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A. STELLAR INTERFEROMETER

The fringes formed in the stellar interferometer will be detected by photomultiplier
1

tubes operating in the pulse counting mode, as noted in a previous report. The signals

to be detected, both for guidance and for fringe measurement, are the difference

in the output pulse rates of a pair of phototubes. The pulses from each of the six pairs

of phototubes that will be used are first synchronized to a 4-MHz clock pulse train, and

then counted by 10-bit bi-directional counters. Every 100 [s the contents of these

counters are loaded into 10-bit shift registers for serial readout, and the counters

are reset.

The guidance channels do not need to operate at high input pulse rates, and there-

fore the synchronizers used with them can be single-stage synchronizers; that is, the

maximum output pulse rate is half the clock rate. In order to get better linearity

at high counting rates, the counters in the fringe channels have two stages, and

have a maximum output rate equal to the clock rate.

Simple formulas can be derived for the counting loss of the two kinds of syn-

chronizer as a function of the input pulse rate, provided that the input pulse train

is accurately modeled as a Poisson process. In reality, the pulses from the photo-

multiplier assemblies have significant width and dead times, and thus the formulas

will provide only a rough guide to the counting loss. Since an accurate theoretical

derivation would be quite complicated, and only tangential to the purposes of this

research, the simplest solution is to measure the counting loss experimentally.

The basic word length of the processing circuitry is 25 bits, so the shift regis-

ters are read out in bursts of 10 bits, followed by 15 sign bits. The shift registers

of the guidance counters are read out in series, as are those of the fringe signal

counters. The bit rate is 1 MHz in both cases, the remaining 50 bits in the fringe
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signal channel being blanks, and usable if other fringe signal channels are added later.

This format is used because both fringe signals are processed identically, as are the

four guidance signals, and thus the processor can be constructed to use dual 100-bit

MOS shift registers, which are readily available at low cost, for its memory.

Each bi-directional counter measures the difference in the number of pulses from

the two phototubes connected to it. For the fringe -detecting phototubes, counters have

also been provided to measure the sum of the pulses from the two tubes. This sum is

needed in order to normalize the detected and integrated fringe signal to the total

light received. These counters are also read out and reset at 10 kHz. If we wished

to do so, little extra work would be required to use the outputs of these counters

to study the statistics and power spectrum of stellar scintillation. Although there

are already many published measurements of these quantities, such measurements

might be of interest when taken together with the measurements of angular and phase

fluctuations, that form one of the basic goals of this project.

Because of the presence of scintillation, the light in the fringe channel is to be

chopped at 5 kHz, and the 5-kHz fringe signal is then detected by synchronously

reversing the inputs to the bi-directional counters. This is done during the 1 sec

of each cycle when the counting is inhibited and the counters are being read out.

The result is that the power spectrum of the output of the bi-directional counters

is shown in Fig. I-1.

POWER SPECTRAL DENSITY, S(f)

SCINTILLATION NOISE

POWER SHOT NOISE

SPECTRAL DENSITY
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SHOT NOISE
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SIGNAL
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Fig. I-1. Power spectrum of the output from the bi-directional
counters in the fringe channel.

In order to have the data available for later processing, in particular for spectral

analysis, the signal must be recorded on magnetic tape. Because of the lowpass

nature of the signal, an appropriate sampling rate is 10 kHz/128, = 78 1/8 Hz. Any

higher sampling rate would only record more noise, with negligible increase in the

recorded signal. Furthermore, an approximately matched filter, followed by a

squarer and integrator, must be available during the observations, so that the

observer can adjust the path length and be sure that the fringes are in the field of
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view. Thus we are faced with the problem of filtering the spectrum in Fig. I-1 so that

the word rate can be reduced by a factor of 128 without aliasing too much noise

into the signal band.

Based on the brightness of the stars to be observed and the power spectrum of

stellar scintillation, we find that an appropriate frequency response for the filter is

H(f) - 2 beyond the passband. Since the signal will later be subjected to
78f1/8

matched filtering, a flat passband is not required.

