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A. SINC n - A FAMILY OF WINDOW FUNCTIONS

1. Introduction

Window functions have been useful in the estimation of power spectra from finite-

time records. The autocorrelation function is ordinarily multiplied by a window func-

tion in order to improve the spectral estimate. 1, 2 More recently, window functions

have been used to reduce "leakage" 3 in the evaluation of short-time spectra as com-

puted by using the fast Fourier transform.

Finite window functions have the property that they assume nonzero values only with-

in a finite interval. Without loss of generality, the finite interval can be centered around

the origin (t=O), so that

h(t) = 0, ItI > T, (1)

where h(t) is the window function, and 2T is the length of the interval where h(t) can

assume nonzero values. Sometimes 2T is referred to as the "'window size."

Well-known window functions include the rectangular Barlett, Parzen, Hanning, and

Hamming windows.1, 2 The Fourier transforms corresponding to the rectangular Barlett

and Parzen windows have in common the fact that they are of the form sin xn, where
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n = 1 for the rectangular window, n = 2 for the Barlett window, and n = 4 for the Parzen

window. This report derives a general closed-form expression in the time domain for

the family of window functions whose Fourier transforms are of the form sin x n

sin Trxwhere n is any positive integer. Because the function x is sometimes referred torx
as sinc x, we shall call this family of window functions SINC n

2. Derivation

A window function hn(t), corresponding to the nt h member of the family SINC n , is
defined by its transform Hn (w) as

Hn() sin a 
n

n a )( ' (2)

where n is a positive integer, and a is a constant. h (t) is the inverse Fourier trans-

form of Hn(w):

h (t) = I Hn(a ) e Jt

1+00 sin a n jt

The problem is to compute the integral in Eq. 3 for any n.

The integral can be simplified by the help of two expansions4

2m 1sin x = 1

2

m-1

k=0

sin m+l x = 2 2m

( 1m+k cos (2m-2k)x + 2

k m)

(-) +k sin (2m+1l-2k)x ,
(-1k

m k! (m-k)!
m > 0.

It is clear that if Eqs. 4 and 5 are properly substituted in Eq. 3, the integral must be

computed separately for odd and even n.
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(a) n even

Let m = -and x = aw in Eq. 4. Then substitute Eq. 4 in Eq.

1 h
h (t) 2T

-o

n_ 1
2

n-1
2 k=0

n-+k
2

(-1)
( ) cos (an-2ak)w

k

n
2

3. The integral reduces

e dt
odo.

(ao)
n

Place the following substitution in Eq. 6.

1 j(an-2ak)w -j(an-2ak)]
cos (an-2ak)w = - [e+(an e .j(an2ak)w

The integral can now be evaluated by making use of the Fourier transform pair

S - j n (t+b)n - u (t+b), (7)
W (n-I)!

where u- 1 (t) is the ordinary unit-step function, and b is a constant. The result of the

integration can be shown to be

h (t)= 1
(2a) (n-i)!

k= lk
Lk=0

(t+an-2ak)n - 1 u (t+an-2ak)
L -1

+ (t-an+2ak)n 1 (t-an+ak)

n

+ (-1)2
n

n/2)

tn- 1t u_1( t )

Equation 8 can be simplified. Since H (w) is a real and even function of o, it follows

that hn(t) is a real and even function of time. Therefore it suffices to compute hn(t) for

t < 0 and then replace every t by (-t) in order to obtain h (t) for t > 0.

For t < 0 Eq. 8 reduces to

1
h (t) =

(2 a)n (n-1)!

n-- 1
2

k=0

k
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(Note that 2k < n always applies.) h (t) for t > 0 can be obtained from Eq. 9 by replacing

t by (-t). Therefore, it follows that for all t

h (t) =
(2a) n (n-i)!

n

2

k=0

u 1 (an-2ak- tI),I 1

where It! - absolute value of t.

(b) n odd

Let = n- 1 and x = aw in Eq. 4. Then substitute Eq. 4 in Eq. 3. The integral

reduces to

n-1
2

.+m + 00
n-1

- o 2
k = 0

n-i

(-1)

n

sin (an-2ak)w
k/

e do.

(aw)n

Substituting

sin (an;--2ak) I [ej(an-2ak)w 0 -j(an-2ak)c]

in Eq. 11 and making use of the transform pair in Eq. 7, we obtain

1
h (t)=

(2a) n (n-l)!

n-1

k=0

u_ (t+an-2ak)

- (t-an+2ak)n - u(t-an+2ak) .

By using the fact that hn(t) is an even function of t, Eq. 12 reduces to

1
h (t) -

n (2a) n (n-1)!

n-! 1
2

k=0

u_(an-2ak- t )

for all t.
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(c) n even or odd

Equations 10 and 13 for even and odd n, respectively, are very similar. The only

difference is the upper limit of the summation on k. By defining

n-V1 n-1
n-2 integer portion of n

1_ 1 j 2

both equations can be combined into one equation which is valid both for even and for

odd n, and for all t:

h (t) = 1
(2 a)n (n-i)!

