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Problem Set 4 
Fall 2004 
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Reading: For squeezed states: 

•	 H.P. Yuen, “Twophoton coherent states of the radiation field,” Phys. Rev. A 
13, 22262243 (1976). 

•	 L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge 
University Press, Cambridge, 1995) Sects. 21.1–21.6. 

For continuousspectrum eigenkets: 

•	 W.H. Louisell, Quantum Statistical Properties of Radiation (McGrawHill, New 
York, 1973) Sect. 1.10. 

Problem 4.1 
Here we shall show that the creation operator, â†, does not have any nonzero eigen
kets. Suppose that a nonzero ket β� satisfies|

ˆ |a† β� = β ,	 (1) |β�

where β is a complex number. Use the completeness of the number kets to expand 
β� as follows, |	

∞

β� = bn|n�,|
n=0 

where bn = �n|β�. Substitute this expansion into Eq. (1) and show that the only 
possible solution is bn = 0 for all n, i.e., the creation operator has no nonzero 
eigenkets. 

Problem 4.2 
a and ˆHere we shall work out some properties of the coherent states. Let ˆ a† be the 

annihilation and creation operators for the frequencyω quantum harmonic oscillator 
discussed in class. Let { α� : α ∈ C } be the coherent states, |

� αn∞

α exp(−|α 2/2) n ,| � ≡ √
n! 

| | �
n=0 

where { n� : 0 ≤ n < ∞} are the number states and α ∈ C is an arbitrary complex |
number. 
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(a) Use the orthonormality of the number states, and the power series for the ex
ponential function, to evaluate the inner product �α β� between two coherent |
states α� and β�. Are the coherent states normalized to unit length? Are | |
coherent states with different eigenvalues orthogonal? 

(b) Use the completeness of the number states to show that the coherent states are 
overcomplete, i.e., � 

d2α 
Î = 

π 
|α��α|, 

where d2α ≡ dα1dα2, with α1 ≡ Re(α) and α)2 ≡ Im(α), and the integration 
region is the entire complex plane. 

(c) Use the result from (b) to show that, 

d2α 
ˆ ˆˆ

π
α|α��α|,a = aI = 

d2α 
a† = Iˆˆ â† = 

π
α∗|α��α|, 

d2α 
α 2ˆa† = aIˆ ,aˆ ˆ â† 

π 
| | |α��α|

� � d2α 
a†ˆ ˆa† − a, ˆˆ a = aˆ ˆ a† = (|α|2 − 1) . 

π 
|α��α|

Problem 4.3 
Here we shall develop a little commutator calculus that will be needed in the next 
problem. Let ˆ a† be the annihilation and creation operators, respectively, of aa and ˆ

a1 ≡ Re(ˆ a2 ≡ Im(ˆquantum harmonic oscillator, and let ˆ a) and ˆ a) be the associated 
quadrature operators, i.e., the normalized versions of position and momentum for a 
mechanical oscillator, or charge and flux for an LC oscillator. 

(a) Use [ˆ a2] = j/2 to show that a1, ˆ

a1, ˆ
2ˆ a2 = jâ2. 

Assume that 
k 
2 = jkâ k−1 

2 /2, for k > 2.
ˆ aa1, ˆ

Show that 
a1, ˆ

k+1ˆ a2 = j(k + 1)â 

thus completing the induction proof that 

k/2,2

ˆ aa1, ˆ
k 
2 = jkâ k−1 

2 /2, for k = 1, 2, 3,
. . . 
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By analogy with classical functions we define the following operator derivative, 

kdâ2 

dâ2 

≡ kâ k−1 
2 , 

so that 
dˆk a2 a1, ˆ

kˆ a2 = (j/2) , for k > 2. 
dâ2 

(b) Follow a similar induction argument to that used in (a) to prove the commuta
tion rule, 

dˆk a1 a2, ˆ
kˆ a1 = −jkˆk−1/2 = −(j/2)a1 , for k = 1, 2, 3, . . . , 

dâ1 

where the last equality defines the operator derivative. 