A particularly convenient and economical way of building such a filter will be

described. It is called a "duplicating" filter, and the reason for the name will soon

be evident. The filter structure will be derived first intuitively, and then more for-

mally.

1. Duplicating Filters

Eadem Mutata Resurgo ............ Jacob Bernoulli

Observe that since the only purpose of the filter is to reduce the word rate without

unduly increasing the noise level in the signal band that is due to aliasing, the signal

may be passed through a filter with a frequency response like that sketched in Fig. I-2a,

followed by a sampler operating at half the incoming word rate.

s(f) IN NOISE

H(f)

I SIGNAL

INPUT WORD RATE SAMPLING RATE
-f

fo o/2 fo/2 F

H(f) E S(f) OUT

f f

fo/2 fo f,/2

(a) (b)

Fig. 1-2. (a) A unit cell of the filter. (b) Input and output spectra.

As sketched in Fig. I-2b, the power spectrum of the output is not greatly different

in shape from that of the input, and the word rate has been reduced by a factor of two.

The increase in the noise level in the passband, E, caused by aliasing of scintillation

noise, can be made arbitrarily small by having a high enough order zero at H(f /2). The

output of the filter and sampler is now fed into another, which is structurally iden-

tical to the first but operating at 1/2 the initial word rate, then into another working

at 1/4 the initial rate, and so forth. Eventually, the sampling rate is reduced to
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the Nyquist sampling rate of the signal, and the process must stop. Actually, the addi-

tion of further stages must be stopped somewhat before this because the filter that

is to be used does not cut off sharply, and therefore the region of low transmission

will no longer prevent aliasing of noise into the outer parts of the signal band.

A class of filters of particular interest is the boxcar integrator, and filters

obtained by cascading boxcar integrators. These can be very simply and economically

built by using shift registers, adders, and subtractors. Separate multipliers and

stored coefficients are not required - the structure of a cascade of boxcar integrators

inherently generates the required multiplications.

If we consider the problem of aliasing of noise into the signal band, it turns out

that a single boxcar integrator will not work in the present case, but that two box-

cars in cascade are satisfactory. The time-domain terminology of this filter is illus-

trated in Fig. 1-3, where hn is the digital analog of the impulse response, that is,

the output at word n caused by the word wo having value 1. [Note that hn is also

the response of word wo caused by word wn having the value 1. This is the sense

in which the impulse response of a sampled system should be considered.] The time

origin is taken to coincide with the operation of the sampler, and in a cascaded sys-

tem, it coincides with the operation of the lowest frequency sampler.

We see that

y = w +2w_ +w_ 2

Y =  w2+2wl +wo

y 2
=  w4 +2w3 +w 2

etc. (1)

Let the yn be used as the input to another unit cell, identical to the one above, and

having an output zn'

Z1 = 2 +2 1 +Y=
0  w4+2w3+3 2

+2.( w 2+2wl+o)

+ w +2w +w
o -1 -2

w4 +2w 3 +3w 2 +4 w+3w +2w +w -2

z 2 Y4 +2y 3+Y 2 = w 8 +2w7+3w6 +4w5+3w4+2w3+w

etc. (2)
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W X Y W 2 2n h n
h h WORD 7 WORD

RATE f 0 RATE f,/2 BOXCAR BOXCAR

Wn +Wn+1 -2 0 2 3

Wn +2 Wn-1 +Wn-2 = Xn

Fig. 1-3. Unit cell made from two 2-word boxcar integrators,
in the time domain.

------- - - - - 1--- ----
nWn n , 4 WORD A 4 WORD B

f ff n BOXCAR BOXCAR _
f  

n
I I

Fig. 1-4. Two cascaded unit cells, and their duplicate.

Now, compare the cascaded system described above with one constructed as shown

in Fig. 1-4.