2i

k=0

)n-i ul(an-2ak- t ). (14)

Equation 14 completely specifies the family of window functions SINC n in the time

domain.

3. Discussion

From the properties of the unit-step function it is easy to show from Eq.

h (t) = 0, for it > an.n

14 that

(15)

Comparing Eq.

T = an.

15 with Eq. 1, we conclude that

(16)

The family of functions h (t) is time-limited, and the window size is equal to 2an.n

A property of hn(t) is that the area under the function is independent of a

is equal to 1. This can be easily shown.

+an

J-an

+00o

h (t)dt = h (t) dt = if (0)= 1.
-

and n and

(17)

If the window is of constant size 2T, that is, a = T/n, then, as n increases, the win-

dow shape gets "thinner," but it also gets more peaked in order to keep the area of the

window equal to 1. For this case of constant window size, Hn(w) takes the form

Ksin (T 1/n)1
n L i Tw// n

(18}

As n increases, the width of the main lobe increases proportionally with n, which
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results in an increase in the window spectral bandwidth. At the same time, the sidelobe

amplitude levels decrease with increasing n, and the high-frequency spectral roll-off is

equal to -6n dB/octave. Therefore, there is a trade-off between a finer spectral reso-

lution and a reduction in leakage.

For any particular value of n it would be possible to obtain hn(t) by an (n-l)-fold

convolution of the rectangular window. The advantage of Eq. 14 is that it gives hn(t) for

any value of n by a simple summation. The reader may be interested in checking the

validity of Eq. 14 for the well-known rectangular, Bartlett, and Parzen windows.

J. I. Makhoul
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B. RELEVANCE OF PSYCHOLOGY TO CHARACTER

RECOGNITION

The two disciplines which may be considered to dominate the field of character

recognition are cognitive psychology and mathematical implementation of algorithms.

The ultimate goal of character recognition is to characterize the visual pattern and to

judge which of the possible legal set elements (in our case printed letters from an alpha-

bet) is being represented. These algorithms are unfortunately very ad hoc and difficult

to relate to human perception. Moreover, an algorithm is usually evaluated under

restrictive conditions such that a high statistical success is used as evidence of an ade-

quate solution. An algorithm yielding a 95% accuracy rate when letters are restricted

to 12 Point Bodoni type, but which confuses a Bodoni "a" with an "Old Style" "s" cannot

be considered as approaching a solution to the general character-recognition problem.

The argument that the algorithm should be psychologically related to human percep-

tion is often met with an apparently valid comment such as "Flying machines are not

built on the principle of a bird's flapping wing, rather they are based on engineering and

aerodynamic principles." The analogy is not good because there are no known physical

attributes that give a letter its unique value; equivalence of stimuli is purely perceptual.

Consequently, the test of whether two particular characters are the letter "z" must be

judged by a human observer. Any ad hoc algorithm, of which there are many, that does

QPR No. 97
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not use perceptually related features and attributes for making its decisions becomes

burdened with many extra limitations, e. g. , the visual data must be very clear, the

letters must be taken from one type font, and multiple definitions are needed to over-

come the effects of stimulus and system noise. The best long-range solution to the

problem of character recognition will be by developing an algorithm that, although math-

ematical in formulation, incorporates essential perceptual cues.

Psychological experiments generally indicate that the information contained in a

letter is not uniformly distributed and is very redundant; some parts of the letter give

essential cues necessary for resolving possible confusions, while other parts of the

letter can be easily ignored. For example, text can be read when the bottom half of a

line is deleted, but not when the top half is removed. The top half clearly has more

relevant information than the bottom half. In the same way of thinking, the capital let-

ter "A" can be described as having a centered closure at the top with two legs extending

downward. This gives the essence of the "A", but there is the possibility of ambiguity

with the letter "R". The ambiguity is clearly resolved by the presence of any discon-

tinuity in the position and derivative of the rightmost leg at its intersection with the lower

right side of the closure. From this quick analysis we can specify the psychological

space and the boundary between these two letters so that this description will success-

fully characterize any "A" or "R" that a human being would correctly recognize.

Our investigation is now being carried out in many directions.

1. Many letter features can be discovered by an introspective process that prompts

one to ask, "How can I distort a letter so that it becomes another letter." Namely, find

some style of letter in which a small change produces a new character. For example,

a slight indentation in the capital "D" will make it be perceived as a "B".

2. In one experiment, subjects were asked to judge a series of defocused or

obscured letters. The resulting confusion matrices portray a space with different groups

of letters clustering together. For example, the letters "a", "c", "e", "x" , and "z"

seem to cluster in one group, whereas, the letters "b", "d", "p", and "1" cluster in

another group. This would lead to the tentative conclusion that under defocusing the

attributes compactness vs extendedness are perceived by the subjects.

