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Reading: For entanglement and measures of entanglement: 

•	 L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge 
University Press, Cambridge, 1995), Sect. 12.14. 

•	 D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor

mation (Springer Verlag, Berlin, 2000), Sects. 3.4 and 3.5. 

For qubit teleportation: 

•	 D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor

mation (Springer Verlag, Berlin, 2000), Sects. 3.3 and 3.7. 

For quadrature teleportation: 

•	 D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor

mation (Springer Verlag, Berlin, 2000), Sect. 3.9. 

For optimum binary hypothesis testing: 

•	 C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, 
New York, 1976) Sects. 4.2 and 6.1. 

Problem 8.1 

Here we shall begin a treatment of optimum binary hypothesis testing. Suppose 
that a quantum system is known to be in either state ψ−1� or ψ1�, where ψ−1� = 
ψ1�. Let hypothesis H−1 denote “state = ψ−1�” and hypothesis H1 denote “state =||
ψ1�.” Assume that these two hypotheses are equally likely, i.e., before we make any |
measurement on the quantum system, it has probability 1/2 of being in state ψ−1�|
and probability 1/2 of being in state ψ1�. Our task is to make a measurement on |
this system to determine—with the lowest probability of being wrong—whether the 
system’s state was ψ−1� or ψ1� before we make our measurement. (The projection | |
postulate implies that the system’s state will likely be changed by our having made 
a measurement.) 

Because we know the system can only be in ψ−1� or ψ1� we can—and we will— | |
limit all our analysis in the reduced Hilbert space, 

H ≡ span( ψ−1�, ψ1�),| |
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i.e., to the Hilbert space of kets of the form 

= α ψ−1� + β ψ1�,ψ�| | |
where α and β are complex numbers. 

Define a decision operator, 

,−1D ≡ˆ |d1��d1| − |d−1��d |
where { d−1�, d1�} are a pair of orthonormal kets on the reduced Hilbert space H. 

ˆClearly, 
|
ˆ

|
D is an observable on H. Suppose that we measure D on the quantum system 

under study. If the outcome of this measurement is −1, we will say that the state 
before the measurement was ψ−1�. If the outcome of this measurement in 1, we will |
say that the state before the measurement was ψ1�.|

(a) Find the conditional probabilities, 

Pr( say “state was ψ−1�” state was ψ1� ) = Pr(D̂ = −1 ψ1�),| | | | |

Pr( say “state was ψ1�” state was ψ−1� ) = Pr(D̂ = 1 ψ−1�).| | | | |
and the unconditional error probability, 

Pr(e) ≡ Pr(state was ψ−1�) Pr(D̂ = 1 ψ−1�)| | |

+ Pr(state was ψ1�) Pr(D̂ = −1 ψ1�).| | |

(b) Suppose that �ψ−1 ψ = 0, so that { ψ−1�, ψ1�} is an orthonormal basis for H.| 1� | |
Find the measurement eigenkets { d−1�, d that minimize your error prob-| | 1�}
ability expression from (a). [The error probability of your optimum decision 
operator for this case shows why orthonormal kets are said to be “distinguish
able.”] 

(c) Suppose that ψ−1� and ψ1� are normalized (unit length), but not orthogonal. |
In particular, let { x�,

|
be an orthonormal basis for H, and assume that, 

ψ

| |y�}


−1� = cos(θ) x� − sin(θ) y� and ψ1� = cos(θ) x� + sin(θ) y�,
| | | | | |
where 0 < θ < π/4. Using the expansions, 

d−1� = cos(φ) x� − sin(φ) y� and d1� = sin(φ) x� + cos(φ) y�, 

d

| | | | | |
where 0 ≤ φ < 2π, and your Pr(e) result from (a) find the φ value—hence the 

−1�, d1�}—that minimizes the error probability for this case. {| |
[Hint: By assiduous use of trig identities, you should be able to reduce the error 
probability expression to the following form: 

1 
Pr(e) = 

2
[1 − sin(2φ) sin(2θ)], 

which is easily minimized over φ.] 

2 



Problem 8.2 

Here we shall continue our treatment of optimum binary hypothesis testing. Suppose 
that the quantum system considered in Problem 8.1 is a single-mode optical field with 
annihilation operator â. 

(a) Let ψ−1� = n−1� and ψ1� = n1� be photon number states with n−1 = n1.| | | |
a

�
Show that making the number operator measurement, ˆ a†ˆ, on the single-N ≡ ˆ
mode field allows a zero-error-probability decision to be made as to whether the 
state before the measurement was n−1� or n1�.| |

(b) Let ψ−1� = α−1� and ψ1� = α1� be coherent states with �α−1 α = cos(2θ)| | | | | 1�
for a θ value satisfying 0 < θ < π/4. Find the error probability achieved by 
the minimum-error-probability decision operator for deciding whether the state 
before the measurement was α−1� or α1�.| |

(c) Evaluate your error probability from (b) when on-off keying (OOK) is used: 
|α−1� = 0� and α1� = 

√
N�, i.e., when the two coherent states we are trying | | |

to distinguish are the vacuum state, and a coherent state with average photon 
number N . Compare this error probability with what is achieved when we 
make the N̂ measurement and say “state was 0�” when this measurement yields |
outcome 0 and say “state was 1�” when this measurement yields a non-zero |
outcome. 

