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A. NONLINEAR COUPLING OF LOW-FREQUENCY OSCILLATIONS

IN AN ELECTRON-CYCLOTRON RESONANCE DISCHARGE

We have previously described the observation of spontaneously occurring low-

frequency oscillations in an electron-cyclotron resonance microwave discharge. Here

we report further measurements on these oscillations which indicate nonlinear coupling

between the different low-frequency modes occurring in the plasma.

The geometry of the microwave waveguide, discharge tube, and magnetic field has

been described in the previous report.1 All experiments to be reported here were per-

formed in helium gas at 0. 02 Torr pressure. The discharge tube, as before, had an

inner diameter of 1. 3 cm.

We found it possible to seal off a tube containing 0. 02 Torr helium with no subsequent

deterioration of operating characteristics over a four-month period, provided the tube

was initially baked at 400 "C and the tube also contained an activated barium getter. The

getter does not react with noble gas atoms, and hence provides a means of removing

impurity gas atoms while not affecting the fill gas.

The oscillations were detected by measuring the low-frequency modulation of the

microwave power reflected from the discharge, by capacitive pickup probes outside the

discharge, and by electrical probes inserted into the discharge.

The low-frequency oscillation signal was fed into a 5-kHz to 5-MHz spectrum ana-

lyzer. Since a continuous recording of the oscillation frequencies and their amplitudes as

a function of the magnetic field applied to the discharge was desired, a voltage output

from the analyzer proportional to the oscillation amplitudes was used to modulate the

beam intensity of a Tektronix oscilloscope. The horizontal sweep of the oscilloscope was

triggered repetitively in synchronism with the analyzer sweep. The vertical deflection of

the oscilloscope was driven by a voltage proportional to the magnetic field. Thus, as

This work was supported principally by the U. S. Atomic Energy Commission (Con-
tract AT(30-1)-1842).
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the magnetic field was automatically scanned over the 4% (approximately) range for

which a plasma could be produced, the oscilloscope beam traced out the evolution of the

low-frequency oscillation spectrum of the plasma. The beam history was recorded by

a time exposure photograph of the oscilloscope trace.

Figure X-1 shows data taken for a microwave frequency of 5. 64 GHz and power of

0. 4 Watt. The range of data on the vertical axis corresponds to a change of magnetic

field from approximately 1975 Gauss to 2050 Gauss. For these operating conditions the

oscillation frequencies are well defined, as can be seen from the figure. Also, generally

more than one mode of oscillation is present. As the power is increased up to 1. 2 Watts,
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Fig. X-1. Low-frequency oscillation of the plasma.
Microwave frequency, 5. 64 GHz. Power,
0. 4W.

the maximum of the microwave generator, the low-frequency spectrum becomes par-

tially obscured by background noise, but the pattern of behavior of the modes is the same

as shown in Fig. X-1. As the power is reduced to 0.1 Watt, where the discharge is

near extinguishing, the mode spectrum remains well-defined, but the lower frequency

modes (<100 kHz) gradually disappear until at 0.1 Watt only the strong mode existing

between 500 kHz and 750 kHz is easily detectable.

The nonlinear interaction between the modes is apparent in Fig. X-1 and in the data

taken for the other conditions. Beginning at the top of the figure (magnetic field

units z53. 5), two dominant modes appear, one at -600 kHz ("x") and the other near

200 kHz ("y"). By tracking the behavior of the third weaker oscillation that appears as

the magnetic field is decreased, it is apparent that its frequency is given by x-y. As the

magnetic field is decreased below 53. 0 (arbitrary units) what appears to be a third

mode, z, appears, having a fundamental frequency of 60 kHz and interacting strongly with
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the x mode. The z mode disappears suddenly with a further decrease in magnetic field

to 52. 75. The x, y, and x-y oscillations evolve normally as the magnetic field is

decreased to 52. 0, with a slight hint of an oscillation of frequency x-2y, between 52. 5

and 52. 0, along with a mode resembling the z mode at 60 kHz. The behavior of all but

the x mode is difficult to follow for magnetic fields lower than 52. 0.

Further measurements are necessary to identify the waves associated with the x, y,

and z modes. As pointed out in the previous report, the order of magnitude of their

frequencies can be correlated, respectively, with standing modes in the plasma of the

ion cyclotron wave propagating nearly at 90 to the magnetic field, the electron drift

wave, and the ion acoustic wave propagating parallel to the magnetic field.

Preliminary experiments in neon gas at 0. 005 Torr pressure have revealed no oscil-

lations. The present magnetic field homogeneity is uniform to ±1. 5% over the active

discharge region. It is felt that this should be improved before more interpretation of

the data is attempted.

Interpretation is complicated by the fact that the same microwave signal that

produces the plasma is also coupling energy into the low-frequency oscillations.

In this connection, the question arises about whether the existence of these low-

frequency oscillations depends on the fact that the microwave signal is also pro-

ducing the plasma. That is, might these oscillations be analogous to the striations
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Fig. IX-2. High-frequency mode (x).
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found in low-pressure DC discharges?

To test this hypothesis, the microwave signal was pulsed off for a period of

30 isec, and then pulsed on again. This was done repetitively, and the oscillatory

behavior of the plasma was monitored by displaying the output of probes capacitively

coupled to the plasma on an oscilloscope trace. As is shown in Fig. X-2, the high-

frequency mode (x) exists for at least 30 lisec after the microwave signal is terminated.