3. We are attempting to gain some insight into a person's ability to discard visual

data that are not relevant to the percept, and his ability to fill in deletion in order to

complete his percept. This appears to be most difficult to accomplish with computing

systems.

4. An algorithm that represents letters as a sequence of topological features, such

as end point, intersection, and closure, is being investigated. We hope that the resulting

encoding will have a one-to-one correspondence with the letter set.

5. The ultimate limitations of single-letter recognition can be seen in an experiment

in which subjects were unable to recognize defocused letters, but were able to read

QPR No. 97
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defocused sentences containing the same letters with the same degree of defocusing.

Similarly, when subjects were presented with a sequence of letters from a sentence in

rapid succession they were not able to read it. The sentence could easily be read, how-

ever, when all of the letters were presented simultaneously, even though the total expo-

sure time was the same in both cases. These familiar examples of context show the

inherent limitation of any mechanized letter-by-letter recognition algorithm.

B. A. Blesser, E. Peper

C. SOURCE RATE FOR A SIGNAL CORRUPTED BY NOISE

Consider a signal that is obtained

know the rate that is required to code

x
DISTORTION

from an imperfect transducer. We would like to

this signal within a certain fidelity. The situation

Y
CHANNEL

Fig. XIV-1. System under consideration.

is diagrammed in Fig. XIV-1. The true signal is x, we observe the corrupted signal,

z, and the signal at the output of the channel is y.

1. Stereotype Formulation

We shall consider the problem of transmitting a single random variable. Since the

channel and the transducer are disjoint, we assert that

F x,y/Z( ' b i = Px/z (  '  ) Py/zo(w, ). (1)

From this we obtain the following relations:

Px, y(' W) =  d Px/z( ,  y) PVz (, .)

By using the standard formulation, the distortion from the total system is

E = djdwP p(,co)

QPR No. 97
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where p(, o) is the distortion weighting function.

P z(u)

R = dtdc P (u, ~) log
t i tz Pr ( ) P ( )

ID z

The rate is to be minimized for a fixed value of E.

The rate is given by

(5)

The problem can be cast into a form

for which the solution is available. By substituting (3) in (4), we obtain

E =e ddfdn P/ , , P , ).

If we define a new function

p'(c, ;) =

the new form of E becomes

C dcid P, z(W, ) p'(;s, ).

The solution for these equations is knoown,- and is

Pz, y ' ) = [(-) ef ' ( ) (9)

In this equation f is a parameter that determines the rate and the distortion and

(_) is a function chosen so that

SPz,(u, o) dy = 1.

Z. Solution

Suppose that the source has a Gaussian power density function and the corruption is

caused by adding an independent Gaussian random variable.

X/p () ------- exp-
x

P// 'exp
S n L

i ___)

°. 2
£.

O
a.

(10)

(11)
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We use squared difference as the error weighting function

p(x,y) = (x-y) . (12)

With these hypotheses, the function p' takes an attractive form

2 2 22
(T 0- a-

(w, 2) 2 2 2 n (13)

x n x n

It follows from (9) that

22

P y( ,w) = c 1 exp(, 2 2 - " (14)
z, + -cr

The various probability density functions that are required for finding the rate and

the distortion are found by using moment-generating functions. We shall represent the

Fourier transform of g by the symbol g. With

Pzy (' 1 (a-) (15a)

Pz( ) = f2() (15b)

the moment-generating function for P is

A f I()fl f 2 (k+av)
P (,'v) = (16)
y,z a v

In the case that is being considered

f1(6) = e (17a)

f 2 (5) = e 2  (17b)

2

a 2 (17c)
S+ 0-x n
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2 2
x n

The joint distribution P
z,y

P ,y((, )z,y
1

( QX)
a

exp -
2 a2 X- )

2 + W2 1
M -j t

The rate and the error may be evaluated directly.

2 2
0- G-

x n
2 2
x+x n

1
R = log

2

The integrals diverge if

4
0-

2 2'
x +
x n

and for this critical value of X

E maxmax x

This result may be cast into a more suggestive form. We first observe that

2 2
o- o-
x n

2 2
S+ -x n

is the error associated with a least mban square approximation of the corrupted signal.
2

The distortion is always greater than this amount, but is less than or equal to a x
Distortion as a function of rate is given by

2
E axx

(1-e-2R

2

2
n

(22)
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For error twice the minimum value, the rate is

log S .3.dn

3. Coding Sequences of Signals

Suppose we are to transmit a sequence of Gaussian random variables {x i } with vari-

ances (Ox.} and corrupted by added Gaussian noise with

error

variance { Z}. We fix the total

2 2
x. n.1 +

S 2 + 2 i
e + cr

i x. n.
1 1

and minimize the rate

4
x.

