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Abstract

This thesis proposes a methodology for the design of man-machine in-
terfaces by combining top-down and bottom-up processes in vision.
From a computational perspective, we propose that the scientific-cognitive
question of combining top-down and bottom-up knowledge is similar
to the engineering question of labeling a training set in a supervised
learning problem.

We investigate these questions in the realm of facial analysis. We
propose the use of a linear morphable model (LMM) for represent-
ing top-down structure and use it to model various facial variations
such as mouth shapes and expression, the pose of faces and visual
speech (visemes). We apply a supervised learning method based on
support vector machine (SVM) regression for estimating the parame-
ters of LMMs directly from pixel-based representations of faces. We
combine these methods for designing new, more self-contained systems
for recognizing facial expressions, estimating facial pose and for recog-
nizing visemes.
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Chapter 1

Introduction

In recent years, the problem of detecting and analyzing faces has be-
come a core problem of computational vision. This problem has proved
to be challenging not only from the perspective of the cognitive scien-
tist who seeks to understand the mechanisms underlying perceptual
tasks but also from the point of view of an engineer who seeks to de-
sign systems for the detection and analysis of faces. In this thesis, we
study and compare the roles of top-down and bottom-up processes in
facial analysis. In the process, we seek to address a question in cogni-
tive science about the role of top-down information in perceptual tasks
and also provide a design for a system that can be trained for facial
analysis.

The scientific-biological question of perception has been addressed
in the theory of computational vision. As propounded by Marr [33],
this theory views vision as a purely bottom-up (feed-forward) process
where an input representation of the image is converted in stages to a
full-fledged 3D representation. All domain-specific knowledge is viewed
as being hard-coded in the architecture of the bottom-up process. How-
ever, right from the time of Gestalt psychologists (Kohler [29]) it has
been shown that a priori organizational principles might play a cru-
cial role in even very simple perceptual experiences. These principles
were supposed to be neurally encoded and mostly unconscious. Later,
Bruner [7] showed that perception may be guided by conscious beliefs
and expectations. A great deal of psycho-physical results have been
adduced in support of these claims. However, this influence of uncon-
scious organizational principles or conscious beliefs and expectations,
often loosely called top-down influences has not been well-understood
from a computational perspective with regards to its representation



and its interaction with bottom-up processes.

Recent studies (Cavanagh [11], Mumford [35], Jones, Sinha, et al.
[34]) have analyzed aspects of top-down influences in vision from a
computational perspective. While these studies have been motivated by
scientific-biological questions, they have relied on models from machine
vision for representing top-down information. In Cavanagh [11], top-
down information is represented as prototypes of object classes stored
in memory which are used to match input images. In Jones, Sinha, et
al. [34], a morphable model (Beymer and Poggio [3], Vetter and Pog-
gio [52], Jones and Poggio [28]) represents top-down information. The
latter work also explores the implications of top-down influences on
immunity to noise and missing input. In both these works, the issue
of the interaction of top-down influences on bottom-up processes has
been answered by invoking the scenario of analysis by synthesis. Mum-
ford’s [35] Pattern Theory also relies on analysis by synthesis for its
explanation of perception. However, such total reliance on an analysis
by synthesis approach presents two problems:

e Analysis by synthesis in general relies on a trivial bottom-up pro-
cess i.e. one where there is no transformation of the input signal.
However, we do know that the input (retinal) image in an or-
ganism undergoes some complex transformations. This raises the
question: why does the input image undergo a complex transfor-
mation and what relation could this transformation have to any
top-down information? In general, we should expect the transfor-
mations in the bottom-up process to be affected by the represen-
tation of top-down information and vice-versa. This aspect of the
problem is not addressed in the analysis by synthesis scenario.

e Analysis by synthesis in general works only through iterative pro-
cedures. It relies on a search in the space of parameters repre-
senting the top-down “model” to find the best parameters which
minimize some form of error measure between the model image
and the input image. In practice, this is achieved through some
kind of gradient-based search which is computationally intensive
and seems less plausible given the complexity involved in the task
of perceptual recognition.

Unlike the top-down processes, the bottom-up processes in percep-
tion have seen extensive investigation from a computational perspective
and application in various engineering systems. Several vision problems
ranging from the low and medium level ones such as edge detection,



depth estimation and optical flow to the high level ones such as struc-
ture from motion and object recognition, have been cast in a bottom-up
manner and algorithms suggested for their implementation. The frame-
work of learning theory has proved particularly successful for modeling
certain phenomenon such as object detection as a bottom-up process.
Statistical Learning theory was developed by Vapnik and co-workers
[50, 49, 51] as the problem of estimating input-output relationships
from empirical data. Independently, the theory of regularization devel-
oped by Tikhonov and Arsenin [43] was applied to a learning problem,
namely estimating neural network architectures, by Girosi, Jones and
Poggio [20]. This work found application in the detection of faces (Sung
and Poggio [40], Rowley, Baluja, et al. [23]), pedestrians and cars (Pa-
pageorgiou et al. [9]). In these approaches top down information was
incorporated through a labeled training set and appears as part of the
training phase only. Whether top-down influences have any further
structure and if they play any role in the actual perceptual task is not
clear.

The study of the top-down and bottom-up processes is relevant not
merely for the scientific understanding of perception but also for the de-
sign of technologies that mimic human perceptual capacities, and thus
has application in a variety of man-machine interfaces. As a general
rule, most systems that seek to mimic human perception, do not func-
tion without recourse to any constraints, but instead rely on a variety of
constraints that encode physical, biological and ecological knowledge.
For the task of higher-level perception, physical constraints are insuf-
ficient and biological and ecological constraints are hard to represent.
Therefore, systems such as the ones performing object recognition, in-
creasingly rely on manual annotation as a means of inserting top-down
knowledge. Any step taken towards a general and structured represen-
tation of biological and ecological constraints inherent in the human
perceptual process would make the task of designing these systems sig-
nificantly easier.

In this thesis, we seek to view top-down influences in a more struc-
tured manner and provide a specific role for top-down information in
the bottom-up process. In particular, the bottom-up process is cast in
the framework of learning where the goal is to learn a mapping from
an input space to an output space. The input space is typically the
space of sensory data or observables and the output space represents
the categories experienced in perception. The bottom-up process is
represented by the function obtained by learning, that maps the sen-
sory data to the the perceptual categories. We suggest that top-down
information should specify a structure on the output space or the space
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Figure 1.1: A block design for a system that mimics perceptual ability.
The role of top-down knowledge is inherent in manual annotation and
it can conceivably be replaced by structures that model the space of
perceptual categories.

of perceptual categories, or in other words be a model of the space of
perceptual categories. Having such a structure would allow us to re-
place the manual annotation of examples with parameters of the struc-
ture that models the output space. This way of providing top-down
information allows us to make the design of man-machine interfaces
much more self-contained, requiring less manual input. In Fig. 1.1 we
illustrate this scheme in the form of a block diagram.

We demonstrate that such a self-contained man-machine interface
system is possible by adopting a two-pronged approach. On the one
hand, we show that the framework of learning is suitable for modeling
the bottom-up process. We have demonstrated this by the use of a
learning-based approach in the analysis of mouths (Kumar and Pog-
gio [47]). In this, the learning approach (earlier characterized by the
detection problem where a discrete object class was estimated) was
extended to the problem of estimating continuous quantities such as
openness and smile of mouths. This work was motivated by the goal of
designing a real-time system capable of locating and analyzing human
faces for expressions. It works on the principle of learning a regression
function from a Haar wavelet based input representation of mouths to
hand labeled parameters denoting openness and smile.

However, this work also opens up the possibility of being able to
learn parameters of models that are capable of modeling the class of
mouths, if such models exist. We consider a linear morphable model
as an appropriate structure for the output space of the learning prob-
lem for estimating facial expression. We learn regression functions that



map pixel-based representations of images into the parameters of a mor-
phable model. We show that this has applications in different aspects of
man-machine interfaces including expression recognition, viseme recog-
nition and pose estimation. In the next two sections, a brief background
on these approaches is provided.

1.1 Learning for Bottom-up Analysis: A
Real-time System for Facial Analysis

A system capable of locating human faces and analyzing and estimat-
ing the expressions therein in real time has applications in intelligent
man-machine interfaces and in other domains such as very low band-
width video conferencing, virtual actor and video email. The problem
is difficult because it involves a series of difficult tasks each of which
must be sufficiently robust. The main tasks in such a system can be
summarized as follows.

1. Detect and localize faces in a cluttered background.

2. Detect and localize different facial features such as eyes, nostrils
and mouth.

3. Analyze these regions to estimate suitable parameters.

The key theoretical issues that need to be addressed to facilitate such
a real-time system are the image representations used for estimation
of different features and parameters and the algorithms used for their
estimation.