Since the microwave signal is terminated in less than 1 ±sec, there is an indication that

the x mode is associated with a legitimate plasma wave. It is also apparent that the

wave frequency decreases with time, thereby indicating a possible dependence on the

electron temperature or density.

J. C. Ingraham

References

1. J. C. Ingraham and A. Novenski, Quarterly Progress Report No. 82, Research Lab-
oratory of Electronics, M. I. T., July 15, 1966, p. 123.

B. NONLINEAR COUPLING OF LOW-FREQUENCY

IONIZATION WAVES

1. Introduction

The object of this experiment is to study tile nonlinear effects in low-amplitude ion-

ization waves. These waves are similar to striations, the difference being that stria-

tions are usually thought of as very large amplitude waves, with highly nonsinusoidal

waveforms. Low-amplitude waves can be generated in some cases with sinusoidal wave-

forms and voltage amplitudes that are much smaller than the electron temperature. As

the amplitude of these waves is increased, nonlinear effects begin to become appre-

ciable, and the characteristic flattened striation waveform is reached at high enough

amplitudes.

Experimentally, the most easily seen effect of a small nonlinearity in the response

of the plasma to a sinusoidal driving frequency is the generation of a signal at twice the

frequency. If two waves of frequencies fl and f 2 are excited, then there will also be sig-

nals at 2f l , 2f 2 , and fl f 2 . The amplitudes of the sum and difference frequency sig-

nals should be proportional to the product of the amplitudes of the exciting waves. As

the amplitudes of the exciting waves increase, effects higher than second order will

become noticeable, giving waves at frequencies 3fl, 3f 2 , 2f 1 ± f 2, and so on.

The theory of Pekarek and others has had considerable success in explaining the

characteristics of striations. This theory is a linear theory, however, and since most

striations are of large amplitude, the nonlinear effects should influence the -striation's
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behavior considerably. We hope that this theory will result in better agreement with

the low-amplitude waves, and will predict the second-order nonlinear effects.

2. Apparatus

A hot-cathode glow discharge is run in helium or argon in a discharge tube with 4-cm

diameter. Pressures are usually between 0. 1 Torr and 1. 0 Torr, with currents from
10 11 3 .

30 mA to 150 mA. The plasma density is 10 -10 particles per cm , with an axial

electric field of 1-4 V/cm. Electron thermal energy is from 3 eV to 8 eV in Helium,

and from 1 eV to 2 eV in Argon.

Total tube length is 120 cm. At approximately the midpoint are 2 grids made of

tungsten mesh, spot-welded to stainless-steel rings that fit the inside diameter of the

tube. The grids are spaced 5 cm apart axially. The discharge runs from the cathode

to an anode, passing through the grids. The grids have usually been left at their floating

potential, but DC current can be drawn from them if desired.

A sine wave from an oscillator fed to one of the grids will cause a wave to be

launched in the plasma. The boundary conditions at the grid are not known, but there

is fairly strong coupling to the plasma. The waves in the plasma are detected by

Langmuir probes spaced at intervals in the plasma. The probes may be used to detect

variations in the plasma potential or, by biasing them properly, electron or ion density

changes may be detected. Typically, a 2-V signal applied to a grid may produce a

1-1.5 V response at a probe 40 cm from the grid. The frequencies used, thus far, have

been from 1 kHz to 30 kHz. The pressure and current are so chosen that there are no

self-sustaining striations in the plasma, whenever this is possible.

To determine the nonlinear effects, the 2 grids are driven at different frequencies,

and the amplitudes of the sum and difference frequencies are measured. As expected

from theory, their amplitude is proportional to the product of the driven wave ampli-

tudes. For example, for driving frequencies of 20 kHz and 30 kHz if we define G by

A (10 kHz) = G x A (20 kHz) X A (30 kHz), where A is the amplitude of the signal, then

G = 100 mv/(volt)2 for He at 0. 35 Torr. Reproducibility from day to day of the value

of G is ±50%, but the quadratic relationship of the equation above is followed very

precisely.

Thus, the effect looked for has been seen experimentally. There are, however,

several important questions to be answered. First, where does the nonlinearity that

causes the sum and difference frequency signals occur? The detection system has been

checked and found to have nonlinearities much smaller than the observed signals, so the

effect is actually coming from the discharge tube. Recent experiments in which the DC

potential of the grids has been varied indicate that changing the potential (and in the pro-

cess changing the DC current) of the grids has a large effect on the value of G. This may

indicate that some or all of the nonlinear signal may be generated in the sheaths around
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the grids, although nothing certain can be said yet. Work is continuing to try to answer
this question, and to measure the properties of the linear waves more precisely.

D. W. Swain

C. REFRACTIVE ATTENUATION OF RADIATION IN

A CYLINDRICAL PLASMA

In traversing a nonuniform plasma a radiation beam can be attenuated not only by
plasma absorption, reflection, and scattering but also by refraction, which distorts the
transmitted beam. Since light rays propagating in a plasma are bent by nonuniformities
in the plasma refractive index, a portion of the radiation beam may be bent sufficiently
by the plasma to cause it to miss a radiation detector that it would otherwise reach, or
to reach a detector that it would otherwise miss.

