Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.453 Quantum Optical Communication

Problem Set 3 Fall 2004

Issued: Wednesday, September 22, 2004 Due: Wednesday, September 29, 2004

Reading: For the quantum harmonic oscillator:

- W.H. Louisell, *Quantum Statistical Properties of Radiation* (McGraw-Hill, New York, 1973) sections 2.1–2.5.
- R. Loudon, *The Quantum Theory of Light* (Oxford University Press, Oxford, 1973) pp. 128–133.

For coherent States and minimum uncertainty states:

- R. Loudon, *The Quantum Theory of Light* (Oxford University Press, Oxford, 1973) chapter 7.
- L. Mandel and E. Wolf, *Optical Coherence and Quantum Optics* (Cambridge University Press, Cambridge, 1995) Sects. 11.1–11.6.

Problem 3.1

Here we shall extend the results of problem 2.2 to include classically-random polarizations. Suppose we have a +z-propagating, frequency- ω photon whose polarization vector (in problem 2.1 notation) is,

$$\mathbf{i} \equiv \left[\begin{array}{c} \alpha_x \\ \alpha_y \end{array} \right],$$

where α_x and α_y are a pair of complex-valued classical random variables that satisfy

$$|\alpha_x|^2 + |\alpha_y|^2 = 1,$$

with probability one. (Two joint complex-valued random variables, α_x and α_y , are really four joint real-valued random variables, viz., the real and imaginary parts of α_x and α_y .)

The Poincaré sphere representation for the *average* behavior of this random polarization vector is,

$$\mathbf{r} \equiv \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} 2\operatorname{Re}[\langle \alpha_x^* \alpha_y \rangle] \\ 2\operatorname{Im}[\langle \alpha_x^* \alpha_y \rangle] \\ \langle |\alpha_x|^2 \rangle - \langle |\alpha_y|^2 \rangle \end{bmatrix},$$

where—in keeping with the quantum notation for averages— $\langle \cdot \rangle$ denotes ensemble average.

- (a) Use the Schwarz inequality to prove that $\mathbf{r}^T\mathbf{r} \equiv r_1^2 + r_2^2 + r_3^2 \leq 1$, i.e., the **r** vector lies on or inside the unit sphere.
- (b) Let \mathbf{i}_a and \mathbf{i}_b be a pair of deterministic, orthogonal, complex-valued unit vectors, viz.,

$$\mathbf{i}_k^{\dagger} \mathbf{i}_l = \delta_{kl} \equiv \left\{ \begin{array}{l} 1, & k = l \\ 0, & k \neq l \end{array} \right.,$$

where k and l can each be either a or b. By means of wave plates, a polarizing beam splitter, and a pair of ideal photon counters, it is possible to measure whether the photon is polarized along \mathbf{i}_a or along \mathbf{i}_b . The statistics of this measurement satisfy,

$$Pr(\text{polarized along } \mathbf{i}_a) = \frac{1 + \mathbf{r}_a^T \mathbf{r}}{2}, \tag{1}$$

$$Pr(\text{polarized along } \mathbf{i}_b) = \frac{1 + \mathbf{r}_b^T \mathbf{r}}{2}, \tag{2}$$

where \mathbf{r}_a and \mathbf{r}_b are the Poincaré sphere representations of \mathbf{i}_a and \mathbf{i}_b , respectively. Show that $\mathbf{r}_a = -\mathbf{r}_b$, so that Eqs. (1) and (2) constitute a proper probability distribution.

(c) Suppose that the photon's random polarization leads to $\mathbf{r} = \mathbf{0}$, i.e., $r_1 = r_2 = r_3 = 0$. Show that

$$\Pr(\text{polarized along } \mathbf{i}_a) = \Pr(\text{polarized along } \mathbf{i}_b) = \frac{1}{2},$$

for all pairs of deterministic, orthogonal complex-valued unit vectors $\{i_a, i_b\}$, and thus that $\mathbf{r} = \mathbf{0}$ represents a state of completely random polarization. Contrast the preceding measurement statistics with what will be obtained when

$$\mathbf{r} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{r}_a = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{r}_b = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix},$$

and when

$$\mathbf{r} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{r}_a = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{r}_b = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix},$$

are the Poincaré sphere representations of the photon and the pair of orthogonal polarizations being measured.