Facial patterns and their changes can convey a wide range of expres-
sions, and regulate spoken conversation and social interaction. Faces
are highly dynamic patterns which undergo many non-rigid transfor-
mations. Much of the previous work to capture facial deformations has
relied heavily on two forms of parameterizable models, namely, geom-
etry of face musculature and head shape (Blake and Isard [24], Essa
and Pentland [18], Terzopoulos and Waters [42], Yuille et al. [1]) and
motion estimation (Black and Yacoob [5], Ezzat [19]). While the for-
mer needs to be hand-crafted, the latter relies on repeated estimation
of optical flow which can be computationally intensive. An important
aspect of our work is that the models for all of the sub-tasks needed to
achieve the final goal is automatically learned from examples. More-
over it does not make use of any 3D information or explicit motion
or segmentation. Some work on 2D view-based models of faces have



also been extended to expression recognition (Beymer et al. [4], Beymer
and Poggio [3] and Cootes et al. [12]). However these view-based mod-
els are explicitly dependent on correspondence between facial features
and therefore repeated estimation of this correspondence during anal-
ysis. In designing our system, we built models that do not rely on such
explicit correspondence.

The analysis of faces within a view-based paradigm is achieved by
the localization and analysis of various facial regions. This is quite a
hard problem due to the non-rigid transformations that various facial
regions undergo. Some regions of the face (such as mouths) can vary
widely. A pixel based representation for such a widely varying pattern
is often inadequate. While localization of some facial regions may be
simplified by the localization of the face, the task of mapping the facial
region (e.g. the mouth) to a set of parameters (such as degree of open-
ness or smile) is a daunting one since it is not clear how such a map
can be made robust not only to the various factor affecting the image
pattern of the facial region but also to errors in its localization.

The wavelet based representation has a long history and has recently
been applied to the problems of image database retrieval in Jacobs et
al. [26] and pedestrian detection in Papageorgiou et al. [9]. It has been
shown to be robust to lighting conditions and variations in color. It
is also capable of capturing in its overcomplete form the general shape
of the object while ignoring the finer details. It is also known that
at low enough resolutions it is tolerant to small translations. In our
approach we have used an overcomplete Haar wavelet representation
to detect nostrils to first localize the mouth and then use a sparse
subset of coeflicients of this overcomplete wavelet dictionary as a set of
regressors which output the different parameters desired (in our case
degree of openness and smile). This approach is similar to the method
used by Graf et al. [22] and Ebihara et al. [15] where the outputs of
different band-pass components of the input image are used as input
to a classifier.

A face detection system is the first step towards any mouth analy-
sis system. The face detection part was described in its non real-time
form in Osuna, et al. [14]. This system is an example of how we ad-
dress the other issue related to our problem, namely, of robust learning
techniques for estimating the data-driven models. For this purpose,
we used the Support Vector Machine (SVM) classification (Cortes and
Vapnik [13]) which is based on the principle of structural risk minimiza-
tion and thus minimizes a bound on the generalization error. In order
to make this system real-time we have incorporated skin-segmentation
to reduce the search space for the face detector. Localization of eyes



and nostrils is used to localize the mouth.

The problem of mapping the localized mouth region to the set of
desired parameters is posed as the problem of learning a regression
function from the Haar wavelet coefficients of the image to parame-
ters of openness and smile obtained by manually annotating a training
set. This problem is tackled using SVM regression and forms the most
important component for our purposes. This system has been trained
on multiple faces and is capable of detecting faces and localizing eyes,
nostrils and mouths for multiple persons in a general environment. Fur-
thermore, the system is trained to analyze the localized mouth pattern
to estimate degrees of openness and smile. The estimated parameters
are used to drive the head movements and facial expressions of a car-
toon character in real time on a general purpose computer.

1.2 Learning Top-down Parameters

The design of a learning-based real-time system for tracking and ana-
lyzing faces shows that it is possible to use purely bottom-up methods
to make head-way in some hard problems of perception. However, the
fact that the system uses manually annotated examples for learning
shows that top-down knowledge is inherent to its success. Is manual
annotation the only way of specifying top-down knowledge? In the case
of facial analysis, this question can be asked more pointedly as follows.

e What are the basic units of facial shapes/motions? How can they
be represented?

e What relation does the pixel image of faces bear to these repre-
sentations? Can those be learnt?

The answer to the first question demands a model for modeling
the class of mouths which is capable of representing the inherent con-
straints on mouth shapes and motions. Amongst the many model-based
approaches to modeling object classes, the Linear Morphable Model
(LMM) is an important one. The antecedents of LMMs can be found
in the work of Beymer and Poggio [3], Vetter and Poggio [52] who de-
scribe the modeling of different objects of the same object class using a
linear combination of prototypes, and the work of Ullman and Basri [45]
who model the multiple views of a single object by linear combination
of prototypical views. A LMM works by establishing pixel-wise cor-
respondence between the prototypical images of an object class. This
leads to a dual-representation of an image as a texture and a shape.



By linearly combining the texture and shape separately, it is possible
to generate new images of objects in the same class. Mathematically a
LMM represents a manifold in the space of pixels on which any image
belonging to the class is constrained to lie. LMMs will be explained in
greater detail in a later chapter.

LMMs have been used to model object classes such as faces, cars and
digits (Jones and Poggio [28], Blanz [46], Cootes et al. [12]). Recently
it has been used for the synthesis of visual speech (Ezzat and Poggio
[41]). But so far, it has mainly been a tool for image synthesis and
its use for image analysis has been somewhat limited, mainly for the
purpose of verification after the stage of object detection. Such analysis
has been approached through the computationally intensive analysis
by synthesis method only. In Jones and Poggio [28] and Cootes et al.
[12], the matching parameters are computed by minimizing the squared
error between the novel image and the model image using a stochastic
gradient descent (SGD) algorithm. This technique is computationally
intensive (taking minutes to match even a single image). A technique
that could compute the matching parameters with considerably less
computations and using only view-based representations would make
these models useful in real-time applications.

In this thesis, we explore the possibility of learning to estimate
the matching parameters of a LMM directly from pixel-based repre-
sentations of an input image. LMMs have the good property that by
virtue of construction (using examples) a LMM represents the statis-
tics of the class of images as opposed to other models which need to be
hand-crafted (e.g. those based on facial musculature). What is being
investigated here is the possibility that the statistics represented by a
LMM forms the basis of top-down information, ot least in the earliest
stage of perception. Thus it may be natural to learn the parameters of
a LMM as the first stage of a perceptual task.

The work of Cootes and co-workers [12] has come close to approx-
imating our methods. Their model for object classes known as the
active shape model is similar in spirit to the LMM but differs in its
details. It lacks the dense correspondence field of the LMM. However,
they attempt to compute the matching parameters of their active shape
model from the image with a view to speed-up the process of analysis
by synthesis. The speed-up is achieved by learning several multivariate
linear regressions from the error image (difference between the novel
and the model images) and the appropriate perturbation of the model
parameters (the known displacements of the model parameters), thus
avoiding the computation of gradients. This method is akin to learning
the tangent plane to the manifold in pixel space formed by the mor-



phable model. In our method, the emphasis is on learning the complex
non-linear transformations that would carry the input representation
to the matching parameters of the LMM directly.

Since LMMs are constructed from examples, based on the kind of
examples used, it is possible to define qualitatively, two kinds of LMMs.
The first kind of LMMs model the space of line-drawings and need to
be built using examples of line drawings. This can also be interpreted
as being constructed with phenomenal examples and modeling a phe-
nomenal space. The other kind of LMMs are built using real images
and therefore model the space of pixels. As a result one can conceive
of two different ways in which LMMs can form the basis of top-down
knowledge in perceptual systems. When using line-drawing LMMs, the
LMDMs represent phenomenal categories and therefore by learning the
mapping from pixel-based representations to LMM parameters we are
learning to directly estimate phenomenal categories. The same is not
true of the pixel LMMs and extracting meaningful phenomenal cate-
gories might require further analysis. These issues will be discussed in
this thesis.

In this thesis, we propose to construct pixel LMMs to model various
mouth shapes and expressions. Following Jones and Poggio [28], the
LMM is constructed from examples of mouths. Principal Component
Analysis (PCA) on the example textures and flows allows us to reduce
the set of parameters. We then use SVM regression (Vapnik [51]) to
learn a non-linear regression function from a sparse subset of Haar
wavelet coefficients to the matching parameters of this LMM directly.
The training set (in particular the y of the (z,y) pairs) for this learning
problem is generated by estimating the true matching parameters using
the SGD algorithm described in Jones and Poggio [28].

We explore different aspects of this method. Clearly the perfor-
mance is likely to be affected by the number of different people the
LMM tries to model. Accordingly we consider the case of a single
person LMM and a multiple person LMM. An obvious extension to es-
timating LMM parameters directly is to initialize a subsequent gradient
descent algorithm for the more accurate estimation of the parameters.
We present some results on the kind of speed up that is likely with this
approach.

1.3 Applications to Man-Machine Interfaces

Estimation of top-down LMM parameters could be applied to the de-
sign of intelligent systems in two different ways.
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Figure 1.2: Tlustrating the two kinds of applications that the esti-
mation of the LMM parameters can be used for. (a) The LMM pa-
rameters constitute the higher-level categories and are estimated from
pixel-based representations and (b) the LMM parameters are used as
image features and the higher-level categories are specified separately.

e In one case, higher-level perceptual categories are intrinsically
represented by the LMM parameters. It may require some post-
processing to extract these categories but no additional learning
is required. Therefore, the basic framework of these systems is
to map from pixel-based representations to the higher level cat-
egories encoded in the LMM parameters (see Fig. 1.2(a)). It is
this case which makes possible the design of self-contained man-
machine interfaces.

e A different situation arises, when we consider using the LMM
parameters as a feature vector for the image. In this case the
LMM parameters do not represent the perceptual categories of
interest, but serve as input to an additional stage of learning, in
which the final category to be estimated may be hand-labeled
(see Fig. 1.2(b)).

