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ABSTRACT

Wireless is inherently less secure than wired networks
because of its broadcast nature. Attacks that simply snoop
on the wireless medium successfully defeat the security of
even 802.11 networks using the most recent security stan-
dards (WPA2-PSK). In this paper we ask the following ques-
tion: Can we prevent this kind of eavesdropping from hap-
pening? If so, we can potentially defeat the entire class of
attacks that rely on snooping.

This paper presents iJam, a PHY-layer protocol for
OFDM-based wireless systems. iJam ensures that an eaves-
dropper cannot successfully demodulate a wireless signal not
intended for it. To achieve this iJam strategically introduces
interference that prevents an eavesdropper from decoding the
data, while allowing the intended receiver to decode it. iJam
exploits the properties of 802.11’s OFDM signals to ensure
that an eavesdropper cannot even tell which parts of the sig-
nal are jammed. We implement iJam and evaluate it in a
testbed of GNURadios with an 802.11-like physical layer.
We show that iJam makes the data bits at the adversary look
random, i.e., the BER becomes close to 50%, whereas the
receiver can perfectly decode the data.

1 INTRODUCTION

Wireless security is increasingly important. However, the
broadcast nature of the wireless medium makes it inherently
less secure than wired networks. Any untrusted node can
simply eavesdrop on the medium and listen to transmissions
within the wireless network. This weakness has been repeat-
edly exploited to defeat the security of wireless networks [3,
10]. Attacks that simply snoop on communications between
legitimate nodes in a wireless network can successfully de-
feat the security of even 802.11 networks using the most
recent security standards (WPA2-PSK) [2, 29, 3]. In fact,
eavesdroppers today can mount such attacks simply by in-
stalling tools [1] that crack the passwords of these 802.11
networks by exploiting their broadcast nature. In this paper,
we ask whether we can prevent this kind of eavesdropping,
and thus fundamentally defeat the entire class of attacks that
rely on snooping.

We introduce iJam, a practical PHY-layer technique that
ensures that an eavesdropper cannot even demodulate a wire-
less signal not intended for it. iJam is designed for wire-
less networks that employ OFDM, which is the modulation
scheme of choice for most modern wireless systems such as

802.11 a/g/n, WiMax, LTE etc. iJam can be used by a wire-
less sender-receiver pair to protect sensitive packets that are
intended to be heard only by the receiver. In particular, it can
be used in conjunction with existing wireless security pro-
tocols (such as 802.11 WPA/WPA2) to secure the session
key establishment phase by preventing an eavesdropper from
overhearing the critical handshake packets, which have been
exploited in prior attacks [2, 29, 3].

iJam operates on the physical signal. The basic idea un-
derlying iJam is simple: The sender repeats its transmission,
as shown in Fig. 1. For each sample in these repeated trans-
missions, the receiver randomly jams either the sample in the
original transmission, or the corresponding sample in the rep-
etition. Since the eavesdropper does not know which signal
sample is jammed and which one is clean, it cannot correctly
decode data. In contrast, the receiver knows which samples
it jammed. Thus, the receiver can pick the correct samples
from the signal and its repetition and rearrange them to get a
clean signal, which it can decode using standard methods.

While the above idea is simple, transforming it to a prac-
tical and robust protocol requires addressing important chal-
lenges.

(a) How do we ensure the jammed samples are indistin-
guishable from the clean samples? Jamming may change the
characteristics of the signal which allows the eavesdropper
to identify the jammed samples. In particular, recent work
shows the feasibility of detecting jammed bits in sensor net-
works by examining the received signal power [23].

iJam addresses this issue by exploiting the basic proper-
ties of the OFDM PHY layer. In §4, we show that in contrast
to the low rate transmission schemes using in sensor hard-
ware, where the transmitted signal is highly structured, the
OFDM time samples approximate random Gaussian complex
variables. Thus, by deriving the jamming signal from a Gaus-
sian distribution, we can ensure that the overall distribution
after jamming still resembles the distribution of an OFDM
signal. In §5.1, we demonstrate that even if the eavesdrop-
per uses an optimal hypothesis testing strategy, it still experi-
ences a significantly high bit-error rate that prevents decod-
ing the OFDM symbols to the transmitted bits.

(b) How do we ensure that we can jam an eavesdropper in-
dependent of its location? It might seem difficult for the re-
ceiver to jam an eavesdropper located very close to the sender
since the power of the jamming signal at the eavesdropper
will be far lower than the power of the sender’s transmit-
ted signal. iJam addresses this problem by using a two-way
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Figure 1—iJam at work. The sender repeats its transmission. The receiver-
cum-jammer randomly jams complimentary samples in the original signal
and its repetition. To decode, the receiver-cum-jammer, stitches together un-
jammed samples to create a clean symbol.

exchange for sensitive packets. Say Bob wants to receive a
sensitive packet from Alice. Bob first sends a packet with a
nonce to Alice, which Alice jams using our technique. Alice
then XORs its sensitive packet with the received nonce and
transmits the result to Bob, who jams this transmission. Bob
can then XOR the received packet with the nonce he orig-
inally sent to obtain Alice’s sensitive data. Note that, since
Alice and Bob are using iJam, they can decode the packets
intended for them even while they jam them. However, the
two-way exchange ensures that eavesdroppers cannot obtain
the sensitive data. Specifically, if an eavesdropper is closer to
Bob than he is to Alice, he might be able to decode Bob’s
transmission, but cannot decode Alice’s transmission, and
vice versa for an eavesdropper that is closer to Alice than
he is to Bob. Since an eavesdropper needs to decode both
packets to decipher Alice’s sensitive data, the two-way ex-
change ensures that Alice and Bob’s communication is pro-
tected from an eavesdropper independent of its location.

(c) How does the receiver decode despite the channel chang-
ing between the first signal and its repetition. Simply stitch-
ing the clean samples from the first transmission and its repe-
tition does not produce a decodable signal. The channel typi-
cally changes across transmissions. Thus, before replacing a
jammed sample with its repetition, iJam estimates the chan-
nel observed by both signal samples, inverts the channel im-
pact on the clean sample, and applies to it the channel ob-
served by the jammed sample.

iJam builds on past work on cooperative jamming [19,
12]. In particular, the closest to our work is dialog codes [4],
where the receiver jams the transmitted signal to flip spe-
cific bits in the packet as received by the eavesdropper. Such
a technique is however not applicable to the large class of
wireless networks that use OFDM since OFDM does not
send individual bits separately on the channel; rather, each
OFDM signal sample is a linear combinations of many mod-
ulated bits [13]. Further, dialog codes assume that 1) jammed
bits are undetectable, and 2) the sender and jammer are syn-

chronized at the eavesdropper to the bit level [4]. Past work
however shows that jammed/corrupted bits are easy to iden-
tify [16, 23]. Additionally, flipping specific bits requires time
and phase synchronization of the transmitter and the jammer
at the eavesdropper. Such synchronization needs knowledge
of the channels from each of them to the eavesdropper, but
these channels cannot be obtained without the cooperation of
the eavesdropper in the first place! In contrast, iJam ensures
that jammed bits are undetectable by exploiting the Gaussian
statistics of OFDM signals.1 Further, since it does not try to
flip specific bits at the eavesdropper, it does not require the
jammer and transmitter to be synchronized.