Problem 3.2

Here we introduce the notion of a density operator, i.e., a way to account for classical randomness limiting our knowledge of a quantum system's state. Consider a quantum

mechanical system whose state at time t is not known. Instead, there is a classically-random probability distribution for this state. In particular, suppose that there are M distinct unit-length kets, $\{ |\psi_m \rangle : 1 \leq m \leq M \}$, and that the system is known to be in one of these states. Moreover the probability that it is in state $|\psi_m \rangle$ at time t is p_m , for $1 \leq m \leq M$, where $\{ p_m : 1 \leq m \leq M \}$ is a classical probability distribution: $p_m \geq 0$ and $\sum_{m=1}^M p_m = 1$.

- (a) Suppose that we measure the observable \hat{O} at time t, where \hat{O} has distinct eigenvalues, $\{o_n : 1 \leq n < \infty\}$, and a complete orthonormal set of associated eigenkets, $\{|o_n\rangle : 1 \leq n < \infty\}$. GIVEN that the state of the system at time t is $|\psi_m\rangle$, we know that the \hat{O} measurement will yield outcome o_n with conditional probability $\Pr(o_n \mid |\psi_m\rangle) \equiv |\langle o_n | \psi_m \rangle|^2$, for $1 \leq n < \infty$ and $1 \leq m \leq M$. Use this conditional probability distribution to obtain the unconditional probability, $\Pr(o_n)$, of getting the outcome o_n when we make the \hat{O} measurement at time t.
- (b) Define a density operator for the system by,

$$\hat{\rho} \equiv \sum_{m=1}^{M} p_m |\psi_m\rangle \langle \psi_m|.$$

Show that $\hat{\rho}$ is an Hermitian operator, and verify that your answer to (a) can be reduced to

$$\Pr(o_n) = \langle o_n | \hat{\rho} | o_n \rangle, \text{ for } 1 \le n < \infty.$$

(c) Show that the expected value of the \hat{O} measurement, i.e.,

$$\langle \hat{O} \rangle \equiv \sum_{n=1}^{\infty} o_n \Pr(o_n),$$

satisfies

$$\langle \hat{O} \rangle = \operatorname{tr}(\hat{\rho}\hat{O}),$$

where $\operatorname{tr}(\hat{A})$ for any linear Hilbert-space operator, \hat{A} , is the trace of that operator, defined as follows. Let $\{|k\rangle: 1 \leq k < \infty\}$ be an arbitrary complete set of orthonormal kets on the quantum system's state space, so that

$$\hat{I} = \sum_{k=1}^{\infty} |k\rangle\langle k|.$$

Then

$$\operatorname{tr}(\hat{A}) \equiv \sum_{k=1}^{\infty} \langle k | \hat{A} | k \rangle,$$

i.e., it is the sum of the operator's diagonal matrix-elements in the $\{|k\rangle\}$ representation. **Comment:** The trace operation is invariant to the choice of the

CON basis used for its calculation. Hence a propitious choice of the basis can be a great aid in simplifying the calculation of averages involving a density operator.

Problem 3.3

Here we will explore the difference between a pure state and a mixed state, i.e., the difference between knowing that a quantum system is in a definite state $|\psi\rangle$ as opposed to having a classically-random distribution over a set of such states, namely a density operator $\hat{\rho}$. Because the density operator is Hermitian, it has eigenvalues and eigenkets. Let us assume that these form a countable set, viz., $\hat{\rho}$ has eigenvalues, $\{\rho_n: 1 \leq n < \infty\}$, and associated eigenkets $\{|\rho_n\rangle: 1 \leq n < \infty\}$, that satisfy

$$\hat{\rho}|\rho_n\rangle = \rho_n|\rho_n\rangle$$
, for $1 \le n < \infty$.

Without loss of generality, we can assume that these eigenkets form a complete orthonormal set, i.e.,

$$\langle \rho_m | \rho_n \rangle = \delta_{nm},$$

$$\hat{I} = \sum_{n=1}^{\infty} |\rho_n \rangle \langle \rho_n|.$$

(a) Show that the eigenvalues $\{\rho_n\}$ satisfy

$$0 \le \rho_n \le 1$$
, for $1 \le n < \infty$,

and

$$\sum_{n=1}^{\infty} \rho_n = 1.$$

- (b) Show that $tr(\hat{\rho}) = 1$ for any density operator
- (c) Suppose that the quantum system is in a pure state, i.e., it is known to be in the state $|\psi\rangle$. Show that this situation can be represented in density-operator form by setting $\rho_1 = 1$ and $|\rho_1\rangle = |\psi\rangle$, viz., a pure state has a density operator with only one eigenket whose associated eigenvalue is non-zero. Show that $\operatorname{tr}(\hat{\rho}^2) = 1$ for any pure-state density operator.
- (d) When the density operator has two or more eigenkets with non-zero eigenvalues we say that the state is mixed, i.e., there are at least two different pure states that can occur with non-zero probabilities. Show that $\operatorname{tr}(\hat{\rho}^2) < 1$ for any mixed-state density operator.