At point A, the signal is w n+wn- +w n 2 +wn 3

At point B, the signal is w n+wn- +wn2 +wn 3

+ wni +w +w +w
+ wn-l n-2 n-3 n-4

+ wn-2+wn-3 wn-4 +n-5

+ wn- 3 +wn-4 +wn-5 +wn-6

=w n+ 2 wn +3 w n+ 4 w 3 + 3 w 4 +2 w 5+wn6. (3)

Thus, the two systems have exactly the same transfer function. Moreover, the new

system has exactly the same structure as the cascaded system's unit cell, differing only

in that the boxcar integrators are longer by a factor of 2, as is the sampling period.

It may readily be verified that as more unit cells are added to the cascaded sys-

tem, the response continues to be the same as that of the duplicate system formed

by lengthening the boxcar integrators and sampling period of the unit cell.

At this point, observe that the duplicating property is associated with the struc-

ture used to realize h n , and not with hn itself. In other words, the duplicate sys-

tem mentioned above might have been built with a structure completely different

from that of the unit cell. The important thing is that when the structure of the unit

cell is duplicated, the response is the same as the response of the cascaded sys-

tem.
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Fig. 1-5. Filters used in deriving the filter structure of Fig. 1-8.

In the example above, a cascade of two boxcars was used. Figure I-5a shows the

simpler case of a filter with unit cells containing a single boxcar, and the duplicate fil-

ter with the same response. In Fig. I-5b there is a more general pair of unit

cells, Sm and S k, and it is given that the third filter, Smn, has the same response as

Sm cascaded with SV. This means that the impulse responses are related by

h *( mh o-Io m o mh
m1

h .. h hm 2" m m m m+l

h h
mo ml

= h o'h h o h .... ( h h + h m h  )Somo Iom 1 aomml mo

= mho

k

mfhk=

j=0

mfhl mfhmma

h jm hk-mj. (5)

Note that all impulse response coefficients hn must be 0 for n < 0, since the system

must obey causality. Also, note that there is no requirement that Sm , S, and Smf be

duplicate structures, but that Fig. I-5a shows one case in which they are duplicates.
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In Fig. I-5c, a boxcar has been added to the filters contained in Sm: Sk, and Sm
The new impulse responses are

m-I

h'= h (6)
mn m n-q

q=0

f-1

h'= h (7)
n n-r

r=O

m2-1

ms n=
s=0

mahns =

s=O

n-s

j=0

h h
2 j m n-s-mj

s=
s=0

[(n-s) /m]

I hj m n-s-mj"
j=0

where [(n-s)/m] denotes the maximum positive integer in (n-s)/m.

By analogy with Eq. 5, the impulse response of the cascade of S' and Si is

hj h'-mj2 j m n-mj

m-1

q=0

1-1

i hj-r
(r=0 q=0

h
m n-mj-q

m-1

q=0
f j-r m n-mj-q

(11)b
rq

r=0

Fig. 1-6.

Geometrical interpretation
and 11. The summation a. is

J

of Eqs. 10
over points

in a plane parallel to the rq plane. The
summation b is over the points in a

rq
column parallel to the j axis.
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Figure I-6 illustrates the meaning of the summations in Eqs. 10 and 11.

Since hn <0 = 0,

h h
Sj-r m n-q-mj

n-r

(j-r)=0
f (j-r) m hn-(q+mr)-m(j-r)

hm n-S-mJ' (12)

where J = j - r and S = q + mr.

The only cases of interest are m > 2, and q > 0. Therefore, S > r and n - r > n - S.

All of the terms in (12) with J > [(n-S)/m] are 0; therefore,

[(n-S)/m]

J=0 fh J mhn-S-mJ (13)

m-1

q=0

i l
mh" =

r=0

[(n-S)/m]

J=0
ChJ mhn-S-mJ

Figure I-7 illustrates how the first two summations of Eq. 14 are replaced by

- * DIVIDE THE REGION TO BE SUMMED OVER INTO STRIPS

SPLACE THE STRIPS END TO END

q S I S=q +mr
m-1 0 m-1 2m-1 mi-1

Fig. 1-7. Geometrical interpretation of the variable S.

a single summation, so that

mf-1

mf-i
S=0

[(n-S)/m]

J=O0

h h n-S-mJ mh'
h J m n-S-mJ m n

Since the boxcar integrators of Fig. I-5a will work for the primitive struc -

tures Sm , SV, and SmQ' it follows by induction that any structure of the kind

QPR No. 101
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m WORD m WORD m WORD

BOXCAR - BOXCAR BOX CAR

S I k m

Fig. 1-8. The general unit cell of a duplicating filter.

shown in Fig. I-8 is the unit cell of a duplicating filter.