(c) Suppose that F (α1) and G(α2) are functions of real variables α1 and α2 that 
have convergent Taylor’s series, 

∞
αn dnF (α1)� 

1F (α1) = , for −∞ < α1 < ∞, 
n! dαn 

1 α1=0n=0 

∞
αn dnG(α2)2G(α2) = , for −∞ < α2 < ∞. 
n! dαn 

2 α2=0n=0 

a1) and G(ˆDefine the operators F (ˆ a2) by the operatorvalued Taylor’s series, 

ˆn∞
a1 dnF (α1)

F (â1) = , 
n! dαn 

1 α1=0n=0 

ˆn∞
a2 dnG(α2)

G(â2) = . 
n! dαn 

2 α2=0n=0 

Use the results of (a) and (b) to find the commutators [ˆ a2)] and [a2, F (ˆa1, G(ˆ ˆ a1)]. 

Problem 4.4 
Here we shall show that the eigenkets of a quadrature operator can be found from a 
translation operator applied to the zeroeigenvalue eigenket. 

(a) Assume that α1�1 is an eigenket of the quadrature operator â1 with eigenvalue |
α1. Because â1 is Hermitian, α1 is a real number. Define a translation operator, 

∞

n! 
n=0 

3 

(−2jξ)n 

Â1(ξ) ≡ exp(−2jξâ2) = â n 
2 , for −∞ < ξ < ∞. 



| � � 

Use � �

ˆ ˆ | a1 α1�1 + a1, Â1(ξ) α1�1,
a1A1(ξ) α1�1 = Â1(ξ)ˆ ˆ| |

and the results from Problem 4.3 to show that Â1(ξ) α1�1 is an eigenket of â1|
with eigenvalue α1 + ξ, for any real number ξ. 

(b) Let 0�1 be the â1 eigenket whose eigenvalue is zero. Show that |

α1�1 = exp(−2jα1â2) 0�1,| |


is an ˆ | |
a1 eigenket with eigenvalue α1 and that 1�α1 α1�1 = 1�0 0�1. 

(c) Assume that α2�2 is an eigenket of the quadrature operator â2 with eigenvalue |
α2. Because â2 is Hermitian, α2 is a real number. Define a translation operator, 

∞� (2jξ)n 

ˆnÂ2(ξ) ≡ exp(2jξâ1) = a1 , for −∞ < ξ < ∞. 
n! 

n=0 

Use � �

ˆ ˆ | a2 α2�2 + a2, Â2(ξ) α2�2,
a2A2(ξ) α2�2 = Â2(ξ)ˆ ˆ| |

and the results from Problem 4.3 to show that Â2(ξ) α2�2 is an eigenket of â2|
with eigenvalue α2 + ξ, for any real number ξ. 

(d) Let 0�2 be the â2 eigenket whose eigenvalue is zero. Show that |

α2�2 = exp(2jα2â1) 0�2,| |


is an ˆ | |
a2 eigenket with eigenvalue α2 and that 2�α2 α2�2 = 2�0 0�2. 

Problem 4.5 
Here we shall continue our development of the quadratureoperator eigenkets. The 
results of Problem 4.4 show that these operators have continuous spectra, i.e., their 
eigenvalues are {−∞ < α1 < ∞} and {−∞ < α2 < ∞}, respectively. Because â1 

and â2 are observables, the appropriate orthonormality and completeness conditions 
for their eigenkets are therefore, 

1 ) and 2�α� �
1�α1

� α1�1 = δ(α1 − α�
2 α2�2 = δ(α2 − α2 ),|

∞ ∞ 

Î = dα1 α1�11�α1 = dα2 α2�22�α2 .| | |
−∞ 

| 
−∞ 

(a) Use the Heisenberg uncertainty principle to show that α1�1 and α2�2 have 
infinite average energy, i.e., that � ˆ a2 a2 

| |
H� = �ω(�ˆ1� + �ˆ2�) = ∞ for these states. 
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(b) We want to determine the relationship between the eigenkets α1�1 and α2�2.| |
Use the results of Problem 4.4 to show that 

2�α2 α1�1 = exp(−2jα1α2)2�0 0�1.|	 |

Hint: The power series expansion of Â1(ξ) can be used to show that α2�2|
is an eigenket of this translation operator; likewise α1�1 is an eigenket of the |

ˆtranslation operator A2(ξ). 

(c) Find	 2�0 0�1 2 by evaluating | | | �� � ∞ 

2�α2
� α2�2 = 2�α2

� I α2�2 = 2�α2
� dα1 α1�11�α1 α2�2,| | ̂ |	 | | || 

−∞ 

using the result of (b). Assume that 2�0 0�1 is positive real to completely pin |
down 2�α2 α1�1.|
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