This report describes a calculation of the refractive attenuation in a cylindrically
symmetric plasma column in which the refractive index is a function only of the radial
distance from the axis of symmetry. In particular, the refractive index corresponds to

PLASMA

REFRACTIVE INDEX=(r)

(NORMALIZED TO R)

RADIATION DECTECTOR DISK
RADIATION SOURCE DISK

(NORMALIZED RADIUS, rd)(NORMALIZED RADIUS, rs)

Fig. X-3. Cylindrically symmetric plasma column with radiation source
and detector.

a parabolic electron density distribution with an adjustable radial density gradient. Fig-
ure X-3 illustrates the physical model for the calculation, in which all space variables,

such as the radial and axial coordinates r and z, and the plasma length L, are normal-

ized to the cylinder radius R.

The radiation source is a diffuse (or Lambertian) radiator in the form of a disk of
radius rs centered at one end of the plasma cylinder. The radiation detector is a disk
of radius rd centered at the other end of the plasma cylinder. The radiation reaching
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this detector from the diffusely radiating disk source approximates a radiation beam in

an optical system in which (i) the radiation source is a diffuse radiator; and (ii) the field

stop and the aperture stop are imaged at opposite ends of the plasma cylinder, with the

dimensions of the stop images being equal to the dimensions of the disks at their respec-

tive ends of the cylinder. The detector response is assumed to be independent of

position on the detector surface and angle of incidence of incoming radiation. Such a

response approximates that of a radiation detection system in which a light pipe directs

the radiation to a detecting element.

If P is the radiant power reaching the detector from the disk source, then the trans-

mittance of the plasma, T, is given by

P
p -T (1)T - - e

P

where the subscripts p and o indicate the presence and absence of the plasma, respec-

tively, and T represents the effective optical depth of the plasma. Only radiation that

reaches the detector directly from the source without reflection from any surface or

boundary is considered.

Geometrical optics is used throughout this calculation. This approach is valid if

the refractive index, ., varies slowly with position, changing little over a distance equal

to the wavelength of the radiation in the medium m. This criterion is expressed as

m << , (2)

where ds is an element of distance, and the wavelength in the medium Xm is given in

terms of the free-space wavelength X as X = (k/p). Diffraction effects are ignored.

In the following discussion the position of a point in a ray trajectory is given by the

coordinates r, 0, z. The direction of a ray at any point in its trajectory is given by 4L,

the angle between the ray tangent and the z-axis, and p, the angle between the projection

of the ray tangent on the transverse plane and the radius vector. The subscript o will

refer to values of ray parameters at the source plane (z=0).

The radiant power reaching a surface element dad of the detector from a surface

element das of the source - with or without a plasma present - is given by

dP = I cos oda (d ) d (3)

where I is the (constant) radiance of the source, (dQ2 )d is the solid angle subtended at da s

by the elementary bundle of rays that proceed to dad (after some bending, if the plasma

is present), and o is the angle between the direction of the elementary ray bundle at da s

and the normal to da s (the z-axis). The cos o term is required because the source is
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a diffuse radiator. Since

da =r dO dr (4)s ooo

and

(d 2)d = sin od od o, (5)

where o is the angle at da s between the radius vector and the projection onto the trans-
verse plane of the ray that defines the direction of the elementary ray bundle, Eq. 3 can
be rewritten

dP = I cos o(r o d O dr o ) (sin odo do ). (6)

Integrating over the surfaces of the source and detector yields

P = 2I s r dr sin o cos d odq o , (7)
0 ad

where, for each ro, the second integral is performed over the entire surface of the
detector. Equation 7 can be rewritten

2

P = TrI S(r) d ro , (8a)

where

S(r) = d(sin2  o) d ° . (8b)
o o

In Eq. 8b, of, 0, and ro are coupled by the trajectory equations for rays that reach the
detector from a surface element of the source at a distance ro from the axis; ro, Co,
and 4o represent the initial conditions in these equations. For a given ro, these trajec-
tory equations yield a functional relationship between o and o for rays that reach the
boundary of the detector, and it is this functional relationship that gives the limits of
integration for Eq. 8b.

To obtain the plasma transmittance, as given by Eq. 1, Eq. 8 must be evaluated with
both a nonuniform plasma refractive index present between the source and detector (P ),
and a uniform refractive index of unity present (Po). Clearly, in the latter case the ray
trajectories are simply straight lines. An expression for Po is already available,1,2
and it is

P I 2  L 2 +(r+r 2  L2 +(rd-rs 2 (9)
o 4 -A (dS) - (rd-rs)
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The calculation of Pp, however, requires an analysis of the ray trajectory equa-

tions.

1. Ray Trajectory- General

The ray trajectories are described by equations giving r and 0 as functions of z

for a given set of initial ray parameters (r , 0 o, 4 ). For the present geometry the rel-

evant equation is 3 ' 4

dz = Ardr (10)
22 2 2 2 1/2

(2r2_A2r _B2)/2

where A and B are "constants of motion" given by

A = 4 cos = o cos o (11)

B = Lr sin sin = or sin siny , (12)

and the plus or minus sign is taken if the ray is proceeding toward a larger or smaller

radius, respectively. A similar equation for 0 is available but will not be used here,

since only information on the radial positions of rays at the detector plane is required;

their azimuthal positions are of no significance.

For an infinitely long cylinder all rays (except the ray along the axis) consist of two

symmetric halves about a point where r is a minimum. The value of this distance of

closest approach to the axis rm is obtained by setting the denominator of Eq. 10 equal

to zero, which corresponds to (dr/dz) = 0. That is,

22 22 2
r - Ar - B = 0. (13)m m

Before reaching rm along a ray, the minus sign in Eq. 10 is used; after r m , the plus

sign is used.

