Measurement of Semileptonic B Decays into Orbitally Excited Charmed Mesons

(BABAR Collaboration)

1Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3INFN Sezione di Bari, Dipartimento di Fisica, I-70126 Bari, Italy
3aINFN Sezione di Bari, Dipartimento di Fisica, I-70126 Bari, Italy
3bDipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik I, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697, USA
13University of California at Los Angeles, Los Angeles, California 90024, USA
14University of California at Riverside, Riverside, California 92521, USA
15University of California at San Diego, La Jolla, California 92093, USA
16University of California at Santa Barbara, Santa Barbara, California 93106, USA
17University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18California Institute of Technology, Pasadena, California 91125, USA
19University of Cincinnati, Cincinnati, Ohio 45221, USA
20University of Colorado, Boulder, Colorado 80309, USA
21Colorado State University, Fort Collins, Colorado 80523, USA
22Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
23Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
24Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
25University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
26INFN Sezione di Ferrara, Dipartimento di Fisica, I-44100 Ferrara, Italy
26aINFN Sezione di Ferrara, Dipartimento di Fisica, I-44100 Ferrara, Italy
27INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
27aINFN Sezione di Genova, Dipartimento di Fisica, I-16146 Genova, Italy
28INFN Sezione di Genova, Dipartimento di Fisica, I-16146 Genova, Italy
29Harvard University, Cambridge, Massachusetts 02138, USA
30Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
31Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
32Imperial College London, London, SW7 2AZ, United Kingdom
33University of Iowa, Iowa City, Iowa 52242, USA
34Iowa State University, Ames, Iowa 50011-3160, USA
35Johns Hopkins University, Baltimore, Maryland 21218, USA
36Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France
37Lawrence Livermore National Laboratory, Livermore, California 94550, USA
38University of Liverpool, Liverpool L69 7ZE, United Kingdom
39Queen Mary, University of London, London, E1 4NS, United Kingdom
40University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
41University of Louvain, Louvain, Belgium
42Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
43University of Manchester, Manchester M13 9PL, United Kingdom
44University of Maryland, College Park, Maryland 20742, USA
45University of Massachusetts, Amherst, Massachusetts 01003, USA
46Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
47McGill University, Montréal, Quebeck, Canada H3A 2T8
48aINFN Sezione di Milano, Dipartimento di Fisica, I-20133 Milano, Italy
48bDipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
49University of Mississippi, University, Mississippi 38677, USA
50Université de Montréal, Physique des Particules, Montréal, Quebec, Canada H3C 3J7
51Mount Holyoke College, South Hadley, Massachusetts 01075, USA
52aINFN Sezione di Napoli, Dipartimento di Scienze Fisiche, I-80126 Napoli, Italy
52bDipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
53NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
54University of Notre Dame, Notre Dame, Indiana 46556, USA
55Ohio State University, Columbus, Ohio 43210, USA
56University of Oregon, Eugene, Oregon 97403, USA
57aINFN Sezione di Padova, Dipartimento di Fisica, I-35131 Padova, Italy
57bDipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
58Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
59University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
60aINFN Sezione di Perugia, Dipartimento di Fisica, I-06100 Perugia, Italy
60bDipartimento di Fisica, Università di Perugia, I-06100 Perugia, Italy
61aINFN Sezione di Pisa, Dipartimento di Fisica, I-56127 Pisa, Italy
61bDipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
61cDipartimento di Fisica, Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
62Princeton University, Princeton, New Jersey 08544, USA
63aINFN Sezione di Roma, Dipartimento di Fisica, I-00185 Roma, Italy
63bDipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
64Universität Rostock, D-18051 Rostock, Germany
65Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
66CEA, Ifis, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
67University of South Carolina, Columbia, South Carolina 29208, USA
68Stanford Linear Accelerator Center, Stanford, California 94309, USA
69Stanford University, Stanford, California 94305-4060, USA
70State University of New York, Albany, New York 12222, USA
71University of Tennessee, Knoxville, Tennessee 37996, USA
72University of Texas at Austin, Austin, Texas 78712, USA
73University of Texas at Dallas, Richardson, Texas 75083, USA
74aINFN Sezione di Torino, Dipartimento di Fisica Sperimentale, I-10125 Torino, Italy
74bDipartimento di Fisica Sperimentale, Università di Torino, I-10125 Torino, Italy
75aINFN Sezione di Trieste, Dipartimento di Fisica, I-34127 Trieste, Italy
75bDipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
76IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
77University of Victoria, Victoria, British Columbia, Canada V8W 3P6
78Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
79University of Wisconsin, Madison, Wisconsin 53706, USA
We present a study of B decays into semileptonic final states containing charged and neutral $D_1(2420)$ and $D_2(2460)$. The analysis is based on a data sample of 208 fb$^{-1}$ collected at the $Y(4S)$ resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. With a simultaneous fit to four different decay chains, the semileptonic branching fractions are extracted from measurements of the mass difference $\Delta m = m(D^*) - m(D)$ distributions. Product branching fractions are determined to be $B(B^+ \rightarrow D_s^{(*)+} \ell^+ \nu_\ell) \times B(D_s^{(*)+} \rightarrow \ell^+ \nu_\ell) = (2.97 \pm 0.17 \pm 0.17) \times 10^{-3}$, $B(B^0 \rightarrow D_s^{(*)0} \ell^+ \nu_\ell) \times B(D_s^{(*)0} \rightarrow \ell^+ \nu_\ell) = (2.29 \pm 0.23 \pm 0.21) \times 10^{-3}$, $B(B^0 \rightarrow D_s^{(*)0} \ell^+ \nu_\ell) \times B(D_s^{(*)0} \rightarrow D^{(*)+} \ell^+ \nu_\ell) = (1.77 \pm 0.26 \pm 0.11) \times 10^{-3}$. In addition we measure the branching ratio $\Gamma(D_s^0 \rightarrow D \pi^-)/\Gamma(D_s^+ \rightarrow D^0 \pi^-) = 0.62 \pm 0.03 \pm 0.02$.