1 1
R log 2

i 2 2
x. n.

1 1

This is very similar to the problem described by Kolmogorov.3 The

4
0
x.

i 'nf O 2 2
x. n.

1 1

The sequence is divided into two subsequences {x ai} for which kX. = ,ai1l

's are chosen as

and {xpi) for which

4
o-
x.X.

i 2 2cr + 2
x. n.

1 1

The error is

L

aij

0 Z

{13 )

2
X.

1

and the rate is
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4
-X.

2 log 2 '2 2 0

a i) xi n

4. Rate for a Continuous Source

For a real Gaussian stationary source with spectrum S(f) and real noise N(f), the

rate may be found through a procedure similar to that used by Kolmogorov.4 We define

the associated function (f) given by the relation

X(f) = inf (fN
S(f) + N(f)

and define the set of frequencies for which X(f) = 0 as R 1.

The mean squared error

S(f) N(f)
E df (+ + df S(f),

f E 1  S(f) + N(f)f R 1

and the rate per unit time is

1S2(f) 1
R f df log

I Yf E R S(f) + N(f)

Another interesting case arises when the signal is passed through a filter whose fre-

quency response is H(f) before N(f) is added. To reduce this to the problem solved above,

we consider transmitting the spectrum S(f) with additive noise N(f) • H(f) -2. The result

is

X(f) = inf 0, 2H(f) 2 S2(f)

H(f), S(f) + N(f)

R < H(f) 2 S2(f)

1 H(f) 2 S(f) + N(f)

E = df H(f) 2 S(f) N(f) + df S(f)
fE R 1  I H(f) 2 S(f)+ N(f) f R 1
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1 g S2 (f) H(f) 2

fER 1 S 2 (f) IH(f) )2 + N(f)

This result may also be extended to the case in which the error is weighted with a

frequency weighting function.

0. J. Tretiak
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D. MODEL FOR THERAPEUTIC DIAGNOSIS OF DISEASE

1. Diagnostic Process

The steps taken by a physician to effect the cure of a patient who comes to him with

a complaint vary from physician to physician. Varying degrees of intuition or experi-

enced guessing are combined with principles of diagnosis that the physician learned in

medical school to arrive at a diagnosis and prescribe a course of treatment. The ability

of the physician to look at a patient and say he "looks sick" cannot be duplicated by a

machine. A computer can, however, perform a statistical diagnosis if it is programmed

in a logical manner to do so, and thus act as a consultant to the physician.

Concentrating on the systematic approach to diagnosis, we find that information about

the state of a patient comes from four sources: (i) his medical history, (ii) a physical

examination, (iii) laboratory tests, and (iv) careful observation of the course of his

illne s s.

There is a tendency on the part of the physician to collect more information than is

necessary to arrive at a probable diagnosis, sometimes with little efficiency in the

selection of laboratory tests. If a more systematic approach to test selection could be

made, the cost of making the diagnosis could be reduced. Also, the physician is lim-

ited in his ability to accurately consider more than a few symptoms and possible dis-

eases, and as a result may be led to an erroneous diagnosis if the disease is uncommon

and difficult to diagnose. Moreover, the physician cannot easily assign approximate

probabilities or confidences to his final diagnosis. Of itself, this is not of great impor-

tance; however, in the face of alternative treatments with risk to the patient, the
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physician must once again make an experienced guess, and the chances of its being cor-

rect or optimal might be improved by a quantitatively more systematic approach.

2. Modeling the Diagnostic Process

A consideration of the relative likelihood of diseases can be made through the use

of Bayes' theorem. This probabilistic approach seems appropriate when we consider

that medical knowledge itself is usually nondeterministic. We can determine the rela-

tive probabilities of disease complexes Di, given the observed symptom complexes Sk'
by Bayes' theorem.

P(Sk/Di) P(D i )
P(Di/Sk) (1)S/ P(Sk/Di) P(Di

1

The second term in the numerator is the probability that the patient has disease com-

plex D., regardless of any symptom that he might have (i. e. , the a priori probability

of D.). This term varies from location to location, season to season, and is sensitive

to the occurrence of epidemics. The denominator is just the scale factor of the uncon-

ditional probability of symptom complex S k -
Bayes' formula also provides a simple numerical means of performing the logical

elimination of disease complexes. If disease Di and symptom Sk are logically incon-

sistent, then P(Sk/Di) = 0, which from (1) yields P(Di/Sk) = 0.

With the assumption of the availability of the necessary probabilistic data, Bayes'

formula is the key to most sequential differential diagnostic procedures. As knowledge

about the state of a patient increases through medical history taking, physical examin-

ation, laboratory testing, observation of the course of the illness and the reaction to

therapy, the probability of each disease complex can be adjusted accordingly. If no dis-

ease is indicated with sufficiently high probability, then, if possible, further informa-

tion should be gathered. On the other hand, the high probability of one disease may

signal the time to initiate treatment, and by using the probabilities the risk involved can

be ascertained should the chosen therapy have contraindications for other diseases with

lesser likelihoods. Should the risk be too great or the diagnosis still uncertain, the

current disease probabilities help protide an indication of what information should be

sought (e. g. , what test to take) to move efficiently and with least expense toward a more

conclusive diagnosis.

