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A. ON THE DIELECTRIC RESPONSE FUNCTION

1. Introduction

Many of the interactions of electromagnetic radiation with matter can be expressed

most concisely in terms of a linear dielectric response function. Consequently, when

studying the properties of a solid by means of its interaction with electromagnetic radia-

tion, it is instructive to delimit the applicability of the dielectric response function, E(w),

by deriving it.

Such a procedure will show that it can be applied to the processes of reflection,

transmission, absorption, and elastic scattering of electromagnetic radiation, but can-

not be applied directly to those processes in which the frequency of the scattered radia-

tion differs from that of the incident radiation, as in Raman scattering. Moreover, by

considering E(w) to be an analytic function the following derivation makes explicit the

characteristic parameters of the dielectric response function, which can be completely

specified by a scaling coefficient E and the locations of all of its poles and zeros in the

complex frequency domain. Finally, upper and lower bounds can be placed on the esti-

mates of the characteristic frequencies of E(w) based upon the experimentally determined

values of E(W).

2. Derivation of the Linear Dielectric Response Function

From Maxwell's equations,

D(r, t) = E(r,t) + 4TrP(r,t). (1)

If we are working with "small" electric fields, we may approximate P and D by linear

functions of E. Using the most general form for the linear operator Y sq , we have

3
33D (r, t) = dt' d3 r' sq(r, r',t,t')E (r', t'), (2)

oo s q
q= 1 All space
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where

3

D(rt)= sD(r, t),

s=1

and .sq( , r',t, t') is an element of the general linear operator relating D(r,t) to E(r',t').

Moreover, since we must work with physically realizable quantities, the Fourier trans-

forms of D, E, and P must all exist. Therefore, we may define

Ds(r t) = I) -1/2 C A
D,(r t) = (2T) - 1 [As(r, w) cos wt + Bs(r, w) sin wt)] dw,

where Ds, As, and Bs are all REAL coefficients. Ds(r,t) may be more compactly

expressed in terms of its complex Fourier amplitude.

Ds(r, t ) = (2Tr) 1/2 0 do .w-s(r,) e
w00

where

( ) 2 [As( 0)+ i Bs(r , )] c ' 0

and

5 s

But the spatial Fourier transform must also exist. Therefore, we may define

-O
reciprocal
space

d 3 k ~s(k, O) eik r-iwt
s

Likewise

Es(r, t) = (2Tr) - 2  d

where

= *(. c

reciprocal
space

d 3 k 6s(k co) eik • r-iot

(k, W) = &(-k, -"o)
5 5
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in order that D5 and E be REAL functions. Substituting the Fourier expressions for

D and E in (2), we obtain
s s

(2)2
-00o

(2) - 2  00d d 3k q(, ) dt' d3r '

K oo -o0
Y sq(, rf', t, t') eik r'-iwt'

Consider first the integral over t':

S t)ik r'-iwt
dt' s (r, r',t,t') e

sq
= (r, r', t, w)
sq

If sq is not explicitly dependent upon some absolute time, and g(t)

applying Ysq to f(t'), then g(t+A) must be the result of applying Ysq

.Ysq is a LINEAR operator,

is the result of

to f(t'+A). But

o ik.- r'-iw(t'+A).'. 00 dt' ~ sq(r,r',t,t') e
S-00 sq

- i A y 1 - -

sq

s i . r'
q(r, r', t+A, w) e

sq

Define

2
Y (r,r',) = sq ,r',0, ),

sq sq

then it follows that

ik - r'-iwt'
sq( , t t') e -it 2q ik . r'

e sq rr

Applying the same argument to each of the spatial coordinates implies that

3 2 ik- r,
d3r' sq (r, r', w)e= sq"

ik. r 3
e sq (k, w),sq

2 sq(k, o) = d3 r' 2(O, r', O)

QPR No. 90

3

q=1

00 ik-
e

ik . ',e

dt'

where

ik . r'

do d3k - s(k, O) ek riwt



(VI. OPTICAL AND INFRARED SPECTROSCOPY)

(Z)-2 KOde d3k 9 ,w) eik - r -iwt

3
(2r) 2 dw d3ks (k ) 3L q(k, ) e -it

q=1

where

(oo - ik " r'-it'
(3)(k, o) 0 dt' d 3 r' 2sq (0,r', 0,t') eik-iot (6)sq -sq

Taking the inverse Fourier transform of both sides, we get

3
(3) w)

sk,= w sq q(ki, ) (7)
q=1

for a linear operator Ysq which is not explicitly dependent upon either an absolute time

or space coordinate.

If we introduce a boundary at which the dielectric response function changes, we may

mix different values of k. If the change is discontinuous in a plane, Fresnel's equations

describe the interaction. There is no way to mix different frequency components, how-

ever, unless we change P sq as a function of time, or include terms that are nonlinear

in E and D. Thus the E(w) defined below will describe ordinary reflectance, transmit-

tance, and elastic scattering processes, but will not include nonlinear interactions as

harmonic generation or Raman scattering. Also, since

and

it follows that

(3) - (3), -s (k, ) sq (-k,.-w), (8)

in order that D and E be REAL functions.

If we restrict our attention to propagating electromagnetic disturbances in nonmag-

netic materials, Maxwell's equations put very severe limitations on the frequencies,
2o, associated with a given wave vector, k. For isotropic (or cubic) materials k2

2 2
w c .(k,w), and k is an implicit function of w. In this case, the isotropic dielectric

2 2 2response function E(w) is defined as the value of Y(k, c) such that Y(k, w) = k /w c
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A similar, but much more complicated, expression can be defined for the general

dielectric response function tensor, Esq(w), but the remainder of this discussion may

be limited to the isotropic dielectric response function, E(0c), without loss of generality.