A finite cylinder may be considered part of a longer cylinder. Thus, if, for a given

ray, rm is located within the finite length, then the sign of Eq. 10 changes at the location

of r along the cylinder.

2. Plasma Refractive Index

If v/w, b/o << 1, where o is the radian frequency of the radiation, v is the collision

frequency of electrons with other particle species, and ob is the electron cyclotron

radian frequency, then the plasma refractive index is given by

2 n n= 1 < 1, (14)
n n

c c
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where n is the electron density, and nc is the critical or cutoff density at the frequency
of interest (the density for which w is the plasma frequency). For a parabolic density
distribution

n = no(1-ar2), (15)

where the constant a (>0) determines the degree of nonuniformity of the electron density,
and no is the central density, the refractive index becomes

2= (l-n) + (r1a) r 2 , (16)

where

S= = (8. 96 X 10- 1 ) noc
, mm; no, cm-3. (17)

X, mm; no , cm .(17)

Here, X is the free-space wavelength of the radiation.

Note that since L decreases toward the axis, the plasma acts like a diverging lens.

3. Ray Trajectory for Parabolic Density Distribution

The ray trajectory equations are obtained by substituting Eq. 16 in Eq. 10 and inte-
grating. The parabolic distribution is one of the few distributions for which Eq. 10 can
be integrated. Because of the double sign, the resulting ray equations are of three

forms, determined by whether the axial location of the minimum radius of the ray is
before the source plane, between the source and detector, or after the detector plane.
The resulting equations are

Zd, m - Zo, m';

o,m d, m'

Zo,m - Zd, m';

Zo,m =L-- + r2  cos 2  o0,M 2 '

o < /2Z

o > Tr/2, Z < L

S > /2 Zom > L

ln
2 (po sin2 o cos o /2 + sin2 o

[(sin2 o + 4 po sin2 o sin2 o]
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Fig. X-4. (y/a) as a function of central electron density
for several mm and sub-mm wavelengths.

QPR No. 89



(X. PLASMA PHYSICS)

Zd, m

+Lor)os]1/2 2 pdPd(s in -p o)o sin sin 2 + 2Pd + sin o - PO

+ro cos 2 o 1 In 2

Lsin2 to-po + 4po sin2 o sin2 o0

(19b)

and

y= 1 ) (20)

2 2
r rd

o d
po Pd (21)

-1 2 1 2(-+r2) (-+r2)

Equations 18 can be rewritten to express pd, cos o , and sin o separately in terms

of the other quantities. These forms of the ray equations are useful in the final compu-

tation.

Note that both parameters characterizing the plasma properties (-q for the axial elec-

tron density, and a for the radial decay rate of the density) enter the ray trajectory equa-

tions only through the single constant, y. From Eqs. 17 and 20, y is given by -

n0 o Figure X-4 illustrates how (y/a) depends on n0 for several wavelengths in

the mm and sub-mm ranges; a is generally of order unity. For n << nc, y/a varies

linearly with n ; as no approaches nc, y/a increases rapidly.

4. Plane Wave (Parallel Ray) Approximation

The mathematical problem is greatly simplified if, instead of a diffusely radiating

source, we consider a source that emits only rays parallel to the cylinder axis.

Although such a source cannot exist in reality, it might be a reasonable approx-

imation for laser radiation. Also, such a "plane wave" source corresponds to

an approximation frequently used for illumination not nearly as collimated as laser

light.

The mathematical problem is reduced to the determination of a "critical radius," r c ,

which is the radius in the source plane from which a ray that is initially parallel to the

axis just reaches the edge of the detector. All rays from r < r reach the detector,
o c

and all those from r > r miss it. Thus if the disk source radiates uniformly over

its surface and rd < rs, then the radiant power reaching the detector with and without
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the plasma present is P = Irrc and P = Ird, respectively, where I is the power per

unit area emitted by the source. The resulting transmittance is

2 2
T = r /r ,  r < r (22)

p c d' d s

where the subscript p refers to the parallel ray approximation. (The corresponding

effective optical depth of the plasma is Tp .) If rd > r, then if re <rs, the transmittance is

P 2 2
p Irr r

T = -= - rd > r r < r (23)
p P Ir2 r2 d s c s

s s

and if r > rs, the transmittance is

P ITrr2

T 1 r > r , r > r. (24)
SP Irr 2  d s c s

s

The radius re is given by setting ro = re and sin = 0 in Eq. 18a or Eq. 18b, which,

after some algebraic manipulation, yields

/2 (d 1 (/21) 1 /2

L= n /+ - 1 (25)

This equation can be solved for -) to give

Pd L
- = cosh (26)
Pc 2 1/2

5. Computer Calculation

A computer program has been written to calculate the transmittance for the diffuse-

radiator case (T) and the parallel-ray case (T ). For the calculation of T, Eq. 8a is

computed in two parts, one for r < r , the other for r > r , with r being computed

from Eq. 26 by iteration. For r < r the cone of rays from each source point contains

the ray perpendicular to the source. Consequently, the co integration extends simply

from 0 to 2Tr, and the values of sin2 o for different values of co are calculated from

Eqs. 18a and 18b by iteration. Equation 18c does not apply in this case.