Measurements of the Cabbibo-Kobayashi-Maskawa matrix elements $|V_{ub}|$ and $|V_{cb}|$ rely on precise knowledge of semileptonic B-meson decays. Decays with orbitally-excited charm mesons ($D^{(*)}$) in the final state give a significant contribution to the total semileptonic decay rate. A better understanding of these decays will reduce the uncertainty in the composition of the signal and backgrounds for inclusive and exclusive measurements [1].

In the framework of heavy quark symmetry (HQS), D^{*+} mesons form two doublets with $j^{P}_{q} = 1/2^-$ and $j^{P}_{q} = 3/2^-$ where j^{P}_{q} denotes the spin-parity of the light quark coupled to the orbital angular momentum. The doublets with $j^{P}_{q} = 3/2^-$, namely, the D_1 and D_2, have to decay via D wave to conserve parity and angular momentum and therefore are narrow with widths of order of 10 MeV [2]. The relative contribution of the two doublets and the polarization of the produced D^{*+} mesons can be compared with QCD sum rules [3] and predictions from heavy quark effective theory [4].

In this Letter we describe a simultaneous measurement of all B semileptonic decays to the two narrow orbitally-excited charmed states, without explicit reconstruction of the rest of the event. The CLEO collaboration has previously reported a branching fraction measurement for $B^- \rightarrow D^{0}_s \ell^- \nu_\ell$ and an upper limit for $B^- \rightarrow D^{0}_s \ell^- \nu_\ell$ [5]. Belle and BABAR have reported results using a technique in which one of the B mesons in the process $Y(4S) \rightarrow \BB$ is fully reconstructed [6].

In this analysis we use a sample with a total integrated luminosity of 208 fb$^{-1}$, part of the complete data set collected with the BABAR detector at the PEP-II storage ring, operating at a center of mass energy of 10.58 GeV.