We implement iJam in GNURadio and evaluate it in a
20-node testbed of USRP radios [15]. Nodes in our testbed
use a 802.11-like physical layer. Our evaluation reveals the
following.

• The bit error rate at an eavesdropper ranges from 40-60%,
which means that an eavesdropper cannot do much better
than randomly guessing the contents of the packet. This
is true even in extreme scenarios such as the eavesdropper
being very close to the transmitter or the jammer, as well
as at various positions between them.

• Jamming has no impact on packet decodability at the in-
tended receiver. Specifically, for the range of SNRs in
[7, 25] dB, the bit error rate with and without jamming
is the same.

• iJam is efficient. For an average receiver capable of using
16-QAM, iJam can securely deliver a 512 bit key (nonce)
from a sender to a receiver in about 14ms. Thus, it can
protect the two nonces typically used to crack 802.11
WPA2-PSK passwords in about 28 ms.

2 RELATED WORK

Jamming has traditionally been used in adversarial man-
ner to prevent others from communicating over the wireless
medium [28]. Recently however, there has been interest in
cooperative or friendly jamming methods. In [19, 12, 7],
a trusted third party jams the communication from sender
to receiver. The jamming signal is known to the receiver,
which decodes using interference cancellation. In contrast,
the eavesdropper does not know the jamming signal and
hence cannot decode the transmission. The work in [22]
presents a variation on the above model where the sender it-
self transmits the data combined with a jamming signal. The
third party node transmits an anti-jamming signal that can-
cels out the jamming signal at the receiver but not at the ad-
versary. In contrast to the above work, iJam achieves security
without a trusted third party, and is further implemented and
evaluated in a testbed.

iJam is related to dialog codes [4], where the receiver
jams the transmitted signal to flip specific bits in the packet as

1Note that this does not contradict the work on SoftPHY and partial pack-
ets [16] because these schemes assume the error is caused by noise while
here the jamming is designed to ensure undetectability. See §4 for the de-
tails.
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received by the eavesdropper. This approach however is not
applicable to OFDM networks since in OFDM every signal
sample refers to multiple bits [13]. Further, it assumes tight
synchronization and that jammed bits are undetectable.

iJam builds on past work in the area of physical layer se-
curity. Specifically, work in information theory[27, 14] has
shown that if the channel to the receiver is better than the
channel to eavesdropper, the sender-receiver pair can se-
curely communicate. Special codes have been proposed to
secure the communication in this setting [25]. iJam provides
physical layer security but it does not rely on the channel to
the adversary being worse than the channel to the receiver.

Recent works on physical security extract secret keys
from the properties of the wireless channel [17, 21, 5, 20].
Some of the proposed techniques can be used with existing
802.11 hardware [17]. These techniques however require the
channel between the sender and receiver to change quickly
and be reciprocal [17]. In comparison, iJam modifies the
PHY layer, but it imposes no constraints on the wireless
channel, and hence it works for any environment, whether
it is mobile or static.

Finally, successful attacks on 802.11’s most recent se-
curity protocol have exploited the broadcast nature of wire-
less [2, 10]. Specifically, 802.11 WPA/WPA2-PSK uses a 2-
way handshake for authentication and establishing a session
key. An AP sends to the client a random nonce as a challenge,
and expects to receive a password-encrypted version of that
nonce as a response. A correctly encrypted response indi-
cates that the client possesses the correct password. However,
an eavesdropper can simply snoop on the medium, observe
both the unencrypted nonce in the AP’s challenge (plaintext),
and its encrypted version in the client’s response (ciphertext),
then mounts standard dictionary attacks on the combination.
Since in practice users tend to optimize for convenience and
go for short and human-understandable passwords, such at-
tacks have been successful, even in the presence of a strong
cryptographic protocol [3, 29].

3 ADVERSARY AND JAMMER MODELS

We start by describing the jammer and adversary.

3.1 Jammer

Wireless hardware typically has separate transmit and re-
ceive chains. A switch connects the antenna to the transmit
chain during packet transmission and switches the connec-
tion to the receive chain during reception. This switching
process incurs a short delay, which is negligible for tradi-
tional systems. In iJam however, since we jam individual sig-
nal samples, we need to switch between the transmit and re-
ceive chains with no delay. Thus, when jamming a particular
packet, iJam turns off the switch between the transmit and re-
ceive chains, i.e., it keeps both chains running and connected
to the antenna for the duration of the packet. This allows us to
jam while receiving. The jamming signal is set to zero when-
ever the hardware wants to receive a clean signal sample, and

is non-zero otherwise. We note the following:

• Such a setup is already supported by various wireless
hardware. For example, the USRP radio boards allow the
user to turn the switching between the receive chain and
transmit chain off using a software command.

• The above does not contradict the fact that wireless ra-
dios cannot transmit and receive simultaneously. When-
ever the receiver sends a non-zero jamming signal, the
corresponding received sample is corrupted because the
transmit power overwhelms the receive chain at that mo-
ment.

• Jamming does not hamper Automatic Gain Control
(AGC). The AGC is set based on the packet’s preamble
and is fixed for the duration of the packet. Since iJam does
not jam the preamble, it does not affect AGC settings.

3.2 Adversary

We focus on a passive eavesdropper. The eavesdropper
may know the iJam protocol, the location of the communi-
cators, and other public information such as the details of
OFDM and 802.11.

The eavesdropper can be anywhere in the network and is
free to move or stay static. The location and the characteris-
tics of the eavesdropper’s channel are unknown to the jammer
or the sender. The eavesdropper, however, cannot be in two
locations at the same time. Multiple eavesdroppers may exist
in the network but we assume they do not collude.

The eavesdropper can operate at the packet level, the bit
level, or the signal level. For example, the eavesdropper can
consider the jamming signal as noise and try to decode in the
presence of jamming. Or it can take a stronger approach and
examine the received signal samples in an attempt to distin-
guish jammed samples from clean samples. In §5.1, we dis-
cuss these approaches and show that iJam is robust to both.

