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Reading: For the quantum harmonic oscillator:

e W.H. Louisell, Quantum Statistical Properties of Radiation (McGraw-Hill, New
York, 1973) sections 2.1-2.5.

e R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford,
1973) pp. 128-133.

For coherent States and minimum uncertainty states:

e R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford,
1973) chapter 7.

e L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge
University Press, Cambridge, 1995) Sects. 11.1-11.6.

Problem 3.1

Here we shall extend the results of problem 2.2 to include classically-random polar-
izations. Suppose we have a +z-propagating, frequency-w photon whose polarization
vector (in problem 2.1 notation) is,

where o, and «a,, are a pair of complex-valued classical random variables that satisfy
o + oy | = 1,

with probability one. (Two joint complex-valued random variables, a, and o, are
really four joint real-valued random variables, viz., the real and imaginary parts of
a, and o)

The Poincaré sphere representation for the average behavior of this random po-
larization vector is,

- 2Re(a}a,)]
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where—in keeping with the quantum notation for averages—(-) denotes ensemble
average.



(a) Use the Schwarz inequality to prove that r’r = 72 +r2 +r2 < 1, ie, the r
vector lies on or inside the unit sphere.

(b) Let i, and i, be a pair of deterministic, orthogonal, complex-valued unit vectors,

V1Z.,
T 1, k=1
ikil :5kl =
0, kI

where k£ and [ can each be either a or b. By means of wave plates, a polarizing
beam splitter, and a pair of ideal photon counters, it is possible to measure
whether the photon is polarized along i, or along i,. The statistics of this
measurement satisfy,

1 T

Pr(polarized along i,) = —1—2rar7 (1)
1 T

Pr(polarized along i,) = +2rb r’ (2)

where r, and r;, are the Poincaré sphere representations of i, and i,, respectively.
Show that r, = —r}, so that Egs. (1) and (2) constitute a proper probability
distribution.

(c) Suppose that the photon’s random polarization leads to r = 0, i.e., 11 = 19 =
r3 = 0. Show that

1
Pr(polarized along i,) = Pr(polarized along i,) = 5

for all pairs of deterministic, orthogonal complex-valued unit vectors {i,, i, }, and
thus that r = 0 represents a state of completely random polarization. Contrast
the preceding measurement statistics with what will be obtained when

0 0 0
r=|1 r,=| 0 r, = 0 ,
| 0 | | 1] | -1
and when - - - _
0 0 0
r=|1 r,=| 1 r,=| —1 |,
| 0] | 0 | 0 ]

are the Poincaré sphere representations of the photon and the pair of orthogonal
polarizations being measured.

Problem 3.2
Here we introduce the notion of a density operator, i.e., a way to account for classical
randomness limiting our knowledge of a quantum system’s state. Consider a quantum



mechanical system whose state at time ¢ is not known. Instead, there is a classically-

random probability distribution for this state. In particular, suppose that there are

M distinct unit-length kets, { |¢,) : 1 < m < M }, and that the system is known to

be in one of these states. Moreover the probability that it is in state |¢,,) at time ¢ is

Pm, for 1 <m < M, where {p,, : 1 <m < M } is a classical probability distribution:
M

Pm > 0and > pn, =1

(a)

Suppose that we measure the observable O at time t, where O has distinct
eigenvalues, {0, : 1 <n < oo}, and a complete orthonormal set of associated
eigenkets, { |0,,) : 1 <n < oo}. GIVEN that the state of the system at time ¢ is
|t)m), we know that the O measurement will yield outcome o, with conditional
probability Pr(o, | |[¥m)) = |[{on]thm)]?, for 1 <n < oo and 1 < m < M. Use
this conditional probability distribution to obtain the unconditional probability,
Pr(0,), of getting the outcome o, when we make the O measurement at time ¢.

Define a density operator for the system by,

M
A= Ponltom) (Um-
m=1

Show that p is an Hermitian operator, and verify that your answer to (a) can
be reduced to
Pr(o,) = (on|plon), forl<n < oc.

Show that the expected value of the O measurement, i.e.,

[e.o]

(O} = Z on Pr(oy),

n=1

satisfies R A
(0) = tr(p0O),

where tr(fl) for any linear Hilbert-space operator, fl, is the trace of that oper-
ator, defined as follows. Let {|k) : 1 < k < oo} be an arbitrary complete set of
orthonormal kets on the quantum system’s state space, so that

[=> |k)(K|.

Then

(e 9]

tr(A) = S (kAk),

k=1
i.e., it is the sum of the operator’s diagonal matrix-elements in the {|k)} rep-
resentation. Comment: The trace operation is invariant to the choice of the



CON basis used for its calculation. Hence a propitious choice of the basis can
be a great aid in simplifying the calculation of averages involving a density
operator.

Problem 3.3

Here we will explore the difference between a pure state and a mixed state, i.e.,
the difference between knowing that a quantum system is in a definite state |¢) as
opposed to having a classically-random distribution over a set of such states, namely
a density operator p. Because the density operator is Hermitian, it has eigenvalues
and eigenkets. Let us assume that these form a countable set, viz., p has eigenvalues,
{pn:1<n< oo}, and associated eigenkets {|p,) : 1 < n < oo}, that satisfy

Plpn) = pulpn), for 1 <n < oco.

Without loss of generality, we can assume that these eigenkets form a complete or-
thonormal set, i.e.,

<pm|pn> = Onms

I = ;!pnﬂpn!-

(a) Show that the eigenvalues {p,} satisfy
0<p, <1, forl<n<oo,

and

n=1

(b) Show that tr(p) = 1 for any density operator

(c) Suppose that the quantum system is in a pure state, i.e., it is known to be in the
state |¢). Show that this situation can be represented in density-operator form
by setting p; = 1 and |p1) = |¢), viz., a pure state has a density operator with
only one eigenket whose associated eigenvalue is non-zero. Show that tr(p?) = 1
for any pure-state density operator.