We demonstrate the former concept of a self-contained man-machine
interface, through a new system that can track facial expressions. The
system works by estimating the parameters of a pixel LMM of the
mouth shapes of a single person using SVM regression. It is obvious
that this would allow us to track mouth movements. Additionally, we
also show that the principal components of the flow space of the mouth
LMM correspond to distinct facial expressions. Therefore estimating
LMM parameters allows us to track facial expressions too. In contrast
to all earlier systems tracking facial expressions (Yuille et al. [1], Ter-



zopoulos and Waters [42], Blake and Isard [24], Essa and Pentland [18],
Black and Yacoob [5], Beymer et al. [4], Ezzat [19], Cootes et al. [12]
and Kumar and Poggio [47]) our system is able to directly estimate top-
down (LMM) parameters from bottom-up pixel-based representations,
and thus avoids manual annotation.

Continuing in a similar vein, we also explore the possibility of learn-
ing to estimate the parameters of a line drawing LMM. We construct
a line drawing LMM that models facial pose and SVM regression and
we learn to estimate its parameters from pixel-based representations
of the image. The training set in this case is obtained by matching a
coarse edge map of the input image to the line drawing LMM using the
SGD algorithm. Facial pose estimation has always been important for
subsequent facial analysis including face recognition. Much previous
work on pose estimation has relied on feature detection followed by
geometric modeling to estimate the pose. Some work has been done
on matching models (morphable models in case of Beymer and Poggio
[2], elastic graphs in case of Kruger et al. [30]) using analysis by syn-
thesis methods. Recently it has been shown by Sherrah et al. [25] that
Gabor wavelets combined with PCA on pixel images can yield a pose-
similarity space. Our work carries this idea forward and we compute
relationships between pixel representations and a pose space defined
using a line-drawing LMM.

Recently it has been suggested that LMM parameters could be used
for higher level analysis such as face identification (Blanz [46] and Ed-
wards et al. [21]). These methods fall in the latter category of appli-
cations i.e. based on supervised learning with the LMM parameters
as an image feature. The application we consider is the recognition of
visemes. Visemes are the visual analogues of phonemes (Ezzat and Pog-
gio [41]). Recognizing visemes have potential applications in enhancing
the performance of speech recognition systems or driving photorealistic
avatars. A full treatment of visemes is beyond the scope of this the-
sis. However we test the simple technique of mapping single images into
viseme classes by training classifiers on the matching LMM parameters.
Although this method has not been fully explored, it raises questions
on the ability of LMM parameters to substitute for image features.

1.4 Significant Contributions
The significant contributions of this thesis extend to both, questions of

a scientific-biological nature as well as of an engineering kind.
The significant contributions of this thesis to engineering applica-



tions are

e A purely bottom-up and data-driven learning-based real-time sys-
tem capable of tracking faces and analyzing for basic expressions
such as openness and smile, as well as pose.

e Modeling mouth shapes and expressions using pixel LMMs and
facial pose using line-drawing LMMs.

e A learning-based approach to estimate the parameters of LMMs
directly from the image.

e Combining the above approaches and their application to the
design of new systems with vision capabilities such as expression
recognition, pose estimation and viseme recognition.

The main contribution of this thesis to scientific-biological ques-
tions lies in the suggestion of a specific structure and role to top-down
information in bottom-up processes for perceptual tasks - namely that
a morphable model is capable of representing top-down knowledge and
that the purpose of learning is to establish a (direct) relationship be-
tween the incoming retinal image and the morphable model space.

1.5 Overview of the Thesis

In the next chapter, we describe in detail the different components of
the real-time system for face-tracking and analysis. We bring out the
bottom-up, data-driven nature of the system and compare its perfor-
mance with other systems with a similar goal. In chapter 3, we shall
discuss the design of a morphable model for the class of mouth images
and learning its parameters directly from the image. In chapter 4, we
describe various applications of our approach which include expression
recognition, pose estimation and viseme recognition. Finally we con-
clude by considering the new questions that this work raises and its
implications for cognitive science as well as engineering.



Chapter 2

Learning-based approach
to Real Time Tracking
and Analysis of Faces

This chapter describes a trainable system capable of tracking faces and
facial features like eyes and nostrils and estimating basic mouth features
such as degrees of openness and smile in real time. In developing this
system, we have addressed the twin issues of image representation and
algorithms for learning. We have used the Haar wavelet representation
to robustly capture various facial features. This system, unlike previous
approaches, is entirely trained using examples and does not rely on a
priori (hand-crafted) models of facial features based on optical flow or
facial musculature. Therefore it represents a purely bottom-up (feed-
forward) approach to facial analysis.

The system works in several stages that begin with face detection,
followed by localization of facial features and estimation of mouth pa-
rameters. Each of these stages is formulated as a problem in supervised
learning from examples. We apply the new and robust technique of
support vector machines (SVM) for classification in the stage of skin
segmentation, face detection and eye detection. Estimation of mouth
parameters is modeled as a regression from a sparse subset of coeffi-
cients (basis functions) of an overcomplete dictionary of Haar wavelets.
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Figure 2.1: Dlustrating the use of the skin segmentation and component
tracking. (a) The indoor scene, (b) after skin segmentation, (c) after
component extraction and tracking.

2.1 Face Detection System

In this section, we briefly describe the face detection system which
localizes a frontal and unoccluded face in an image sequence and tracks
it. It uses skin segmentation and motion tracking to keep track of
candidate regions in the image. This is followed by classification of the
candidate regions into face and non-face thus localizing the position
and scale of the frontal face.

2.1.1 Skin segmentation and component tracking

Skin detection is used to segment images into candidate head regions
and background. The skin detector works by scanning the input image
in raster scan and classifying each pixel into skin or non-skin. The
skin model is obtained by training a SVM using the two component
feature vector (777, 77275) Where (r,g,b) are red, green and blue
components of the pixel. There exists more sophisticated features for
skin detection (Lee and Goodwin [31]) but due to constraints of real-
time processing we used a simple one. We collected over 2000 skin
samples of different people with widely varying skin tone and under
differing lighting conditions.

The skin segmented image is analyzed into connected components.
We encode and keep track of the positions and velocities of the com-
ponents. This information is used to predict where the component will
be seen in the next frame and thus helps constrain our search for skin.
Components that are smaller than a predefined threshold or those that
have no motion at all are discarded from consideration. As time goes
on (in our case after 20 frames after a complete rescan), the skin search
is further restricted only to regions with active components (i.e. with
faces). As a result the performance of this stage actually improves
since spurious skin is eliminated and the search is heavily constrained



in spatial extent as illustrated in figure 2.1.

Both skin segmentation and component analysis is performed on a
sub-sampled and filtered image and is therefore fast and reliable. This
stage has proven to be very useful since it eliminates large regions of
the image and several scales (image resizing being computationally in-
tensive this is particularly useful) from consideration for face detection
and helps in doubling the frame rate.

2.1.2 Face Detection

The SVM classifier used in the face detection system has been trained
using 5,000 frontal face and 45,000 non-face patterns, each pattern
being normalized to a size of 19 x 19. It compensates for certain sources
of image variations by subtracting a best-fit brightness plane from the
pixel values to correct for shadows and histogram equalization of the
image patterns to compensate for lighting and camera variations.

Face detection can be summarized as follows. For greater detail the
reader is referred to Osuna, et al. [14].

e Consider each of the active components in sequence.
e Scale each component several times.
e Cut 19 x 19 windows from the scaled components.

e Pre-process each window with brightness correction and histogram
equalization.

o (Classify each window as either face or non-face

We take the very first scale and the very first location where a face is
detected as the position of the face. We also keep track of the position
and velocities of the faces within each component. This helps us in
predicting the position of the face in the next frame and thus reduces
our search further. Once the face is detected it is resized to a fixed size
of 120 x 120 for further processing. The real-time face detection system
works close to 25 frames per second.

2.2 Facial Feature Detection and Mouth
Localization

Face localization can only approximately predict the location of the
mouth. Since the face detection system is somewhat tolerant to ro-
tations and tilting of the head, a mouth localizer that relies solely on



information of face location can be significantly thrown off the mark
by head movements that are not in the plane of the image. More-
over, as mentioned earlier mouth shapes can change dramatically as
the person’s expression changes. Often it is not clear what is the ideal
localization for such a widely varying pattern. All of the above phe-
nomena can have adverse effects on the performance of the next stage
of mouth analysis. Some mouth localizers exist in literature they either
rely on color information (Oliver et al. [36]) or on optical flow (Black
and Yacoob [5]) but our approach was to ensure that the mouth re-
gion remains stationary with respect to other more stable landmarks
on the face such as eyes and nostrils. In this as well as the later stage of
mouth analysis, the ability of the wavelet transform to encode localized
variations plays a crucial role.

2.2.1 Encoding localized variations using Haar wavelets

Wavelets can be interpreted as encoding image variations locally in
space and spatial frequency. In figure 2.2 we depict the 3 types of 2
dimensional Haar wavelets. These types include basis functions that
capture change in intensity in the horizontal direction, the vertical di-
rection and the diagonals (or corners). The standard Haar wavelets
(Mallat [32]) are what are known as complete (or orthonormal) trans-
form and are not very useful for our application. Since we need greater
resolution, we implement an overcomplete (redundant) version of the
Haar wavelets in which the distance between the wavelet coefficients
at scale n is +2" (quadruple density) instead of 2" for the standard
transform. Since the spacing between the coefficients is still exponen-
tial in the scale n we avoid an explosion in the number of coefficients
and maintain the complexity of the algorithm at O(N) in the number
of pixels N.