Problem 3.4

Let \hat{A} and \hat{B} be observables for some quantum system. In particular, let \hat{A} and \hat{B} each be Hermitian operators with complete orthonormal (CON) sets of eigenkets, $\{|a_n\rangle: 1 \leq n < \infty\}$ and $\{|b_n\rangle: 1 \leq n < \infty\}$, and associated eigenvalues, $\{a_n: 1 \leq n < \infty\}$ and $\{b_n: 1 \leq n < \infty\}$, respectively.

(a) The commutator of \hat{A} and \hat{B} is, by definition,

$$\left[\hat{A}, \hat{B}\right] \equiv \hat{A}\hat{B} - \hat{B}\hat{A}.$$

Show that $\frac{1}{i} \left[\hat{A}, \hat{B} \right]$ is an Hermitian operator.

(b) Assume that these observables commute, i.e.,

$$\left[\hat{A}, \hat{B}\right] \equiv \hat{A}\hat{B} - \hat{B}\hat{A} = 0,$$

and that the eigenvalues of \hat{A} are distinct, as are the eigenvalues of \hat{B} . Show that every eigenket of \hat{A} is also an eigenket of \hat{B} and that every eigenket of \hat{B} is also an eigenket of \hat{A} , i.e., \hat{A} and \hat{B} have a common, CON set of eigenkets.

Problem 3.5

Here we introduce the notation of tensor products, to permit us to deal with multiple quantum systems. Let \mathcal{H}_1 and \mathcal{H}_2 be the Hilbert spaces of possible states for two quantum systems, \mathcal{S}_1 and \mathcal{S}_2 , respectively. If we are interested in making a joint measurement on these two systems, e.g., the sum of their "positions", etc., we need to have a way to describe states and observables for the joint system. Let $\{|\phi_n\rangle_1:1\leq n<\infty\}$ and $\{|\theta_m\rangle_2:1\leq m<\infty\}$ be orthonormal bases for \mathcal{H}_1 and \mathcal{H}_2 , respectively, where the subscripts 1 and 2 indicate to which Hilbert space the states belong. The Hilbert space of states for the *joint* quantum system—i.e., systems 1 and 2 together—is spanned by the tensor product states $\{|\phi_n\rangle_1\otimes|\theta_m\rangle_2:1\leq n,m<\infty\}$, i.e., an arbitrary state $|\psi\rangle\in\mathcal{H}$ can be expressed as a linear combination,

$$|\psi\rangle = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c_{nm} (|\phi_n\rangle_1 \otimes |\theta_m\rangle_2),$$
 (3)

by appropriate choice of the coefficients $\{c_{nm}\}$. Thus, because the inner product between $|\phi_n\rangle_1 \otimes |\theta_m\rangle_2$ and $|\phi_k\rangle_1 \otimes |\theta_l\rangle_2$ is defined to be,

$$({}_{2}\langle\theta_{l}|\otimes{}_{1}\langle\phi_{k}|)(|\phi_{n}\rangle_{1}\otimes|\theta_{m}\rangle_{2})=({}_{2}\langle\theta_{l}|\theta_{m}\rangle_{2})({}_{1}\langle\phi_{k}|\phi_{n}\rangle_{1}),$$

the inner product between $|\psi\rangle$ from Eq. (3) and

$$|\psi'\rangle = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} d_{nm} (|\phi_n\rangle_1 \otimes |\theta_m\rangle_2),$$

is

$$\langle \psi' | \psi \rangle = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} d_{nm}^* c_{nm}.$$

(a) Let \hat{A}_1 be an observable of system 1, i.e., an Hermitian operator on \mathcal{H}_1 with a complete set of eigenkets, and let \hat{B}_2 be an observable of system 2, i.e., an Hermitian operator on \mathcal{H}_2 with a complete set of eigenkets. The tensor product $\hat{C} = \hat{A}_1 \otimes \hat{B}_2$ is a linear operator that maps the state $|\phi_n\rangle_1 \otimes |\theta_m\rangle_2$ into the state $(\hat{A}_1|\phi_n\rangle_1) \otimes (\hat{B}_2|\theta_m\rangle_2)$.