Previous studies have tended to consider diagnosis in a context somewhat divorced

from the realities of the medical health care profession. Few have touched on the end

purpose of diagnosis - to resolve uncertainty about the true state of the patient so that

appropriate treatment can be chosen. The implication in considering the treatment -

and not just a static diagnosis of the patient - is that the goal of the process has shifted

QPR No. 97 159



(XIV. COGNITIVE INFORMATION PROCESSING)

from that of ascertaining the probabilities of diseases to that of effecting the patient's

return to health.

Diagnosis-treatment is always subject to certain real-life constraints: testing costs,

treatment costs, risk to the patient, and so forth. Although the issue of cost in money

might be dismissed as insignificant because most of the population subscribes to some

form of medical insurance, the costs are nevertheless real if we consider not cost to

the patient but the cost of inefficient use of the increasingly scarce resources of the phy-

sician's time, facilities for treatment, and so on. It is this problem that I wish to con-

sider. The rest of this report presents a model (admittedly only an approximation) of

the therapeutic diagnosis of a patient who has undergone a transition to a state of illness.

I shall be especially concerned with exploring and making explicit those difficulties or

alternatives that may exist in the implementation of the procedure.

3. Model of Therapeutic Diagnosis

We can usually characterize a patient who visits his physician or is admitted to a

hospital for emergency treatment as someone who has undergone a transition from a

state of health (state I) to a state of illness (states 2, 3, .... , n), where the gravity of

the state increases with its number. In reality these states form a continuum of patient

conditions, but in order to gain the simplifications of a discrete model I shall consider

5 states of health: healthy, moderately ill, very ill, critically ill, and dead. The illus-

tration below shows the possible transitions that a patient can have after an initial tran-

sition to the very ill state.

state 1 5

healthy moderately very critically dead
healthy ill ill ill

The criteria for classifying a patient into one of these 5 states might be as follows.

State 1 Healthy or cured.

State 2 Probably would recover from his illness in time without treat-
ment.

State 3 Condition is as likely to improve as to worsen if not treated; or patient
will be permanently handicapped.

State 4 Probably would die in time without treatment.

State 5 Dead.
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Should it be the case that these rough classifications presuppose a tentative diagnosis in

order to make a classification, then we might use some other criterion such as the

degree of patient discomfort.

Assume for the time being that the patient is in the ill state i (i ~ 2). What should

the physician's course of action be? If P(ij/A) is the probability of the patient's going

from state i to state j as a result of the physician's action A, then he might want to

choose an A in order to

(i) Maximize P(il) (optimistic).

(ii) Minimize P(ij), where j > i; that is, minimize the possibility of the patient's
condition worsening (pessimistic).

(iii) Maximize P(il) - f(cost of A) (more realistic).

(iv) Optimize some more complex decision function.

The decision criterion used in this model will be developed for an area of medical spe-

cialization with the following set of properties.

{Dm} m =1, .... , d the set of all disease classifications

{S } n =1, . .. s the set of all symptom complexes

{Tq } q = , ... , t the set of all relevant diagnostic tests

Rx} x = 1 .. , r the set of all treatments useful in treating
the above-mentioned set of diseases.

Let us assume that the patient has visited the doctor who has elicited, by history

taking, from a computer questionnaire, or by physical examination, some initial infor-

mation about the patient. This information can be put in the form of a symptom com-

plex S n . From this information the doctor can formulate a probabilistic diagnosis, by

using Bayes' theorem

P(S n/D ) P(Dm)
P(Dm/S n ) = nm (1)m n P(Sn/D ) P(Dm)

m

where

P(Dm) = a priori probability of the occurrence of disease D m

P(Sn/Dm) = probability that a random patient with disease Dm
will exhibit symptom complex S .

n

If the probability of one disease stands out from the rest (e. g. , Condition: sore elbow -

Diagnosis: sprained elbow with probability .8) the physician may wish to proceed
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directly to therapy (e. g. , immobilize the elbow). Depending on the risks involved and

the available alternatives, however, he may wish to proceed further before treatment.

An x-ray photograph (which involves expense) may show a small fracture of the ulna.

This gives a new symptom complex and alters the probabilistic diagnosis (in this case

we might find P(fracture) = . 99). Although this is a very simple case history, the ques-

tion that is being raised is when should the gathering of information stop and treatment

begin.

Schematically we may characterize the alternatives by a decision node.