It is not unreasonable to expect the wavelet representation to be
reliable for locating different facial features. Most areas of the face
with high frequency content (strong variations) are localized around the
eyes, the nose and the mouth. Thus they are amenable to detection by
any method that encodes such local variations like the Haar wavelets.
Figure 2.3 shows that in the Haar wavelet response to regions around
the nose and the mouth, for the corner type basis, the nostrils and the
contours of the mouth stand out (have a large absolute value for the
response). These ideas have motivated us to use wavelet features as
follows.

1. For detection of nostrils.
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Figure 2.2: The 3 types of 2 dimensional non-standard Haar wavelets;
(a) “vertical”, (b) “horizontal” and (c) “corner”.

(a) (b)
Figure 2.3: Illustrating the corner type Haar wavelet response to 3

generic mouth shapes. Note that the nostrils and the contours of the
mouth stand out.
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Figure 2.4: Tlustrating subjective annotation of the training set for
degrees of (openness, smile).

2. As features for analysis of mouth region.

2.2.2 Locating eyes and nostrils

Slightly different procedures are applied to detect the eyes and nos-
trils. Eye detection is done by training a SVM classifier with more
than 3000 eye patterns and 3000 non-eye patterns of size 13 x 9. In
the interests of real time processing we train a linear classifier which
takes normalized pixels as input. During detection several locations
and scales within a candidate region is examined for the location of the
eye. This admittedly leads to numerous false positives.

In order to eliminate false positives one can employ the following
reasoning. From the set of positives, one can choose that positive with
the highest likelihood of being the true positive. Let x denote the
input feature vector and y(x) the output of the SVM classifier. Thus
x € Sp, the positive class if y(x) > 0. Let {x1,X2,...Xy} be the inputs
classified as positive. If all except one is a false positive, then we can
eliminate the false positives by choosing

x* = arg mgxP(xHy(xk) > 0) (2.1)

This involves estimating the multidimensional density P(x|y(x) >
0) which can be very ill-posed. In order to simplify matters, we assume
(see Platt [38]),

P(x[y(x) > 0) » P(y(x)|y(x) > 0) = P(y(x)|x € Sp) (2.2)

We can be easily estimate P(y(x)|x € Sp) by plotting an histogram
of the SVM output for the positive class from the training data. This



distribution turns out to be bell-shaped. Hence we can eliminate false
positives by accepting the one positive for which the SVM output is
closest to the maxima of this conditional distribution. This simple
technique has given good results for false positive elimination.

Nostrils are detected by identifying a candidate nose region from the
location of the face and finding the local maxima of the absolute value
of Haar wavelet coeflicients in the right and the left half of this region.
Here we compute the Haar wavelets for basis functions of support size
4 x 4 at quadruple density. The local maxima can be taken for either
the vertical or the corner wavelets.

We smooth the locations of eyes and nostrils thus obtained by a
moving average filter to reduce jitter and increase robustness and track-
ing.

2.3 Mouth pattern analysis

In this section, we describe the analysis of the mouth pattern obtained
from the previous stage of localization to estimate basic parameters
such as degree of openness and smile. We have attempted to model the
problem of mapping the mouth pattern to a set of meaningful param-
eters as learning the regression function from an input space to output
parameters.

2.3.1 Generating the training set

The training set for learning the regression function is learned as fol-
lows.

e The mouth localization system is used to localize the mouths of
different persons as they make basic expressions such as surprise,
joy and anger.

e The mouths grabbed are normalized to a size of 32 x 21 and
annotated manually for the degree of openness and smile on a
scale of 0 to 1 (see Beymer et al. [4] and Beymer and Poggio [3]).
This is done based on the subjective interpretation of the user
and no actual image parameters are measured. Figure 2.4 shows
some examples of such a subjective annotation.



2.3.2 Automatic selection of a sparse subset of Haar
Wavelet coefficients

The input space for the regression function is chosen to be a sparse
subset of the overcomplete Haar wavelet coefficients described in the
previous section. In the course of the expression some of the coefficients
change significantly and others do not. In the framework of data com-
pression, we would project the data on a subspace which decorrelates it
(which is the same as Principle Component Analysis) and then choose
those variables with the highest variance. However, this is not the same
as choosing a sparse subset where our purpose is to completely avoid
the computation of those Haar coefficients that are not useful in the
regression.

Choosing a sparser set of coeflicients in a regression problem has the
added advantage of reducing the variance of the estimate, although bias
may increase. Conventional approaches to doing this include subset
selection and ridge regression. In order to obtain a sparse subset of the
Haar coefficients, we choose those Haar coefficients with the maximum
variance. This is motivated by the fact that coefficients with high
variance are those that change the most due to changes in mouth shapes
and are hence statistically significant for “measuring” this change. In
this application, we chose the 12 coefficients with the highest variance.
The variance of a sub-sampled set of the Haar coefficients is shown in
table 2.1

0.02 0.22 023 030 0.14

0.61 1.95 227 3.03 4.57

0.20 0.13 0.59 0.62 0.65
(a)

0.06 3.18 099 0.54 0.30

0.18 238 1.14 558 7.70

033 0.65 1.88 3.12 1.38
(b)

0.01 128 130 0.43 0.69

0.35 0.89 0.69 229 7.22

0.20 1.08 0.78 144 1.33

(c)

Table 2.1: Normalized variance values for the Haar coeflicients of mouth
sequences (as they open and close). (a) Vertical, (b) Horizontal and
(c) Corner types.




2.3.3 Linear Least Squares regression on the Haar
coefficients

Once we have have obtained the sparse subset of coefficients, the next
task is to learn the linear map from these coefficients to the output
parameters. We implement a simple least squares estimate of the coef-
ficients of the linear map. Let v(") be the vector of coefficients obtained
after choosing the sparse subset of Haar wavelet coefficients, for the nth
training sample in a training set with NV samples. Then,

v

v T
V= . (2.3)

vinT

is the matrix of all the coefficients of the training set. Also if y =
(yD,y@ . .y™NT is the vector of all the outputs assigned to the
training set. If a is the vector of weights of the linear regression then
the problem is to find the least squares solution to Va = y. The solution
is clearly a = Vty where V1 is the pseudo-inverse of V. During testing,
the value of the output parameter is given by y = a”v where v is the
vector of coefficients from the sparse subset of Haar coeflicients.

2.3.4 Support Vectors for Linear Regression

In this section, we sketch the ideas behind using SVM for learning re-
gression functions (a more detailed description can be found in Golowich,
et al. [48] and Vapnik [51]) and apply it for the simpler case of linear
regression. Let G = {(x;,y:)};, be the training set obtained by sam-
pling, with noise, some unknown function g(x). We are asked to deter-
mine a function f that approximates g(x), based on the knowledge of
G. The SVM considers approximating functions of the form:

D

fx,0) =) cigi(x) +b (2.4)

i=1

where the functions {¢;(x)}2, are called features, and b and {c¢;}2 , are
coefficients that have to be estimated from the data. This form of ap-
proximation can be considered as an hyperplane in the D-dimensional
feature space defined by the functions ¢;(x). The dimensionality of the

feature space is not necessarily finite. The SVM distinguishes itself by



minimizing the following functional to estimate its parameters.

N
R(E) = 3 3 41 = F0x0,0) |e el (25)

where X is a constant and the following robust error function has been
defined

| yi = f(xi;€) | = max(]| yi — f(xi,¢) | —€,0) (2.6)

Vapnik showed in [51] that the function that minimizes the func-
tional in equation (2.5) depends on a finite number of parameters, and
has the following form:

N
fa,a%) =) (af — @)K (x,%:) + b, (2.7)

i=1

where afa; =0, aj,0f >0 i=1,...,N, and K(x,y) is the so called
kernel function, and describes the inner product in the D-dimensional
feature space

D
K(x,y) = ¢i(x)¢i(y)
i=1

In our case, since we are implementing a linear regression, the fea-
tures take the following form ¢;(x) = z; (the ith component of x) and
K(x,y) = xTy. Now it is easy to see that the linear relation between
the sparse subset of Haar coefficients and the output parameter is given
by y = aTv + b where a = YN, (o — a;)v(). Only a small subset
of the (o — a;)’s are different from zero, leading to a small number
of support vectors. The main advantage accrued by using a SVM is
that since it uses the robust error function given by equation (2.6), we
obtain an estimate which is less sensitive to outliers.