Show that \hat{C} is an Hermitian operator on \mathcal{H} which has a complete set of eigenkets, so that \hat{C} is an observable on the joint Hilbert space of systems 1 and 2.

(b) Let

$$\hat{A}_1 = \sum_{n=1}^{\infty} a_n |a_n\rangle_{11}\langle a_n|$$
 and $\hat{B}_2 = \sum_{m=1}^{\infty} b_m |b_m\rangle_{22}\langle b_m|$

be the diagonal (eigenvalue/eigenket) decompositions of \hat{A}_1 and \hat{B}_2 , where the $\{a_n\}$ are assumed to be distinct, as are the $\{b_m\}$. When we measure \hat{A}_1 on system 1 and we measure \hat{B}_2 on system 2 with the joint system being in state $|\psi\rangle$, given by Eq. (3), the outcome will be an ordered pair $\{(a_n, b_m)\}$ of eigenvalues. The probability that (a_n, b_m) occurs is given by,

$$Pr(a_n, b_m) = |\langle \psi | (|a_n\rangle_1 \otimes |b_m\rangle_2)|^2.$$

Show that this is a proper probability distribution. Express the marginal probabilities, $Pr(a_n)$ and $Pr(b_m)$, in terms of $|\psi\rangle$, the $\{|a_n\rangle_1\}$ and the $\{|b_m\rangle_2\}$.

(c) Specialize the results of (b) to the case of a product state, viz., a state that satisfies $|\psi\rangle = |\psi_1\rangle_1 \otimes |\psi_2\rangle_2$.

Problem 3.6

Here we prove that it is impossible to clone the unknown state of a quantum system by means of a unitary evolution. It is a proof by contradiction. Suppose that we have a quantum system whose Hilbert space of states is \mathcal{H}_S , where $_S$ indicates that this is the *source* system. Suppose too that we have a *target* system whose Hilbert space of states is \mathcal{H}_T . We will assume that these two Hilbert spaces have the same dimensionality, e.g., 2.

We wish to construct a perfect cloner, viz., a unitary operator, \hat{U} , on the tensor product space $\mathcal{H} \equiv \mathcal{H}_S \otimes \mathcal{H}_T$ such that

$$\hat{U}(|\psi\rangle_S \otimes |0\rangle_T) = |\psi\rangle_S \otimes |\psi\rangle_T,\tag{4}$$

where $|\psi\rangle_S$ is an arbitrary unit-length ket in \mathcal{H}_S , and $|0\rangle_T$ is a reference ("blank") unit-length ket in \mathcal{H}_T . Thus, the perfect cloner does not disturb the source state while it turns the target's "blank" state into a clone of the source state.

Let $|\psi_1\rangle_S$ and $|\psi_2\rangle_S$ be two distinct, unit-length kets in \mathcal{H}_S , let α and β be two non-zero complex numbers, and assume that we have found a perfect cloner operator \hat{U} that satisfies Eq. (4) for all unit-length source kets.

(a) Define

$$|\psi'\rangle_S = \frac{\alpha|\psi_1\rangle_S + \beta|\psi_2\rangle_S}{\sqrt{|\alpha|^2 + |\beta|^2 + 2\text{Re}[\alpha^*\beta(_S\langle\psi_1|\psi_2\rangle_S)]}}.$$

Use unitarity to evaluate the length of the ket $|\theta\rangle \equiv \hat{U}(|\psi'\rangle_S \otimes |0\rangle_T)$.

(b) Use the linearity of \hat{U} to show that

$$|\theta\rangle = \alpha'(|\psi_1\rangle_S \otimes |\psi_1\rangle_T) + \beta'(|\psi_2\rangle_S \otimes |\psi_2\rangle_T). \tag{5}$$

where

$$\alpha' \equiv \frac{\alpha}{\sqrt{|\alpha|^2 + |\beta|^2 + 2\text{Re}[\alpha^*\beta(\varsigma\langle\psi_1|\psi_2\rangle_S)]}}$$
$$\beta' \equiv \frac{\beta}{\sqrt{|\alpha|^2 + |\beta|^2 + 2\text{Re}[\alpha^*\beta(\varsigma\langle\psi_1|\psi_2\rangle_S)]}}$$

(c) Use Eq. (5) to evaluate the length of $|\theta\rangle$. Show that this result contradicts what you found in (a), and thus conclude that there is no unitary \hat{U} that can be a perfect cloner.