Land's Retinex algorithm

9.35

Edward Adelson \Box

Land's "Retinex" theory of lightness \Box constancy \Box

Edwin Land founded Polaroid. \Box

Cameras need correct exposure (both color and luminance), \Box i.e. need to "divide out" the effects of illumination. \Box

How do humans do it? \Box

(Note "Retinex" means "retina plus cortex.") \Box

The formal problem \Box

Luminance (observed image intensity) = \Box Illumination (incident light) **x** Reflectance (percent reflected) \Box

 $L(x,y) = I(x,y) \times R(x,y) \square$

At every pixel you have one number, and you want to estimate two. \Box You can't unmultiply. It's impossible (ill-posed). \Box But humans seem to do it. \Box

How? \Box

Take advantage of scene statistics. \Box

Scene statistics means: some interpretations are more likely than others. For instance, it is common for illumination to vary gradually over space, but for reflectance to vary abruptly (e.g., to be piecewise constant). Land and McCann used an idealized "toy world" using "Mondrians."

(Image removed due to copyright considerations.)

Using logs, make it additive \Box

Start by taking the log on both sides, making it into a simpler additive problem. Thus use log(illumination) instead of illumination, etc. We'll still call it illumination for simplicity.

(Image removed due to copyright considerations.)

Consider it in 1-D

(Image removed due to copyright considerations.)

Image formation is the forward process \Box

(Image removed due to copyright considerations.)

Vision is the inverse process.

Land's proposal: take spatial derivatives and classify them.

(Image removed due to copyright considerations.)

If they are big (strongly positive or negative), classify as reflectance. If small, classify as illumination.

Integrate big ones to retrieve □ reflectance. Remainder is □ illuminance. □

Note: \Box integration is a form of filling in. \Box

How to implement in neural hardware? \Box

One idea: use "edge detectors" in V1, which take an approximate spatial derivative.

Input

(Image removed due to copyright considerations.)

Response

Craik-O'Brien-Cornsweet effect \Box

Indicates the we give strong weight to edges, and not to slow gradients, in computing lightness.

(Image removed due to copyright considerations.)

Cornsweet square wave grating \Box

The bar centers are the same shades of gray.

(Image removed due to copyright considerations.)

(Images removed due to copyright considerations.)

The emphasis on edges will make this grating resemble a normal square wave grating.

Levels of analysis (articulated by Marr)

- Computational: what is the problem to be solved?
- Algorithmic: what approach to solve it?
- Implementation: how to actually put it in hardware.

Example 1: Calculate x/y (do floating point division).

Example 2: Compute pi.

Example 3: Do lightness constancy.

Ideas illustrated with Retinex

Levels of analysis. \Box

Scene statistics to help ill-posed problems. \Box

Toy world to help think through a problem. \Box

Convergence of ideas from computation, \Box psychophysics, and physiology. \Box