2.3.5 Results of Mouth Parameter Estimation

The real time face detection and mouth localization system works at
close to 10 frames per second. This system was used to collect 771
examples of mouth images with different degrees of openness and smile
for a single person and manually annotated as described in section 2.3.1.
The images were pre-processed with illumination correction. This set
was used to learn a linear regression function from the sparse subset
of Haar coefficients to the output parameters, using the Linear Least
Squares and the SVM criteria. We smooth the output of the regression
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Figure 2.5: Estimated degree of (a) openness and (b) smile for a se-
quence of 121 images by linear regression learned using Linear Least
Squares and Support Vector Machine with € = 0.05 and followed by
median filtering with a filter of length 3. Higher values indicate a more
open mouth and or a more smiling mouth.

by a median filter of length 3. In figure 2.5 we present the results of
testing this regression technique on a test sequence of 121 images. One
can note that the linear least squares estimate does as well as the SVM
while estimating smile but performs poorly in the case of openness.
We have currently implemented the system to estimate the degree
of openness and smile of mouths in real time. So far, the training set
contains the images of only one person. But it shows a good capacity
to generalize to the mouths of other people. This system also runs at
10 frames per second on a general purpose PC. We expect that when
mouths of more people are added to the training set and a non-linear
regression is implemented, it will be able to generalize even better.
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Figure 2.6: Illustrating the ability of the mouth parameter estimator
to generalize to different people.
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Figure 2.7: Illustrating the ability of the mouth parameter estimator
to generalize to different lighting conditions.




2.4 Discussion

In this chapter we described the application of wavelet-based image rep-
resentations, and SVM classification and regression algorithms to the
problem of face detection, facial feature detection and mouth pattern
analysis. The basic motivation to use the above two techniques comes
from the inherent robust characteristics of both: the ability of the for-
mer to represent basic object shapes and reject spurious detail and that
of the latter to bound generalization error rather than empirical error.

In summary, in our approach, we use skin segmentation and compo-
nent analysis to speed up a SVM classifier based face detector. We then
detect stable features on the face such as eyes and nostrils which are
used to localize the position of the mouth. After localization, we learn
a linear regression function from a sparse subset of Haar coefficients of
the localized mouth to outputs which represent the degree of openness
and smile of the mouth. We have used the output of this system to
drive the expressions and head movements of a cartoon character. We
believe that the system can be improved by adding examples of facial
expression of more people.

So far our technique has relied on purely bottom-up (feed-forward)
processes to detect and analyze faces. But the fact that a manually
annotated training set was used in training the system suggests that
key top-down knowledge had to be incorporated in order to make the
system perceptually meaningful. Clearly, if the training set was ran-
domly labeled, the system’s output would have no perceptual meaning.
This then prompts an open question: What are the ways to incorporate
top-down knowledge that would “specify” what parameters need to be
estimated by the bottom-up processes described in this chapter? In the
next chapter we consider this question in greater detail.



Chapter 3

Learning-Based
Approach to Estimation

of Morphable Model
Parameters

In Jones, Sinha, et al. [34], a morphable model was suggested as the
vehicle for embodying top-down knowledge. If so, then it follows that
a morphable model should constrain the bottom-up learning process
which converts pixel information into higher-level cognitive categories.
One simple way of achieving this is to have the output of the learnt
function in the space of the morphable model representing the top-down
information. In this chapter we describe a method for performing the
same. This method uses a learning-based approach to estimate the
LMM parameters directly from the images of the object class (in this
case mouths).

The motivation for this work comes from the use of a learning-based
approach in real-time analysis of mouths (Kumar and Poggio [47]), in
which it was shown that a regression function can be learnt from a
Haar wavelet based input representation of mouths to hand labeled
parameters denoting openness and smile. Here we extend the method
to learn to directly estimate the matching parameters of an LMM from
images.

This method can be used to bypass or speed up current computa-
tionally intensive methods that use analysis by synthesis, for matching
objects to morphable models. We represent the mouth images as a
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Figure 3.1: Illustrating the vectorized representation of an image.
Pixel-wise correspondences are computed between the prototype im-
age and a standard reference image. The flow vector consists of the
displacements of each pixel in the reference image relative to its po-
sition in the prototype. The texture vector consists of the prototype
backward warped to the reference image.

sparse subset of low resolution Haar wavelet coefficients and apply the
robust technique of Support Vector Machines (SVM) for learning a re-
gression function from the Haar coefficients to the LMM parameters.
We study the speed up that might be obtained by estimating these
parameters using a regression function to initialize, as opposed to stan-
dard analysis by synthesis.

3.1 Linear morphable model for modeling
mouths

In this section we provide a brief overview of LMMs and their applica-
tion to modeling mouths.

3.1.1 Overview of LMMs

A linear morphable model is based on linear combinations of a specific
representation of example images. The representation involves estab-
lishing a correspondence between each example image and a reference
image. Thus it associates with every image a shape vector and a texture
vector. Figure 3.1 illustrates this vectorized representation, which can
be computed by the linear combination of example images as shown in
Figure 3.2 (See Jones and Poggio [28] for more details).
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Figure 3.2: A linear combination of images in the LMM framework
involves (a) linearly combining the prototype textures using the coeffi-
cients b to yield a model texture and (b) the prototype flows using the
coefficients ¢ to yield a model flow. (c) The model image is obtained
by warping the model texture along the model flow

3.1.2 Constructing an LMM for modeling mouths

In order to construct the single person mouth LMM we collected about
2066 images of mouths from one person. 93 of these images were man-
ually chosen as example images to construct the LMM. The reference
image can be chosen such that it corresponds to the average (in the vec-
tor space defined by the LMM) of the example images. However, the
LMM can be defined only by choosing a reference. Therefore we take
recourse to an iterative method where the reference image is initially
chosen arbitrarily. Using this reference and the LMM that it defines,
the average of the example images is computed. This average image
then forms the reference image for the next step of the iteration. This
method converges in a few iterations to a stable average image. A boot-
strapping technique is used to improve the correspondence between the
reference and other prototype images

Once the reference image is found and correspondence between the
reference and prototypes established, we get a 93 dimensional LMM.
The dimensionality of pixel space being 2066, the LMM constitutes a
lower dimensional representation of the space (or manifold) of mouth
images. However since many of the example images are alike there
is likely to be a great deal of redundancy even in this representation.
In order to remove this redundancy, we perform PCA on the example
texture and shape vectors and retain only those principal components
with the highest eigenvalues. As a result we obtain an LMM where a



novel texture is a linear combination of the principal component tex-
tures (which do not resemble any of the example textures) and similarly
a novel flow is a linear combination of the principal component flows.
A multiple person mouth LMM is obtained by following a similar pro-
cedure except we work with mouths of more than one person, in our
case 3 different people of significantly different skin tone and mouth
shape.

3.2 Learning to estimate the LMM param-
eters directly from images

The problem of estimating the matching LMM parameters directly from
the image is modeled as learning a regression function from an appro-
priate input representation of the image to the set of LMM parameters.
The input representation is chosen to be a sparse set of Haar wavelet
coefficients while we use support vector regression as the learning algo-
rithm.

3.2.1 Generating the Training Set
The training set was generated as follows.

o In the case of the single person mouth LMM each of the 2066
images is matched to the LMM using the SGD algorithm (for
details of the SGD algorithm for matching LMMs to images see
[27]). The two main parameters that need to be fixed at this step
is the number of principal components of texture and flow space
to retain and the number of iterations of the SGD algorithm. We
found that retaining the top three principal components of the
texture and flow space and allowing 250 iterations of SGD was
sufficient to give us a good match and achieve minimum pixel
error on average. Each image is thus represented as a six dimen-
sional vector, which form the outputs for the learning problem.

e Each of the 2066 images is subject to the Haar wavelet transform
and feature selection involving selection of those Haar coefficients
with the highest variance as explained in section 2.3.2. We select
12 coeflicients with the highest variance which form the inputs
for the learning problem.

A similar procedure is followed for the multiple person mouth LMM,
the only difference being that in this case we had to retain the top



eight principal components of the texture and flow spaces respectively,
and require 1000 iterations of the SGD algorithm in order to get a
reasonable reconstruction.

3.3 Results and Discussion

In this section we present the main results of our experiments. The
results have two distinct aspects - the accuracy of the estimate and the
quality of the image reconstruction. The accuracy of the estimate can
be quantified and measured in two ways. 1) The closeness of the esti-
mate from SVM regression to the one obtained from applying Stochas-
tic Gradient Descent or 2) The error in the reconstructed image. The
two are clearly related and yet one cannot be subsumed in the other.

The quality of the image reconstruction, on the other hand, is a
phenomenological measure and although it is related to the both the
above error measures, a great deal of work in vision and perception
seems to indicate that image-based measures are not good indicators
of perceptual likeness [44]. The phenomenological likeness of recon-
struction is extremely important to the work on image synthesis. Since
we are not directly concerned with image synthesis this measure has less
significance for us. However, we will comment on both these aspects
below.

3.3.1 Single Person Mouth Morphable Model

Mouth LMMs appear to work best when constructed for a single per-
son. The results are distinctly better not only in terms of quantitative
errors on pixels and LMM parameters but also in the quality of the
reconstruction. In our experiments, we estimated six LMM coefficients
corresponding to the top three principal components of the texture
space and the flow space respectively. For each LMM coefficient a sep-
arate regression function had to be learnt.

Preliminary experiments indicated that Gaussian kernels were dis-
tinctly superior to estimating the LMM parameters in terms of number
of support vectors and training error compared to polynomial kernels.
As a result we next confined ourselves to experimenting with Gaussian
kernels only. The free parameters in this problem, namely, the insen-
sitivity factor €, a weight on the cost for breaking the error bound C
and the normalization factor o were estimated independently for each
of the LMM parameters using cross-validation. The regression func-
tion was used to estimate the LMM parameters of a test sequence of
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Estimates of a single person LMM flow parameters using the

SGD algorithm and SVM regression on a test sequence of 459 images.
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Figure 3.4: Estimates of a single person LMM texture parameters us-
ing the SGD algorithm and SVM regression on a test sequence of 459
images.



