh basalt glass.
1973 72.8100 4.2630 2540 Fresh basalt glass.
1971 73.0100 5.1800 2900 Fresh basalt glass.
1973 73.2150 6.4380 2840 Fresh basalt glass.
1973 73.4050 7.3880 2623 Fresh basalt glass.
1973 73.5200 8.1080 2288 Fresh basalt glass.
1973 74.1950 8.8350 3210 Fresh basalt glass.
1973 76.5570 7.1880 2810 Fresh basalt glass.
1973 77.5280 7.6720 2925 Fresh basalt glass.
1996 76.8170 7.4180 3400 Fresh basalt glass.
1998 76.8170 7.4180 3400 Fresh basalt glass.
1999 76.8170 7.4180 3400 Fresh basalt glass.
2007 85.6263 85.2398 4000 Fresh basaltic glass fragments

Sediment consisting dominantly of

2007 85.6138 85.3242 4116 fresh basaltic glass shards (>80%),
small crystallized basaltic fragments,
and foraminifera tests
Sheet flow with drape textures. Glassy

2007 85.6047 85.2517 3910 outer surfaces, some showing slight
weathering. Fine grained; plag. mpc.
<<1%.



Table 1. (cont.)

Sample* Ridge Cruise Year Lat. (°N) Long. (°E) Depth (m) Description

Camper 20-1

Camper 23-1

Camper 23-1 glass

Camper 25-1

Gakkel

Gakkel

Gakkel

Gakkel

R/V Oden 11

R/V Oden 11

R/V Oden 11

R/V Oden 11

Pillow bud broken from large pillow.
Glassy outer rim up to 1 cm thick -
fresh except for outer layer that has
white alteration along cracks in glass.
Glassy, large pillow bud broken from
pillow. Parts of it are glass only;
interior portion is fine-grained, plag.2007 85.5992 85.5817 4131
mpc (<1%). Outer surface of some of
glass weathered; rock is fresh to slightly
weathered.

2007 85.5992 85.5817 4131 Loose glass from Camper 23-1.
Glassy, large pillow bud broken from
pillow. Interior portion is fine-grained,

2007 .85.6048 85.2845 3904 plag. mpc (<<1%). Vesicles <<1%.
Glass fresh except outer layer with
white alteration along cracks.

* All samples collected by dredge, except for Gakkel Ridge samples collected using the Camper ROV.



Table 2. Results of U-Th-Ra-Pb analyses. (234U/238U) values in bold are considered in equilibrium and thus

Sample
END0026-009-001 Ga

TRIO 139-030-002Ga, b

END0026-010-001 G
a, 

b

END0026-010-003Ga
END0026-011-001Ga
TRIO 139-031-002Ga
END0026-012-002Ga, b

TRI0139-032-001Ga
END0026-014-001Gb *

TRI0139-033-002Ga
END0026-015-001G a

END0026-016-001Ga
END0026-032-003Ga
END0026-030-001 G b *

END0026-021-001Ga
END0026-025-002Ga
PL96 67-2c *
PL96 57-1c
PL96 54-3c

Camper 12-1la
Camper 13-1la
Camper 19-1a
Camper 20-1la
Camper 23-1la
Camper 25-1a

uncontaminated by seawater.
(

234
U) /  (22 6Ra)/ -

(238U) (%) (230Th) (%

1.002 0.1 1.05 3.(
1.003 0.2 1.00 3.(
1.001 0.4 1.08 3.(
1.004 0.1 0.99 3.(

1.05 3.(

Ridge
Mohns
Mohns
Mohns

Mohns
Mohns
Mohns
Mohns
Mohns
Mohns
Mohns

Mohns
Mohns
Mohns

Knipovich
Knipovich
Knipovich

Knipovich
Knipovich
Knipovich

Gakkel
Gakkel
Gakkel

Gakkel

Gakkel
Gakkel

Th

(ppm)
1.30
2.11

0.66
0.65
1.02

0.37
1.86
0.54
0.13
0.53
0.69
0.13
0.21

1.07
0.49
0.74

0.76
0.45

0.57
0.19

0.19
0.20

0.21

0.18
0.18

)
0
0
0
0

U Pa
(ppm) (fg/g)
0.34
0.54
0.17 92.4
0.17
0.27
0.10
0.50 225.1
0.15
0.08 42.6
0.15
0.18
0.04
0.06
0.26 129.8
0.16
0.23
0.23
0.14
0.17
0.09
0.08
0.08
0.09
0.08
0.08