Also, instead of considering the jamming signal as noise,
the adversary can implement interference cancellation or
joint decoding in an attempt to simultaneously decode the
jamming signal and the original transmission and separate
them. This approach however does not work because ba-
sic results in multiuser information theory say that decod-
ing multiple signals is impossible if the total information rate
is outside the capacity region [26]. In iJam, we ensure that
the information rate at the eavesdropper exceeds the capac-
ity region by making the jammer transmit at an excessively
high information rate. This can be easily done by making
the jamming signal samples i.i.d.s and sending them at a
very dense modulation. Specifically, we use a modulation of
65,536 QAM. (This corresponds to having a resolution of 8
bits for both the I and Q components of the signal.) In com-
parison with existing 802.11 bit rates which use a maximum
of 64 QAM, this is an excessively high bit rate.

Finally, we assume that the eavesdropper’s hardware is
as powerful as that of the sender and receiver, i.e., it has the
same number of antennas and does not use a directional an-
tenna, unless the receiver uses a directional antenna. iJam can
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Figure 2—Amplitude Distribution of OFDM signal samples. The OFDM
uses a 64-point FFT and modulates bits using 4QAM. The distribution fol-
lows a zero-mean Gaussian.

be extended to work even when these two constraints do not
hold, as we explain in §9. However, the prototype described
in this paper does not implement these extensions.

4 IMPACT OF JAMMING ON OFDM SIGNALS

At a high level, OFDM works as follows: the transmitter
takes a sequence of bits and converts them into complex num-
bers by applying quadrature amplitude modulation (QAM).
Next, the transmitter takes blocks of N such complex num-
bers (N = 64 in 802.11), and apply the inverse fast fourier
transform (IFFT) to them, i.e.:

xk =

N∑

n=0

Xnei2πkn/N ,

where Xn is a modulated complex number. The output of the
IFFT, i.e., xk , is then transmitted on the channel as the time
samples of the signal.2 Thus, each time sample in the signal
is a linear combination of multiple modulated bits.

The design of OFDM has two implications for jamming:

(a) In OFDM, it is hard to distinguish jammed samples from
clean ones. Since each sample is a linear combination of N
random modulated bits, by the central limit theorem, each of
the OFDM time samples approximately takes values from a
random Gaussian distribution [26]. Fig. 2 shows the distri-
bution of OFDM signal samples at the output of GNURa-
dio, for an OFDM system that uses 4-QAM modulation and
N = 64 (which is the value used in 802.11). The figure con-
firms the above argument, showing that the signal distribu-
tion follows a zero-mean Gaussian. Thus, the amplitude of
an OFDM sample can take a wide range of values.

Compare such an OFDM signal with BPSK, a transmis-
sion system commonly used in sensor hardware [16]. BPSK
transmits a “0” bit as -1 and a “1” bit as +1. Thus, in the
time domain, the BPSK signal takes only two values (-1,+1).
Fig. 3 shows an OFDM signal against a BPSK signal. Since
the BPSK signal takes only two values, it is relatively easy
to identify jammed bits as those far away from the two ex-
pected values. In contrast, since the OFDM signal spans a

2The transmitter also appends a cyclic prefix [13].
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Figure 3—Time domain signal samples for BPSK and OFDM. In con-
trast to BPSK, the OFDM signal spans a wide range of values.

whole range of values, it is hard to simply look at the ampli-
tude of a sample and identify whether it is jammed or not.

Further, if one picks the jamming signal also from a zero-
mean Gaussian distribution, then the combination of the jam-
ming and original signals will also have Gaussian statistics
(this is because a linear combination of two independent
Gaussians is a Gaussian). This makes it even harder to tell
which sample is jammed. In §5.1, we analyze an eavesdrop-
per that uses hypothesis testing to identify the jammed sam-
ples and show that iJam is resilient to such attack.

(b) In OFDM, there is no one-to-one map between a bit and
a time sample. In OFDM, each time sample is a linear com-
bination of many modulated bits. Thus, jamming a particular
OFDM sample, affects multiple bits at the same time. Com-
pare that to BPSK, where each bit is modulated into one sig-
nal sample, and thus, jamming a particular sample of a BPSK
signal corrupts only the bit that is encoded into that sample.
This difference between OFDM and BPSK means that jam-
ming proposals for sensor networks which flip specific bits
do not apply to OFDM.3

5 IJAM

iJam is a PHY-layer technique that enables two wireless
nodes to exchange unencrypted confidential packets, in the
presence of an eavesdropper. Without loss of generality, we
focus on exchanging a random key of B bit length. Once
the two nodes have exchanged a random key, they can use
it either as a onetime pad [27], or as an encryption key in a
shared-key cryptographic protocol. Our default value of B is
512 bits. Larger keys can be obtained by repeating the pro-
cess multiple times.

For the rest of this paper, we focus on one sender and its
receiver, and describe how iJam enables the sender to deliver
a random key to the receiver in the presence of an eavesdrop-
per. Also, while iJam applies to any OFDM based system, we
focus our description on 802.11.
3One might think that with OFDM, individual bits can be flipped by jam-
ming specific frequency bins and then applying the IFFT. This, however,
does not work because first, the frequency domain signal can use 4QAM or
higher modulations, and second, the IFFT operation spreads frequency do-
main jamming across all the time samples, which overwhelms the AGC at
all time samples, precluding decoding by the intended receiver.
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The basic idea in iJam is as follows. The 802.11 driver
at the sender generates a random sequence of B bits, which
we refer to as a salt. The driver delivers the salt to the
PHY for transmission, along with the standard packet header.
The PHY generates the OFDM signal corresponding to the
packet. The OFDM symbols corresponding to the header
are generated as usual without repetition. However, for each
OFDM symbol corresponding to the salt, the PHY sends 2
copies back-to-back.

The PHY layer at the receiver starts by decoding the
packet’s header. If the header is marked to indicate a iJam
packet and the MAC address matches the receiver’s MAC ad-
dress, the PHY waits until the end of the header, then starts
jamming the transmission.4 For each received signal sample
from the salt, the PHY either jams the original sample or
its repetition. Since an OFDM symbol and its repetition are
back-to-back, the PHY knows how to match a sample and its
repetition. To jam a sample, the PHY transmits a signal sam-
ple that is drawn randomly from a zero-mean Gaussian dis-
tribution whose variance is set to the variance of an OFDM
signal with the same modulation.5

To decode the salt, the PHY stitches the unjammed sam-
ples together to create a clean version of the OFDM signal
corresponding to the salt. It then decodes this clean signal to
obtain the bits in the salt. After decoding, the receiver checks
the packet checksum and if the packet is correctly received,
it sends an acknowledgment to the sender. If the sender does
not receive an ack, it repeats the process with a different ran-
dom salt. Once the sender and receiver have successfully ex-
changed a salt, they can use it to generate a random key.