[Hint: First find the conditional error probabilities, 

Pr( say “state was 0�” state was | | |
√
N� ),


and

Pr( say “state was ” state was
|

√
N� | |

sults.] 

√
0� ). 

and then find the unconditional error probability using these intermediate re-

(d) Evaluate your error probability from (b) when binary phase-shift keying (BPSK) 
is used: α−1� = −

√
N� and α1� = 

√
N�. Compare this error probability with 

what is achieved when we make the ˆ a) measurement and say “state 
| | | |

a1 = Re(ˆ
was −

√
N�” when this measurement yields a negative outcome and say “state 

was 
|
|
√
N�” when this measurement yields a non-negative outcome. Express 

your answer in terms of, 

∞ −t2/2e
Q(x) ≡

�
dt , 

x 

√
2π 

i.e., the probability that a zero-mean, unity-variance Gaussian random variable 
exceeds x. 
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[Hint: First find the conditional error probabilities, 

Pr( say “state was ” state was | −
√
N� | |

√
N� ),


and

Pr( say “state was ” state was
|

√
N� | | −

√
N� ). 

and then find the unconditional error probability using these intermediate re
sults.] 

Problem 8.3 

ψ

Here we shall consider a different variant of the binary hypothesis testing problem. 
Suppose, as in Problem 8.1, that a quantum system is known to be in either state 

−1� or ψ1�, where ψ−1� = ψ1�. Let hypothesis H−1 denote “state = ψ−1�” and 
hypothesis H1 denote “state = ψ1�.” Assume that these two hypotheses are equally |
likely, i.e., before we make any measurement on the quantum system, it has probability 
1/2 of being in state ψ−1� and probability 1/2 of being in state ψ1�. Our task is | |
still to make a measurement on this system to determine whether the system’s state 
was ψ−1� or ψ1� before we make our measurement. Now, however, we do not want | |
to make any mistakes, i.e., when we say “state was ψ−1�” we must be correct, and |
when we say “state was ψ1�” we must also be correct. This does not require that we |
limit ourselves to orthonormal states ψ−1� and ψ1�, because we will also allow our | |
measurement outcome to be “error,” meaning it cannot reliably determine whether 
the state was ψ−1� or ψ1�. In other words, we will require a measurement on the | |
two-dimensional reduced Hilbert space H that has three possible outcomes: “state 
was ψ−1�,” “state was ψ1�,” and “error.” | |

Assume that, 

ψ−1� = cos(θ) x� − sin(θ) and ψ1� = cos(θ) x� + sin(θ) ,y� y�| | | | | |

where 0 < θ < π/4, as in Problem 8.1(c), where x� and y� are an orthonormal basis | |
for H. Define a pair of kets, 

ξ−1� = − sin(θ) x� + cos(θ) and ξ1� = − sin(θ) x� − cos(θ)y� y�| | | | | |

ˆ ˆand a set of operators {Π̂−1,Π1,Πe}, 

Π̂−1 a ξ −1 ,≡ | −1��ξ |

Π̂1 a ξ 1 ,≡ | 1��ξ |

Π̂e x ,≡ b|x�� |

where a and b are real-valued constants. 

4 



ˆ ˆ(a) Find a and b such that {Π̂−1,Π1,Πe} is a probability operator valued measure 
(POVM) on the reduced Hilbert space H, i.e., find the values of a and b for 
which 

ˆ ˆΠ† = Πj , for j = −1, 1, e,j 

and 
ˆ Π1 + ˆΠ−1 + ˆ Πe = Î2,


where Î2 is the identity operator on H.


ˆ ˆ(b) When we measure {Π̂−1,Π1,Πe}—with a and b as found in (a), so that these 
operators form a POVM and hence represent a measurement—and the state of 
the quantum system is ψ� ∈ H, the outcome will be either −1, 1, or e, with |
the following probabilities: 

Pr(outcome = −1) = �ψ Π−1 ,ψ�|ˆ |

Pr(outcome = 1) = �ψ Π1 ,ψ�|ˆ |

Pr(outcome = e) = �ψ Πe .ψ�|ˆ |

Suppose that we measure this POVM on our quantum system. If the mea
surement outcome is −1, we will say “state was ψ−1�.” If the measurement |
outcome is 1, we will say “state was ψ1�.” If the measurement outcome is e,|
we will say “error.” Show that this decision procedure will never be incorrect 
when it says “state was ψ−1�,” or when it says “state was ψ1�.” | |

(c) For the POVM decision rule from (b), find the unconditional error probability, 
Pr(outcome = “error”). 

(d) Evaluate your error probability from (c) when ψ−1� = −
√
N� and ψ1� = 

|
√
N�, for ±

√
N� being coherent states. 

| | |
|
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