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Reading: For normally­ordered forms: 

•	 W.H. Louisell, Quantum Statistical Properties of Radiation (McGraw­Hill, New 
York, 1973) Sect. 3.2. 

For quantum characteristic functions: 

•	 W.H. Louisell, Quantum Statistical Properties of Radiation (McGraw­Hill, New 
York, 1973) Sect. 3.4. 

Problem 5.1 
Here we shall derive the signal­to­noise ratio (SNR) optimality of squeezed states for 
quadarature measurements. Let ˆ a† be the annihilation and creation operators, a and ˆ
respectively, of a quantum harmonic oscillator, and let ˆ a) and ˆ a) be a1 ≡ Re(ˆ a2 ≡ Im(ˆ
the associated quadrature operators. We want to find the state ψ� that maximizes |
the SNR of the â1 measurement, 

a1�
SNR ≡ �ˆ 2 

�Δˆ2 , a1� 

when the mean of the quadrature measurement must be positive �â1� > 0, and the 
state must satisfy the average photon­number constraint, 

a†ˆ�ˆ a� ≤ N. 

(a) Express �ˆ a� in terms of the squared­means and the variances of the ˆa† ̂ a1 and 
â2 measurements. Use this result to argue that the optimum state should have 
�ˆ a† ̂a2� = 0 and �ˆ a� = N , and thus satisfy 

N + 1/2 − �Δˆ2 

SNR = 
�Δˆ2 

a2� − 1. 
a1� 

(b) Use the result	 of (a) to show that the optimum state must be a minimum 
uncertainty product state for the Heisenberg inequality �Δˆ2 aa1��Δˆ2 

2� ≥ 1/16. 
Optimize your resulting SNR expression over 0 ≤ �Δˆ2 .a1�

(c) Show that your optimum SNR expression from (b) is achieved by the squeezed 
state β : µ, ν�, where β = N(N + 1), µ = (N + 1)/

√
2N + 1, and ν = 

N/
√

2
|
N + 1. 
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(d) Compare the SNR achieved by your optimum squeezed state from (c) with that 
of the coherent state, 

√
N�, of the same average photon number. |

Problem 5.2 
Here we shall introduce the notion of normally­ordered forms. Consider a quantum 

a and creation operator ˆharmonic oscillator with annihilation operator ˆ a†. Operators 
built up from Taylor’s series of the form, 

∞ ∞

a†, ˆ a†nˆF (ˆ a) ≡ fnm ˆ a m , 
n=0 m=0 

are said to be in normal order, because (in each nm­term) all the creation operators 
stand to the left of all the annihilation operators. On the other hand, operators built 
up from Taylor’s series of the form, 

∞ ∞

a, ˆ ˆ a†m ,G(ˆ a†) ≡ gnma 
nˆ

n=0 m=0 

are said to be in anti­normal order, because (in each nm­term) all the annihilation 
operators stand to the left of all the creation operators. By (repeated) use of the [a, ˆˆ a†] 
commutator it is possible to convert a normally­ordered operator into an equivalent 
anti­normally ordered operator. Normal order is very convenient, as we shall see, 
when calculations are performed using coherent states 

(a) Find the normally­ordered form, F (n)(ˆ a), and the anti­normally ordered 
form, F (a)(ˆ a†), of the operator F̂ ≡ ˆa†ˆ

a†, ˆ
a, ˆ aˆ a. Find F̂ α�, where α� is a �α| | |

coherent state, and verify that it satisfies, 

F α� = F (n)(α∗, α),�α| ˆ|

i.e., it equals the normally­ordered form of F̂ with the classical complex numbers 
α∗ and α replacing the creation and annihilation operators ˆ a, respectively. a† and ˆ

(b) Use the fact that the coherent states resolve the identity, 

d2α 
Î = 

π 
|α��α|, 

ˆto show that any operator G is completely determined by its coherent­state 
matrix elements, �α G β�, via, | ˆ|

d2α d2β
Ĝ = G . 

π π 
�α| ˆ|β� |α��β|
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(c) Suppose that we regard F (n)(α∗, α) = �α|F (n)(ˆ a) α� from (a) to be a de­a†, ˆ |
terminstic function of two independent classical arguments, α∗ and α. Show 
that, 

α|2+ β 2)/2+α∗βF β� = F (n)(α∗, β)�α ,= F (n)(α∗, β)e−(| | | ,�α| ˆ| |β�
for any two coherent states α� and . In conjunction with (b), this implies | |β�
that F̂ is completely determined by its diagonal elements in the coherent­state 
expansion. Morevoer these diagonal elements are immediately available from 
the normally­ordered form of F̂ (and vice versa). 

(d) Let ˆ a† and ˆG be an arbitrary operator­valued function of ˆ a. Defining G(n)(α∗, α) = 
G α�, the result of (c) generalizes to�α| ˆ|

α2+β2|/2+α∗βG β� = G(n)(α∗, β)�α ,= G(n)(α∗, β)e−(| .�α| ˆ| |β�

Of particular interest for quantum optics work is this normally­ordered repre­
sentation for the density operator, ρ̂, which specifies the state (pure or mixed) of 
the oscillator. Show that ρ(n)(α∗, α) ≡ �α ρ̂ α� satisfies the following conditions: | |

ρ(n)(α∗, α) ≥ 0, for all α, 

d2α 
ρ(n)(α∗, α) = 1. 