For r < r , however, the cone of rays from each source point does not contain the
source normal. In this case the limits of integration of sin2 are first calculated by

source normal. In this case the limits of integration of sin are first calculated by
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iteration. Equation 18b applies for the larger limit, since the ray must pass through its

minimum radius before reaching the detector edge. For the smaller limit either Eq. 18b

or Eq. 18c applies. In the computer program, however, the solutions of Eqs. 18 for pd
2are used for calculating both limits of integration. With the limits of sin2 io computed,

2 o
the values of o0 for intermediate values of sin o are calculated by using the solutions

of Eqs. 18 for cos o0'
Since rc is calculated in the computation of T, it is available for the computation of

T with no significant additions to the program.
p

6. Computation Results

2 2
The values of T and T for r = 0. 8, r d = 0. 15, L = 20 are plotted in Fig. X-5 as

a function of y. In general, T is considerably less than T. This is not unreasonable,

since in the parallel ray approximation all rays are bent away from the axis by the

plasma, and consequently they reach the detector at larger radii than they do with no

01 I I 111111

10
- 7

10
-

Fig. X-5. Plasma transmittance as

and plane-wave radiator

a function of y for
2

(T ) for r = 0. 8,
p s

diffuse radiator (T)
2

rd = 0. 15, L = 20.d

plasma present. With a diffuse source, on the other hand, some rays are bent toward

the axis, in the sense that they arrive at the detector at smaller radii than they do with-

out the plasma. Thus some rays that would miss the detector with no plasma present

are actually bent toward the detector by the plasma. For values of y in the range
-5 -2-5 x 10 -- 5 X 10 the plane wave approximation (T ) is clearly a poor substitute for

p
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the exact calculation (T). For the "absorption" (1-T) the range of -y for which the plane-

wave case is a poor approximation extends farther toward smaller values.

An interesting and unexpected result of the computation involves the independence of

the transmittance and optical depth on the detector radius rd. T, Tp, T, and Tp have

2 -7 -6 -1 2
been calculated for rd = 0. 3, 0. 15, 72, for y = 10 ,10 , . , with fixed rs = 0.8.

The spread in the results for all four quantities is less than 0. 001 - in most cases con-

siderably less. Thus, for the range of -y and rd specified, the values of the transmit-

tance and optical depth are effectively independent of detector size.

This result is consistent with the fact that the closer rays are to the plasma axis,

the less they are bent, since the electron density gradient decreases with decreasing

radius. Thus rays reaching a small detector are on the average bent less than those

reaching a large detector, since more of the former rays travel near the axis than do

the latter.

The computation was carried out on the IBM System 360 computer at the Computation

Center, M.I.T.

G. L. Rogoff
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D. STOCHASTIC ACCELERATION IN BOUNDED PLASMAS

1. Introduction

One often observes production of high-energy particles in laboratory plasmas. One

attractive explanation for this phenomenon is that there are turbulent fields in the plasma

which stochastically accelerate a few electrons to high energy. In both quasi-linear

theory and Dupree's strong-turbulence theory, however, the maximum velocity to which

a particle may diffuse in velocity space is limited by the maximum phase velocity of the

turbulent waves. For instance, in one-dimensional quasi-linear diffusion theory, the

diffusion constant has the 6(kv-w) resonance. Thus particles traveling faster than the

fastest phase speed cannot be diffused. In Dupree's strong-turbulence theory,2 which
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may be looked upon roughly as a trapping theory, this resonance acquires a finite width.

This width is the so-called trapping width of the potential, equal to 2eE/mk, where

E is the rms electric field, and k is a typical wave number of the turbulent spectrum.

Thus diffusion is still limited by the phase velocity, although particles can be diffused

somewhat beyond the maximum phase velocity in the wave spectrum. Thus it appears

that stochastic acceleration theory in one dimension is not capable of explaining the pro-

duction of high-energy particles, as long as the turbulent waves have only a finite phase

velocity. One method of stochastic acceleration that appears to circumvent this restric-

tion involves the acceleration of a particle in a single wave whose phase varies randomly

in time. It has been shown that if the waveform has this property, particles can be

accelerated to much higher velocity than the waves' phase velocity. These sudden ran-

dom phase changes in the waveform imply infinite frequencies, however, and thus infi-

nite phase velocities, so there is no contradiction with quasi-linear theory.

A measurement of the frequency spectrum in any plasma will determine whether or

not this model is realistic. In many cases, the frequency spectrum of the turbulence

has definite, measurable upper limits, which implies that there can be no sudden phase

changes.

Although many effects come into play in a laboratory experiment, it is significant

that production of high-energy particles is observed in at least two sets of computer

experiments. Here the plasmas are one-dimensional homogeneous plasmas. First,
6

Dawson used a charge-sheet model to test the quasi-linear theory of the "bump on tail"

instability. He found that the bump flattened in accordance with the predictions of

quasi-linear theory, but for a long time afterward he observed particles whose velocity

is much greater than the original beam velocity.

Second, Bers and Davis 7 ' 8 also used a charge-sheet model to investigate a beam

plasma instability. They found that a field strong enough to trap some of the plasma elec-

trons is initially set up at one point in space. A long time later, however, the distribu-

tion of trapped electrons was observed to have a characteristic width in velocity space

much larger than the "trapping width" of the wave.

In this report, we shall investigate a mechanism by which these high-velocity par-

ticles may be produced. What is involved is the finiteness of the system. Let us say

the system is of length k. If a group of particles of velocity v pass through the system,
they emerge with a distribution of velocities having some characteristic spread < 6v >.