In the following few sections we expand this basic idea
to make it robust to various adversarial scenarios.

5.1 Optimal Strategy to Detect Jammed Samples

To make iJam robust, we need to ensure that an eaves-
dropper cannot distinguish jammed samples from uncor-
rupted samples. We had earlier argued that it is difficult for an
eavesdropper to simply look at an OFDM sample and iden-
tify whether it is jammed or not. However, since iJam re-
peats each sample, an eavesdropper has additional informa-
tion, and can compare an OFDM sample with its repetition
to guess which one is jammed.

In particular, a jammed sample is the sum of two zero-
mean Gaussian variables: the data sample received from the
sender, and the jamming sample received from the receiver.
Recall that the sum of two independent zero-mean Gaussian
variables is also a zero-mean Gaussian variable, whose vari-
ance is the sum of the two variances [26]. Therefore, the
jammed samples have higher variance than clean samples.
4In practice, the hardware pipeline at the receiver has a decoding delay of 2-
4 OFDM symbols. Thus, to ensure that the receiver can jam all data samples,
the transmitter inserts a pad of 4 OFDM symbols at the end of the header.
Since the receiver knows the delay in its pipeline and the size of the pad, it
knows when the first data sample starts and hence can jam it.
5The receiver knows the modulation of the packet from the header. Given a
particular modulation, the variance of the OFDM signal is known and can
be computed using Matlab.
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Figure 4—Performance of an optimal hypothesis-testing adversary. The
figure shows the Bit Error Rate (BER) for different modulations as a function
of the ratio of the jamming power to the transmitter power at the eavesdrop-
per. The graph can be divided into three regions: Region 1 where the power
from the jammer is lower than the transmitter, Region 2 where the power
ratio is such that it maximizes the BER, and Region 3 where the power from
the jammer is significantly higher than the transmitter.

An eavesdropper can exploit this fact to improve its ability to
identify jammed samples.

Specifically, the eavesdropper can apply an optimal hy-
pothesis testing strategy as follows. Given two transmissions
of the same sample, one of which is jammed by the receiver,
let S1 denote the first OFDM sample received by the eaves-
dropper, and let S2 denote the second. Let H1 denote the
hypothesis that S1 is jammed, H2 the hypothesis that S2 is
jammed, and C the condition that one of S1 and S2 is jammed.
The eavesdropper can now apply a maximum likelihood test
as follows:

Pr(H1|S1, S2, C) H1≷H2
Pr(H2|S1, S2, C)

Substituting the probabilities for H1 and H2, we get:

P(S1 is jammed|S1, S2, C) H1≷H2
P(S2 is jammed|S1, S2, C)

Thus, the optimal hypothesis testing reduces to the following:

P(S1, S2|S1 is jammed, C)H1≷H2
P(S1, S2|S2 is jammed, C)

After substituting the Gaussian probabilities and rearranging
the terms, the maximum likelihood test reduces to:

|S1|
2 H1≷H2

|S2|
2

Thus, when comparing a sample to its repetition, the
eavesdropper’s best guess is to assume the one with the
smaller magnitude to be clean. The eavesdropper can then
apply this test to all samples and their repetitions to obtain its
best guess of the transmitted salt.

Given that the eavesdropper applies the above optimal
strategy, how well does she perform? We calculate an upper
bound on the performance of the eavesdropper by simulat-
ing in Matlab the worst scenario: the eavesdropper receives
the transmitted signal perfectly (with infinite SNR) in the ab-
sence of the jammer. For each modulation scheme (BPSK, 4-
QAM, 16-QAM, 64-QAM over OFDM), we vary the power
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of the jammer, use the optimal hypothesis test to collect a
clean signal and decode using standard methods. Fig. 4 plots
the bit error rate as a function of the ratio of the jamming
power to the transmitted power at the eavesdropper. The fig-
ure shows 4 graphs one for each modulation scheme. Three
points are worth noting:

• Jamming can significantly increase the BER at the eaves-
dropper for 4-QAM, 16-QAM, and 64-QAM. However,
iJam still needs an additional mechanism to amplify this
BER to 50%, which would ensure that it receives no in-
formation from its snooped receptions.

• There is a significant range of relative powers of the
sender and the jammer at the eavesdropper for which the
BER is maximized. In particular, the BER is close to the
maximum when the sender’s power at the eavesdropper,
Ps→e, and the jammer’s power at the eavesdropper, Pj→e

satisfy the relationship 1 <
Pj→e

Ps→e
< 9. Since the power

ratio at the eavesdropper depends on its location, iJam
needs an additional mechanism that works at all power
ratios to allow it to be location independent.

• Finally, the BER for BPSK over OFDM is very low and
hence we cannot use iJam’s scheme directly. Thus, iJam
needs to find an alternative approach to transmit over
channels that have low SNR and for which 802.11 would
typically use BPSK over OFDM.

The next three sections address the above three chal-
lenges. We start with making iJam location independent.

5.2 Making iJam Location Independent

As we saw in Fig. 4, the simple jamming idea works only
in region 2, i.e., when 1 <

Pj→e

Ps→e
< 9. So, how do we deal

with scenarios in which the eavesdropper is in a location that
does not satisfy the above constraint?

(a) Dealing with Region 1 (i.e., Pj→e

Ps→e
≤ 1.) Region 1 occurs

in locations where the jamming power is too low. This means
that the eavesdropper is not really affected by the jamming
and therefore has a low BER. iJam addresses this problem
by using a 2-way exchange of salts. Say Alice and Bob want
to exchange a random key. Alice first sends a random salt to
Bob, which Bob jams using our technique. Bob then sends a
new random salt to Alice, which Alice jams using our tech-
nique. Both Alice and Bob know the two salts, the one they
received and the one they sent. They XOR the two salts to
obtain the random key.

Given this choice of key, we can completely ignore eaves-
droppers in region 1, that is eavesdroppers for which Pj→e

Ps→e
≤

1. Specifically, the eavesdropper cannot obtain the key un-
less she correctly decodes both salts. Yet, for any eavesdrop-
per either the power received from Alice is larger than the
power received from Bob or the opposite. Since Bob acts as
the jammer for the first salt and Alice acts as the jammer for
the second salt exactly one salt will fall in region 1. Thus, as
long as we can deal with region 2 and 3, we can ensure that
the eavesdropper will not get both salts, and the communica-
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Figure 5—Making iJam location independent. The sender transmits salt
and its repetition and waits for acknowledgments. In the absence of an ac-
knowledgments, the sender timeouts, discards the unacked salt and transmits
a new random salt.

tion is secure. Since region 2 naturally has the highest BER,
we only need to worry about region 3.