Duplicating filters evidently form a very small subset of the filters obtainable by

the method illustrated in Fig. I-2. For example, the unit cells at the end of the cas-

cade might have k larger than those at the beginning, in order to allow the word

rate to be reduced closer to the Nyquist sampling rate of the signal without aliasing

too much noise into the signal band, but the over-all response would not duplicate

that of the unit cell, simply because there are two or more different kinds of unit

cell. Why, then, are duplicating filters of particular interest?

The most important reason is that duplicating filters, like all filters realized

by the method in Fig. I-2, remove unwanted parts of the spectrum by binary elimin-
n

ation. Thus, to filter a signal and reduce its word rate by 2n , the required memory

varies as n instead of 2n , as it would if the filter were realized directly. Word rate
n

reduction by 11 m. is possible also, the case of all m. = 2 being the most econom-

j=1
ical.

The duplicating filter is an especially systematic way of doing this. Whenever
k

a frequency response of the form sin Zf/fo will provide the required filtering,K sin Tf/f )

the filter and sampler are realized by n identical unit cells, each made from k two-

word boxcars.

In the real world, there are many situations wherein a signal must be lowpass-

filtered and sampled at far below the original word rate, but the exact shape of the

frequency response and the exact reduction in the word rate are not very important,

as long as not too much noise is aliased into the signal band. This is often the case

in geophysical applications, for instance. Duplicating filters are suitable for these

purposes.

Another advantage of duplicating filters, although not unique to them, is that

their impulse responses have finite duration and integer coefficients. Therefore, it

is often possible to accept the growth in the word length by one bit for each two-

word boxcar, and in that way get a filter completely free of truncation or rounding

noise.

A very important advantage of duplicating filters is that they are realized by a cas-

cade of identical unit cells, and these can be built with simple and economical circuitry.
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Finally, duplicating filters are of interest in themselves because of the duplicating

property. One very interesting question is, What other structures, if any, have a dupli-

cating property similar to that of the structure given above ? Another area for study

is the general properties of filters obtained by the method in Fig. 1-2.

Duplicating filters are built from boxcar integrators, and these are built from shift

registers, adders, and subtractors. Some of the ways of obtaining a boxcar integrator

are shown in Fig. 1-9. For m = 2 and m = 3, Fig. I-9a uses fewer parts, and for m>3,

Fig. I-9b is better. In Fig. I-9c, the method of combining the final boxcar integrator

and sampler of a unit cell is shown.

SHIFT REGISTERS

m-1 WORD

2 WORD
1 WORD

m WORD 1 WORD
IWORD ADDERS f/m

+ ++++ L

(a) (b) (C)

Fig. 1-9. Realizations of boxcar integrators using shift registers and adders.

When a large number of boxcar integrators are cascaded, it is often important to

prevent the delays associated with the adders from accumulating, since the shift regis-

ters will usually be MOS units, operated synchronously from a common clock source.

For this reason, the output in Fig. I-9b is taken from the shift register rather than

from the adder. The additional one-word delay is of no practical importance.