If these particles can somehow be reintroduced into the system, they will spread out

farther in velocity space. After they have passed through the system n times, the char-

acteristic spread will be roughly n < v >. This will be true.whether or not the particles

are resonant with the waves. The only effect particle-wave resonance can have is to

make < 6v > larger for particles that are resonant, and smaller for particles that are not.

Thus particles initially in resonance can diffuse out of resonance. If after n transits
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n < 6v > remains small, we can write out a Fokker-Planck equation for the distribution

f(v) as a function of n, the number of transits.

We shall consider the quasi-linear limit; that is, when 6v can be determined by orbit

perturbation theory. It turns out that the Fokker-Planck equation is a diffusion equation

for nonresonant particles, but not for resonant particles.

We shall also consider the trapping limit; that is, in some inertial frame, the wave-

form has a constant profile. Thus, either a trapped or untrapped particle is acted upon

by a stationary random potential. The problem here is much more difficult, but with

very rough approximations, one may still write down a diffusion equation for f.

2. Quasi-linear Limit

Let us consider a one-dimensional plasma of length f supporting weakly turbulent

electrostatic fluctuations. We assume periodic boundary conditions so that when a par-

ticle exits one end of the system, it enters the other end. The waves will be assumed

to have phase velocities between ul and u 2 .

We assume now that the turbulence is so weak that a particle can make several tran-

sits through the system without changing its velocity very much. Second, we assume

that the autocorrelation time of the fields is much less than f/v, the transit time for a

particle. Thus the field on each transit is uncorrelated from the field of the previous

transit. Under these assumptions, the distribution of particle velocity as a function of

n, the number of transits through the system, obeys a Fokker-Planck equation

af 1 2  Av f a <Av> ()
f f. (1)8n 2 2 An av AnDv

Thus the problem reduces to finding the Fokker-Planck coefficients.

Let us define the random variable 6v as the change in particle velocity after one

transit. If the fields are sufficiently weak, the average and variance of 6v can be found

by orbit perturbation theory. That is, if the electric field is E(x, t), to first order the

change in particle velocity at time t is given by

.t
Vl= t - E(x+vt', t') dt'. (2)

0

The first approximation to the variance of 6v is then given by

v2 dt' dt" E(x+vt', t')E(x+vt", t") = dt t dt"e E 2 (v(t'-t"), t' -t"),
0 0 m 0 O m

(3)

where E 2 is the space-time correlation function of the electric field.

To calculate the average of 6v, we must go to second order in perturbation theory
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because the average of Eq. 2 is zero, since <E > = 0.

ticle can be iterated once more to give

The equation of motion of a par-

v 2 (t) =

however,

t' 0t"
x, (t') = dt"

O 0
dt"' E (x+vt'", t'") =m

Ot'

0
dt" e (t' -t") E (x+vt", t").m

Then Eq. 4 can be rewritten

t' 2
dt' dt" e

Y0 m
v(t E (x+vt-t" +v(t -t), t" +(t' -t"

8v(t'-t")

dt" e a E2 (v(t ,-t), t'-t")
0 m

Since the correlation function must be an even function of t'-t", the expression may be

rewritten

dt'
0

2
dt" e E(v(t'-t"), t'-t").2 av
m

For any time t, it is clear that v (v, t) and (v 2 (v, t) are related by

2 av vl vt \= v 2 (v, t))

But, in Eqs. 7 and 3, t is the transit time, and it is itself a function of v, t = f/v. Thus

in general

2 av I

Equation 9 becomes an equality, however, as long as both Iv and v2  are not func-

tions of time. The expressions v2 ) and vi are both functions of v. If the electric
n

field is weak enough so that after n transits Z 6v is small compared with the char-
i= 1

acteristic scale on which they vary, v2 and v may be regarded as independent

of v. Then, by the central limit theorem, we may conclude that the distribution of
n

Av = 6v. is Gaussian, with mean nK v2 ) and variance n v2 Indeed if the
i=1 1 D

QPR No. 89

v2) = 0

= dt
0

Sv2

e a
m x, (t') 5 E (x+vt', t'
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distribution of E is Gaussian, so is the distribution of v 1 , since it is obtained by only

linear operations on E. Therefore, the convergence of P(Av) to a Gaussian is probably

fairly rapid.

Thus the Fokker-Planck equation given by Eq. 1 is simply

=. v f- vOn 28v2
(10)

All that we need do now is calculate the Fokker-Planck coefficient given by Eqs. 3 and

7. Let us say that the electric field is given by

E(x, t) = Re E(k) ei (kx-wk (11)

k

where wk is related to k by the dispersion relation, and k is the random phase associ-

ated with the wave at k. The wave spectrum will be assumed to be restricted to phase

velocities between ul and u 2 .

