Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.453 Quantum Optical Communication

Problem Set 8

Fall 2004
Issued: Wednesday, October 27, 2004
Due: Monday, November 8, 2004
Reading: For entanglement and measures of entanglement:

- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995), Sect. 12.14.
- D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer Verlag, Berlin, 2000), Sects. 3.4 and 3.5.

For qubit teleportation:

- D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer Verlag, Berlin, 2000), Sects. 3.3 and 3.7.

For quadrature teleportation:

- D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer Verlag, Berlin, 2000), Sect. 3.9.

For optimum binary hypothesis testing:

- C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976) Sects. 4.2 and 6.1.

Problem 8.1

Here we shall begin a treatment of optimum binary hypothesis testing. Suppose that a quantum system is known to be in either state $\left|\psi_{-1}\right\rangle$ or $\left|\psi_{1}\right\rangle$, where $\left|\psi_{-1}\right\rangle \neq$ $\left|\psi_{1}\right\rangle$. Let hypothesis H_{-1} denote "state $=\left|\psi_{-1}\right\rangle$ " and hypothesis H_{1} denote "state $=$ $\left|\psi_{1}\right\rangle$." Assume that these two hypotheses are equally likely, i.e., before we make any measurement on the quantum system, it has probability $1 / 2$ of being in state $\left|\psi_{-1}\right\rangle$ and probability $1 / 2$ of being in state $\left|\psi_{1}\right\rangle$. Our task is to make a measurement on this system to determine - with the lowest probability of being wrong-whether the system's state was $\left|\psi_{-1}\right\rangle$ or $\left|\psi_{1}\right\rangle$ before we make our measurement. (The projection postulate implies that the system's state will likely be changed by our having made a measurement.)

Because we know the system can only be in $\left|\psi_{-1}\right\rangle$ or $\left|\psi_{1}\right\rangle$ we can-and we willlimit all our analysis in the reduced Hilbert space,

$$
\mathcal{H} \equiv \operatorname{span}\left(\left|\psi_{-1}\right\rangle,\left|\psi_{1}\right\rangle\right),
$$

i.e., to the Hilbert space of kets of the form

$$
|\psi\rangle=\alpha\left|\psi_{-1}\right\rangle+\beta\left|\psi_{1}\right\rangle,
$$

where α and β are complex numbers.
Define a decision operator,

$$
\hat{D} \equiv\left|d_{1}\right\rangle\left\langle d_{1}\right|-\left|d_{-1}\right\rangle\left\langle d_{-1}\right|
$$

where $\left\{\left|d_{-1}\right\rangle,\left|d_{1}\right\rangle\right\}$ are a pair of orthonormal kets on the reduced Hilbert space \mathcal{H}. Clearly, \hat{D} is an observable on \mathcal{H}. Suppose that we measure \hat{D} on the quantum system under study. If the outcome of this measurement is -1 , we will say that the state before the measurement was $\left|\psi_{-1}\right\rangle$. If the outcome of this measurement in 1 , we will say that the state before the measurement was $\left|\psi_{1}\right\rangle$.
(a) Find the conditional probabilities,

$$
\begin{aligned}
& \left.\operatorname{Pr}\left(\text { say "state was }\left|\psi_{-1}\right\rangle " \mid \text { state was }\left|\psi_{1}\right\rangle\right)=\operatorname{Pr}\left(\hat{D}=-1| | \psi_{1}\right\rangle\right), \\
& \left.\operatorname{Pr}\left(\text { say "state was }\left|\psi_{1}\right\rangle " \mid \text { state was }\left|\psi_{-1}\right\rangle\right)=\operatorname{Pr}\left(\hat{D}=1| | \psi_{-1}\right\rangle\right) .
\end{aligned}
$$

and the unconditional error probability,

$$
\begin{aligned}
\operatorname{Pr}(e) & \left.\equiv \operatorname{Pr}\left(\text { state was }\left|\psi_{-1}\right\rangle\right) \operatorname{Pr}\left(\hat{D}=1| | \psi_{-1}\right\rangle\right) \\
& \left.+\operatorname{Pr}\left(\text { state was }\left|\psi_{1}\right\rangle\right) \operatorname{Pr}\left(\hat{D}=-1| | \psi_{1}\right\rangle\right)
\end{aligned}
$$

(b) Suppose that $\left\langle\psi_{-1} \mid \psi_{1}\right\rangle=0$, so that $\left\{\left|\psi_{-1}\right\rangle,\left|\psi_{1}\right\rangle\right\}$ is an orthonormal basis for \mathcal{H}. Find the measurement eigenkets $\left\{\left|d_{-1}\right\rangle,\left|d_{1}\right\rangle\right\}$ that minimize your error probability expression from (a). [The error probability of your optimum decision operator for this case shows why orthonormal kets are said to be "distinguishable."]
(c) Suppose that $\left|\psi_{-1}\right\rangle$ and $\left|\psi_{1}\right\rangle$ are normalized (unit length), but not orthogonal. In particular, let $\{|x\rangle,|y\rangle\}$ be an orthonormal basis for \mathcal{H}, and assume that,