π 

Thus, p(α1, α2) ≡ ρ(n)(α∗, α)/π, where α ≡ α1 + jα2, is a possible classical 
joint­probability density for two real­valued random variables. 

Problem 5.3 
In classical probability theory, probability densities and characteristic functions are 
Fourier transform pairs, and some calculations are easier to perform in one domain 
than the other. In quantum mechanics, the density operator takes the place of the 
probability density and, because of commutation rules, there are several different 
characteristic functions that can be defined. Here we will introduce the three most 
important of these characteristic functions. Consider a quantum harmonic oscillator 
with annihilation operator ˆ a†, and density operator ˆa, creation operator ˆ ρ. The anti­
normally ordered characteristic function is defined to be, 

χρ ˆ a ζâ† 

A(ζ∗, ζ) ≡ tr ρe−ζ∗ ̂
e , 

the normally­ordered chacteristic function is defined to be, 

a 
N(ζ∗, ζ) ≡ tr ρeζˆχρ ˆ a† 

e−ζ∗ ̂
, 

and the Wigner characteristic function is defined to be, 

χρ ˆ a+ζâ† 

W (ζ
∗, ζ) ≡ tr ρe−ζ∗ ̂

, 
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In these expressions, ζ is a complex number whose real and imaginary parts are ζ1 
and ζ2, respectively. 

(a) Let Â and B̂ be non­commuting operators that commute with their commutator, 
i.e., 

ˆ ˆ B]] = [B, [A, ˆ[A, [A, ˆ ˆ ˆ B]] = 0.


It can be shown that


ˆ ˆ A, ˆˆ B A B e−[ ˆ B]/2 B A [ ˆ B]/2A+ ˆ ˆ ˆ A, ˆe = e e = e e e . 

Use this result to relate the three characteristic functions to one another. Find 
all three characteristic functions for pure­state density operator ρ̂ = |α��α|, 
where α� is a coherent state. |

(b) Let ρ(n)(α∗, α) ≡ �α|ρ̂|α� be the diagonal matrix elements of the density oper­
ator in the coherent­state basis. Show that, 

d2ζ 
A(ζ∗, ζ)e−ζα∗+ζ∗αρ(n)(α∗, α) = χρ . 

π 

(c) Use the fact that ρ̂ is determined by its diagonal elements in the coherent­state 
basis to prove that � 

d2ζ aa† ζ∗ ̂
ρ̂ = χρ 

A(ζ∗, ζ)e−ζˆ e . 
π 

(d) Suppose that ˆ ρ satisfies,ρ has a proper P ­representation, i.e., ˆ

ρ̂ = d2αP (α, α∗)|α��α|, 

where α� is the coherent state, and P (α, α∗) is a classical joint probability |
density for the α1 and α2, the real and imaginary parts of α. Show that 

d2ζ 
N(ζ∗, ζ)e−ζα∗+ζ∗αP (α, α∗) = 

π2 χ
ρ . 

(e) Suppose that the θ­quadrature of the oscillator is measured, i.e., we measure 
aθ ≡ Re(ˆ ˆ a2 sin(θ). The outcome of this the observable ˆ ae−jθ) = a1 cos(θ) + ˆ

measurement is a real­valued classical random variable αθ, whose characteristic 
function satisfies, � � 

jvαθ ) ρejvˆMαθ 
(jv) ≡ E(e = tr ˆ aθ . 

Find Mαθ 
(jv) from the Wigner characteristic function. 
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Problem 5.4 
Here we shall that it is easy to calculate number­operator and quadrature­operator 
measurement statistics when the oscillator has a proper P ­representation. 

(a) Consider a quantum harmonic oscillator whose density operator ρ̂ has a proper 
P ­representation, P (α, α∗). Show that we can regard the oscillator as being in 
a mixed state in which the coherent state α� occurs with probability density |
P (α, α∗). 

(b) Use the result of (a) to show that the probability that a number­operator mea­
surement yields outcome n satisfies, 

Pr(N̂ outcome = n) = d2αP (α, α∗)
|α|2n 

e−|α|
2 

, for n = 0, 1, 2, . . . 
n! 

ˆShow that the variance of the N measurement for this state always equals 
or exceeds its mean value. Use this result to show that the density operator 
ρ̂ = |n��n|, where n� is the number ket, does not have a proper P ­representation |
for n > 0. 

(c) Use the result of (a) to show that the probability density for the â1 measurement 
to yield outcome a1 is 

d2αP (α, α∗)
exp[−2(a1 − α1)

2] 
p(â1 outcome = a1) = � . 

π/2 

Show that the variance of the â1 measurement for this state always equals or 
exceeds 1/4. Use this result to show that the squeezed state β;µ, ν�, with |
µ, ν > 0, does not have a proper P ­representation. 
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