(b) Dealing with Region 3 (i.e., Pj→e

Ps→e
≥ 9.) Region 3 oc-

curs in locations where the jamming power is too high. This
is problematic because the eavesdropper can identify the
jammed samples with high probability and hence obtains a
low BER. So the solution to this problem is to reduce the
jamming power so that the ratio Pj→e

Ps→e
stays relatively small.

The problem however is that for any power value that the
jammer picks, there exist eavesdropping locations for which
the ratio Pj→e

Ps→e
is too high and others for which the ratio is too

low. Thus, the jammer cannot cover all eavesdropping loca-
tions with one setting for the jamming power.

To address the above problem, iJam uses L different
power levels to jam. Specifically, instead of transmitting one
random salt in each direction, iJam transmits L salts in each
direction (L salts from Alice to Bob and L salts from Bob to
Alice). As before, the OFDM symbols corresponding to each
of these salts are repeated twice.

As shown in Fig. 5, the jammer jams each salt and its
repetition using a different power level. In particular, the jam-
mer jams the first salt (and its repetition) using the maximum
power supported by the hardware P1. It jams the second salt
(and its repetition) using a power P2 = P1

9 , and the third salt
(and its repetition) using a power P3 = P2

9 , and so on un-
til it jams the Lth salt (and its repetition) with a power level
PL = PL−1

9 . After exchanging L random salts in each direc-
tion, the two nodes generate the key by XOR-ing all 2L salts
together. Note that the adversary can not correctly decode the
key. This is because, for every adversary location, there ex-
ists at least one salt for which the power ratio satisfies the
condition, 1 ≤ Pj→e

Ps→e
≤ 9.

We note the following two points:

• First, since the receiver may fail to decode a salt, we need
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the receiver to acknowledges every salt and the transmit-
ter to continue sending salts until the receiver acknowl-
edges L such salts. The key is then generated by xor-ing
only the acked salts. Also the jammer moves on to the
next power level only after it correctly decodes a salt.

• Second, the number of jamming levels, L, can be com-
puted given an upper and lower bounds on the jamming
power. The upper bound is set to the maximum power
supported by the hardware and the lower bound is set to
the noise power. Given typical values for the maximum
802.11 power and the noise power we estimate L to be
about 10 different power levels.6

5.3 BER Magnification

Now that we have made iJam’s performance location in-
dependent, we address the second challenge. In particular,
we would like to magnify the BER at the eavesdropper to be
close to 50%, so that the eavesdropper gets no more informa-
tion than she would get from a random guess.

To do so, we again use the XOR technique from the previ-
ous section. Specifically, instead of transmitting just one salt
(and its repetition) at every power level, the transmitter trans-
mits a train of M salts. The final salt for each power level is
then constructed by XOR-ing all these M salts.

iJam can achieve a BER around 50% in the final salt by
picking an appropriate value of M depending on the modula-
tion used. In particular, since the jamming signal is random,
the bits which are in error in each of the M salts are indepen-
dent. If the BER in each of the individual salt is x, the prob-
ability that the ith bit is uncorrupted in all M salts decreases
exponentially with M as (1 − x)M . Thus, by picking an ap-
propriate M, iJam magnifies the BER at the eavesdropper to
close to 50%.

The final issue is that iJam needs to ensure that the re-
ceiver receives M correct salts, even in the presence of a
magnified BER to the eavesdropper. First, the bit error rate at
the receiver and eavesdropper are independent of each other.
This property is fundamental to the wireless medium [26].
Second, the bit error rate at the adversary does not change
depending on whether the receiver successfully receives the
salt or not. Thus, all we need to ensure is that the receiver
successfully receives some M salts from the transmitter. To
do this, as in the previous section, if the receiver fails to de-
code a particular salt, she does not acknowledge the salt. The
transmitter discards unacked salts. At each power level, how-
ever, the transmitter continues to send salts until the receiver
acknowledges M of them. The final salt for the power level
is then generated by XOR-ing only the acked salts.

5.4 Making iJam work at BPSK SNRs

Finally, as shown in Fig. 4, we cannot transmit salts using
BPSK over OFDM because of the resulting low BER. Thus,
we need an alternate mechanism to transmit salts to a receiver

6 802.11 transmits around 15dBm and have a noise floor around -95dBm [ 6].
This translates to about 10-11 different power levels.

that has low SNR and for which 802.11 would typically use
BPSK over OFDM.

To deliver packets to such a receiver, while maintaining a
high BER at the eavesdropper, the transmitter sends using 4-
QAM over OFDM. However, since 4QAM has a much higher
bit error rate at the low SNRs at which BPSK operates, the
receiver is likely to see many bit errors in the whole packet.
To counter this effect, a iJam transmitter splits a salt into
several sub-salts and sends a CRC checksum for each sub-
salt. Since sub-salts are smaller, they are much more likely to
be correctly received than a complete salt despite the higher
BER of 4-QAM. The receiver only acknowledges and uses
correct sub-salts for constructing the final salt. An unacked
sub-salt is discarded by the transmitter. The transmitter how-
ever transmits as many sub-salts as are necessary to create
a full length salt. For example, depending on the SNR, the
transmitter might choose the size of the sub-salt to be 128
bits and send a CRC check for every 128 bits. In §8.2.2, we
show that using this mechanism, iJam can successful estab-
lish keys with receivers whose SNR is as low as 6 dB, which
is at the lower end of the operational regime for BPSK over
OFDM [9].

5.5 Summary

To summarize, say Alice and Bob want to exchange a ran-
dom key. Alice transmits to Bob L sequences of M salts, and
Bob jams each of these L sequences with a different power
level. Similarly, Bob transmits to Alice L sequences of M
salts, and Alice jams each of these L sequences with a differ-
ent power level. The final key is generated by XOR-ing all
2ML salts together.

To reach low SNR receivers that typically require BPSK
over OFDM, a iJam sender transmits its salts using 4QAM.
It however divides each salt into several sub-salts and sends a
CRC checksum for each sub-salt. The salt is constructed by
concatenating successful received sub-salts. The rest of the
protocol stays the same as above.

6 PRACTICAL ISSUES

Finally, iJam needs to address a few practical issues to
ensure decodability at the receiver, and successful jamming
at the eavesdropper.

