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A. ANALYSIS OF REFLECTION SPECTRA BY MEANS OF A FIT WITH A

CLASSICAL DISPERSION FORMULA

In the infrared region polar crystals exhibit a reflection spectrum with reststrahlen

bands because of the infrared active lattice modes. These modes, which have a linear

dipole moment with respect to the normal coordinate, cause the infrared dispersion.

When the reflectivity of such a crystal has been measured over a sufficiently wide fre

quency range, two kinds of analyses are generally used to extract the available infor

mation, such as eigenfrequencies, oscillator strengths, and so forth. One method is

the Kramers-Kronig analysis,I and the other is an optimum fit of the data by rneans of

a classical dispersion formula. The latter method will be discussed in this report with

respect to some theoretical aspects and its practical application.

Polar and cubic crystals with two particles per unit cell have one infrared active

lattice mode. The classical treatment of the interaction of electromagnetic waves and

this lattice mode yields the classical dispersion formula 2 for the complex dielectric con

stant of the crystal as a function of the frequency w

E = E' - iE"
2s

Ecc + ---.:2=----=-2--.- ,
w - w + lW'Yo

(1)

where Ecc is the contribution to E of the UV-absorption and UV-dispersion which can be

assumed to be constant in the infrared region; w is the eigenfrequency of the infrared
o

active mode; s2 is its oscillator strength; and 'Y is the damping constant.

If a more complicated crystal is considered with more than one infrared active mode

that do not interact with each other, the dispersion formula contains a sum of dispersion

terms, one for each active mode. In certain cases it may be necessary to take the

interaction of at least two modes into account, and Barker and Hopfield3 have derived

a dispersion formula for the case in which two modes strongly interact. In the equations

of motion an interaction term was added:

:.:.::.
PIIYl + allYl + a l2Y2 = a l3EYl +

(2)

Y2 + P22Y2 + a 2{YI + a 22Y2 =
~

a 23 E.

The transformation diagonalizing the force constant matrix
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a 11 a 1 2

a21 a22

yields off-diagonal terms for the damping constants:

x 1 + 1 1 x1 + ' 1 2 x2 + Wx 1 = b 1 3E

(3)

x2 + 21 1 222 02x2 = b23 E .

From these two equations the following dispersion formula in which a third dispersion

term is added for a third infrared active eigenvibration that does not interact with the

two others 4 is obtained:

2 w(w° 2 ) +s(w2_ W2+i W{1 s2s 2 -2+ 2 - 2is 1 s 2 21 2 + s)2 s2

2o 2 2 2

(-WW+iw) 1)(W2- w2i o'2) +2 2 2 3 - + i Y3

(4)

where the subscripts 1, 2, and 3 refer to the three active modes, and yl2 is the damping

term arising from the interaction of modes 1 and 2.

Since the damping constants y and y are introduced ad hoc in the classical treat-

ment, this derivation of a dispersion formula cannot show the physical meaning of the

damping terms. The results of a proper quantum mechanical treatment of the infrared

dispersion, however, will show the damping related to the dissipation of energy from

the active lattice modes (dispersion oscillators) to other lattice modes by means of

anharmonic terms in the lattice potential.5 If third-order anharmonic potential only is

taken into account and all nonlinear terms in the dipole moment are neglected, the fol-

lowing expression holds for the dielectric constant of a cubic crystal with two infrared

active lattice modes 6

s 2 ( 2- 2 +i6) - isls2612 + s2Wl -_z+i6

E = E + . (5)

( 2 1 \2 2) + 612

This is the same formula that is obtained by the classical treatment, but instead of

damping constants y there are frequency-dependent damping functions 6:

k An' +(w ' n"-) dk

6. = const ) 1 A(w±o'-w") dk 3

jI j, ,, '¢
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0 k -k 0 k -k I nit + 2
6 . const k 1 ( A(w± '-w") dkj,j,,if = j j' o'o",

(6)

where is the third-order potential coefficient coupling modes [wave

vector 0, branch j], (k,)and (i); o ', ", n',and n" are frequencies and the thermal

averages of phonon occupation numbers of modes (k) and ( ; ) , respectively; A refers

to the Dirac delta function; and the integrals are to be taken over the volume of the first

Brillouin zone in reciprocal space.