Then from Eq. 11 we may write

EZ(v(t'-t"), t'-t) = Re E(k) 2 ei(kv-w (t'-t") (12)

Thus

v> e 2
m k

2 a

Ky2 ) = av

.2 ____

sinE(k) 2  2
I (k) 12 v

kv-w2
(13)

sin2 (kv-) f2 )v
(14)E (k) 2

v =V

Let us plot the

resonant region, u l

D =e 2 vm k

diffusion

< v < U2'

constant D = 1/2 vZ) as a function of velocity. In the
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the ordinary quasi-linear diffusion constant evaluated at t = f/v. In the nonresonant

region,

1 e 2
m

k

IE(k)12

2 )

where we have made use of the fact that sin2 (kv-w) = --. A plot of D as a func-

tion of v is shown in Fig. X-6. Notice that outside the resonant region v l (v, t) is

D(v)

U 1 u2

Fig. X-6. D vs v.

not a function of t, so that outside of this region, the Fokker-Planck equation becomes

a diffusion equation:

af a D af
an 8v 8v

It is clear that diffusion is no longer restricted to those velocities coinciding with wave
phase velocity. Thus, for a weak bump-on-tail instability in a one-dimensional plasma
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with periodic boundary conditions, we expect a rapid flattening of the bump, followed by

slow diffusion of particles outside the region of the bump. Since periodic boundary con-

ditions are assumed, An = v At/f, and the Fokker-Planck equation outside the resonant

region can be written in time as

8f 1 v 8 2\ af (15)
at 2 1 8v 1l/ 8v

3. Particle Acceleration in a Constant Profile Wave

Now let us consider another possibility, namely that in the system of length .

a disturbance of constant profile propagates through the system with speed vph. We are

interested in the distribution of particle velocities after the particle has passed n times

through the system in the direction of vph. We assume that f/vph ~ transit time >> typical

trapping time in the potential wells of the constant profile wave. Also, we shall work in

the frame in which the wave is at rest.

It will turn out that this problem is much more difficult than the quasi-linear prob-

lem treated above. But with very rough approximations we can glean some insight into

the behavior of the particle distribution function. Qualitatively, the results are

the same, namely that particles can be diffused even if they are not within the

"trapping width" of the wave. The mechanism is basically the same. A trapped or

untrapped particle is acted upon by the potential until its final velocity becomes uncor-

related with its initial velocity. Then, when the particle is reflected, it is reintroduced

into the waveform at some random potential, and its velocity can change further. In this

way, a particle velocity can change beyond the "trapping reach" of the wave; however,

during any transit the velocity is always between

S 1 42 2 1 2
m mvo omin) < v < m mvo + ('max-o)

where v0 is the initial velocity, 4o is the initial potential energy, and 4max and min

are the maximum and minimum potential present in the waveform.

Let us say that the probability that the potential energy in the waveform is between

( and 4 + d4 is given by P(4) dp, where f P() d4 = 1. We also assume that in one very

long waveform of length L, P() d4 is equal to dx/L, where dx is the length of space

corresponding to potentials between 4 and ( + d4.

Let us say that at some time a particle is introduced at velocity vo and potential o '
We would like the probability that a long time later the particle is between potential 4

and ( + dp. This problem has been solved by T. S. Brown,10 and we will reproduce his

solution here. The probability that is sought is simply the fraction of time that the par-

ticle spends between these two potentials. This time is the total distance dx when the

potential is between ( and ( + dp, divided by the particle velocity.
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Thus the relative probability that an untrapped particle sees potential 4 is simply

P() do

o/ mvo -O

For a trapped particle, certain regions of space are forbidden to the particle, since

the potential energy must be less than the total energy.

For trapped particles, the probability that the particle experiences the potential 4

is

dx

L' J-- 2my $o -$mvo o

where L' is the total distance along which the particle has traveled, and dx is the length

along which the potential is between 4 and 4 + do.

Let us assume that dx/L' = P' (4) do, where P' (4) is proportional to P()) if the argu-

ment of the radical is positive, and P'(4)=O if the argument is negative. Of course, P(4) is

renormalized so that f P' (4) do = 1. In assuming that dx/L' = P' (4), we are assuming

that in regions of space corresponding to all trapped orbits, the potential has the same

relative probability as it does in all space. Then for all particles, trapped as well as

untrapped, the relative probability may be obtained by replacing P(4) with P' (4). Then

the absolute probability that a particle will experience a potential $4 is simply

P' (0) do

mv2 o1

(16)

5d ~ P' (4) d,
2 1 2

m +mvo 2 o

We shall now show that the quantity in the denominator is simply the reciprocal of the
1

average of the magnitude of the particle velocity

Let us note that the particle has a velocity as a function of position given by v(x) =

m a-2 mvo o+ - (x). Also, P' (4) d4 is simply dx/L', where L' is the total dis-

tance a particle travels in its orbit. If the particle is trapped, L' is the total distance

the particle travels both forward and backward. Then the denominator of (16) is simply

v(x . Now it is a simple problem in kinematics to show that ) 1

Let(x) us note that the total time taken by the particle to travel the distance L' is simply
Let us note that the total time taken by the particle to travel the distance L' is simply
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t = L'/ v ). We may also write that t is the sum of all of the times that a particle

spends in each region dx. Then

dx0 v(x)l

and so

d_ 1 = (17)
(IvI) v(x) 2 1 mV2+

m 2 o o

Thus the probability of observing the potential c after a long time is given by

KIvj) P'(4) d4
(18)

2 y 2
m 4mv + -

From Eq. 18, we may write the probability that a particle has velocity between Ivl and

IvI + d lvI simply by noting that

1 2 1 2
m o - my

2 o 0 2 (19)

dp = mlvJ dJvJ.

Thus

P(/vl) dv/ = m (lv P( myv2o+ -mv 2  d vI (20)

Let us also note that ( v ), defined by Eq. 17, depends on vo and 0, but not on v.