Note that when a duplicating filter reduces the word rate, the bit rate remains

the same, and thus the later stages of a duplicating filter are quiescent most of

the time. When a unit cell is operating its power consumption is Pr' and when

it is quiescent it uses P q. For word-rate reductions of 2n > 1, the total power

used is ~nPq + 2(P r-P q). If dynamic shift registers are used, the stored words

will generally have to be recirculated during the quiescent phase, and P = P . If
q r

static shift registers are used, the clock signal can be stopped during the quiescent

phase, although P is still relatively high. If a low-power logic type such as com-

plementary MOS is used, or n the word rate is high enough that dynamic shift

registers can be used without recirculating (and complementary MOS used for the

rest of the circuits in the unit cell), then the power consumption can be very small, which

might be an important advantage in some cases, such as geophysical instrumentation.
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For the important case of m = 2, and where the word rate is not too high, it is pos-

sible to take advantage of the availability of very long shift registers at low cost per

bit, in order to obtain a large value of k. A circuit to do this is shown in Fig. 1-10. A

typical situation in which this would be advantageous is k = 8, word length = 32 bits, so

that the large register is 256 bits.

In all of these, several data streams may be processed identically by multiplexing

the words serially, lengthening the shift registers, and resetting the carry flip-flops of

the adders at the beginning of each word.

K WORDS WORD Fig. I- 10.

Unit cell with most of the mem-

1 WORD ory in a single shift register.
f f

Finally, the duplicating filter structure may be realized by using a general-purpose

digital computer. Obviously, it would be wasteful to use the computer to realize a

real-time duplicating filter. For of:'-line filtering and sampling, the input data are

read in as a block of kZn words, and the programmer now has the choice of filtering

this with a duplicating filter, or directly forming a weighted sum of the input points.

The first stage of the duplicating filter is computed with k2 X 2 n additions, the sec-

ond stage with k2 X 2n - 1, etc., for a total of ~2k2 X 2n additions. The direct method

requires k2 n multiplications and additions, so that the faster filtering method will

depend, for the most part, on the ratio of add time to multiply time. For a very

small machine, the multiply operation must be programmed, in which case the

duplicating filter would often be faster, besides not requiring a table of coefficients.

For a very large computer with multiplication a permanently wired part of the cen-

tral processor, the direct method would be faster.

P. L. Kebabian
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B. TRANSMISSION OF CARBON DIOXIDE: Q BRANCH

The Q-branch transmission of the 15 FL carbon dioxide absorption band is important

for sensing the atmospheric temperature profile. Evaluation of the transmission by

integrating point by point on the spectrum is time-consuming, while no band model

has been devised that satisfactorily represents the intense line distribution. An
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efficient computational procedure is given in this report which improves the accuracy

and ease of computation of expressions suggested by Yamamoto and Aida. 1

In a particular vibrational band, a spectral line is centered at the frequency

oj = o + BJ(J+1), (1)

where

o = band origin of the vibrational transition

B = difference in rotation constants of the upper and lower energy states

J = rotational number of the lower energy state.

Adjacent lines are separated by

b [(WJ+J - W) + (Wj -toJJ)]

= B(2J+l) AJ, (2)

where AJ = 1 or 2 according to selection rules.

The line has integrated intensity

Sj = S oA j2 exp[-iJ(J+1)], (3)

where

S = total integrated intensity of the vibrational band
o

t = (hc/kT) X (rotation constant of the lower energy state)

h = Planck's constant

k = Boltzmann's constant

T = absolute temperature of the gas

IA 12 = rotational matrix element, rapidly approaching 2J+1 for large J.

Under the assumption that the Lorentz line shape is of half-width a, the absorption

coefficient at a particular frequency w is

k = S a (4)
t a - (w-c j)

where summation is over all allowed J, typically 2-80 by 2 before Sj becomes negligible.
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By substituting t = jJ(J+1) and allowing J = 2,4,6,..., the summation in Eq. 4

transforms to the integral

2
S y cc

k(W) = 2Tra J.
-t

2e 2 dt,
y2 + (t+x)

x = - o

y = La/B.

The integral (5) has been analytically evaluated by Yamamoto and Aida.1

ks() S o ex[sinyReE ( z)+cosylmE (z)],s 2wa 1 1

where

E 1 (z = x+iy) = e dZ~
E d1

The exponential integral (7) for complex arguments has application to other research

areas. For atmospheric transmission, the magnitude of parameters involved requires

much finer step size than that with which E (z) has been tabulated.2 These equations are

more applicable and easily implemented on a computer:

Re E 1 (z) = E 1 (x) + re - x

m=2, 4, 6,...