Figure 3.5: Estimates of (a) flow and (b) texture parameters of all
the eight principal components of a multi-person LMM using the SGD
algorithm and SVM regression on a test sequence of 104 images of
individual 1.



“(a) SN S 1 SE— “,(b) .

Figure 3.6: Estimates of (a) flow and (b) texture parameters of all
the eight principal components of a multi-person LMM using the SGD
algorithm and SVM regression on a test sequence of 139 images of
individual 2.
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Figure 3.7: Estimates of (a) flow and (b) texture parameters of all the
eight principal components of a multi-person LMM using the SGD algo-
rithm and SVM regression on a test sequence of 69 images of individual
3.



(e) (f)
Figure 3.8: Comparison of reconstruction from LMM parameters esti-
mated through SVM regression and through Stochastic Gradient De-
scent (SGD) for a single person mouth LMM. (a) Novel Image, (b) SVM
Parameter Estimation followed by SGD for 10 iterations, (¢) SGD for
10 iterations, (d) SGD for 50 iterations, (¢) SVM Parameter Estima-
tion alone and (f) the procedure which generates the training data i.e.
SGD parameter estimation for 250 iterations.

Figure 3.9: Comparison of reconstruction from LMM parameters esti-
mated through SVM regression and through Stochastic Gradient De-
scent (SGD) for a multiple (three) person mouth LMM. (a) Novel Im-
age, (b) SVM Parameter Estimation followed by SGD for 100 iterations,
(c) SGD for 100 iterations, (d) SGD for 500 iterations, (¢) SVM Pa-
rameter Estimation alone and (f) the procedure which generates the
training data i.e. SGD parameter estimation for 1000 iterations.
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Figure 3.10: Plot of pixel error vs the iterations of the SGD algorithm.
Comparing the case of initialization with the SVM regression estimate
and with that of no initialization. The three plots correspond to the
test sequences of the three individuals in the multiple person mouth
LMM.

459 images. Figures 3.3 and 3.4 display the results for flow and tex-
ture parameters respectively where the performance of support vector
regression is compared to that obtained using stochastic gradient de-
scent. It shows the high degree of fidelity that one can get in estimating
the LMM parameters directly from the image.

Examples of matches using the two methods shown in Figure 3.8
reveal two important aspects. 1) The speed advantage that one obtains
by estimating the LMM parameters directly is quite clear. In only 10
iterations a SGD algorithm initialized with the estimate of an SVM re-
gression is capable of achieving the same quality (and sometimes even
better) than a SGD algorithm running solely for 50 iterations. 2) For
those interested in synthesis issues, the quality of the reconstruction
phenomenologically may leave a lot to be desired. However this is a
quirk of trying to model mouths using the particular LMM described
in Jones and Poggio [28]. Since this LMM involves morphing all proto-
types to a single reference, it involves loss of information when dealing
with objects such as mouths which have radically different views when
open and closed. This results in poor quality when used for image syn-
thesis. Fortunately, there are other morphable model which give better
synthesis results (Ezzat and Poggio [41] and Cootes et al. [12]) and our
method can in principle be extended to those.

3.3.2 Multiple Person Mouth Morphable Model

The case for the multiple person is roughly similar except that the
results appear to degrade in quality. This is true of the capacity of
the LMM to model the various mouth images as well as the SGD and



the SVM regression estimates. This is clear from the fact that we need
to retain eight principal components of the texture and flow spaces,
instead of just three in the case of the single person morphable model,
to obtain reasonable reconstruction. Thus in our experiments we end
up estimating 16 parameters in order to get reasonable reconstruction.

In Figure 3.9 we present examples of matches to novel images from
test sets and compare the output of the SVM regression to that of the
SGD algorithm. Comments similar to the single person case can be
magde in this case too. In Figure 3.10 we also present the speed up
results in the form of average error over test set for a given number of
iterations of the SGD algorithm in the two cases when initialized with
the SVM regression estimate and when not.

With the growing application of morphable models in image anal-
ysis and synthesis, methods to estimate their parameters from images
will become increasingly important. In this context, the learning-based
approach to estimating the parameters of a LMM is natural as well as
computationally feasible. In this chapter, we studied certain aspects
of this method, namely the issue of single person vs multiple person,
and speed up with respect to the SGD algorithm. However many other
aspects of this problem need further study. So far our results indicate
that the single person LMM is not only very good at modeling mouths,
it is most amenable to direct estimation by learning. The case for the
multiple person LMM is more ambiguous and it seems to under-perform
the single person LMM in estimation accuracy as well as quality of re-
construction. One way to overcome to this problem may be to consider
other models with better synthesis performance (Ezzat and Poggio [41]
and Cootes et al. [12]). The claim that such estimation will aid in the
design of real-time systems also needs to be tested.



Chapter 4

Applications to
Man-Machine Interfaces

A new and interesting paradigm in Man-machine interaction is one of
sociable humanoid robots, which can interact with human beings as
social creatures using a variety of socially relevant modalities such as
facial expressions, gestures, posture, gaze, voice, etc. This calls for, in
the words of Cynthia Breazel [6], seamlessly combining insights from
science, art and engineering. Principled ways of effecting such seam-
less combinations can form the design principles for building sociable
robots.

One of the first steps in this direction would be to effect the design
of systems that can combine a variety of constraints with a learning
process to learn to understand (and respond) to important perceptual
cues. In this thesis we have examined the possibility of such integration
of top-down constraints with bottom-up learning by posing the problem
as one of directly learning to estimate the parameters of morphable
models from images. In this chapter, we shall discuss some of the
applications of this technique, which seek to illustrate how they can be
useful in the vision component of man-machine interaction.

4.1 Recognizing Facial Expressions
Ability to recognize, interpret and respond to facial expressions is con-
sidered to be a key component in man-machine interaction. Its role as a

fundamental modulator of social interaction is least surprising given the
seminal work of Ekman [16] which brings out the universal nature of fa-
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cial expressions, in the sense that there are universal relations between
particular facial configurations and certain emotions. These ideas have
motivated the facial action coding system (FACS) [17] which posits
facial action units as the “building blocks” of expressions. While this
work is interesting, it has certain drawbacks. The main drawback being
that the structure of FACS is not generative. Each facial action unit by
itself appears to be ad-hoc in relation to the expressions/emotions that
it is a part of. This can be interpreted as a lack of sufficient structure in
FACS and therefore one can question the likelihood of estimating facial
action units from facial configurations as an intermediary to expression
recognition.

In the last chapter, we used a generative structure - the LMM - for
modeling mouth patterns. We also showed that the parameters of a
pixel LMM can be directly estimated from mouth images using learn-
ing. But this does not necessarily imply expression recognition. It is
interesting to ask whether a generative structure such as an LMM is
also capable of representing facial expressions in a natural way. We
answer this question in the affirmative and as a consequence we pro-
pose the design of an expression recognition system that is capable of
mitigating, at least in part, the familiar problem of manual annotation.

4.1.1 Expression Axes

The key idea behind the new expression recognition system is that of
the expression azes. As explained in section 3.1.2 it is possible to take
a corpus of mouth images and put them in correspondence within the
structure of an LMM. It is also possible to perform PCA on the example
textures and flows and express the LMM as a linear combination of a
smaller set of the main principal components of the texture and flow
spaces. Do these principal components represent something meaningful
about mouth shapes? To answer this question, we morph the average
mouth image along the three main flow principal components. The
results are shown in Fig. 4.1. The interesting outcome of this exercise is
that morphing along the first three principal components of flow space
leads to recognizable mouth deformations such as open-close, smile-
frown and pout-purse. These axes which we can call the expression
axes can be used to ascertain the degree of expression of each kind in
a novel mouth image. We can map each expression into a line-drawing
LMM such as the one shown in Fig. 4.2. This line drawing LMM has
3 degrees of freedom corresponding to the 3 expression axes. Mapping
the estimated parameters of the pixel LMM onto the line drawing LMM
allows us to animate a cartoon figure to mimic the facial expressions of
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Figure 4.1: The Expression Axes showing the result of morphing the
average mouth image along the first three flow principal components.

the person.

4.1.2 Experimental Details

We collected a corpus of 468 mouth images of a single person with
varying degrees of expressions. 234 of these were used to construct a
pixel LMM on the lines of section 3.1.2. PCA on the examples textures
and flows allowed us to express the LMM in terms of a smaller number
of texture and flow principal components. SGD was used to match the
corpus of 468 images to the LMM. SVM regression was used to learn a
mapping from a sparse wavelet-based representation (see section 2.3.2)
to the expression axes (flow principal components) parameters using
the Gaussian kernel, as detailed in section 3.3.1.

4.1.3 Results and Discussion

The resultant map was tested using a test set of 430 mouth images
collected under a different circumstance (different day, time and lighting
conditions) than the training set. The estimated expression parameters
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Figure 4.2: A line drawing LMM corresponding to the Expression Axes.

were mapped onto the line drawing LMM of Fig. 4.2 The result of this
exercise is shown in Figs. 4.3 and 4.4.