The BABAR detector [7] and event reconstruction [8] are described in detail elsewhere. A Monte Carlo (MC) simulation of the detector based on GEANT4 [9] is used to estimate signal efficiencies and to understand the background. The sample of simulated \BB events is equivalent to approximately 3 times the data sample and a dedicated simulation of signal events based on the ISGW2 model [10] has been produced with statistics equivalent to roughly 5 times the expected signal yield contained in the data.

D^{**} decays are reconstructed in the decay chains $D^{**} \rightarrow D^* \pi^-$ [11], and $D^{**} \rightarrow D \pi^-$. The former is accessible to both narrow D^{**} states while the latter has no contribution from the D_1. Intermediate D^* states are reconstructed in $D^* \rightarrow D^0 \pi$ and the D mesons are reconstructed exclusively in $D^0 \rightarrow K^- \pi^+$ and $D^+ \rightarrow K^- \pi^+ \pi^+$. D^{**} candidates are then paired with reconstructed leptons and required to be consistent with the semileptonic decays $B \rightarrow D^{**} \ell^+ \nu_\ell$, as described in the following.

First, events which are most likely to contain a semileptonic B decay are selected. We require that there is a reconstructed D candidate and at least one lepton in the event with a momentum greater than 800 MeV/c [12]. D^0 meson candidates are formed by $K^- \pi^+$ combinations requiring the invariant mass to be consistent with the D^0 mass: $1.846 < m(K\pi) < 1.877$ GeV/c^2. This asymmetric mass window is chosen to take into account resolution effects of the detector. The selection is optimized to maximize the significance of the selected sample.

D^0 candidates are combined with charged and neutral pions to form D^* candidates. For $D^{(*)0}$ the π^0 is reconstructed from a photon pair with an invariant mass of $115 < m_{\gamma\gamma} < 150$ MeV/c^2. Those photon pairs are rejected in a “mass-constrained” fit to match the nominal mass of the π^0. D^* candidates are selected by their mass difference to the D^0 candidate: $144 < m(D^0 \pi^*) - m(D^0) < 148$ MeV/c^2 and $140 < m(D^0 \pi^0) - m(D^0) < 144$ MeV/c^2 for charged and neutral D^*, respectively.

D^+ candidates are formed from $K^- \pi^+ \pi^+$ combinations with an invariant mass of $1.854 < m(K\pi\pi) < 1.884$ GeV/c^2. The χ^2 fit probability for the three tracks to originate from a common vertex, P_{χ^2}, is required to be $P_{\chi^2}(K\pi\pi) > 0.01$.

Candidates for D and D^* are combined with charged pions to form D^{**} candidates, and finally paired with muons or electrons. The charge of the lepton is required to match the charge of the kaon from the D decay.
Part of the background is due to events where a \(D^{**} \) is paired to a lepton from the other \(B \). Thus we require that the probability that the lepton and the pion emitted by the \(D^{**} \) originate from a common vertex exceeds 0.001, and that the angle between the direction of flight of the \(D^{**} \) and the lepton is more than 90 degrees.

A large fraction of the background events is due to \(B \to D^* \ell \nu \) decays where the \(D^* \) or its daughter \(D \) is paired to a pion from the other \(B \). To suppress this combinatorial background, we make use of the variable \(\cos \beta \) described in the following. The energy and momentum of the \(B \) mesons from the \(Y(4S) \) decays are known from incident beam energies. For correctly reconstructed \(B \to D^{**} \ell \nu \) decays, where the only missing particle is the neutrino, the decay kinematics can be calculated, up to one angular quantity, from the four-momentum of the visible decay products (\(Y = D^{**} \ell \)). The cosine of the angle between the direction of flight of the \(B \) meson and its visible decay product \(Y \) is given by

\[
\cos \beta = \frac{2E_B E_Y - m_B^2 - m_Y^2}{2 |\vec{p}_B| |\vec{p}_Y|},
\]

where \(E \) and \(m \) are the energies, momenta, and masses of the \(B \) and \(Y \), respectively. If the \(Y \) candidate is not from a correctly reconstructed \(B \to D^{**} \ell \nu \) decay, the quantity \(\cos \beta \) no longer represents an angle, and can take any value. We select candidates having \(|\cos \beta| \leq 1 \).