Essentially, the damping functions 61 and 62 are the probabilities for all the 2-phonon

summation processes (+ sign) or 2-phonon difference processes (- sign) via the disper-

sion oscillators 1 and 2 which are consistent with wave vector and energy conservation

at a given photon frequency c. 612 is the interference of the processes contained in 61

and 52.
For our purpose, the analysis of a reflection spectrum is carried out by means

of the classical formula with constant damping terms. The reflection spectrum

exhibits only the main features of the infrared dispersion and not the details of the

absorption spectrum, especially outside the reststrahlen bands where the reflec-

tivity is given mainly by the refraction index; even in the reststrahlen bands it is

not possible to evaluate more than one damping function from the experimental data.

Consequently, the use of the classical formula may be justified and the damping con-

stants should be understood to be an average of the damping functions, mainly in the

neighborhood of the eigenfrequencies. In the actual analysis, the constants in Eq. 4

have to be chosen by trial and error, and then E is evaluated for the frequency

range under consideration. From E' and E" the optical constants n and k are

obtained by means of the equations

a) E' > 0 n= - E' + +E2 k =

b) E' = 0 n=k= -V (7)

c) E' < 0 k = , -E'+ '2 ,,2 ) n E2k

The reflectivity (given only for normal incidence)
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R = (n-1)2 + k 2
2 (8)

(n+1) + k2

can be evaluated and compared with experimental data. By variation of the constants in

Eq. 4, an optimum fit to the experimental data is obtained, and this analysis yields the

eigenfrequencies, the oscillator strengths, and the damping constants of the infrared

active modes.

Note that Eq. 4 can be used also in the case of a crystal having two interacting

eigenvibrations and additional dispersion and absorption caused by free carriers (for

example, semiconductors). By setting c3 = 0, the last dispersion term in Eq. 4 is con-

verted into a Drude-term, and s 3 and y3 are determined by the carrier concentration N,

the effective mass m , and the mobility ± of the free carriers

= / N e [cm-l] e [cm-1
3 = 2 c 3 *m, 2c2rrcm*

where e is the electron charge, c is the light velocity in vacuum, and Evac is the die-

lectric constant in vacuum.

As examples of this analysis we shall describe the fit to the reflection spectra of BN

and KNiF 3 . BN is a uniaxial anisotropic crystal with a layer structure similar to

graphite. The reflectivity has been measured with linearly polarized light with the

E-vector parallel and perpendicular to the c-axis (See Figs. IV-1 and IV-2). KNiF 3

has the perovskite structure and its experimentally determined reflectivity is shown in

Fig. IV-3. From the experimental data, it appears that there are two infrared active

lattice modes causing reststrahlen bands in both cases for BN, and three active modes

in KNiF 3 . The initial values for the various constants in the classical dispersion for-

mula (Eq. 4) were obtained from the results of a Kramers-Kronig analysis (see Figs.

IV-4, IV-5 and IV-6).

BN E 11 c

Co = 3. 06 s =771 cl = 783 Y1 = 15.0
(10a)

y12 = 0 s 2 = 1585 W2 = 1510 y2 = 146

Co = 5. 13 s 3 = 0 W3 = 0 y3 = 0

BN E _Lc

Ec = 5. 36 s 1 = 351 l = 767 Y1 =  35.0
(10b)

Yl2 = 0 s2 = 1850 w2 = 1367 y2 = 31.0

= 7.45 s 3 =0 3 = 0 3 0
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KNiF 3  (isotropic crystal)

Ec = 2.47 sl = 233 l= 152 'y1 = 19.5 (

yl2 = 0 sz 
= 355 Wz = Z45 Y2 = 15.0

co = 8. 13 s3 = 483 W3 
= 447 y3 = 32. 5

The units for s , wv, y and y are in cm , and E is the dielectric constant relative

to that of vacuum. The reflectivity computed with these sets of constants has to be

compared with the experimental data (see Figs. IV-I, IV-2 and IV-3), and the agree-

ment at first is still rather poor for most of the reststrahlen bands. The computed

values of E' and E" can be compared with the Kramers-Kronig data (see Figs. IV-4, IV-5

and IV-6). In order to improve the fit, it is often advisable to make use of the following

rules.