6.1 Decoding at the Receiver

An iJam receiver takes the clean samples from the orig-
inal OFDM symbol and its repetition and combines them to
create a single clean OFDM symbol. However, naively com-
bining the samples across the two symbols does not work.
This is because, in practice, the received signal typically has
a frequency offset. This results from the fact that it is virtually
impossible to manufacture two radios centered at the same
exact frequency. Hence, there is always a small frequency
difference, ∆f , between the sender and the receiver [13]. This
frequency offset causes a linear displacement in the phase of
the received signal that increases over time. In particular, the

7



phase in the OFDM signal increases by 2π∆f every sample.
As a result, instead of receiving the samples y1, y2, · · · , yN ,
the receiver receives,

y1e2π∆f , y2e4π∆f , · · · , yNe2Nπ∆f

The standard OFDM receiver has algorithms to account for
this phase shift in a standard OFDM signal. However, since
iJam combines samples from an OFDM symbol and its repe-
tition, and gives the resulting signal to the standard OFDM
receiver, iJam needs a mechanism to deal with this phase
shift.

Specifically, if the repetition signal is D samples away
from the original signal, then it is received at the receiver as,

y1e2(D+1)π∆f , y2e2(D+2)π∆f , · · · yNe2(D+N)π∆f

Therefore, the samples in the original and the repetition
signals do not have the same phase. In order to combine sam-
ples across the two, the iJam receiver should account for this
phase. We note that the phase of every sample differs by ex-
actly 2Dπ∆f between the original samples and their repeti-
tion. So, an iJam receiver multiplies all the samples in the
repetition signal by e−2Dπ∆f before combining. It can easily
do this because it knows D and also can estimate the fre-
quency offset, ∆f , from the preamble using standard corre-
lation techniques [11]. Now the original samples and their
repetition have the same phase and hence, the receiver can
combine clean samples across them to create a clean symbol.
The receiver then gives these resulted samples to the stan-
dard OFDM receiver, which then applies its algorithms to
deal with frequency offset and to perform channel tracking.

Note that frequency offset is the only channel effect that
iJam needs to address to ensure that stitching clean sam-
ples from an OFDM produces a correct representation of
the original OFDM symbol. This is due to the fact that iJam
makes the transmitter send an OFDM symbol and its repeti-
tion back-to-back. Since the duration of an OFDM symbol is
much shorter than the channel coherence time [26], channel
attenuation and delays do not change over such interval.

6.2 Jamming at the Eavesdropper

We note the following points about iJam’s jamming.

• First, for iJam to work, the jammer needs to corrupt com-
plementary samples in the original OFDM symbol and
its repetition. The reader might think that, to achieve this,
the jammer needs to be synchronized with the transmit-
ter. Synchronizing different transmitters is a hard prob-
lem in wireless communication [8, 18, 11]. Fortunately,
iJam does not require this synchronization. In particular,
it is important to note that iJam only needs to identify
complementary samples (i.e., a sample and its repetition)
at the intended receiver. Thus, all iJam needs to know is
the start of the OFDM symbol as seen by the receiver.
Since the jammer is the same as the receiver, this is natu-
rally achieved with current OFDM synchronization algo-
rithms. In particular, in order to decode, standard OFDM

receivers have a packet detection algorithm to detect the
beginning of the first OFDM symbol. Once the receiver
locks on the beginning of the first OFDM symbol, it sim-
ply advances by the length of an OFDM symbol, which
is a known parameter of the system. So all the jammer
has to do is to let the standard OFDM receiver algorithm
locate the OFDM symbols. Once this is done, the jam-
mer can match a sample with its repetition because they
are separated by exactly the length of an OFDM sym-
bol. Therefore, iJam can perform the jamming operation
without any need for additional synchronization.

• The jammer can accurately jam individual samples with-
out worrying about the wireless multi-path affecting the
ability of the receiver to decode. In particular, since the
receiver and the jammer use the same antenna, the re-
ceiver receives the jamming signal effectively on the
wire, instead of the wireless medium. Thus, at the in-
tended receiver, the jamming signal does not suffer any
multi-path effect and hence the jammer can accurately
jam individual samples. We, however, note that since the
jamming signal traverses the wireless medium to the ad-
versary, the wireless multi-path further corrupts the sig-
nal at the adversary. Specifically, if the signal traverses
multiple paths from the jammer to the eavesdropper, the
eavesdropper receives multiple copies of every jamming
sample, each with a different delay. Thus, each jamming
sample ends up corrupting more than a single sample in
the sender’s signal, increasing the effect of jamming.

• Finally, OFDM transmits a cyclic prefix (CP) between ev-
ery two OFDM symbols to prevent inter symbol interfer-
ence. Since the CP just repeats some samples from the
OFDM symbol, the jammer needs to jam these repeti-
tions as well to prevent the eavesdropper from exploiting
them. An iJam jammer therefore corrupts the cyclic pre-
fix by jamming all samples between every two OFDM
symbols, as detected by the receiver. Note that since the
jamming signal corrupts only the samples between the
OFDM symbols at the receiver, which are anyway dis-
carded, the ability of the receiver to decode does not
change.

7 IMPLEMENTATION

We implement iJam using the Universal Software Radio
Peripherals (USRPs). We use the RFX2400 daughterboards
which operate in the 2.4 GHz range. We build on top of the
GNU Radio software base and a 802.11-like physical layer.
Specifically, the transmitter maps the bits to the OFDM sub-
carriers. We use 64 subcarriers in our OFDM implementa-
tion, which is the same number of subcarriers used by 802.11.
The mapping from bits to subcarriers is done by using differ-
ent modulations. In particular, we use 4-QAM, 16-QAM and
64-QAM. Finally, each packet consists of the OFDM pream-
ble, a header and a 1500-byte payload.
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Figure 6—Testbed Topology

7.1 Timing Requirements

iJam requires the OFDM receiver to know the start of the
OFDM symbol in real-time so that it can jam complementary
samples in an OFDM symbol and its repetition. While this
can be done in hardware or FPGA implementation, where the
receive can make decisions online, it is hard to do in USRPs.
It is well known that USRP/GNURadio can not achieve strict
timing required for 802.11 because GNURadio manipulates
the signal on the PC in user mode [15]. Thus, our evaluation
does not pick the jamming pattern on the fly. Instead it uses
a fixed pattern which is determined offline. Additionally, our
evaluation picks patterns that do not require the jammer to
know symbol boundaries because this information is avail-
able only after decoding, which is done offline. Specifically,
the jammer uses the jamming patten 1010101.., i.e., it con-
tinuously jams every alternate sample. If the cyclic prefix is
of odd length, the jammer effectively jams complimentary
samples in the symbol pair. So, we use 17 samples for the
cyclic prefix, which is one more sample than that used in
802.11. Note that using this pattern to evaluate iJam is jus-
tifiable because it is one of the plausible instantiations of a
random jamming pattern. We also tried other patterns and
cyclic prefix combinations that have the same property, such
as 11001100.. and a cyclic prefix length of 18 (2 modulo 4).
We found no difference in performance across patterns. Fur-
ther, the results are similar in nature to the simulation results
in MATLAB which use completely random patterns.