Im E 1 (z) = p + rex

m=1, 3, 5, ...

(-1)m/2

m r m - [xm +(m-1)xm-2

+... +(m-)!]

m+l

(-1) 2
m-1 m-1 m-2

r [x +(m-l)xm!

p=0 x>0

-w x < 0

r = y/x Irl <1
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and E 1 (x) is well represented by polynomials, as in the IBM Scientific Subrou-

tine Package. Since [ri << 1, only one or two terms are necessary in the sum-

mations. By expanding the series in terms of 1/r, E 1 ( rj >1) can be similarly

derived but need not be considered here.

If a spectrometer channel occupies the frequency interval cout outside a Q branch

and includes lines up to J = J' inside, then obviously the average transmission 7 of the

whole channel for an optical mass u is the weighted sum

J'

Wout fout exp[-ks(w)u] dw + Z b

T = 1, (9)

out + Z b

where

J = exp[-k (w)u] dw. (10)

The integral f out exp[-ks(w)u ] dw for frequencies outside the Q branch repre-
out

sents absorption by line wings only. It can be easily evaluated, since ks(w) is a

smooth function (at all pressures). Inside the Q branch, Tj in Eq. 10 is more dif-

ficult to evaluate, however, owing to the fine structure of spectral lines at low pres-

sures. Mathematically, the passage of summation to integration in Eqs. 4 and 5 is

valid only when B << a.

Yamamotol has suggested the approximation

*c (11)
T ; Texp[-(ks (w )-k )u] )

where ks( J ) is given by Eq. 6, and

SkJ b bJ/2 SJ a
k = dw

J b T0 2 2
J/2 0 a +

2S
- tan (bJ/2a) (12)

J

q, the direct contribution of one spectral line alone, is given by
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T = S exp[-k j()u] dcobJi

b1/2
bj/2

sb J/ 2

Su 2
exp ~ dw

a +w

= exp L k 2P dp

where

k = 2a/bj

e = 2x(1+k 2)

x = Sju/2ra(1+k 2)

p = 2c/b .

10
- 1  

100 101 102

Fig. I-11. Regions of utilization to evaluate

SI k2(l+k2
f1 exp -2x 2  2 dp. (See

k +p j
Eqs. 14.) Note that partition is

actually good for 10-3 < x < 10 5
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The integral (13) has been evaluated by Wyatt et al.3 Better results can be

calculated by using appropriate equations over different regions of x and k. With

the partition

follows.

* - E2
I: i = e

in Fig. I-11, the equations applicable to different regions are as

+ 2ka A - T e-/2 I 1

- k A - E e2 E
2 A = erf [E\-]

3

II: = -k ( 1 )n

n=0

N

III: 7j = exp -a

n=0 k

(n+l)!

k2n-1
F ; F +

n n 2n(l+k2 n

F = tan- 1 (1/k)

k2

+ (nA)2

2n - 1
F2n n-

2n n-1

1
N

N 20

IV: 7 = 0

- E 2 k
e - - e-a/2 (2 1 (r-qi

+k e - /2 21 n(

n= 1

+-
n ( ') + In+l())] sin n i,

E =k//l + k2

-l
4= 2 tan-1 k

I = modified Bessel function of order n.

The relative error is generally better than 0. 2% transmittance except in regions III
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V: 1 =

where

(14)
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Fig. 1-12. Q-branch transmission averaged over a 5 cm - 1 channel.

and IV, where the absolute error is small instead.

Using Eqs. 8-14 and the partition scheme outlined in Fig. I-11, we evaluate the

transmittance for the 667.38 cm - I fundamental band of carbon dioxide (see Fig. 1-12).

As can be seen, the result is in excellent agreement with Yamamoto's result obtained

by direct point-by-point integration using the absorption coefficient in Eq. 4 at each

point.

R. K. L. Poon, D. H. Staelin
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