1. The static dielectric constant which determines the reflectivity at the low-

frequency end of the spectrum outside the reststrahlen bands is given by

2 2 2
el S2 S3

E E + + +
o o 2 2 2

W 1 0C z3

2. Where the real part E' changes from positive to negative values, the reflectivity

exhibits a pronounced minimum and a sharp rise to high values with decreasing frequen-

cies, provided E" is sufficiently small.

3. The height of a reststrahlen band is determined by E", that is, mainly by the

damping yV, while the interaction damping -y becomes significant in the region between

two eigenvibrations.

In this way, the best fit for BN was obtained with the following sets of constants:

BN Elic

S= 4. 10 s = 572 Wl = 783 Yl = 8.0

12 0 s = 1020 2 = 1510 Y2 = 80.0 (1la)

0 = 5.09 s 0 3 = 0 3 = 0 3 = 0

BN EIc

E = 4. 95 s1 = 351 1 = 767 = 35. O

'Y1 = 0 sz = 1870 W2 = 1367 Y2 = 29.0 (llb)

S= 7. 04 s = 0 03 = 0 Y3 = 0
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Fig. IV-4.

I I I

Fig. IV-5.

Real part E' and imaginary part
E" of the dielectric constant of
BN for E II c obtained by
Kramers-Kronig analysis (-),
computed by using the classi-
cal dispersion formula and the
values for the constants given
in (10a) (XXX) and (Hla) (ooo).

Real part E' and imaginary part
E" of the dielectric constant of
BN for E I c obtained by
Kramers-Kronig analysis (-),
computed by using the classi-
cal dispersion formula and the
values for the constants given
in (10b) (XXX) and (11b) (ooo).
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Fig. IV-6. Real part E' and imaginary
part E" of the dielectric
constant of KNiF 3 obtained

by Kramers-Kronig analy-
sis (- ), computed by
using the classical disper-
sion formula and the values
for the constants given in
(10c) (AAA), (12) (XXX)
and (13) (oo o).
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In these cases it was not necessary to use the interaction damping. The computed data

are shown in detail in Figs. IV-1, IV-2, IV-4 and IV-5.

For KNiF 3 the best fit without interaction damping was obtained with the following

Eo = 2. 85 s1 = 230 eI = 154 Yi = 13.0

Y12 = 0 s2 = 365 W2 = 241 y2 = 2 5.0 (12)

E = 8.21 s3 = 408 3 = 444 3 
= 2 0 .0

The agreement of computed and experimental data is quite reasonable in the region

of the reststrahlen bands (Fig. IV-3) but the computed reflectivity is too high in the fre-
-1

quency region 170-220 cm-1 Therefore better agreement is reached with yl2 # 0

(Fig. IV-3).

E = 2. 85 sI = 230 1e = 154 yl = 13. 5

y =  12. 0 s = 371 j2 = 245 y = 22. 5 (13)

c = 8. 21 s3 = 408 W3 = 444 Y3 = 22.0

The computed values of E' and E" are shown in Fig. IV-6.

The computations for this work were performed at the Computation Center, M. I. T.,

and the authors wish to thank S. A. Rappaport of the RLE Computation Group for writing

the program.
R. Geick, C. H. Perry

References

1. C. H. Perry, Quarterly Progress Report No. 71, Research Laboratory of
Electronics, M.I.T., October 15, 1963, p. 23.

2. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University
Press, London, 1962), p. 82 ff.

3. A. S. Barker and J. J. Hopfield, Phys. Rev. 135A, 1732 (1964).

4. There is an error in the dispersion formula derived by Barker and Hopfield.
They obtained +2is 1s 2W 12 , instead of -2isls2 Y12' and had then to assume one of the

s negative for a reasonable fit of the experimental data.

5. H. Bilz, L. Genzel, and H. Happ, Z. Physik 160, 555 (1960); H. Bilz and
L Genzel, Z. Physik 169, 53 (1962).

6. R. Wehner, Ph.D. Thesis, Freiburg, Germany, 1964.

QPR No. 77