8 RESULTS

We evaluate iJam in a representative indoor testbed
shown in Fig. 6. The testbed has 20 nodes in both line-of-
sight and non-line-of-sight configurations. Each node is a
commodity PC connected to a USRP.

8.1 Effectiveness of Jamming

8.1.1 Can iJam achieve high BER at an eavesdropper?

We would like to confirm that, in practice, the impact of
jamming at the eavesdropper follows the theoretical predic-
tions from §5.1. In particular, we want to check how an op-
timal hypothesis testing eavesdropper performs as a function
of the ratio of the power it receives from the jammer and
sender, Pj→e

Ps→e
.

To perform this experiment, we randomly pick two nodes
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Figure 7—Effectiveness of Jamming at eavesdropper. For all modula-
tion schemes over OFDM, the Bit Error Rate (BER) is maximized when the
power ratio is between 1 and 9.

from the testbed to be the sender and the receiver/jammer. For
each choice of sender and receiver/jammer nodes, we place
the eavesdropper node at various random locations and also
control the jamming power, in order to span the whole range
of power ratios.

The ability of the eavesdropper to decode a salt from the
sender depends on the SNR of the sender’s signal in the ab-
sence of the jammer. Thus, we consider eavesdropper loca-
tions that cover the range of 802.11 sender SNRs. We plot
the results of this experiment for 4-QAM, 16-QAM and 64-
QAM over OFDM in Fig. 7. The x-axis shows the ratio of
the signal power of the jammer to the signal power of the
sender at the eavesdropper. The y-axis shows the BER. Each
of the lines represents the sender’s SNR at the eavesdropper,
in the absence of jamming. The bold lines show the theoreti-
cal BER for a hypothetical eavesdropper who gets a noiseless
signal (infinite SNR) from the sender.

The experiment reveals the following:

• First, the BER at the eavesdropper follows the theoretical
predictions from §5.1. The BER is low when the ratio is
either too high or too low. Further, the BER is at or close
to its maximum when the ratio, Pj→e

Ps→e
, is between 1 and 9,
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Figure 8—Error Magnification. For every modulation, iJam can magnify
the Bit Error Rate (BER) to 50% by picking an appropriate value of M.

and this works independent of the modulation used.7

• Second, eavesdroppers that receive the sender signal at
low SNR have a much higher BER than the theoretical
BER of an eavesdropper with an infinite sender SNR.
This behavior is expected since channel noise decreases
the eavesdropper’s overall ability to decode and hence
aligns with the jammer’s goal.

8.1.2 How well can iJam magnify BER?

In §5.3, we provided a mechanism that allows iJam to
magnify the BER to close to 50%. In particular, at each power
level, the sender transmits M salts and amplifies the BER
by XOR-ing these salts. Here, we evaluate how iJam’s BER
amplification performs with different modulations. Since, the
value of M should be sufficient to magnify the BER to 50%
in all cases, we consider the worst-case eavesdropper for this
experiment, i.e., an eavesdropper that has the lowest BER
in the absence of jamming. From Fig. 7, this corresponds to
locations where the eavesdropper has a high SNR from the
sender, and where the power ratio is either of the extremes,
i.e., 1 or 9. Thus, to find M, we only consider eavesdropper
locations that satisfy these constraints. In each experiment,
the sender transmits 10000 salts. Fig. 8 shows the value of
the BER as a function of M for different modulations. The
experiment reveals the following.

• For all modulation schemes, iJam can magnify the BER
to 50% by picking an appropriate value for M.

• At 16-QAM and 64-QAM, iJam requires about 15 to 30
salts to achieve a BER of 50%, while 4-QAM needs about
90 salts to approach the same BER. This is because, for
a given power ratio, the original BER for 16-QAM and
64-QAM is much higher than 4-QAM, and hence it takes
only a few transmissions to achieve a cumulative 50%
BER. In contrast, since the initial BER with 4QAM is
low, it requires a larger number of salts to get to 50%.

• The total time for iJam to transmit a salt across all power
levels is small. Specifically, iJam needs M (15 for 64-

7We also run the experiments with soft combining at the adversary. How-
ever, this approach produces a higher eavesdropper BER than the optimal
hypothesis testing adversary.

QAM, 30 for 16-QAM, 90 for 4-QAM) salts per power
level, and 10 power levels in total. Since each salt is small
(512 bits), multiple salts can fit in a single 1500 byte
802.11 packet. Thus, iJam requires around 7 packets for
64-QAM, 14 packets for 16-QAM and 42 packets at 4-
QAM. Even including additional MAC overheads such
as DIFS, contention window etc., each packet takes less
than 1ms to deliver. Thus, a 512 bit salt can be delivered
within 7-42 ms.

• As noted earlier, iJam can be combined with existing
802.11 security protocols to protect the initial packet
handshake leading the key exchange, and hence defeat
recent successful attacks on 802.11 [2]. Given the above
results, iJam can be used to protect both the ANonce and
SNonce exchanged in the 802.11 handshake in 14-84 ms.

8.1.3 Testbed BER

Finally, in this section, we use a representative indoor
testbed as a case study to investigate the BER achieved by
iJam for eavesdroppers at different locations. The testbed has
20 nodes that form a variety of line-of-sight and non-line-of-
sight topologies. In this section, we experiment with various
locations irrespective of the power ratios. Specifically, we
randomly pick two nodes from the testbed to be Alice and
Bob. All the other nodes eavesdrop on the channel.

We run the complete protocol from §5.5 to evaluate
iJam’s BER. Alice and Bob want to establish a key. Alice
transmits to Bob L sequences of M salts, and Bob jams each
of these L sequences with a different power level. Similarly,
Bob transmits to Alice L sequences of M salts, and Alice
jams each of these L sequences with a different power level.
The final key is generated by XOR-ing all 2ML salts together.
We calculate the BER in the random key generated.

We repeat the experiment with random Alice-Bob pairs.
For each Alice-Bob location pair, we run all three modulation
schemes: 4-QAM, 16-QAM and 64-QAM over OFDM. For
each modulation, the number of salts at each power level, M,
is set to the value from the previous section.

Fig. 9 plots a CDF of BER in the key as decoded by the
eavesdropper. The CDF is taken across all the eavesdropper
locations and different modulations. The figure shows that in
our testbed, iJam provides a median BER of 50% which is
as good as randomly guessing the bits in the packet. Further,
the CDF is tightly concentrated around the median, i.e., the
BER of almost all eavesdroppers in the testbed is between
40-60%. Thus, iJam can ensure that an eavesdropper cannot
decode the key.