For an isotropic material,

9s(k, ) - s(W)

J5s(k, 6)'s ().

Since 9 s(w) and (wo) can have no essential singularities, E(w) can have no essential

singularities. All of the poles and zeros of E(o) must be isolated, and in order that

E(w) = E*(-w), they must be symmetrically distributed about the imaginary axis of the

w-plane. Consequently, a pole or a zero of E(w) must either lie on the imaginary w axis

or be paired with a complementary pole or zero of E(w). In other words, if there is a

pole or a zero of E(c) at 01 = or + iwi, there must be a complementary pole or zero at

W2 = -_r + i i . Moreover, the poles and zeros of -s(w) must occur at frequencies such

that the magnitude of the time-dependent term 9 (o) e - iwt is constant or exponentially

damped. Therefore, the imaginary component of the frequencies of any poles or zeros

of 9s must be less than or equal to zero. That is, all of the poles and zeros of ~9(o)

are in the lower half of the w-plane. Consequently, any pole or zero contributed to 9
s

by E(0) must also be in the lower half of the w-plane. Since

9s() = E() e(c)

or

e()= 1 E-(9) ()= (W) s(w), (9)

a zero of E(w) and a pole of r(w) occurs whenever there exists a frequency, w , such that

9s(O) - 0, although s(w) * 0. Likewise, a pole of E(w) and a zero of Tr(w) occurs when-

ever there exists a frequency, wt, such that 6 s (w) = 0, although 9s(w) # 0.

We are now in a position to determine the limits on the frequencies of the poles and

zeros of Eo).

3. Properties of the Poles and Zeros of E(o)

One may express the dielectric response function, E((), in terms of a product of

complementary poles and zeros. For single-mode behavior,

or
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E(o) = 0

(1 Z-w~~

where

S= E(-00o)

2 2

r L - 2 Im

2 2
WT It

r = -2 Im [ot]

and all coefficients are REAL.

This formula can also be written

L r T)

T(w) = Eo + E0 0 2 2

WT - W - io

which is analogous to the expression commonly derived for a damped classical oscil-

lator, except that the numerator of this expression (oscillator strength) can be complex

if rL T
It can be shown that in order that the magnitude of a plane wave propagating through

a dielectric either remain constant or be exponentially damped with time, Im [E(w)] > 0

and Im [1(w)] < 0, for w > 0. Therefore, for single-mode behavior

Im [E(W)] > 0 as o - o or o - 0

2 2.
E L E'L

E~) = Eo0  2 2 io
T T

2- FT FL+i(r F L

W(0) - 2 - r 22
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LT
E(o) - E0 + i

.'. Since E , is REAL, FL - FT > 0, or

FL > rF (10)

(w)L

Z 0 - ir )

TLOT + L T icF LT TL
E(w) 4 2 2

-0 WT - F T

E(w) 2 +o 2 2

- WT TT LL

T L
. . 2 2 > 0, or

2 

(

'T WLr r

For a general dielectric response function, which is expressed as a product of poles

and zeros,

2 2
N -Lj iLj

E(w) = fEo . 2 2- (12)

(in order that E(oo) be bounded as w - 0 and w - oo there must be the same number

of zeros as there are poles), these relations generalize to

(a) FTj > 0, Lj >0 (13)

N N

(b) 7F ILj> FT j  
(14)

j=1 j=1

(c) F 2 2 (15)

j=1 WTj j=1 WLj
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as the necessary conditions for a physically possible component of the dielectric
response function.

4. Locating the Poles and Zeros of E(w)

If one has a dielectric response function exhibiting single-mode behavior, the value
of WT and F T can be estimated from the behavior of the Im [E(o)] and oL and F L can be
estimated from the behavior of Im [r(c)].

Consider

E(w) = E'(w) + iE"(o) E00

2 2
L- -i L

2 2
WT io T

Im [E(w)] = E"(w) = E 0 ( 2 + 22
2 2 2 2

The peak in E" occurs when 8aE"/8w = 0. Evaluating aE"/8w at T = yT, we have

(2 2)
8 ,, I  

L TS -2E 2 +

o: T rTWT

But for single-mode behavior,

F
TF > FT > 0 and 2 >

L T 2

aE"

the equality holds f

quency than wT.

Similarly,

E (FL-F T)
2200 2

T

FL
2 .

WOL

2< 0 for all values of w, FT

2
OL' FL

2
OL

or rL = rT 2 . Consequently, the peak of E" occurs at a lower fre-
WT

8(

WO=OT

SL -FT

T
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> 0 for all allowed values.
aw wo=T The equality holds for r L = r T

and the peak of wcE" occurs at a higher frequency than oT Therefore, if we define w 1 as

the frequency at which the peak in E" occurs and 0Z as the frequency at which the peak

in woE" occurs, then

01 ' T '< 2 for single-mode behavior. (16)

2
OL

01= coT for F L = T  (Upper limit on FL)
wT

and

2 = for FL = T  (Lower limit on r L)

Moreover, since q(x) = E-1 (x) inverts the behavior of wL and T, one can easily show

that

W3 '< L ' 4 for single-mode behavior, (17)

where w3 is defined as the frequency at which the minimum of 1" occurs and w4 as the

frequency at which the minimum of won" occurs.

2

3 = L for L = F
3 L L T 2

and

W4 = OL for FL = T.

F T and F L can be estimated from the half widths of E" and ri", respectively, and

all four values can be iterated in the single-mode formula for E(w) in order to achieve

higher precision.

Furthermore, the relations for wT and wL will hold approximately for nearly isolated

modes in a multimode dielectric response function. In this case, E.0 is replaced by an

effective Eo which incorporates the effect of all modes at a higher frequency than the

desired w L and wT pair.

2
N WLj th

E (effective) = E J 2 for the m mode.
j=m+1 WTj
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