I. STABILITY OF ELECTRON BEAMS WITH VELOCITY SHEAR

In our last report we showed that unneutralized zero-temperature electron beams focused by an infinite magnetic field were stable if the transverse velocity profile, \(v_z(x) \) was linear. In this report we discuss the step-ramp velocity profile shown in Fig. VIII-1. We find that this configuration is unstable as long as the slope of the ramp remains finite.

As explained previously, our approach to these problems is to find a neutrally stable \((\omega \text{ and } k_z \text{ real})\) solution with \(dv_z(x)/dx > 2\omega_p \). If no such solution exists, the beam is stable. If such a solution does exist, we must perturb it to see if there is a neighboring unstable solution.

The differential equation for the linearized small-signal potential \(\phi \) is given by

\[
\frac{d^2 \phi}{dx^2} - k^2 \phi + \frac{\omega_p^2(x)}{[v_z(x)-u]^2} \phi = 0,
\]

where \(u \triangleq \omega/k \). Using the previous results, we can write the potential in the three regions so that \(\phi = 0 \) at the walls (\(x = \pm a \)):

\[
\phi_I = A_I \sin \left[(a+x) \sqrt{\frac{\omega_p}{(u-v_{\text{min}})} - k_z^2} \right]
\]

\[
\phi_{II} = A_{II} s^{1/2} J_{sj} (jk_z s); \quad s \triangleq x + \frac{v_o - u}{a}; \quad v^2 = \frac{1}{4} - \frac{\omega_p^2}{a^2}
\]

*This work was supported by the National Science Foundation (Grant GK-10472); additional support was received from the Joint Services Electronics Programs (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E).
\[
\Phi_{III} = A_{III} \sin \left[(a-x) \sqrt{\frac{\omega_p^2}{(u-v_{max})^2} - k_z^2} \right].
\] (4)

Since there can only be one singular point, either the plus or minus sign in Eq. 3 can be used but not both. Since

\[v_{\text{min}} < u < v_{\text{max}} \] (5)

for instability,\(^2\) the singular point does not lie at \(x = \pm \delta\), and \(\phi' / \phi\) will have to be continuous at these boundaries.

Fig. VIII-1. Geometry of the problem.

To solve the resulting determinantal equations we make two simplifying assumptions:
Thus, in analogy with the two-stream case, we assume that the phase velocity of the waves lies halfway between \(v_{\min} \) and \(v_{\max} \):

These assumptions yield the following equation for \(k_z^2 \) which holds at both \(x = \pm \delta \):

\[
\sqrt{\left(\frac{\omega}{\Delta v}\right)^2} - k_z^2 \cot \left((a-\delta) \sqrt{\left(\frac{\omega}{\Delta v}\right)^2} - k_z^2 \right) = -\frac{1}{2\delta}.
\]

(8)

We have defined \(\Delta v = \delta \left(v_o - v_{\min} \right) \). Equation 8 can be solved graphically for \(k_z^2 \). The first thing to note is that the left-hand side of Eq. 8 is positive until the argument of the cotangent is greater than \(\pi/2 \). Thus neutrally stable solutions with \(\omega/k_z = v_o \) only exist when

\[
k_z^2 < \left(\frac{\omega}{\Delta v}\right)^2 - \left[\frac{\pi}{2(a-\delta)} \right]^2.
\]

(9)

This implies that for instability

\[
\Delta v < \frac{2a}{\pi} \omega \frac{p}{\Delta v}.
\]

(10)

Additional neutral modes appear as \(\omega_p \) is increased above this initial value.

From previous work, we know that a necessary condition for instability is \(v'_z > 2\omega_p \), so we expect instability for \(\Delta v \) in the range

\[
2\omega_p \delta < \Delta v < \frac{2\omega_p}{\pi}.
\]

(11)

Now that we have shown that at least some neutral solutions exist, we must show that these modes are the limit of adjacent unstable modes. We do this by means of a perturbation method formulated by L. N. Howard. By variational techniques, it can be shown that in the limit as the neutrally stable solution is approached,

\[
\frac{du}{dk_z} = 2k_z \int_{x_1}^{x_2} \phi \frac{2}{x_z - u} \frac{2}{(x_z - u)^3} \phi^2 \, dx.
\]

(12)
If \(\frac{du}{dk_z} \) has a negative imaginary part there is an adjacent unstable mode.

The integrals can be carried out if the solution is properly analytically continued around the singular point. The end result is messy unless \(\delta \) is small. In this case, the imaginary part is given by

\[
\frac{du}{dk_z} = jk_z \frac{(\Delta v)^3}{\omega_p^2} \cot (\pi v).
\]

(This approaches zero as \(\delta \to 0 \) since \(\nu - \frac{1}{2} \!).

Thus, the step-ramp profile is in general unstable for \(\Delta v \)'s satisfying Eq. 11. This result is in contrast with the results of Harrison and Stringer\(^4\) for the \(\delta = 0 \) case; they reported that the step profile is unstable for any stream width.

J. A. Rome, R. J. Briggs

References