8.2 Effectiveness of Receiver

8.2.1 Can an iJam receiver decode while jamming?

In this result, we show that an iJam receiver can still de-
code in the presence of the jammer. Specifically, we show
that iJam’s algorithm to combine OFDM samples from con-
secutive repeated symbols to produce a single symbol works.
The standard performance metric for a receiver is the BER
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Figure 10—Comparison of Receiver Bit Error Rate (BER). The figure
shows that, for all modulations and SNRs, the BER at the intended receiver,
in the presence of jamming is similar to that without jamming. The figure
also shows that phase correction is critical for iJam to work.

as a function of the SNR [24, 26], and we check whether the
receiver in the presence of jamming can match the BER of
a jammer-free receiver at every SNR, and for every modula-
tion.

As before, we pick random node pairs in the testbed to act
as a sender and a receiver. For each pair of nodes, the sender
transmits packets to the receiver using different modulations.
The receiver transmits its jamming signal at maximum power
as this is the worst case scenario for decoding. We plot the
BER as a function of the SNR from the sender to the receiver
in the absence of jamming. The results do not change much
when the receiver uses lower power levels for jamming.

Fig 10 shows the BER as a function of the SNR for three
scheme: 1) jammer-free receptions, 2) iJam without the phase
correction algorithm from §6, and finally 3) iJam with phase
correction. The figure shows the following:

• Phase correction is crucial for iJam to work. Fig 10 shows
that the chunks are completely undecodable when phase
correction is not employed. This should not come as a
surprise because even a traditional OFDM receiver that
uses a single OFDM symbol has to apply phase correction
on the received samples. In the absence of phase correc-
tion, the phases of most samples are incorrect and there-
fore the OFDM receiver gets most of the bits wrong.

• For all modulation schemes, the SNR at a iJam receiver is
similar both with and without jamming. This shows that
iJam can remove the effect of jamming precisely at the
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Figure 11—Number of sub-salt transmissions required at BPSK SNRs.
The figure shows the number of sub-salts the sender transmits before the
receiver at BPSK SNRs can correctly receive one sub-salt.

receiver, and does not affect the ability of the receiver to
decode across the entire range of SNRs, even while the
eavesdropper experiences a BER of around 50%.

8.2.2 Does iJam work at BPSK SNRs?

Finally, because of its very low BER, iJam does not use
BPSK over OFDM. iJam instead uses the sub-salts mecha-
nism in §5.4 to deliver salts to locations which traditionally
require BPSK because of their SNR. In this section, we eval-
uate if iJam can indeed do so. To test this, we consider pairs
of nodes in the testbed which require BPSK over OFDM
to communicate. For each pair, the sender transmits using
4QAM over OFDM. To counter the high BER that results
from operating 4QAM at BPSK SNRs, the iJam sender di-
vides salts into sub-salts of length 128 bits and sends a CRC
for each sub-salt. The sender transmits sub-salts until the re-
ceiver receives one sub-salt that passes the CRC.

Fig. 11 plots the average number of different sub-salts the
sender transmits before the receiver correctly receives one of
them. The x axis shows the SNR values of the sender signal
at the receiver. The SNR values span the typical BPSK opera-
tional regime (5-10dB) [9]. The figure shows that as the SNR
decreases, the sender needs to send more sub-salts before the
receiver can correctly receive one of them. While the number
of such sub-salts is higher at lower SNRs, this is an accept-
able overhead for the BPSK SNR locations. This is because
the communicating nodes can use iJam only for protecting
the key exchange which occur once at the beginning of the
session. Once a key is established, it can be used to encrypt
further packets using shared-key cryptography. The key point
is that iJam can use 4-QAM to confidentially deliver salts
even to receivers which traditionally require BPSK.

9 DISCUSSION

The adversary model in §3, assumes that the adversary
does not have either directional antennas or more antennas
than either the client or the AP. In this section, we discuss
how iJam can be extended to work without these constraints.

First, an adversary can deploy directional antennas to
boast the power it receives from the transmitter. To overcome
this, a iJam sender transmits data at a lower power to coun-
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teract the directional power gain at the adversary by increas-
ing the ratio of jammer power to sender power. Reducing the
power at the transmitter, however, comes with a tradeoff. In
particular, the receiver now gets a lower powered signal from
the transmitter. If the receiver is also equipped with a direc-
tional antenna, reducing the power at the sender does not af-
fect the rate at the receiver because the receiver can coun-
terbalance the power reduction by the directional gain. How-
ever, if the receiver does not have a directional antenna (even
though the eavesdropper still does), the rate at which packets
can be exchanged with the receiver reduces. However, this
may still be acceptable because iJam is used only at the be-
ginning of the session to protect the key exchange packets.

Next, say the eavesdropper has more antennas than ei-
ther the AP or the client. As a result, it gets additional
combinations of the transmitted and jamming signals. An
adversary who knows the multi-tap channel from the re-
ceiver/jammer to itself can then use these additional com-
binations to separate the transmission signal from the jam-
ming signal. However, since a iJam jammer does not send a
preamble (known signal) while jamming, the adversary can-
not determine this multitap channel from the jamming sig-
nal. However, the adversary will be able to leverage the fact
that the receiver/jammer also transmits usual data packets at
other times, which it can use to estimate the channel. To pre-
vent this, all iJam nodes apply a random multi-tap filter, un-
known to any other party, on its data transmissions, but not
on its jamming signal. As a result, the adversary now sees a
completely different multi-tap channel on data packets and
jamming signals, and hence cannot use the channel estimate
from data transmissions to subtract the jamming signal. Note
that receivers can still continue to decode data packets even
though the sender applies a random multi-tap channel, be-
cause this multi-tap channel can just be estimated using stan-
dard OFDM algorithms. We defer the evaluation of these ex-
tensions for future work.

10 CONCLUSION

This paper presents iJam, a PHY technique that allows a
sender-receiver pair to protect sensitive packets that are in-
tended to be heard only by the receiver. It does this by strate-
gically jamming the signal so as to prevent an eavesdropper
from decoding the data, while allowing the intended receiver
to decode it. The paper also provides an prototype imple-
mentation of iJam showing its practical feasibility. While the
focus of this paper is to protect sensitive packets such as the
802.11 key exchange packets, we believe that the mechanism
introduced in this paper open the door for other techniques
that hide every packet sent on the wireless medium, instead of
just the sensitive ones. This would allow us to convert wire-
less into a truly untappable medium.
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