(230Th)/
(238U)

1.30
1.237
1.21
1.23
1.24
1.02
1.165
1.07
1.07
1.14
1.18
1.05
1.08
1.190
1.08
1.10
1.17
1.20
1.14
1.02
1.04
1.05
1.00
0.95
0.99

a Sample analyzed for U, Th concentrations and isotopes by PIMMS (ThermoFinnigan Neptune) at the University of Bristol, Bristol, UK.
b Sampleanalyzed for U, Th, and/or Ra concentrations and isotopes by PIMMS (ThermoFinnigan Element2 and Neptune) at the Woods

Hole Oceanographic Inst. (WHOI), Woods Hole, MA.
c Sample analyzed for U and Th concentrations and isotopes by PIMMS at the University of Kiel, Kiel, Germany.

-+

(%)
2.0
0.3
4.9
2.3
2.7
2.1
0.6
2.2
1.8
1.9
1.9
2.0
2.1
0.7
2.0
2.0
1.6
1.1
1.0
1.9
2.0
1.9
1.9
2.0
2.3

(
2 3 8

U) /

(232Th)
0.78

0.783
0.80
0.81
0.81
0.83

0.820
0.84
1.85
0.83
0.80
0.98
0.89
0.76
0.99
0.92

0.920
0.940
0.940
1.37
1.33
1.29
1.36
1.39
1.36

(%)
2.0
0.5
5.4
2.3
2.7
2.1
0.7
2.2
1.9
1.9
1.9
1.9
2.1
2.2
2.0
2.0
0.8
0.4
0.5
1.9
2.0
1.9
1.9
2.0
2.3

( 230 Th)/

(
2 3 2Th)

1.017
0.969
0.97

0.999
1.002
0.844
0.956
0.903
1.967
0.946
0.945
1.025
0.961
0.905
1.069
1.014
1.080
1.13

1.070
1.394
1.387
1.352
1.358
1.323
1.349

4-

(%)
0.1
0.3
3.2
0.1
0.1
0.3
0.5
0.3
1.6
0.2
0.1
0.5
0.0
0.7
0.2
0.1
1.4
1.1
0.8
0.2
0.2
0.2
0.2
0.2
0.2

0.1
0.3
0.1
0.2
0.1
0.1
0.1
0.1
0.3
0.05
0.1

0.04
0.1
0.1

0.04
0.04
0.1

0.97 3.0

0.95 3.0
1.24 3.0

1.08 3.0

1.24 3.0

1.002
1.000
1.003
1.022

1.005
1.004
1.018
1.006
0.997
1.0100
1.002

1.005
1.004
1.002

1.0033
1.0035
1.004

3.21
3.07
3.27
3.47
3.36
3.65



Table 2. (cont.)

Sample
END0026-009-001Ga
TRI0139-030-002Ga, b,

END0026-010-001G
a, b

END0026-010-003Ga
END0026-011-001G a

TRIO 139-031-002Ga
END0026-012-002G

a, 
b

TRI0139-032-001Ga
END0026-014-001Gb *

TRI0139-033-002Ga
END0026-015-001G a

END0026-016-001Ga
END0026-032-003Ga
END0026-030-001Ga"' b

END0026-021-001Ga
END0026-025-002Ga
PL96 67-2C *
PL96 57-1c
PL96 54-3c
Camper 12-1"
Camper 13-1"
Camper 19-1"
Camper 20-1
Camper 23-1 a
Camper 25-1"

(
2

10Po)d ± (10) (21 0Pb)/ -

(dpm) (%) (226Ra) (%)

0.200
0.180
0.200
0.220

0.96
0.89
0.94
0.93

10.8
8.7
9.1

11.5

d (210Pb) measured by alpha counting of 210Po at the University of Iowa, Iowa City, IA. Only sample Camper 13-1 has (210Pb/226Ra) out of
equilibrium, but it is barely out of equilibrium. Will be reproduced for publication.