$$
\left|\psi_{-1}\right\rangle=\cos (\theta)|x\rangle-\sin (\theta)|y\rangle \quad \text { and } \quad\left|\psi_{1}\right\rangle=\cos (\theta)|x\rangle+\sin (\theta)|y\rangle
$$

where $0<\theta<\pi / 4$. Using the expansions,

$$
\left|d_{-1}\right\rangle=\cos (\phi)|x\rangle-\sin (\phi)|y\rangle \quad \text { and } \quad\left|d_{1}\right\rangle=\sin (\phi)|x\rangle+\cos (\phi)|y\rangle
$$

where $0 \leq \phi<2 \pi$, and your $\operatorname{Pr}(e)$ result from (a) find the ϕ value - hence the $\left\{\left|d_{-1}\right\rangle,\left|d_{1}\right\rangle\right\}$-that minimizes the error probability for this case.
[Hint: By assiduous use of trig identities, you should be able to reduce the error probability expression to the following form:

$$
\operatorname{Pr}(e)=\frac{1}{2}[1-\sin (2 \phi) \sin (2 \theta)],
$$

which is easily minimized over ϕ.]

Problem 8.2

Here we shall continue our treatment of optimum binary hypothesis testing. Suppose that the quantum system considered in Problem 8.1 is a single-mode optical field with annihilation operator \hat{a}.
(a) Let $\left|\psi_{-1}\right\rangle=\left|n_{-1}\right\rangle$ and $\left|\psi_{1}\right\rangle=\left|n_{1}\right\rangle$ be photon number states with $n_{-1} \neq n_{1}$. Show that making the number operator measurement, $\hat{N} \equiv \hat{a}^{\dagger} \hat{a}$, on the singlemode field allows a zero-error-probability decision to be made as to whether the state before the measurement was $\left|n_{-1}\right\rangle$ or $\left|n_{1}\right\rangle$.
(b) Let $\left|\psi_{-1}\right\rangle=\left|\alpha_{-1}\right\rangle$ and $\left|\psi_{1}\right\rangle=\left|\alpha_{1}\right\rangle$ be coherent states with $\left\langle\alpha_{-1} \mid \alpha_{1}\right\rangle=\cos (2 \theta)$ for a θ value satisfying $0<\theta<\pi / 4$. Find the error probability achieved by the minimum-error-probability decision operator for deciding whether the state before the measurement was $\left|\alpha_{-1}\right\rangle$ or $\left|\alpha_{1}\right\rangle$.
(c) Evaluate your error probability from (b) when on-off keying (OOK) is used: $\left|\alpha_{-1}\right\rangle=|0\rangle$ and $\left|\alpha_{1}\right\rangle=|\sqrt{N}\rangle$, i.e., when the two coherent states we are trying to distinguish are the vacuum state, and a coherent state with average photon number N. Compare this error probability with what is achieved when we make the \hat{N} measurement and say "state was $|0\rangle$ " when this measurement yields outcome 0 and say "state was $|1\rangle$ " when this measurement yields a non-zero outcome.
[Hint: First find the conditional error probabilities,

$$
\operatorname{Pr}(\text { say "state was }|0\rangle " \mid \text { state was }|\sqrt{N}\rangle) \text {, }
$$

and

$$
\operatorname{Pr}(\text { say "state was }|\sqrt{N}\rangle \text { " } \mid \text { state was }|\sqrt{0}\rangle) \text {. }
$$

and then find the unconditional error probability using these intermediate results.]
(d) Evaluate your error probability from (b) when binary phase-shift keying (BPSK) is used: $\left|\alpha_{-1}\right\rangle=|-\sqrt{N}\rangle$ and $\left|\alpha_{1}\right\rangle=|\sqrt{N}\rangle$. Compare this error probability with what is achieved when we make the $\hat{a}_{1}=\operatorname{Re}(\hat{a})$ measurement and say "state was $|-\sqrt{N}\rangle$ " when this measurement yields a negative outcome and say "state was $|\sqrt{N}\rangle$ " when this measurement yields a non-negative outcome. Express your answer in terms of,

$$
Q(x) \equiv \int_{x}^{\infty} d t \frac{e^{-t^{2} / 2}}{\sqrt{2 \pi}}
$$

i.e., the probability that a zero-mean, unity-variance Gaussian random variable exceeds x.
[Hint: First find the conditional error probabilities,

$$
\operatorname{Pr}(\text { say "state was }|-\sqrt{N}\rangle \text { " } \mid \text { state was }|\sqrt{N}\rangle),
$$

and

$$
\operatorname{Pr}(\text { say "state was }|\sqrt{N}\rangle \text { " } \mid \text { state was }|-\sqrt{N}\rangle) \text {. }
$$

and then find the unconditional error probability using these intermediate results.]