In case a \(D^* \) is reconstructed in the decay chain, a veto is applied against decays \(B \to D^* \ell \nu \) by calculating the variable \(\cos \beta \) which is defined as above, but the \(Y \) system is redefined to contain only the \(D^* \) and the lepton: \(Y' = D^* \ell \). Background events are rejected by the requirement \(\cos \beta < -1 \) since signal events \(B \to D^{**} \ell \nu \) tend to have values less than \(-1\).

To reduce combinatorial backgrounds in the decay chain \(D^{**} \to D^* \pi^- \), only the \(D^{**} \ell \) candidate with \(m_{\pi}^2 \) closest to zero is selected, where \(m_{\pi}^2 \) is the neutrino mass squared, calculated in the approximation \(\vec{p}_B = 0 \): \(m_{\pi}^2 = m_B^2 + |\vec{p}_Y|^2 - 2E_B E_Y \). Events reconstructed in the \(D^{**} \to D^0 \pi^- \) final state are rejected if the \(D^0 \) can be paired with any charged pion to form a \(D^{**} \) candidate as described above.

In about 2% of the events more than one \(D^{**} \ell \) candidate is selected and if so all of them enter the analysis.

We determine the \(D_2^* \) signal yield in the channel \(D^{**} \to D \pi \) and the \(D_1 \) and \(D_2^* \) signal yields in the channel \(D^{**} \to D^* \pi \) by a binned \(\chi^2 \) fit to the \(\Delta m = m(D^{(*)} \pi^-) - m(D^0) \) distributions. To determine the individual contributions from \(D_1 \) and \(D_2^* \) in the \(D^* \pi \) final state, we make use of the helicity angle distribution of the \(D^* \), \(\theta_h \), which is defined as the angle between the two pions emitted by the \(D^{**} \) and the \(D^* \) in the rest frame of the \(D^{**} \). For a \(D^* \) from a \(D_1^* \) this distribution varies as \(\sin^2 \theta_h \), whereas for \(D_2^* \) decays, the helicity angle is distributed like \(1 + A_D \cos^2 \theta_h \), where \(A_D \) is a parameter which depends on the initial polarization of the \(D_1 \) and a possible \(S \)-wave contribution to the \(D_1 \) decay. To exploit this feature, we split the data for the two decay chains involving a \(D^* \) into four subsamples, corresponding to four equal size bins in \(|\cos \theta_h| \).

The resulting ten \(\Delta m \) distributions are fitted simultaneously to determine 12 parameters describing the signal yields and distributions, and 22 parameters to adjust the background yields and shapes. The mass differences for the signal events are described by Breit-Wigner functions. There are four parameters giving the signal yields for the semileptonic decays involving the two narrow states, charged and neutral. The masses of the states are also fitted, but are constrained to be equal for charged and neutral states, giving two parameters. Four additional parameters arise from the effective widths of the \(D^{**} \) states, which represent a convolution of the intrinsic widths and detector resolution effects. The latter contributes approximately 2–3 MeV/c\(^2\), depending on the mode. The fit also determines the \(D_2^* \) branching ratio \(\mathcal{B}_{D/S} = \Gamma(D_2^* \to D \pi^-)/\Gamma(D_2^* \to D^0 + \pi^-) \) and the \(D_1 \) polarization amplitude \(A_{D_1} \).

Backgrounds are modeled by cubic functions in \(\Delta m \). The background shape in the \(D^* \pi^- \) channel is found to be the same in all helicity bins for each final state. The fit thus has three shape parameters for each decay chain, while the number of background events is determined independently in each bin.