Alternative Consequences

ask more questions more information + small cost

physical exam more information + small cost
(partial or complete)

n test T more information + greater
cost + risk of testing

treatment Rx probability of cure + risk +
cost + information from response

To simplify the notation, we assume that the set {T } includes the medical history and

physical examination, and that the set {Rx} includes the null treatment Ro (no further

treatment), as well as treatments in the general sense of the word (e. g. , wait N days).

More than one test may be in order before treatment, or an unsuccessful treatment may

be followed by a sequence of tests and a new treatment. This gives rise to a decision

tree as a model of the diagnosis-treatment process (Fig. XIV-2). The branch that is

T

q6Tq

q T0
qi P Tq5 9

xx2---R
S R

n x4 ---- R

R R 0
x3

Fig. XIV-2. Decision structure for diagnosis-treatment.
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followed until it eventually reaches a terminal node Ro is dependent upon the outcomes

of the decisions made at all previous nodes, and probabilistically upon the true state

of the patient. We would like to rank order all terminal points according to the decision

criteria, and try to choose at each decision node that branch which leads to the best

terminal node or nodes. Any such look-ahead procedure, however, creates the problem

of computational complexity, because of a very large number of terminal points. Thus,

for practical reasons, we are forced to limit look-ahead and may wish to limit consid-

eration of only a few of the more promising branches at any given node.

A decision about how to limit the evaluation of the possibilities implied by the deci-

sion tree might be made by considering the question, Should the physician continue

testing and thereby obtain a more probable diagnosis, or should he forego further testing

that is costly and likely to be unnecessary and initiate treatment? In terms of the

model, how does the expected outcome, given that he administers the optimal treat-

ment Rx without further testing, compare with the expected outcome of performing

the most relevant test T and then administering the optimal treatment based on the

probabilistic outcome of that test. Thus a decision based on this limited-depth look-

ahead procedure is made by evaluating an inequality of the form

E(T followed by Rx) > E(Rx without testing). (2)
q x

The expected outcome will be a function of utility changes for the possible state transi-

tions, monetary costs of treatment and tests, and risk involved.

Before stating the decision function we define the parameters:

u . = utility of the transition from state i to state j

CR = dollar cost of treatment R
x x

CT = dollar cost of performing test T ,

and the probabilities:

P(T , k) = probability that test Tq has outcome k = Z P(Tq, k D ) P(Dm)

P(ij/Rx, Din) = probability that a patient with disease Dm will go from state i to
state j if treated with therapy R x

P(ij/T q, D ) = probability that a patient with disease Dm will go from state i to
state j if administered test T

k q

R q= given the observed state of the patient before administering test Tq,
k

R q is the optimum treatment if the test has outcome k.

The expected utility of a treatment R x can be written
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Eu(R x ) =

i

1
1

P(ij/R x ) u..X 1]

P(ij/R , D ) P(D m) u..
j Ilm

(3)

The expected risk involved in administering test T can be written
q

E (Tq) =

i

i

I
j

P(ij/T q) u..ij
q ii

P(ij/T , Dm) p(D m uij
j m

where P(Dm) is the probability of disease Dm computed from Bayes' formula.

The inequality

k test

max E(Tq followed by R q) max E(R without further tests)x x
treat

can be evaluated as follows.

E(R x without further tests) = Eu(Rx) - CRx

P(Dm)]= i P(ij/Rx, Dm)
i j m

y k

followed by R

k

P(Tq,k) E(R - CRkq + Er(Tq) - CT
q _u

k
k

+

k
CR q]

P(ij/Tq, Dm) P(Dm)q m m
u.. - CT
3ij q

Equation 6 is evaluated for R x = 1, 2, ... , r and will have a maximum for some x = x.
x

Thus, Rx,: is the optimal treatment if there is to be no further testing. Equation 7 is

evaluated for T q = 1, 2, . . . , t. Each test T has a number of possible outcomes.
q q
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If Sn is the symptom complex before the results of Tq are known, then for every out-

come k of T we obtain a new symptom complex S n(k). For each outcome k we use

Sn(k) and Bayes' formula (1) to compute a new a posteriori distribution for P(Dm). For

each outcome k of T this new distribution is used to find that R which maximizes Eq. 6.
q k x

That treatment is labeled R q, and the maximum value of (6) for outcome k of T is,
k k q

therefore, E (R q) - CR q This value is then used in evaluating Eq. 7 for each

test T . For some q = q , Eq. 7 has a maximum, yielding T q : as the best test to

administer if we decide on further testing before treatment.

If Eq. 6 evaluated for Rx, is less than Eq. 7 evaluated for T ., then the model dic-

tates further testing and suggests giving T as the next test. The results of T yields
q q

new information upon which the decision to treat or continue testing can again be made.

If Eq. 6 evaluated for Rx, is greater than Eq. 7 evaluated for T ,, then the model dic-

tates initiating treatment Rx*. If the patient is cured the process is terminated. If the

patient is not cured, the additional information gained by his response to Rx* is lumped

with the previous data Sn and used to decide whether to test or try a new treatment.