Problem 8.3

Here we shall consider a different variant of the binary hypothesis testing problem. Suppose, as in Problem 8.1, that a quantum system is known to be in either state $\left|\psi_{-1}\right\rangle$ or $\left|\psi_{1}\right\rangle$, where $\left|\psi_{-1}\right\rangle \neq\left|\psi_{1}\right\rangle$. Let hypothesis H_{-1} denote "state $=\left|\psi_{-1}\right\rangle$ " and hypothesis H_{1} denote "state $=\left|\psi_{1}\right\rangle$." Assume that these two hypotheses are equally likely, i.e., before we make any measurement on the quantum system, it has probability $1 / 2$ of being in state $\left|\psi_{-1}\right\rangle$ and probability $1 / 2$ of being in state $\left|\psi_{1}\right\rangle$. Our task is still to make a measurement on this system to determine whether the system's state was $\left|\psi_{-1}\right\rangle$ or $\left|\psi_{1}\right\rangle$ before we make our measurement. Now, however, we do not want to make any mistakes, i.e., when we say "state was $\left|\psi_{-1}\right\rangle$ " we must be correct, and when we say "state was $\left|\psi_{1}\right\rangle$ " we must also be correct. This does not require that we limit ourselves to orthonormal states $\left|\psi_{-1}\right\rangle$ and $\left|\psi_{1}\right\rangle$, because we will also allow our measurement outcome to be "error," meaning it cannot reliably determine whether the state was $\left|\psi_{-1}\right\rangle$ or $\left|\psi_{1}\right\rangle$. In other words, we will require a measurement on the two-dimensional reduced Hilbert space \mathcal{H} that has three possible outcomes: "state was $\left|\psi_{-1}\right\rangle$," "state was $\left|\psi_{1}\right\rangle$," and "error."

Assume that,

$$
\left|\psi_{-1}\right\rangle=\cos (\theta)|x\rangle-\sin (\theta)|y\rangle \quad \text { and } \quad\left|\psi_{1}\right\rangle=\cos (\theta)|x\rangle+\sin (\theta)|y\rangle,
$$

where $0<\theta<\pi / 4$, as in Problem 8.1(c), where $|x\rangle$ and $|y\rangle$ are an orthonormal basis for \mathcal{H}. Define a pair of kets,

$$
\left|\xi_{-1}\right\rangle=-\sin (\theta)|x\rangle+\cos (\theta)|y\rangle \quad \text { and } \quad\left|\xi_{1}\right\rangle=-\sin (\theta)|x\rangle-\cos (\theta)|y\rangle
$$

and a set of operators $\left\{\hat{\Pi}_{-1}, \hat{\Pi}_{1}, \hat{\Pi}_{e}\right\}$,

$$
\begin{aligned}
\hat{\Pi}_{-1} & \equiv a\left|\xi_{-1}\right\rangle\left\langle\xi_{-1}\right| \\
\hat{\Pi}_{1} & \equiv a\left|\xi_{1}\right\rangle\left\langle\xi_{1}\right| \\
\hat{\Pi}_{e} & \equiv b|x\rangle\langle x|
\end{aligned}
$$

where a and b are real-valued constants.
(a) Find a and b such that $\left\{\hat{\Pi}_{-1}, \hat{\Pi}_{1}, \hat{\Pi}_{e}\right\}$ is a probability operator valued measure (POVM) on the reduced Hilbert space \mathcal{H}, i.e., find the values of a and b for which

$$
\hat{\Pi}_{j}^{\dagger}=\hat{\Pi}_{j}, \quad \text { for } j=-1,1, e,
$$

and

$$
\hat{\Pi}_{-1}+\hat{\Pi}_{1}+\hat{\Pi}_{e}=\hat{I}_{2},
$$

where \hat{I}_{2} is the identity operator on \mathcal{H}.
(b) When we measure $\left\{\hat{\Pi}_{-1}, \hat{\Pi}_{1}, \hat{\Pi}_{e}\right\}$-with a and b as found in (a), so that these operators form a POVM and hence represent a measurement - and the state of the quantum system is $|\psi\rangle \in \mathcal{H}$, the outcome will be either -1 , 1 , or e, with the following probabilities:

$$
\begin{aligned}
\operatorname{Pr}(\text { outcome }=-1) & =\langle\psi| \hat{\Pi}_{-1}|\psi\rangle \\
\operatorname{Pr}(\text { outcome }=1) & =\langle\psi| \hat{\Pi}_{1}|\psi\rangle, \\
\operatorname{Pr}(\text { outcome }=e) & =\langle\psi| \hat{\Pi}_{e}|\psi\rangle
\end{aligned}
$$

Suppose that we measure this POVM on our quantum system. If the measurement outcome is -1 , we will say "state was $\left|\psi_{-1}\right\rangle$." If the measurement outcome is 1 , we will say "state was $\left|\psi_{1}\right\rangle$." If the measurement outcome is e, we will say "error." Show that this decision procedure will never be incorrect when it says "state was $\left|\psi_{-1}\right\rangle$," or when it says "state was $\left|\psi_{1}\right\rangle$."
(c) For the POVM decision rule from (b), find the unconditional error probability, Pr (outcome $=$ "error").
(d) Evaluate your error probability from (c) when $\left|\psi_{-1}\right\rangle=|-\sqrt{N}\rangle$ and $\left|\psi_{1}\right\rangle=$ $|\sqrt{N}\rangle$, for $| \pm \sqrt{N}\rangle$ being coherent states.