The selection efficiency is deduced from a fit to the simulation. This fit uses the same parametrization as the fit determining the signal yield from data and is applied to the sum of the full background simulation and for one signal decay chain at a time. For a given decay mode the efficiencies are found to be the same for \(D_1 \) and \(D_2^* \), specifically: \(\epsilon(D^{(*)} \pi^-) = (6.89 \pm 0.12)\% \), \(\epsilon(D^{(*)} \pi^0) = (5.34 \pm 0.12)\% \), \(\epsilon(D^0 \pi^-) = (12.88 \pm 0.96)\% \) and \(\epsilon(D^0 \pi^0) = (17.56 \pm 0.70)\% \), where the quoted uncertainties are the statistical uncertainties from the fit. For the decays including a \(D^* \) the efficiency is multiplied by the probability for a \(D^{**} \) to decay with a value of \(|\cos \theta_h| \) falling into a given bin. This factor includes the theoretical distribution discussed above as well as corrections for the different detector acceptances in the four helicity bins of up to 10%. The total number of \(B \) mesons in the data sample used for the present work is \(N_{BB} = (236.0 \pm 2.6) \times 10^6 \) [13]. For the charged and neutral \(B \) mesons we assume \(\Gamma(Y(4S) \to B^+ B^-)/\Gamma(Y(4S) \to B^0 B^{0*}) = 1.065 \pm 0.026 \) [14].

The fit procedure has been extensively validated. The analysis procedure is tested on statistically independent MC simulated data samples and was found to reproduce the input signal parameters with a \(\chi^2/n = 12.66/12 \), where \(n \) is the number of signal parameters. Consistent fit results were also obtained when the data sample was
shown in Fig. 1. As expected, the contribution of the
or combining the helicity bins. The results of the fit are

separated into subsamples representing specific data taking
periods, separated by lepton species or restricting it to
certain decay modes, using charged or neutral D^{**} only,
or combining the helicity bins. The results of the fit are
shown in Fig. 1. As expected, the contribution of the D_{2}^{*}
vanishes for large values of $|\cos \theta_{h}|$ while the contribution
of the D_{1} is suppressed for $\cos \theta_{h}$ close to zero. The
extracted yields are given in Table I.

Systematic uncertainties have been analyzed and their
impact on the fitted yields have been estimated taking into
account correlations between fit parameters. Efficiencies
for reconstructing and selecting the particles of the final
state are derived from Monte Carlo simulation. The simu-
lation of the tracking and the π^{0} reconstruction have been
studied by comparing τ decays to one and three charged
tracks and with or without a neutral pion. Uncertainties
introduced by the particle identification for kaons and
leptons are studied using control samples with high purities
for the particles in question. The impact of the finite
statistics of the simulated signal events is deduced from
the fit error of the efficiency determination.

TABLE I. Extracted yields for the four signal modes in the five
relevant Δm spectra.

| Mode | $|\cos \theta_{h}|$ | D_{1}^{0} | D_{2}^{0} | D_{1}^{+} | D_{2}^{+} |
|-----------|---------------------|-------------|-------------|-------------|-------------|
| $D^{*} \pi^{-}$ | [0.00,0.25] | 344 | 273 | 212 | 152 |
| $D^{*} \pi^{+}$ | [0.25,0.50] | 470 | 238 | 286 | 123 |
| $D^{*} \pi^{-}$ | [0.50,0.75] | 699 | 170 | 439 | 83 |
| $D^{*} \pi^{+}$ | [0.75,1.00] | 1027 | 67 | 668 | 31 |
| $D\pi^{+}$ | ⋮ | 8414 | ⋮ | 3361 |

The uncertainty on the number of charged and neutral B
mesons in the data set is determined as in [13,14] and the
branching fractions of the decays of the D^{*} and the D
are taken from [15].

Uncertainties introduced by the physics model which
was used to simulate the MC data have been addressed by
reweighting the signal MC calculations to an alternative
decay model based on HQET [4]. The fit was repeated with
efficiencies deduced from the reweighted signal MC data
and the deviations in the results are taken as systematic
uncertainties. A possible influence of the background de-
scription has been tested by varying the parametrizations.