I have tried to describe briefly a model of the diagnosis-treatment procedure. There

are many obstacles to implementing such a model, even on a small scale. Obviously,

estimates must be obtained for several one- and two-dimensional parameters. It is my

intention to pursue this model of the diagnosis-treatment process further, in the hope of

simulating actual decisions so that its accuracy and implications can be properly deter-

mined. In spite of the problem of data collection, parameter estimation, and practical

application, the advantages of a well-defined decision procedure might be more efficient

and accurate care in the face of an increasing scarcity of medical care resources, some

implications for multiphasic screening, and, particularly, a visible and rational context

in which to formulate decisions with regard to diagnosis and treatment of disease.

B. E. Boyle
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E. LEUKOCYTE LOCATING PROCEDURE

Several members of our group are working on the development of a practical auto-

mated leukocyte recognition system. The purpose of such a system is to perform a dif-

ferential leukocyte (white blood cell) count on a smear prepared from human peripheral

blood. An integral part of the system is the ability to rapidly determine whether leuko-

cytes are present in a view and if so where. Working in Fortran IV on the PDP-9 com-

puter, we have demonstrated the feasibility of a very simple locating procedure.

1. Background

When a prepared blood smear slide is examined under an oil-immersion microscope

at 1000X magnification the appearance is similar to that of Fig. XIV-3, except for the loss

of color. Many erythrocytes (red blood cells) can be seen surrounding and touching the

single, roughly circular leukocyte distinguished by its optically dense nucleus. Leuko-

cytes, 7-20 p. in diameter, are normally outnumbered by the erythrocytes 650:1. Several

of the types of leukocytes have segmented or polymorphic nuclei as shown in Fig. XIV-3.

A third type of cell found in mammalian blood is the blood platelet which is usually

smaller than erythrocytes and of an optical density similar to leukocyte nuclei. For
1 2 3

further details see Davidsohn and Wells, Young, or Young.

172 -

ROW

279' 279

DIAGONAL 1 1 108
COLUMN

DIAGONAL 2

Fig. XIV-3. Typical picture showing its four histograms and the
nucleus limits determined from the histograms.
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2. Pictorial Data

The pictorial data used in this study were prepared by Professor Young for his doc-

toral research. 2 4 A field of view approximately 70 p. X 50 . containing one leukocyte

and the surrounding erythrocytes was photographed. The resulting transparencies were

scanned by the on-line flying-spot color scanner SCAD and the output stored on magnetic

tape in the form of quantized blue, green, and red optical transmittances at each of

18, 576 points (172 row X 108 column matrix) over the picture.

For this study only the green record was used.

3. Image Features

As can be seen from Fig. XIV-3, the nucleus of the leukocyte is the most distin-

guishing characteristic, and it alone is used to locate the leukocyte. In order to distin-

guish between nucleic and non-nucleic material in the picture, a technique is used

similar to that by which Young separated background from red and white cell points.

(a)

Fig. XIV-4.

(a) Brightness value histogram (raw data).
(b (b) Smoothed histogram with the nucleic-

cytoplasm and cytoplasm-background
thresholds shown.

A histogram or probability density function of brightness values is computed from the

entire picture (Fig. XIV-4). Three distinct peaks are seen: the first corresponds to a

distribution of nucleus brightness values, the second to leukocyte and erythrocyte cyto-

plasm, and the third to background points. Thus the minimum between the first and

second peaks represents a threshold level by which to classify all points of the picture

as either nucleic or non-nucleic.

The cytoplasm of the leukocyte provides a buffer zone of non-nucleic points around

the nucleus, thereby eliminating the common problem of touching objects.

4. Location Algorithm

Determining bounds on the nucleus extent is accomplished by the use of spatial

histograms (henceforth referred to as histograms, as distinct from the brightness value
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histogram).

histograms

hr(r) =

The digital two-dimensional picture is transformed to four one-dimensional

by a simple threshold-summing procedure defined by the following equations:

ROWS

r=l

T(bcr)cr 1 < r < ROWS

COLS

hc(c) =

c=1

COLS

hm(m)=
c= 1

COLS

h(p) :=

c=l

T(bcr)

T(bc, m+c-COLS )

T(bc, p-c+1)

1 < c s COLS

1 < m < (COLS+ROWS-1)

1 p < (COLS+ROWS-1)

h = row histogramr

h = column histogram
c

h = diagonal 1 histogramm

h = diagonal 2 histogram

T(.) is a threshold function defined by

T(X) = 1 X < brightness value threshold

T(X) = 0 otherwise

{bcr) is the array of brightness values (i. e., the picture),

b is undefined for c, r not in the range (1, COLS), (1, ROWS).
cr

Although two histograms are sufficient for location, four are, at present, being used

for reasons that will be mentioned. The spatial orientation of these histograms is rep-

resented in Fig. XIV-3. The transformation above requires only one scan of the picture

to examine the brightness value at each point and, when a bcr < threshold is encoun-

tered, to increment the appropriate element in each histogram by one. Figure XIV-5

shows two typical histograms.
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(a) 172