Now let us assume that after a particle passes once through the system it returns

and starts out again with the velocity it had at x = I and the potential that happens to be

at x = 0. If a particle passes through the system n - 1 times, let us denote its distribu-

tion of velocity by fn-_l(v). Then, from fn- 1 (v), P(4), and Eq. 20, we can determine

f (v).

f,(vi) = dlvi d im v ) P m + - 2 i fn(vii). (21)

If we integrate Eq. 17 to determine (Ivl) , in principle we can at least start with f (vi)
6(v) and iterate Eq. 7 to determine fn( Iv ). Naturally, this is very difficult. It appears,

however, correct, at least qualitatively, that fn( v ) spreads out in velocity space with

increasing n. Also, the trapping width vtr m is no restriction onicesnvtr m max min
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the spreading of f (v) in velocity space. To gain any quantitative insight into the nature

of Eq. 21, we shall make a few very gross assumptions. First, we assume n >> 1 so

that the distribution is quite spread over velocity, and its characteristic width is

much greater than the trapping width. Therefore most of the particles are untrapped,

and E >>4 - so (v v v. Also, for untrapped particles, P' = P.

Therefore, Eq. 21 becomes

fn(v) = dvid i mvP( mvZ +i- 2 mv) P(ci) f(v), (22)

where the absolute value signs on the v's have been deleted, since if the particles are

untrapped, the final velocity is always in the same direction as the initial velocity.

Now to simplify things further, let us assume that P(4) is Gaussian,

2

1 (a ¢)2
P(¢) - e

Then the 4 integral is simply a convolution of two Gaussians and yields another Gaussian.

(A v) 2

fn(v) = dAv e fn- i (v- Av), (23)

my

where we have made the replacement v = v. - Av, and assumed 1/2 mv - 1/2 mv2
1 1

mvAv. Thus, for velocities v >> \ 7imA , Eq. 23 has the form of a Kolmogorov equa-

tion, and we recover a diffusion equation. The diffusion constant is simply
11 myand the Fokker-Planck equation is

af a af (24)
an av \my v ' (24)

Equation 24, if it were valid at low velocities, would predict a very large diffusion con-

stant, infinite for v = 0. At low velocities, however, the maximum change in Av 2

for one transit is given approximately by 1/m A , the diffusion constant evaluated

for v set equal to the "trapping width" v = m Let us assume that even for

trapped particles, the equation for f(v, n) is still a diffusion equation:

af a f (25)
an 8v 8v (25)
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(V-Vph)

Fig. X-7. Plot of D(v).

Then D(v) is as shown in Fig. X-7. If an approximate analytic expression is desired

for D(v), the formula

D(v) = m

S2 A
v +--- m

will give the proper maximum at v = 0, the proper characteristic width, and the proper

asymptotic behavior for large v. Let us recall that D is measured in the wave frame.

Thus the curve is actually centered about the phase speed of the wave vph. Hence

a particle can diffuse farther than the trapping width of the wave.

4. Discussion

We would like to examine the results of the computer experiments of Dawson,6

and of Bers and Davis 7 , 8 in the light of the acceleration mechanism proposed here.

Dawson's sets up a Maxwellian plasma (charge sheet model) at time t = 0, with thermal

velocity vT. This plasma coexists with a distribution of energetic electrons having

thermal velocity vT , and is centered at velocity 3. 5 v T; the classic "bump-on-tail"
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situation. He imposed periodic boundary conditions on the particle motion.

Dawson observed that the bump initially flattens in accordance with the predictions

of quasi-linear theory. But the wave spectrum is not stationary as predicted, and it

fluctuates rapidly in time. Also both the waves and particles are accelerated to high

velocity. He associates the fluctuations in the wave spectrum with Cerenkov emission

and absorption of waves. He also shows that waves may be scattered by particles to

higher phase velocities.

The time scale on which the particles are accelerated to twice the initial beam veloc-

ity is roughly 6 to 8 transit times for the energetic particles. This suggests that another

mechanism, which may also be important, is that the transit time effect diffuses the par-

ticles beyond the wave phase velocities. These particles then radiate high-velocity

waves via Cerenkov emission. It seems likely that the observed effect is explained by

a combination of these two mechanisms.

Bers and Davis set up a charge-sheet model of a beam-plasma system. They find

that an electric field strong enough to trap the plasma electrons is set up at one point

in space. A long time later, however, these trapped electrons have a distribution of

velocities whose characteristic spread is considerably greater than the trapping width

(2 A /m)1/2. Although it is difficult to observe directly, the wave spectrum appears

to be largely between 0. 6vb < vp < 0. 8v b , where v b is the original beam velocity, and v
is the phase velocity of the wave. Under the assumption that half the beam energy goes

into the production of these electrostatic waves, the trapping width is roughly 0. 3 vb on

each side of the phase velocity.

Bers and Davis observed trapped particles with all velocities from zero to twice the

beam velocity. The fact that the distribution acquires this spread after approximately 10

transits suggests that transit-time diffusion may be an important contributing factor to

the spread in velocity.

Let us remark, however, that as in Dawson's experiment, many other effects may

come into play. For example, Bers and Davis do not use either periodic or perfectly

reflecting boundary conditions. Instead, they use a time-variant electrostatic sheath

to reflect the electrons back into the plasma. Thus there is a possibility that electrons

may gain or lose energy on being reflected back into the system. Thus in each of these

beam-plasma computer experiments, transit-time diffusion is probably important,

but appears to be just one of several competing effects.

W. M. Manheimer
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