The results are quite encouraging. They show the feasibility of ex-
tracting meaningful expressions from data without any significant hu-
man expert knowledge. The SVM regression training returns a small
number of support vectors and therefore we can expect that real-time
implementation will be easy. In principle, this method could be ex-
tended to more complex mouth shapes and also to other facial regions
such as eyes. However some important questions could be raised and
limitations pointed out.

An important question concerns the expressions represented by the
expression axes. Do the deformations represented by the expression
axes correspond to the ones that are perceived? Will they correspond
to the expressions depicted by an artist? There is a straightforward way
of dealing with these questions. Currently the map from the parameters
of the pixel-LMM to the line drawing LMM of Fig. 4.2 is an identity
map. Clearly that need not be the case. In general, we can conceive
of the map from the expression axes to the line drawing LMM as a
3 x 3 matrix. This will require an artist to provide two renditions -
1) that of the facial expressions of openness, smile and pout, as line
drawings and 2) line drawings that best approximate the expressions
depicted by the expression axes. By expressing one set of parameters
in terms of the other (using the SGD algorithm), we can compute the



Figure 4.3: Mapping the estimated expression axes parameters on a
line drawing LMM.



Figure 4.4: Mapping the estimated expression axes parameters on a
line drawing LMM.



matrix that transforms the expression axes parameters to the desired
expression categories.

Another question is that of generalizability. We have seen in chapter
3 that the multiple person LMM performs less robustly than the single
person. At the same time we have seen in chapter 2 that the learning
based approach is able to generalize to more than one person. This
leads to interesting questions. Should we construct multiple person
LMMs in order to extract the expression axes? How representative
is one persons expression axes to gauge the expressions of a different
persons? These questions have much bearing on both the cognitive and
engineering aspects of expression recognition systems.

4.2 Estimating Facial Pose

Facial Pose, along with gaze, is an important visual cue for the interpre-
tation of human behavior and intentions. Pose estimation is a critical
first step in one of the key tasks for man-machine interaction - pose in-
dependent face recognition. However, it is a very tricky task since the
appearance of the face changes very significantly with the pose of the
face. It is natural to assume that head pose being a three dimensional
quantity its estimation from 2D images is inherently ambiguous. As a
result pose estimation has been usually attempted by matching differ-
ent kinds of models to the image. For example, in Beymer and Poggio
[2] a pixel morphable model of faces capable of modeling pose variations
is matched to novel face images. In case of Kruger et al. [30], an elas-
tic graph is matched to Gabor wavelet-based facial features. Both of
these rely on the analysis by synthesis algorithm to achieve the match
of model to image.

Recent work by Sherrah et al. [25] has shown the possibility that
there exists relationships between pixel patterns and the pose of a face.
This work suggests that one should be able to learn a direct map from
pixel-based representations to facial pose. In order, to make such a
system self contained, we need to work with a model which is capable
of modeling pose. In light of the application on expression recognition
described in the last section, it is natural to expect that we model pose
with the pixel LMM described in Beymer and Poggio [2]. However, such
a model has several drawbacks. On the one hand, it is very difficult to
construct since establishing correspondences between pixel images of
faces in different pose is prone to errors. At the same time, it is fairly
obvious that we do not need a complex pixel LMM to model pose.
We suggest a much simpler, qualitative model based on a line drawing
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Figure 4.5: A line drawing LMM representing the pose space.

LMM. We expect that in most cases where pose information is needed,
such a qualitative model is sufficient.

4.2.1 Representing Pose Using a Line Drawing LMM

A Line Drawing LMM is a special case of the LMM described in section
3.1. In a line drawing LMM, only the flow space exists, the texture
space is a single point, i.e. there is just one texture which gets morphed
to produce different shapes. A line drawing LMM which models the
pose of a face is shown in Figure 4.5. The LMM has two degrees of
freedom, one representing the left-right pose variation and the other
the up-down pose variation. We shall call this LMM as the pose-LMM.

4.2.2 Matching Edge-maps to a Pose-LMM

How can we use the pose-LMM to estimate the pose of a face? On the
face of it, it does not seem very likely since the pose-LMM is made up
of simple line drawings whereas the face shows up as a richly textured
image. But as shown by Jones and Poggio [28], it is possible to match
the line drawing LMMs to novel and distorted line drawings. We extend
this further and show that it is possible to match the pose-LMM to edge
maps of face images. The matching algorithm is the same as the one
used for matching the standard LMM except that since there are no
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Figure 4.6: (a) Face image, (b) Canny edge map and (c) Blurred edge
map.

texture parameters to optimize over, the algorithm involves optimizing
only over the flow and affine parameters (for details see [27]).

The face image is represented as a edge-map using a Canny edge-
detector [10] and blurred using a Gaussian filter (Figure 4.6). The
blurred image is matched to the pose-LMM using the SGD algorithm.
The matching involves optimization over 8 parameters - 2 parameters
representing the 2 degrees of freedom of the pose-LMM and 6 param-
eters for affine transformations. In Figure 4.7 we show the results of
matching face images to the pose-LMM. As is obvious from the results
the matching is not always accurate. This is mainly due to two reasons
- 1) SGD algorithm gets trapped in local minima or 2) The edge detec-
tor output is either very noisy or misses crucial edges. In general we
found that in about 25the cases, there is a visible mismatch between
the pose of the face and that of the pose-LMM representation.

4.2.3 Learning the Parameters of the Pose-LMM

Since it is possible to estimate the pose in a majority of cases by match-
ing the pose-LMM to a blurred edge-map of the face, the natural ex-
tension would be to ask if the relationship between pixel-based repre-
sentation of faces and the pose-LMM can be learnt. We collected 356
face images from the FERET database [37] of different persons with
various poses and in different and unknown lighting conditions. The
blurred edge-map of these images was matched to the pose-LMM as
explained in the last section. A section of this was considered for use
as training examples. However we first prune the set by removing those
images for which the SGD algorithm does not give acceptable results.
This procedure gave us a training set of 233 images. The pixel-based
representation is likely to involve pixels or wavelets. We experimented
with coarse resolution pixel representations. We first subtract a best-
fit brightness plane from the pixel values of the face images to correct
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Figure 4.7: Results of matching of the pose-LMM to novel face images
using SGD. (a) Face image, (b) Blurred Canny edge map, (c) Match
obtained by the SGD algorithm and (d) Match after removing affine
parameters.



for lighting variations. The face images of size 100 by 125 were then
reduced to a size of 8 by 10. The resulting 80 coefficients formed the
input for the learning problem.

4.2.4 Results and Discussion

The learning involves obtaining a map from the 80 dimensional input
to the output i.e. the two pose dimensions. For learning, we used the
familiar technique of SVM regression along with the Gaussian kernel.
The free parameters of this problem were set by hand, it was found
that the results are not particularly sensitive to the free parameters,
over a wide range of the parameters. The resultant map was tested
on a test set of 123 images, which included images of faces which were
present in the training set, but in a different pose and also face images
which were not present in the training set at all. In Figs. 4.8 and 4.9
we present examples of the results of testing on the two kinds of face
images respectively.

The results in pose estimation so far are very encouraging. The
most noteworthy part of this method is its simplicity at several lev-
els. Both the top-down and bottom-up representations are simple and
straightforward - the pose-LMM in case of the top-down and low reso-
lution pixels in case of the bottom-up. Furthermore, we have managed
to get these results with a surprisingly small number of examples. This
method is capable of addressing the two main issues raised by the work
of Sherrah et al. [25] namely that of a extensive database of labeled
facial pose and that of their pose similarity space being discontinu-
ous creating a lower bound on the pose resolution possible. Since the
pose-LMM is a continuous space, the problem of a lower bound on the
resolution is ruled out. The performance depends on the number of
examples and the input representation.

Several possibilities need to be investigated before we can have a
better picture of the strengths and weaknesses of this approach. In
particular, the variability of this method with the number of examples
and more importantly with the input representation. A wavelet based
representation might turn out to be superior to low resolution pixels.
Similarly, with increase in the number of examples the number of sup-
port vectors might increase which might make it difficult to apply this
method for real-time applications.
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Figure 4.8: Results of estimating the parameters of a pose-LMM di-
rectly from the image. These faces were also present in the training set
but with different poses. (a) Face image, (b) Pose estimation using the
SGD algorithm and (c) Pose estimation using SVM regression.
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Figure 4.9: Results of estimating the parameters of a pose-LMM di-
rectly from the image. These faces were not present in the training set

at all.
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Figure 4.10: Images of visemes and their class.

4.3 Recognizing Visual Speech - Visemes

Recently Blanz [46] and Edwards et al. [21] have worked on using
matching LMM parameters for higher level image analysis (or vision)
applications such as face identification and shown encouraging results.
In these applications the LMM parameter acts as an image feature that
is then used to correctly classify the image. The claim therefore is that
LMM parameters are better features than the normally assumed image
features such as pixels or wavelets. (see section 1.3 and Figure 1.2).
In order to test this claim, we introduce one such application, namely,
viseme recognition.

Visemes are the visual analogues of phonemes (Ezzat and Poggio
[41]). However, the mapping from phonemes to visemes is a many to
one mapping. Different phonemes can lead to a single mouth shape
and thus to a single viseme. Visemes like phonemes have temporal ex-
tent. However, so far we have investigated viseme recognition assuming
visemes to be static images. Thus we consider the problem of mapping
individual images to viseme classes.