(b) 172
(b) 172

Fig. XIV-5. Typical spatial histograms: (a) from a picture containing a leukocyte with
a polymorphic nucleus; (b) from a picture containing a leukocyte with an
almost circular nucleus.
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All of the 25 pictures tested gave exceptionally noise-free histograms with, in gen-

eral, no more than two or three extraneous peaks whose areas were much smaller than

that of the nucleus.

The nucleus limits are determined from the histograms by a two-step procedure.

First, the histograms are simplified by characterizing the information in the form of

disjoint peaks. Each peak is represented in terms of four numbers: the two end points,

the area, and the maximum value. Noise reduction takes the form of (i) eliminating any

peaks not wider than 2 units, and (ii) trimming the ends of the peaks inward to sharpen

boundaries and eliminate trailing edges. The second step is to examine these "simpli-

fied histograms, " which are actually just lists of peaks, looking for possible groupings

of peaks that could constitute a nucleus. The grouping operation is governed by the fol-

lowing criteria:

1. The peak having the largest area is taken as the first candidate for inclusion in

the nucleus estimate.

2. All remaining peaks with an area greater than 1/4 the area of the largest peak

are considered.

3. To prevent grouping two nuclei together, a maximum width parameter and maxi-

mum area parameter are checked.

4. If all peaks with area greater than 1/4 of the largest cannot be considered as one

nucleus, a second nucleus is postulated and the position of the largest peak that caused

the violation is stored.

The nucleus limits obtained from the histograms are checked for consistency with

two tests: (i) the area under each histogram between the proposed limits should be

approximately equal because each is an estimate of the number of nucleus points, and

(ii) the limits should define an octagon of area > average area from test (i). All test

pictures considered thus far contained only one leukocyte. Multiple cell location has

not yet been attempted.

In all of the 25 test cases, the nucleus was located. The octagonal enclosure was

never in error by more than 1 or 2 units inside or 3 units outside the nucleus boundary.

The usual diameter of a nucleus is 20-40 units.

5. Summary

The important advantage of this method is that only the histograms need be in core

to access the presence and location of any leukocytes. Then when a leukocyte is located

the pertinent part of the picture can be brought into core.

With normal blood samples, a view usually contains at most one leukocyte. Under

these conditions, only two histograms are necessary to do location. Four histograms

are generated from each picture, however, to obtain a better estimate of the nucleus
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area that is useful in leukocyte classification and to facilitate separation of leukocyte

groupings.

As we have mentioned, several types of leukocytes have a polymorphic or segmented

nucleus. This polymorphism can vary from a figure eight shape to four or more isolated

segments. Much of the polymorphism of a particular nucleus is evidenced in the multi-

lobed character of its histograms. A study is now under way to determine whether reli-

able estimates of nucleus polymorphism can be made from the four histograms.

T. R. Bourk
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F. DISCRIMINATION ALGORITHM FOR THE NORMAL AND

SUSPICIOUS CELLS OF THE PAPANICOLAOU SMEAR

In our work of developing a discrimination algorithm, 'the data with which we are

concerned are negative photomicrographs taken with a Leitz-Wetzlar Leica camera

using Kodak Panatomic-X black and white film through a Leitz-Wetzlar ORTHOLUX

microscope with 1000X magnification.

The transparencies prepared from the photomicrographs have been scanned with the

"new scanner." It is a black and white high-resolution flying-spot scanner. The scanned

point density is approximately 4 points per micron. Several features have been investi-

gated. Thus far, only three seemed to be of value: (i) integrated nuclear chromatin

density, (ii) nuclear cytoplasmic ratio and (iii) nuclear size.

Integrated nuclear chromatin density seems to be the most promising of the three

features. The first set of test data comprised 18 cells (see Fig. XIV-6), of which 14 were

suspicious and 4 were normal cells. Discrimination based on the nuclear-size measure-

ment alone placed 2 normal cells high up among the suspicious ones and 6 suspicious

ones low down among the normal ones. The integrated nuclear chromatin density feature

placed the two large normal nuclei much lower and raised the six smaller suspicious

ones much higher among the suspicious cells. Actually, 100% separation was achieved.

It is possible that small very darkly stained pyknotic normal nuclei will be difficult
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Fig. XIV-6. Test results.
X = normal cells.
* = suspicious cells.

to separate from small suspicious cells just on the basis of their integrated nuclear

chromatin density measurements. In this case the nuclear and cytoplasmic measure-

ments will have to be taken into consideration, too.

E. Guttmann
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