(d) When the density operator has two or more eigenkets with non-zero eigenvalues
we say that the state is mixed, i.e., there are at least two different pure states
that can occur with non-zero probabilities. Show that tr(p*) < 1 for any mixed-
state density operator.



Problem 3.4

Let A and B be observables for some quantum system. In particular, let A and B
each be Hermitian operators with complete orthonormal (CON) sets of eigenkets,
{lan) : 1 <n<oo}and {|b,) : 1 <n < oo}, and associated eigenvalues, {a, : 1 <
n<oo}and {b,:1<n< oo}, respectively.

(a) The commutator of A and B is, by definition,
[21, B’] = AB - BA.
Show that = 5 [A B] is an Hermitian operator.

(b) Assume that these observables commute, i.e.,
[A,B] = AB - BA =0,

and that the eigenvalues of A are distinct, as are the eigenvalues of B. Show
that every eigenket of A is also an eigenket of B and that every eigenket of B
is also an eigenket of A, i.e., A and B have a common, CON set of eigenkets.

Problem 3.5

Here we introduce the notation of tensor products, to permit us to deal with multiple
quantum systems. Let H; and Hy be the Hilbert spaces of possible states for two
quantum systems, S; and S, respectively. If we are interested in making a joint
measurement, on these two systems, e.g., the sum of their “positions”, etc., we need
to have a way to describe states and observables for the joint system. Let {|¢,)1
1 <n<oo}and {|fn): 1 < m < oo} be orthonormal bases for H; and Has,
respectively, where the subscripts 1 and 2 indicate to which Hilbert space the states
belong. The Hilbert space of states for the joint quantum system—i.e., systems 1 and
2 together—is spanned by the tensor product states { [¢n)1 @ |On)2 1 1 <n,m < oo },
i.e., an arbitrary state [¢)) € H can be expressed as a linear combination,

= cam(l6n)1 @ 0m)2). (3)

by appropriate choice of the coefficients {c,,,}. Thus, because the inner product
between |¢,)1 & [0,,)2 and |¢)1 @ |6;)2 is defined to be,

(0] @ {Se)(|dn)1 @ [0m)2) = (2(6110m)2) (1(Dk|Pn)1),
the inner product between |¢) from Eq. (3) and

=3 dum(|n)1 © 0m)2),

n=1m=1
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(a)

(c)

(') = ZZd

n=1m=1

Let A; be an observable of system 1, i.e., an Hermitian operator on H; with
a complete set of eigenkets, and let B, be an observable of system 2, i.e., an
Hermitian operator on H, with a complete set of eigenkets. The tensor product
C' = Ay ® By is a linear operator that maps the state |¢,)1 ® |6,) into the state

(Ar]dn)1) © (Ba|6im)a).

Show that C' is an Hermitian operator on H which has a complete set of eigen-
kets, so that C' is an observable on the joint Hilbert space of systems 1 and
2.

Let
= anlan)in{an| and By =) bylbm)aa(b
n=1 m=1

be the diagonal (eigenvalue/eigenket) decompositions of A; and B,, where the
{a,} are assumed to be distinct, as are the {b,,}. When we measure A; on
system 1 and we measure B, on system 2 with the joint system being in state |¢),
given by Eq. (3), the outcome will be an ordered pair {(a,, b,,)} of eigenvalues.
The probability that (a,,b,,) occurs is given by,

Pr(an, by) = [(¢[(Jan) ® |bm>2>|2-

Show that this is a proper probability distribution. Express the marginal prob-
abilities, Pr(a,) and Pr(b,,), in terms of |¢), the {|a,):} and the {|b,,)2}.

Specialize the results of (b) to the case of a product state, viz., a state that

satisfies 1) = [t1)1 @ |12)2.

Problem 3.6
Here we prove that it is impossible to clone the unknown state of a quantum system
by means of a unitary evolution. It is a proof by contradiction. Suppose that we
have a quantum system whose Hilbert space of states is Hg, where g indicates that
this is the source system. Suppose too that we have a target system whose Hilbert
space of states is Hy. We will assume that these two Hilbert spaces have the same
dimensionality, e.g., 2.

We wish to construct a perfect cloner, viz., a unitary operator, U, on the tensor
product space H = Hg ® Hp such that

U(lh)s ®10)r) = [¥)s ® 1)1, (4)



where |)g is an arbitrary unit-length ket in Hg, and |0)r is a reference (“blank”)
unit-length ket in Hp. Thus, the perfect cloner does not disturb the source state
while it turns the target’s “blank” state into a clone of the source state.

Let |¢1)s and |19)s be two distinct, unit-length kets in Hg, let a and 3 be two
non-zero complex numbers, and assume that we have found a perfect cloner operator
U that satisfies Eq. (4) for all unit-length source kets.

(a) Define
alr)s + Ble)s

V1o + 18P + 2Relo 5(s (01 [u2)s)]
Use unitarity to evaluate the length of the ket |6) = U(|¢/')s ® |0)7).

[¢)s

(b) Use the linearity of U to show that

16) = o/ ([91)s ® [Ya)r) + B ([a)s ® [2)r). (5)
where

C T VP T 1B £ 2Rela B(s (010 s)]

g = -

VIR + (B2 + 2Re[a*B(s (U1 [th2) 5)]

(c) Use Eq. (5) to evaluate the length of |#). Show that this result contradicts what
you found in (a), and thus conclude that there is no unitary U that can be a
perfect cloner.