4.3.1 Training Data

We used the visual speech corpus described in Ezzat and Poggio [41]
for the viseme recognition problem. In this corpus, 39 phoneme classes
which maps to 15 viseme classes have been identified. However, there
was sufficient data to train for only six visemes classes (3 consonant
classes and 3 vowel classes). Those six classes are ’pbm’, ’tdsz’, ’kgnl’,
’ii’, 'ea’, 'aao’ and a prototypical image of each class is shown in Figure
4.10. Details about these classes and their sizes are given are given
in Table 4.1. The training and testing sets were obtained by dividing
these sets roughly in the ratio of 2:1.



Viseme Associated Size
class phonemes (Number of examples)
pbm p, b, m 106
tdsz t, d, s, z, th, dh 170
aao aa, o 70
i i, i 65
ea e, a 54
kgnl k,g, n, 1, ng, y 124

Table 4.1: The viseme classes and their associated phonemes and the
size of the training and testing sets.

4.3.2 Implementation Details

Two different feature representations were investigated as input for
classification, namely, wavelets and LMM parameters. The two repre-
sentations lead to somewhat different approaches for viseme recognition
and the idea is to compare the relative merits of these two approaches
and therefore the two representations.

e Case 1: Haar Wavelet Representation. This method uti-
lizes an image-based representation in which a linear (multi-class)
SVM classifier was trained to accept wavelet coefficients of the
mouth image as input and to output the viseme class. The inputs
were determined by selecting twelve low resolution Haar wavelet
coefficients using the method described in section 3.2.1.

e Case 2: LMM Representation. This method relies on a LMM
as an intermediate representation. For this purpose, 91 images
from the corpus were used to construct a single person mouth
LMM and the model was matched to the remaining images using
the SGD algorithm. The top principal components of the flow
and texture spaces were now used as a feature set to represent
each image. A linear (multi-class) SVM classifier was trained to
accept the matching LMM parameters of the mouth image as
input and to output the viseme class.

Since this is a multi-class problem, we have experimented with the
top-down decision graph (Fig. 4.11, see Nakajima, et al. [8]) as the
multi-class strategy. This strategy involves the training of a classifier
to distinguish between any two visemes, each of which is a linear SVM.
We have compared the performance of this technique with the k-nearest
neighbors technique.
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Figure 4.11: Graphical representation of the top-down multi-class clas-
sification strategy. Each non-leaf node represents a classifier.

4.3.3 Results and Discussion

The results of viseme recognition vary with the dimension of the input
representation. We kept the input dimension for the wavelet represen-
tation constant at 12 and varied that of the LMM representation. We
found that as long as the input dimension was less than 12, the LMM
representation under-performed compared to the wavelet representa-
tion and gave the same result when the input dimension was brought
to 12. This probably means that the representational power of the
LMM is almost identical to that of wavelets. The results comparing
the different representations and different multi-class strategies for an
input dimension of 12 are presented in Tables 4.2 and 4.3. Since the
data sets are quite small, the results presented are averages over 100
random 2:1 splits of the examples.

The idea of using the morphable model parameters for higher level
vision and interpretation is gaining ground. However, our results with
viseme recognition seem to seem to cast a doubt on the utility of this
approach. Our previous examples of expression recognition and pose
estimation seem to indicate the utility of using the LMM parameters
as the higher-level parameters to be estimated. But attempting to use
these parameters as features for estimating some other higher-level cat-
egories does not seem to buy anything substantial. We conjecture that
LMM parameters cannot be a substitute for image features. However
this could merely be a peculiarity of this particular application or our
data set, and so much more work needs to be done to ascertain the
above conjecture.



pbm | tdsz | aao ii ea | kgnl
pbm | 0.94 | 0.03 | 0.0 | 0.01 | 0.0 | 0.02
tdsz | 0.01 | 0.82 | 0.0 | 0.04 | 0.0 | 0.14
aao | 0.01 | 0.04 | 0.77 | 0.04 | 0.11 | 0.03
ii 0.04 | 0.15 | 0.03 | 0.58 | 0.03 | 0.15
ea | 0.02 | 0.13 | 0.26 | 0.10 | 0.36 | 0.14
kgnl | 0.03 | 0.41 | 0.05 | 0.11 | 0.07 | 0.33
(a)
pbm | tdsz | aao ii ea | kgnl
pbm | 0.95 | 0.02 | 0.00 | 0.02 | 0.00 | 0.01
tdsz | 0.00 | 0.86 | 0.00 | 0.02 | 0.00 | 0.12
aao | 0.00 | 0.00 | 0.83 | 0.01 | 0.11 | 0.05
ii 0.04 | 0.08 | 0.00 | 0.67 | 0.02 | 0.19
ea | 0.00 | 0.10 | 0.07 | 0.08 | 0.57 | 0.18
kgnl | 0.01 | 0.38 | 0.03 | 0.09 | 0.07 | 0.43
(b)
pbm | tdsz | aao ii ea | kgnl
pbm | 0.91 | 0.05 | 0.0 | 0.0 | 0.01 | 0.02
tdsz | 0.01 | 0.90 | 0.0 | 0.02 | 0.0 | 0.08
aa0 0.0 | 0.04 | 0.77 | 0.02 | 0.16 | 0.05
ii 0.01 | 0.12 | 0.02 | 0.62 | 0.05 | 0.11
ea | 0.03 | 0.07 | 0.31 | 0.16 | 0.26 | 0.16
kgnl | 0.02 | 0.40 | 0.03 | 0.11 | 0.08 | 0.36
(c)
pbm | tdsz | aao ii ea | kgnl
pbm | 0.95 | 0.03 | 0.00 | 0.00 | 0.01 | 0.01
tdsz | 0.00 | 0.89 | 0.00 | 0.01 | 0.01 | 0.08
aao | 0.00 | 0.00 | 0.81 | 0.02 | 0.13 | 0.04
ii 0.03 | 0.10 | 0.01 | 0.66 | 0.07 | 0.13
ea 0.01 | 0.08 | 0.23 | 0.11 | 0.42 | 0.15
kgnl | 0.00 | 0.36 | 0.03 | 0.07 | 0.08 | 0.46
(d)

Table 4.2: Confusion matrices for (a) LMM-representation, k nearest
neighbor, k = 4, (b) LMM-representation, linear SVM, top-down multi-
class, (c) wavelet-representation, k nearest neighbor, k = 4 and (d)
wavelet-representation, linear SVM, top-down multi-class.

Linear SVM k nearest neighbors
Top-Down |k=1|k=2|k=3|k=4
LMM Representation 0.73 0.64 0.65 0.66 0.68
Wavelet Representation 0.73 0.65 0.66 0.67 0.68

Table 4.3: Overall accuracy of viseme recognition.




Chapter 5

Conclusions and Future
Work

The paradigm of embodied intelligence advanced by many researchers,
but notably by Rodney Brooks and co-workers [39] seeks to under-
stand human intelligence and behavior as the result of four intertwined
attributes, namely, developmental organization, social interaction, em-
bodiment and physical coupling, and multi-modal integration. In the
framework of embodied intelligence, intelligent systems is sought to be
built by having the system directly (and physically) coupled with its
environment and allowing the system to develop in ways that allow for
the coupling to be exploited in ways beneficial to the system. This
framework departs from the framework of classical AT which seeks to
build intelligent systems as some kind of symbol processors.

5.1 The Big Picture

A natural question within the framework of embodied intelligence is
how can the coupling between system and environment be achieved.
There are two levels at which this question could be asked. At the
level of embodiment, the system must be capable of representing the
environment and at the level of development, the system must be able
to learn the various representations involved and the ways of mapping
between them. While these ideas have led to significant advances in
the realm of humanoid robots and related sensori-motor tasks, their
relevance for perception itself has not been fully explored. We believe
that our work is a small step in clarifying how systems can be embodied
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Figure 5.1: Combining top-down constraints with bottom-up learning
for perception.

and developed for perceptual tasks.

We have suggested that one way of achieving a coupling between
environment and perceiver is to be able to represent the categories
of interest in the environment (which can be understood as the top-
down knowledge in an organism) and use learning to map from retinal
information to the parameters (which is understood as the bottom-up
process) within the top-down representation. We illustrate this big
picture in Fig. 5.1.

5.2 Possible New Systems

There are several directions that future research might take. We list a
few possibilities below.

e Expand the scope of this method by implementing similar systems
for other perceptual tasks, e.g. tracking gaze and eye blinks.

e Investigate the relative efficacies of pixel LMMs and line drawing
LMMs to model images. So far we have used the pixel LMM
for expression recognition and the line drawing LMM for pose
estimation. Nothing prevents us from using the pixel LMM for
pose and a line drawing LMM for expressions.



e Build a virtual actor system which is able to analyze a persons
expressions and map them onto a system for synthesizing realistic
images of an actor (Ezzat and Poggio [41]).

e Extend this method to other objects of interest such as cars,
indoor objects, etc.

5.2.1 Related Scientific and Philosophical Questions

This work throws up many questions for computational cognitive sci-
ence. The definitive links to embodied intelligence can be drawn if
these ideas can be integrated with the kind of sensori-motor capabili-
ties that humanoid robots have. For example, can these ideas be used
to map scene features to action parameters? Do we need to go through
internal representations? If so, are these representations natural and
embodied?
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