* Average of two or more analyses.
± Unless listed as otherwise, uncertainy is percent 2o standard error for single analyses, and propagated percent 20 standard errors for replicates.



Table 3. Measured Sr, Pb, Nd, and Hf isotopes in samples analyzed for this study.

Sample Ridge Latitude (oN) Longitude (°E) Depth (m) 143Nd/"44Nda
TRI0139-032-001G

END0026-032-003G
Camper 12-1
Camper 13-1
Camper 19-1
Camper 20-1
Camper 23-1
Camper 23-1 glass
Camper 25-1

Mohns

Mohns
Gakkel
Gakkel
Gakkel
Gakkel
Gakkel
Gakkel

72.6080
73.5200
85.6263
85.6138
85.6047
85.5945
85.5992
85.5992

Gakkel 85.6048

3.3750
8.1080

85.2398
85.3242
85.2517
85.5275
85.5817
85.5817
85.2845

3020

2288
4000
4116
3910
4023
4131
4131

0.513065

0.513101

0.513127
0.513139
0.513134
0.513133
0.513151
0.513138

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

SNd

00005 8.33

00005 9.03
00006 9.55
00004 9.76
'00007 9.67
'00010 9.66
'00009 10.00
'00006 9.75

3904 0.513133 0.000007 9.65 0.283208 0.000004 15.43

a 17
6Hf/177Hf and 143Nd 14 4Nd measured by PIMMS at l'cole Normale Supdrieure de Lyon, and are normalized relative to 1

79Hf/177Hf = 0.7325 and
146Nd/144Nd = 0.7219, respectively. Uncertainties are 2a standard errors.

b 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 2 08spb/204Pb measured by PIMMS (ThermoFinnigan Neptune) at WHOI. Sr standard NBS987
87Sr/ 86Sr = 0.710240. Pb standard NBS981 206Pb/ 204Pb = 16.9356, 207Pb/204pb = 15.4891, and 20spb/ 204Pb = 36.7006.

* Concentration below instrument detection limit.
+ Uncertainy reported is two-sigma standard error.

0.283363

0.283388

0.283210
0.283207
0.283207
0.283216
0.283215
0.283197

0.000005

0.000005
0.000003
0.000003
0.000003
0.000004
0.000003
0.000003

20.90

21.78

15.50
15.40
15.38
15.71
15.66

15.02

i,



Table 3. (cont.)

Sample Ridge

TRI0139-032-001G Mohns

END0026-032-003G Mohns

Camper 12-1 Gakkel
Camper 13-1 Gakkel
Camper 19-1 Gakkel
Camper 20-1 Gakkel
Camper 23-1 Gakkel
Camper 23-1 glass Gakkel
Camper 25-1 Gakkel

S 206pb/204p bb 2 07Pb/
2 4pbb 208pb/2o4p bb87Sr/86Srb

0.702621
0.702626
0.702615
0.702653
0.702574
0.702574

0.702623

18.017
18.014
18.008
18.040
17.938
17.939
18.013

0.0001
0.0005
0.0003
0.0003
0.0003
0.0002
0.0003

15.436
15.436
15.434
15.438
15.427
15.428
15.436

0.0001
0.0005
0.0002

0.0003
0.0003
0.0002

0.0003

37.620
37.619
37.608
37.647
37.540
37.544
37.618

0.0006
0.002

0.0007
0.0008
0.0008
0.0004
0.001