TABLE II. Summary of systematic uncertainties of the deter-
mination of the semileptonic branching fractions.

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta B(B \to D^{} \ell \nu)/B(B \to D^{} \ell \nu) [%]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D^{0}_{1}</td>
</tr>
<tr>
<td>Tracking</td>
<td>1.76</td>
</tr>
<tr>
<td>π^{0} eff.</td>
<td>0.06</td>
</tr>
<tr>
<td>Particle ident.</td>
<td>2.61</td>
</tr>
<tr>
<td>MC statistics</td>
<td>1.80</td>
</tr>
<tr>
<td>Helicity cor.</td>
<td>0.65</td>
</tr>
<tr>
<td>Number of B</td>
<td>2.68</td>
</tr>
<tr>
<td>$B(D^{*} \to D^{0} \pi^{+})$</td>
<td>0.76</td>
</tr>
<tr>
<td>$B(D^{0} \to D^{0} \pi^{0})$</td>
<td>0.11</td>
</tr>
<tr>
<td>$B(D^{0} \to K^{-} \pi^{+})$</td>
<td>1.89</td>
</tr>
<tr>
<td>$B(D^{*} \to K^{-} \pi^{+} \pi^{0})$</td>
<td>0.07</td>
</tr>
<tr>
<td>Signal modeling</td>
<td>2.11</td>
</tr>
<tr>
<td>bkg. parametrization</td>
<td>1.93</td>
</tr>
<tr>
<td>Total</td>
<td>5.76</td>
</tr>
</tbody>
</table>
The backgrounds are alternatively described by a square root function, $f(\Delta m) = \sqrt{\Delta m - m_0}$, where m_0 is the kinematic limit, multiplied by either polynomials or exponentials in Δm.

Table II gives a summary of the various sources of systematic uncertainty and their impact on the results.

We observe all modes with significance greater than 5σ, among them evidence of the $\Delta \pi^\prime$ contribution to the decay $B \to D^* \pi \ell \nu$. For modes already observed we find results in agreement with previous measurements, but achieve better precisions [5,6,16].

For the decays of the D^{**} we measure the branching ratio $\mathcal{B}_{D^{(*)}} = 0.62 \pm 0.03_{\text{stat}} \pm 0.02_{\text{syst}}$. This ratio is in agreement with theoretical predictions [2] and previous measurements [15] but has a smaller uncertainty by a factor of about four.

For the D_1 we determine the polarization parameter to be $A_{D_1} = 3.8 \pm 0.6_{\text{stat}} \pm 0.8_{\text{syst}}$. It is the first measurement of the D_1 polarization, within the uncertainties consistent with unpolarized D_1 decaying purely via D wave, which gives the prediction $A_{D_1} = 3$, but violates HQS [4].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.

**Present address: University of South AL, Mobile, AL 36688, USA.
**Also at Università di Sassari, Sassari, Italy.
[11] Throughout this Letter, whenever a mode is given, the charge conjugate is also implied.
[12] Unless explicitly stated otherwise, all energies, momenta and angles are measured in the e^+e^- center of mass frame.

We observe all modes with significance greater than 5σ, among them evidence of the $\Delta \pi^\prime$ contribution to the decay $B \to D^* \pi \ell \nu$. For modes already observed we find results in agreement with previous measurements, but achieve better precisions [5,6,16].

For the decays of the D^{**} we measure the branching ratio $\mathcal{B}_{D^{(*)}} = 0.62 \pm 0.03_{\text{stat}} \pm 0.02_{\text{syst}}$. This ratio is in agreement with theoretical predictions [2] and previous measurements [15] but has a smaller uncertainty by a factor of about four.

For the D_1 we determine the polarization parameter to be $A_{D_1} = 3.8 \pm 0.6_{\text{stat}} \pm 0.8_{\text{syst}}$. It is the first measurement of the D_1 polarization, within the uncertainties consistent with unpolarized D_1 decaying purely via D wave, which gives the prediction $A_{D_1} = 3$, but violates HQS [4].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.